]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
* defs.h (strlen_paddr, paddr, paddr_nz): Remove.
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int);
133
134 static int simple_read_overlay_table (void);
135
136 static int simple_overlay_update_1 (struct obj_section *);
137
138 static void add_filename_language (char *ext, enum language lang);
139
140 static void info_ext_lang_command (char *args, int from_tty);
141
142 static char *find_separate_debug_file (struct objfile *objfile);
143
144 static void init_filename_language_table (void);
145
146 static void symfile_find_segment_sections (struct objfile *objfile);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173 /* If non-zero, gdb will notify the user when it is loading symbols
174 from a file. This is almost always what users will want to have happen;
175 but for programs with lots of dynamically linked libraries, the output
176 can be more noise than signal. */
177
178 int print_symbol_loading = 1;
179
180 /* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present. */
189
190 int auto_solib_add = 1;
191
192 /* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
198 command. */
199
200 int auto_solib_limit;
201 \f
202
203 /* This compares two partial symbols by names, using strcmp_iw_ordered
204 for the comparison. */
205
206 static int
207 compare_psymbols (const void *s1p, const void *s2p)
208 {
209 struct partial_symbol *const *s1 = s1p;
210 struct partial_symbol *const *s2 = s2p;
211
212 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
213 SYMBOL_SEARCH_NAME (*s2));
214 }
215
216 void
217 sort_pst_symbols (struct partial_symtab *pst)
218 {
219 /* Sort the global list; don't sort the static list */
220
221 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
222 pst->n_global_syms, sizeof (struct partial_symbol *),
223 compare_psymbols);
224 }
225
226 /* Make a null terminated copy of the string at PTR with SIZE characters in
227 the obstack pointed to by OBSTACKP . Returns the address of the copy.
228 Note that the string at PTR does not have to be null terminated, I.E. it
229 may be part of a larger string and we are only saving a substring. */
230
231 char *
232 obsavestring (const char *ptr, int size, struct obstack *obstackp)
233 {
234 char *p = (char *) obstack_alloc (obstackp, size + 1);
235 /* Open-coded memcpy--saves function call time. These strings are usually
236 short. FIXME: Is this really still true with a compiler that can
237 inline memcpy? */
238 {
239 const char *p1 = ptr;
240 char *p2 = p;
241 const char *end = ptr + size;
242 while (p1 != end)
243 *p2++ = *p1++;
244 }
245 p[size] = 0;
246 return p;
247 }
248
249 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
250 in the obstack pointed to by OBSTACKP. */
251
252 char *
253 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
254 const char *s3)
255 {
256 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
257 char *val = (char *) obstack_alloc (obstackp, len);
258 strcpy (val, s1);
259 strcat (val, s2);
260 strcat (val, s3);
261 return val;
262 }
263
264 /* True if we are nested inside psymtab_to_symtab. */
265
266 int currently_reading_symtab = 0;
267
268 static void
269 decrement_reading_symtab (void *dummy)
270 {
271 currently_reading_symtab--;
272 }
273
274 /* Get the symbol table that corresponds to a partial_symtab.
275 This is fast after the first time you do it. In fact, there
276 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
277 case inline. */
278
279 struct symtab *
280 psymtab_to_symtab (struct partial_symtab *pst)
281 {
282 /* If it's been looked up before, return it. */
283 if (pst->symtab)
284 return pst->symtab;
285
286 /* If it has not yet been read in, read it. */
287 if (!pst->readin)
288 {
289 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
290 currently_reading_symtab++;
291 (*pst->read_symtab) (pst);
292 do_cleanups (back_to);
293 }
294
295 return pst->symtab;
296 }
297
298 /* Remember the lowest-addressed loadable section we've seen.
299 This function is called via bfd_map_over_sections.
300
301 In case of equal vmas, the section with the largest size becomes the
302 lowest-addressed loadable section.
303
304 If the vmas and sizes are equal, the last section is considered the
305 lowest-addressed loadable section. */
306
307 void
308 find_lowest_section (bfd *abfd, asection *sect, void *obj)
309 {
310 asection **lowest = (asection **) obj;
311
312 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
313 return;
314 if (!*lowest)
315 *lowest = sect; /* First loadable section */
316 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
317 *lowest = sect; /* A lower loadable section */
318 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
319 && (bfd_section_size (abfd, (*lowest))
320 <= bfd_section_size (abfd, sect)))
321 *lowest = sect;
322 }
323
324 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
325
326 struct section_addr_info *
327 alloc_section_addr_info (size_t num_sections)
328 {
329 struct section_addr_info *sap;
330 size_t size;
331
332 size = (sizeof (struct section_addr_info)
333 + sizeof (struct other_sections) * (num_sections - 1));
334 sap = (struct section_addr_info *) xmalloc (size);
335 memset (sap, 0, size);
336 sap->num_sections = num_sections;
337
338 return sap;
339 }
340
341
342 /* Return a freshly allocated copy of ADDRS. The section names, if
343 any, are also freshly allocated copies of those in ADDRS. */
344 struct section_addr_info *
345 copy_section_addr_info (struct section_addr_info *addrs)
346 {
347 struct section_addr_info *copy
348 = alloc_section_addr_info (addrs->num_sections);
349 int i;
350
351 copy->num_sections = addrs->num_sections;
352 for (i = 0; i < addrs->num_sections; i++)
353 {
354 copy->other[i].addr = addrs->other[i].addr;
355 if (addrs->other[i].name)
356 copy->other[i].name = xstrdup (addrs->other[i].name);
357 else
358 copy->other[i].name = NULL;
359 copy->other[i].sectindex = addrs->other[i].sectindex;
360 }
361
362 return copy;
363 }
364
365
366
367 /* Build (allocate and populate) a section_addr_info struct from
368 an existing section table. */
369
370 extern struct section_addr_info *
371 build_section_addr_info_from_section_table (const struct target_section *start,
372 const struct target_section *end)
373 {
374 struct section_addr_info *sap;
375 const struct target_section *stp;
376 int oidx;
377
378 sap = alloc_section_addr_info (end - start);
379
380 for (stp = start, oidx = 0; stp != end; stp++)
381 {
382 if (bfd_get_section_flags (stp->bfd,
383 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
384 && oidx < end - start)
385 {
386 sap->other[oidx].addr = stp->addr;
387 sap->other[oidx].name
388 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
389 sap->other[oidx].sectindex = stp->the_bfd_section->index;
390 oidx++;
391 }
392 }
393
394 return sap;
395 }
396
397
398 /* Free all memory allocated by build_section_addr_info_from_section_table. */
399
400 extern void
401 free_section_addr_info (struct section_addr_info *sap)
402 {
403 int idx;
404
405 for (idx = 0; idx < sap->num_sections; idx++)
406 if (sap->other[idx].name)
407 xfree (sap->other[idx].name);
408 xfree (sap);
409 }
410
411
412 /* Initialize OBJFILE's sect_index_* members. */
413 static void
414 init_objfile_sect_indices (struct objfile *objfile)
415 {
416 asection *sect;
417 int i;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".text");
420 if (sect)
421 objfile->sect_index_text = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".data");
424 if (sect)
425 objfile->sect_index_data = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
428 if (sect)
429 objfile->sect_index_bss = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
432 if (sect)
433 objfile->sect_index_rodata = sect->index;
434
435 /* This is where things get really weird... We MUST have valid
436 indices for the various sect_index_* members or gdb will abort.
437 So if for example, there is no ".text" section, we have to
438 accomodate that. First, check for a file with the standard
439 one or two segments. */
440
441 symfile_find_segment_sections (objfile);
442
443 /* Except when explicitly adding symbol files at some address,
444 section_offsets contains nothing but zeros, so it doesn't matter
445 which slot in section_offsets the individual sect_index_* members
446 index into. So if they are all zero, it is safe to just point
447 all the currently uninitialized indices to the first slot. But
448 beware: if this is the main executable, it may be relocated
449 later, e.g. by the remote qOffsets packet, and then this will
450 be wrong! That's why we try segments first. */
451
452 for (i = 0; i < objfile->num_sections; i++)
453 {
454 if (ANOFFSET (objfile->section_offsets, i) != 0)
455 {
456 break;
457 }
458 }
459 if (i == objfile->num_sections)
460 {
461 if (objfile->sect_index_text == -1)
462 objfile->sect_index_text = 0;
463 if (objfile->sect_index_data == -1)
464 objfile->sect_index_data = 0;
465 if (objfile->sect_index_bss == -1)
466 objfile->sect_index_bss = 0;
467 if (objfile->sect_index_rodata == -1)
468 objfile->sect_index_rodata = 0;
469 }
470 }
471
472 /* The arguments to place_section. */
473
474 struct place_section_arg
475 {
476 struct section_offsets *offsets;
477 CORE_ADDR lowest;
478 };
479
480 /* Find a unique offset to use for loadable section SECT if
481 the user did not provide an offset. */
482
483 static void
484 place_section (bfd *abfd, asection *sect, void *obj)
485 {
486 struct place_section_arg *arg = obj;
487 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
488 int done;
489 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
490
491 /* We are only interested in allocated sections. */
492 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
493 return;
494
495 /* If the user specified an offset, honor it. */
496 if (offsets[sect->index] != 0)
497 return;
498
499 /* Otherwise, let's try to find a place for the section. */
500 start_addr = (arg->lowest + align - 1) & -align;
501
502 do {
503 asection *cur_sec;
504
505 done = 1;
506
507 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
508 {
509 int indx = cur_sec->index;
510 CORE_ADDR cur_offset;
511
512 /* We don't need to compare against ourself. */
513 if (cur_sec == sect)
514 continue;
515
516 /* We can only conflict with allocated sections. */
517 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
518 continue;
519
520 /* If the section offset is 0, either the section has not been placed
521 yet, or it was the lowest section placed (in which case LOWEST
522 will be past its end). */
523 if (offsets[indx] == 0)
524 continue;
525
526 /* If this section would overlap us, then we must move up. */
527 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
528 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
529 {
530 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
531 start_addr = (start_addr + align - 1) & -align;
532 done = 0;
533 break;
534 }
535
536 /* Otherwise, we appear to be OK. So far. */
537 }
538 }
539 while (!done);
540
541 offsets[sect->index] = start_addr;
542 arg->lowest = start_addr + bfd_get_section_size (sect);
543 }
544
545 /* Parse the user's idea of an offset for dynamic linking, into our idea
546 of how to represent it for fast symbol reading. This is the default
547 version of the sym_fns.sym_offsets function for symbol readers that
548 don't need to do anything special. It allocates a section_offsets table
549 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
550
551 void
552 default_symfile_offsets (struct objfile *objfile,
553 struct section_addr_info *addrs)
554 {
555 int i;
556
557 objfile->num_sections = bfd_count_sections (objfile->obfd);
558 objfile->section_offsets = (struct section_offsets *)
559 obstack_alloc (&objfile->objfile_obstack,
560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561 memset (objfile->section_offsets, 0,
562 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
563
564 /* Now calculate offsets for section that were specified by the
565 caller. */
566 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
567 {
568 struct other_sections *osp ;
569
570 osp = &addrs->other[i] ;
571 if (osp->addr == 0)
572 continue;
573
574 /* Record all sections in offsets */
575 /* The section_offsets in the objfile are here filled in using
576 the BFD index. */
577 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
578 }
579
580 /* For relocatable files, all loadable sections will start at zero.
581 The zero is meaningless, so try to pick arbitrary addresses such
582 that no loadable sections overlap. This algorithm is quadratic,
583 but the number of sections in a single object file is generally
584 small. */
585 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
586 {
587 struct place_section_arg arg;
588 bfd *abfd = objfile->obfd;
589 asection *cur_sec;
590 CORE_ADDR lowest = 0;
591
592 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
593 /* We do not expect this to happen; just skip this step if the
594 relocatable file has a section with an assigned VMA. */
595 if (bfd_section_vma (abfd, cur_sec) != 0)
596 break;
597
598 if (cur_sec == NULL)
599 {
600 CORE_ADDR *offsets = objfile->section_offsets->offsets;
601
602 /* Pick non-overlapping offsets for sections the user did not
603 place explicitly. */
604 arg.offsets = objfile->section_offsets;
605 arg.lowest = 0;
606 bfd_map_over_sections (objfile->obfd, place_section, &arg);
607
608 /* Correctly filling in the section offsets is not quite
609 enough. Relocatable files have two properties that
610 (most) shared objects do not:
611
612 - Their debug information will contain relocations. Some
613 shared libraries do also, but many do not, so this can not
614 be assumed.
615
616 - If there are multiple code sections they will be loaded
617 at different relative addresses in memory than they are
618 in the objfile, since all sections in the file will start
619 at address zero.
620
621 Because GDB has very limited ability to map from an
622 address in debug info to the correct code section,
623 it relies on adding SECT_OFF_TEXT to things which might be
624 code. If we clear all the section offsets, and set the
625 section VMAs instead, then symfile_relocate_debug_section
626 will return meaningful debug information pointing at the
627 correct sections.
628
629 GDB has too many different data structures for section
630 addresses - a bfd, objfile, and so_list all have section
631 tables, as does exec_ops. Some of these could probably
632 be eliminated. */
633
634 for (cur_sec = abfd->sections; cur_sec != NULL;
635 cur_sec = cur_sec->next)
636 {
637 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
638 continue;
639
640 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
641 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
642 offsets[cur_sec->index]);
643 offsets[cur_sec->index] = 0;
644 }
645 }
646 }
647
648 /* Remember the bfd indexes for the .text, .data, .bss and
649 .rodata sections. */
650 init_objfile_sect_indices (objfile);
651 }
652
653
654 /* Divide the file into segments, which are individual relocatable units.
655 This is the default version of the sym_fns.sym_segments function for
656 symbol readers that do not have an explicit representation of segments.
657 It assumes that object files do not have segments, and fully linked
658 files have a single segment. */
659
660 struct symfile_segment_data *
661 default_symfile_segments (bfd *abfd)
662 {
663 int num_sections, i;
664 asection *sect;
665 struct symfile_segment_data *data;
666 CORE_ADDR low, high;
667
668 /* Relocatable files contain enough information to position each
669 loadable section independently; they should not be relocated
670 in segments. */
671 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
672 return NULL;
673
674 /* Make sure there is at least one loadable section in the file. */
675 for (sect = abfd->sections; sect != NULL; sect = sect->next)
676 {
677 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
678 continue;
679
680 break;
681 }
682 if (sect == NULL)
683 return NULL;
684
685 low = bfd_get_section_vma (abfd, sect);
686 high = low + bfd_get_section_size (sect);
687
688 data = XZALLOC (struct symfile_segment_data);
689 data->num_segments = 1;
690 data->segment_bases = XCALLOC (1, CORE_ADDR);
691 data->segment_sizes = XCALLOC (1, CORE_ADDR);
692
693 num_sections = bfd_count_sections (abfd);
694 data->segment_info = XCALLOC (num_sections, int);
695
696 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
697 {
698 CORE_ADDR vma;
699
700 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
701 continue;
702
703 vma = bfd_get_section_vma (abfd, sect);
704 if (vma < low)
705 low = vma;
706 if (vma + bfd_get_section_size (sect) > high)
707 high = vma + bfd_get_section_size (sect);
708
709 data->segment_info[i] = 1;
710 }
711
712 data->segment_bases[0] = low;
713 data->segment_sizes[0] = high - low;
714
715 return data;
716 }
717
718 /* Process a symbol file, as either the main file or as a dynamically
719 loaded file.
