]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Update Copyright year range in all files maintained by GDB.
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60 #include "target.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <string.h>
65 #include <sys/stat.h>
66 #include <ctype.h>
67 #include <time.h>
68 #include <sys/time.h>
69
70 #include "psymtab.h"
71
72 int (*deprecated_ui_load_progress_hook) (const char *section,
73 unsigned long num);
74 void (*deprecated_show_load_progress) (const char *section,
75 unsigned long section_sent,
76 unsigned long section_size,
77 unsigned long total_sent,
78 unsigned long total_size);
79 void (*deprecated_pre_add_symbol_hook) (const char *);
80 void (*deprecated_post_add_symbol_hook) (void);
81
82 static void clear_symtab_users_cleanup (void *ignore);
83
84 /* Global variables owned by this file. */
85 int readnow_symbol_files; /* Read full symbols immediately. */
86
87 /* Functions this file defines. */
88
89 static void load_command (char *, int);
90
91 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
92
93 static void add_symbol_file_command (char *, int);
94
95 static const struct sym_fns *find_sym_fns (bfd *);
96
97 static void decrement_reading_symtab (void *);
98
99 static void overlay_invalidate_all (void);
100
101 static void overlay_auto_command (char *, int);
102
103 static void overlay_manual_command (char *, int);
104
105 static void overlay_off_command (char *, int);
106
107 static void overlay_load_command (char *, int);
108
109 static void overlay_command (char *, int);
110
111 static void simple_free_overlay_table (void);
112
113 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
114 enum bfd_endian);
115
116 static int simple_read_overlay_table (void);
117
118 static int simple_overlay_update_1 (struct obj_section *);
119
120 static void add_filename_language (char *ext, enum language lang);
121
122 static void info_ext_lang_command (char *args, int from_tty);
123
124 static void init_filename_language_table (void);
125
126 static void symfile_find_segment_sections (struct objfile *objfile);
127
128 void _initialize_symfile (void);
129
130 /* List of all available sym_fns. On gdb startup, each object file reader
131 calls add_symtab_fns() to register information on each format it is
132 prepared to read. */
133
134 typedef struct
135 {
136 /* BFD flavour that we handle. */
137 enum bfd_flavour sym_flavour;
138
139 /* The "vtable" of symbol functions. */
140 const struct sym_fns *sym_fns;
141 } registered_sym_fns;
142
143 DEF_VEC_O (registered_sym_fns);
144
145 static VEC (registered_sym_fns) *symtab_fns = NULL;
146
147 /* If non-zero, shared library symbols will be added automatically
148 when the inferior is created, new libraries are loaded, or when
149 attaching to the inferior. This is almost always what users will
150 want to have happen; but for very large programs, the startup time
151 will be excessive, and so if this is a problem, the user can clear
152 this flag and then add the shared library symbols as needed. Note
153 that there is a potential for confusion, since if the shared
154 library symbols are not loaded, commands like "info fun" will *not*
155 report all the functions that are actually present. */
156
157 int auto_solib_add = 1;
158 \f
159
160 /* True if we are reading a symbol table. */
161
162 int currently_reading_symtab = 0;
163
164 static void
165 decrement_reading_symtab (void *dummy)
166 {
167 currently_reading_symtab--;
168 gdb_assert (currently_reading_symtab >= 0);
169 }
170
171 /* Increment currently_reading_symtab and return a cleanup that can be
172 used to decrement it. */
173
174 struct cleanup *
175 increment_reading_symtab (void)
176 {
177 ++currently_reading_symtab;
178 gdb_assert (currently_reading_symtab > 0);
179 return make_cleanup (decrement_reading_symtab, NULL);
180 }
181
182 /* Remember the lowest-addressed loadable section we've seen.
183 This function is called via bfd_map_over_sections.
184
185 In case of equal vmas, the section with the largest size becomes the
186 lowest-addressed loadable section.
187
188 If the vmas and sizes are equal, the last section is considered the
189 lowest-addressed loadable section. */
190
191 void
192 find_lowest_section (bfd *abfd, asection *sect, void *obj)
193 {
194 asection **lowest = (asection **) obj;
195
196 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
197 return;
198 if (!*lowest)
199 *lowest = sect; /* First loadable section */
200 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
201 *lowest = sect; /* A lower loadable section */
202 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
203 && (bfd_section_size (abfd, (*lowest))
204 <= bfd_section_size (abfd, sect)))
205 *lowest = sect;
206 }
207
208 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
209 new object's 'num_sections' field is set to 0; it must be updated
210 by the caller. */
211
212 struct section_addr_info *
213 alloc_section_addr_info (size_t num_sections)
214 {
215 struct section_addr_info *sap;
216 size_t size;
217
218 size = (sizeof (struct section_addr_info)
219 + sizeof (struct other_sections) * (num_sections - 1));
220 sap = (struct section_addr_info *) xmalloc (size);
221 memset (sap, 0, size);
222
223 return sap;
224 }
225
226 /* Build (allocate and populate) a section_addr_info struct from
227 an existing section table. */
228
229 extern struct section_addr_info *
230 build_section_addr_info_from_section_table (const struct target_section *start,
231 const struct target_section *end)
232 {
233 struct section_addr_info *sap;
234 const struct target_section *stp;
235 int oidx;
236
237 sap = alloc_section_addr_info (end - start);
238
239 for (stp = start, oidx = 0; stp != end; stp++)
240 {
241 struct bfd_section *asect = stp->the_bfd_section;
242 bfd *abfd = asect->owner;
243
244 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
245 && oidx < end - start)
246 {
247 sap->other[oidx].addr = stp->addr;
248 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
249 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
250 oidx++;
251 }
252 }
253
254 sap->num_sections = oidx;
255
256 return sap;
257 }
258
259 /* Create a section_addr_info from section offsets in ABFD. */
260
261 static struct section_addr_info *
262 build_section_addr_info_from_bfd (bfd *abfd)
263 {
264 struct section_addr_info *sap;
265 int i;
266 struct bfd_section *sec;
267
268 sap = alloc_section_addr_info (bfd_count_sections (abfd));
269 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
270 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
271 {
272 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
273 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
274 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
275 i++;
276 }
277
278 sap->num_sections = i;
279
280 return sap;
281 }
282
283 /* Create a section_addr_info from section offsets in OBJFILE. */
284
285 struct section_addr_info *
286 build_section_addr_info_from_objfile (const struct objfile *objfile)
287 {
288 struct section_addr_info *sap;
289 int i;
290
291 /* Before reread_symbols gets rewritten it is not safe to call:
292 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
293 */
294 sap = build_section_addr_info_from_bfd (objfile->obfd);
295 for (i = 0; i < sap->num_sections; i++)
296 {
297 int sectindex = sap->other[i].sectindex;
298
299 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
300 }
301 return sap;
302 }
303
304 /* Free all memory allocated by build_section_addr_info_from_section_table. */
305
306 extern void
307 free_section_addr_info (struct section_addr_info *sap)
308 {
309 int idx;
310
311 for (idx = 0; idx < sap->num_sections; idx++)
312 xfree (sap->other[idx].name);
313 xfree (sap);
314 }
315
316 /* Initialize OBJFILE's sect_index_* members. */
317
318 static void
319 init_objfile_sect_indices (struct objfile *objfile)
320 {
321 asection *sect;
322 int i;
323
324 sect = bfd_get_section_by_name (objfile->obfd, ".text");
325 if (sect)
326 objfile->sect_index_text = sect->index;
327
328 sect = bfd_get_section_by_name (objfile->obfd, ".data");
329 if (sect)
330 objfile->sect_index_data = sect->index;
331
332 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
333 if (sect)
334 objfile->sect_index_bss = sect->index;
335
336 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
337 if (sect)
338 objfile->sect_index_rodata = sect->index;
339
340 /* This is where things get really weird... We MUST have valid
341 indices for the various sect_index_* members or gdb will abort.
342 So if for example, there is no ".text" section, we have to
343 accomodate that. First, check for a file with the standard
344 one or two segments. */
345
346 symfile_find_segment_sections (objfile);
347
348 /* Except when explicitly adding symbol files at some address,
349 section_offsets contains nothing but zeros, so it doesn't matter
350 which slot in section_offsets the individual sect_index_* members
351 index into. So if they are all zero, it is safe to just point
352 all the currently uninitialized indices to the first slot. But
353 beware: if this is the main executable, it may be relocated
354 later, e.g. by the remote qOffsets packet, and then this will
355 be wrong! That's why we try segments first. */
356
357 for (i = 0; i < objfile->num_sections; i++)
358 {
359 if (ANOFFSET (objfile->section_offsets, i) != 0)
360 {
361 break;
362 }
363 }
364 if (i == objfile->num_sections)
365 {
366 if (objfile->sect_index_text == -1)
367 objfile->sect_index_text = 0;
368 if (objfile->sect_index_data == -1)
369 objfile->sect_index_data = 0;
370 if (objfile->sect_index_bss == -1)
371 objfile->sect_index_bss = 0;
372 if (objfile->sect_index_rodata == -1)
373 objfile->sect_index_rodata = 0;
374 }
375 }
376
377 /* The arguments to place_section. */
378
379 struct place_section_arg
380 {
381 struct section_offsets *offsets;
382 CORE_ADDR lowest;
383 };
384
385 /* Find a unique offset to use for loadable section SECT if
386 the user did not provide an offset. */
387
388 static void
389 place_section (bfd *abfd, asection *sect, void *obj)
390 {
391 struct place_section_arg *arg = obj;
392 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
393 int done;
394 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
395
396 /* We are only interested in allocated sections. */
397 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
398 return;
399
400 /* If the user specified an offset, honor it. */
401 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
402 return;
403
404 /* Otherwise, let's try to find a place for the section. */
405 start_addr = (arg->lowest + align - 1) & -align;
406
407 do {
408 asection *cur_sec;
409
410 done = 1;
411
412 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
413 {
414 int indx = cur_sec->index;
415
416 /* We don't need to compare against ourself. */
417 if (cur_sec == sect)
418 continue;
419
420 /* We can only conflict with allocated sections. */
421 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
422 continue;
423
424 /* If the section offset is 0, either the section has not been placed
425 yet, or it was the lowest section placed (in which case LOWEST
426 will be past its end). */
427 if (offsets[indx] == 0)
428 continue;
429
430 /* If this section would overlap us, then we must move up. */
431 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
432 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
433 {
434 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
435 start_addr = (start_addr + align - 1) & -align;
436 done = 0;
437 break;
438 }
439
440 /* Otherwise, we appear to be OK. So far. */
441 }
442 }
443 while (!done);
444
445 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
446 arg->lowest = start_addr + bfd_get_section_size (sect);
447 }
448
449 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
450 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
451 entries. */
452
453 void
454 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
455 int num_sections,
456 const struct section_addr_info *addrs)
457 {
458 int i;
459
460 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
461
462 /* Now calculate offsets for section that were specified by the caller. */
463 for (i = 0; i < addrs->num_sections; i++)
464 {
465 const struct other_sections *osp;
466
467 osp = &addrs->other[i];
468 if (osp->sectindex == -1)
469 continue;
470
471 /* Record all sections in offsets. */
472 /* The section_offsets in the objfile are here filled in using
473 the BFD index. */
474 section_offsets->offsets[osp->sectindex] = osp->addr;
475 }
476 }
477
478 /* Transform section name S for a name comparison. prelink can split section
479 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
480 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
481 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
482 (`.sbss') section has invalid (increased) virtual address. */
483
484 static const char *
485 addr_section_name (const char *s)
486 {
487 if (strcmp (s, ".dynbss") == 0)
488 return ".bss";
489 if (strcmp (s, ".sdynbss") == 0)
490 return ".sbss";
491
492 return s;
493 }
494
495 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
496 their (name, sectindex) pair. sectindex makes the sort by name stable. */
497
498 static int
499 addrs_section_compar (const void *ap, const void *bp)
500 {
501 const struct other_sections *a = *((struct other_sections **) ap);
502 const struct other_sections *b = *((struct other_sections **) bp);
503 int retval;
504
505 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
506 if (retval)
507 return retval;
508
509 return a->sectindex - b->sectindex;
510 }
511
512 /* Provide sorted array of pointers to sections of ADDRS. The array is
513 terminated by NULL. Caller is responsible to call xfree for it. */
514
515 static struct other_sections **
516 addrs_section_sort (struct section_addr_info *addrs)
517 {
518 struct other_sections **array;
519 int i;
520
521 /* `+ 1' for the NULL terminator. */
522 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
523 for (i = 0; i < addrs->num_sections; i++)
524 array[i] = &addrs->other[i];
525 array[i] = NULL;
526
527 qsort (array, i, sizeof (*array), addrs_section_compar);
528
529 return array;
530 }
531
532 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
533 also SECTINDEXes specific to ABFD there. This function can be used to
534 rebase ADDRS to start referencing different BFD than before. */
535
536 void
537 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
538 {
539 asection *lower_sect;
540 CORE_ADDR lower_offset;
541 int i;
542 struct cleanup *my_cleanup;
543 struct section_addr_info *abfd_addrs;
544 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
545 struct other_sections **addrs_to_abfd_addrs;
546
547 /* Find lowest loadable section to be used as starting point for
548 continguous sections. */
549 lower_sect = NULL;
550 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
551 if (lower_sect == NULL)
552 {
553 warning (_("no loadable sections found in added symbol-file %s"),
554 bfd_get_filename (abfd));
555 lower_offset = 0;
556 }
557 else
558 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
559
560 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
561 in ABFD. Section names are not unique - there can be multiple sections of
562 the same name. Also the sections of the same name do not have to be
563 adjacent to each other. Some sections may be present only in one of the
564 files. Even sections present in both files do not have to be in the same
565 order.
566
567 Use stable sort by name for the sections in both files. Then linearly
568 scan both lists matching as most of the entries as possible. */
569
570 addrs_sorted = addrs_section_sort (addrs);
571 my_cleanup = make_cleanup (xfree, addrs_sorted);
572
573 abfd_addrs = build_section_addr_info_from_bfd (abfd);
574 make_cleanup_free_section_addr_info (abfd_addrs);
575 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
576 make_cleanup (xfree, abfd_addrs_sorted);
577
578 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
579 ABFD_ADDRS_SORTED. */
580
581 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
582 * addrs->num_sections);
583 make_cleanup (xfree, addrs_to_abfd_addrs);
584
585 while (*addrs_sorted)
586 {
587 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
588
589 while (*abfd_addrs_sorted
590 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
591 sect_name) < 0)
592 abfd_addrs_sorted++;
593
594 if (*abfd_addrs_sorted
595 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
596 sect_name) == 0)
597 {
598 int index_in_addrs;
599
600 /* Make the found item directly addressable from ADDRS. */
601 index_in_addrs = *addrs_sorted - addrs->other;
602 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
603 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
604
605 /* Never use the same ABFD entry twice. */
606 abfd_addrs_sorted++;
607 }
608
609 addrs_sorted++;
610 }
611
612 /* Calculate offsets for the loadable sections.
613 FIXME! Sections must be in order of increasing loadable section
614 so that contiguous sections can use the lower-offset!!!
615
616 Adjust offsets if the segments are not contiguous.
617 If the section is contiguous, its offset should be set to
618 the offset of the highest loadable section lower than it
619 (the loadable section directly below it in memory).
