]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Ensure class_alias is only used for user-defined aliases.
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190 This function is called via bfd_map_over_sections.
191
192 In case of equal vmas, the section with the largest size becomes the
193 lowest-addressed loadable section.
194
195 If the vmas and sizes are equal, the last section is considered the
196 lowest-addressed loadable section. */
197
198 void
199 find_lowest_section (bfd *abfd, asection *sect, void *obj)
200 {
201 asection **lowest = (asection **) obj;
202
203 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
204 return;
205 if (!*lowest)
206 *lowest = sect; /* First loadable section */
207 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
208 *lowest = sect; /* A lower loadable section */
209 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
210 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
211 *lowest = sect;
212 }
213
214 /* Build (allocate and populate) a section_addr_info struct from
215 an existing section table. */
216
217 section_addr_info
218 build_section_addr_info_from_section_table (const struct target_section *start,
219 const struct target_section *end)
220 {
221 const struct target_section *stp;
222
223 section_addr_info sap;
224
225 for (stp = start; stp != end; stp++)
226 {
227 struct bfd_section *asect = stp->the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < end - start)
232 sap.emplace_back (stp->addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238 }
239
240 /* Create a section_addr_info from section offsets in ABFD. */
241
242 static section_addr_info
243 build_section_addr_info_from_bfd (bfd *abfd)
244 {
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255 }
256
257 /* Create a section_addr_info from section offsets in OBJFILE. */
258
259 section_addr_info
260 build_section_addr_info_from_objfile (const struct objfile *objfile)
261 {
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets[sectindex];
273 }
274 return sap;
275 }
276
277 /* Initialize OBJFILE's sect_index_* members. */
278
279 static void
280 init_objfile_sect_indices (struct objfile *objfile)
281 {
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->section_offsets.size (); i++)
319 {
320 if (objfile->section_offsets[i] != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->section_offsets.size ())
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336 }
337
338 /* The arguments to place_section. */
339
340 struct place_section_arg
341 {
342 section_offsets *offsets;
343 CORE_ADDR lowest;
344 };
345
346 /* Find a unique offset to use for loadable section SECT if
347 the user did not provide an offset. */
348
349 static void
350 place_section (bfd *abfd, asection *sect, void *obj)
351 {
352 struct place_section_arg *arg = (struct place_section_arg *) obj;
353 section_offsets &offsets = *arg->offsets;
354 CORE_ADDR start_addr;
355 int done;
356 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
357
358 /* We are only interested in allocated sections. */
359 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
360 return;
361
362 /* If the user specified an offset, honor it. */
363 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
364 return;
365
366 /* Otherwise, let's try to find a place for the section. */
367 start_addr = (arg->lowest + align - 1) & -align;
368
369 do {
370 asection *cur_sec;
371
372 done = 1;
373
374 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
375 {
376 int indx = cur_sec->index;
377
378 /* We don't need to compare against ourself. */
379 if (cur_sec == sect)
380 continue;
381
382 /* We can only conflict with allocated sections. */
383 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
384 continue;
385
386 /* If the section offset is 0, either the section has not been placed
387 yet, or it was the lowest section placed (in which case LOWEST
388 will be past its end). */
389 if (offsets[indx] == 0)
390 continue;
391
392 /* If this section would overlap us, then we must move up. */
393 if (start_addr + bfd_section_size (sect) > offsets[indx]
394 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
395 {
396 start_addr = offsets[indx] + bfd_section_size (cur_sec);
397 start_addr = (start_addr + align - 1) & -align;
398 done = 0;
399 break;
400 }
401
402 /* Otherwise, we appear to be OK. So far. */
403 }
404 }
405 while (!done);
406
407 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
408 arg->lowest = start_addr + bfd_section_size (sect);
409 }
410
411 /* Store section_addr_info as prepared (made relative and with SECTINDEX
412 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
413
414 void
415 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
416 const section_addr_info &addrs)
417 {
418 int i;
419
420 section_offsets.assign (section_offsets.size (), 0);
421
422 /* Now calculate offsets for section that were specified by the caller. */
423 for (i = 0; i < addrs.size (); i++)
424 {
425 const struct other_sections *osp;
426
427 osp = &addrs[i];
428 if (osp->sectindex == -1)
429 continue;
430
431 /* Record all sections in offsets. */
432 /* The section_offsets in the objfile are here filled in using
433 the BFD index. */
434 section_offsets[osp->sectindex] = osp->addr;
435 }
436 }
437
438 /* Transform section name S for a name comparison. prelink can split section
439 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
440 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
441 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
442 (`.sbss') section has invalid (increased) virtual address. */
443
444 static const char *
445 addr_section_name (const char *s)
446 {
447 if (strcmp (s, ".dynbss") == 0)
448 return ".bss";
449 if (strcmp (s, ".sdynbss") == 0)
450 return ".sbss";
451
452 return s;
453 }
454
455 /* std::sort comparator for addrs_section_sort. Sort entries in
456 ascending order by their (name, sectindex) pair. sectindex makes
457 the sort by name stable. */
458
459 static bool
460 addrs_section_compar (const struct other_sections *a,
461 const struct other_sections *b)
462 {
463 int retval;
464
465 retval = strcmp (addr_section_name (a->name.c_str ()),
466 addr_section_name (b->name.c_str ()));
467 if (retval != 0)
468 return retval < 0;
469
470 return a->sectindex < b->sectindex;
471 }
472
473 /* Provide sorted array of pointers to sections of ADDRS. */
474
475 static std::vector<const struct other_sections *>
476 addrs_section_sort (const section_addr_info &addrs)
477 {
478 int i;
479
480 std::vector<const struct other_sections *> array (addrs.size ());
481 for (i = 0; i < addrs.size (); i++)
482 array[i] = &addrs[i];
483
484 std::sort (array.begin (), array.end (), addrs_section_compar);
485
486 return array;
487 }
488
489 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
490 also SECTINDEXes specific to ABFD there. This function can be used to
491 rebase ADDRS to start referencing different BFD than before. */
492
493 void
494 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
495 {
496 asection *lower_sect;
497 CORE_ADDR lower_offset;
498 int i;
499
500 /* Find lowest loadable section to be used as starting point for
501 contiguous sections. */
502 lower_sect = NULL;
503 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
504 if (lower_sect == NULL)
505 {
506 warning (_("no loadable sections found in added symbol-file %s"),
507 bfd_get_filename (abfd));
508 lower_offset = 0;
509 }
510 else
511 lower_offset = bfd_section_vma (lower_sect);
512
513 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
514 in ABFD. Section names are not unique - there can be multiple sections of
515 the same name. Also the sections of the same name do not have to be
516 adjacent to each other. Some sections may be present only in one of the
517 files. Even sections present in both files do not have to be in the same
518 order.
519
520 Use stable sort by name for the sections in both files. Then linearly
521 scan both lists matching as most of the entries as possible. */
522
523 std::vector<const struct other_sections *> addrs_sorted
524 = addrs_section_sort (*addrs);
525
526 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
527 std::vector<const struct other_sections *> abfd_addrs_sorted
528 = addrs_section_sort (abfd_addrs);
529
530 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
531 ABFD_ADDRS_SORTED. */
532
533 std::vector<const struct other_sections *>
534 addrs_to_abfd_addrs (addrs->size (), nullptr);
535
536 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
537 = abfd_addrs_sorted.begin ();
538 for (const other_sections *sect : addrs_sorted)
539 {
540 const char *sect_name = addr_section_name (sect->name.c_str ());
541
542 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
543 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
544 sect_name) < 0)
545 abfd_sorted_iter++;
546
547 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
548 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
549 sect_name) == 0)
550 {
551 int index_in_addrs;
552
553 /* Make the found item directly addressable from ADDRS. */
554 index_in_addrs = sect - addrs->data ();
555 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
556 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
557
558 /* Never use the same ABFD entry twice. */
559 abfd_sorted_iter++;
560 }
561 }
562
563 /* Calculate offsets for the loadable sections.
564 FIXME! Sections must be in order of increasing loadable section
565 so that contiguous sections can use the lower-offset!!!
566
567 Adjust offsets if the segments are not contiguous.
568 If the section is contiguous, its offset should be set to
569 the offset of the highest loadable section lower than it
570 (the loadable section directly below it in memory).
571 this_offset = lower_offset = lower_addr - lower_orig_addr */
572
573 for (i = 0; i < addrs->size (); i++)
574 {
575 const struct other_sections *sect = addrs_to_abfd_addrs[i];
576
577 if (sect)
578 {
579 /* This is the index used by BFD. */
580 (*addrs)[i].sectindex = sect->sectindex;
581
582 if ((*addrs)[i].addr != 0)
583 {
584 (*addrs)[i].addr -= sect->addr;
585 lower_offset = (*addrs)[i].addr;
586 }
587 else
588 (*addrs)[i].addr = lower_offset;
589 }
590 else
591 {
592 /* addr_section_name transformation is not used for SECT_NAME. */
593 const std::string &sect_name = (*addrs)[i].name;
594
595 /* This section does not exist in ABFD, which is normally
596 unexpected and we want to issue a warning.
597
598 However, the ELF prelinker does create a few sections which are
599 marked in the main executable as loadable (they are loaded in
600 memory from the DYNAMIC segment) and yet are not present in
601 separate debug info files. This is fine, and should not cause
602 a warning. Shared libraries contain just the section
603 ".gnu.liblist" but it is not marked as loadable there. There is
604 no other way to identify them than by their name as the sections
605 created by prelink have no special flags.
606
607 For the sections `.bss' and `.sbss' see addr_section_name. */
608
609 if (!(sect_name == ".gnu.liblist"
610 || sect_name == ".gnu.conflict"
611 || (sect_name == ".bss"
612 && i > 0
613 && (*addrs)[i - 1].name == ".dynbss"
614 && addrs_to_abfd_addrs[i - 1] != NULL)
615 || (sect_name == ".sbss"
616 && i > 0
617 && (*addrs)[i - 1].name == ".sdynbss"
618 && addrs_to_abfd_addrs[i - 1] != NULL)))
619 warning (_("section %s not found in %s"), sect_name.c_str (),
620 bfd_get_filename (abfd));
621
622 (*addrs)[i].addr = 0;
623 (*addrs)[i].sectindex = -1;
624 }
625 }
626 }
627
628 /* Parse the user's idea of an offset for dynamic linking, into our idea
629 of how to represent it for fast symbol reading. This is the default
630 version of the sym_fns.sym_offsets function for symbol readers that
631 don't need to do anything special. It allocates a section_offsets table
632 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
633
634 void
635 default_symfile_offsets (struct objfile *objfile,
636 const section_addr_info &addrs)
637 {
638 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
639 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
640
641 /* For relocatable files, all loadable sections will start at zero.
642 The zero is meaningless, so try to pick arbitrary addresses such
643 that no loadable sections overlap. This algorithm is quadratic,
644 but the number of sections in a single object file is generally
645 small. */
646 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
647 {
648 struct place_section_arg arg;
649 bfd *abfd = objfile->obfd;
650 asection *cur_sec;
651
652 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
653 /* We do not expect this to happen; just skip this step if the
654 relocatable file has a section with an assigned VMA. */
655 if (bfd_section_vma (cur_sec) != 0)
656 break;
657
658 if (cur_sec == NULL)
659 {
660 section_offsets &offsets = objfile->section_offsets;
661
662 /* Pick non-overlapping offsets for sections the user did not
663 place explicitly. */
664 arg.offsets = &objfile->section_offsets;
665 arg.lowest = 0;
666 bfd_map_over_sections (objfile->obfd, place_section, &arg);
667
668 /* Correctly filling in the section offsets is not quite
669 enough. Relocatable files have two properties that
670 (most) shared objects do not:
671
672 - Their debug information will contain relocations. Some
673 shared libraries do also, but many do not, so this can not
674 be assumed.
675
676 - If there are multiple code sections they will be loaded
677 at different relative addresses in memory than they are
678 in the objfile, since all sections in the file will start
679 at address zero.
680
681 Because GDB has very limited ability to map from an
682 address in debug info to the correct code section,
683 it relies on adding SECT_OFF_TEXT to things which might be
684 code. If we clear all the section offsets, and set the
685 section VMAs instead, then symfile_relocate_debug_section
686 will return meaningful debug information pointing at the
687 correct sections.
688
689 GDB has too many different data structures for section
690 addresses - a bfd, objfile, and so_list all have section
691 tables, as does exec_ops. Some of these could probably
692 be eliminated. */
693
694 for (cur_sec = abfd->sections; cur_sec != NULL;
695 cur_sec = cur_sec->next)
696 {
697 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
698 continue;
699
700 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
701 exec_set_section_address (bfd_get_filename (abfd),
702 cur_sec->index,
703 offsets[cur_sec->index]);
704 offsets[cur_sec->index] = 0;
705 }
706 }
707 }
708
709 /* Remember the bfd indexes for the .text, .data, .bss and
710 .rodata sections. */
711 init_objfile_sect_indices (objfile);
712 }
713
714 /* Divide the file into segments, which are individual relocatable units.
715 This is the default version of the sym_fns.sym_segments function for
716 symbol readers that do not have an explicit representation of segments.