720
721 OBJFILE is where the symbols are to be read from.
722
723 ADDRS is the list of section load addresses. If the user has given
724 an 'add-symbol-file' command, then this is the list of offsets and
725 addresses he or she provided as arguments to the command; or, if
726 we're handling a shared library, these are the actual addresses the
727 sections are loaded at, according to the inferior's dynamic linker
728 (as gleaned by GDB's shared library code). We convert each address
729 into an offset from the section VMA's as it appears in the object
730 file, and then call the file's sym_offsets function to convert this
731 into a format-specific offset table --- a `struct section_offsets'.
732 If ADDRS is non-zero, OFFSETS must be zero.
733
734 OFFSETS is a table of section offsets already in the right
735 format-specific representation. NUM_OFFSETS is the number of
736 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
737 assume this is the proper table the call to sym_offsets described
738 above would produce. Instead of calling sym_offsets, we just dump
739 it right into objfile->section_offsets. (When we're re-reading
740 symbols from an objfile, we don't have the original load address
741 list any more; all we have is the section offset table.) If
742 OFFSETS is non-zero, ADDRS must be zero.
743
744 ADD_FLAGS encodes verbosity level, whether this is main symbol or
745 an extra symbol file such as dynamically loaded code, and wether
746 breakpoint reset should be deferred. */
747
748 void
749 syms_from_objfile (struct objfile *objfile,
750 struct section_addr_info *addrs,
751 struct section_offsets *offsets,
752 int num_offsets,
753 int add_flags)
754 {
755 struct section_addr_info *local_addr = NULL;
756 struct cleanup *old_chain;
757 const int mainline = add_flags & SYMFILE_MAINLINE;
758
759 gdb_assert (! (addrs && offsets));
760
761 init_entry_point_info (objfile);
762 objfile->sf = find_sym_fns (objfile->obfd);
763
764 if (objfile->sf == NULL)
765 return; /* No symbols. */
766
767 /* Make sure that partially constructed symbol tables will be cleaned up
768 if an error occurs during symbol reading. */
769 old_chain = make_cleanup_free_objfile (objfile);
770
771 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
772 list. We now establish the convention that an addr of zero means
773 no load address was specified. */
774 if (! addrs && ! offsets)
775 {
776 local_addr
777 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
778 make_cleanup (xfree, local_addr);
779 addrs = local_addr;
780 }
781
782 /* Now either addrs or offsets is non-zero. */
783
784 if (mainline)
785 {
786 /* We will modify the main symbol table, make sure that all its users
787 will be cleaned up if an error occurs during symbol reading. */
788 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
789
790 /* Since no error yet, throw away the old symbol table. */
791
792 if (symfile_objfile != NULL)
793 {
794 free_objfile (symfile_objfile);
795 symfile_objfile = NULL;
796 }
797
798 /* Currently we keep symbols from the add-symbol-file command.
799 If the user wants to get rid of them, they should do "symbol-file"
800 without arguments first. Not sure this is the best behavior
801 (PR 2207). */
802
803 (*objfile->sf->sym_new_init) (objfile);
804 }
805
806 /* Convert addr into an offset rather than an absolute address.
807 We find the lowest address of a loaded segment in the objfile,
808 and assume that <addr> is where that got loaded.
809
810 We no longer warn if the lowest section is not a text segment (as
811 happens for the PA64 port. */
812 if (!mainline && addrs && addrs->other[0].name)
813 {
814 asection *lower_sect;
815 asection *sect;
816 CORE_ADDR lower_offset;
817 int i;
818
819 /* Find lowest loadable section to be used as starting point for
820 continguous sections. FIXME!! won't work without call to find
821 .text first, but this assumes text is lowest section. */
822 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
823 if (lower_sect == NULL)
824 bfd_map_over_sections (objfile->obfd, find_lowest_section,
825 &lower_sect);
826 if (lower_sect == NULL)
827 {
828 warning (_("no loadable sections found in added symbol-file %s"),
829 objfile->name);
830 lower_offset = 0;
831 }
832 else
833 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
834
835 /* Calculate offsets for the loadable sections.
836 FIXME! Sections must be in order of increasing loadable section
837 so that contiguous sections can use the lower-offset!!!
838
839 Adjust offsets if the segments are not contiguous.
840 If the section is contiguous, its offset should be set to
841 the offset of the highest loadable section lower than it
842 (the loadable section directly below it in memory).
843 this_offset = lower_offset = lower_addr - lower_orig_addr */
844
845 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
846 {
847 if (addrs->other[i].addr != 0)
848 {
849 sect = bfd_get_section_by_name (objfile->obfd,
850 addrs->other[i].name);
851 if (sect)
852 {
853 addrs->other[i].addr
854 -= bfd_section_vma (objfile->obfd, sect);
855 lower_offset = addrs->other[i].addr;
856 /* This is the index used by BFD. */
857 addrs->other[i].sectindex = sect->index ;
858 }
859 else
860 {
861 warning (_("section %s not found in %s"),
862 addrs->other[i].name,
863 objfile->name);
864 addrs->other[i].addr = 0;
865 }
866 }
867 else
868 addrs->other[i].addr = lower_offset;
869 }
870 }
871
872 /* Initialize symbol reading routines for this objfile, allow complaints to
873 appear for this new file, and record how verbose to be, then do the
874 initial symbol reading for this file. */
875
876 (*objfile->sf->sym_init) (objfile);
877 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
878
879 if (addrs)
880 (*objfile->sf->sym_offsets) (objfile, addrs);
881 else
882 {
883 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
884
885 /* Just copy in the offset table directly as given to us. */
886 objfile->num_sections = num_offsets;
887 objfile->section_offsets
888 = ((struct section_offsets *)
889 obstack_alloc (&objfile->objfile_obstack, size));
890 memcpy (objfile->section_offsets, offsets, size);
891
892 init_objfile_sect_indices (objfile);
893 }
894
895 (*objfile->sf->sym_read) (objfile, mainline);
896
897 /* Discard cleanups as symbol reading was successful. */
898
899 discard_cleanups (old_chain);
900 xfree (local_addr);
901 }
902
903 /* Perform required actions after either reading in the initial
904 symbols for a new objfile, or mapping in the symbols from a reusable
905 objfile. */
906
907 void
908 new_symfile_objfile (struct objfile *objfile, int add_flags)
909 {
910
911 /* If this is the main symbol file we have to clean up all users of the
912 old main symbol file. Otherwise it is sufficient to fixup all the
913 breakpoints that may have been redefined by this symbol file. */
914 if (add_flags & SYMFILE_MAINLINE)
915 {
916 /* OK, make it the "real" symbol file. */
917 symfile_objfile = objfile;
918
919 clear_symtab_users ();
920 }
921 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
922 {
923 breakpoint_re_set ();
924 }
925
926 /* We're done reading the symbol file; finish off complaints. */
927 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
928 }
929
930 /* Process a symbol file, as either the main file or as a dynamically
931 loaded file.
932
933 ABFD is a BFD already open on the file, as from symfile_bfd_open.
934 This BFD will be closed on error, and is always consumed by this function.
935
936 ADD_FLAGS encodes verbosity, whether this is main symbol file or
937 extra, such as dynamically loaded code, and what to do with breakpoins.
938
939 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
940 syms_from_objfile, above.
941 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
942
943 Upon success, returns a pointer to the objfile that was added.
944 Upon failure, jumps back to command level (never returns). */
945
946 static struct objfile *
947 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
948 int add_flags,
949 struct section_addr_info *addrs,
950 struct section_offsets *offsets,
951 int num_offsets,
952 int flags)
953 {
954 struct objfile *objfile;
955 struct partial_symtab *psymtab;
956 char *debugfile = NULL;
957 struct section_addr_info *orig_addrs = NULL;
958 struct cleanup *my_cleanups;
959 const char *name = bfd_get_filename (abfd);
960 const int from_tty = add_flags & SYMFILE_VERBOSE;
961
962 my_cleanups = make_cleanup_bfd_close (abfd);
963
964 /* Give user a chance to burp if we'd be
965 interactively wiping out any existing symbols. */
966
967 if ((have_full_symbols () || have_partial_symbols ())
968 && (add_flags & SYMFILE_MAINLINE)
969 && from_tty
970 && !query (_("Load new symbol table from \"%s\"? "), name))
971 error (_("Not confirmed."));
972
973 objfile = allocate_objfile (abfd, flags);
974 discard_cleanups (my_cleanups);
975
976 if (addrs)
977 {
978 orig_addrs = copy_section_addr_info (addrs);
979 make_cleanup_free_section_addr_info (orig_addrs);
980 }
981
982 /* We either created a new mapped symbol table, mapped an existing
983 symbol table file which has not had initial symbol reading
984 performed, or need to read an unmapped symbol table. */
985 if (from_tty || info_verbose)
986 {
987 if (deprecated_pre_add_symbol_hook)
988 deprecated_pre_add_symbol_hook (name);
989 else
990 {
991 if (print_symbol_loading)
992 {
993 printf_unfiltered (_("Reading symbols from %s..."), name);
994 wrap_here ("");
995 gdb_flush (gdb_stdout);
996 }
997 }
998 }
999 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1000 add_flags);
1001
1002 /* We now have at least a partial symbol table. Check to see if the
1003 user requested that all symbols be read on initial access via either
1004 the gdb startup command line or on a per symbol file basis. Expand
1005 all partial symbol tables for this objfile if so. */
1006
1007 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1008 {
1009 if ((from_tty || info_verbose) && print_symbol_loading)
1010 {
1011 printf_unfiltered (_("expanding to full symbols..."));
1012 wrap_here ("");
1013 gdb_flush (gdb_stdout);
1014 }
1015
1016 for (psymtab = objfile->psymtabs;
1017 psymtab != NULL;
1018 psymtab = psymtab->next)
1019 {
1020 psymtab_to_symtab (psymtab);
1021 }
1022 }
1023
1024 /* If the file has its own symbol tables it has no separate debug info.
1025 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1026 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1027 if (objfile->psymtabs == NULL)
1028 debugfile = find_separate_debug_file (objfile);
1029 if (debugfile)
1030 {
1031 if (addrs != NULL)
1032 {
1033 objfile->separate_debug_objfile
1034 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1035 }
1036 else
1037 {
1038 objfile->separate_debug_objfile
1039 = symbol_file_add (debugfile, add_flags, NULL, flags);
1040 }
1041 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1042 = objfile;
1043
1044 /* Put the separate debug object before the normal one, this is so that
1045 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1046 put_objfile_before (objfile->separate_debug_objfile, objfile);
1047
1048 xfree (debugfile);
1049 }
1050
1051 if (!have_partial_symbols () && !have_full_symbols ()
1052 && print_symbol_loading)
1053 {
1054 wrap_here ("");
1055 printf_unfiltered (_("(no debugging symbols found)"));
1056 if (from_tty || info_verbose)
1057 printf_unfiltered ("...");
1058 else
1059 printf_unfiltered ("\n");
1060 wrap_here ("");
1061 }
1062
1063 if (from_tty || info_verbose)
1064 {
1065 if (deprecated_post_add_symbol_hook)
1066 deprecated_post_add_symbol_hook ();
1067 else
1068 {
1069 if (print_symbol_loading)
1070 printf_unfiltered (_("done.\n"));
1071 }
1072 }
1073
1074 /* We print some messages regardless of whether 'from_tty ||
1075 info_verbose' is true, so make sure they go out at the right
1076 time. */
1077 gdb_flush (gdb_stdout);
1078
1079 do_cleanups (my_cleanups);
1080
1081 if (objfile->sf == NULL)
1082 return objfile; /* No symbols. */
1083
1084 new_symfile_objfile (objfile, add_flags);
1085
1086 observer_notify_new_objfile (objfile);
1087
1088 bfd_cache_close_all ();
1089 return (objfile);
1090 }
1091
1092
1093 /* Process the symbol file ABFD, as either the main file or as a
1094 dynamically loaded file.
1095
1096 See symbol_file_add_with_addrs_or_offsets's comments for
1097 details. */
1098 struct objfile *
1099 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1100 struct section_addr_info *addrs,
1101 int flags)
1102 {
1103 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1104 flags);
1105 }
1106
1107
1108 /* Process a symbol file, as either the main file or as a dynamically
1109 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1110 for details. */
1111 struct objfile *
1112 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1113 int flags)
1114 {
1115 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1116 flags);
1117 }
1118
1119
1120 /* Call symbol_file_add() with default values and update whatever is
1121 affected by the loading of a new main().
1122 Used when the file is supplied in the gdb command line
1123 and by some targets with special loading requirements.