620 this_offset = lower_offset = lower_addr - lower_orig_addr */
621
622 for (i = 0; i < addrs->num_sections; i++)
623 {
624 struct other_sections *sect = addrs_to_abfd_addrs[i];
625
626 if (sect)
627 {
628 /* This is the index used by BFD. */
629 addrs->other[i].sectindex = sect->sectindex;
630
631 if (addrs->other[i].addr != 0)
632 {
633 addrs->other[i].addr -= sect->addr;
634 lower_offset = addrs->other[i].addr;
635 }
636 else
637 addrs->other[i].addr = lower_offset;
638 }
639 else
640 {
641 /* addr_section_name transformation is not used for SECT_NAME. */
642 const char *sect_name = addrs->other[i].name;
643
644 /* This section does not exist in ABFD, which is normally
645 unexpected and we want to issue a warning.
646
647 However, the ELF prelinker does create a few sections which are
648 marked in the main executable as loadable (they are loaded in
649 memory from the DYNAMIC segment) and yet are not present in
650 separate debug info files. This is fine, and should not cause
651 a warning. Shared libraries contain just the section
652 ".gnu.liblist" but it is not marked as loadable there. There is
653 no other way to identify them than by their name as the sections
654 created by prelink have no special flags.
655
656 For the sections `.bss' and `.sbss' see addr_section_name. */
657
658 if (!(strcmp (sect_name, ".gnu.liblist") == 0
659 || strcmp (sect_name, ".gnu.conflict") == 0
660 || (strcmp (sect_name, ".bss") == 0
661 && i > 0
662 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
663 && addrs_to_abfd_addrs[i - 1] != NULL)
664 || (strcmp (sect_name, ".sbss") == 0
665 && i > 0
666 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
667 && addrs_to_abfd_addrs[i - 1] != NULL)))
668 warning (_("section %s not found in %s"), sect_name,
669 bfd_get_filename (abfd));
670
671 addrs->other[i].addr = 0;
672 addrs->other[i].sectindex = -1;
673 }
674 }
675
676 do_cleanups (my_cleanup);
677 }
678
679 /* Parse the user's idea of an offset for dynamic linking, into our idea
680 of how to represent it for fast symbol reading. This is the default
681 version of the sym_fns.sym_offsets function for symbol readers that
682 don't need to do anything special. It allocates a section_offsets table
683 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
684
685 void
686 default_symfile_offsets (struct objfile *objfile,
687 const struct section_addr_info *addrs)
688 {
689 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
690 objfile->section_offsets = (struct section_offsets *)
691 obstack_alloc (&objfile->objfile_obstack,
692 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
693 relative_addr_info_to_section_offsets (objfile->section_offsets,
694 objfile->num_sections, addrs);
695
696 /* For relocatable files, all loadable sections will start at zero.
697 The zero is meaningless, so try to pick arbitrary addresses such
698 that no loadable sections overlap. This algorithm is quadratic,
699 but the number of sections in a single object file is generally
700 small. */
701 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
702 {
703 struct place_section_arg arg;
704 bfd *abfd = objfile->obfd;
705 asection *cur_sec;
706
707 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
708 /* We do not expect this to happen; just skip this step if the
709 relocatable file has a section with an assigned VMA. */
710 if (bfd_section_vma (abfd, cur_sec) != 0)
711 break;
712
713 if (cur_sec == NULL)
714 {
715 CORE_ADDR *offsets = objfile->section_offsets->offsets;
716
717 /* Pick non-overlapping offsets for sections the user did not
718 place explicitly. */
719 arg.offsets = objfile->section_offsets;
720 arg.lowest = 0;
721 bfd_map_over_sections (objfile->obfd, place_section, &arg);
722
723 /* Correctly filling in the section offsets is not quite
724 enough. Relocatable files have two properties that
725 (most) shared objects do not:
726
727 - Their debug information will contain relocations. Some
728 shared libraries do also, but many do not, so this can not
729 be assumed.
730
731 - If there are multiple code sections they will be loaded
732 at different relative addresses in memory than they are
733 in the objfile, since all sections in the file will start
734 at address zero.
735
736 Because GDB has very limited ability to map from an
737 address in debug info to the correct code section,
738 it relies on adding SECT_OFF_TEXT to things which might be
739 code. If we clear all the section offsets, and set the
740 section VMAs instead, then symfile_relocate_debug_section
741 will return meaningful debug information pointing at the
742 correct sections.
743
744 GDB has too many different data structures for section
745 addresses - a bfd, objfile, and so_list all have section
746 tables, as does exec_ops. Some of these could probably
747 be eliminated. */
748
749 for (cur_sec = abfd->sections; cur_sec != NULL;
750 cur_sec = cur_sec->next)
751 {
752 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
753 continue;
754
755 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
756 exec_set_section_address (bfd_get_filename (abfd),
757 cur_sec->index,
758 offsets[cur_sec->index]);
759 offsets[cur_sec->index] = 0;
760 }
761 }
762 }
763
764 /* Remember the bfd indexes for the .text, .data, .bss and
765 .rodata sections. */
766 init_objfile_sect_indices (objfile);
767 }
768
769 /* Divide the file into segments, which are individual relocatable units.
770 This is the default version of the sym_fns.sym_segments function for
771 symbol readers that do not have an explicit representation of segments.
772 It assumes that object files do not have segments, and fully linked
773 files have a single segment. */
774
775 struct symfile_segment_data *
776 default_symfile_segments (bfd *abfd)
777 {
778 int num_sections, i;
779 asection *sect;
780 struct symfile_segment_data *data;
781 CORE_ADDR low, high;
782
783 /* Relocatable files contain enough information to position each
784 loadable section independently; they should not be relocated
785 in segments. */
786 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
787 return NULL;
788
789 /* Make sure there is at least one loadable section in the file. */
790 for (sect = abfd->sections; sect != NULL; sect = sect->next)
791 {
792 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
793 continue;
794
795 break;
796 }
797 if (sect == NULL)
798 return NULL;
799
800 low = bfd_get_section_vma (abfd, sect);
801 high = low + bfd_get_section_size (sect);
802
803 data = XZALLOC (struct symfile_segment_data);
804 data->num_segments = 1;
805 data->segment_bases = XCALLOC (1, CORE_ADDR);
806 data->segment_sizes = XCALLOC (1, CORE_ADDR);
807
808 num_sections = bfd_count_sections (abfd);
809 data->segment_info = XCALLOC (num_sections, int);
810
811 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
812 {
813 CORE_ADDR vma;
814
815 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
816 continue;
817
818 vma = bfd_get_section_vma (abfd, sect);
819 if (vma < low)
820 low = vma;
821 if (vma + bfd_get_section_size (sect) > high)
822 high = vma + bfd_get_section_size (sect);
823
824 data->segment_info[i] = 1;
825 }
826
827 data->segment_bases[0] = low;
828 data->segment_sizes[0] = high - low;
829
830 return data;
831 }
832
833 /* This is a convenience function to call sym_read for OBJFILE and
834 possibly force the partial symbols to be read. */
835
836 static void
837 read_symbols (struct objfile *objfile, int add_flags)
838 {
839 (*objfile->sf->sym_read) (objfile, add_flags);
840
841 /* find_separate_debug_file_in_section should be called only if there is
842 single binary with no existing separate debug info file. */
843 if (!objfile_has_partial_symbols (objfile)
844 && objfile->separate_debug_objfile == NULL
845 && objfile->separate_debug_objfile_backlink == NULL)
846 {
847 bfd *abfd = find_separate_debug_file_in_section (objfile);
848 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
849
850 if (abfd != NULL)
851 {
852 /* find_separate_debug_file_in_section uses the same filename for the
853 virtual section-as-bfd like the bfd filename containing the
854 section. Therefore use also non-canonical name form for the same
855 file containing the section. */
856 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
857 objfile);
858 }
859
860 do_cleanups (cleanup);
861 }
862 if ((add_flags & SYMFILE_NO_READ) == 0)
863 require_partial_symbols (objfile, 0);
864 }
865
866 /* Initialize entry point information for this objfile. */
867
868 static void
869 init_entry_point_info (struct objfile *objfile)
870 {
871 /* Save startup file's range of PC addresses to help blockframe.c
872 decide where the bottom of the stack is. */
873
874 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
875 {
876 /* Executable file -- record its entry point so we'll recognize
877 the startup file because it contains the entry point. */
878 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
879 objfile->ei.entry_point_p = 1;
880 }
881 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
882 && bfd_get_start_address (objfile->obfd) != 0)
883 {
884 /* Some shared libraries may have entry points set and be
885 runnable. There's no clear way to indicate this, so just check
886 for values other than zero. */
887 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
888 objfile->ei.entry_point_p = 1;
889 }
890 else
891 {
892 /* Examination of non-executable.o files. Short-circuit this stuff. */
893 objfile->ei.entry_point_p = 0;
894 }
895
896 if (objfile->ei.entry_point_p)
897 {
898 CORE_ADDR entry_point = objfile->ei.entry_point;
899
900 /* Make certain that the address points at real code, and not a
901 function descriptor. */
902 entry_point
903 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
904 entry_point,
905 &current_target);
906
907 /* Remove any ISA markers, so that this matches entries in the
908 symbol table. */
909 objfile->ei.entry_point
910 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
911 }
912 }
913
914 /* Process a symbol file, as either the main file or as a dynamically
915 loaded file.
916
917 This function does not set the OBJFILE's entry-point info.
918
919 OBJFILE is where the symbols are to be read from.
920
921 ADDRS is the list of section load addresses. If the user has given
922 an 'add-symbol-file' command, then this is the list of offsets and
923 addresses he or she provided as arguments to the command; or, if
924 we're handling a shared library, these are the actual addresses the
925 sections are loaded at, according to the inferior's dynamic linker
926 (as gleaned by GDB's shared library code). We convert each address
927 into an offset from the section VMA's as it appears in the object
928 file, and then call the file's sym_offsets function to convert this
929 into a format-specific offset table --- a `struct section_offsets'.
930
931 ADD_FLAGS encodes verbosity level, whether this is main symbol or
932 an extra symbol file such as dynamically loaded code, and wether
933 breakpoint reset should be deferred. */
934
935 static void
936 syms_from_objfile_1 (struct objfile *objfile,
937 struct section_addr_info *addrs,
938 int add_flags)
939 {
940 struct section_addr_info *local_addr = NULL;
941 struct cleanup *old_chain;
942 const int mainline = add_flags & SYMFILE_MAINLINE;
943
944 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
945
946 if (objfile->sf == NULL)
947 {
948 /* No symbols to load, but we still need to make sure
949 that the section_offsets table is allocated. */
950 int num_sections = gdb_bfd_count_sections (objfile->obfd);
951 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
952
953 objfile->num_sections = num_sections;
954 objfile->section_offsets
955 = obstack_alloc (&objfile->objfile_obstack, size);
956 memset (objfile->section_offsets, 0, size);
957 return;
958 }
959
960 /* Make sure that partially constructed symbol tables will be cleaned up
961 if an error occurs during symbol reading. */
962 old_chain = make_cleanup_free_objfile (objfile);
963
964 /* If ADDRS is NULL, put together a dummy address list.
965 We now establish the convention that an addr of zero means
966 no load address was specified. */
967 if (! addrs)
968 {
969 local_addr = alloc_section_addr_info (1);
970 make_cleanup (xfree, local_addr);
971 addrs = local_addr;
972 }
973
974 if (mainline)
975 {
976 /* We will modify the main symbol table, make sure that all its users
977 will be cleaned up if an error occurs during symbol reading. */
978 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
979
980 /* Since no error yet, throw away the old symbol table. */
981
982 if (symfile_objfile != NULL)
983 {
984 free_objfile (symfile_objfile);
985 gdb_assert (symfile_objfile == NULL);
986 }
987
988 /* Currently we keep symbols from the add-symbol-file command.
989 If the user wants to get rid of them, they should do "symbol-file"
990 without arguments first. Not sure this is the best behavior
991 (PR 2207). */
992
993 (*objfile->sf->sym_new_init) (objfile);
994 }
995
996 /* Convert addr into an offset rather than an absolute address.
997 We find the lowest address of a loaded segment in the objfile,
998 and assume that <addr> is where that got loaded.
999
1000 We no longer warn if the lowest section is not a text segment (as
1001 happens for the PA64 port. */
1002 if (addrs->num_sections > 0)
1003 addr_info_make_relative (addrs, objfile->obfd);
1004
1005 /* Initialize symbol reading routines for this objfile, allow complaints to
1006 appear for this new file, and record how verbose to be, then do the
1007 initial symbol reading for this file. */
1008
1009 (*objfile->sf->sym_init) (objfile);
1010 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1011
1012 (*objfile->sf->sym_offsets) (objfile, addrs);
1013
1014 read_symbols (objfile, add_flags);
1015
1016 /* Discard cleanups as symbol reading was successful. */
1017
1018 discard_cleanups (old_chain);
1019 xfree (local_addr);
1020 }
1021
1022 /* Same as syms_from_objfile_1, but also initializes the objfile
1023 entry-point info. */
1024
1025 static void
1026 syms_from_objfile (struct objfile *objfile,
1027 struct section_addr_info *addrs,
1028 int add_flags)
1029 {
1030 syms_from_objfile_1 (objfile, addrs, add_flags);
1031 init_entry_point_info (objfile);
1032 }
1033
1034 /* Perform required actions after either reading in the initial
1035 symbols for a new objfile, or mapping in the symbols from a reusable
1036 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1037
1038 void
1039 new_symfile_objfile (struct objfile *objfile, int add_flags)
1040 {
1041 /* If this is the main symbol file we have to clean up all users of the
1042 old main symbol file. Otherwise it is sufficient to fixup all the
1043 breakpoints that may have been redefined by this symbol file. */
1044 if (add_flags & SYMFILE_MAINLINE)
1045 {
1046 /* OK, make it the "real" symbol file. */
1047 symfile_objfile = objfile;
1048
1049 clear_symtab_users (add_flags);
1050 }
1051 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1052 {
1053 breakpoint_re_set ();
1054 }
1055
1056 /* We're done reading the symbol file; finish off complaints. */
1057 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1058 }
1059
1060 /* Process a symbol file, as either the main file or as a dynamically
1061 loaded file.
1062
1063 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1064 A new reference is acquired by this function.
1065
1066 For NAME description see allocate_objfile's definition.
1067
1068 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1069 extra, such as dynamically loaded code, and what to do with breakpoins.