717 It assumes that object files do not have segments, and fully linked
718 files have a single segment. */
719
720 struct symfile_segment_data *
721 default_symfile_segments (bfd *abfd)
722 {
723 int num_sections, i;
724 asection *sect;
725 struct symfile_segment_data *data;
726 CORE_ADDR low, high;
727
728 /* Relocatable files contain enough information to position each
729 loadable section independently; they should not be relocated
730 in segments. */
731 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
732 return NULL;
733
734 /* Make sure there is at least one loadable section in the file. */
735 for (sect = abfd->sections; sect != NULL; sect = sect->next)
736 {
737 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
738 continue;
739
740 break;
741 }
742 if (sect == NULL)
743 return NULL;
744
745 low = bfd_section_vma (sect);
746 high = low + bfd_section_size (sect);
747
748 data = XCNEW (struct symfile_segment_data);
749 data->num_segments = 1;
750 data->segment_bases = XCNEW (CORE_ADDR);
751 data->segment_sizes = XCNEW (CORE_ADDR);
752
753 num_sections = bfd_count_sections (abfd);
754 data->segment_info = XCNEWVEC (int, num_sections);
755
756 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
757 {
758 CORE_ADDR vma;
759
760 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
761 continue;
762
763 vma = bfd_section_vma (sect);
764 if (vma < low)
765 low = vma;
766 if (vma + bfd_section_size (sect) > high)
767 high = vma + bfd_section_size (sect);
768
769 data->segment_info[i] = 1;
770 }
771
772 data->segment_bases[0] = low;
773 data->segment_sizes[0] = high - low;
774
775 return data;
776 }
777
778 /* This is a convenience function to call sym_read for OBJFILE and
779 possibly force the partial symbols to be read. */
780
781 static void
782 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
783 {
784 (*objfile->sf->sym_read) (objfile, add_flags);
785 objfile->per_bfd->minsyms_read = true;
786
787 /* find_separate_debug_file_in_section should be called only if there is
788 single binary with no existing separate debug info file. */
789 if (!objfile_has_partial_symbols (objfile)
790 && objfile->separate_debug_objfile == NULL
791 && objfile->separate_debug_objfile_backlink == NULL)
792 {
793 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
794
795 if (abfd != NULL)
796 {
797 /* find_separate_debug_file_in_section uses the same filename for the
798 virtual section-as-bfd like the bfd filename containing the
799 section. Therefore use also non-canonical name form for the same
800 file containing the section. */
801 symbol_file_add_separate (abfd.get (),
802 bfd_get_filename (abfd.get ()),
803 add_flags | SYMFILE_NOT_FILENAME, objfile);
804 }
805 }
806 if ((add_flags & SYMFILE_NO_READ) == 0)
807 require_partial_symbols (objfile, false);
808 }
809
810 /* Initialize entry point information for this objfile. */
811
812 static void
813 init_entry_point_info (struct objfile *objfile)
814 {
815 struct entry_info *ei = &objfile->per_bfd->ei;
816
817 if (ei->initialized)
818 return;
819 ei->initialized = 1;
820
821 /* Save startup file's range of PC addresses to help blockframe.c
822 decide where the bottom of the stack is. */
823
824 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
825 {
826 /* Executable file -- record its entry point so we'll recognize
827 the startup file because it contains the entry point. */
828 ei->entry_point = bfd_get_start_address (objfile->obfd);
829 ei->entry_point_p = 1;
830 }
831 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
832 && bfd_get_start_address (objfile->obfd) != 0)
833 {
834 /* Some shared libraries may have entry points set and be
835 runnable. There's no clear way to indicate this, so just check
836 for values other than zero. */
837 ei->entry_point = bfd_get_start_address (objfile->obfd);
838 ei->entry_point_p = 1;
839 }
840 else
841 {
842 /* Examination of non-executable.o files. Short-circuit this stuff. */
843 ei->entry_point_p = 0;
844 }
845
846 if (ei->entry_point_p)
847 {
848 struct obj_section *osect;
849 CORE_ADDR entry_point = ei->entry_point;
850 int found;
851
852 /* Make certain that the address points at real code, and not a
853 function descriptor. */
854 entry_point
855 = gdbarch_convert_from_func_ptr_addr (objfile->arch (),
856 entry_point,
857 current_top_target ());
858
859 /* Remove any ISA markers, so that this matches entries in the
860 symbol table. */
861 ei->entry_point
862 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
863
864 found = 0;
865 ALL_OBJFILE_OSECTIONS (objfile, osect)
866 {
867 struct bfd_section *sect = osect->the_bfd_section;
868
869 if (entry_point >= bfd_section_vma (sect)
870 && entry_point < (bfd_section_vma (sect)
871 + bfd_section_size (sect)))
872 {
873 ei->the_bfd_section_index
874 = gdb_bfd_section_index (objfile->obfd, sect);
875 found = 1;
876 break;
877 }
878 }
879
880 if (!found)
881 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
882 }
883 }
884
885 /* Process a symbol file, as either the main file or as a dynamically
886 loaded file.
887
888 This function does not set the OBJFILE's entry-point info.
889
890 OBJFILE is where the symbols are to be read from.
891
892 ADDRS is the list of section load addresses. If the user has given
893 an 'add-symbol-file' command, then this is the list of offsets and
894 addresses he or she provided as arguments to the command; or, if
895 we're handling a shared library, these are the actual addresses the
896 sections are loaded at, according to the inferior's dynamic linker
897 (as gleaned by GDB's shared library code). We convert each address
898 into an offset from the section VMA's as it appears in the object
899 file, and then call the file's sym_offsets function to convert this
900 into a format-specific offset table --- a `section_offsets'.
901 The sectindex field is used to control the ordering of sections
902 with the same name. Upon return, it is updated to contain the
903 corresponding BFD section index, or -1 if the section was not found.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and whether
907 breakpoint reset should be deferred. */
908
909 static void
910 syms_from_objfile_1 (struct objfile *objfile,
911 section_addr_info *addrs,
912 symfile_add_flags add_flags)
913 {
914 section_addr_info local_addr;
915 const int mainline = add_flags & SYMFILE_MAINLINE;
916
917 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
918
919 if (objfile->sf == NULL)
920 {
921 /* No symbols to load, but we still need to make sure
922 that the section_offsets table is allocated. */
923 int num_sections = gdb_bfd_count_sections (objfile->obfd);
924
925 objfile->section_offsets.assign (num_sections, 0);
926 return;
927 }
928
929 /* Make sure that partially constructed symbol tables will be cleaned up
930 if an error occurs during symbol reading. */
931 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
932
933 objfile_up objfile_holder (objfile);
934
935 /* If ADDRS is NULL, put together a dummy address list.
936 We now establish the convention that an addr of zero means
937 no load address was specified. */
938 if (! addrs)
939 addrs = &local_addr;
940
941 if (mainline)
942 {
943 /* We will modify the main symbol table, make sure that all its users
944 will be cleaned up if an error occurs during symbol reading. */
945 defer_clear_users.emplace ((symfile_add_flag) 0);
946
947 /* Since no error yet, throw away the old symbol table. */
948
949 if (symfile_objfile != NULL)
950 {
951 symfile_objfile->unlink ();
952 gdb_assert (symfile_objfile == NULL);
953 }
954
955 /* Currently we keep symbols from the add-symbol-file command.
956 If the user wants to get rid of them, they should do "symbol-file"
957 without arguments first. Not sure this is the best behavior
958 (PR 2207). */
959
960 (*objfile->sf->sym_new_init) (objfile);
961 }
962
963 /* Convert addr into an offset rather than an absolute address.
964 We find the lowest address of a loaded segment in the objfile,
965 and assume that <addr> is where that got loaded.
966
967 We no longer warn if the lowest section is not a text segment (as
968 happens for the PA64 port. */
969 if (addrs->size () > 0)
970 addr_info_make_relative (addrs, objfile->obfd);
971
972 /* Initialize symbol reading routines for this objfile, allow complaints to
973 appear for this new file, and record how verbose to be, then do the
974 initial symbol reading for this file. */
975
976 (*objfile->sf->sym_init) (objfile);
977 clear_complaints ();
978
979 (*objfile->sf->sym_offsets) (objfile, *addrs);
980
981 read_symbols (objfile, add_flags);
982
983 /* Discard cleanups as symbol reading was successful. */
984
985 objfile_holder.release ();
986 if (defer_clear_users)
987 defer_clear_users->release ();
988 }
989
990 /* Same as syms_from_objfile_1, but also initializes the objfile
991 entry-point info. */
992
993 static void
994 syms_from_objfile (struct objfile *objfile,
995 section_addr_info *addrs,
996 symfile_add_flags add_flags)
997 {
998 syms_from_objfile_1 (objfile, addrs, add_flags);
999 init_entry_point_info (objfile);
1000 }
1001
1002 /* Perform required actions after either reading in the initial
1003 symbols for a new objfile, or mapping in the symbols from a reusable
1004 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1005
1006 static void
1007 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1008 {
1009 /* If this is the main symbol file we have to clean up all users of the
1010 old main symbol file. Otherwise it is sufficient to fixup all the
1011 breakpoints that may have been redefined by this symbol file. */
1012 if (add_flags & SYMFILE_MAINLINE)
1013 {
1014 /* OK, make it the "real" symbol file. */
1015 symfile_objfile = objfile;
1016
1017 clear_symtab_users (add_flags);
1018 }
1019 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1020 {
1021 breakpoint_re_set ();
1022 }
1023
1024 /* We're done reading the symbol file; finish off complaints. */
1025 clear_complaints ();
1026 }
1027
1028 /* Process a symbol file, as either the main file or as a dynamically
1029 loaded file.
1030
1031 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1032 A new reference is acquired by this function.
1033
1034 For NAME description see the objfile constructor.
1035
1036 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1037 extra, such as dynamically loaded code, and what to do with breakpoints.
1038
1039 ADDRS is as described for syms_from_objfile_1, above.
1040 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1041
1042 PARENT is the original objfile if ABFD is a separate debug info file.
1043 Otherwise PARENT is NULL.
1044
1045 Upon success, returns a pointer to the objfile that was added.
1046 Upon failure, jumps back to command level (never returns). */
1047
1048 static struct objfile *
1049 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1050 symfile_add_flags add_flags,
1051 section_addr_info *addrs,
1052 objfile_flags flags, struct objfile *parent)
1053 {
1054 struct objfile *objfile;
1055 const int from_tty = add_flags & SYMFILE_VERBOSE;
1056 const int mainline = add_flags & SYMFILE_MAINLINE;
1057 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1058 && (readnow_symbol_files
1059 || (add_flags & SYMFILE_NO_READ) == 0));
1060
1061 if (readnow_symbol_files)
1062 {
1063 flags |= OBJF_READNOW;
1064 add_flags &= ~SYMFILE_NO_READ;
1065 }
1066 else if (readnever_symbol_files
1067 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1068 {
1069 flags |= OBJF_READNEVER;
1070 add_flags |= SYMFILE_NO_READ;
1071 }
1072 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1073 flags |= OBJF_NOT_FILENAME;
1074
1075 /* Give user a chance to burp if we'd be
1076 interactively wiping out any existing symbols. */
1077
1078 if ((have_full_symbols () || have_partial_symbols ())
1079 && mainline
1080 && from_tty
1081 && !query (_("Load new symbol table from \"%s\"? "), name))
1082 error (_("Not confirmed."));
1083
1084 if (mainline)
1085 flags |= OBJF_MAINLINE;
1086 objfile = objfile::make (abfd, name, flags, parent);
1087
1088 /* We either created a new mapped symbol table, mapped an existing
1089 symbol table file which has not had initial symbol reading
1090 performed, or need to read an unmapped symbol table. */
1091 if (should_print)
1092 {
1093 if (deprecated_pre_add_symbol_hook)
1094 deprecated_pre_add_symbol_hook (name);
1095 else
1096 printf_filtered (_("Reading symbols from %ps...\n"),
1097 styled_string (file_name_style.style (), name));
1098 }
1099 syms_from_objfile (objfile, addrs, add_flags);
1100
1101 /* We now have at least a partial symbol table. Check to see if the
1102 user requested that all symbols be read on initial access via either
1103 the gdb startup command line or on a per symbol file basis. Expand
1104 all partial symbol tables for this objfile if so. */
1105
1106 if ((flags & OBJF_READNOW))
1107 {
1108 if (should_print)
1109 printf_filtered (_("Expanding full symbols from %ps...\n"),
1110 styled_string (file_name_style.style (), name));
1111
1112 if (objfile->sf)
1113 objfile->sf->qf->expand_all_symtabs (objfile);
1114 }
1115
1116 /* Note that we only print a message if we have no symbols and have
1117 no separate debug file. If there is a separate debug file which
1118 does not have symbols, we'll have emitted this message for that
1119 file, and so printing it twice is just redundant. */
1120 if (should_print && !objfile_has_symbols (objfile)
1121 && objfile->separate_debug_objfile == nullptr)
1122 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1123 styled_string (file_name_style.style (), name));
1124
1125 if (should_print)
1126 {
1127 if (deprecated_post_add_symbol_hook)
1128 deprecated_post_add_symbol_hook ();
1129 }
1130
1131 /* We print some messages regardless of whether 'from_tty ||
1132 info_verbose' is true, so make sure they go out at the right
1133 time. */
1134 gdb_flush (gdb_stdout);
1135
1136 if (objfile->sf == NULL)
1137 {
1138 gdb::observers::new_objfile.notify (objfile);
1139 return objfile; /* No symbols. */
1140 }
1141
1142 finish_new_objfile (objfile, add_flags);
1143
1144 gdb::observers::new_objfile.notify (objfile);
1145
1146 bfd_cache_close_all ();
1147 return (objfile);
1148 }
1149
1150 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1151 see the objfile constructor. */
1152
1153 void
1154 symbol_file_add_separate (bfd *bfd, const char *name,
1155 symfile_add_flags symfile_flags,
1156 struct objfile *objfile)
1157 {
1158 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1159 because sections of BFD may not match sections of OBJFILE and because
1160 vma may have been modified by tools such as prelink. */
1161 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1162
1163 symbol_file_add_with_addrs
1164 (bfd, name, symfile_flags, &sap,
1165 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1166 | OBJF_USERLOADED | OBJF_MAINLINE),
1167 objfile);
1168 }
1169
1170 /* Process the symbol file ABFD, as either the main file or as a
1171 dynamically loaded file.
1172 See symbol_file_add_with_addrs's comments for details. */
1173
1174 struct objfile *
1175 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1176 symfile_add_flags add_flags,
1177 section_addr_info *addrs,
1178 objfile_flags flags, struct objfile *parent)
1179 {
1180 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1181 parent);
1182 }
1183
1184 /* Process a symbol file, as either the main file or as a dynamically
1185 loaded file. See symbol_file_add_with_addrs's comments for details. */
1186
1187 struct objfile *
1188 symbol_file_add (const char *name, symfile_add_flags add_flags,
1189 section_addr_info *addrs, objfile_flags flags)
1190 {
1191 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1192
1193 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1194 flags, NULL);
1195 }
1196
1197 /* Call symbol_file_add() with default values and update whatever is
1198 affected by the loading of a new main().
1199 Used when the file is supplied in the gdb command line
1200 and by some targets with special loading requirements.