1124 The auxiliary function, symbol_file_add_main_1(), has the flags
1125 argument for the switches that can only be specified in the symbol_file
1126 command itself. */
1127
1128 void
1129 symbol_file_add_main (char *args, int from_tty)
1130 {
1131 symbol_file_add_main_1 (args, from_tty, 0);
1132 }
1133
1134 static void
1135 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1136 {
1137 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1138 symbol_file_add (args, add_flags, NULL, flags);
1139
1140 /* Getting new symbols may change our opinion about
1141 what is frameless. */
1142 reinit_frame_cache ();
1143
1144 set_initial_language ();
1145 }
1146
1147 void
1148 symbol_file_clear (int from_tty)
1149 {
1150 if ((have_full_symbols () || have_partial_symbols ())
1151 && from_tty
1152 && (symfile_objfile
1153 ? !query (_("Discard symbol table from `%s'? "),
1154 symfile_objfile->name)
1155 : !query (_("Discard symbol table? "))))
1156 error (_("Not confirmed."));
1157
1158 free_all_objfiles ();
1159
1160 /* solib descriptors may have handles to objfiles. Since their
1161 storage has just been released, we'd better wipe the solib
1162 descriptors as well. */
1163 no_shared_libraries (NULL, from_tty);
1164
1165 symfile_objfile = NULL;
1166 if (from_tty)
1167 printf_unfiltered (_("No symbol file now.\n"));
1168 }
1169
1170 struct build_id
1171 {
1172 size_t size;
1173 gdb_byte data[1];
1174 };
1175
1176 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1177
1178 static struct build_id *
1179 build_id_bfd_get (bfd *abfd)
1180 {
1181 struct build_id *retval;
1182
1183 if (!bfd_check_format (abfd, bfd_object)
1184 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1185 || elf_tdata (abfd)->build_id == NULL)
1186 return NULL;
1187
1188 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1189 retval->size = elf_tdata (abfd)->build_id_size;
1190 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1191
1192 return retval;
1193 }
1194
1195 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1196
1197 static int
1198 build_id_verify (const char *filename, struct build_id *check)
1199 {
1200 bfd *abfd;
1201 struct build_id *found = NULL;
1202 int retval = 0;
1203
1204 /* We expect to be silent on the non-existing files. */
1205 if (remote_filename_p (filename))
1206 abfd = remote_bfd_open (filename, gnutarget);
1207 else
1208 abfd = bfd_openr (filename, gnutarget);
1209 if (abfd == NULL)
1210 return 0;
1211
1212 found = build_id_bfd_get (abfd);
1213
1214 if (found == NULL)
1215 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1216 else if (found->size != check->size
1217 || memcmp (found->data, check->data, found->size) != 0)
1218 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1219 else
1220 retval = 1;
1221
1222 if (!bfd_close (abfd))
1223 warning (_("cannot close \"%s\": %s"), filename,
1224 bfd_errmsg (bfd_get_error ()));
1225
1226 xfree (found);
1227
1228 return retval;
1229 }
1230
1231 static char *
1232 build_id_to_debug_filename (struct build_id *build_id)
1233 {
1234 char *link, *s, *retval = NULL;
1235 gdb_byte *data = build_id->data;
1236 size_t size = build_id->size;
1237
1238 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1239 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1240 + 2 * size + (sizeof ".debug" - 1) + 1);
1241 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1242 if (size > 0)
1243 {
1244 size--;
1245 s += sprintf (s, "%02x", (unsigned) *data++);
1246 }
1247 if (size > 0)
1248 *s++ = '/';
1249 while (size-- > 0)
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 strcpy (s, ".debug");
1252
1253 /* lrealpath() is expensive even for the usually non-existent files. */
1254 if (access (link, F_OK) == 0)
1255 retval = lrealpath (link);
1256 xfree (link);
1257
1258 if (retval != NULL && !build_id_verify (retval, build_id))
1259 {
1260 xfree (retval);
1261 retval = NULL;
1262 }
1263
1264 return retval;
1265 }
1266
1267 static char *
1268 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269 {
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
1275 unsigned char *p;
1276
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
1283
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1293
1294 *crc32_out = crc32;
1295 return contents;
1296 }
1297
1298 static int
1299 separate_debug_file_exists (const char *name, unsigned long crc)
1300 {
1301 unsigned long file_crc = 0;
1302 bfd *abfd;
1303 gdb_byte buffer[8*1024];
1304 int count;
1305
1306 if (remote_filename_p (name))
1307 abfd = remote_bfd_open (name, gnutarget);
1308 else
1309 abfd = bfd_openr (name, gnutarget);
1310
1311 if (!abfd)
1312 return 0;
1313
1314 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1315 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1316
1317 bfd_close (abfd);
1318
1319 return crc == file_crc;
1320 }
1321
1322 char *debug_file_directory = NULL;
1323 static void
1324 show_debug_file_directory (struct ui_file *file, int from_tty,
1325 struct cmd_list_element *c, const char *value)
1326 {
1327 fprintf_filtered (file, _("\
1328 The directory where separate debug symbols are searched for is \"%s\".\n"),
1329 value);
1330 }
1331
1332 #if ! defined (DEBUG_SUBDIRECTORY)
1333 #define DEBUG_SUBDIRECTORY ".debug"
1334 #endif
1335
1336 static char *
1337 find_separate_debug_file (struct objfile *objfile)
1338 {
1339 asection *sect;
1340 char *basename;
1341 char *dir;
1342 char *debugfile;
1343 char *name_copy;
1344 char *canon_name;
1345 bfd_size_type debuglink_size;
1346 unsigned long crc32;
1347 int i;
1348 struct build_id *build_id;
1349
1350 build_id = build_id_bfd_get (objfile->obfd);
1351 if (build_id != NULL)
1352 {
1353 char *build_id_name;
1354
1355 build_id_name = build_id_to_debug_filename (build_id);
1356 xfree (build_id);
1357 /* Prevent looping on a stripped .debug file. */
1358 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1359 {
1360 warning (_("\"%s\": separate debug info file has no debug info"),
1361 build_id_name);
1362 xfree (build_id_name);
1363 }
1364 else if (build_id_name != NULL)
1365 return build_id_name;
1366 }
1367
1368 basename = get_debug_link_info (objfile, &crc32);
1369
1370 if (basename == NULL)
1371 return NULL;
1372
1373 dir = xstrdup (objfile->name);
1374
1375 /* Strip off the final filename part, leaving the directory name,
1376 followed by a slash. Objfile names should always be absolute and
1377 tilde-expanded, so there should always be a slash in there
1378 somewhere. */
1379 for (i = strlen(dir) - 1; i >= 0; i--)
1380 {
1381 if (IS_DIR_SEPARATOR (dir[i]))
1382 break;
1383 }
1384 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1385 dir[i+1] = '\0';
1386
1387 debugfile = alloca (strlen (debug_file_directory) + 1
1388 + strlen (dir)
1389 + strlen (DEBUG_SUBDIRECTORY)
1390 + strlen ("/")
1391 + strlen (basename)
1392 + 1);
1393
1394 /* First try in the same directory as the original file. */
1395 strcpy (debugfile, dir);
1396 strcat (debugfile, basename);
1397
1398 if (separate_debug_file_exists (debugfile, crc32))
1399 {
1400 xfree (basename);
1401 xfree (dir);
1402 return xstrdup (debugfile);
1403 }
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
1411 if (separate_debug_file_exists (debugfile, crc32))
1412 {
1413 xfree (basename);
1414 xfree (dir);
1415 return xstrdup (debugfile);
1416 }
1417
1418 /* Then try in the global debugfile directory. */
1419 strcpy (debugfile, debug_file_directory);
1420 strcat (debugfile, "/");
1421 strcat (debugfile, dir);
1422 strcat (debugfile, basename);
1423
1424 if (separate_debug_file_exists (debugfile, crc32))
1425 {
1426 xfree (basename);
1427 xfree (dir);
1428 return xstrdup (debugfile);
1429 }
1430
1431 /* If the file is in the sysroot, try using its base path in the
1432 global debugfile directory. */
1433 canon_name = lrealpath (dir);
1434 if (canon_name
1435 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1436 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1437 {
1438 strcpy (debugfile, debug_file_directory);
1439 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32))
1444 {
1445 xfree (canon_name);
1446 xfree (basename);
1447 xfree (dir);
1448 return xstrdup (debugfile);
1449 }
1450 }
1451
1452 if (canon_name)
1453 xfree (canon_name);
1454
1455 xfree (basename);
1456 xfree (dir);
1457 return NULL;
1458 }
1459
1460
1461 /* This is the symbol-file command. Read the file, analyze its
1462 symbols, and add a struct symtab to a symtab list. The syntax of
1463 the command is rather bizarre:
1464
1465 1. The function buildargv implements various quoting conventions
1466 which are undocumented and have little or nothing in common with
1467 the way things are quoted (or not quoted) elsewhere in GDB.
1468
1469 2. Options are used, which are not generally used in GDB (perhaps
1470 "set mapped on", "set readnow on" would be better)
1471
1472 3. The order of options matters, which is contrary to GNU
1473 conventions (because it is confusing and inconvenient). */
1474
1475 void
1476 symbol_file_command (char *args, int from_tty)
1477 {
1478 dont_repeat ();
1479
1480 if (args == NULL)
1481 {
1482 symbol_file_clear (from_tty);
1483 }
1484 else
1485 {
1486 char **argv = gdb_buildargv (args);
1487 int flags = OBJF_USERLOADED;
1488 struct cleanup *cleanups;
1489 char *name = NULL;
1490
1491 cleanups = make_cleanup_freeargv (argv);
1492 while (*argv != NULL)
1493 {
1494 if (strcmp (*argv, "-readnow") == 0)
1495 flags |= OBJF_READNOW;
1496 else if (**argv == '-')
1497 error (_("unknown option `%s'"), *argv);
1498 else
1499 {
1500 symbol_file_add_main_1 (*argv, from_tty, flags);
1501 name = *argv;
1502 }
1503
1504 argv++;
1505 }
1506
1507 if (name == NULL)
1508 error (_("no symbol file name was specified"));
1509
1510 do_cleanups (cleanups);
1511 }
1512 }
1513
1514 /* Set the initial language.
1515
1516 FIXME: A better solution would be to record the language in the
1517 psymtab when reading partial symbols, and then use it (if known) to
1518 set the language. This would be a win for formats that encode the
1519 language in an easily discoverable place, such as DWARF. For
1520 stabs, we can jump through hoops looking for specially named
1521 symbols or try to intuit the language from the specific type of
1522 stabs we find, but we can't do that until later when we read in
1523 full symbols. */
1524
1525 void
1526 set_initial_language (void)
1527 {
1528 struct partial_symtab *pst;
1529 enum language lang = language_unknown;
1530
1531 pst = find_main_psymtab ();
1532 if (pst != NULL)
1533 {
1534 if (pst->filename != NULL)
1535 lang = deduce_language_from_filename (pst->filename);
1536
1537 if (lang == language_unknown)
1538 {
1539 /* Make C the default language */
1540 lang = language_c;
1541 }
1542
1543 set_language (lang);
1544 expected_language = current_language; /* Don't warn the user. */
1545 }
1546 }
1547
1548 /* Open the file specified by NAME and hand it off to BFD for
1549 preliminary analysis. Return a newly initialized bfd *, which
1550 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1551 absolute). In case of trouble, error() is called. */
1552
1553 bfd *
1554 symfile_bfd_open (char *name)
1555 {
1556 bfd *sym_bfd;
1557 int desc;
1558 char *absolute_name;
1559
1560 if (remote_filename_p (name))
1561 {
1562 name = xstrdup (name);
1563 sym_bfd = remote_bfd_open (name, gnutarget);
1564 if (!sym_bfd)
1565 {
1566 make_cleanup (xfree, name);
1567 error (_("`%s': can't open to read symbols: %s."), name,
1568 bfd_errmsg (bfd_get_error ()));
1569 }
1570
1571 if (!bfd_check_format (sym_bfd, bfd_object))
1572 {
1573 bfd_close (sym_bfd);
1574 make_cleanup (xfree, name);
1575 error (_("`%s': can't read symbols: %s."), name,
1576 bfd_errmsg (bfd_get_error ()));
1577 }
1578
1579 return sym_bfd;
1580 }
1581
1582 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1583
1584 /* Look down path for it, allocate 2nd new malloc'd copy. */
1585 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1586 O_RDONLY | O_BINARY, &absolute_name);
1587 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1588 if (desc < 0)
1589 {
1590 char *exename = alloca (strlen (name) + 5);
1591 strcat (strcpy (exename, name), ".exe");
1592 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1593 O_RDONLY | O_BINARY, &absolute_name);
1594 }
1595 #endif
1596 if (desc < 0)
1597 {
1598 make_cleanup (xfree, name);
1599 perror_with_name (name);
1600 }
1601
1602 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1603 bfd. It'll be freed in free_objfile(). */
1604 xfree (name);
1605 name = absolute_name;
1606
1607 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1608 if (!sym_bfd)
1609 {
1610 close (desc);
1611 make_cleanup (xfree, name);
1612 error (_("`%s': can't open to read symbols: %s."), name,
1613 bfd_errmsg (bfd_get_error ()));
1614 }
1615 bfd_set_cacheable (sym_bfd, 1);
1616
1617 if (!bfd_check_format (sym_bfd, bfd_object))
1618 {
1619 /* FIXME: should be checking for errors from bfd_close (for one
1620 thing, on error it does not free all the storage associated
1621 with the bfd). */
1622 bfd_close (sym_bfd); /* This also closes desc. */
1623 make_cleanup (xfree, name);
1624 error (_("`%s': can't read symbols: %s."), name,
1625 bfd_errmsg (bfd_get_error ()));
1626 }
1627
1628 return sym_bfd;
1629 }
1630
1631 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1632 the section was not found. */
1633
1634 int
1635 get_section_index (struct objfile *objfile, char *section_name)
1636 {
1637 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1638
1639 if (sect)
1640 return sect->index;
1641 else
1642 return -1;
1643 }
1644
1645 /* Link SF into the global symtab_fns list. Called on startup by the
1646 _initialize routine in each object file format reader, to register
1647 information about each format the the reader is prepared to
1648 handle. */
1649
1650 void
1651 add_symtab_fns (struct sym_fns *sf)
1652 {
1653 sf->next = symtab_fns;
1654 symtab_fns = sf;
1655 }
1656
1657 /* Initialize OBJFILE to read symbols from its associated BFD. It
1658 either returns or calls error(). The result is an initialized
1659 struct sym_fns in the objfile structure, that contains cached
1660 information about the symbol file. */
1661
1662 static struct sym_fns *
1663 find_sym_fns (bfd *abfd)
1664 {
1665 struct sym_fns *sf;
1666 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1667
1668 if (our_flavour == bfd_target_srec_flavour
1669 || our_flavour == bfd_target_ihex_flavour
1670 || our_flavour == bfd_target_tekhex_flavour)
1671 return NULL; /* No symbols. */
1672
1673 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1674 if (our_flavour == sf->sym_flavour)
1675 return sf;
1676
1677 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1678 bfd_get_target (abfd));
1679 }
1680 \f
1681
1682 /* This function runs the load command of our current target. */
1683
1684 static void
1685 load_command (char *arg, int from_tty)
1686 {
1687 /* The user might be reloading because the binary has changed. Take
1688 this opportunity to check. */
1689 reopen_exec_file ();
1690 reread_symbols ();
1691
1692 if (arg == NULL)
1693 {
1694 char *parg;
1695 int count = 0;
1696
1697 parg = arg = get_exec_file (1);
1698
1699 /* Count how many \ " ' tab space there are in the name. */
1700 while ((parg = strpbrk (parg, "\\\"'\t ")))
1701 {
1702 parg++;
1703 count++;
1704 }
1705
1706 if (count)
1707 {
1708 /* We need to quote this string so buildargv can pull it apart. */
1709 char *temp = xmalloc (strlen (arg) + count + 1 );
1710 char *ptemp = temp;
1711 char *prev;
1712
1713 make_cleanup (xfree, temp);
1714
1715 prev = parg = arg;
1716 while ((parg = strpbrk (parg, "\\\"'\t ")))
1717 {
1718 strncpy (ptemp, prev, parg - prev);
1719 ptemp += parg - prev;
1720 prev = parg++;
1721 *ptemp++ = '\\';
1722 }
1723 strcpy (ptemp, prev);
1724
1725 arg = temp;
1726 }
1727 }
1728
1729 target_load (arg, from_tty);
1730
1731 /* After re-loading the executable, we don't really know which
1732 overlays are mapped any more. */
1733 overlay_cache_invalid = 1;
1734 }
1735
1736 /* This version of "load" should be usable for any target. Currently
1737 it is just used for remote targets, not inftarg.c or core files,
1738 on the theory that only in that case is it useful.