1070
1071 ADDRS is as described for syms_from_objfile_1, above.
1072 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1073
1074 PARENT is the original objfile if ABFD is a separate debug info file.
1075 Otherwise PARENT is NULL.
1076
1077 Upon success, returns a pointer to the objfile that was added.
1078 Upon failure, jumps back to command level (never returns). */
1079
1080 static struct objfile *
1081 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1082 struct section_addr_info *addrs,
1083 int flags, struct objfile *parent)
1084 {
1085 struct objfile *objfile;
1086 const int from_tty = add_flags & SYMFILE_VERBOSE;
1087 const int mainline = add_flags & SYMFILE_MAINLINE;
1088 const int should_print = ((from_tty || info_verbose)
1089 && (readnow_symbol_files
1090 || (add_flags & SYMFILE_NO_READ) == 0));
1091
1092 if (readnow_symbol_files)
1093 {
1094 flags |= OBJF_READNOW;
1095 add_flags &= ~SYMFILE_NO_READ;
1096 }
1097
1098 /* Give user a chance to burp if we'd be
1099 interactively wiping out any existing symbols. */
1100
1101 if ((have_full_symbols () || have_partial_symbols ())
1102 && mainline
1103 && from_tty
1104 && !query (_("Load new symbol table from \"%s\"? "), name))
1105 error (_("Not confirmed."));
1106
1107 objfile = allocate_objfile (abfd, name,
1108 flags | (mainline ? OBJF_MAINLINE : 0));
1109
1110 if (parent)
1111 add_separate_debug_objfile (objfile, parent);
1112
1113 /* We either created a new mapped symbol table, mapped an existing
1114 symbol table file which has not had initial symbol reading
1115 performed, or need to read an unmapped symbol table. */
1116 if (should_print)
1117 {
1118 if (deprecated_pre_add_symbol_hook)
1119 deprecated_pre_add_symbol_hook (name);
1120 else
1121 {
1122 printf_unfiltered (_("Reading symbols from %s..."), name);
1123 wrap_here ("");
1124 gdb_flush (gdb_stdout);
1125 }
1126 }
1127 syms_from_objfile (objfile, addrs, add_flags);
1128
1129 /* We now have at least a partial symbol table. Check to see if the
1130 user requested that all symbols be read on initial access via either
1131 the gdb startup command line or on a per symbol file basis. Expand
1132 all partial symbol tables for this objfile if so. */
1133
1134 if ((flags & OBJF_READNOW))
1135 {
1136 if (should_print)
1137 {
1138 printf_unfiltered (_("expanding to full symbols..."));
1139 wrap_here ("");
1140 gdb_flush (gdb_stdout);
1141 }
1142
1143 if (objfile->sf)
1144 objfile->sf->qf->expand_all_symtabs (objfile);
1145 }
1146
1147 if (should_print && !objfile_has_symbols (objfile))
1148 {
1149 wrap_here ("");
1150 printf_unfiltered (_("(no debugging symbols found)..."));
1151 wrap_here ("");
1152 }
1153
1154 if (should_print)
1155 {
1156 if (deprecated_post_add_symbol_hook)
1157 deprecated_post_add_symbol_hook ();
1158 else
1159 printf_unfiltered (_("done.\n"));
1160 }
1161
1162 /* We print some messages regardless of whether 'from_tty ||
1163 info_verbose' is true, so make sure they go out at the right
1164 time. */
1165 gdb_flush (gdb_stdout);
1166
1167 if (objfile->sf == NULL)
1168 {
1169 observer_notify_new_objfile (objfile);
1170 return objfile; /* No symbols. */
1171 }
1172
1173 new_symfile_objfile (objfile, add_flags);
1174
1175 observer_notify_new_objfile (objfile);
1176
1177 bfd_cache_close_all ();
1178 return (objfile);
1179 }
1180
1181 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1182 see allocate_objfile's definition. */
1183
1184 void
1185 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1186 struct objfile *objfile)
1187 {
1188 struct objfile *new_objfile;
1189 struct section_addr_info *sap;
1190 struct cleanup *my_cleanup;
1191
1192 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1193 because sections of BFD may not match sections of OBJFILE and because
1194 vma may have been modified by tools such as prelink. */
1195 sap = build_section_addr_info_from_objfile (objfile);
1196 my_cleanup = make_cleanup_free_section_addr_info (sap);
1197
1198 new_objfile = symbol_file_add_with_addrs
1199 (bfd, name, symfile_flags, sap,
1200 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1201 | OBJF_USERLOADED),
1202 objfile);
1203
1204 do_cleanups (my_cleanup);
1205 }
1206
1207 /* Process the symbol file ABFD, as either the main file or as a
1208 dynamically loaded file.
1209 See symbol_file_add_with_addrs's comments for details. */
1210
1211 struct objfile *
1212 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1213 struct section_addr_info *addrs,
1214 int flags, struct objfile *parent)
1215 {
1216 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1217 parent);
1218 }
1219
1220 /* Process a symbol file, as either the main file or as a dynamically
1221 loaded file. See symbol_file_add_with_addrs's comments for details. */
1222
1223 struct objfile *
1224 symbol_file_add (const char *name, int add_flags,
1225 struct section_addr_info *addrs, int flags)
1226 {
1227 bfd *bfd = symfile_bfd_open (name);
1228 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1229 struct objfile *objf;
1230
1231 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1232 do_cleanups (cleanup);
1233 return objf;
1234 }
1235
1236 /* Call symbol_file_add() with default values and update whatever is
1237 affected by the loading of a new main().
1238 Used when the file is supplied in the gdb command line
1239 and by some targets with special loading requirements.
1240 The auxiliary function, symbol_file_add_main_1(), has the flags
1241 argument for the switches that can only be specified in the symbol_file
1242 command itself. */
1243
1244 void
1245 symbol_file_add_main (const char *args, int from_tty)
1246 {
1247 symbol_file_add_main_1 (args, from_tty, 0);
1248 }
1249
1250 static void
1251 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1252 {
1253 const int add_flags = (current_inferior ()->symfile_flags
1254 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1255
1256 symbol_file_add (args, add_flags, NULL, flags);
1257
1258 /* Getting new symbols may change our opinion about
1259 what is frameless. */
1260 reinit_frame_cache ();
1261
1262 if ((flags & SYMFILE_NO_READ) == 0)
1263 set_initial_language ();
1264 }
1265
1266 void
1267 symbol_file_clear (int from_tty)
1268 {
1269 if ((have_full_symbols () || have_partial_symbols ())
1270 && from_tty
1271 && (symfile_objfile
1272 ? !query (_("Discard symbol table from `%s'? "),
1273 objfile_name (symfile_objfile))
1274 : !query (_("Discard symbol table? "))))
1275 error (_("Not confirmed."));
1276
1277 /* solib descriptors may have handles to objfiles. Wipe them before their
1278 objfiles get stale by free_all_objfiles. */
1279 no_shared_libraries (NULL, from_tty);
1280
1281 free_all_objfiles ();
1282
1283 gdb_assert (symfile_objfile == NULL);
1284 if (from_tty)
1285 printf_unfiltered (_("No symbol file now.\n"));
1286 }
1287
1288 static int
1289 separate_debug_file_exists (const char *name, unsigned long crc,
1290 struct objfile *parent_objfile)
1291 {
1292 unsigned long file_crc;
1293 int file_crc_p;
1294 bfd *abfd;
1295 struct stat parent_stat, abfd_stat;
1296 int verified_as_different;
1297
1298 /* Find a separate debug info file as if symbols would be present in
1299 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1300 section can contain just the basename of PARENT_OBJFILE without any
1301 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1302 the separate debug infos with the same basename can exist. */
1303
1304 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1305 return 0;
1306
1307 abfd = gdb_bfd_open_maybe_remote (name);
1308
1309 if (!abfd)
1310 return 0;
1311
1312 /* Verify symlinks were not the cause of filename_cmp name difference above.
1313
1314 Some operating systems, e.g. Windows, do not provide a meaningful
1315 st_ino; they always set it to zero. (Windows does provide a
1316 meaningful st_dev.) Do not indicate a duplicate library in that
1317 case. While there is no guarantee that a system that provides
1318 meaningful inode numbers will never set st_ino to zero, this is
1319 merely an optimization, so we do not need to worry about false
1320 negatives. */
1321
1322 if (bfd_stat (abfd, &abfd_stat) == 0
1323 && abfd_stat.st_ino != 0
1324 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1325 {
1326 if (abfd_stat.st_dev == parent_stat.st_dev
1327 && abfd_stat.st_ino == parent_stat.st_ino)
1328 {
1329 gdb_bfd_unref (abfd);
1330 return 0;
1331 }
1332 verified_as_different = 1;
1333 }
1334 else
1335 verified_as_different = 0;
1336
1337 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1338
1339 gdb_bfd_unref (abfd);
1340
1341 if (!file_crc_p)
1342 return 0;
1343
1344 if (crc != file_crc)
1345 {
1346 unsigned long parent_crc;
1347
1348 /* If one (or both) the files are accessed for example the via "remote:"
1349 gdbserver way it does not support the bfd_stat operation. Verify
1350 whether those two files are not the same manually. */
1351
1352 if (!verified_as_different)
1353 {
1354 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1355 return 0;
1356 }
1357
1358 if (verified_as_different || parent_crc != file_crc)
1359 warning (_("the debug information found in \"%s\""
1360 " does not match \"%s\" (CRC mismatch).\n"),
1361 name, objfile_name (parent_objfile));
1362
1363 return 0;
1364 }
1365
1366 return 1;
1367 }
1368
1369 char *debug_file_directory = NULL;
1370 static void
1371 show_debug_file_directory (struct ui_file *file, int from_tty,
1372 struct cmd_list_element *c, const char *value)
1373 {
1374 fprintf_filtered (file,
1375 _("The directory where separate debug "
1376 "symbols are searched for is \"%s\".\n"),
1377 value);
1378 }
1379
1380 #if ! defined (DEBUG_SUBDIRECTORY)
1381 #define DEBUG_SUBDIRECTORY ".debug"
1382 #endif
1383
1384 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1385 where the original file resides (may not be the same as
1386 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1387 looking for. CANON_DIR is the "realpath" form of DIR.
1388 DIR must contain a trailing '/'.
1389 Returns the path of the file with separate debug info, of NULL. */
1390
1391 static char *
1392 find_separate_debug_file (const char *dir,
1393 const char *canon_dir,
1394 const char *debuglink,
1395 unsigned long crc32, struct objfile *objfile)
1396 {
1397 char *debugdir;
1398 char *debugfile;
1399 int i;
1400 VEC (char_ptr) *debugdir_vec;
1401 struct cleanup *back_to;
1402 int ix;
1403
1404 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1405 i = strlen (dir);
1406 if (canon_dir != NULL && strlen (canon_dir) > i)
1407 i = strlen (canon_dir);
1408
1409 debugfile = xmalloc (strlen (debug_file_directory) + 1
1410 + i
1411 + strlen (DEBUG_SUBDIRECTORY)
1412 + strlen ("/")
1413 + strlen (debuglink)
1414 + 1);
1415
1416 /* First try in the same directory as the original file. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, debuglink);
1419
1420 if (separate_debug_file_exists (debugfile, crc32, objfile))
1421 return debugfile;
1422
1423 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1424 strcpy (debugfile, dir);
1425 strcat (debugfile, DEBUG_SUBDIRECTORY);
1426 strcat (debugfile, "/");
1427 strcat (debugfile, debuglink);
1428
1429 if (separate_debug_file_exists (debugfile, crc32, objfile))
1430 return debugfile;
1431
1432 /* Then try in the global debugfile directories.
1433
1434 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1435 cause "/..." lookups. */
1436
1437 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1438 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1439
1440 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1441 {
1442 strcpy (debugfile, debugdir);
1443 strcat (debugfile, "/");
1444 strcat (debugfile, dir);
1445 strcat (debugfile, debuglink);
1446
1447 if (separate_debug_file_exists (debugfile, crc32, objfile))
1448 {
1449 do_cleanups (back_to);
1450 return debugfile;
1451 }
1452
1453 /* If the file is in the sysroot, try using its base path in the
1454 global debugfile directory. */
1455 if (canon_dir != NULL
1456 && filename_ncmp (canon_dir, gdb_sysroot,
1457 strlen (gdb_sysroot)) == 0
1458 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1459 {
1460 strcpy (debugfile, debugdir);
1461 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1462 strcat (debugfile, "/");
1463 strcat (debugfile, debuglink);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 {
1467 do_cleanups (back_to);
1468 return debugfile;
1469 }
1470 }
1471 }
1472
1473 do_cleanups (back_to);
1474 xfree (debugfile);
1475 return NULL;
1476 }
1477
1478 /* Modify PATH to contain only "[/]directory/" part of PATH.
1479 If there were no directory separators in PATH, PATH will be empty
1480 string on return. */
1481
1482 static void
1483 terminate_after_last_dir_separator (char *path)
1484 {
1485 int i;
1486
1487 /* Strip off the final filename part, leaving the directory name,
1488 followed by a slash. The directory can be relative or absolute. */
1489 for (i = strlen(path) - 1; i >= 0; i--)
1490 if (IS_DIR_SEPARATOR (path[i]))
1491 break;
1492
1493 /* If I is -1 then no directory is present there and DIR will be "". */
1494 path[i + 1] = '\0';
1495 }
1496
1497 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1498 Returns pathname, or NULL. */
1499
1500 char *
1501 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1502 {
1503 char *debuglink;
1504 char *dir, *canon_dir;
1505 char *debugfile;
1506 unsigned long crc32;
1507 struct cleanup *cleanups;
1508
1509 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1510
1511 if (debuglink == NULL)
1512 {
1513 /* There's no separate debug info, hence there's no way we could
1514 load it => no warning. */
1515 return NULL;
1516 }
1517
1518 cleanups = make_cleanup (xfree, debuglink);
1519 dir = xstrdup (objfile_name (objfile));
1520 make_cleanup (xfree, dir);
1521 terminate_after_last_dir_separator (dir);
1522 canon_dir = lrealpath (dir);
1523
1524 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1525 crc32, objfile);
1526 xfree (canon_dir);
1527
1528 if (debugfile == NULL)
1529 {
1530 #ifdef HAVE_LSTAT
1531 /* For PR gdb/9538, try again with realpath (if different from the
1532 original). */
1533
1534 struct stat st_buf;
1535
1536 if (lstat (objfile_name (objfile), &st_buf) == 0
1537 && S_ISLNK (st_buf.st_mode))
1538 {
1539 char *symlink_dir;
1540
1541 symlink_dir = lrealpath (objfile_name (objfile));
1542 if (symlink_dir != NULL)
1543 {
1544 make_cleanup (xfree, symlink_dir);
1545 terminate_after_last_dir_separator (symlink_dir);
1546 if (strcmp (dir, symlink_dir) != 0)
1547 {
1548 /* Different directory, so try using it. */
1549 debugfile = find_separate_debug_file (symlink_dir,
1550 symlink_dir,
1551 debuglink,
1552 crc32,
1553 objfile);
1554 }
1555 }
1556 }
1557 #endif /* HAVE_LSTAT */
1558 }
1559
1560 do_cleanups (cleanups);
1561 return debugfile;
1562 }
1563
1564 /* This is the symbol-file command. Read the file, analyze its
1565 symbols, and add a struct symtab to a symtab list. The syntax of
1566 the command is rather bizarre:
1567
1568 1. The function buildargv implements various quoting conventions
1569 which are undocumented and have little or nothing in common with
1570 the way things are quoted (or not quoted) elsewhere in GDB.