1201 The auxiliary function, symbol_file_add_main_1(), has the flags
1202 argument for the switches that can only be specified in the symbol_file
1203 command itself. */
1204
1205 void
1206 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1207 {
1208 symbol_file_add_main_1 (args, add_flags, 0, 0);
1209 }
1210
1211 static void
1212 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1213 objfile_flags flags, CORE_ADDR reloff)
1214 {
1215 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1216
1217 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1218 if (reloff != 0)
1219 objfile_rebase (objfile, reloff);
1220
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1224
1225 if ((add_flags & SYMFILE_NO_READ) == 0)
1226 set_initial_language ();
1227 }
1228
1229 void
1230 symbol_file_clear (int from_tty)
1231 {
1232 if ((have_full_symbols () || have_partial_symbols ())
1233 && from_tty
1234 && (symfile_objfile
1235 ? !query (_("Discard symbol table from `%s'? "),
1236 objfile_name (symfile_objfile))
1237 : !query (_("Discard symbol table? "))))
1238 error (_("Not confirmed."));
1239
1240 /* solib descriptors may have handles to objfiles. Wipe them before their
1241 objfiles get stale by free_all_objfiles. */
1242 no_shared_libraries (NULL, from_tty);
1243
1244 current_program_space->free_all_objfiles ();
1245
1246 clear_symtab_users (0);
1247
1248 gdb_assert (symfile_objfile == NULL);
1249 if (from_tty)
1250 printf_filtered (_("No symbol file now.\n"));
1251 }
1252
1253 /* See symfile.h. */
1254
1255 bool separate_debug_file_debug = false;
1256
1257 static int
1258 separate_debug_file_exists (const std::string &name, unsigned long crc,
1259 struct objfile *parent_objfile)
1260 {
1261 unsigned long file_crc;
1262 int file_crc_p;
1263 struct stat parent_stat, abfd_stat;
1264 int verified_as_different;
1265
1266 /* Find a separate debug info file as if symbols would be present in
1267 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1268 section can contain just the basename of PARENT_OBJFILE without any
1269 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1270 the separate debug infos with the same basename can exist. */
1271
1272 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1273 return 0;
1274
1275 if (separate_debug_file_debug)
1276 {
1277 printf_filtered (_(" Trying %s..."), name.c_str ());
1278 gdb_flush (gdb_stdout);
1279 }
1280
1281 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1282
1283 if (abfd == NULL)
1284 {
1285 if (separate_debug_file_debug)
1286 printf_filtered (_(" no, unable to open.\n"));
1287
1288 return 0;
1289 }
1290
1291 /* Verify symlinks were not the cause of filename_cmp name difference above.
1292
1293 Some operating systems, e.g. Windows, do not provide a meaningful
1294 st_ino; they always set it to zero. (Windows does provide a
1295 meaningful st_dev.) Files accessed from gdbservers that do not
1296 support the vFile:fstat packet will also have st_ino set to zero.
1297 Do not indicate a duplicate library in either case. While there
1298 is no guarantee that a system that provides meaningful inode
1299 numbers will never set st_ino to zero, this is merely an
1300 optimization, so we do not need to worry about false negatives. */
1301
1302 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1303 && abfd_stat.st_ino != 0
1304 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1305 {
1306 if (abfd_stat.st_dev == parent_stat.st_dev
1307 && abfd_stat.st_ino == parent_stat.st_ino)
1308 {
1309 if (separate_debug_file_debug)
1310 printf_filtered (_(" no, same file as the objfile.\n"));
1311
1312 return 0;
1313 }
1314 verified_as_different = 1;
1315 }
1316 else
1317 verified_as_different = 0;
1318
1319 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1320
1321 if (!file_crc_p)
1322 {
1323 if (separate_debug_file_debug)
1324 printf_filtered (_(" no, error computing CRC.\n"));
1325
1326 return 0;
1327 }
1328
1329 if (crc != file_crc)
1330 {
1331 unsigned long parent_crc;
1332
1333 /* If the files could not be verified as different with
1334 bfd_stat then we need to calculate the parent's CRC
1335 to verify whether the files are different or not. */
1336
1337 if (!verified_as_different)
1338 {
1339 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1340 {
1341 if (separate_debug_file_debug)
1342 printf_filtered (_(" no, error computing CRC.\n"));
1343
1344 return 0;
1345 }
1346 }
1347
1348 if (verified_as_different || parent_crc != file_crc)
1349 warning (_("the debug information found in \"%s\""
1350 " does not match \"%s\" (CRC mismatch).\n"),
1351 name.c_str (), objfile_name (parent_objfile));
1352
1353 if (separate_debug_file_debug)
1354 printf_filtered (_(" no, CRC doesn't match.\n"));
1355
1356 return 0;
1357 }
1358
1359 if (separate_debug_file_debug)
1360 printf_filtered (_(" yes!\n"));
1361
1362 return 1;
1363 }
1364
1365 char *debug_file_directory = NULL;
1366 static void
1367 show_debug_file_directory (struct ui_file *file, int from_tty,
1368 struct cmd_list_element *c, const char *value)
1369 {
1370 fprintf_filtered (file,
1371 _("The directory where separate debug "
1372 "symbols are searched for is \"%s\".\n"),
1373 value);
1374 }
1375
1376 #if ! defined (DEBUG_SUBDIRECTORY)
1377 #define DEBUG_SUBDIRECTORY ".debug"
1378 #endif
1379
1380 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1381 where the original file resides (may not be the same as
1382 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1383 looking for. CANON_DIR is the "realpath" form of DIR.
1384 DIR must contain a trailing '/'.
1385 Returns the path of the file with separate debug info, or an empty
1386 string. */
1387
1388 static std::string
1389 find_separate_debug_file (const char *dir,
1390 const char *canon_dir,
1391 const char *debuglink,
1392 unsigned long crc32, struct objfile *objfile)
1393 {
1394 if (separate_debug_file_debug)
1395 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1396 "%s\n"), objfile_name (objfile));
1397
1398 /* First try in the same directory as the original file. */
1399 std::string debugfile = dir;
1400 debugfile += debuglink;
1401
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 return debugfile;
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 debugfile = dir;
1407 debugfile += DEBUG_SUBDIRECTORY;
1408 debugfile += "/";
1409 debugfile += debuglink;
1410
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1412 return debugfile;
1413
1414 /* Then try in the global debugfile directories.
1415
1416 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1417 cause "/..." lookups. */
1418
1419 bool target_prefix = startswith (dir, "target:");
1420 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1421 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1422 = dirnames_to_char_ptr_vec (debug_file_directory);
1423 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1424
1425 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1426 convert the drive letter into a one-letter directory, so that the
1427 file name resulting from splicing below will be valid.
1428
1429 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1430 There are various remote-debugging scenarios where such a
1431 transformation of the drive letter might be required when GDB runs
1432 on a Posix host, see
1433
1434 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1435
1436 If some of those scenarios need to be supported, we will need to
1437 use a different condition for HAS_DRIVE_SPEC and a different macro
1438 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1439 std::string drive;
1440 if (HAS_DRIVE_SPEC (dir_notarget))
1441 {
1442 drive = dir_notarget[0];
1443 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1444 }
1445
1446 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1447 {
1448 debugfile = target_prefix ? "target:" : "";
1449 debugfile += debugdir.get ();
1450 debugfile += "/";
1451 debugfile += drive;
1452 debugfile += dir_notarget;
1453 debugfile += debuglink;
1454
1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1456 return debugfile;
1457
1458 const char *base_path = NULL;
1459 if (canon_dir != NULL)
1460 {
1461 if (canon_sysroot.get () != NULL)
1462 base_path = child_path (canon_sysroot.get (), canon_dir);
1463 else
1464 base_path = child_path (gdb_sysroot, canon_dir);
1465 }
1466 if (base_path != NULL)
1467 {
1468 /* If the file is in the sysroot, try using its base path in
1469 the global debugfile directory. */
1470 debugfile = target_prefix ? "target:" : "";
1471 debugfile += debugdir.get ();
1472 debugfile += "/";
1473 debugfile += base_path;
1474 debugfile += "/";
1475 debugfile += debuglink;
1476
1477 if (separate_debug_file_exists (debugfile, crc32, objfile))
1478 return debugfile;
1479
1480 /* If the file is in the sysroot, try using its base path in
1481 the sysroot's global debugfile directory. */
1482 debugfile = target_prefix ? "target:" : "";
1483 debugfile += gdb_sysroot;
1484 debugfile += debugdir.get ();
1485 debugfile += "/";
1486 debugfile += base_path;
1487 debugfile += "/";
1488 debugfile += debuglink;
1489
1490 if (separate_debug_file_exists (debugfile, crc32, objfile))
1491 return debugfile;
1492 }
1493
1494 }
1495
1496 return std::string ();
1497 }
1498
1499 /* Modify PATH to contain only "[/]directory/" part of PATH.
1500 If there were no directory separators in PATH, PATH will be empty
1501 string on return. */
1502
1503 static void
1504 terminate_after_last_dir_separator (char *path)
1505 {
1506 int i;
1507
1508 /* Strip off the final filename part, leaving the directory name,
1509 followed by a slash. The directory can be relative or absolute. */
1510 for (i = strlen(path) - 1; i >= 0; i--)
1511 if (IS_DIR_SEPARATOR (path[i]))
1512 break;
1513
1514 /* If I is -1 then no directory is present there and DIR will be "". */
1515 path[i + 1] = '\0';
1516 }
1517
1518 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1519 Returns pathname, or an empty string. */
1520
1521 std::string
1522 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1523 {
1524 unsigned long crc32;
1525
1526 gdb::unique_xmalloc_ptr<char> debuglink
1527 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1528
1529 if (debuglink == NULL)
1530 {
1531 /* There's no separate debug info, hence there's no way we could
1532 load it => no warning. */
1533 return std::string ();
1534 }
1535
1536 std::string dir = objfile_name (objfile);
1537 terminate_after_last_dir_separator (&dir[0]);
1538 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1539
1540 std::string debugfile
1541 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1542 debuglink.get (), crc32, objfile);
1543
1544 if (debugfile.empty ())
1545 {
1546 /* For PR gdb/9538, try again with realpath (if different from the
1547 original). */
1548
1549 struct stat st_buf;
1550
1551 if (lstat (objfile_name (objfile), &st_buf) == 0
1552 && S_ISLNK (st_buf.st_mode))
1553 {
1554 gdb::unique_xmalloc_ptr<char> symlink_dir
1555 (lrealpath (objfile_name (objfile)));
1556 if (symlink_dir != NULL)
1557 {
1558 terminate_after_last_dir_separator (symlink_dir.get ());
1559 if (dir != symlink_dir.get ())
1560 {
1561 /* Different directory, so try using it. */
1562 debugfile = find_separate_debug_file (symlink_dir.get (),
1563 symlink_dir.get (),
1564 debuglink.get (),
1565 crc32,
1566 objfile);
1567 }
1568 }
1569 }
1570 }
1571
1572 return debugfile;
1573 }
1574
1575 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1576 simultaneously. */
1577
1578 static void
1579 validate_readnow_readnever (objfile_flags flags)
1580 {
1581 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1582 error (_("-readnow and -readnever cannot be used simultaneously"));
1583 }
1584
1585 /* This is the symbol-file command. Read the file, analyze its
1586 symbols, and add a struct symtab to a symtab list. The syntax of
1587 the command is rather bizarre:
1588
1589 1. The function buildargv implements various quoting conventions
1590 which are undocumented and have little or nothing in common with
1591 the way things are quoted (or not quoted) elsewhere in GDB.
1592
1593 2. Options are used, which are not generally used in GDB (perhaps
1594 "set mapped on", "set readnow on" would be better)
1595
1596 3. The order of options matters, which is contrary to GNU
1597 conventions (because it is confusing and inconvenient). */
1598
1599 void
1600 symbol_file_command (const char *args, int from_tty)
1601 {
1602 dont_repeat ();
1603
1604 if (args == NULL)
1605 {
1606 symbol_file_clear (from_tty);
1607 }
1608 else
1609 {
1610 objfile_flags flags = OBJF_USERLOADED;
1611 symfile_add_flags add_flags = 0;
1612 char *name = NULL;
1613 bool stop_processing_options = false;
1614 CORE_ADDR offset = 0;
1615 int idx;
1616 char *arg;
1617
1618 if (from_tty)
1619 add_flags |= SYMFILE_VERBOSE;
1620
1621 gdb_argv built_argv (args);
1622 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1623 {
1624 if (stop_processing_options || *arg != '-')
1625 {
1626 if (name == NULL)
1627 name = arg;
1628 else
1629 error (_("Unrecognized argument \"%s\""), arg);
1630 }
1631 else if (strcmp (arg, "-readnow") == 0)
1632 flags |= OBJF_READNOW;
1633 else if (strcmp (arg, "-readnever") == 0)
1634 flags |= OBJF_READNEVER;
1635 else if (strcmp (arg, "-o") == 0)
1636 {
1637 arg = built_argv[++idx];
1638 if (arg == NULL)
1639 error (_("Missing argument to -o"));
1640
1641 offset = parse_and_eval_address (arg);
1642 }
1643 else if (strcmp (arg, "--") == 0)
1644 stop_processing_options = true;
1645 else
1646 error (_("Unrecognized argument \"%s\""), arg);
1647 }
1648
1649 if (name == NULL)
1650 error (_("no symbol file name was specified"));
1651
1652 validate_readnow_readnever (flags);
1653
1654 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1655 (Position Independent Executable) main symbol file will only be
1656 computed by the solib_create_inferior_hook below. Without it,
1657 breakpoint_re_set would fail to insert the breakpoints with the zero
1658 displacement. */
1659 add_flags |= SYMFILE_DEFER_BP_RESET;
1660
1661 symbol_file_add_main_1 (name, add_flags, flags, offset);
1662
1663 solib_create_inferior_hook (from_tty);
1664
1665 /* Now it's safe to re-add the breakpoints. */
1666 breakpoint_re_set ();
1667 }
1668 }
1669
1670 /* Set the initial language. */
1671
1672 void
1673 set_initial_language (void)
1674 {
1675 if (language_mode == language_mode_manual)
1676 return;
1677 enum language lang = main_language ();
1678 /* Make C the default language. */
1679 enum language default_lang = language_c;
1680
1681 if (lang == language_unknown)
1682 {
1683 const char *name = main_name ();
1684 struct symbol *sym
1685 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1686 NULL).symbol;
1687
1688 if (sym != NULL)
1689 lang = sym->language ();
1690 }
1691
1692 if (lang == language_unknown)
1693 {
1694 lang = default_lang;
1695 }
1696
1697 set_language (lang);
1698 expected_language = current_language; /* Don't warn the user. */
1699 }
1700
1701 /* Open the file specified by NAME and hand it off to BFD for
1702 preliminary analysis. Return a newly initialized bfd *, which
1703 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1704 absolute). In case of trouble, error() is called. */
1705
1706 gdb_bfd_ref_ptr
1707 symfile_bfd_open (const char *name)
1708 {
1709 int desc = -1;
1710
1711 gdb::unique_xmalloc_ptr<char> absolute_name;
1712 if (!is_target_filename (name))
1713 {
1714 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1715
1716 /* Look down path for it, allocate 2nd new malloc'd copy. */
1717 desc = openp (getenv ("PATH"),
1718 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1719 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1720 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1721 if (desc < 0)
1722 {
1723 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1724
1725 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1726 desc = openp (getenv ("PATH"),
1727 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1728 exename, O_RDONLY | O_BINARY, &absolute_name);
1729 }
1730 #endif
1731 if (desc < 0)
1732 perror_with_name (expanded_name.get ());
1733
1734 name = absolute_name.get ();
1735 }
1736
1737 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1738 if (sym_bfd == NULL)
1739 error (_("`%s': can't open to read symbols: %s."), name,
1740 bfd_errmsg (bfd_get_error ()));
1741
1742 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1743 bfd_set_cacheable (sym_bfd.get (), 1);
1744
1745 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1746 error (_("`%s': can't read symbols: %s."), name,
1747 bfd_errmsg (bfd_get_error ()));
1748
1749 return sym_bfd;
1750 }
1751
1752 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1753 the section was not found. */
1754
1755 int
1756 get_section_index (struct objfile *objfile, const char *section_name)
1757 {
1758 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1759
1760 if (sect)
1761 return sect->index;
1762 else
1763 return -1;
1764 }
1765
1766 /* Link SF into the global symtab_fns list.