1739
1740 Avoiding xmodem and the like seems like a win (a) because we don't have
1741 to worry about finding it, and (b) On VMS, fork() is very slow and so
1742 we don't want to run a subprocess. On the other hand, I'm not sure how
1743 performance compares. */
1744
1745 static int validate_download = 0;
1746
1747 /* Callback service function for generic_load (bfd_map_over_sections). */
1748
1749 static void
1750 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1751 {
1752 bfd_size_type *sum = data;
1753
1754 *sum += bfd_get_section_size (asec);
1755 }
1756
1757 /* Opaque data for load_section_callback. */
1758 struct load_section_data {
1759 unsigned long load_offset;
1760 struct load_progress_data *progress_data;
1761 VEC(memory_write_request_s) *requests;
1762 };
1763
1764 /* Opaque data for load_progress. */
1765 struct load_progress_data {
1766 /* Cumulative data. */
1767 unsigned long write_count;
1768 unsigned long data_count;
1769 bfd_size_type total_size;
1770 };
1771
1772 /* Opaque data for load_progress for a single section. */
1773 struct load_progress_section_data {
1774 struct load_progress_data *cumulative;
1775
1776 /* Per-section data. */
1777 const char *section_name;
1778 ULONGEST section_sent;
1779 ULONGEST section_size;
1780 CORE_ADDR lma;
1781 gdb_byte *buffer;
1782 };
1783
1784 /* Target write callback routine for progress reporting. */
1785
1786 static void
1787 load_progress (ULONGEST bytes, void *untyped_arg)
1788 {
1789 struct load_progress_section_data *args = untyped_arg;
1790 struct load_progress_data *totals;
1791
1792 if (args == NULL)
1793 /* Writing padding data. No easy way to get at the cumulative
1794 stats, so just ignore this. */
1795 return;
1796
1797 totals = args->cumulative;
1798
1799 if (bytes == 0 && args->section_sent == 0)
1800 {
1801 /* The write is just starting. Let the user know we've started
1802 this section. */
1803 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1804 args->section_name, hex_string (args->section_size),
1805 paddress (target_gdbarch, args->lma));
1806 return;
1807 }
1808
1809 if (validate_download)
1810 {
1811 /* Broken memories and broken monitors manifest themselves here
1812 when bring new computers to life. This doubles already slow
1813 downloads. */
1814 /* NOTE: cagney/1999-10-18: A more efficient implementation
1815 might add a verify_memory() method to the target vector and
1816 then use that. remote.c could implement that method using
1817 the ``qCRC'' packet. */
1818 gdb_byte *check = xmalloc (bytes);
1819 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1820
1821 if (target_read_memory (args->lma, check, bytes) != 0)
1822 error (_("Download verify read failed at %s"),
1823 paddress (target_gdbarch, args->lma));
1824 if (memcmp (args->buffer, check, bytes) != 0)
1825 error (_("Download verify compare failed at %s"),
1826 paddress (target_gdbarch, args->lma));
1827 do_cleanups (verify_cleanups);
1828 }
1829 totals->data_count += bytes;
1830 args->lma += bytes;
1831 args->buffer += bytes;
1832 totals->write_count += 1;
1833 args->section_sent += bytes;
1834 if (quit_flag
1835 || (deprecated_ui_load_progress_hook != NULL
1836 && deprecated_ui_load_progress_hook (args->section_name,
1837 args->section_sent)))
1838 error (_("Canceled the download"));
1839
1840 if (deprecated_show_load_progress != NULL)
1841 deprecated_show_load_progress (args->section_name,
1842 args->section_sent,
1843 args->section_size,
1844 totals->data_count,
1845 totals->total_size);
1846 }
1847
1848 /* Callback service function for generic_load (bfd_map_over_sections). */
1849
1850 static void
1851 load_section_callback (bfd *abfd, asection *asec, void *data)
1852 {
1853 struct memory_write_request *new_request;
1854 struct load_section_data *args = data;
1855 struct load_progress_section_data *section_data;
1856 bfd_size_type size = bfd_get_section_size (asec);
1857 gdb_byte *buffer;
1858 const char *sect_name = bfd_get_section_name (abfd, asec);
1859
1860 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1861 return;
1862
1863 if (size == 0)
1864 return;
1865
1866 new_request = VEC_safe_push (memory_write_request_s,
1867 args->requests, NULL);
1868 memset (new_request, 0, sizeof (struct memory_write_request));
1869 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1870 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1871 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1872 new_request->data = xmalloc (size);
1873 new_request->baton = section_data;
1874
1875 buffer = new_request->data;
1876
1877 section_data->cumulative = args->progress_data;
1878 section_data->section_name = sect_name;
1879 section_data->section_size = size;
1880 section_data->lma = new_request->begin;
1881 section_data->buffer = buffer;
1882
1883 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1884 }
1885
1886 /* Clean up an entire memory request vector, including load
1887 data and progress records. */
1888
1889 static void
1890 clear_memory_write_data (void *arg)
1891 {
1892 VEC(memory_write_request_s) **vec_p = arg;
1893 VEC(memory_write_request_s) *vec = *vec_p;
1894 int i;
1895 struct memory_write_request *mr;
1896
1897 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1898 {
1899 xfree (mr->data);
1900 xfree (mr->baton);
1901 }
1902 VEC_free (memory_write_request_s, vec);
1903 }
1904
1905 void
1906 generic_load (char *args, int from_tty)
1907 {
1908 bfd *loadfile_bfd;
1909 struct timeval start_time, end_time;
1910 char *filename;
1911 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1912 struct load_section_data cbdata;
1913 struct load_progress_data total_progress;
1914
1915 CORE_ADDR entry;
1916 char **argv;
1917
1918 memset (&cbdata, 0, sizeof (cbdata));
1919 memset (&total_progress, 0, sizeof (total_progress));
1920 cbdata.progress_data = &total_progress;
1921
1922 make_cleanup (clear_memory_write_data, &cbdata.requests);
1923
1924 if (args == NULL)
1925 error_no_arg (_("file to load"));
1926
1927 argv = gdb_buildargv (args);
1928 make_cleanup_freeargv (argv);
1929
1930 filename = tilde_expand (argv[0]);
1931 make_cleanup (xfree, filename);
1932
1933 if (argv[1] != NULL)
1934 {
1935 char *endptr;
1936
1937 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1938
1939 /* If the last word was not a valid number then
1940 treat it as a file name with spaces in. */
1941 if (argv[1] == endptr)
1942 error (_("Invalid download offset:%s."), argv[1]);
1943
1944 if (argv[2] != NULL)
1945 error (_("Too many parameters."));
1946 }
1947
1948 /* Open the file for loading. */
1949 loadfile_bfd = bfd_openr (filename, gnutarget);
1950 if (loadfile_bfd == NULL)
1951 {
1952 perror_with_name (filename);
1953 return;
1954 }
1955
1956 /* FIXME: should be checking for errors from bfd_close (for one thing,
1957 on error it does not free all the storage associated with the
1958 bfd). */
1959 make_cleanup_bfd_close (loadfile_bfd);
1960
1961 if (!bfd_check_format (loadfile_bfd, bfd_object))
1962 {
1963 error (_("\"%s\" is not an object file: %s"), filename,
1964 bfd_errmsg (bfd_get_error ()));
1965 }
1966
1967 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1968 (void *) &total_progress.total_size);
1969
1970 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1971
1972 gettimeofday (&start_time, NULL);
1973
1974 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1975 load_progress) != 0)
1976 error (_("Load failed"));
1977
1978 gettimeofday (&end_time, NULL);
1979
1980 entry = bfd_get_start_address (loadfile_bfd);
1981 ui_out_text (uiout, "Start address ");
1982 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1983 ui_out_text (uiout, ", load size ");
1984 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1985 ui_out_text (uiout, "\n");
1986 /* We were doing this in remote-mips.c, I suspect it is right
1987 for other targets too. */
1988 regcache_write_pc (get_current_regcache (), entry);
1989
1990 /* FIXME: are we supposed to call symbol_file_add or not? According
1991 to a comment from remote-mips.c (where a call to symbol_file_add
1992 was commented out), making the call confuses GDB if more than one
1993 file is loaded in. Some targets do (e.g., remote-vx.c) but
1994 others don't (or didn't - perhaps they have all been deleted). */
1995
1996 print_transfer_performance (gdb_stdout, total_progress.data_count,
1997 total_progress.write_count,
1998 &start_time, &end_time);
1999
2000 do_cleanups (old_cleanups);
2001 }
2002
2003 /* Report how fast the transfer went. */
2004
2005 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2006 replaced by print_transfer_performance (with a very different
2007 function signature). */
2008
2009 void
2010 report_transfer_performance (unsigned long data_count, time_t start_time,
2011 time_t end_time)
2012 {
2013 struct timeval start, end;
2014
2015 start.tv_sec = start_time;
2016 start.tv_usec = 0;
2017 end.tv_sec = end_time;
2018 end.tv_usec = 0;
2019
2020 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2021 }
2022
2023 void
2024 print_transfer_performance (struct ui_file *stream,
2025 unsigned long data_count,
2026 unsigned long write_count,
2027 const struct timeval *start_time,
2028 const struct timeval *end_time)
2029 {
2030 ULONGEST time_count;
2031
2032 /* Compute the elapsed time in milliseconds, as a tradeoff between
2033 accuracy and overflow. */
2034 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2035 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2036
2037 ui_out_text (uiout, "Transfer rate: ");
2038 if (time_count > 0)
2039 {
2040 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2041
2042 if (ui_out_is_mi_like_p (uiout))
2043 {
2044 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2045 ui_out_text (uiout, " bits/sec");
2046 }
2047 else if (rate < 1024)
2048 {
2049 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2050 ui_out_text (uiout, " bytes/sec");
2051 }
2052 else
2053 {
2054 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2055 ui_out_text (uiout, " KB/sec");
2056 }
2057 }
2058 else
2059 {
2060 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2061 ui_out_text (uiout, " bits in <1 sec");
2062 }
2063 if (write_count > 0)
2064 {
2065 ui_out_text (uiout, ", ");
2066 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2067 ui_out_text (uiout, " bytes/write");
2068 }
2069 ui_out_text (uiout, ".\n");
2070 }
2071
2072 /* This function allows the addition of incrementally linked object files.
2073 It does not modify any state in the target, only in the debugger. */
2074 /* Note: ezannoni 2000-04-13 This function/command used to have a
2075 special case syntax for the rombug target (Rombug is the boot
2076 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2077 rombug case, the user doesn't need to supply a text address,
2078 instead a call to target_link() (in target.c) would supply the
2079 value to use. We are now discontinuing this type of ad hoc syntax. */
2080
2081 static void
2082 add_symbol_file_command (char *args, int from_tty)
2083 {
2084 struct gdbarch *gdbarch = get_current_arch ();
2085 char *filename = NULL;
2086 int flags = OBJF_USERLOADED;
2087 char *arg;
2088 int expecting_option = 0;
2089 int section_index = 0;
2090 int argcnt = 0;
2091 int sec_num = 0;
2092 int i;
2093 int expecting_sec_name = 0;
2094 int expecting_sec_addr = 0;
2095 char **argv;
2096
2097 struct sect_opt
2098 {
2099 char *name;
2100 char *value;
2101 };
2102
2103 struct section_addr_info *section_addrs;
2104 struct sect_opt *sect_opts = NULL;
2105 size_t num_sect_opts = 0;
2106 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2107
2108 num_sect_opts = 16;
2109 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2110 * sizeof (struct sect_opt));
2111
2112 dont_repeat ();
2113
2114 if (args == NULL)
2115 error (_("add-symbol-file takes a file name and an address"));
2116
2117 argv = gdb_buildargv (args);
2118 make_cleanup_freeargv (argv);
2119
2120 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2121 {
2122 /* Process the argument. */
2123 if (argcnt == 0)
2124 {
2125 /* The first argument is the file name. */
2126 filename = tilde_expand (arg);
2127 make_cleanup (xfree, filename);
2128 }
2129 else
2130 if (argcnt == 1)
2131 {
2132 /* The second argument is always the text address at which
2133 to load the program. */
2134 sect_opts[section_index].name = ".text";
2135 sect_opts[section_index].value = arg;
2136 if (++section_index >= num_sect_opts)
2137 {
2138 num_sect_opts *= 2;
2139 sect_opts = ((struct sect_opt *)
2140 xrealloc (sect_opts,
2141 num_sect_opts
2142 * sizeof (struct sect_opt)));
2143 }
2144 }
2145 else
2146 {
2147 /* It's an option (starting with '-') or it's an argument
2148 to an option */
2149
2150 if (*arg == '-')
2151 {
2152 if (strcmp (arg, "-readnow") == 0)
2153 flags |= OBJF_READNOW;
2154 else if (strcmp (arg, "-s") == 0)
2155 {
2156 expecting_sec_name = 1;
2157 expecting_sec_addr = 1;
2158 }
2159 }
2160 else
2161 {
2162 if (expecting_sec_name)
2163 {
2164 sect_opts[section_index].name = arg;
2165 expecting_sec_name = 0;
2166 }
2167 else
2168 if (expecting_sec_addr)
2169 {
2170 sect_opts[section_index].value = arg;
2171 expecting_sec_addr = 0;
2172 if (++section_index >= num_sect_opts)
2173 {
2174 num_sect_opts *= 2;
2175 sect_opts = ((struct sect_opt *)
2176 xrealloc (sect_opts,
2177 num_sect_opts
2178 * sizeof (struct sect_opt)));
2179 }
2180 }
2181 else
2182 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2183 }
2184 }
2185 }
2186
2187 /* This command takes at least two arguments. The first one is a
2188 filename, and the second is the address where this file has been
2189 loaded. Abort now if this address hasn't been provided by the
2190 user. */
2191 if (section_index < 1)
2192 error (_("The address where %s has been loaded is missing"), filename);
2193
2194 /* Print the prompt for the query below. And save the arguments into
2195 a sect_addr_info structure to be passed around to other
2196 functions. We have to split this up into separate print
2197 statements because hex_string returns a local static
2198 string. */
2199
2200 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2201 section_addrs = alloc_section_addr_info (section_index);
2202 make_cleanup (xfree, section_addrs);
2203 for (i = 0; i < section_index; i++)
2204 {
2205 CORE_ADDR addr;
2206 char *val = sect_opts[i].value;
2207 char *sec = sect_opts[i].name;
2208
2209 addr = parse_and_eval_address (val);
2210
2211 /* Here we store the section offsets in the order they were
2212 entered on the command line. */
2213 section_addrs->other[sec_num].name = sec;
2214 section_addrs->other[sec_num].addr = addr;
2215 printf_unfiltered ("\t%s_addr = %s\n", sec,
2216 paddress (gdbarch, addr));
2217 sec_num++;
2218
2219 /* The object's sections are initialized when a
2220 call is made to build_objfile_section_table (objfile).
2221 This happens in reread_symbols.
2222 At this point, we don't know what file type this is,
2223 so we can't determine what section names are valid. */
2224 }
2225
2226 if (from_tty && (!query ("%s", "")))
2227 error (_("Not confirmed."));
2228
2229 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2230 section_addrs, flags);
2231
2232 /* Getting new symbols may change our opinion about what is
2233 frameless. */
2234 reinit_frame_cache ();
2235 do_cleanups (my_cleanups);
2236 }
2237 \f
2238
2239 /* Re-read symbols if a symbol-file has changed. */
2240 void
2241 reread_symbols (void)
2242 {
2243 struct objfile *objfile;
2244 long new_modtime;
2245 int reread_one = 0;
2246 struct stat new_statbuf;
2247 int res;
2248
2249 /* With the addition of shared libraries, this should be modified,
2250 the load time should be saved in the partial symbol tables, since
2251 different tables may come from different source files. FIXME.
2252 This routine should then walk down each partial symbol table
2253 and see if the symbol table that it originates from has been changed */
2254
2255 for (objfile = object_files; objfile; objfile = objfile->next)
2256 {
2257 if (objfile->obfd)
2258 {
2259 #ifdef DEPRECATED_IBM6000_TARGET
2260 /* If this object is from a shared library, then you should
2261 stat on the library name, not member name. */
2262
2263 if (objfile->obfd->my_archive)
2264 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2265 else
2266 #endif
2267 res = stat (objfile->name, &new_statbuf);
2268 if (res != 0)
2269 {
2270 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2271 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2272 objfile->name);
2273 continue;
2274 }
2275 new_modtime = new_statbuf.st_mtime;
2276 if (new_modtime != objfile->mtime)
2277 {
2278 struct cleanup *old_cleanups;
2279 struct section_offsets *offsets;
2280 int num_offsets;
2281 char *obfd_filename;
2282
2283 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2284 objfile->name);
2285
2286 /* There are various functions like symbol_file_add,
2287 symfile_bfd_open, syms_from_objfile, etc., which might
2288 appear to do what we want. But they have various other
2289 effects which we *don't* want. So we just do stuff
2290 ourselves. We don't worry about mapped files (for one thing,
2291 any mapped file will be out of date). */
2292
2293 /* If we get an error, blow away this objfile (not sure if
2294 that is the correct response for things like shared
2295 libraries). */
2296 old_cleanups = make_cleanup_free_objfile (objfile);
2297 /* We need to do this whenever any symbols go away. */
2298 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2299
2300 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2301 bfd_get_filename (exec_bfd)) == 0)
2302 {
2303 /* Reload EXEC_BFD without asking anything. */
2304
2305 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2306 }
2307
2308 /* Clean up any state BFD has sitting around. We don't need
2309 to close the descriptor but BFD lacks a way of closing the
2310 BFD without closing the descriptor. */
2311 obfd_filename = bfd_get_filename (objfile->obfd);
2312 if (!bfd_close (objfile->obfd))
2313 error (_("Can't close BFD for %s: %s"), objfile->name,
2314 bfd_errmsg (bfd_get_error ()));
2315 if (remote_filename_p (obfd_filename))
2316 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2317 else
2318 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2319 if (objfile->obfd == NULL)
2320 error (_("Can't open %s to read symbols."), objfile->name);
2321 /* bfd_openr sets cacheable to true, which is what we want. */
2322 if (!bfd_check_format (objfile->obfd, bfd_object))
2323 error (_("Can't read symbols from %s: %s."), objfile->name,
2324 bfd_errmsg (bfd_get_error ()));
2325
2326 /* Save the offsets, we will nuke them with the rest of the
2327 objfile_obstack. */
2328 num_offsets = objfile->num_sections;
2329 offsets = ((struct section_offsets *)
2330 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2331 memcpy (offsets, objfile->section_offsets,
2332 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2333
2334 /* Remove any references to this objfile in the global
2335 value lists. */
2336 preserve_values (objfile);
2337
2338 /* Nuke all the state that we will re-read. Much of the following
2339 code which sets things to NULL really is necessary to tell
2340 other parts of GDB that there is nothing currently there.