1571
1572 2. Options are used, which are not generally used in GDB (perhaps
1573 "set mapped on", "set readnow on" would be better)
1574
1575 3. The order of options matters, which is contrary to GNU
1576 conventions (because it is confusing and inconvenient). */
1577
1578 void
1579 symbol_file_command (char *args, int from_tty)
1580 {
1581 dont_repeat ();
1582
1583 if (args == NULL)
1584 {
1585 symbol_file_clear (from_tty);
1586 }
1587 else
1588 {
1589 char **argv = gdb_buildargv (args);
1590 int flags = OBJF_USERLOADED;
1591 struct cleanup *cleanups;
1592 char *name = NULL;
1593
1594 cleanups = make_cleanup_freeargv (argv);
1595 while (*argv != NULL)
1596 {
1597 if (strcmp (*argv, "-readnow") == 0)
1598 flags |= OBJF_READNOW;
1599 else if (**argv == '-')
1600 error (_("unknown option `%s'"), *argv);
1601 else
1602 {
1603 symbol_file_add_main_1 (*argv, from_tty, flags);
1604 name = *argv;
1605 }
1606
1607 argv++;
1608 }
1609
1610 if (name == NULL)
1611 error (_("no symbol file name was specified"));
1612
1613 do_cleanups (cleanups);
1614 }
1615 }
1616
1617 /* Set the initial language.
1618
1619 FIXME: A better solution would be to record the language in the
1620 psymtab when reading partial symbols, and then use it (if known) to
1621 set the language. This would be a win for formats that encode the
1622 language in an easily discoverable place, such as DWARF. For
1623 stabs, we can jump through hoops looking for specially named
1624 symbols or try to intuit the language from the specific type of
1625 stabs we find, but we can't do that until later when we read in
1626 full symbols. */
1627
1628 void
1629 set_initial_language (void)
1630 {
1631 enum language lang = language_unknown;
1632
1633 if (language_of_main != language_unknown)
1634 lang = language_of_main;
1635 else
1636 {
1637 char *name = main_name ();
1638 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1639
1640 if (sym != NULL)
1641 lang = SYMBOL_LANGUAGE (sym);
1642 }
1643
1644 if (lang == language_unknown)
1645 {
1646 /* Make C the default language */
1647 lang = language_c;
1648 }
1649
1650 set_language (lang);
1651 expected_language = current_language; /* Don't warn the user. */
1652 }
1653
1654 /* If NAME is a remote name open the file using remote protocol, otherwise
1655 open it normally. Returns a new reference to the BFD. On error,
1656 returns NULL with the BFD error set. */
1657
1658 bfd *
1659 gdb_bfd_open_maybe_remote (const char *name)
1660 {
1661 bfd *result;
1662
1663 if (remote_filename_p (name))
1664 result = remote_bfd_open (name, gnutarget);
1665 else
1666 result = gdb_bfd_open (name, gnutarget, -1);
1667
1668 return result;
1669 }
1670
1671 /* Open the file specified by NAME and hand it off to BFD for
1672 preliminary analysis. Return a newly initialized bfd *, which
1673 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1674 absolute). In case of trouble, error() is called. */
1675
1676 bfd *
1677 symfile_bfd_open (const char *cname)
1678 {
1679 bfd *sym_bfd;
1680 int desc;
1681 char *name, *absolute_name;
1682 struct cleanup *back_to;
1683
1684 if (remote_filename_p (cname))
1685 {
1686 sym_bfd = remote_bfd_open (cname, gnutarget);
1687 if (!sym_bfd)
1688 error (_("`%s': can't open to read symbols: %s."), cname,
1689 bfd_errmsg (bfd_get_error ()));
1690
1691 if (!bfd_check_format (sym_bfd, bfd_object))
1692 {
1693 make_cleanup_bfd_unref (sym_bfd);
1694 error (_("`%s': can't read symbols: %s."), cname,
1695 bfd_errmsg (bfd_get_error ()));
1696 }
1697
1698 return sym_bfd;
1699 }
1700
1701 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1702
1703 /* Look down path for it, allocate 2nd new malloc'd copy. */
1704 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1705 O_RDONLY | O_BINARY, &absolute_name);
1706 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1707 if (desc < 0)
1708 {
1709 char *exename = alloca (strlen (name) + 5);
1710
1711 strcat (strcpy (exename, name), ".exe");
1712 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1713 exename, O_RDONLY | O_BINARY, &absolute_name);
1714 }
1715 #endif
1716 if (desc < 0)
1717 {
1718 make_cleanup (xfree, name);
1719 perror_with_name (name);
1720 }
1721
1722 xfree (name);
1723 name = absolute_name;
1724 back_to = make_cleanup (xfree, name);
1725
1726 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1727 if (!sym_bfd)
1728 error (_("`%s': can't open to read symbols: %s."), name,
1729 bfd_errmsg (bfd_get_error ()));
1730 bfd_set_cacheable (sym_bfd, 1);
1731
1732 if (!bfd_check_format (sym_bfd, bfd_object))
1733 {
1734 make_cleanup_bfd_unref (sym_bfd);
1735 error (_("`%s': can't read symbols: %s."), name,
1736 bfd_errmsg (bfd_get_error ()));
1737 }
1738
1739 do_cleanups (back_to);
1740
1741 return sym_bfd;
1742 }
1743
1744 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1745 the section was not found. */
1746
1747 int
1748 get_section_index (struct objfile *objfile, char *section_name)
1749 {
1750 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1751
1752 if (sect)
1753 return sect->index;
1754 else
1755 return -1;
1756 }
1757
1758 /* Link SF into the global symtab_fns list.
1759 FLAVOUR is the file format that SF handles.
1760 Called on startup by the _initialize routine in each object file format
1761 reader, to register information about each format the reader is prepared
1762 to handle. */
1763
1764 void
1765 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1766 {
1767 registered_sym_fns fns = { flavour, sf };
1768
1769 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1770 }
1771
1772 /* Initialize OBJFILE to read symbols from its associated BFD. It
1773 either returns or calls error(). The result is an initialized
1774 struct sym_fns in the objfile structure, that contains cached
1775 information about the symbol file. */
1776
1777 static const struct sym_fns *
1778 find_sym_fns (bfd *abfd)
1779 {
1780 registered_sym_fns *rsf;
1781 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1782 int i;
1783
1784 if (our_flavour == bfd_target_srec_flavour
1785 || our_flavour == bfd_target_ihex_flavour
1786 || our_flavour == bfd_target_tekhex_flavour)
1787 return NULL; /* No symbols. */
1788
1789 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1790 if (our_flavour == rsf->sym_flavour)
1791 return rsf->sym_fns;
1792
1793 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1794 bfd_get_target (abfd));
1795 }
1796 \f
1797
1798 /* This function runs the load command of our current target. */
1799
1800 static void
1801 load_command (char *arg, int from_tty)
1802 {
1803 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1804
1805 dont_repeat ();
1806
1807 /* The user might be reloading because the binary has changed. Take
1808 this opportunity to check. */
1809 reopen_exec_file ();
1810 reread_symbols ();
1811
1812 if (arg == NULL)
1813 {
1814 char *parg;
1815 int count = 0;
1816
1817 parg = arg = get_exec_file (1);
1818
1819 /* Count how many \ " ' tab space there are in the name. */
1820 while ((parg = strpbrk (parg, "\\\"'\t ")))
1821 {
1822 parg++;
1823 count++;
1824 }
1825
1826 if (count)
1827 {
1828 /* We need to quote this string so buildargv can pull it apart. */
1829 char *temp = xmalloc (strlen (arg) + count + 1 );
1830 char *ptemp = temp;
1831 char *prev;
1832
1833 make_cleanup (xfree, temp);
1834
1835 prev = parg = arg;
1836 while ((parg = strpbrk (parg, "\\\"'\t ")))
1837 {
1838 strncpy (ptemp, prev, parg - prev);
1839 ptemp += parg - prev;
1840 prev = parg++;
1841 *ptemp++ = '\\';
1842 }
1843 strcpy (ptemp, prev);
1844
1845 arg = temp;
1846 }
1847 }
1848
1849 target_load (arg, from_tty);
1850
1851 /* After re-loading the executable, we don't really know which
1852 overlays are mapped any more. */
1853 overlay_cache_invalid = 1;
1854
1855 do_cleanups (cleanup);
1856 }
1857
1858 /* This version of "load" should be usable for any target. Currently
1859 it is just used for remote targets, not inftarg.c or core files,
1860 on the theory that only in that case is it useful.
1861
1862 Avoiding xmodem and the like seems like a win (a) because we don't have
1863 to worry about finding it, and (b) On VMS, fork() is very slow and so
1864 we don't want to run a subprocess. On the other hand, I'm not sure how
1865 performance compares. */
1866
1867 static int validate_download = 0;
1868
1869 /* Callback service function for generic_load (bfd_map_over_sections). */
1870
1871 static void
1872 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1873 {
1874 bfd_size_type *sum = data;
1875
1876 *sum += bfd_get_section_size (asec);
1877 }
1878
1879 /* Opaque data for load_section_callback. */
1880 struct load_section_data {
1881 CORE_ADDR load_offset;
1882 struct load_progress_data *progress_data;
1883 VEC(memory_write_request_s) *requests;
1884 };
1885
1886 /* Opaque data for load_progress. */
1887 struct load_progress_data {
1888 /* Cumulative data. */
1889 unsigned long write_count;
1890 unsigned long data_count;
1891 bfd_size_type total_size;
1892 };
1893
1894 /* Opaque data for load_progress for a single section. */
1895 struct load_progress_section_data {
1896 struct load_progress_data *cumulative;
1897
1898 /* Per-section data. */
1899 const char *section_name;
1900 ULONGEST section_sent;
1901 ULONGEST section_size;
1902 CORE_ADDR lma;
1903 gdb_byte *buffer;
1904 };
1905
1906 /* Target write callback routine for progress reporting. */
1907
1908 static void
1909 load_progress (ULONGEST bytes, void *untyped_arg)
1910 {
1911 struct load_progress_section_data *args = untyped_arg;
1912 struct load_progress_data *totals;
1913
1914 if (args == NULL)
1915 /* Writing padding data. No easy way to get at the cumulative
1916 stats, so just ignore this. */
1917 return;
1918
1919 totals = args->cumulative;
1920
1921 if (bytes == 0 && args->section_sent == 0)
1922 {
1923 /* The write is just starting. Let the user know we've started
1924 this section. */
1925 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1926 args->section_name, hex_string (args->section_size),
1927 paddress (target_gdbarch (), args->lma));
1928 return;
1929 }
1930
1931 if (validate_download)
1932 {
1933 /* Broken memories and broken monitors manifest themselves here
1934 when bring new computers to life. This doubles already slow
1935 downloads. */
1936 /* NOTE: cagney/1999-10-18: A more efficient implementation
1937 might add a verify_memory() method to the target vector and
1938 then use that. remote.c could implement that method using
1939 the ``qCRC'' packet. */
1940 gdb_byte *check = xmalloc (bytes);
1941 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1942
1943 if (target_read_memory (args->lma, check, bytes) != 0)
1944 error (_("Download verify read failed at %s"),
1945 paddress (target_gdbarch (), args->lma));
1946 if (memcmp (args->buffer, check, bytes) != 0)
1947 error (_("Download verify compare failed at %s"),
1948 paddress (target_gdbarch (), args->lma));
1949 do_cleanups (verify_cleanups);
1950 }
1951 totals->data_count += bytes;
1952 args->lma += bytes;
1953 args->buffer += bytes;
1954 totals->write_count += 1;
1955 args->section_sent += bytes;
1956 if (check_quit_flag ()
1957 || (deprecated_ui_load_progress_hook != NULL
1958 && deprecated_ui_load_progress_hook (args->section_name,
1959 args->section_sent)))
1960 error (_("Canceled the download"));
1961
1962 if (deprecated_show_load_progress != NULL)
1963 deprecated_show_load_progress (args->section_name,
1964 args->section_sent,
1965 args->section_size,
1966 totals->data_count,
1967 totals->total_size);
1968 }
1969
1970 /* Callback service function for generic_load (bfd_map_over_sections). */
1971
1972 static void
1973 load_section_callback (bfd *abfd, asection *asec, void *data)
1974 {
1975 struct memory_write_request *new_request;
1976 struct load_section_data *args = data;
1977 struct load_progress_section_data *section_data;
1978 bfd_size_type size = bfd_get_section_size (asec);
1979 gdb_byte *buffer;
1980 const char *sect_name = bfd_get_section_name (abfd, asec);
1981
1982 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1983 return;
1984
1985 if (size == 0)
1986 return;
1987
1988 new_request = VEC_safe_push (memory_write_request_s,
1989 args->requests, NULL);
1990 memset (new_request, 0, sizeof (struct memory_write_request));
1991 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1992 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1993 new_request->end = new_request->begin + size; /* FIXME Should size
1994 be in instead? */
1995 new_request->data = xmalloc (size);
1996 new_request->baton = section_data;
1997
1998 buffer = new_request->data;
1999
2000 section_data->cumulative = args->progress_data;
2001 section_data->section_name = sect_name;
2002 section_data->section_size = size;
2003 section_data->lma = new_request->begin;
2004 section_data->buffer = buffer;
2005
2006 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2007 }
2008
2009 /* Clean up an entire memory request vector, including load
2010 data and progress records. */
2011
2012 static void
2013 clear_memory_write_data (void *arg)
2014 {
2015 VEC(memory_write_request_s) **vec_p = arg;
2016 VEC(memory_write_request_s) *vec = *vec_p;
2017 int i;
2018 struct memory_write_request *mr;
2019
2020 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2021 {
2022 xfree (mr->data);
2023 xfree (mr->baton);
2024 }
2025 VEC_free (memory_write_request_s, vec);
2026 }
2027
2028 void
2029 generic_load (char *args, int from_tty)
2030 {
2031 bfd *loadfile_bfd;
2032 struct timeval start_time, end_time;
2033 char *filename;
2034 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2035 struct load_section_data cbdata;
2036 struct load_progress_data total_progress;
2037 struct ui_out *uiout = current_uiout;
2038
2039 CORE_ADDR entry;
2040 char **argv;
2041
2042 memset (&cbdata, 0, sizeof (cbdata));
2043 memset (&total_progress, 0, sizeof (total_progress));
2044 cbdata.progress_data = &total_progress;
2045
2046 make_cleanup (clear_memory_write_data, &cbdata.requests);
2047
2048 if (args == NULL)
2049 error_no_arg (_("file to load"));
2050
2051 argv = gdb_buildargv (args);
2052 make_cleanup_freeargv (argv);
2053
2054 filename = tilde_expand (argv[0]);
2055 make_cleanup (xfree, filename);
2056
2057 if (argv[1] != NULL)
2058 {
2059 const char *endptr;
2060
2061 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2062
2063 /* If the last word was not a valid number then
2064 treat it as a file name with spaces in. */
2065 if (argv[1] == endptr)
2066 error (_("Invalid download offset:%s."), argv[1]);
2067
2068 if (argv[2] != NULL)
2069 error (_("Too many parameters."));
2070 }
2071
2072 /* Open the file for loading. */
2073 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2074 if (loadfile_bfd == NULL)
2075 {
2076 perror_with_name (filename);
2077 return;
2078 }
2079
2080 make_cleanup_bfd_unref (loadfile_bfd);
2081
2082 if (!bfd_check_format (loadfile_bfd, bfd_object))
2083 {
2084 error (_("\"%s\" is not an object file: %s"), filename,
2085 bfd_errmsg (bfd_get_error ()));
2086 }
2087
2088 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2089 (void *) &total_progress.total_size);
2090
2091 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2092
2093 gettimeofday (&start_time, NULL);
2094
2095 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2096 load_progress) != 0)
2097 error (_("Load failed"));
2098
2099 gettimeofday (&end_time, NULL);
2100
2101 entry = bfd_get_start_address (loadfile_bfd);
2102 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2103 ui_out_text (uiout, "Start address ");
2104 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2105 ui_out_text (uiout, ", load size ");
2106 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2107 ui_out_text (uiout, "\n");
2108 /* We were doing this in remote-mips.c, I suspect it is right
2109 for other targets too. */
2110 regcache_write_pc (get_current_regcache (), entry);
2111
2112 /* Reset breakpoints, now that we have changed the load image. For
2113 instance, breakpoints may have been set (or reset, by
2114 post_create_inferior) while connected to the target but before we
2115 loaded the program. In that case, the prologue analyzer could
2116 have read instructions from the target to find the right
2117 breakpoint locations. Loading has changed the contents of that
2118 memory. */
2119
2120 breakpoint_re_set ();
2121
2122 /* FIXME: are we supposed to call symbol_file_add or not? According
2123 to a comment from remote-mips.c (where a call to symbol_file_add
2124 was commented out), making the call confuses GDB if more than one
2125 file is loaded in. Some targets do (e.g., remote-vx.c) but
2126 others don't (or didn't - perhaps they have all been deleted). */
2127
2128 print_transfer_performance (gdb_stdout, total_progress.data_count,
2129 total_progress.write_count,
2130 &start_time, &end_time);
2131
2132 do_cleanups (old_cleanups);
2133 }
2134
2135 /* Report how fast the transfer went. */
2136
2137 void
2138 print_transfer_performance (struct ui_file *stream,
2139 unsigned long data_count,
2140 unsigned long write_count,
2141 const struct timeval *start_time,
2142 const struct timeval *end_time)
2143 {
2144 ULONGEST time_count;
2145 struct ui_out *uiout = current_uiout;
2146
2147 /* Compute the elapsed time in milliseconds, as a tradeoff between
2148 accuracy and overflow. */
2149 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2150 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2151
2152 ui_out_text (uiout, "Transfer rate: ");
2153 if (time_count > 0)
2154 {
2155 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2156
2157 if (ui_out_is_mi_like_p (uiout))
2158 {
2159 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2160 ui_out_text (uiout, " bits/sec");
2161 }
2162 else if (rate < 1024)
2163 {
2164 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2165 ui_out_text (uiout, " bytes/sec");
2166 }
2167 else
2168 {
2169 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2170 ui_out_text (uiout, " KB/sec");
2171 }
2172 }
2173 else
2174 {
2175 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2176 ui_out_text (uiout, " bits in <1 sec");
2177 }
2178 if (write_count > 0)
2179 {
2180 ui_out_text (uiout, ", ");
2181 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2182 ui_out_text (uiout, " bytes/write");
2183 }
2184 ui_out_text (uiout, ".\n");
2185 }
2186
2187 /* This function allows the addition of incrementally linked object files.