1767 FLAVOUR is the file format that SF handles.
1768 Called on startup by the _initialize routine in each object file format
1769 reader, to register information about each format the reader is prepared
1770 to handle. */
1771
1772 void
1773 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1774 {
1775 symtab_fns.emplace_back (flavour, sf);
1776 }
1777
1778 /* Initialize OBJFILE to read symbols from its associated BFD. It
1779 either returns or calls error(). The result is an initialized
1780 struct sym_fns in the objfile structure, that contains cached
1781 information about the symbol file. */
1782
1783 static const struct sym_fns *
1784 find_sym_fns (bfd *abfd)
1785 {
1786 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1787
1788 if (our_flavour == bfd_target_srec_flavour
1789 || our_flavour == bfd_target_ihex_flavour
1790 || our_flavour == bfd_target_tekhex_flavour)
1791 return NULL; /* No symbols. */
1792
1793 for (const registered_sym_fns &rsf : symtab_fns)
1794 if (our_flavour == rsf.sym_flavour)
1795 return rsf.sym_fns;
1796
1797 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1798 bfd_get_target (abfd));
1799 }
1800 \f
1801
1802 /* This function runs the load command of our current target. */
1803
1804 static void
1805 load_command (const char *arg, int from_tty)
1806 {
1807 dont_repeat ();
1808
1809 /* The user might be reloading because the binary has changed. Take
1810 this opportunity to check. */
1811 reopen_exec_file ();
1812 reread_symbols ();
1813
1814 std::string temp;
1815 if (arg == NULL)
1816 {
1817 const char *parg, *prev;
1818
1819 arg = get_exec_file (1);
1820
1821 /* We may need to quote this string so buildargv can pull it
1822 apart. */
1823 prev = parg = arg;
1824 while ((parg = strpbrk (parg, "\\\"'\t ")))
1825 {
1826 temp.append (prev, parg - prev);
1827 prev = parg++;
1828 temp.push_back ('\\');
1829 }
1830 /* If we have not copied anything yet, then we didn't see a
1831 character to quote, and we can just leave ARG unchanged. */
1832 if (!temp.empty ())
1833 {
1834 temp.append (prev);
1835 arg = temp.c_str ();
1836 }
1837 }
1838
1839 target_load (arg, from_tty);
1840
1841 /* After re-loading the executable, we don't really know which
1842 overlays are mapped any more. */
1843 overlay_cache_invalid = 1;
1844 }
1845
1846 /* This version of "load" should be usable for any target. Currently
1847 it is just used for remote targets, not inftarg.c or core files,
1848 on the theory that only in that case is it useful.
1849
1850 Avoiding xmodem and the like seems like a win (a) because we don't have
1851 to worry about finding it, and (b) On VMS, fork() is very slow and so
1852 we don't want to run a subprocess. On the other hand, I'm not sure how
1853 performance compares. */
1854
1855 static int validate_download = 0;
1856
1857 /* Callback service function for generic_load (bfd_map_over_sections). */
1858
1859 static void
1860 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1861 {
1862 bfd_size_type *sum = (bfd_size_type *) data;
1863
1864 *sum += bfd_section_size (asec);
1865 }
1866
1867 /* Opaque data for load_progress. */
1868 struct load_progress_data
1869 {
1870 /* Cumulative data. */
1871 unsigned long write_count = 0;
1872 unsigned long data_count = 0;
1873 bfd_size_type total_size = 0;
1874 };
1875
1876 /* Opaque data for load_progress for a single section. */
1877 struct load_progress_section_data
1878 {
1879 load_progress_section_data (load_progress_data *cumulative_,
1880 const char *section_name_, ULONGEST section_size_,
1881 CORE_ADDR lma_, gdb_byte *buffer_)
1882 : cumulative (cumulative_), section_name (section_name_),
1883 section_size (section_size_), lma (lma_), buffer (buffer_)
1884 {}
1885
1886 struct load_progress_data *cumulative;
1887
1888 /* Per-section data. */
1889 const char *section_name;
1890 ULONGEST section_sent = 0;
1891 ULONGEST section_size;
1892 CORE_ADDR lma;
1893 gdb_byte *buffer;
1894 };
1895
1896 /* Opaque data for load_section_callback. */
1897 struct load_section_data
1898 {
1899 load_section_data (load_progress_data *progress_data_)
1900 : progress_data (progress_data_)
1901 {}
1902
1903 ~load_section_data ()
1904 {
1905 for (auto &&request : requests)
1906 {
1907 xfree (request.data);
1908 delete ((load_progress_section_data *) request.baton);
1909 }
1910 }
1911
1912 CORE_ADDR load_offset = 0;
1913 struct load_progress_data *progress_data;
1914 std::vector<struct memory_write_request> requests;
1915 };
1916
1917 /* Target write callback routine for progress reporting. */
1918
1919 static void
1920 load_progress (ULONGEST bytes, void *untyped_arg)
1921 {
1922 struct load_progress_section_data *args
1923 = (struct load_progress_section_data *) untyped_arg;
1924 struct load_progress_data *totals;
1925
1926 if (args == NULL)
1927 /* Writing padding data. No easy way to get at the cumulative
1928 stats, so just ignore this. */
1929 return;
1930
1931 totals = args->cumulative;
1932
1933 if (bytes == 0 && args->section_sent == 0)
1934 {
1935 /* The write is just starting. Let the user know we've started
1936 this section. */
1937 current_uiout->message ("Loading section %s, size %s lma %s\n",
1938 args->section_name,
1939 hex_string (args->section_size),
1940 paddress (target_gdbarch (), args->lma));
1941 return;
1942 }
1943
1944 if (validate_download)
1945 {
1946 /* Broken memories and broken monitors manifest themselves here
1947 when bring new computers to life. This doubles already slow
1948 downloads. */
1949 /* NOTE: cagney/1999-10-18: A more efficient implementation
1950 might add a verify_memory() method to the target vector and
1951 then use that. remote.c could implement that method using
1952 the ``qCRC'' packet. */
1953 gdb::byte_vector check (bytes);
1954
1955 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1956 error (_("Download verify read failed at %s"),
1957 paddress (target_gdbarch (), args->lma));
1958 if (memcmp (args->buffer, check.data (), bytes) != 0)
1959 error (_("Download verify compare failed at %s"),
1960 paddress (target_gdbarch (), args->lma));
1961 }
1962 totals->data_count += bytes;
1963 args->lma += bytes;
1964 args->buffer += bytes;
1965 totals->write_count += 1;
1966 args->section_sent += bytes;
1967 if (check_quit_flag ()
1968 || (deprecated_ui_load_progress_hook != NULL
1969 && deprecated_ui_load_progress_hook (args->section_name,
1970 args->section_sent)))
1971 error (_("Canceled the download"));
1972
1973 if (deprecated_show_load_progress != NULL)
1974 deprecated_show_load_progress (args->section_name,
1975 args->section_sent,
1976 args->section_size,
1977 totals->data_count,
1978 totals->total_size);
1979 }
1980
1981 /* Callback service function for generic_load (bfd_map_over_sections). */
1982
1983 static void
1984 load_section_callback (bfd *abfd, asection *asec, void *data)
1985 {
1986 struct load_section_data *args = (struct load_section_data *) data;
1987 bfd_size_type size = bfd_section_size (asec);
1988 const char *sect_name = bfd_section_name (asec);
1989
1990 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1991 return;
1992
1993 if (size == 0)
1994 return;
1995
1996 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1997 ULONGEST end = begin + size;
1998 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1999 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2000
2001 load_progress_section_data *section_data
2002 = new load_progress_section_data (args->progress_data, sect_name, size,
2003 begin, buffer);
2004
2005 args->requests.emplace_back (begin, end, buffer, section_data);
2006 }
2007
2008 static void print_transfer_performance (struct ui_file *stream,
2009 unsigned long data_count,
2010 unsigned long write_count,
2011 std::chrono::steady_clock::duration d);
2012
2013 /* See symfile.h. */
2014
2015 void
2016 generic_load (const char *args, int from_tty)
2017 {
2018 struct load_progress_data total_progress;
2019 struct load_section_data cbdata (&total_progress);
2020 struct ui_out *uiout = current_uiout;
2021
2022 if (args == NULL)
2023 error_no_arg (_("file to load"));
2024
2025 gdb_argv argv (args);
2026
2027 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2028
2029 if (argv[1] != NULL)
2030 {
2031 const char *endptr;
2032
2033 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2034
2035 /* If the last word was not a valid number then
2036 treat it as a file name with spaces in. */
2037 if (argv[1] == endptr)
2038 error (_("Invalid download offset:%s."), argv[1]);
2039
2040 if (argv[2] != NULL)
2041 error (_("Too many parameters."));
2042 }
2043
2044 /* Open the file for loading. */
2045 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2046 if (loadfile_bfd == NULL)
2047 perror_with_name (filename.get ());
2048
2049 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2050 {
2051 error (_("\"%s\" is not an object file: %s"), filename.get (),
2052 bfd_errmsg (bfd_get_error ()));
2053 }
2054
2055 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2056 (void *) &total_progress.total_size);
2057
2058 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2059
2060 using namespace std::chrono;
2061
2062 steady_clock::time_point start_time = steady_clock::now ();
2063
2064 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2065 load_progress) != 0)
2066 error (_("Load failed"));
2067
2068 steady_clock::time_point end_time = steady_clock::now ();
2069
2070 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2071 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2072 uiout->text ("Start address ");
2073 uiout->field_core_addr ("address", target_gdbarch (), entry);
2074 uiout->text (", load size ");
2075 uiout->field_unsigned ("load-size", total_progress.data_count);
2076 uiout->text ("\n");
2077 regcache_write_pc (get_current_regcache (), entry);
2078
2079 /* Reset breakpoints, now that we have changed the load image. For
2080 instance, breakpoints may have been set (or reset, by
2081 post_create_inferior) while connected to the target but before we
2082 loaded the program. In that case, the prologue analyzer could
2083 have read instructions from the target to find the right
2084 breakpoint locations. Loading has changed the contents of that
2085 memory. */
2086
2087 breakpoint_re_set ();
2088
2089 print_transfer_performance (gdb_stdout, total_progress.data_count,
2090 total_progress.write_count,
2091 end_time - start_time);
2092 }
2093
2094 /* Report on STREAM the performance of a memory transfer operation,
2095 such as 'load'. DATA_COUNT is the number of bytes transferred.
2096 WRITE_COUNT is the number of separate write operations, or 0, if
2097 that information is not available. TIME is how long the operation
2098 lasted. */
2099
2100 static void
2101 print_transfer_performance (struct ui_file *stream,
2102 unsigned long data_count,
2103 unsigned long write_count,
2104 std::chrono::steady_clock::duration time)
2105 {
2106 using namespace std::chrono;
2107 struct ui_out *uiout = current_uiout;
2108
2109 milliseconds ms = duration_cast<milliseconds> (time);
2110
2111 uiout->text ("Transfer rate: ");
2112 if (ms.count () > 0)
2113 {
2114 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2115
2116 if (uiout->is_mi_like_p ())
2117 {
2118 uiout->field_unsigned ("transfer-rate", rate * 8);
2119 uiout->text (" bits/sec");
2120 }
2121 else if (rate < 1024)
2122 {
2123 uiout->field_unsigned ("transfer-rate", rate);
2124 uiout->text (" bytes/sec");
2125 }
2126 else
2127 {
2128 uiout->field_unsigned ("transfer-rate", rate / 1024);
2129 uiout->text (" KB/sec");
2130 }
2131 }
2132 else
2133 {
2134 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2135 uiout->text (" bits in <1 sec");
2136 }
2137 if (write_count > 0)
2138 {
2139 uiout->text (", ");
2140 uiout->field_unsigned ("write-rate", data_count / write_count);
2141 uiout->text (" bytes/write");
2142 }
2143 uiout->text (".\n");
2144 }
2145
2146 /* Add an OFFSET to the start address of each section in OBJF, except
2147 sections that were specified in ADDRS. */
2148
2149 static void
2150 set_objfile_default_section_offset (struct objfile *objf,
2151 const section_addr_info &addrs,
2152 CORE_ADDR offset)
2153 {
2154 /* Add OFFSET to all sections by default. */
2155 section_offsets offsets (objf->section_offsets.size (), offset);
2156
2157 /* Create sorted lists of all sections in ADDRS as well as all
2158 sections in OBJF. */
2159
2160 std::vector<const struct other_sections *> addrs_sorted
2161 = addrs_section_sort (addrs);
2162
2163 section_addr_info objf_addrs
2164 = build_section_addr_info_from_objfile (objf);
2165 std::vector<const struct other_sections *> objf_addrs_sorted
2166 = addrs_section_sort (objf_addrs);
2167
2168 /* Walk the BFD section list, and if a matching section is found in
2169 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2170 unchanged.