2341
2342 Try to keep the freeing order compatible with free_objfile. */
2343
2344 if (objfile->sf != NULL)
2345 {
2346 (*objfile->sf->sym_finish) (objfile);
2347 }
2348
2349 clear_objfile_data (objfile);
2350
2351 /* FIXME: Do we have to free a whole linked list, or is this
2352 enough? */
2353 if (objfile->global_psymbols.list)
2354 xfree (objfile->global_psymbols.list);
2355 memset (&objfile->global_psymbols, 0,
2356 sizeof (objfile->global_psymbols));
2357 if (objfile->static_psymbols.list)
2358 xfree (objfile->static_psymbols.list);
2359 memset (&objfile->static_psymbols, 0,
2360 sizeof (objfile->static_psymbols));
2361
2362 /* Free the obstacks for non-reusable objfiles */
2363 bcache_xfree (objfile->psymbol_cache);
2364 objfile->psymbol_cache = bcache_xmalloc ();
2365 bcache_xfree (objfile->macro_cache);
2366 objfile->macro_cache = bcache_xmalloc ();
2367 if (objfile->demangled_names_hash != NULL)
2368 {
2369 htab_delete (objfile->demangled_names_hash);
2370 objfile->demangled_names_hash = NULL;
2371 }
2372 obstack_free (&objfile->objfile_obstack, 0);
2373 objfile->sections = NULL;
2374 objfile->symtabs = NULL;
2375 objfile->psymtabs = NULL;
2376 objfile->psymtabs_addrmap = NULL;
2377 objfile->free_psymtabs = NULL;
2378 objfile->cp_namespace_symtab = NULL;
2379 objfile->msymbols = NULL;
2380 objfile->deprecated_sym_private = NULL;
2381 objfile->minimal_symbol_count = 0;
2382 memset (&objfile->msymbol_hash, 0,
2383 sizeof (objfile->msymbol_hash));
2384 memset (&objfile->msymbol_demangled_hash, 0,
2385 sizeof (objfile->msymbol_demangled_hash));
2386
2387 objfile->psymbol_cache = bcache_xmalloc ();
2388 objfile->macro_cache = bcache_xmalloc ();
2389 /* obstack_init also initializes the obstack so it is
2390 empty. We could use obstack_specify_allocation but
2391 gdb_obstack.h specifies the alloc/dealloc
2392 functions. */
2393 obstack_init (&objfile->objfile_obstack);
2394 if (build_objfile_section_table (objfile))
2395 {
2396 error (_("Can't find the file sections in `%s': %s"),
2397 objfile->name, bfd_errmsg (bfd_get_error ()));
2398 }
2399 terminate_minimal_symbol_table (objfile);
2400
2401 /* We use the same section offsets as from last time. I'm not
2402 sure whether that is always correct for shared libraries. */
2403 objfile->section_offsets = (struct section_offsets *)
2404 obstack_alloc (&objfile->objfile_obstack,
2405 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2406 memcpy (objfile->section_offsets, offsets,
2407 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2408 objfile->num_sections = num_offsets;
2409
2410 /* What the hell is sym_new_init for, anyway? The concept of
2411 distinguishing between the main file and additional files
2412 in this way seems rather dubious. */
2413 if (objfile == symfile_objfile)
2414 {
2415 (*objfile->sf->sym_new_init) (objfile);
2416 }
2417
2418 (*objfile->sf->sym_init) (objfile);
2419 clear_complaints (&symfile_complaints, 1, 1);
2420 /* The "mainline" parameter is a hideous hack; I think leaving it
2421 zero is OK since dbxread.c also does what it needs to do if
2422 objfile->global_psymbols.size is 0. */
2423 (*objfile->sf->sym_read) (objfile, 0);
2424 if (!have_partial_symbols () && !have_full_symbols ())
2425 {
2426 wrap_here ("");
2427 printf_unfiltered (_("(no debugging symbols found)\n"));
2428 wrap_here ("");
2429 }
2430
2431 /* We're done reading the symbol file; finish off complaints. */
2432 clear_complaints (&symfile_complaints, 0, 1);
2433
2434 /* Getting new symbols may change our opinion about what is
2435 frameless. */
2436
2437 reinit_frame_cache ();
2438
2439 /* Discard cleanups as symbol reading was successful. */
2440 discard_cleanups (old_cleanups);
2441
2442 /* If the mtime has changed between the time we set new_modtime
2443 and now, we *want* this to be out of date, so don't call stat
2444 again now. */
2445 objfile->mtime = new_modtime;
2446 reread_one = 1;
2447 reread_separate_symbols (objfile);
2448 init_entry_point_info (objfile);
2449 }
2450 }
2451 }
2452
2453 if (reread_one)
2454 {
2455 clear_symtab_users ();
2456 /* At least one objfile has changed, so we can consider that
2457 the executable we're debugging has changed too. */
2458 observer_notify_executable_changed ();
2459 }
2460
2461 }
2462
2463
2464 /* Handle separate debug info for OBJFILE, which has just been
2465 re-read:
2466 - If we had separate debug info before, but now we don't, get rid
2467 of the separated objfile.
2468 - If we didn't have separated debug info before, but now we do,
2469 read in the new separated debug info file.
2470 - If the debug link points to a different file, toss the old one
2471 and read the new one.
2472 This function does *not* handle the case where objfile is still
2473 using the same separate debug info file, but that file's timestamp
2474 has changed. That case should be handled by the loop in
2475 reread_symbols already. */
2476 static void
2477 reread_separate_symbols (struct objfile *objfile)
2478 {
2479 char *debug_file;
2480 unsigned long crc32;
2481
2482 /* Does the updated objfile's debug info live in a
2483 separate file? */
2484 debug_file = find_separate_debug_file (objfile);
2485
2486 if (objfile->separate_debug_objfile)
2487 {
2488 /* There are two cases where we need to get rid of
2489 the old separated debug info objfile:
2490 - if the new primary objfile doesn't have
2491 separated debug info, or
2492 - if the new primary objfile has separate debug
2493 info, but it's under a different filename.
2494
2495 If the old and new objfiles both have separate
2496 debug info, under the same filename, then we're
2497 okay --- if the separated file's contents have
2498 changed, we will have caught that when we
2499 visited it in this function's outermost
2500 loop. */
2501 if (! debug_file
2502 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2503 free_objfile (objfile->separate_debug_objfile);
2504 }
2505
2506 /* If the new objfile has separate debug info, and we
2507 haven't loaded it already, do so now. */
2508 if (debug_file
2509 && ! objfile->separate_debug_objfile)
2510 {
2511 /* Use the same section offset table as objfile itself.
2512 Preserve the flags from objfile that make sense. */
2513 objfile->separate_debug_objfile
2514 = (symbol_file_add_with_addrs_or_offsets
2515 (symfile_bfd_open (debug_file),
2516 info_verbose ? SYMFILE_VERBOSE : 0,
2517 0, /* No addr table. */
2518 objfile->section_offsets, objfile->num_sections,
2519 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2520 | OBJF_USERLOADED)));
2521 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2522 = objfile;
2523 }
2524 if (debug_file)
2525 xfree (debug_file);
2526 }
2527
2528
2529 \f
2530
2531
2532 typedef struct
2533 {
2534 char *ext;
2535 enum language lang;
2536 }
2537 filename_language;
2538
2539 static filename_language *filename_language_table;
2540 static int fl_table_size, fl_table_next;
2541
2542 static void
2543 add_filename_language (char *ext, enum language lang)
2544 {
2545 if (fl_table_next >= fl_table_size)
2546 {
2547 fl_table_size += 10;
2548 filename_language_table =
2549 xrealloc (filename_language_table,
2550 fl_table_size * sizeof (*filename_language_table));
2551 }
2552
2553 filename_language_table[fl_table_next].ext = xstrdup (ext);
2554 filename_language_table[fl_table_next].lang = lang;
2555 fl_table_next++;
2556 }
2557
2558 static char *ext_args;
2559 static void
2560 show_ext_args (struct ui_file *file, int from_tty,
2561 struct cmd_list_element *c, const char *value)
2562 {
2563 fprintf_filtered (file, _("\
2564 Mapping between filename extension and source language is \"%s\".\n"),
2565 value);
2566 }
2567
2568 static void
2569 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2570 {
2571 int i;
2572 char *cp = ext_args;
2573 enum language lang;
2574
2575 /* First arg is filename extension, starting with '.' */
2576 if (*cp != '.')
2577 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2578
2579 /* Find end of first arg. */
2580 while (*cp && !isspace (*cp))
2581 cp++;
2582
2583 if (*cp == '\0')
2584 error (_("'%s': two arguments required -- filename extension and language"),
2585 ext_args);
2586
2587 /* Null-terminate first arg */
2588 *cp++ = '\0';
2589
2590 /* Find beginning of second arg, which should be a source language. */
2591 while (*cp && isspace (*cp))
2592 cp++;
2593
2594 if (*cp == '\0')
2595 error (_("'%s': two arguments required -- filename extension and language"),
2596 ext_args);
2597
2598 /* Lookup the language from among those we know. */
2599 lang = language_enum (cp);
2600
2601 /* Now lookup the filename extension: do we already know it? */
2602 for (i = 0; i < fl_table_next; i++)
2603 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2604 break;
2605
2606 if (i >= fl_table_next)
2607 {
2608 /* new file extension */
2609 add_filename_language (ext_args, lang);
2610 }
2611 else
2612 {
2613 /* redefining a previously known filename extension */
2614
2615 /* if (from_tty) */
2616 /* query ("Really make files of type %s '%s'?", */
2617 /* ext_args, language_str (lang)); */
2618
2619 xfree (filename_language_table[i].ext);
2620 filename_language_table[i].ext = xstrdup (ext_args);
2621 filename_language_table[i].lang = lang;
2622 }
2623 }
2624
2625 static void
2626 info_ext_lang_command (char *args, int from_tty)
2627 {
2628 int i;
2629
2630 printf_filtered (_("Filename extensions and the languages they represent:"));
2631 printf_filtered ("\n\n");
2632 for (i = 0; i < fl_table_next; i++)
2633 printf_filtered ("\t%s\t- %s\n",
2634 filename_language_table[i].ext,
2635 language_str (filename_language_table[i].lang));
2636 }
2637
2638 static void
2639 init_filename_language_table (void)
2640 {
2641 if (fl_table_size == 0) /* protect against repetition */
2642 {
2643 fl_table_size = 20;
2644 fl_table_next = 0;
2645 filename_language_table =
2646 xmalloc (fl_table_size * sizeof (*filename_language_table));
2647 add_filename_language (".c", language_c);
2648 add_filename_language (".C", language_cplus);
2649 add_filename_language (".cc", language_cplus);
2650 add_filename_language (".cp", language_cplus);
2651 add_filename_language (".cpp", language_cplus);
2652 add_filename_language (".cxx", language_cplus);
2653 add_filename_language (".c++", language_cplus);
2654 add_filename_language (".java", language_java);
2655 add_filename_language (".class", language_java);
2656 add_filename_language (".m", language_objc);
2657 add_filename_language (".f", language_fortran);
2658 add_filename_language (".F", language_fortran);
2659 add_filename_language (".s", language_asm);
2660 add_filename_language (".sx", language_asm);
2661 add_filename_language (".S", language_asm);
2662 add_filename_language (".pas", language_pascal);
2663 add_filename_language (".p", language_pascal);
2664 add_filename_language (".pp", language_pascal);
2665 add_filename_language (".adb", language_ada);
2666 add_filename_language (".ads", language_ada);
2667 add_filename_language (".a", language_ada);
2668 add_filename_language (".ada", language_ada);
2669 }
2670 }
2671
2672 enum language
2673 deduce_language_from_filename (char *filename)
2674 {
2675 int i;
2676 char *cp;
2677
2678 if (filename != NULL)
2679 if ((cp = strrchr (filename, '.')) != NULL)
2680 for (i = 0; i < fl_table_next; i++)
2681 if (strcmp (cp, filename_language_table[i].ext) == 0)
2682 return filename_language_table[i].lang;
2683
2684 return language_unknown;
2685 }
2686 \f
2687 /* allocate_symtab:
2688
2689 Allocate and partly initialize a new symbol table. Return a pointer
2690 to it. error() if no space.
2691
2692 Caller must set these fields:
2693 LINETABLE(symtab)
2694 symtab->blockvector
2695 symtab->dirname
2696 symtab->free_code
2697 symtab->free_ptr
2698 possibly free_named_symtabs (symtab->filename);
2699 */
2700
2701 struct symtab *
2702 allocate_symtab (char *filename, struct objfile *objfile)
2703 {
2704 struct symtab *symtab;
2705
2706 symtab = (struct symtab *)
2707 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2708 memset (symtab, 0, sizeof (*symtab));
2709 symtab->filename = obsavestring (filename, strlen (filename),
2710 &objfile->objfile_obstack);
2711 symtab->fullname = NULL;
2712 symtab->language = deduce_language_from_filename (filename);
2713 symtab->debugformat = obsavestring ("unknown", 7,
2714 &objfile->objfile_obstack);
2715
2716 /* Hook it to the objfile it comes from */
2717
2718 symtab->objfile = objfile;
2719 symtab->next = objfile->symtabs;
2720 objfile->symtabs = symtab;
2721
2722 return (symtab);
2723 }
2724
2725 struct partial_symtab *
2726 allocate_psymtab (char *filename, struct objfile *objfile)
2727 {
2728 struct partial_symtab *psymtab;
2729
2730 if (objfile->free_psymtabs)
2731 {
2732 psymtab = objfile->free_psymtabs;
2733 objfile->free_psymtabs = psymtab->next;
2734 }
2735 else
2736 psymtab = (struct partial_symtab *)
2737 obstack_alloc (&objfile->objfile_obstack,
2738 sizeof (struct partial_symtab));
2739
2740 memset (psymtab, 0, sizeof (struct partial_symtab));
2741 psymtab->filename = obsavestring (filename, strlen (filename),
2742 &objfile->objfile_obstack);
2743 psymtab->symtab = NULL;
2744
2745 /* Prepend it to the psymtab list for the objfile it belongs to.