2188 It does not modify any state in the target, only in the debugger. */
2189 /* Note: ezannoni 2000-04-13 This function/command used to have a
2190 special case syntax for the rombug target (Rombug is the boot
2191 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2192 rombug case, the user doesn't need to supply a text address,
2193 instead a call to target_link() (in target.c) would supply the
2194 value to use. We are now discontinuing this type of ad hoc syntax. */
2195
2196 static void
2197 add_symbol_file_command (char *args, int from_tty)
2198 {
2199 struct gdbarch *gdbarch = get_current_arch ();
2200 char *filename = NULL;
2201 int flags = OBJF_USERLOADED;
2202 char *arg;
2203 int section_index = 0;
2204 int argcnt = 0;
2205 int sec_num = 0;
2206 int i;
2207 int expecting_sec_name = 0;
2208 int expecting_sec_addr = 0;
2209 char **argv;
2210 struct objfile *objf;
2211
2212 struct sect_opt
2213 {
2214 char *name;
2215 char *value;
2216 };
2217
2218 struct section_addr_info *section_addrs;
2219 struct sect_opt *sect_opts = NULL;
2220 size_t num_sect_opts = 0;
2221 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2222
2223 num_sect_opts = 16;
2224 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2225 * sizeof (struct sect_opt));
2226
2227 dont_repeat ();
2228
2229 if (args == NULL)
2230 error (_("add-symbol-file takes a file name and an address"));
2231
2232 argv = gdb_buildargv (args);
2233 make_cleanup_freeargv (argv);
2234
2235 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2236 {
2237 /* Process the argument. */
2238 if (argcnt == 0)
2239 {
2240 /* The first argument is the file name. */
2241 filename = tilde_expand (arg);
2242 make_cleanup (xfree, filename);
2243 }
2244 else if (argcnt == 1)
2245 {
2246 /* The second argument is always the text address at which
2247 to load the program. */
2248 sect_opts[section_index].name = ".text";
2249 sect_opts[section_index].value = arg;
2250 if (++section_index >= num_sect_opts)
2251 {
2252 num_sect_opts *= 2;
2253 sect_opts = ((struct sect_opt *)
2254 xrealloc (sect_opts,
2255 num_sect_opts
2256 * sizeof (struct sect_opt)));
2257 }
2258 }
2259 else
2260 {
2261 /* It's an option (starting with '-') or it's an argument
2262 to an option. */
2263 if (expecting_sec_name)
2264 {
2265 sect_opts[section_index].name = arg;
2266 expecting_sec_name = 0;
2267 }
2268 else if (expecting_sec_addr)
2269 {
2270 sect_opts[section_index].value = arg;
2271 expecting_sec_addr = 0;
2272 if (++section_index >= num_sect_opts)
2273 {
2274 num_sect_opts *= 2;
2275 sect_opts = ((struct sect_opt *)
2276 xrealloc (sect_opts,
2277 num_sect_opts
2278 * sizeof (struct sect_opt)));
2279 }
2280 }
2281 else if (strcmp (arg, "-readnow") == 0)
2282 flags |= OBJF_READNOW;
2283 else if (strcmp (arg, "-s") == 0)
2284 {
2285 expecting_sec_name = 1;
2286 expecting_sec_addr = 1;
2287 }
2288 else
2289 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2290 " [-readnow] [-s <secname> <addr>]*"));
2291 }
2292 }
2293
2294 /* This command takes at least two arguments. The first one is a
2295 filename, and the second is the address where this file has been
2296 loaded. Abort now if this address hasn't been provided by the
2297 user. */
2298 if (section_index < 1)
2299 error (_("The address where %s has been loaded is missing"), filename);
2300
2301 /* Print the prompt for the query below. And save the arguments into
2302 a sect_addr_info structure to be passed around to other
2303 functions. We have to split this up into separate print
2304 statements because hex_string returns a local static
2305 string. */
2306
2307 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2308 section_addrs = alloc_section_addr_info (section_index);
2309 make_cleanup (xfree, section_addrs);
2310 for (i = 0; i < section_index; i++)
2311 {
2312 CORE_ADDR addr;
2313 char *val = sect_opts[i].value;
2314 char *sec = sect_opts[i].name;
2315
2316 addr = parse_and_eval_address (val);
2317
2318 /* Here we store the section offsets in the order they were
2319 entered on the command line. */
2320 section_addrs->other[sec_num].name = sec;
2321 section_addrs->other[sec_num].addr = addr;
2322 printf_unfiltered ("\t%s_addr = %s\n", sec,
2323 paddress (gdbarch, addr));
2324 sec_num++;
2325
2326 /* The object's sections are initialized when a
2327 call is made to build_objfile_section_table (objfile).
2328 This happens in reread_symbols.
2329 At this point, we don't know what file type this is,
2330 so we can't determine what section names are valid. */
2331 }
2332 section_addrs->num_sections = sec_num;
2333
2334 if (from_tty && (!query ("%s", "")))
2335 error (_("Not confirmed."));
2336
2337 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2338 section_addrs, flags);
2339
2340 add_target_sections_of_objfile (objf);
2341
2342 /* Getting new symbols may change our opinion about what is
2343 frameless. */
2344 reinit_frame_cache ();
2345 do_cleanups (my_cleanups);
2346 }
2347 \f
2348
2349 /* This function removes a symbol file that was added via add-symbol-file. */
2350
2351 static void
2352 remove_symbol_file_command (char *args, int from_tty)
2353 {
2354 char **argv;
2355 struct objfile *objf = NULL;
2356 struct cleanup *my_cleanups;
2357 struct program_space *pspace = current_program_space;
2358 struct gdbarch *gdbarch = get_current_arch ();
2359
2360 dont_repeat ();
2361
2362 if (args == NULL)
2363 error (_("remove-symbol-file: no symbol file provided"));
2364
2365 my_cleanups = make_cleanup (null_cleanup, NULL);
2366
2367 argv = gdb_buildargv (args);
2368
2369 if (strcmp (argv[0], "-a") == 0)
2370 {
2371 /* Interpret the next argument as an address. */
2372 CORE_ADDR addr;
2373
2374 if (argv[1] == NULL)
2375 error (_("Missing address argument"));
2376
2377 if (argv[2] != NULL)
2378 error (_("Junk after %s"), argv[1]);
2379
2380 addr = parse_and_eval_address (argv[1]);
2381
2382 ALL_OBJFILES (objf)
2383 {
2384 if (objf != 0
2385 && objf->flags & OBJF_USERLOADED
2386 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2387 break;
2388 }
2389 }
2390 else if (argv[0] != NULL)
2391 {
2392 /* Interpret the current argument as a file name. */
2393 char *filename;
2394
2395 if (argv[1] != NULL)
2396 error (_("Junk after %s"), argv[0]);
2397
2398 filename = tilde_expand (argv[0]);
2399 make_cleanup (xfree, filename);
2400
2401 ALL_OBJFILES (objf)
2402 {
2403 if (objf != 0
2404 && objf->flags & OBJF_USERLOADED
2405 && objf->pspace == pspace
2406 && filename_cmp (filename, objfile_name (objf)) == 0)
2407 break;
2408 }
2409 }
2410
2411 if (objf == NULL)
2412 error (_("No symbol file found"));
2413
2414 if (from_tty
2415 && !query (_("Remove symbol table from file \"%s\"? "),
2416 objfile_name (objf)))
2417 error (_("Not confirmed."));
2418
2419 free_objfile (objf);
2420 clear_symtab_users (0);
2421
2422 do_cleanups (my_cleanups);
2423 }
2424
2425 typedef struct objfile *objfilep;
2426
2427 DEF_VEC_P (objfilep);
2428
2429 /* Re-read symbols if a symbol-file has changed. */
2430
2431 void
2432 reread_symbols (void)
2433 {
2434 struct objfile *objfile;
2435 long new_modtime;
2436 struct stat new_statbuf;
2437 int res;
2438 VEC (objfilep) *new_objfiles = NULL;
2439 struct cleanup *all_cleanups;
2440
2441 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2442
2443 /* With the addition of shared libraries, this should be modified,
2444 the load time should be saved in the partial symbol tables, since
2445 different tables may come from different source files. FIXME.
2446 This routine should then walk down each partial symbol table
2447 and see if the symbol table that it originates from has been changed. */
2448
2449 for (objfile = object_files; objfile; objfile = objfile->next)
2450 {
2451 if (objfile->obfd == NULL)
2452 continue;
2453
2454 /* Separate debug objfiles are handled in the main objfile. */
2455 if (objfile->separate_debug_objfile_backlink)
2456 continue;
2457
2458 /* If this object is from an archive (what you usually create with
2459 `ar', often called a `static library' on most systems, though
2460 a `shared library' on AIX is also an archive), then you should
2461 stat on the archive name, not member name. */
2462 if (objfile->obfd->my_archive)
2463 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2464 else
2465 res = stat (objfile_name (objfile), &new_statbuf);
2466 if (res != 0)
2467 {
2468 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2469 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2470 objfile_name (objfile));
2471 continue;
2472 }
2473 new_modtime = new_statbuf.st_mtime;
2474 if (new_modtime != objfile->mtime)
2475 {
2476 struct cleanup *old_cleanups;
2477 struct section_offsets *offsets;
2478 int num_offsets;
2479 char *original_name;
2480
2481 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2482 objfile_name (objfile));
2483
2484 /* There are various functions like symbol_file_add,
2485 symfile_bfd_open, syms_from_objfile, etc., which might
2486 appear to do what we want. But they have various other
2487 effects which we *don't* want. So we just do stuff
2488 ourselves. We don't worry about mapped files (for one thing,
2489 any mapped file will be out of date). */
2490
2491 /* If we get an error, blow away this objfile (not sure if
2492 that is the correct response for things like shared
2493 libraries). */
2494 old_cleanups = make_cleanup_free_objfile (objfile);
2495 /* We need to do this whenever any symbols go away. */
2496 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2497
2498 if (exec_bfd != NULL
2499 && filename_cmp (bfd_get_filename (objfile->obfd),
2500 bfd_get_filename (exec_bfd)) == 0)
2501 {
2502 /* Reload EXEC_BFD without asking anything. */
2503
2504 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2505 }
2506
2507 /* Keep the calls order approx. the same as in free_objfile. */
2508
2509 /* Free the separate debug objfiles. It will be
2510 automatically recreated by sym_read. */
2511 free_objfile_separate_debug (objfile);
2512
2513 /* Remove any references to this objfile in the global
2514 value lists. */
2515 preserve_values (objfile);
2516
2517 /* Nuke all the state that we will re-read. Much of the following
2518 code which sets things to NULL really is necessary to tell
2519 other parts of GDB that there is nothing currently there.