2171
2172 Note that both lists may contain multiple sections with the same
2173 name, and then the sections from ADDRS are matched in BFD order
2174 (thanks to sectindex). */
2175
2176 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2177 = addrs_sorted.begin ();
2178 for (const other_sections *objf_sect : objf_addrs_sorted)
2179 {
2180 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2181 int cmp = -1;
2182
2183 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2184 {
2185 const struct other_sections *sect = *addrs_sorted_iter;
2186 const char *sect_name = addr_section_name (sect->name.c_str ());
2187 cmp = strcmp (sect_name, objf_name);
2188 if (cmp <= 0)
2189 ++addrs_sorted_iter;
2190 }
2191
2192 if (cmp == 0)
2193 offsets[objf_sect->sectindex] = 0;
2194 }
2195
2196 /* Apply the new section offsets. */
2197 objfile_relocate (objf, offsets);
2198 }
2199
2200 /* This function allows the addition of incrementally linked object files.
2201 It does not modify any state in the target, only in the debugger. */
2202
2203 static void
2204 add_symbol_file_command (const char *args, int from_tty)
2205 {
2206 struct gdbarch *gdbarch = get_current_arch ();
2207 gdb::unique_xmalloc_ptr<char> filename;
2208 char *arg;
2209 int argcnt = 0;
2210 struct objfile *objf;
2211 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2212 symfile_add_flags add_flags = 0;
2213
2214 if (from_tty)
2215 add_flags |= SYMFILE_VERBOSE;
2216
2217 struct sect_opt
2218 {
2219 const char *name;
2220 const char *value;
2221 };
2222
2223 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2224 bool stop_processing_options = false;
2225 CORE_ADDR offset = 0;
2226
2227 dont_repeat ();
2228
2229 if (args == NULL)
2230 error (_("add-symbol-file takes a file name and an address"));
2231
2232 bool seen_addr = false;
2233 bool seen_offset = false;
2234 gdb_argv argv (args);
2235
2236 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2237 {
2238 if (stop_processing_options || *arg != '-')
2239 {
2240 if (filename == NULL)
2241 {
2242 /* First non-option argument is always the filename. */
2243 filename.reset (tilde_expand (arg));
2244 }
2245 else if (!seen_addr)
2246 {
2247 /* The second non-option argument is always the text
2248 address at which to load the program. */
2249 sect_opts[0].value = arg;
2250 seen_addr = true;
2251 }
2252 else
2253 error (_("Unrecognized argument \"%s\""), arg);
2254 }
2255 else if (strcmp (arg, "-readnow") == 0)
2256 flags |= OBJF_READNOW;
2257 else if (strcmp (arg, "-readnever") == 0)
2258 flags |= OBJF_READNEVER;
2259 else if (strcmp (arg, "-s") == 0)
2260 {
2261 if (argv[argcnt + 1] == NULL)
2262 error (_("Missing section name after \"-s\""));
2263 else if (argv[argcnt + 2] == NULL)
2264 error (_("Missing section address after \"-s\""));
2265
2266 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2267
2268 sect_opts.push_back (sect);
2269 argcnt += 2;
2270 }
2271 else if (strcmp (arg, "-o") == 0)
2272 {
2273 arg = argv[++argcnt];
2274 if (arg == NULL)
2275 error (_("Missing argument to -o"));
2276
2277 offset = parse_and_eval_address (arg);
2278 seen_offset = true;
2279 }
2280 else if (strcmp (arg, "--") == 0)
2281 stop_processing_options = true;
2282 else
2283 error (_("Unrecognized argument \"%s\""), arg);
2284 }
2285
2286 if (filename == NULL)
2287 error (_("You must provide a filename to be loaded."));
2288
2289 validate_readnow_readnever (flags);
2290
2291 /* Print the prompt for the query below. And save the arguments into
2292 a sect_addr_info structure to be passed around to other
2293 functions. We have to split this up into separate print
2294 statements because hex_string returns a local static
2295 string. */
2296
2297 printf_unfiltered (_("add symbol table from file \"%s\""),
2298 filename.get ());
2299 section_addr_info section_addrs;
2300 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2301 if (!seen_addr)
2302 ++it;
2303 for (; it != sect_opts.end (); ++it)
2304 {
2305 CORE_ADDR addr;
2306 const char *val = it->value;
2307 const char *sec = it->name;
2308
2309 if (section_addrs.empty ())
2310 printf_unfiltered (_(" at\n"));
2311 addr = parse_and_eval_address (val);
2312
2313 /* Here we store the section offsets in the order they were
2314 entered on the command line. Every array element is
2315 assigned an ascending section index to preserve the above
2316 order over an unstable sorting algorithm. This dummy
2317 index is not used for any other purpose.
2318 */
2319 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2320 printf_filtered ("\t%s_addr = %s\n", sec,
2321 paddress (gdbarch, addr));
2322
2323 /* The object's sections are initialized when a
2324 call is made to build_objfile_section_table (objfile).
2325 This happens in reread_symbols.
2326 At this point, we don't know what file type this is,
2327 so we can't determine what section names are valid. */
2328 }
2329 if (seen_offset)
2330 printf_unfiltered (_("%s offset by %s\n"),
2331 (section_addrs.empty ()
2332 ? _(" with all sections")
2333 : _("with other sections")),
2334 paddress (gdbarch, offset));
2335 else if (section_addrs.empty ())
2336 printf_unfiltered ("\n");
2337
2338 if (from_tty && (!query ("%s", "")))
2339 error (_("Not confirmed."));
2340
2341 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2342 flags);
2343 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2344 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2345 filename.get ());
2346
2347 if (seen_offset)
2348 set_objfile_default_section_offset (objf, section_addrs, offset);
2349
2350 add_target_sections_of_objfile (objf);
2351
2352 /* Getting new symbols may change our opinion about what is
2353 frameless. */
2354 reinit_frame_cache ();
2355 }
2356 \f
2357
2358 /* This function removes a symbol file that was added via add-symbol-file. */
2359
2360 static void
2361 remove_symbol_file_command (const char *args, int from_tty)
2362 {
2363 struct objfile *objf = NULL;
2364 struct program_space *pspace = current_program_space;
2365
2366 dont_repeat ();
2367
2368 if (args == NULL)
2369 error (_("remove-symbol-file: no symbol file provided"));
2370
2371 gdb_argv argv (args);
2372
2373 if (strcmp (argv[0], "-a") == 0)
2374 {
2375 /* Interpret the next argument as an address. */
2376 CORE_ADDR addr;
2377
2378 if (argv[1] == NULL)
2379 error (_("Missing address argument"));
2380
2381 if (argv[2] != NULL)
2382 error (_("Junk after %s"), argv[1]);
2383
2384 addr = parse_and_eval_address (argv[1]);
2385
2386 for (objfile *objfile : current_program_space->objfiles ())
2387 {
2388 if ((objfile->flags & OBJF_USERLOADED) != 0
2389 && (objfile->flags & OBJF_SHARED) != 0
2390 && objfile->pspace == pspace
2391 && is_addr_in_objfile (addr, objfile))
2392 {
2393 objf = objfile;
2394 break;
2395 }
2396 }
2397 }
2398 else if (argv[0] != NULL)
2399 {
2400 /* Interpret the current argument as a file name. */
2401
2402 if (argv[1] != NULL)
2403 error (_("Junk after %s"), argv[0]);
2404
2405 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2406
2407 for (objfile *objfile : current_program_space->objfiles ())
2408 {
2409 if ((objfile->flags & OBJF_USERLOADED) != 0
2410 && (objfile->flags & OBJF_SHARED) != 0
2411 && objfile->pspace == pspace
2412 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2413 {
2414 objf = objfile;
2415 break;
2416 }
2417 }
2418 }
2419
2420 if (objf == NULL)
2421 error (_("No symbol file found"));
2422
2423 if (from_tty
2424 && !query (_("Remove symbol table from file \"%s\"? "),
2425 objfile_name (objf)))
2426 error (_("Not confirmed."));
2427
2428 objf->unlink ();
2429 clear_symtab_users (0);
2430 }
2431
2432 /* Re-read symbols if a symbol-file has changed. */
2433
2434 void
2435 reread_symbols (void)
2436 {
2437 long new_modtime;
2438 struct stat new_statbuf;
2439 int res;
2440 std::vector<struct objfile *> new_objfiles;
2441
2442 for (objfile *objfile : current_program_space->objfiles ())
2443 {
2444 if (objfile->obfd == NULL)
2445 continue;
2446
2447 /* Separate debug objfiles are handled in the main objfile. */
2448 if (objfile->separate_debug_objfile_backlink)
2449 continue;
2450
2451 /* If this object is from an archive (what you usually create with
2452 `ar', often called a `static library' on most systems, though
2453 a `shared library' on AIX is also an archive), then you should
2454 stat on the archive name, not member name. */
2455 if (objfile->obfd->my_archive)
2456 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2457 else
2458 res = stat (objfile_name (objfile), &new_statbuf);
2459 if (res != 0)
2460 {
2461 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2462 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2463 objfile_name (objfile));
2464 continue;
2465 }
2466 new_modtime = new_statbuf.st_mtime;
2467 if (new_modtime != objfile->mtime)
2468 {
2469 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2470 objfile_name (objfile));
2471
2472 /* There are various functions like symbol_file_add,
2473 symfile_bfd_open, syms_from_objfile, etc., which might
2474 appear to do what we want. But they have various other
2475 effects which we *don't* want. So we just do stuff
2476 ourselves. We don't worry about mapped files (for one thing,
2477 any mapped file will be out of date). */
2478
2479 /* If we get an error, blow away this objfile (not sure if
2480 that is the correct response for things like shared
2481 libraries). */
2482 objfile_up objfile_holder (objfile);
2483
2484 /* We need to do this whenever any symbols go away. */
2485 clear_symtab_users_cleanup defer_clear_users (0);
2486
2487 if (exec_bfd != NULL
2488 && filename_cmp (bfd_get_filename (objfile->obfd),
2489 bfd_get_filename (exec_bfd)) == 0)
2490 {
2491 /* Reload EXEC_BFD without asking anything. */
2492
2493 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2494 }
2495
2496 /* Keep the calls order approx. the same as in free_objfile. */
2497
2498 /* Free the separate debug objfiles. It will be
2499 automatically recreated by sym_read. */
2500 free_objfile_separate_debug (objfile);
2501
2502 /* Clear the stale source cache. */
2503 forget_cached_source_info ();
2504
2505 /* Remove any references to this objfile in the global
2506 value lists. */
2507 preserve_values (objfile);
2508
2509 /* Nuke all the state that we will re-read. Much of the following
2510 code which sets things to NULL really is necessary to tell
2511 other parts of GDB that there is nothing currently there.
2512
2513 Try to keep the freeing order compatible with free_objfile. */
2514
2515 if (objfile->sf != NULL)
2516 {
2517 (*objfile->sf->sym_finish) (objfile);
2518 }
2519
2520 clear_objfile_data (objfile);
2521
2522 /* Clean up any state BFD has sitting around. */
2523 {
2524 gdb_bfd_ref_ptr obfd (objfile->obfd);
2525 const char *obfd_filename;
2526
2527 obfd_filename = bfd_get_filename (objfile->obfd);
2528 /* Open the new BFD before freeing the old one, so that
2529 the filename remains live. */
2530 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2531 objfile->obfd = temp.release ();
2532 if (objfile->obfd == NULL)
2533 error (_("Can't open %s to read symbols."), obfd_filename);
2534 }
2535
2536 std::string original_name = objfile->original_name;
2537
2538 /* bfd_openr sets cacheable to true, which is what we want. */
2539 if (!bfd_check_format (objfile->obfd, bfd_object))
2540 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2541 bfd_errmsg (bfd_get_error ()));
2542
2543 objfile->reset_psymtabs ();
2544
2545 /* NB: after this call to obstack_free, objfiles_changed
2546 will need to be called (see discussion below). */
2547 obstack_free (&objfile->objfile_obstack, 0);
2548 objfile->sections = NULL;
2549 objfile->compunit_symtabs = NULL;
2550 objfile->template_symbols = NULL;
2551 objfile->static_links.reset (nullptr);
2552
2553 /* obstack_init also initializes the obstack so it is
2554 empty. We could use obstack_specify_allocation but
2555 gdb_obstack.h specifies the alloc/dealloc functions. */
2556 obstack_init (&objfile->objfile_obstack);
2557
2558 /* set_objfile_per_bfd potentially allocates the per-bfd
2559 data on the objfile's obstack (if sharing data across
2560 multiple users is not possible), so it's important to
2561 do it *after* the obstack has been initialized. */
2562 set_objfile_per_bfd (objfile);
2563
2564 objfile->original_name
2565 = obstack_strdup (&objfile->objfile_obstack, original_name);
2566
2567 /* Reset the sym_fns pointer. The ELF reader can change it
2568 based on whether .gdb_index is present, and we need it to
2569 start over. PR symtab/15885 */
2570 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2571
2572 build_objfile_section_table (objfile);
2573
2574 /* What the hell is sym_new_init for, anyway? The concept of
2575 distinguishing between the main file and additional files
2576 in this way seems rather dubious. */
2577 if (objfile == symfile_objfile)
2578 {
2579 (*objfile->sf->sym_new_init) (objfile);
2580 }
2581
2582 (*objfile->sf->sym_init) (objfile);
2583 clear_complaints ();
2584
2585 objfile->flags &= ~OBJF_PSYMTABS_READ;
2586
2587 /* We are about to read new symbols and potentially also
2588 DWARF information. Some targets may want to pass addresses
2589 read from DWARF DIE's through an adjustment function before
2590 saving them, like MIPS, which may call into
2591 "find_pc_section". When called, that function will make
2592 use of per-objfile program space data.