2746 Psymtabs are searched in most recent inserted -> least recent
2747 inserted order. */
2748
2749 psymtab->objfile = objfile;
2750 psymtab->next = objfile->psymtabs;
2751 objfile->psymtabs = psymtab;
2752 #if 0
2753 {
2754 struct partial_symtab **prev_pst;
2755 psymtab->objfile = objfile;
2756 psymtab->next = NULL;
2757 prev_pst = &(objfile->psymtabs);
2758 while ((*prev_pst) != NULL)
2759 prev_pst = &((*prev_pst)->next);
2760 (*prev_pst) = psymtab;
2761 }
2762 #endif
2763
2764 return (psymtab);
2765 }
2766
2767 void
2768 discard_psymtab (struct partial_symtab *pst)
2769 {
2770 struct partial_symtab **prev_pst;
2771
2772 /* From dbxread.c:
2773 Empty psymtabs happen as a result of header files which don't
2774 have any symbols in them. There can be a lot of them. But this
2775 check is wrong, in that a psymtab with N_SLINE entries but
2776 nothing else is not empty, but we don't realize that. Fixing
2777 that without slowing things down might be tricky. */
2778
2779 /* First, snip it out of the psymtab chain */
2780
2781 prev_pst = &(pst->objfile->psymtabs);
2782 while ((*prev_pst) != pst)
2783 prev_pst = &((*prev_pst)->next);
2784 (*prev_pst) = pst->next;
2785
2786 /* Next, put it on a free list for recycling */
2787
2788 pst->next = pst->objfile->free_psymtabs;
2789 pst->objfile->free_psymtabs = pst;
2790 }
2791 \f
2792
2793 /* Reset all data structures in gdb which may contain references to symbol
2794 table data. */
2795
2796 void
2797 clear_symtab_users (void)
2798 {
2799 /* Someday, we should do better than this, by only blowing away
2800 the things that really need to be blown. */
2801
2802 /* Clear the "current" symtab first, because it is no longer valid.
2803 breakpoint_re_set may try to access the current symtab. */
2804 clear_current_source_symtab_and_line ();
2805
2806 clear_displays ();
2807 breakpoint_re_set ();
2808 set_default_breakpoint (0, 0, 0, 0);
2809 clear_pc_function_cache ();
2810 observer_notify_new_objfile (NULL);
2811
2812 /* Clear globals which might have pointed into a removed objfile.
2813 FIXME: It's not clear which of these are supposed to persist
2814 between expressions and which ought to be reset each time. */
2815 expression_context_block = NULL;
2816 innermost_block = NULL;
2817
2818 /* Varobj may refer to old symbols, perform a cleanup. */
2819 varobj_invalidate ();
2820
2821 }
2822
2823 static void
2824 clear_symtab_users_cleanup (void *ignore)
2825 {
2826 clear_symtab_users ();
2827 }
2828
2829 /* clear_symtab_users_once:
2830
2831 This function is run after symbol reading, or from a cleanup.
2832 If an old symbol table was obsoleted, the old symbol table
2833 has been blown away, but the other GDB data structures that may
2834 reference it have not yet been cleared or re-directed. (The old
2835 symtab was zapped, and the cleanup queued, in free_named_symtab()
2836 below.)
2837
2838 This function can be queued N times as a cleanup, or called
2839 directly; it will do all the work the first time, and then will be a
2840 no-op until the next time it is queued. This works by bumping a
2841 counter at queueing time. Much later when the cleanup is run, or at
2842 the end of symbol processing (in case the cleanup is discarded), if
2843 the queued count is greater than the "done-count", we do the work
2844 and set the done-count to the queued count. If the queued count is
2845 less than or equal to the done-count, we just ignore the call. This
2846 is needed because reading a single .o file will often replace many
2847 symtabs (one per .h file, for example), and we don't want to reset
2848 the breakpoints N times in the user's face.
2849
2850 The reason we both queue a cleanup, and call it directly after symbol
2851 reading, is because the cleanup protects us in case of errors, but is
2852 discarded if symbol reading is successful. */
2853
2854 #if 0
2855 /* FIXME: As free_named_symtabs is currently a big noop this function
2856 is no longer needed. */
2857 static void clear_symtab_users_once (void);
2858
2859 static int clear_symtab_users_queued;
2860 static int clear_symtab_users_done;
2861
2862 static void
2863 clear_symtab_users_once (void)
2864 {
2865 /* Enforce once-per-`do_cleanups'-semantics */
2866 if (clear_symtab_users_queued <= clear_symtab_users_done)
2867 return;
2868 clear_symtab_users_done = clear_symtab_users_queued;
2869
2870 clear_symtab_users ();
2871 }
2872 #endif
2873
2874 /* Delete the specified psymtab, and any others that reference it. */
2875
2876 static void
2877 cashier_psymtab (struct partial_symtab *pst)
2878 {
2879 struct partial_symtab *ps, *pprev = NULL;
2880 int i;
2881
2882 /* Find its previous psymtab in the chain */
2883 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2884 {
2885 if (ps == pst)
2886 break;
2887 pprev = ps;
2888 }
2889
2890 if (ps)
2891 {
2892 /* Unhook it from the chain. */
2893 if (ps == pst->objfile->psymtabs)
2894 pst->objfile->psymtabs = ps->next;
2895 else
2896 pprev->next = ps->next;
2897
2898 /* FIXME, we can't conveniently deallocate the entries in the
2899 partial_symbol lists (global_psymbols/static_psymbols) that
2900 this psymtab points to. These just take up space until all
2901 the psymtabs are reclaimed. Ditto the dependencies list and
2902 filename, which are all in the objfile_obstack. */
2903
2904 /* We need to cashier any psymtab that has this one as a dependency... */
2905 again:
2906 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2907 {
2908 for (i = 0; i < ps->number_of_dependencies; i++)
2909 {
2910 if (ps->dependencies[i] == pst)
2911 {
2912 cashier_psymtab (ps);
2913 goto again; /* Must restart, chain has been munged. */
2914 }
2915 }
2916 }
2917 }
2918 }
2919
2920 /* If a symtab or psymtab for filename NAME is found, free it along
2921 with any dependent breakpoints, displays, etc.
2922 Used when loading new versions of object modules with the "add-file"
2923 command. This is only called on the top-level symtab or psymtab's name;
2924 it is not called for subsidiary files such as .h files.
2925
2926 Return value is 1 if we blew away the environment, 0 if not.
2927 FIXME. The return value appears to never be used.
2928
2929 FIXME. I think this is not the best way to do this. We should
2930 work on being gentler to the environment while still cleaning up
2931 all stray pointers into the freed symtab. */
2932
2933 int
2934 free_named_symtabs (char *name)
2935 {
2936 #if 0
2937 /* FIXME: With the new method of each objfile having it's own
2938 psymtab list, this function needs serious rethinking. In particular,
2939 why was it ever necessary to toss psymtabs with specific compilation
2940 unit filenames, as opposed to all psymtabs from a particular symbol
2941 file? -- fnf
2942 Well, the answer is that some systems permit reloading of particular
2943 compilation units. We want to blow away any old info about these
2944 compilation units, regardless of which objfiles they arrived in. --gnu. */
2945
2946 struct symtab *s;
2947 struct symtab *prev;
2948 struct partial_symtab *ps;
2949 struct blockvector *bv;
2950 int blewit = 0;
2951
2952 /* We only wack things if the symbol-reload switch is set. */
2953 if (!symbol_reloading)
2954 return 0;
2955
2956 /* Some symbol formats have trouble providing file names... */
2957 if (name == 0 || *name == '\0')
2958 return 0;
2959
2960 /* Look for a psymtab with the specified name. */
2961
2962 again2:
2963 for (ps = partial_symtab_list; ps; ps = ps->next)
2964 {
2965 if (strcmp (name, ps->filename) == 0)
2966 {
2967 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2968 goto again2; /* Must restart, chain has been munged */
2969 }
2970 }
2971
2972 /* Look for a symtab with the specified name. */
2973
2974 for (s = symtab_list; s; s = s->next)
2975 {
2976 if (strcmp (name, s->filename) == 0)
2977 break;
2978 prev = s;
2979 }
2980
2981 if (s)
2982 {
2983 if (s == symtab_list)
2984 symtab_list = s->next;
2985 else
2986 prev->next = s->next;
2987
2988 /* For now, queue a delete for all breakpoints, displays, etc., whether
2989 or not they depend on the symtab being freed. This should be
2990 changed so that only those data structures affected are deleted. */
2991
2992 /* But don't delete anything if the symtab is empty.
2993 This test is necessary due to a bug in "dbxread.c" that
2994 causes empty symtabs to be created for N_SO symbols that
2995 contain the pathname of the object file. (This problem
2996 has been fixed in GDB 3.9x). */
2997
2998 bv = BLOCKVECTOR (s);
2999 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3000 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3001 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3002 {
3003 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3004 name);
3005 clear_symtab_users_queued++;
3006 make_cleanup (clear_symtab_users_once, 0);
3007 blewit = 1;
3008 }
3009 else
3010 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3011 name);
3012
3013 free_symtab (s);
3014 }
3015 else
3016 {
3017 /* It is still possible that some breakpoints will be affected
3018 even though no symtab was found, since the file might have
3019 been compiled without debugging, and hence not be associated
3020 with a symtab. In order to handle this correctly, we would need
3021 to keep a list of text address ranges for undebuggable files.
3022 For now, we do nothing, since this is a fairly obscure case. */
3023 ;
3024 }
3025
3026 /* FIXME, what about the minimal symbol table? */
3027 return blewit;
3028 #else
3029 return (0);
3030 #endif
3031 }
3032 \f
3033 /* Allocate and partially fill a partial symtab. It will be
3034 completely filled at the end of the symbol list.
3035
3036 FILENAME is the name of the symbol-file we are reading from. */
3037
3038 struct partial_symtab *
3039 start_psymtab_common (struct objfile *objfile,
3040 struct section_offsets *section_offsets, char *filename,
3041 CORE_ADDR textlow, struct partial_symbol **global_syms,
3042 struct partial_symbol **static_syms)
3043 {
3044 struct partial_symtab *psymtab;
3045
3046 psymtab = allocate_psymtab (filename, objfile);
3047 psymtab->section_offsets = section_offsets;
3048 psymtab->textlow = textlow;
3049 psymtab->texthigh = psymtab->textlow; /* default */
3050 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3051 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3052 return (psymtab);
3053 }
3054 \f
3055 /* Helper function, initialises partial symbol structure and stashes
3056 it into objfile's bcache. Note that our caching mechanism will
3057 use all fields of struct partial_symbol to determine hash value of the
3058 structure. In other words, having two symbols with the same name but
3059 different domain (or address) is possible and correct. */
3060
3061 static const struct partial_symbol *
3062 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3063 enum address_class class,
3064 long val, /* Value as a long */
3065 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3066 enum language language, struct objfile *objfile,
3067 int *added)
3068 {
3069 char *buf = name;
3070 /* psymbol is static so that there will be no uninitialized gaps in the
3071 structure which might contain random data, causing cache misses in
3072 bcache. */
3073 static struct partial_symbol psymbol;
3074
3075 if (name[namelength] != '\0')
3076 {
3077 buf = alloca (namelength + 1);
3078 /* Create local copy of the partial symbol */
3079 memcpy (buf, name, namelength);
3080 buf[namelength] = '\0';
3081 }
3082 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3083 if (val != 0)
3084 {
3085 SYMBOL_VALUE (&psymbol) = val;
3086 }
3087 else
3088 {
3089 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3090 }
3091 SYMBOL_SECTION (&psymbol) = 0;
3092 SYMBOL_LANGUAGE (&psymbol) = language;
3093 PSYMBOL_DOMAIN (&psymbol) = domain;
3094 PSYMBOL_CLASS (&psymbol) = class;
3095
3096 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3097
3098 /* Stash the partial symbol away in the cache */
3099 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3100 objfile->psymbol_cache, added);
3101 }
3102
3103 /* Helper function, adds partial symbol to the given partial symbol
3104 list. */
3105
3106 static void
3107 append_psymbol_to_list (struct psymbol_allocation_list *list,
3108 const struct partial_symbol *psym,
3109 struct objfile *objfile)
3110 {
3111 if (list->next >= list->list + list->size)
3112 extend_psymbol_list (list, objfile);
3113 *list->next++ = (struct partial_symbol *) psym;
3114 OBJSTAT (objfile, n_psyms++);
3115 }
3116
3117 /* Add a symbol with a long value to a psymtab.
3118 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3119 Return the partial symbol that has been added. */
3120
3121 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3122 symbol is so that callers can get access to the symbol's demangled
3123 name, which they don't have any cheap way to determine otherwise.
3124 (Currenly, dwarf2read.c is the only file who uses that information,
3125 though it's possible that other readers might in the future.)
3126 Elena wasn't thrilled about that, and I don't blame her, but we
3127 couldn't come up with a better way to get that information. If
3128 it's needed in other situations, we could consider breaking up
3129 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3130 cache. */
3131
3132 const struct partial_symbol *
3133 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3134 enum address_class class,
3135 struct psymbol_allocation_list *list,
3136 long val, /* Value as a long */
3137 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3138 enum language language, struct objfile *objfile)
3139 {
3140 const struct partial_symbol *psym;
3141
3142 int added;
3143
3144 /* Stash the partial symbol away in the cache */
3145 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3146 val, coreaddr, language, objfile, &added);
3147
3148 /* Do not duplicate global partial symbols. */
3149 if (list == &objfile->global_psymbols
3150 && !added)
3151 return psym;
3152
3153 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3154 append_psymbol_to_list (list, psym, objfile);
3155 return psym;
3156 }
3157
3158 /* Initialize storage for partial symbols. */
3159
3160 void
3161 init_psymbol_list (struct objfile *objfile, int total_symbols)
3162 {
3163 /* Free any previously allocated psymbol lists. */
3164
3165 if (objfile->global_psymbols.list)
3166 {
3167 xfree (objfile->global_psymbols.list);
3168 }
3169 if (objfile->static_psymbols.list)
3170 {
3171 xfree (objfile->static_psymbols.list);
3172 }
3173
3174 /* Current best guess is that approximately a twentieth
3175 of the total symbols (in a debugging file) are global or static
3176 oriented symbols */
3177
3178 objfile->global_psymbols.size = total_symbols / 10;
3179 objfile->static_psymbols.size = total_symbols / 10;
3180
3181 if (objfile->global_psymbols.size > 0)
3182 {
3183 objfile->global_psymbols.next =
3184 objfile->global_psymbols.list = (struct partial_symbol **)
3185 xmalloc ((objfile->global_psymbols.size
3186 * sizeof (struct partial_symbol *)));
3187 }
3188 if (objfile->static_psymbols.size > 0)
3189 {
3190 objfile->static_psymbols.next =
3191 objfile->static_psymbols.list = (struct partial_symbol **)
3192 xmalloc ((objfile->static_psymbols.size
3193 * sizeof (struct partial_symbol *)));
3194 }
3195 }
3196
3197 /* OVERLAYS:
3198 The following code implements an abstraction for debugging overlay sections.
3199
3200 The target model is as follows:
3201 1) The gnu linker will permit multiple sections to be mapped into the
3202 same VMA, each with its own unique LMA (or load address).
3203 2) It is assumed that some runtime mechanism exists for mapping the
3204 sections, one by one, from the load address into the VMA address.
3205 3) This code provides a mechanism for gdb to keep track of which
3206 sections should be considered to be mapped from the VMA to the LMA.
3207 This information is used for symbol lookup, and memory read/write.
3208 For instance, if a section has been mapped then its contents
3209 should be read from the VMA, otherwise from the LMA.
3210
3211 Two levels of debugger support for overlays are available. One is
3212 "manual", in which the debugger relies on the user to tell it which
3213 overlays are currently mapped. This level of support is
3214 implemented entirely in the core debugger, and the information about
3215 whether a section is mapped is kept in the objfile->obj_section table.