2520
2521 Try to keep the freeing order compatible with free_objfile. */
2522
2523 if (objfile->sf != NULL)
2524 {
2525 (*objfile->sf->sym_finish) (objfile);
2526 }
2527
2528 clear_objfile_data (objfile);
2529
2530 /* Clean up any state BFD has sitting around. */
2531 {
2532 struct bfd *obfd = objfile->obfd;
2533 char *obfd_filename;
2534
2535 obfd_filename = bfd_get_filename (objfile->obfd);
2536 /* Open the new BFD before freeing the old one, so that
2537 the filename remains live. */
2538 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2539 if (objfile->obfd == NULL)
2540 {
2541 /* We have to make a cleanup and error here, rather
2542 than erroring later, because once we unref OBFD,
2543 OBFD_FILENAME will be freed. */
2544 make_cleanup_bfd_unref (obfd);
2545 error (_("Can't open %s to read symbols."), obfd_filename);
2546 }
2547 gdb_bfd_unref (obfd);
2548 }
2549
2550 original_name = xstrdup (objfile->original_name);
2551 make_cleanup (xfree, original_name);
2552
2553 /* bfd_openr sets cacheable to true, which is what we want. */
2554 if (!bfd_check_format (objfile->obfd, bfd_object))
2555 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2556 bfd_errmsg (bfd_get_error ()));
2557
2558 /* Save the offsets, we will nuke them with the rest of the
2559 objfile_obstack. */
2560 num_offsets = objfile->num_sections;
2561 offsets = ((struct section_offsets *)
2562 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2563 memcpy (offsets, objfile->section_offsets,
2564 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2565
2566 /* FIXME: Do we have to free a whole linked list, or is this
2567 enough? */
2568 if (objfile->global_psymbols.list)
2569 xfree (objfile->global_psymbols.list);
2570 memset (&objfile->global_psymbols, 0,
2571 sizeof (objfile->global_psymbols));
2572 if (objfile->static_psymbols.list)
2573 xfree (objfile->static_psymbols.list);
2574 memset (&objfile->static_psymbols, 0,
2575 sizeof (objfile->static_psymbols));
2576
2577 /* Free the obstacks for non-reusable objfiles. */
2578 psymbol_bcache_free (objfile->psymbol_cache);
2579 objfile->psymbol_cache = psymbol_bcache_init ();
2580 obstack_free (&objfile->objfile_obstack, 0);
2581 objfile->sections = NULL;
2582 objfile->symtabs = NULL;
2583 objfile->psymtabs = NULL;
2584 objfile->psymtabs_addrmap = NULL;
2585 objfile->free_psymtabs = NULL;
2586 objfile->template_symbols = NULL;
2587 objfile->msymbols = NULL;
2588 objfile->minimal_symbol_count = 0;
2589 memset (&objfile->msymbol_hash, 0,
2590 sizeof (objfile->msymbol_hash));
2591 memset (&objfile->msymbol_demangled_hash, 0,
2592 sizeof (objfile->msymbol_demangled_hash));
2593
2594 /* obstack_init also initializes the obstack so it is
2595 empty. We could use obstack_specify_allocation but
2596 gdb_obstack.h specifies the alloc/dealloc functions. */
2597 obstack_init (&objfile->objfile_obstack);
2598
2599 /* set_objfile_per_bfd potentially allocates the per-bfd
2600 data on the objfile's obstack (if sharing data across
2601 multiple users is not possible), so it's important to
2602 do it *after* the obstack has been initialized. */
2603 set_objfile_per_bfd (objfile);
2604
2605 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2606 original_name,
2607 strlen (original_name));
2608
2609 /* Reset the sym_fns pointer. The ELF reader can change it
2610 based on whether .gdb_index is present, and we need it to
2611 start over. PR symtab/15885 */
2612 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2613
2614 build_objfile_section_table (objfile);
2615 terminate_minimal_symbol_table (objfile);
2616
2617 /* We use the same section offsets as from last time. I'm not
2618 sure whether that is always correct for shared libraries. */
2619 objfile->section_offsets = (struct section_offsets *)
2620 obstack_alloc (&objfile->objfile_obstack,
2621 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2622 memcpy (objfile->section_offsets, offsets,
2623 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2624 objfile->num_sections = num_offsets;
2625
2626 /* What the hell is sym_new_init for, anyway? The concept of
2627 distinguishing between the main file and additional files
2628 in this way seems rather dubious. */
2629 if (objfile == symfile_objfile)
2630 {
2631 (*objfile->sf->sym_new_init) (objfile);
2632 }
2633
2634 (*objfile->sf->sym_init) (objfile);
2635 clear_complaints (&symfile_complaints, 1, 1);
2636
2637 objfile->flags &= ~OBJF_PSYMTABS_READ;
2638 read_symbols (objfile, 0);
2639
2640 if (!objfile_has_symbols (objfile))
2641 {
2642 wrap_here ("");
2643 printf_unfiltered (_("(no debugging symbols found)\n"));
2644 wrap_here ("");
2645 }
2646
2647 /* We're done reading the symbol file; finish off complaints. */
2648 clear_complaints (&symfile_complaints, 0, 1);
2649
2650 /* Getting new symbols may change our opinion about what is
2651 frameless. */
2652
2653 reinit_frame_cache ();
2654
2655 /* Discard cleanups as symbol reading was successful. */
2656 discard_cleanups (old_cleanups);
2657
2658 /* If the mtime has changed between the time we set new_modtime
2659 and now, we *want* this to be out of date, so don't call stat
2660 again now. */
2661 objfile->mtime = new_modtime;
2662 init_entry_point_info (objfile);
2663
2664 VEC_safe_push (objfilep, new_objfiles, objfile);
2665 }
2666 }
2667
2668 if (new_objfiles)
2669 {
2670 int ix;
2671
2672 /* Notify objfiles that we've modified objfile sections. */
2673 objfiles_changed ();
2674
2675 clear_symtab_users (0);
2676
2677 /* clear_objfile_data for each objfile was called before freeing it and
2678 observer_notify_new_objfile (NULL) has been called by
2679 clear_symtab_users above. Notify the new files now. */
2680 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2681 observer_notify_new_objfile (objfile);
2682
2683 /* At least one objfile has changed, so we can consider that
2684 the executable we're debugging has changed too. */
2685 observer_notify_executable_changed ();
2686 }
2687
2688 do_cleanups (all_cleanups);
2689 }
2690 \f
2691
2692 typedef struct
2693 {
2694 char *ext;
2695 enum language lang;
2696 }
2697 filename_language;
2698
2699 static filename_language *filename_language_table;
2700 static int fl_table_size, fl_table_next;
2701
2702 static void
2703 add_filename_language (char *ext, enum language lang)
2704 {
2705 if (fl_table_next >= fl_table_size)
2706 {
2707 fl_table_size += 10;
2708 filename_language_table =
2709 xrealloc (filename_language_table,
2710 fl_table_size * sizeof (*filename_language_table));
2711 }
2712
2713 filename_language_table[fl_table_next].ext = xstrdup (ext);
2714 filename_language_table[fl_table_next].lang = lang;
2715 fl_table_next++;
2716 }
2717
2718 static char *ext_args;
2719 static void
2720 show_ext_args (struct ui_file *file, int from_tty,
2721 struct cmd_list_element *c, const char *value)
2722 {
2723 fprintf_filtered (file,
2724 _("Mapping between filename extension "
2725 "and source language is \"%s\".\n"),
2726 value);
2727 }
2728
2729 static void
2730 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2731 {
2732 int i;
2733 char *cp = ext_args;
2734 enum language lang;
2735
2736 /* First arg is filename extension, starting with '.' */
2737 if (*cp != '.')
2738 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2739
2740 /* Find end of first arg. */
2741 while (*cp && !isspace (*cp))
2742 cp++;
2743
2744 if (*cp == '\0')
2745 error (_("'%s': two arguments required -- "
2746 "filename extension and language"),
2747 ext_args);
2748
2749 /* Null-terminate first arg. */
2750 *cp++ = '\0';
2751
2752 /* Find beginning of second arg, which should be a source language. */
2753 cp = skip_spaces (cp);
2754
2755 if (*cp == '\0')
2756 error (_("'%s': two arguments required -- "
2757 "filename extension and language"),
2758 ext_args);
2759
2760 /* Lookup the language from among those we know. */
2761 lang = language_enum (cp);
2762
2763 /* Now lookup the filename extension: do we already know it? */
2764 for (i = 0; i < fl_table_next; i++)
2765 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2766 break;
2767
2768 if (i >= fl_table_next)
2769 {
2770 /* New file extension. */
2771 add_filename_language (ext_args, lang);
2772 }
2773 else
2774 {
2775 /* Redefining a previously known filename extension. */
2776
2777 /* if (from_tty) */
2778 /* query ("Really make files of type %s '%s'?", */
2779 /* ext_args, language_str (lang)); */
2780
2781 xfree (filename_language_table[i].ext);
2782 filename_language_table[i].ext = xstrdup (ext_args);
2783 filename_language_table[i].lang = lang;
2784 }
2785 }
2786
2787 static void
2788 info_ext_lang_command (char *args, int from_tty)
2789 {
2790 int i;
2791
2792 printf_filtered (_("Filename extensions and the languages they represent:"));
2793 printf_filtered ("\n\n");
2794 for (i = 0; i < fl_table_next; i++)
2795 printf_filtered ("\t%s\t- %s\n",
2796 filename_language_table[i].ext,
2797 language_str (filename_language_table[i].lang));
2798 }
2799
2800 static void
2801 init_filename_language_table (void)
2802 {
2803 if (fl_table_size == 0) /* Protect against repetition. */
2804 {
2805 fl_table_size = 20;
2806 fl_table_next = 0;
2807 filename_language_table =
2808 xmalloc (fl_table_size * sizeof (*filename_language_table));
2809 add_filename_language (".c", language_c);
2810 add_filename_language (".d", language_d);
2811 add_filename_language (".C", language_cplus);
2812 add_filename_language (".cc", language_cplus);
2813 add_filename_language (".cp", language_cplus);
2814 add_filename_language (".cpp", language_cplus);
2815 add_filename_language (".cxx", language_cplus);
2816 add_filename_language (".c++", language_cplus);
2817 add_filename_language (".java", language_java);
2818 add_filename_language (".class", language_java);
2819 add_filename_language (".m", language_objc);
2820 add_filename_language (".f", language_fortran);
2821 add_filename_language (".F", language_fortran);
2822 add_filename_language (".for", language_fortran);
2823 add_filename_language (".FOR", language_fortran);
2824 add_filename_language (".ftn", language_fortran);
2825 add_filename_language (".FTN", language_fortran);
2826 add_filename_language (".fpp", language_fortran);
2827 add_filename_language (".FPP", language_fortran);
2828 add_filename_language (".f90", language_fortran);
2829 add_filename_language (".F90", language_fortran);
2830 add_filename_language (".f95", language_fortran);
2831 add_filename_language (".F95", language_fortran);
2832 add_filename_language (".f03", language_fortran);
2833 add_filename_language (".F03", language_fortran);
2834 add_filename_language (".f08", language_fortran);
2835 add_filename_language (".F08", language_fortran);
2836 add_filename_language (".s", language_asm);
2837 add_filename_language (".sx", language_asm);
2838 add_filename_language (".S", language_asm);
2839 add_filename_language (".pas", language_pascal);
2840 add_filename_language (".p", language_pascal);
2841 add_filename_language (".pp", language_pascal);
2842 add_filename_language (".adb", language_ada);
2843 add_filename_language (".ads", language_ada);
2844 add_filename_language (".a", language_ada);
2845 add_filename_language (".ada", language_ada);
2846 add_filename_language (".dg", language_ada);
2847 }
2848 }
2849
2850 enum language
2851 deduce_language_from_filename (const char *filename)
2852 {
2853 int i;
2854 char *cp;
2855
2856 if (filename != NULL)
2857 if ((cp = strrchr (filename, '.')) != NULL)
2858 for (i = 0; i < fl_table_next; i++)
2859 if (strcmp (cp, filename_language_table[i].ext) == 0)
2860 return filename_language_table[i].lang;
2861
2862 return language_unknown;
2863 }
2864 \f
2865 /* allocate_symtab:
2866
2867 Allocate and partly initialize a new symbol table. Return a pointer
2868 to it. error() if no space.
2869
2870 Caller must set these fields:
2871 LINETABLE(symtab)
2872 symtab->blockvector
2873 symtab->dirname
2874 symtab->free_code
2875 symtab->free_ptr
2876 */
2877
2878 struct symtab *
2879 allocate_symtab (const char *filename, struct objfile *objfile)
2880 {
2881 struct symtab *symtab;
2882
2883 symtab = (struct symtab *)
2884 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2885 memset (symtab, 0, sizeof (*symtab));
2886 symtab->filename = bcache (filename, strlen (filename) + 1,
2887 objfile->per_bfd->filename_cache);
2888 symtab->fullname = NULL;
2889 symtab->language = deduce_language_from_filename (filename);
2890 symtab->debugformat = "unknown";
2891
2892 /* Hook it to the objfile it comes from. */
2893
2894 symtab->objfile = objfile;
2895 symtab->next = objfile->symtabs;
2896 objfile->symtabs = symtab;
2897
2898 /* This can be very verbose with lots of headers.
2899 Only print at higher debug levels. */
2900 if (symtab_create_debug >= 2)
2901 {
2902 /* Be a bit clever with debugging messages, and don't print objfile
2903 every time, only when it changes. */
2904 static char *last_objfile_name = NULL;
2905
2906 if (last_objfile_name == NULL
2907 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2908 {
2909 xfree (last_objfile_name);
2910 last_objfile_name = xstrdup (objfile_name (objfile));
2911 fprintf_unfiltered (gdb_stdlog,
2912 "Creating one or more symtabs for objfile %s ...\n",
2913 last_objfile_name);
2914 }
2915 fprintf_unfiltered (gdb_stdlog,
2916 "Created symtab %s for module %s.\n",
2917 host_address_to_string (symtab), filename);
2918 }
2919
2920 return (symtab);
2921 }
2922 \f
2923
2924 /* Reset all data structures in gdb which may contain references to symbol
2925 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2926
2927 void
2928 clear_symtab_users (int add_flags)
2929 {
2930 /* Someday, we should do better than this, by only blowing away
2931 the things that really need to be blown. */
2932
2933 /* Clear the "current" symtab first, because it is no longer valid.
2934 breakpoint_re_set may try to access the current symtab. */
2935 clear_current_source_symtab_and_line ();
2936
2937 clear_displays ();
2938 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2939 breakpoint_re_set ();
2940 clear_last_displayed_sal ();
2941 clear_pc_function_cache ();
2942 observer_notify_new_objfile (NULL);
2943
2944 /* Clear globals which might have pointed into a removed objfile.
2945 FIXME: It's not clear which of these are supposed to persist
2946 between expressions and which ought to be reset each time. */
2947 expression_context_block = NULL;
2948 innermost_block = NULL;
2949
2950 /* Varobj may refer to old symbols, perform a cleanup. */
2951 varobj_invalidate ();
2952
2953 }
2954
2955 static void
2956 clear_symtab_users_cleanup (void *ignore)
2957 {
2958 clear_symtab_users (0);
2959 }
2960 \f
2961 /* OVERLAYS:
2962 The following code implements an abstraction for debugging overlay sections.
2963
2964 The target model is as follows:
2965 1) The gnu linker will permit multiple sections to be mapped into the
2966 same VMA, each with its own unique LMA (or load address).
2967 2) It is assumed that some runtime mechanism exists for mapping the
2968 sections, one by one, from the load address into the VMA address.
2969 3) This code provides a mechanism for gdb to keep track of which
2970 sections should be considered to be mapped from the VMA to the LMA.
2971 This information is used for symbol lookup, and memory read/write.
2972 For instance, if a section has been mapped then its contents
2973 should be read from the VMA, otherwise from the LMA.
2974
2975 Two levels of debugger support for overlays are available. One is
2976 "manual", in which the debugger relies on the user to tell it which
2977 overlays are currently mapped. This level of support is
2978 implemented entirely in the core debugger, and the information about
2979 whether a section is mapped is kept in the objfile->obj_section table.
2980
2981 The second level of support is "automatic", and is only available if
2982 the target-specific code provides functionality to read the target's
2983 overlay mapping table, and translate its contents for the debugger
2984 (by updating the mapped state information in the obj_section tables).
2985
2986 The interface is as follows:
2987 User commands:
2988 overlay map <name> -- tell gdb to consider this section mapped
2989 overlay unmap <name> -- tell gdb to consider this section unmapped
2990 overlay list -- list the sections that GDB thinks are mapped
2991 overlay read-target -- get the target's state of what's mapped
2992 overlay off/manual/auto -- set overlay debugging state
2993 Functional interface:
2994 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2995 section, return that section.