2593
2594 Since we discarded our section information above, we have
2595 dangling pointers in the per-objfile program space data
2596 structure. Force GDB to update the section mapping
2597 information by letting it know the objfile has changed,
2598 making the dangling pointers point to correct data
2599 again. */
2600
2601 objfiles_changed ();
2602
2603 read_symbols (objfile, 0);
2604
2605 if (!objfile_has_symbols (objfile))
2606 {
2607 wrap_here ("");
2608 printf_filtered (_("(no debugging symbols found)\n"));
2609 wrap_here ("");
2610 }
2611
2612 /* We're done reading the symbol file; finish off complaints. */
2613 clear_complaints ();
2614
2615 /* Getting new symbols may change our opinion about what is
2616 frameless. */
2617
2618 reinit_frame_cache ();
2619
2620 /* Discard cleanups as symbol reading was successful. */
2621 objfile_holder.release ();
2622 defer_clear_users.release ();
2623
2624 /* If the mtime has changed between the time we set new_modtime
2625 and now, we *want* this to be out of date, so don't call stat
2626 again now. */
2627 objfile->mtime = new_modtime;
2628 init_entry_point_info (objfile);
2629
2630 new_objfiles.push_back (objfile);
2631 }
2632 }
2633
2634 if (!new_objfiles.empty ())
2635 {
2636 clear_symtab_users (0);
2637
2638 /* clear_objfile_data for each objfile was called before freeing it and
2639 gdb::observers::new_objfile.notify (NULL) has been called by
2640 clear_symtab_users above. Notify the new files now. */
2641 for (auto iter : new_objfiles)
2642 gdb::observers::new_objfile.notify (iter);
2643
2644 /* At least one objfile has changed, so we can consider that
2645 the executable we're debugging has changed too. */
2646 gdb::observers::executable_changed.notify ();
2647 }
2648 }
2649 \f
2650
2651 struct filename_language
2652 {
2653 filename_language (const std::string &ext_, enum language lang_)
2654 : ext (ext_), lang (lang_)
2655 {}
2656
2657 std::string ext;
2658 enum language lang;
2659 };
2660
2661 static std::vector<filename_language> filename_language_table;
2662
2663 /* See symfile.h. */
2664
2665 void
2666 add_filename_language (const char *ext, enum language lang)
2667 {
2668 filename_language_table.emplace_back (ext, lang);
2669 }
2670
2671 static char *ext_args;
2672 static void
2673 show_ext_args (struct ui_file *file, int from_tty,
2674 struct cmd_list_element *c, const char *value)
2675 {
2676 fprintf_filtered (file,
2677 _("Mapping between filename extension "
2678 "and source language is \"%s\".\n"),
2679 value);
2680 }
2681
2682 static void
2683 set_ext_lang_command (const char *args,
2684 int from_tty, struct cmd_list_element *e)
2685 {
2686 char *cp = ext_args;
2687 enum language lang;
2688
2689 /* First arg is filename extension, starting with '.' */
2690 if (*cp != '.')
2691 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2692
2693 /* Find end of first arg. */
2694 while (*cp && !isspace (*cp))
2695 cp++;
2696
2697 if (*cp == '\0')
2698 error (_("'%s': two arguments required -- "
2699 "filename extension and language"),
2700 ext_args);
2701
2702 /* Null-terminate first arg. */
2703 *cp++ = '\0';
2704
2705 /* Find beginning of second arg, which should be a source language. */
2706 cp = skip_spaces (cp);
2707
2708 if (*cp == '\0')
2709 error (_("'%s': two arguments required -- "
2710 "filename extension and language"),
2711 ext_args);
2712
2713 /* Lookup the language from among those we know. */
2714 lang = language_enum (cp);
2715
2716 auto it = filename_language_table.begin ();
2717 /* Now lookup the filename extension: do we already know it? */
2718 for (; it != filename_language_table.end (); it++)
2719 {
2720 if (it->ext == ext_args)
2721 break;
2722 }
2723
2724 if (it == filename_language_table.end ())
2725 {
2726 /* New file extension. */
2727 add_filename_language (ext_args, lang);
2728 }
2729 else
2730 {
2731 /* Redefining a previously known filename extension. */
2732
2733 /* if (from_tty) */
2734 /* query ("Really make files of type %s '%s'?", */
2735 /* ext_args, language_str (lang)); */
2736
2737 it->lang = lang;
2738 }
2739 }
2740
2741 static void
2742 info_ext_lang_command (const char *args, int from_tty)
2743 {
2744 printf_filtered (_("Filename extensions and the languages they represent:"));
2745 printf_filtered ("\n\n");
2746 for (const filename_language &entry : filename_language_table)
2747 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2748 language_str (entry.lang));
2749 }
2750
2751 enum language
2752 deduce_language_from_filename (const char *filename)
2753 {
2754 const char *cp;
2755
2756 if (filename != NULL)
2757 if ((cp = strrchr (filename, '.')) != NULL)
2758 {
2759 for (const filename_language &entry : filename_language_table)
2760 if (entry.ext == cp)
2761 return entry.lang;
2762 }
2763
2764 return language_unknown;
2765 }
2766 \f
2767 /* Allocate and initialize a new symbol table.
2768 CUST is from the result of allocate_compunit_symtab. */
2769
2770 struct symtab *
2771 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2772 {
2773 struct objfile *objfile = cust->objfile;
2774 struct symtab *symtab
2775 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2776
2777 symtab->filename = objfile->intern (filename);
2778 symtab->fullname = NULL;
2779 symtab->language = deduce_language_from_filename (filename);
2780
2781 /* This can be very verbose with lots of headers.
2782 Only print at higher debug levels. */
2783 if (symtab_create_debug >= 2)
2784 {
2785 /* Be a bit clever with debugging messages, and don't print objfile
2786 every time, only when it changes. */
2787 static char *last_objfile_name = NULL;
2788
2789 if (last_objfile_name == NULL
2790 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2791 {
2792 xfree (last_objfile_name);
2793 last_objfile_name = xstrdup (objfile_name (objfile));
2794 fprintf_filtered (gdb_stdlog,
2795 "Creating one or more symtabs for objfile %s ...\n",
2796 last_objfile_name);
2797 }
2798 fprintf_filtered (gdb_stdlog,
2799 "Created symtab %s for module %s.\n",
2800 host_address_to_string (symtab), filename);
2801 }
2802
2803 /* Add it to CUST's list of symtabs. */
2804 if (cust->filetabs == NULL)
2805 {
2806 cust->filetabs = symtab;
2807 cust->last_filetab = symtab;
2808 }
2809 else
2810 {
2811 cust->last_filetab->next = symtab;
2812 cust->last_filetab = symtab;
2813 }
2814
2815 /* Backlink to the containing compunit symtab. */
2816 symtab->compunit_symtab = cust;
2817
2818 return symtab;
2819 }
2820
2821 /* Allocate and initialize a new compunit.
2822 NAME is the name of the main source file, if there is one, or some
2823 descriptive text if there are no source files. */
2824
2825 struct compunit_symtab *
2826 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2827 {
2828 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2829 struct compunit_symtab);
2830 const char *saved_name;
2831
2832 cu->objfile = objfile;
2833
2834 /* The name we record here is only for display/debugging purposes.
2835 Just save the basename to avoid path issues (too long for display,
2836 relative vs absolute, etc.). */
2837 saved_name = lbasename (name);
2838 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2839
2840 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2841
2842 if (symtab_create_debug)
2843 {
2844 fprintf_filtered (gdb_stdlog,
2845 "Created compunit symtab %s for %s.\n",
2846 host_address_to_string (cu),
2847 cu->name);
2848 }
2849
2850 return cu;
2851 }
2852
2853 /* Hook CU to the objfile it comes from. */
2854
2855 void
2856 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2857 {
2858 cu->next = cu->objfile->compunit_symtabs;
2859 cu->objfile->compunit_symtabs = cu;
2860 }
2861 \f
2862
2863 /* Reset all data structures in gdb which may contain references to
2864 symbol table data. */
2865
2866 void
2867 clear_symtab_users (symfile_add_flags add_flags)
2868 {
2869 /* Someday, we should do better than this, by only blowing away
2870 the things that really need to be blown. */
2871
2872 /* Clear the "current" symtab first, because it is no longer valid.
2873 breakpoint_re_set may try to access the current symtab. */
2874 clear_current_source_symtab_and_line ();
2875
2876 clear_displays ();
2877 clear_last_displayed_sal ();
2878 clear_pc_function_cache ();
2879 gdb::observers::new_objfile.notify (NULL);
2880
2881 /* Varobj may refer to old symbols, perform a cleanup. */
2882 varobj_invalidate ();
2883
2884 /* Now that the various caches have been cleared, we can re_set
2885 our breakpoints without risking it using stale data. */
2886 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2887 breakpoint_re_set ();
2888 }
2889 \f
2890 /* OVERLAYS:
2891 The following code implements an abstraction for debugging overlay sections.
2892
2893 The target model is as follows:
2894 1) The gnu linker will permit multiple sections to be mapped into the
2895 same VMA, each with its own unique LMA (or load address).
2896 2) It is assumed that some runtime mechanism exists for mapping the
2897 sections, one by one, from the load address into the VMA address.
2898 3) This code provides a mechanism for gdb to keep track of which
2899 sections should be considered to be mapped from the VMA to the LMA.
2900 This information is used for symbol lookup, and memory read/write.
2901 For instance, if a section has been mapped then its contents
2902 should be read from the VMA, otherwise from the LMA.
2903
2904 Two levels of debugger support for overlays are available. One is
2905 "manual", in which the debugger relies on the user to tell it which
2906 overlays are currently mapped. This level of support is
2907 implemented entirely in the core debugger, and the information about
2908 whether a section is mapped is kept in the objfile->obj_section table.
2909
2910 The second level of support is "automatic", and is only available if
2911 the target-specific code provides functionality to read the target's
2912 overlay mapping table, and translate its contents for the debugger
2913 (by updating the mapped state information in the obj_section tables).
2914
2915 The interface is as follows:
2916 User commands:
2917 overlay map <name> -- tell gdb to consider this section mapped
2918 overlay unmap <name> -- tell gdb to consider this section unmapped
2919 overlay list -- list the sections that GDB thinks are mapped
2920 overlay read-target -- get the target's state of what's mapped
2921 overlay off/manual/auto -- set overlay debugging state
2922 Functional interface:
2923 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2924 section, return that section.
2925 find_pc_overlay(pc): find any overlay section that contains
2926 the pc, either in its VMA or its LMA
2927 section_is_mapped(sect): true if overlay is marked as mapped
2928 section_is_overlay(sect): true if section's VMA != LMA
2929 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2930 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2931 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2932 overlay_mapped_address(...): map an address from section's LMA to VMA
2933 overlay_unmapped_address(...): map an address from section's VMA to LMA
2934 symbol_overlayed_address(...): Return a "current" address for symbol:
2935 either in VMA or LMA depending on whether
2936 the symbol's section is currently mapped. */
2937
2938 /* Overlay debugging state: */
2939
2940 enum overlay_debugging_state overlay_debugging = ovly_off;
2941 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2942
2943 /* Function: section_is_overlay (SECTION)
2944 Returns true if SECTION has VMA not equal to LMA, ie.
2945 SECTION is loaded at an address different from where it will "run". */
2946
2947 int
2948 section_is_overlay (struct obj_section *section)
2949 {
2950 if (overlay_debugging && section)
2951 {
2952 asection *bfd_section = section->the_bfd_section;
2953
2954 if (bfd_section_lma (bfd_section) != 0
2955 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2956 return 1;
2957 }
2958
2959 return 0;
2960 }
2961
2962 /* Function: overlay_invalidate_all (void)
2963 Invalidate the mapped state of all overlay sections (mark it as stale). */
2964
2965 static void
2966 overlay_invalidate_all (void)
2967 {
2968 struct obj_section *sect;
2969
2970 for (objfile *objfile : current_program_space->objfiles ())
2971 ALL_OBJFILE_OSECTIONS (objfile, sect)
2972 if (section_is_overlay (sect))
2973 sect->ovly_mapped = -1;
2974 }
2975
2976 /* Function: section_is_mapped (SECTION)
2977 Returns true if section is an overlay, and is currently mapped.
2978
2979 Access to the ovly_mapped flag is restricted to this function, so
2980 that we can do automatic update. If the global flag
2981 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2982 overlay_invalidate_all. If the mapped state of the particular
2983 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2984
2985 int
2986 section_is_mapped (struct obj_section *osect)
2987 {
2988 struct gdbarch *gdbarch;
2989
2990 if (osect == 0 || !section_is_overlay (osect))
2991 return 0;
2992
2993 switch (overlay_debugging)
2994 {
2995 default:
2996 case ovly_off:
2997 return 0; /* overlay debugging off */
2998 case ovly_auto: /* overlay debugging automatic */
2999 /* Unles there is a gdbarch_overlay_update function,
3000 there's really nothing useful to do here (can't really go auto). */
3001 gdbarch = osect->objfile->arch ();
3002 if (gdbarch_overlay_update_p (gdbarch))
3003 {
3004 if (overlay_cache_invalid)
3005 {
3006 overlay_invalidate_all ();
3007 overlay_cache_invalid = 0;
3008 }
3009 if (osect->ovly_mapped == -1)
3010 gdbarch_overlay_update (gdbarch, osect);
3011 }
3012 /* fall thru */
3013 case ovly_on: /* overlay debugging manual */
3014 return osect->ovly_mapped == 1;
3015 }
3016 }
3017
3018 /* Function: pc_in_unmapped_range
3019 If PC falls into the lma range of SECTION, return true, else false. */
3020
3021 CORE_ADDR
3022 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3023 {
3024 if (section_is_overlay (section))
3025 {
3026 asection *bfd_section = section->the_bfd_section;
3027
3028 /* We assume the LMA is relocated by the same offset as the VMA. */
3029 bfd_vma size = bfd_section_size (bfd_section);
3030 CORE_ADDR offset = obj_section_offset (section);
3031
3032 if (bfd_section_lma (bfd_section) + offset <= pc
3033 && pc < bfd_section_lma (bfd_section) + offset + size)
3034 return 1;
3035 }
3036
3037 return 0;
3038 }
3039
3040 /* Function: pc_in_mapped_range
3041 If PC falls into the vma range of SECTION, return true, else false. */
3042
3043 CORE_ADDR
3044 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3045 {
3046 if (section_is_overlay (section))
3047 {
3048 if (obj_section_addr (section) <= pc
3049 && pc < obj_section_endaddr (section))
3050 return 1;
3051 }
3052
3053 return 0;
3054 }
3055
3056 /* Return true if the mapped ranges of sections A and B overlap, false
3057 otherwise. */
3058
3059 static int
3060 sections_overlap (struct obj_section *a, struct obj_section *b)
3061 {
3062 CORE_ADDR a_start = obj_section_addr (a);
3063 CORE_ADDR a_end = obj_section_endaddr (a);
3064 CORE_ADDR b_start = obj_section_addr (b);
3065 CORE_ADDR b_end = obj_section_endaddr (b);
3066
3067 return (a_start < b_end && b_start < a_end);
3068 }
3069
3070 /* Function: overlay_unmapped_address (PC, SECTION)
3071 Returns the address corresponding to PC in the unmapped (load) range.
3072 May be the same as PC. */
3073
3074 CORE_ADDR
3075 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3076 {
3077 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3078 {
3079 asection *bfd_section = section->the_bfd_section;
3080
3081 return (pc + bfd_section_lma (bfd_section)
3082 - bfd_section_vma (bfd_section));
3083 }
3084
3085 return pc;
3086 }
3087
3088 /* Function: overlay_mapped_address (PC, SECTION)
3089 Returns the address corresponding to PC in the mapped (runtime) range.
3090 May be the same as PC. */
3091
3092 CORE_ADDR
3093 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3094 {
3095 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3096 {
3097 asection *bfd_section = section->the_bfd_section;
3098
3099 return (pc + bfd_section_vma (bfd_section)
3100 - bfd_section_lma (bfd_section));
3101 }
3102
3103 return pc;
3104 }
3105
3106 /* Function: symbol_overlayed_address
3107 Return one of two addresses (relative to the VMA or to the LMA),
3108 depending on whether the section is mapped or not. */
3109
3110 CORE_ADDR
3111 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3112 {
3113 if (overlay_debugging)
3114 {
3115 /* If the symbol has no section, just return its regular address. */
3116 if (section == 0)
3117 return address;
3118 /* If the symbol's section is not an overlay, just return its
3119 address. */
3120 if (!section_is_overlay (section))
3121 return address;
3122 /* If the symbol's section is mapped, just return its address. */
3123 if (section_is_mapped (section))
3124 return address;
3125 /*
3126 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3127 * then return its LOADED address rather than its vma address!!