3216
3217 The second level of support is "automatic", and is only available if
3218 the target-specific code provides functionality to read the target's
3219 overlay mapping table, and translate its contents for the debugger
3220 (by updating the mapped state information in the obj_section tables).
3221
3222 The interface is as follows:
3223 User commands:
3224 overlay map <name> -- tell gdb to consider this section mapped
3225 overlay unmap <name> -- tell gdb to consider this section unmapped
3226 overlay list -- list the sections that GDB thinks are mapped
3227 overlay read-target -- get the target's state of what's mapped
3228 overlay off/manual/auto -- set overlay debugging state
3229 Functional interface:
3230 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3231 section, return that section.
3232 find_pc_overlay(pc): find any overlay section that contains
3233 the pc, either in its VMA or its LMA
3234 section_is_mapped(sect): true if overlay is marked as mapped
3235 section_is_overlay(sect): true if section's VMA != LMA
3236 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3237 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3238 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3239 overlay_mapped_address(...): map an address from section's LMA to VMA
3240 overlay_unmapped_address(...): map an address from section's VMA to LMA
3241 symbol_overlayed_address(...): Return a "current" address for symbol:
3242 either in VMA or LMA depending on whether
3243 the symbol's section is currently mapped
3244 */
3245
3246 /* Overlay debugging state: */
3247
3248 enum overlay_debugging_state overlay_debugging = ovly_off;
3249 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3250
3251 /* Function: section_is_overlay (SECTION)
3252 Returns true if SECTION has VMA not equal to LMA, ie.
3253 SECTION is loaded at an address different from where it will "run". */
3254
3255 int
3256 section_is_overlay (struct obj_section *section)
3257 {
3258 if (overlay_debugging && section)
3259 {
3260 bfd *abfd = section->objfile->obfd;
3261 asection *bfd_section = section->the_bfd_section;
3262
3263 if (bfd_section_lma (abfd, bfd_section) != 0
3264 && bfd_section_lma (abfd, bfd_section)
3265 != bfd_section_vma (abfd, bfd_section))
3266 return 1;
3267 }
3268
3269 return 0;
3270 }
3271
3272 /* Function: overlay_invalidate_all (void)
3273 Invalidate the mapped state of all overlay sections (mark it as stale). */
3274
3275 static void
3276 overlay_invalidate_all (void)
3277 {
3278 struct objfile *objfile;
3279 struct obj_section *sect;
3280
3281 ALL_OBJSECTIONS (objfile, sect)
3282 if (section_is_overlay (sect))
3283 sect->ovly_mapped = -1;
3284 }
3285
3286 /* Function: section_is_mapped (SECTION)
3287 Returns true if section is an overlay, and is currently mapped.
3288
3289 Access to the ovly_mapped flag is restricted to this function, so
3290 that we can do automatic update. If the global flag
3291 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3292 overlay_invalidate_all. If the mapped state of the particular
3293 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3294
3295 int
3296 section_is_mapped (struct obj_section *osect)
3297 {
3298 struct gdbarch *gdbarch;
3299
3300 if (osect == 0 || !section_is_overlay (osect))
3301 return 0;
3302
3303 switch (overlay_debugging)
3304 {
3305 default:
3306 case ovly_off:
3307 return 0; /* overlay debugging off */
3308 case ovly_auto: /* overlay debugging automatic */
3309 /* Unles there is a gdbarch_overlay_update function,
3310 there's really nothing useful to do here (can't really go auto) */
3311 gdbarch = get_objfile_arch (osect->objfile);
3312 if (gdbarch_overlay_update_p (gdbarch))
3313 {
3314 if (overlay_cache_invalid)
3315 {
3316 overlay_invalidate_all ();
3317 overlay_cache_invalid = 0;
3318 }
3319 if (osect->ovly_mapped == -1)
3320 gdbarch_overlay_update (gdbarch, osect);
3321 }
3322 /* fall thru to manual case */
3323 case ovly_on: /* overlay debugging manual */
3324 return osect->ovly_mapped == 1;
3325 }
3326 }
3327
3328 /* Function: pc_in_unmapped_range
3329 If PC falls into the lma range of SECTION, return true, else false. */
3330
3331 CORE_ADDR
3332 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3333 {
3334 if (section_is_overlay (section))
3335 {
3336 bfd *abfd = section->objfile->obfd;
3337 asection *bfd_section = section->the_bfd_section;
3338
3339 /* We assume the LMA is relocated by the same offset as the VMA. */
3340 bfd_vma size = bfd_get_section_size (bfd_section);
3341 CORE_ADDR offset = obj_section_offset (section);
3342
3343 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3344 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3345 return 1;
3346 }
3347
3348 return 0;
3349 }
3350
3351 /* Function: pc_in_mapped_range
3352 If PC falls into the vma range of SECTION, return true, else false. */
3353
3354 CORE_ADDR
3355 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3356 {
3357 if (section_is_overlay (section))
3358 {
3359 if (obj_section_addr (section) <= pc
3360 && pc < obj_section_endaddr (section))
3361 return 1;
3362 }
3363
3364 return 0;
3365 }
3366
3367
3368 /* Return true if the mapped ranges of sections A and B overlap, false
3369 otherwise. */
3370 static int
3371 sections_overlap (struct obj_section *a, struct obj_section *b)
3372 {
3373 CORE_ADDR a_start = obj_section_addr (a);
3374 CORE_ADDR a_end = obj_section_endaddr (a);
3375 CORE_ADDR b_start = obj_section_addr (b);
3376 CORE_ADDR b_end = obj_section_endaddr (b);
3377
3378 return (a_start < b_end && b_start < a_end);
3379 }
3380
3381 /* Function: overlay_unmapped_address (PC, SECTION)
3382 Returns the address corresponding to PC in the unmapped (load) range.
3383 May be the same as PC. */
3384
3385 CORE_ADDR
3386 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3387 {
3388 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3389 {
3390 bfd *abfd = section->objfile->obfd;
3391 asection *bfd_section = section->the_bfd_section;
3392
3393 return pc + bfd_section_lma (abfd, bfd_section)
3394 - bfd_section_vma (abfd, bfd_section);
3395 }
3396
3397 return pc;
3398 }
3399
3400 /* Function: overlay_mapped_address (PC, SECTION)
3401 Returns the address corresponding to PC in the mapped (runtime) range.
3402 May be the same as PC. */
3403
3404 CORE_ADDR
3405 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3406 {
3407 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3408 {
3409 bfd *abfd = section->objfile->obfd;
3410 asection *bfd_section = section->the_bfd_section;
3411
3412 return pc + bfd_section_vma (abfd, bfd_section)
3413 - bfd_section_lma (abfd, bfd_section);
3414 }
3415
3416 return pc;
3417 }
3418
3419
3420 /* Function: symbol_overlayed_address
3421 Return one of two addresses (relative to the VMA or to the LMA),
3422 depending on whether the section is mapped or not. */
3423
3424 CORE_ADDR
3425 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3426 {
3427 if (overlay_debugging)
3428 {
3429 /* If the symbol has no section, just return its regular address. */
3430 if (section == 0)
3431 return address;
3432 /* If the symbol's section is not an overlay, just return its address */
3433 if (!section_is_overlay (section))
3434 return address;
3435 /* If the symbol's section is mapped, just return its address */
3436 if (section_is_mapped (section))
3437 return address;
3438 /*
3439 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3440 * then return its LOADED address rather than its vma address!!
3441 */
3442 return overlay_unmapped_address (address, section);
3443 }
3444 return address;
3445 }
3446
3447 /* Function: find_pc_overlay (PC)
3448 Return the best-match overlay section for PC:
3449 If PC matches a mapped overlay section's VMA, return that section.
3450 Else if PC matches an unmapped section's VMA, return that section.
3451 Else if PC matches an unmapped section's LMA, return that section. */
3452
3453 struct obj_section *
3454 find_pc_overlay (CORE_ADDR pc)
3455 {
3456 struct objfile *objfile;
3457 struct obj_section *osect, *best_match = NULL;
3458
3459 if (overlay_debugging)
3460 ALL_OBJSECTIONS (objfile, osect)
3461 if (section_is_overlay (osect))
3462 {
3463 if (pc_in_mapped_range (pc, osect))
3464 {
3465 if (section_is_mapped (osect))
3466 return osect;
3467 else
3468 best_match = osect;
3469 }
3470 else if (pc_in_unmapped_range (pc, osect))
3471 best_match = osect;
3472 }
3473 return best_match;
3474 }
3475
3476 /* Function: find_pc_mapped_section (PC)
3477 If PC falls into the VMA address range of an overlay section that is
3478 currently marked as MAPPED, return that section. Else return NULL. */
3479
3480 struct obj_section *
3481 find_pc_mapped_section (CORE_ADDR pc)
3482 {
3483 struct objfile *objfile;
3484 struct obj_section *osect;
3485
3486 if (overlay_debugging)
3487 ALL_OBJSECTIONS (objfile, osect)
3488 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3489 return osect;
3490
3491 return NULL;
3492 }
3493
3494 /* Function: list_overlays_command
3495 Print a list of mapped sections and their PC ranges */
3496
3497 void
3498 list_overlays_command (char *args, int from_tty)
3499 {
3500 int nmapped = 0;
3501 struct objfile *objfile;
3502 struct obj_section *osect;
3503
3504 if (overlay_debugging)
3505 ALL_OBJSECTIONS (objfile, osect)
3506 if (section_is_mapped (osect))
3507 {
3508 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3509 const char *name;
3510 bfd_vma lma, vma;
3511 int size;
3512
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3515 size = bfd_get_section_size (osect->the_bfd_section);
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3517
3518 printf_filtered ("Section %s, loaded at ", name);
3519 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3520 puts_filtered (" - ");
3521 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3522 printf_filtered (", mapped at ");
3523 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3524 puts_filtered (" - ");
3525 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3526 puts_filtered ("\n");
3527
3528 nmapped++;
3529 }
3530 if (nmapped == 0)
3531 printf_filtered (_("No sections are mapped.\n"));
3532 }
3533
3534 /* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3536
3537 void
3538 map_overlay_command (char *args, int from_tty)
3539 {
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
3542
3543 if (!overlay_debugging)
3544 error (_("\
3545 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3546 the 'overlay manual' command."));
3547
3548 if (args == 0 || *args == 0)
3549 error (_("Argument required: name of an overlay section"));
3550
3551 /* First, find a section matching the user supplied argument */
3552 ALL_OBJSECTIONS (objfile, sec)
3553 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3554 {
3555 /* Now, check to see if the section is an overlay. */
3556 if (!section_is_overlay (sec))
3557 continue; /* not an overlay section */
3558
3559 /* Mark the overlay as "mapped" */
3560 sec->ovly_mapped = 1;
3561
3562 /* Next, make a pass and unmap any sections that are
3563 overlapped by this new section: */
3564 ALL_OBJSECTIONS (objfile2, sec2)
3565 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3566 {
3567 if (info_verbose)
3568 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3569 bfd_section_name (objfile->obfd,
3570 sec2->the_bfd_section));
3571 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3572 }
3573 return;
3574 }
3575 error (_("No overlay section called %s"), args);
3576 }
3577
3578 /* Function: unmap_overlay_command
3579 Mark the overlay section as unmapped
3580 (ie. resident in its LMA address range, rather than the VMA range). */
3581
3582 void
3583 unmap_overlay_command (char *args, int from_tty)
3584 {
3585 struct objfile *objfile;
3586 struct obj_section *sec;
3587
3588 if (!overlay_debugging)
3589 error (_("\
3590 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3591 the 'overlay manual' command."));
3592
3593 if (args == 0 || *args == 0)
3594 error (_("Argument required: name of an overlay section"));
3595
3596 /* First, find a section matching the user supplied argument */
3597 ALL_OBJSECTIONS (objfile, sec)
3598 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3599 {
3600 if (!sec->ovly_mapped)
3601 error (_("Section %s is not mapped"), args);
3602 sec->ovly_mapped = 0;
3603 return;
3604 }
3605 error (_("No overlay section called %s"), args);
3606 }
3607
3608 /* Function: overlay_auto_command
3609 A utility command to turn on overlay debugging.
3610 Possibly this should be done via a set/show command. */
3611
3612 static void
3613 overlay_auto_command (char *args, int from_tty)
3614 {
3615 overlay_debugging = ovly_auto;
3616 enable_overlay_breakpoints ();
3617 if (info_verbose)
3618 printf_unfiltered (_("Automatic overlay debugging enabled."));
3619 }
3620
3621 /* Function: overlay_manual_command
3622 A utility command to turn on overlay debugging.
3623 Possibly this should be done via a set/show command. */
3624
3625 static void
3626 overlay_manual_command (char *args, int from_tty)
3627 {
3628 overlay_debugging = ovly_on;
3629 disable_overlay_breakpoints ();
3630 if (info_verbose)
3631 printf_unfiltered (_("Overlay debugging enabled."));
3632 }
3633
3634 /* Function: overlay_off_command
3635 A utility command to turn on overlay debugging.
3636 Possibly this should be done via a set/show command. */
3637
3638 static void
3639 overlay_off_command (char *args, int from_tty)
3640 {
3641 overlay_debugging = ovly_off;
3642 disable_overlay_breakpoints ();
3643 if (info_verbose)
3644 printf_unfiltered (_("Overlay debugging disabled."));
3645 }
3646
3647 static void
3648 overlay_load_command (char *args, int from_tty)
3649 {
3650 struct gdbarch *gdbarch = get_current_arch ();
3651
3652 if (gdbarch_overlay_update_p (gdbarch))
3653 gdbarch_overlay_update (gdbarch, NULL);
3654 else
3655 error (_("This target does not know how to read its overlay state."));
3656 }
3657
3658 /* Function: overlay_command
3659 A place-holder for a mis-typed command */
3660
3661 /* Command list chain containing all defined "overlay" subcommands. */
3662 struct cmd_list_element *overlaylist;
3663
3664 static void
3665 overlay_command (char *args, int from_tty)
3666 {
3667 printf_unfiltered
3668 ("\"overlay\" must be followed by the name of an overlay command.\n");
3669 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3670 }
3671
3672
3673 /* Target Overlays for the "Simplest" overlay manager:
3674
3675 This is GDB's default target overlay layer. It works with the
3676 minimal overlay manager supplied as an example by Cygnus. The
3677 entry point is via a function pointer "gdbarch_overlay_update",
3678 so targets that use a different runtime overlay manager can
3679 substitute their own overlay_update function and take over the
3680 function pointer.
3681
3682 The overlay_update function pokes around in the target's data structures
3683 to see what overlays are mapped, and updates GDB's overlay mapping with
3684 this information.
3685
3686 In this simple implementation, the target data structures are as follows:
3687 unsigned _novlys; /# number of overlay sections #/
3688 unsigned _ovly_table[_novlys][4] = {
3689 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3690 {..., ..., ..., ...},
3691 }
3692 unsigned _novly_regions; /# number of overlay regions #/
3693 unsigned _ovly_region_table[_novly_regions][3] = {
3694 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3695 {..., ..., ...},
3696 }
3697 These functions will attempt to update GDB's mappedness state in the
3698 symbol section table, based on the target's mappedness state.
3699
3700 To do this, we keep a cached copy of the target's _ovly_table, and
3701 attempt to detect when the cached copy is invalidated. The main
3702 entry point is "simple_overlay_update(SECT), which looks up SECT in
3703 the cached table and re-reads only the entry for that section from
3704 the target (whenever possible).