2996 find_pc_overlay(pc): find any overlay section that contains
2997 the pc, either in its VMA or its LMA
2998 section_is_mapped(sect): true if overlay is marked as mapped
2999 section_is_overlay(sect): true if section's VMA != LMA
3000 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3001 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3002 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3003 overlay_mapped_address(...): map an address from section's LMA to VMA
3004 overlay_unmapped_address(...): map an address from section's VMA to LMA
3005 symbol_overlayed_address(...): Return a "current" address for symbol:
3006 either in VMA or LMA depending on whether
3007 the symbol's section is currently mapped. */
3008
3009 /* Overlay debugging state: */
3010
3011 enum overlay_debugging_state overlay_debugging = ovly_off;
3012 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3013
3014 /* Function: section_is_overlay (SECTION)
3015 Returns true if SECTION has VMA not equal to LMA, ie.
3016 SECTION is loaded at an address different from where it will "run". */
3017
3018 int
3019 section_is_overlay (struct obj_section *section)
3020 {
3021 if (overlay_debugging && section)
3022 {
3023 bfd *abfd = section->objfile->obfd;
3024 asection *bfd_section = section->the_bfd_section;
3025
3026 if (bfd_section_lma (abfd, bfd_section) != 0
3027 && bfd_section_lma (abfd, bfd_section)
3028 != bfd_section_vma (abfd, bfd_section))
3029 return 1;
3030 }
3031
3032 return 0;
3033 }
3034
3035 /* Function: overlay_invalidate_all (void)
3036 Invalidate the mapped state of all overlay sections (mark it as stale). */
3037
3038 static void
3039 overlay_invalidate_all (void)
3040 {
3041 struct objfile *objfile;
3042 struct obj_section *sect;
3043
3044 ALL_OBJSECTIONS (objfile, sect)
3045 if (section_is_overlay (sect))
3046 sect->ovly_mapped = -1;
3047 }
3048
3049 /* Function: section_is_mapped (SECTION)
3050 Returns true if section is an overlay, and is currently mapped.
3051
3052 Access to the ovly_mapped flag is restricted to this function, so
3053 that we can do automatic update. If the global flag
3054 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3055 overlay_invalidate_all. If the mapped state of the particular
3056 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3057
3058 int
3059 section_is_mapped (struct obj_section *osect)
3060 {
3061 struct gdbarch *gdbarch;
3062
3063 if (osect == 0 || !section_is_overlay (osect))
3064 return 0;
3065
3066 switch (overlay_debugging)
3067 {
3068 default:
3069 case ovly_off:
3070 return 0; /* overlay debugging off */
3071 case ovly_auto: /* overlay debugging automatic */
3072 /* Unles there is a gdbarch_overlay_update function,
3073 there's really nothing useful to do here (can't really go auto). */
3074 gdbarch = get_objfile_arch (osect->objfile);
3075 if (gdbarch_overlay_update_p (gdbarch))
3076 {
3077 if (overlay_cache_invalid)
3078 {
3079 overlay_invalidate_all ();
3080 overlay_cache_invalid = 0;
3081 }
3082 if (osect->ovly_mapped == -1)
3083 gdbarch_overlay_update (gdbarch, osect);
3084 }
3085 /* fall thru to manual case */
3086 case ovly_on: /* overlay debugging manual */
3087 return osect->ovly_mapped == 1;
3088 }
3089 }
3090
3091 /* Function: pc_in_unmapped_range
3092 If PC falls into the lma range of SECTION, return true, else false. */
3093
3094 CORE_ADDR
3095 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3096 {
3097 if (section_is_overlay (section))
3098 {
3099 bfd *abfd = section->objfile->obfd;
3100 asection *bfd_section = section->the_bfd_section;
3101
3102 /* We assume the LMA is relocated by the same offset as the VMA. */
3103 bfd_vma size = bfd_get_section_size (bfd_section);
3104 CORE_ADDR offset = obj_section_offset (section);
3105
3106 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3107 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3108 return 1;
3109 }
3110
3111 return 0;
3112 }
3113
3114 /* Function: pc_in_mapped_range
3115 If PC falls into the vma range of SECTION, return true, else false. */
3116
3117 CORE_ADDR
3118 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3119 {
3120 if (section_is_overlay (section))
3121 {
3122 if (obj_section_addr (section) <= pc
3123 && pc < obj_section_endaddr (section))
3124 return 1;
3125 }
3126
3127 return 0;
3128 }
3129
3130 /* Return true if the mapped ranges of sections A and B overlap, false
3131 otherwise. */
3132
3133 static int
3134 sections_overlap (struct obj_section *a, struct obj_section *b)
3135 {
3136 CORE_ADDR a_start = obj_section_addr (a);
3137 CORE_ADDR a_end = obj_section_endaddr (a);
3138 CORE_ADDR b_start = obj_section_addr (b);
3139 CORE_ADDR b_end = obj_section_endaddr (b);
3140
3141 return (a_start < b_end && b_start < a_end);
3142 }
3143
3144 /* Function: overlay_unmapped_address (PC, SECTION)
3145 Returns the address corresponding to PC in the unmapped (load) range.
3146 May be the same as PC. */
3147
3148 CORE_ADDR
3149 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3150 {
3151 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3152 {
3153 bfd *abfd = section->objfile->obfd;
3154 asection *bfd_section = section->the_bfd_section;
3155
3156 return pc + bfd_section_lma (abfd, bfd_section)
3157 - bfd_section_vma (abfd, bfd_section);
3158 }
3159
3160 return pc;
3161 }
3162
3163 /* Function: overlay_mapped_address (PC, SECTION)
3164 Returns the address corresponding to PC in the mapped (runtime) range.
3165 May be the same as PC. */
3166
3167 CORE_ADDR
3168 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3169 {
3170 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3171 {
3172 bfd *abfd = section->objfile->obfd;
3173 asection *bfd_section = section->the_bfd_section;
3174
3175 return pc + bfd_section_vma (abfd, bfd_section)
3176 - bfd_section_lma (abfd, bfd_section);
3177 }
3178
3179 return pc;
3180 }
3181
3182 /* Function: symbol_overlayed_address
3183 Return one of two addresses (relative to the VMA or to the LMA),
3184 depending on whether the section is mapped or not. */
3185
3186 CORE_ADDR
3187 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3188 {
3189 if (overlay_debugging)
3190 {
3191 /* If the symbol has no section, just return its regular address. */
3192 if (section == 0)
3193 return address;
3194 /* If the symbol's section is not an overlay, just return its
3195 address. */
3196 if (!section_is_overlay (section))
3197 return address;
3198 /* If the symbol's section is mapped, just return its address. */
3199 if (section_is_mapped (section))
3200 return address;
3201 /*
3202 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3203 * then return its LOADED address rather than its vma address!!
3204 */
3205 return overlay_unmapped_address (address, section);
3206 }
3207 return address;
3208 }
3209
3210 /* Function: find_pc_overlay (PC)
3211 Return the best-match overlay section for PC:
3212 If PC matches a mapped overlay section's VMA, return that section.
3213 Else if PC matches an unmapped section's VMA, return that section.
3214 Else if PC matches an unmapped section's LMA, return that section. */
3215
3216 struct obj_section *
3217 find_pc_overlay (CORE_ADDR pc)
3218 {
3219 struct objfile *objfile;
3220 struct obj_section *osect, *best_match = NULL;
3221
3222 if (overlay_debugging)
3223 ALL_OBJSECTIONS (objfile, osect)
3224 if (section_is_overlay (osect))
3225 {
3226 if (pc_in_mapped_range (pc, osect))
3227 {
3228 if (section_is_mapped (osect))
3229 return osect;
3230 else
3231 best_match = osect;
3232 }
3233 else if (pc_in_unmapped_range (pc, osect))
3234 best_match = osect;
3235 }
3236 return best_match;
3237 }
3238
3239 /* Function: find_pc_mapped_section (PC)
3240 If PC falls into the VMA address range of an overlay section that is
3241 currently marked as MAPPED, return that section. Else return NULL. */
3242
3243 struct obj_section *
3244 find_pc_mapped_section (CORE_ADDR pc)
3245 {
3246 struct objfile *objfile;
3247 struct obj_section *osect;
3248
3249 if (overlay_debugging)
3250 ALL_OBJSECTIONS (objfile, osect)
3251 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3252 return osect;
3253
3254 return NULL;
3255 }
3256
3257 /* Function: list_overlays_command
3258 Print a list of mapped sections and their PC ranges. */
3259
3260 static void
3261 list_overlays_command (char *args, int from_tty)
3262 {
3263 int nmapped = 0;
3264 struct objfile *objfile;
3265 struct obj_section *osect;
3266
3267 if (overlay_debugging)
3268 ALL_OBJSECTIONS (objfile, osect)
3269 if (section_is_mapped (osect))
3270 {
3271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3272 const char *name;
3273 bfd_vma lma, vma;
3274 int size;
3275
3276 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3277 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3278 size = bfd_get_section_size (osect->the_bfd_section);
3279 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3280
3281 printf_filtered ("Section %s, loaded at ", name);
3282 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3283 puts_filtered (" - ");
3284 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3285 printf_filtered (", mapped at ");
3286 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3287 puts_filtered (" - ");
3288 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3289 puts_filtered ("\n");
3290
3291 nmapped++;
3292 }
3293 if (nmapped == 0)
3294 printf_filtered (_("No sections are mapped.\n"));
3295 }
3296
3297 /* Function: map_overlay_command
3298 Mark the named section as mapped (ie. residing at its VMA address). */
3299
3300 static void
3301 map_overlay_command (char *args, int from_tty)
3302 {
3303 struct objfile *objfile, *objfile2;
3304 struct obj_section *sec, *sec2;
3305
3306 if (!overlay_debugging)
3307 error (_("Overlay debugging not enabled. Use "
3308 "either the 'overlay auto' or\n"
3309 "the 'overlay manual' command."));
3310
3311 if (args == 0 || *args == 0)
3312 error (_("Argument required: name of an overlay section"));
3313
3314 /* First, find a section matching the user supplied argument. */
3315 ALL_OBJSECTIONS (objfile, sec)
3316 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3317 {
3318 /* Now, check to see if the section is an overlay. */
3319 if (!section_is_overlay (sec))
3320 continue; /* not an overlay section */
3321
3322 /* Mark the overlay as "mapped". */
3323 sec->ovly_mapped = 1;
3324
3325 /* Next, make a pass and unmap any sections that are
3326 overlapped by this new section: */
3327 ALL_OBJSECTIONS (objfile2, sec2)
3328 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3329 {
3330 if (info_verbose)
3331 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3332 bfd_section_name (objfile->obfd,
3333 sec2->the_bfd_section));
3334 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3335 }
3336 return;
3337 }
3338 error (_("No overlay section called %s"), args);
3339 }
3340
3341 /* Function: unmap_overlay_command
3342 Mark the overlay section as unmapped
3343 (ie. resident in its LMA address range, rather than the VMA range). */
3344
3345 static void
3346 unmap_overlay_command (char *args, int from_tty)
3347 {
3348 struct objfile *objfile;
3349 struct obj_section *sec;
3350
3351 if (!overlay_debugging)
3352 error (_("Overlay debugging not enabled. "
3353 "Use either the 'overlay auto' or\n"
3354 "the 'overlay manual' command."));
3355
3356 if (args == 0 || *args == 0)
3357 error (_("Argument required: name of an overlay section"));
3358
3359 /* First, find a section matching the user supplied argument. */
3360 ALL_OBJSECTIONS (objfile, sec)
3361 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3362 {
3363 if (!sec->ovly_mapped)
3364 error (_("Section %s is not mapped"), args);
3365 sec->ovly_mapped = 0;
3366 return;
3367 }
3368 error (_("No overlay section called %s"), args);
3369 }
3370
3371 /* Function: overlay_auto_command
3372 A utility command to turn on overlay debugging.
3373 Possibly this should be done via a set/show command. */
3374
3375 static void
3376 overlay_auto_command (char *args, int from_tty)
3377 {
3378 overlay_debugging = ovly_auto;
3379 enable_overlay_breakpoints ();
3380 if (info_verbose)
3381 printf_unfiltered (_("Automatic overlay debugging enabled."));
3382 }
3383
3384 /* Function: overlay_manual_command
3385 A utility command to turn on overlay debugging.
3386 Possibly this should be done via a set/show command. */
3387
3388 static void
3389 overlay_manual_command (char *args, int from_tty)
3390 {
3391 overlay_debugging = ovly_on;
3392 disable_overlay_breakpoints ();
3393 if (info_verbose)
3394 printf_unfiltered (_("Overlay debugging enabled."));
3395 }
3396
3397 /* Function: overlay_off_command
3398 A utility command to turn on overlay debugging.
3399 Possibly this should be done via a set/show command. */
3400
3401 static void
3402 overlay_off_command (char *args, int from_tty)
3403 {
3404 overlay_debugging = ovly_off;
3405 disable_overlay_breakpoints ();
3406 if (info_verbose)
3407 printf_unfiltered (_("Overlay debugging disabled."));
3408 }
3409
3410 static void
3411 overlay_load_command (char *args, int from_tty)
3412 {
3413 struct gdbarch *gdbarch = get_current_arch ();
3414
3415 if (gdbarch_overlay_update_p (gdbarch))
3416 gdbarch_overlay_update (gdbarch, NULL);
3417 else
3418 error (_("This target does not know how to read its overlay state."));
3419 }
3420
3421 /* Function: overlay_command
3422 A place-holder for a mis-typed command. */
3423
3424 /* Command list chain containing all defined "overlay" subcommands. */
3425 static struct cmd_list_element *overlaylist;
3426
3427 static void
3428 overlay_command (char *args, int from_tty)
3429 {
3430 printf_unfiltered
3431 ("\"overlay\" must be followed by the name of an overlay command.\n");
3432 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3433 }
3434
3435 /* Target Overlays for the "Simplest" overlay manager:
3436
3437 This is GDB's default target overlay layer. It works with the
3438 minimal overlay manager supplied as an example by Cygnus. The
3439 entry point is via a function pointer "gdbarch_overlay_update",
3440 so targets that use a different runtime overlay manager can
3441 substitute their own overlay_update function and take over the
3442 function pointer.
3443
3444 The overlay_update function pokes around in the target's data structures
3445 to see what overlays are mapped, and updates GDB's overlay mapping with
3446 this information.
3447
3448 In this simple implementation, the target data structures are as follows:
3449 unsigned _novlys; /# number of overlay sections #/
3450 unsigned _ovly_table[_novlys][4] = {
3451 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3452 {..., ..., ..., ...},
3453 }
3454 unsigned _novly_regions; /# number of overlay regions #/
3455 unsigned _ovly_region_table[_novly_regions][3] = {
3456 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3457 {..., ..., ...},
3458 }
3459 These functions will attempt to update GDB's mappedness state in the
3460 symbol section table, based on the target's mappedness state.
3461
3462 To do this, we keep a cached copy of the target's _ovly_table, and
3463 attempt to detect when the cached copy is invalidated. The main
3464 entry point is "simple_overlay_update(SECT), which looks up SECT in
3465 the cached table and re-reads only the entry for that section from
3466 the target (whenever possible). */
3467
3468 /* Cached, dynamically allocated copies of the target data structures: */
3469 static unsigned (*cache_ovly_table)[4] = 0;
3470 static unsigned cache_novlys = 0;
3471 static CORE_ADDR cache_ovly_table_base = 0;
3472 enum ovly_index
3473 {
3474 VMA, SIZE, LMA, MAPPED
3475 };
3476
3477 /* Throw away the cached copy of _ovly_table. */
3478
3479 static void
3480 simple_free_overlay_table (void)
3481 {
3482 if (cache_ovly_table)
3483 xfree (cache_ovly_table);
3484 cache_novlys = 0;
3485 cache_ovly_table = NULL;
3486 cache_ovly_table_base = 0;
3487 }
3488
3489 /* Read an array of ints of size SIZE from the target into a local buffer.