3128 */
3129 return overlay_unmapped_address (address, section);
3130 }
3131 return address;
3132 }
3133
3134 /* Function: find_pc_overlay (PC)
3135 Return the best-match overlay section for PC:
3136 If PC matches a mapped overlay section's VMA, return that section.
3137 Else if PC matches an unmapped section's VMA, return that section.
3138 Else if PC matches an unmapped section's LMA, return that section. */
3139
3140 struct obj_section *
3141 find_pc_overlay (CORE_ADDR pc)
3142 {
3143 struct obj_section *osect, *best_match = NULL;
3144
3145 if (overlay_debugging)
3146 {
3147 for (objfile *objfile : current_program_space->objfiles ())
3148 ALL_OBJFILE_OSECTIONS (objfile, osect)
3149 if (section_is_overlay (osect))
3150 {
3151 if (pc_in_mapped_range (pc, osect))
3152 {
3153 if (section_is_mapped (osect))
3154 return osect;
3155 else
3156 best_match = osect;
3157 }
3158 else if (pc_in_unmapped_range (pc, osect))
3159 best_match = osect;
3160 }
3161 }
3162 return best_match;
3163 }
3164
3165 /* Function: find_pc_mapped_section (PC)
3166 If PC falls into the VMA address range of an overlay section that is
3167 currently marked as MAPPED, return that section. Else return NULL. */
3168
3169 struct obj_section *
3170 find_pc_mapped_section (CORE_ADDR pc)
3171 {
3172 struct obj_section *osect;
3173
3174 if (overlay_debugging)
3175 {
3176 for (objfile *objfile : current_program_space->objfiles ())
3177 ALL_OBJFILE_OSECTIONS (objfile, osect)
3178 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3179 return osect;
3180 }
3181
3182 return NULL;
3183 }
3184
3185 /* Function: list_overlays_command
3186 Print a list of mapped sections and their PC ranges. */
3187
3188 static void
3189 list_overlays_command (const char *args, int from_tty)
3190 {
3191 int nmapped = 0;
3192 struct obj_section *osect;
3193
3194 if (overlay_debugging)
3195 {
3196 for (objfile *objfile : current_program_space->objfiles ())
3197 ALL_OBJFILE_OSECTIONS (objfile, osect)
3198 if (section_is_mapped (osect))
3199 {
3200 struct gdbarch *gdbarch = objfile->arch ();
3201 const char *name;
3202 bfd_vma lma, vma;
3203 int size;
3204
3205 vma = bfd_section_vma (osect->the_bfd_section);
3206 lma = bfd_section_lma (osect->the_bfd_section);
3207 size = bfd_section_size (osect->the_bfd_section);
3208 name = bfd_section_name (osect->the_bfd_section);
3209
3210 printf_filtered ("Section %s, loaded at ", name);
3211 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3212 puts_filtered (" - ");
3213 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3214 printf_filtered (", mapped at ");
3215 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3216 puts_filtered (" - ");
3217 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3218 puts_filtered ("\n");
3219
3220 nmapped++;
3221 }
3222 }
3223 if (nmapped == 0)
3224 printf_filtered (_("No sections are mapped.\n"));
3225 }
3226
3227 /* Function: map_overlay_command
3228 Mark the named section as mapped (ie. residing at its VMA address). */
3229
3230 static void
3231 map_overlay_command (const char *args, int from_tty)
3232 {
3233 struct obj_section *sec, *sec2;
3234
3235 if (!overlay_debugging)
3236 error (_("Overlay debugging not enabled. Use "
3237 "either the 'overlay auto' or\n"
3238 "the 'overlay manual' command."));
3239
3240 if (args == 0 || *args == 0)
3241 error (_("Argument required: name of an overlay section"));
3242
3243 /* First, find a section matching the user supplied argument. */
3244 for (objfile *obj_file : current_program_space->objfiles ())
3245 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3246 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3247 {
3248 /* Now, check to see if the section is an overlay. */
3249 if (!section_is_overlay (sec))
3250 continue; /* not an overlay section */
3251
3252 /* Mark the overlay as "mapped". */
3253 sec->ovly_mapped = 1;
3254
3255 /* Next, make a pass and unmap any sections that are
3256 overlapped by this new section: */
3257 for (objfile *objfile2 : current_program_space->objfiles ())
3258 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3259 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3260 sec2))
3261 {
3262 if (info_verbose)
3263 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3264 bfd_section_name (sec2->the_bfd_section));
3265 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3266 }
3267 return;
3268 }
3269 error (_("No overlay section called %s"), args);
3270 }
3271
3272 /* Function: unmap_overlay_command
3273 Mark the overlay section as unmapped
3274 (ie. resident in its LMA address range, rather than the VMA range). */
3275
3276 static void
3277 unmap_overlay_command (const char *args, int from_tty)
3278 {
3279 struct obj_section *sec = NULL;
3280
3281 if (!overlay_debugging)
3282 error (_("Overlay debugging not enabled. "
3283 "Use either the 'overlay auto' or\n"
3284 "the 'overlay manual' command."));
3285
3286 if (args == 0 || *args == 0)
3287 error (_("Argument required: name of an overlay section"));
3288
3289 /* First, find a section matching the user supplied argument. */
3290 for (objfile *objfile : current_program_space->objfiles ())
3291 ALL_OBJFILE_OSECTIONS (objfile, sec)
3292 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3293 {
3294 if (!sec->ovly_mapped)
3295 error (_("Section %s is not mapped"), args);
3296 sec->ovly_mapped = 0;
3297 return;
3298 }
3299 error (_("No overlay section called %s"), args);
3300 }
3301
3302 /* Function: overlay_auto_command
3303 A utility command to turn on overlay debugging.
3304 Possibly this should be done via a set/show command. */
3305
3306 static void
3307 overlay_auto_command (const char *args, int from_tty)
3308 {
3309 overlay_debugging = ovly_auto;
3310 enable_overlay_breakpoints ();
3311 if (info_verbose)
3312 printf_unfiltered (_("Automatic overlay debugging enabled."));
3313 }
3314
3315 /* Function: overlay_manual_command
3316 A utility command to turn on overlay debugging.
3317 Possibly this should be done via a set/show command. */
3318
3319 static void
3320 overlay_manual_command (const char *args, int from_tty)
3321 {
3322 overlay_debugging = ovly_on;
3323 disable_overlay_breakpoints ();
3324 if (info_verbose)
3325 printf_unfiltered (_("Overlay debugging enabled."));
3326 }
3327
3328 /* Function: overlay_off_command
3329 A utility command to turn on overlay debugging.
3330 Possibly this should be done via a set/show command. */
3331
3332 static void
3333 overlay_off_command (const char *args, int from_tty)
3334 {
3335 overlay_debugging = ovly_off;
3336 disable_overlay_breakpoints ();
3337 if (info_verbose)
3338 printf_unfiltered (_("Overlay debugging disabled."));
3339 }
3340
3341 static void
3342 overlay_load_command (const char *args, int from_tty)
3343 {
3344 struct gdbarch *gdbarch = get_current_arch ();
3345
3346 if (gdbarch_overlay_update_p (gdbarch))
3347 gdbarch_overlay_update (gdbarch, NULL);
3348 else
3349 error (_("This target does not know how to read its overlay state."));
3350 }
3351
3352 /* Command list chain containing all defined "overlay" subcommands. */
3353 static struct cmd_list_element *overlaylist;
3354
3355 /* Target Overlays for the "Simplest" overlay manager:
3356
3357 This is GDB's default target overlay layer. It works with the
3358 minimal overlay manager supplied as an example by Cygnus. The
3359 entry point is via a function pointer "gdbarch_overlay_update",
3360 so targets that use a different runtime overlay manager can
3361 substitute their own overlay_update function and take over the
3362 function pointer.
3363
3364 The overlay_update function pokes around in the target's data structures
3365 to see what overlays are mapped, and updates GDB's overlay mapping with
3366 this information.
3367
3368 In this simple implementation, the target data structures are as follows:
3369 unsigned _novlys; /# number of overlay sections #/
3370 unsigned _ovly_table[_novlys][4] = {
3371 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3372 {..., ..., ..., ...},
3373 }
3374 unsigned _novly_regions; /# number of overlay regions #/
3375 unsigned _ovly_region_table[_novly_regions][3] = {
3376 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3377 {..., ..., ...},
3378 }
3379 These functions will attempt to update GDB's mappedness state in the
3380 symbol section table, based on the target's mappedness state.
3381
3382 To do this, we keep a cached copy of the target's _ovly_table, and
3383 attempt to detect when the cached copy is invalidated. The main
3384 entry point is "simple_overlay_update(SECT), which looks up SECT in
3385 the cached table and re-reads only the entry for that section from
3386 the target (whenever possible). */
3387
3388 /* Cached, dynamically allocated copies of the target data structures: */
3389 static unsigned (*cache_ovly_table)[4] = 0;
3390 static unsigned cache_novlys = 0;
3391 static CORE_ADDR cache_ovly_table_base = 0;
3392 enum ovly_index
3393 {
3394 VMA, OSIZE, LMA, MAPPED
3395 };
3396
3397 /* Throw away the cached copy of _ovly_table. */
3398
3399 static void
3400 simple_free_overlay_table (void)
3401 {
3402 if (cache_ovly_table)
3403 xfree (cache_ovly_table);
3404 cache_novlys = 0;
3405 cache_ovly_table = NULL;
3406 cache_ovly_table_base = 0;
3407 }
3408
3409 /* Read an array of ints of size SIZE from the target into a local buffer.
3410 Convert to host order. int LEN is number of ints. */
3411
3412 static void
3413 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3414 int len, int size, enum bfd_endian byte_order)
3415 {
3416 /* FIXME (alloca): Not safe if array is very large. */
3417 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3418 int i;
3419
3420 read_memory (memaddr, buf, len * size);
3421 for (i = 0; i < len; i++)
3422 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3423 }
3424
3425 /* Find and grab a copy of the target _ovly_table
3426 (and _novlys, which is needed for the table's size). */
3427
3428 static int
3429 simple_read_overlay_table (void)
3430 {
3431 struct bound_minimal_symbol novlys_msym;
3432 struct bound_minimal_symbol ovly_table_msym;
3433 struct gdbarch *gdbarch;
3434 int word_size;
3435 enum bfd_endian byte_order;
3436
3437 simple_free_overlay_table ();
3438 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3439 if (! novlys_msym.minsym)
3440 {
3441 error (_("Error reading inferior's overlay table: "
3442 "couldn't find `_novlys' variable\n"
3443 "in inferior. Use `overlay manual' mode."));
3444 return 0;
3445 }
3446
3447 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3448 if (! ovly_table_msym.minsym)
3449 {
3450 error (_("Error reading inferior's overlay table: couldn't find "
3451 "`_ovly_table' array\n"
3452 "in inferior. Use `overlay manual' mode."));
3453 return 0;
3454 }
3455
3456 gdbarch = ovly_table_msym.objfile->arch ();
3457 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3458 byte_order = gdbarch_byte_order (gdbarch);
3459
3460 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3461 4, byte_order);
3462 cache_ovly_table
3463 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3464 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3465 read_target_long_array (cache_ovly_table_base,
3466 (unsigned int *) cache_ovly_table,
3467 cache_novlys * 4, word_size, byte_order);
3468
3469 return 1; /* SUCCESS */
3470 }
3471
3472 /* Function: simple_overlay_update_1
3473 A helper function for simple_overlay_update. Assuming a cached copy
3474 of _ovly_table exists, look through it to find an entry whose vma,
3475 lma and size match those of OSECT. Re-read the entry and make sure
3476 it still matches OSECT (else the table may no longer be valid).
3477 Set OSECT's mapped state to match the entry. Return: 1 for
3478 success, 0 for failure. */
3479
3480 static int
3481 simple_overlay_update_1 (struct obj_section *osect)
3482 {
3483 int i;
3484 asection *bsect = osect->the_bfd_section;
3485 struct gdbarch *gdbarch = osect->objfile->arch ();
3486 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3487 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3488
3489 for (i = 0; i < cache_novlys; i++)
3490 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3491 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3492 {
3493 read_target_long_array (cache_ovly_table_base + i * word_size,
3494 (unsigned int *) cache_ovly_table[i],
3495 4, word_size, byte_order);
3496 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3497 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3498 {
3499 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3500 return 1;
3501 }
3502 else /* Warning! Warning! Target's ovly table has changed! */
3503 return 0;
3504 }
3505 return 0;
3506 }
3507
3508 /* Function: simple_overlay_update
3509 If OSECT is NULL, then update all sections' mapped state
3510 (after re-reading the entire target _ovly_table).
3511 If OSECT is non-NULL, then try to find a matching entry in the
3512 cached ovly_table and update only OSECT's mapped state.
3513 If a cached entry can't be found or the cache isn't valid, then
3514 re-read the entire cache, and go ahead and update all sections. */
3515
3516 void
3517 simple_overlay_update (struct obj_section *osect)
3518 {
3519 /* Were we given an osect to look up? NULL means do all of them. */
3520 if (osect)
3521 /* Have we got a cached copy of the target's overlay table? */
3522 if (cache_ovly_table != NULL)
3523 {
3524 /* Does its cached location match what's currently in the
3525 symtab? */
3526 struct bound_minimal_symbol minsym
3527 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3528
3529 if (minsym.minsym == NULL)
3530 error (_("Error reading inferior's overlay table: couldn't "
3531 "find `_ovly_table' array\n"
3532 "in inferior. Use `overlay manual' mode."));
3533
3534 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3535 /* Then go ahead and try to look up this single section in
3536 the cache. */
3537 if (simple_overlay_update_1 (osect))
3538 /* Found it! We're done. */
3539 return;
3540 }
3541
3542 /* Cached table no good: need to read the entire table anew.