3705 */
3706
3707 /* Cached, dynamically allocated copies of the target data structures: */
3708 static unsigned (*cache_ovly_table)[4] = 0;
3709 #if 0
3710 static unsigned (*cache_ovly_region_table)[3] = 0;
3711 #endif
3712 static unsigned cache_novlys = 0;
3713 #if 0
3714 static unsigned cache_novly_regions = 0;
3715 #endif
3716 static CORE_ADDR cache_ovly_table_base = 0;
3717 #if 0
3718 static CORE_ADDR cache_ovly_region_table_base = 0;
3719 #endif
3720 enum ovly_index
3721 {
3722 VMA, SIZE, LMA, MAPPED
3723 };
3724
3725 /* Throw away the cached copy of _ovly_table */
3726 static void
3727 simple_free_overlay_table (void)
3728 {
3729 if (cache_ovly_table)
3730 xfree (cache_ovly_table);
3731 cache_novlys = 0;
3732 cache_ovly_table = NULL;
3733 cache_ovly_table_base = 0;
3734 }
3735
3736 #if 0
3737 /* Throw away the cached copy of _ovly_region_table */
3738 static void
3739 simple_free_overlay_region_table (void)
3740 {
3741 if (cache_ovly_region_table)
3742 xfree (cache_ovly_region_table);
3743 cache_novly_regions = 0;
3744 cache_ovly_region_table = NULL;
3745 cache_ovly_region_table_base = 0;
3746 }
3747 #endif
3748
3749 /* Read an array of ints of size SIZE from the target into a local buffer.
3750 Convert to host order. int LEN is number of ints */
3751 static void
3752 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3753 int len, int size)
3754 {
3755 /* FIXME (alloca): Not safe if array is very large. */
3756 gdb_byte *buf = alloca (len * size);
3757 int i;
3758
3759 read_memory (memaddr, buf, len * size);
3760 for (i = 0; i < len; i++)
3761 myaddr[i] = extract_unsigned_integer (size * i + buf, size);
3762 }
3763
3764 /* Find and grab a copy of the target _ovly_table
3765 (and _novlys, which is needed for the table's size) */
3766 static int
3767 simple_read_overlay_table (void)
3768 {
3769 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3770 struct gdbarch *gdbarch;
3771 int word_size;
3772
3773 simple_free_overlay_table ();
3774 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3775 if (! novlys_msym)
3776 {
3777 error (_("Error reading inferior's overlay table: "
3778 "couldn't find `_novlys' variable\n"
3779 "in inferior. Use `overlay manual' mode."));
3780 return 0;
3781 }
3782
3783 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3784 if (! ovly_table_msym)
3785 {
3786 error (_("Error reading inferior's overlay table: couldn't find "
3787 "`_ovly_table' array\n"
3788 "in inferior. Use `overlay manual' mode."));
3789 return 0;
3790 }
3791
3792 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3793 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3794
3795 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3796 cache_ovly_table
3797 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3798 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3799 read_target_long_array (cache_ovly_table_base,
3800 (unsigned int *) cache_ovly_table,
3801 cache_novlys * 4, word_size);
3802
3803 return 1; /* SUCCESS */
3804 }
3805
3806 #if 0
3807 /* Find and grab a copy of the target _ovly_region_table
3808 (and _novly_regions, which is needed for the table's size) */
3809 static int
3810 simple_read_overlay_region_table (void)
3811 {
3812 struct minimal_symbol *msym;
3813
3814 simple_free_overlay_region_table ();
3815 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3816 if (msym != NULL)
3817 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3818 else
3819 return 0; /* failure */
3820 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3821 if (cache_ovly_region_table != NULL)
3822 {
3823 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3824 if (msym != NULL)
3825 {
3826 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msym));
3827 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3828 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3829 read_target_long_array (cache_ovly_region_table_base,
3830 (unsigned int *) cache_ovly_region_table,
3831 cache_novly_regions * 3, word_size);
3832 }
3833 else
3834 return 0; /* failure */
3835 }
3836 else
3837 return 0; /* failure */
3838 return 1; /* SUCCESS */
3839 }
3840 #endif
3841
3842 /* Function: simple_overlay_update_1
3843 A helper function for simple_overlay_update. Assuming a cached copy
3844 of _ovly_table exists, look through it to find an entry whose vma,
3845 lma and size match those of OSECT. Re-read the entry and make sure
3846 it still matches OSECT (else the table may no longer be valid).
3847 Set OSECT's mapped state to match the entry. Return: 1 for
3848 success, 0 for failure. */
3849
3850 static int
3851 simple_overlay_update_1 (struct obj_section *osect)
3852 {
3853 int i, size;
3854 bfd *obfd = osect->objfile->obfd;
3855 asection *bsect = osect->the_bfd_section;
3856 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3857 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3858
3859 size = bfd_get_section_size (osect->the_bfd_section);
3860 for (i = 0; i < cache_novlys; i++)
3861 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3862 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3863 /* && cache_ovly_table[i][SIZE] == size */ )
3864 {
3865 read_target_long_array (cache_ovly_table_base + i * word_size,
3866 (unsigned int *) cache_ovly_table[i],
3867 4, word_size);
3868 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3869 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3870 /* && cache_ovly_table[i][SIZE] == size */ )
3871 {
3872 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3873 return 1;
3874 }
3875 else /* Warning! Warning! Target's ovly table has changed! */
3876 return 0;
3877 }
3878 return 0;
3879 }
3880
3881 /* Function: simple_overlay_update
3882 If OSECT is NULL, then update all sections' mapped state
3883 (after re-reading the entire target _ovly_table).
3884 If OSECT is non-NULL, then try to find a matching entry in the
3885 cached ovly_table and update only OSECT's mapped state.
3886 If a cached entry can't be found or the cache isn't valid, then
3887 re-read the entire cache, and go ahead and update all sections. */
3888
3889 void
3890 simple_overlay_update (struct obj_section *osect)
3891 {
3892 struct objfile *objfile;
3893
3894 /* Were we given an osect to look up? NULL means do all of them. */
3895 if (osect)
3896 /* Have we got a cached copy of the target's overlay table? */
3897 if (cache_ovly_table != NULL)
3898 /* Does its cached location match what's currently in the symtab? */
3899 if (cache_ovly_table_base ==
3900 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3901 /* Then go ahead and try to look up this single section in the cache */
3902 if (simple_overlay_update_1 (osect))
3903 /* Found it! We're done. */
3904 return;
3905
3906 /* Cached table no good: need to read the entire table anew.
3907 Or else we want all the sections, in which case it's actually
3908 more efficient to read the whole table in one block anyway. */
3909
3910 if (! simple_read_overlay_table ())
3911 return;
3912
3913 /* Now may as well update all sections, even if only one was requested. */
3914 ALL_OBJSECTIONS (objfile, osect)
3915 if (section_is_overlay (osect))
3916 {
3917 int i, size;
3918 bfd *obfd = osect->objfile->obfd;
3919 asection *bsect = osect->the_bfd_section;
3920
3921 size = bfd_get_section_size (bsect);
3922 for (i = 0; i < cache_novlys; i++)
3923 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3924 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3925 /* && cache_ovly_table[i][SIZE] == size */ )
3926 { /* obj_section matches i'th entry in ovly_table */
3927 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3928 break; /* finished with inner for loop: break out */
3929 }
3930 }
3931 }
3932
3933 /* Set the output sections and output offsets for section SECTP in
3934 ABFD. The relocation code in BFD will read these offsets, so we
3935 need to be sure they're initialized. We map each section to itself,
3936 with no offset; this means that SECTP->vma will be honored. */
3937
3938 static void
3939 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3940 {
3941 sectp->output_section = sectp;
3942 sectp->output_offset = 0;
3943 }
3944
3945 /* Relocate the contents of a debug section SECTP in ABFD. The
3946 contents are stored in BUF if it is non-NULL, or returned in a
3947 malloc'd buffer otherwise.
3948
3949 For some platforms and debug info formats, shared libraries contain
3950 relocations against the debug sections (particularly for DWARF-2;
3951 one affected platform is PowerPC GNU/Linux, although it depends on
3952 the version of the linker in use). Also, ELF object files naturally
3953 have unresolved relocations for their debug sections. We need to apply
3954 the relocations in order to get the locations of symbols correct.
3955 Another example that may require relocation processing, is the
3956 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3957 debug section. */
3958
3959 bfd_byte *
3960 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3961 {
3962 /* We're only interested in sections with relocation
3963 information. */
3964 if ((sectp->flags & SEC_RELOC) == 0)
3965 return NULL;
3966
3967 /* We will handle section offsets properly elsewhere, so relocate as if
3968 all sections begin at 0. */
3969 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3970
3971 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3972 }
3973
3974 struct symfile_segment_data *
3975 get_symfile_segment_data (bfd *abfd)
3976 {
3977 struct sym_fns *sf = find_sym_fns (abfd);
3978
3979 if (sf == NULL)
3980 return NULL;
3981
3982 return sf->sym_segments (abfd);
3983 }
3984
3985 void
3986 free_symfile_segment_data (struct symfile_segment_data *data)
3987 {
3988 xfree (data->segment_bases);
3989 xfree (data->segment_sizes);
3990 xfree (data->segment_info);
3991 xfree (data);
3992 }
3993
3994
3995 /* Given:
3996 - DATA, containing segment addresses from the object file ABFD, and
3997 the mapping from ABFD's sections onto the segments that own them,
3998 and
3999 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4000 segment addresses reported by the target,
4001 store the appropriate offsets for each section in OFFSETS.
4002
4003 If there are fewer entries in SEGMENT_BASES than there are segments
4004 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4005
4006 If there are more entries, then ignore the extra. The target may
4007 not be able to distinguish between an empty data segment and a
4008 missing data segment; a missing text segment is less plausible. */
4009 int
4010 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4011 struct section_offsets *offsets,
4012 int num_segment_bases,
4013 const CORE_ADDR *segment_bases)
4014 {
4015 int i;
4016 asection *sect;
4017
4018 /* It doesn't make sense to call this function unless you have some
4019 segment base addresses. */
4020 gdb_assert (segment_bases > 0);
4021
4022 /* If we do not have segment mappings for the object file, we
4023 can not relocate it by segments. */
4024 gdb_assert (data != NULL);
4025 gdb_assert (data->num_segments > 0);
4026
4027 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4028 {
4029 int which = data->segment_info[i];
4030
4031 gdb_assert (0 <= which && which <= data->num_segments);
4032
4033 /* Don't bother computing offsets for sections that aren't
4034 loaded as part of any segment. */
4035 if (! which)
4036 continue;
4037
4038 /* Use the last SEGMENT_BASES entry as the address of any extra
4039 segments mentioned in DATA->segment_info. */
4040 if (which > num_segment_bases)
4041 which = num_segment_bases;
4042
4043 offsets->offsets[i] = (segment_bases[which - 1]
4044 - data->segment_bases[which - 1]);
4045 }
4046
4047 return 1;
4048 }
4049
4050 static void
4051 symfile_find_segment_sections (struct objfile *objfile)
4052 {
4053 bfd *abfd = objfile->obfd;
4054 int i;
4055 asection *sect;
4056 struct symfile_segment_data *data;
4057
4058 data = get_symfile_segment_data (objfile->obfd);
4059 if (data == NULL)
4060 return;
4061
4062 if (data->num_segments != 1 && data->num_segments != 2)
4063 {
4064 free_symfile_segment_data (data);
4065 return;
4066 }
4067
4068 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4069 {
4070 CORE_ADDR vma;
4071 int which = data->segment_info[i];
4072
4073 if (which == 1)
4074 {
4075 if (objfile->sect_index_text == -1)
4076 objfile->sect_index_text = sect->index;
4077
4078 if (objfile->sect_index_rodata == -1)
4079 objfile->sect_index_rodata = sect->index;
4080 }
4081 else if (which == 2)
4082 {
4083 if (objfile->sect_index_data == -1)
4084 objfile->sect_index_data = sect->index;
4085
4086 if (objfile->sect_index_bss == -1)
4087 objfile->sect_index_bss = sect->index;
4088 }
4089 }
4090
4091 free_symfile_segment_data (data);
4092 }
4093
4094 void
4095 _initialize_symfile (void)
4096 {
4097 struct cmd_list_element *c;
4098
4099 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4100 Load symbol table from executable file FILE.\n\
4101 The `file' command can also load symbol tables, as well as setting the file\n\
4102 to execute."), &cmdlist);
4103 set_cmd_completer (c, filename_completer);
4104
4105 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4106 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4107 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4108 ADDR is the starting address of the file's text.\n\
4109 The optional arguments are section-name section-address pairs and\n\
4110 should be specified if the data and bss segments are not contiguous\n\
4111 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4112 &cmdlist);
4113 set_cmd_completer (c, filename_completer);
4114
4115 c = add_cmd ("load", class_files, load_command, _("\
4116 Dynamically load FILE into the running program, and record its symbols\n\
4117 for access from GDB.\n\
4118 A load OFFSET may also be given."), &cmdlist);
4119 set_cmd_completer (c, filename_completer);
4120
4121 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4122 &symbol_reloading, _("\
4123 Set dynamic symbol table reloading multiple times in one run."), _("\
4124 Show dynamic symbol table reloading multiple times in one run."), NULL,
4125 NULL,
4126 show_symbol_reloading,
4127 &setlist, &showlist);
4128
4129 add_prefix_cmd ("overlay", class_support, overlay_command,
4130 _("Commands for debugging overlays."), &overlaylist,
4131 "overlay ", 0, &cmdlist);
4132
4133 add_com_alias ("ovly", "overlay", class_alias, 1);
4134 add_com_alias ("ov", "overlay", class_alias, 1);
4135
4136 add_cmd ("map-overlay", class_support, map_overlay_command,
4137 _("Assert that an overlay section is mapped."), &overlaylist);
4138
4139 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4140 _("Assert that an overlay section is unmapped."), &overlaylist);
4141
4142 add_cmd ("list-overlays", class_support, list_overlays_command,
4143 _("List mappings of overlay sections."), &overlaylist);
4144
4145 add_cmd ("manual", class_support, overlay_manual_command,
4146 _("Enable overlay debugging."), &overlaylist);
4147 add_cmd ("off", class_support, overlay_off_command,
4148 _("Disable overlay debugging."), &overlaylist);
4149 add_cmd ("auto", class_support, overlay_auto_command,
4150 _("Enable automatic overlay debugging."), &overlaylist);
4151 add_cmd ("load-target", class_support, overlay_load_command,
4152 _("Read the overlay mapping state from the target."), &overlaylist);
4153
4154 /* Filename extension to source language lookup table: */
4155 init_filename_language_table ();
4156 add_setshow_string_noescape_cmd ("extension-language", class_files,
4157 &ext_args, _("\
4158 Set mapping between filename extension and source language."), _("\
4159 Show mapping between filename extension and source language."), _("\
4160 Usage: set extension-language .foo bar"),
4161 set_ext_lang_command,
4162 show_ext_args,
4163 &setlist, &showlist);
4164
4165 add_info ("extensions", info_ext_lang_command,
4166 _("All filename extensions associated with a source language."));
4167
4168 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4169 &debug_file_directory, _("\
4170 Set the directory where separate debug symbols are searched for."), _("\
4171 Show the directory where separate debug symbols are searched for."), _("\
4172 Separate debug symbols are first searched for in the same\n\
4173 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4174 and lastly at the path of the directory of the binary with\n\
4175 the global debug-file directory prepended."),
4176 NULL,
4177 show_debug_file_directory,
4178 &setlist, &showlist);
4179
4180 add_setshow_boolean_cmd ("symbol-loading", no_class,
4181 &print_symbol_loading, _("\
4182 Set printing of symbol loading messages."), _("\
4183 Show printing of symbol loading messages."), NULL,
4184 NULL,
4185 NULL,
4186 &setprintlist, &showprintlist);
4187 }