3490 Convert to host order. int LEN is number of ints. */
3491
3492 static void
3493 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3494 int len, int size, enum bfd_endian byte_order)
3495 {
3496 /* FIXME (alloca): Not safe if array is very large. */
3497 gdb_byte *buf = alloca (len * size);
3498 int i;
3499
3500 read_memory (memaddr, buf, len * size);
3501 for (i = 0; i < len; i++)
3502 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3503 }
3504
3505 /* Find and grab a copy of the target _ovly_table
3506 (and _novlys, which is needed for the table's size). */
3507
3508 static int
3509 simple_read_overlay_table (void)
3510 {
3511 struct minimal_symbol *novlys_msym;
3512 struct bound_minimal_symbol ovly_table_msym;
3513 struct gdbarch *gdbarch;
3514 int word_size;
3515 enum bfd_endian byte_order;
3516
3517 simple_free_overlay_table ();
3518 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3519 if (! novlys_msym)
3520 {
3521 error (_("Error reading inferior's overlay table: "
3522 "couldn't find `_novlys' variable\n"
3523 "in inferior. Use `overlay manual' mode."));
3524 return 0;
3525 }
3526
3527 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3528 if (! ovly_table_msym.minsym)
3529 {
3530 error (_("Error reading inferior's overlay table: couldn't find "
3531 "`_ovly_table' array\n"
3532 "in inferior. Use `overlay manual' mode."));
3533 return 0;
3534 }
3535
3536 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3537 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3538 byte_order = gdbarch_byte_order (gdbarch);
3539
3540 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3541 4, byte_order);
3542 cache_ovly_table
3543 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3544 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
3545 read_target_long_array (cache_ovly_table_base,
3546 (unsigned int *) cache_ovly_table,
3547 cache_novlys * 4, word_size, byte_order);
3548
3549 return 1; /* SUCCESS */
3550 }
3551
3552 /* Function: simple_overlay_update_1
3553 A helper function for simple_overlay_update. Assuming a cached copy
3554 of _ovly_table exists, look through it to find an entry whose vma,
3555 lma and size match those of OSECT. Re-read the entry and make sure
3556 it still matches OSECT (else the table may no longer be valid).
3557 Set OSECT's mapped state to match the entry. Return: 1 for
3558 success, 0 for failure. */
3559
3560 static int
3561 simple_overlay_update_1 (struct obj_section *osect)
3562 {
3563 int i, size;
3564 bfd *obfd = osect->objfile->obfd;
3565 asection *bsect = osect->the_bfd_section;
3566 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3567 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3568 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3569
3570 size = bfd_get_section_size (osect->the_bfd_section);
3571 for (i = 0; i < cache_novlys; i++)
3572 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3573 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3574 /* && cache_ovly_table[i][SIZE] == size */ )
3575 {
3576 read_target_long_array (cache_ovly_table_base + i * word_size,
3577 (unsigned int *) cache_ovly_table[i],
3578 4, word_size, byte_order);
3579 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3580 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3581 /* && cache_ovly_table[i][SIZE] == size */ )
3582 {
3583 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3584 return 1;
3585 }
3586 else /* Warning! Warning! Target's ovly table has changed! */
3587 return 0;
3588 }
3589 return 0;
3590 }
3591
3592 /* Function: simple_overlay_update
3593 If OSECT is NULL, then update all sections' mapped state
3594 (after re-reading the entire target _ovly_table).
3595 If OSECT is non-NULL, then try to find a matching entry in the
3596 cached ovly_table and update only OSECT's mapped state.
3597 If a cached entry can't be found or the cache isn't valid, then
3598 re-read the entire cache, and go ahead and update all sections. */
3599
3600 void
3601 simple_overlay_update (struct obj_section *osect)
3602 {
3603 struct objfile *objfile;
3604
3605 /* Were we given an osect to look up? NULL means do all of them. */
3606 if (osect)
3607 /* Have we got a cached copy of the target's overlay table? */
3608 if (cache_ovly_table != NULL)
3609 {
3610 /* Does its cached location match what's currently in the
3611 symtab? */
3612 struct minimal_symbol *minsym
3613 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3614
3615 if (minsym == NULL)
3616 error (_("Error reading inferior's overlay table: couldn't "
3617 "find `_ovly_table' array\n"
3618 "in inferior. Use `overlay manual' mode."));
3619
3620 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3621 /* Then go ahead and try to look up this single section in
3622 the cache. */
3623 if (simple_overlay_update_1 (osect))
3624 /* Found it! We're done. */
3625 return;
3626 }
3627
3628 /* Cached table no good: need to read the entire table anew.
3629 Or else we want all the sections, in which case it's actually
3630 more efficient to read the whole table in one block anyway. */
3631
3632 if (! simple_read_overlay_table ())
3633 return;
3634
3635 /* Now may as well update all sections, even if only one was requested. */
3636 ALL_OBJSECTIONS (objfile, osect)
3637 if (section_is_overlay (osect))
3638 {
3639 int i, size;
3640 bfd *obfd = osect->objfile->obfd;
3641 asection *bsect = osect->the_bfd_section;
3642
3643 size = bfd_get_section_size (bsect);
3644 for (i = 0; i < cache_novlys; i++)
3645 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3646 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3647 /* && cache_ovly_table[i][SIZE] == size */ )
3648 { /* obj_section matches i'th entry in ovly_table. */
3649 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3650 break; /* finished with inner for loop: break out. */
3651 }
3652 }
3653 }
3654
3655 /* Set the output sections and output offsets for section SECTP in
3656 ABFD. The relocation code in BFD will read these offsets, so we
3657 need to be sure they're initialized. We map each section to itself,
3658 with no offset; this means that SECTP->vma will be honored. */
3659
3660 static void
3661 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3662 {
3663 sectp->output_section = sectp;
3664 sectp->output_offset = 0;
3665 }
3666
3667 /* Default implementation for sym_relocate. */
3668
3669 bfd_byte *
3670 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3671 bfd_byte *buf)
3672 {
3673 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3674 DWO file. */
3675 bfd *abfd = sectp->owner;
3676
3677 /* We're only interested in sections with relocation
3678 information. */
3679 if ((sectp->flags & SEC_RELOC) == 0)
3680 return NULL;
3681
3682 /* We will handle section offsets properly elsewhere, so relocate as if
3683 all sections begin at 0. */
3684 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3685
3686 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3687 }
3688
3689 /* Relocate the contents of a debug section SECTP in ABFD. The
3690 contents are stored in BUF if it is non-NULL, or returned in a
3691 malloc'd buffer otherwise.
3692
3693 For some platforms and debug info formats, shared libraries contain
3694 relocations against the debug sections (particularly for DWARF-2;
3695 one affected platform is PowerPC GNU/Linux, although it depends on
3696 the version of the linker in use). Also, ELF object files naturally
3697 have unresolved relocations for their debug sections. We need to apply
3698 the relocations in order to get the locations of symbols correct.
3699 Another example that may require relocation processing, is the
3700 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3701 debug section. */
3702
3703 bfd_byte *
3704 symfile_relocate_debug_section (struct objfile *objfile,
3705 asection *sectp, bfd_byte *buf)
3706 {
3707 gdb_assert (objfile->sf->sym_relocate);
3708
3709 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3710 }
3711
3712 struct symfile_segment_data *
3713 get_symfile_segment_data (bfd *abfd)
3714 {
3715 const struct sym_fns *sf = find_sym_fns (abfd);
3716
3717 if (sf == NULL)
3718 return NULL;
3719
3720 return sf->sym_segments (abfd);
3721 }
3722
3723 void
3724 free_symfile_segment_data (struct symfile_segment_data *data)
3725 {
3726 xfree (data->segment_bases);
3727 xfree (data->segment_sizes);
3728 xfree (data->segment_info);
3729 xfree (data);
3730 }
3731
3732 /* Given:
3733 - DATA, containing segment addresses from the object file ABFD, and
3734 the mapping from ABFD's sections onto the segments that own them,
3735 and
3736 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3737 segment addresses reported by the target,
3738 store the appropriate offsets for each section in OFFSETS.
3739
3740 If there are fewer entries in SEGMENT_BASES than there are segments
3741 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3742
3743 If there are more entries, then ignore the extra. The target may
3744 not be able to distinguish between an empty data segment and a
3745 missing data segment; a missing text segment is less plausible. */
3746
3747 int
3748 symfile_map_offsets_to_segments (bfd *abfd,
3749 const struct symfile_segment_data *data,
3750 struct section_offsets *offsets,
3751 int num_segment_bases,
3752 const CORE_ADDR *segment_bases)
3753 {
3754 int i;
3755 asection *sect;
3756
3757 /* It doesn't make sense to call this function unless you have some
3758 segment base addresses. */
3759 gdb_assert (num_segment_bases > 0);
3760
3761 /* If we do not have segment mappings for the object file, we
3762 can not relocate it by segments. */
3763 gdb_assert (data != NULL);
3764 gdb_assert (data->num_segments > 0);
3765
3766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3767 {
3768 int which = data->segment_info[i];
3769
3770 gdb_assert (0 <= which && which <= data->num_segments);
3771
3772 /* Don't bother computing offsets for sections that aren't
3773 loaded as part of any segment. */
3774 if (! which)
3775 continue;
3776
3777 /* Use the last SEGMENT_BASES entry as the address of any extra
3778 segments mentioned in DATA->segment_info. */
3779 if (which > num_segment_bases)
3780 which = num_segment_bases;
3781
3782 offsets->offsets[i] = (segment_bases[which - 1]
3783 - data->segment_bases[which - 1]);
3784 }
3785
3786 return 1;
3787 }
3788
3789 static void
3790 symfile_find_segment_sections (struct objfile *objfile)
3791 {
3792 bfd *abfd = objfile->obfd;
3793 int i;
3794 asection *sect;
3795 struct symfile_segment_data *data;
3796
3797 data = get_symfile_segment_data (objfile->obfd);
3798 if (data == NULL)
3799 return;
3800
3801 if (data->num_segments != 1 && data->num_segments != 2)
3802 {
3803 free_symfile_segment_data (data);
3804 return;
3805 }
3806
3807 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3808 {
3809 int which = data->segment_info[i];
3810
3811 if (which == 1)
3812 {
3813 if (objfile->sect_index_text == -1)
3814 objfile->sect_index_text = sect->index;
3815
3816 if (objfile->sect_index_rodata == -1)
3817 objfile->sect_index_rodata = sect->index;
3818 }
3819 else if (which == 2)
3820 {
3821 if (objfile->sect_index_data == -1)
3822 objfile->sect_index_data = sect->index;
3823
3824 if (objfile->sect_index_bss == -1)
3825 objfile->sect_index_bss = sect->index;
3826 }
3827 }
3828
3829 free_symfile_segment_data (data);
3830 }
3831
3832 /* Listen for free_objfile events. */
3833
3834 static void
3835 symfile_free_objfile (struct objfile *objfile)
3836 {
3837 /* Remove the target sections of user-added objfiles. */
3838 if (objfile != 0 && objfile->flags & OBJF_USERLOADED)
3839 remove_target_sections ((void *) objfile);
3840 }
3841
3842 void
3843 _initialize_symfile (void)
3844 {
3845 struct cmd_list_element *c;
3846
3847 observer_attach_free_objfile (symfile_free_objfile);
3848
3849 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3850 Load symbol table from executable file FILE.\n\
3851 The `file' command can also load symbol tables, as well as setting the file\n\
3852 to execute."), &cmdlist);
3853 set_cmd_completer (c, filename_completer);
3854
3855 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3856 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3857 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3858 ...]\nADDR is the starting address of the file's text.\n\
3859 The optional arguments are section-name section-address pairs and\n\
3860 should be specified if the data and bss segments are not contiguous\n\
3861 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3862 &cmdlist);
3863 set_cmd_completer (c, filename_completer);
3864
3865 c = add_cmd ("remove-symbol-file", class_files,
3866 remove_symbol_file_command, _("\
3867 Remove a symbol file added via the add-symbol-file command.\n\
3868 Usage: remove-symbol-file FILENAME\n\
3869 remove-symbol-file -a ADDRESS\n\
3870 The file to remove can be identified by its filename or by an address\n\
3871 that lies within the boundaries of this symbol file in memory."),
3872 &cmdlist);
3873
3874 c = add_cmd ("load", class_files, load_command, _("\
3875 Dynamically load FILE into the running program, and record its symbols\n\
3876 for access from GDB.\n\
3877 A load OFFSET may also be given."), &cmdlist);
3878 set_cmd_completer (c, filename_completer);
3879
3880 add_prefix_cmd ("overlay", class_support, overlay_command,
3881 _("Commands for debugging overlays."), &overlaylist,
3882 "overlay ", 0, &cmdlist);
3883
3884 add_com_alias ("ovly", "overlay", class_alias, 1);
3885 add_com_alias ("ov", "overlay", class_alias, 1);
3886
3887 add_cmd ("map-overlay", class_support, map_overlay_command,
3888 _("Assert that an overlay section is mapped."), &overlaylist);
3889
3890 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3891 _("Assert that an overlay section is unmapped."), &overlaylist);
3892
3893 add_cmd ("list-overlays", class_support, list_overlays_command,
3894 _("List mappings of overlay sections."), &overlaylist);
3895
3896 add_cmd ("manual", class_support, overlay_manual_command,
3897 _("Enable overlay debugging."), &overlaylist);
3898 add_cmd ("off", class_support, overlay_off_command,
3899 _("Disable overlay debugging."), &overlaylist);
3900 add_cmd ("auto", class_support, overlay_auto_command,
3901 _("Enable automatic overlay debugging."), &overlaylist);
3902 add_cmd ("load-target", class_support, overlay_load_command,
3903 _("Read the overlay mapping state from the target."), &overlaylist);
3904
3905 /* Filename extension to source language lookup table: */
3906 init_filename_language_table ();
3907 add_setshow_string_noescape_cmd ("extension-language", class_files,
3908 &ext_args, _("\
3909 Set mapping between filename extension and source language."), _("\
3910 Show mapping between filename extension and source language."), _("\
3911 Usage: set extension-language .foo bar"),
3912 set_ext_lang_command,
3913 show_ext_args,
3914 &setlist, &showlist);
3915
3916 add_info ("extensions", info_ext_lang_command,
3917 _("All filename extensions associated with a source language."));
3918
3919 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3920 &debug_file_directory, _("\
3921 Set the directories where separate debug symbols are searched for."), _("\
3922 Show the directories where separate debug symbols are searched for."), _("\
3923 Separate debug symbols are first searched for in the same\n\
3924 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3925 and lastly at the path of the directory of the binary with\n\
3926 each global debug-file-directory component prepended."),
3927 NULL,
3928 show_debug_file_directory,
3929 &setlist, &showlist);
3930 }