3543 Or else we want all the sections, in which case it's actually
3544 more efficient to read the whole table in one block anyway. */
3545
3546 if (! simple_read_overlay_table ())
3547 return;
3548
3549 /* Now may as well update all sections, even if only one was requested. */
3550 for (objfile *objfile : current_program_space->objfiles ())
3551 ALL_OBJFILE_OSECTIONS (objfile, osect)
3552 if (section_is_overlay (osect))
3553 {
3554 int i;
3555 asection *bsect = osect->the_bfd_section;
3556
3557 for (i = 0; i < cache_novlys; i++)
3558 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3559 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3560 { /* obj_section matches i'th entry in ovly_table. */
3561 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3562 break; /* finished with inner for loop: break out. */
3563 }
3564 }
3565 }
3566
3567 /* Set the output sections and output offsets for section SECTP in
3568 ABFD. The relocation code in BFD will read these offsets, so we
3569 need to be sure they're initialized. We map each section to itself,
3570 with no offset; this means that SECTP->vma will be honored. */
3571
3572 static void
3573 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3574 {
3575 sectp->output_section = sectp;
3576 sectp->output_offset = 0;
3577 }
3578
3579 /* Default implementation for sym_relocate. */
3580
3581 bfd_byte *
3582 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3583 bfd_byte *buf)
3584 {
3585 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3586 DWO file. */
3587 bfd *abfd = sectp->owner;
3588
3589 /* We're only interested in sections with relocation
3590 information. */
3591 if ((sectp->flags & SEC_RELOC) == 0)
3592 return NULL;
3593
3594 /* We will handle section offsets properly elsewhere, so relocate as if
3595 all sections begin at 0. */
3596 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3597
3598 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3599 }
3600
3601 /* Relocate the contents of a debug section SECTP in ABFD. The
3602 contents are stored in BUF if it is non-NULL, or returned in a
3603 malloc'd buffer otherwise.
3604
3605 For some platforms and debug info formats, shared libraries contain
3606 relocations against the debug sections (particularly for DWARF-2;
3607 one affected platform is PowerPC GNU/Linux, although it depends on
3608 the version of the linker in use). Also, ELF object files naturally
3609 have unresolved relocations for their debug sections. We need to apply
3610 the relocations in order to get the locations of symbols correct.
3611 Another example that may require relocation processing, is the
3612 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3613 debug section. */
3614
3615 bfd_byte *
3616 symfile_relocate_debug_section (struct objfile *objfile,
3617 asection *sectp, bfd_byte *buf)
3618 {
3619 gdb_assert (objfile->sf->sym_relocate);
3620
3621 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3622 }
3623
3624 struct symfile_segment_data *
3625 get_symfile_segment_data (bfd *abfd)
3626 {
3627 const struct sym_fns *sf = find_sym_fns (abfd);
3628
3629 if (sf == NULL)
3630 return NULL;
3631
3632 return sf->sym_segments (abfd);
3633 }
3634
3635 void
3636 free_symfile_segment_data (struct symfile_segment_data *data)
3637 {
3638 xfree (data->segment_bases);
3639 xfree (data->segment_sizes);
3640 xfree (data->segment_info);
3641 xfree (data);
3642 }
3643
3644 /* Given:
3645 - DATA, containing segment addresses from the object file ABFD, and
3646 the mapping from ABFD's sections onto the segments that own them,
3647 and
3648 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3649 segment addresses reported by the target,
3650 store the appropriate offsets for each section in OFFSETS.
3651
3652 If there are fewer entries in SEGMENT_BASES than there are segments
3653 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3654
3655 If there are more entries, then ignore the extra. The target may
3656 not be able to distinguish between an empty data segment and a
3657 missing data segment; a missing text segment is less plausible. */
3658
3659 int
3660 symfile_map_offsets_to_segments (bfd *abfd,
3661 const struct symfile_segment_data *data,
3662 section_offsets &offsets,
3663 int num_segment_bases,
3664 const CORE_ADDR *segment_bases)
3665 {
3666 int i;
3667 asection *sect;
3668
3669 /* It doesn't make sense to call this function unless you have some
3670 segment base addresses. */
3671 gdb_assert (num_segment_bases > 0);
3672
3673 /* If we do not have segment mappings for the object file, we
3674 can not relocate it by segments. */
3675 gdb_assert (data != NULL);
3676 gdb_assert (data->num_segments > 0);
3677
3678 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3679 {
3680 int which = data->segment_info[i];
3681
3682 gdb_assert (0 <= which && which <= data->num_segments);
3683
3684 /* Don't bother computing offsets for sections that aren't
3685 loaded as part of any segment. */
3686 if (! which)
3687 continue;
3688
3689 /* Use the last SEGMENT_BASES entry as the address of any extra
3690 segments mentioned in DATA->segment_info. */
3691 if (which > num_segment_bases)
3692 which = num_segment_bases;
3693
3694 offsets[i] = segment_bases[which - 1] - data->segment_bases[which - 1];
3695 }
3696
3697 return 1;
3698 }
3699
3700 static void
3701 symfile_find_segment_sections (struct objfile *objfile)
3702 {
3703 bfd *abfd = objfile->obfd;
3704 int i;
3705 asection *sect;
3706 struct symfile_segment_data *data;
3707
3708 data = get_symfile_segment_data (objfile->obfd);
3709 if (data == NULL)
3710 return;
3711
3712 if (data->num_segments != 1 && data->num_segments != 2)
3713 {
3714 free_symfile_segment_data (data);
3715 return;
3716 }
3717
3718 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3719 {
3720 int which = data->segment_info[i];
3721
3722 if (which == 1)
3723 {
3724 if (objfile->sect_index_text == -1)
3725 objfile->sect_index_text = sect->index;
3726
3727 if (objfile->sect_index_rodata == -1)
3728 objfile->sect_index_rodata = sect->index;
3729 }
3730 else if (which == 2)
3731 {
3732 if (objfile->sect_index_data == -1)
3733 objfile->sect_index_data = sect->index;
3734
3735 if (objfile->sect_index_bss == -1)
3736 objfile->sect_index_bss = sect->index;
3737 }
3738 }
3739
3740 free_symfile_segment_data (data);
3741 }
3742
3743 /* Listen for free_objfile events. */
3744
3745 static void
3746 symfile_free_objfile (struct objfile *objfile)
3747 {
3748 /* Remove the target sections owned by this objfile. */
3749 if (objfile != NULL)
3750 remove_target_sections ((void *) objfile);
3751 }
3752
3753 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3754 Expand all symtabs that match the specified criteria.
3755 See quick_symbol_functions.expand_symtabs_matching for details. */
3756
3757 void
3758 expand_symtabs_matching
3759 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3760 const lookup_name_info &lookup_name,
3761 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3762 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3763 enum search_domain kind)
3764 {
3765 for (objfile *objfile : current_program_space->objfiles ())
3766 {
3767 if (objfile->sf)
3768 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3769 &lookup_name,
3770 symbol_matcher,
3771 expansion_notify, kind);
3772 }
3773 }
3774
3775 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3776 Map function FUN over every file.
3777 See quick_symbol_functions.map_symbol_filenames for details. */
3778
3779 void
3780 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3781 int need_fullname)
3782 {
3783 for (objfile *objfile : current_program_space->objfiles ())
3784 {
3785 if (objfile->sf)
3786 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3787 need_fullname);
3788 }
3789 }
3790
3791 #if GDB_SELF_TEST
3792
3793 namespace selftests {
3794 namespace filename_language {
3795
3796 static void test_filename_language ()
3797 {
3798 /* This test messes up the filename_language_table global. */
3799 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3800
3801 /* Test deducing an unknown extension. */
3802 language lang = deduce_language_from_filename ("myfile.blah");
3803 SELF_CHECK (lang == language_unknown);
3804
3805 /* Test deducing a known extension. */
3806 lang = deduce_language_from_filename ("myfile.c");
3807 SELF_CHECK (lang == language_c);
3808
3809 /* Test adding a new extension using the internal API. */
3810 add_filename_language (".blah", language_pascal);
3811 lang = deduce_language_from_filename ("myfile.blah");
3812 SELF_CHECK (lang == language_pascal);
3813 }
3814
3815 static void
3816 test_set_ext_lang_command ()
3817 {
3818 /* This test messes up the filename_language_table global. */
3819 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3820
3821 /* Confirm that the .hello extension is not known. */
3822 language lang = deduce_language_from_filename ("cake.hello");
3823 SELF_CHECK (lang == language_unknown);
3824
3825 /* Test adding a new extension using the CLI command. */
3826 auto args_holder = make_unique_xstrdup (".hello rust");
3827 ext_args = args_holder.get ();
3828 set_ext_lang_command (NULL, 1, NULL);
3829
3830 lang = deduce_language_from_filename ("cake.hello");
3831 SELF_CHECK (lang == language_rust);
3832
3833 /* Test overriding an existing extension using the CLI command. */
3834 int size_before = filename_language_table.size ();
3835 args_holder.reset (xstrdup (".hello pascal"));
3836 ext_args = args_holder.get ();
3837 set_ext_lang_command (NULL, 1, NULL);
3838 int size_after = filename_language_table.size ();
3839
3840 lang = deduce_language_from_filename ("cake.hello");
3841 SELF_CHECK (lang == language_pascal);
3842 SELF_CHECK (size_before == size_after);
3843 }
3844
3845 } /* namespace filename_language */
3846 } /* namespace selftests */
3847
3848 #endif /* GDB_SELF_TEST */
3849
3850 void _initialize_symfile ();
3851 void
3852 _initialize_symfile ()
3853 {
3854 struct cmd_list_element *c;
3855
3856 gdb::observers::free_objfile.attach (symfile_free_objfile);
3857
3858 #define READNOW_READNEVER_HELP \
3859 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3860 immediately. This makes the command slower, but may make future operations\n\
3861 faster.\n\
3862 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3863 symbolic debug information."
3864
3865 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3866 Load symbol table from executable file FILE.\n\
3867 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3868 OFF is an optional offset which is added to each section address.\n\
3869 The `file' command can also load symbol tables, as well as setting the file\n\
3870 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3871 set_cmd_completer (c, filename_completer);
3872
3873 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3874 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3875 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3876 [-s SECT-NAME SECT-ADDR]...\n\
3877 ADDR is the starting address of the file's text.\n\
3878 Each '-s' argument provides a section name and address, and\n\
3879 should be specified if the data and bss segments are not contiguous\n\
3880 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3881 OFF is an optional offset which is added to the default load addresses\n\
3882 of all sections for which no other address was specified.\n"
3883 READNOW_READNEVER_HELP),
3884 &cmdlist);
3885 set_cmd_completer (c, filename_completer);
3886
3887 c = add_cmd ("remove-symbol-file", class_files,
3888 remove_symbol_file_command, _("\
3889 Remove a symbol file added via the add-symbol-file command.\n\
3890 Usage: remove-symbol-file FILENAME\n\
3891 remove-symbol-file -a ADDRESS\n\
3892 The file to remove can be identified by its filename or by an address\n\
3893 that lies within the boundaries of this symbol file in memory."),
3894 &cmdlist);
3895
3896 c = add_cmd ("load", class_files, load_command, _("\
3897 Dynamically load FILE into the running program.\n\
3898 FILE symbols are recorded for access from GDB.\n\
3899 Usage: load [FILE] [OFFSET]\n\
3900 An optional load OFFSET may also be given as a literal address.\n\
3901 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3902 on its own."), &cmdlist);
3903 set_cmd_completer (c, filename_completer);
3904
3905 add_basic_prefix_cmd ("overlay", class_support,
3906 _("Commands for debugging overlays."), &overlaylist,
3907 "overlay ", 0, &cmdlist);
3908
3909 add_com_alias ("ovly", "overlay", class_support, 1);
3910 add_com_alias ("ov", "overlay", class_support, 1);
3911
3912 add_cmd ("map-overlay", class_support, map_overlay_command,
3913 _("Assert that an overlay section is mapped."), &overlaylist);
3914
3915 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3916 _("Assert that an overlay section is unmapped."), &overlaylist);
3917
3918 add_cmd ("list-overlays", class_support, list_overlays_command,
3919 _("List mappings of overlay sections."), &overlaylist);
3920
3921 add_cmd ("manual", class_support, overlay_manual_command,
3922 _("Enable overlay debugging."), &overlaylist);
3923 add_cmd ("off", class_support, overlay_off_command,
3924 _("Disable overlay debugging."), &overlaylist);
3925 add_cmd ("auto", class_support, overlay_auto_command,
3926 _("Enable automatic overlay debugging."), &overlaylist);
3927 add_cmd ("load-target", class_support, overlay_load_command,
3928 _("Read the overlay mapping state from the target."), &overlaylist);
3929
3930 /* Filename extension to source language lookup table: */
3931 add_setshow_string_noescape_cmd ("extension-language", class_files,
3932 &ext_args, _("\
3933 Set mapping between filename extension and source language."), _("\
3934 Show mapping between filename extension and source language."), _("\
3935 Usage: set extension-language .foo bar"),
3936 set_ext_lang_command,
3937 show_ext_args,
3938 &setlist, &showlist);
3939
3940 add_info ("extensions", info_ext_lang_command,
3941 _("All filename extensions associated with a source language."));
3942
3943 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3944 &debug_file_directory, _("\
3945 Set the directories where separate debug symbols are searched for."), _("\
3946 Show the directories where separate debug symbols are searched for."), _("\
3947 Separate debug symbols are first searched for in the same\n\
3948 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3949 and lastly at the path of the directory of the binary with\n\
3950 each global debug-file-directory component prepended."),
3951 NULL,
3952 show_debug_file_directory,
3953 &setlist, &showlist);
3954
3955 add_setshow_enum_cmd ("symbol-loading", no_class,
3956 print_symbol_loading_enums, &print_symbol_loading,
3957 _("\
3958 Set printing of symbol loading messages."), _("\
3959 Show printing of symbol loading messages."), _("\
3960 off == turn all messages off\n\
3961 brief == print messages for the executable,\n\
3962 and brief messages for shared libraries\n\
3963 full == print messages for the executable,\n\
3964 and messages for each shared library."),
3965 NULL,
3966 NULL,
3967 &setprintlist, &showprintlist);
3968
3969 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3970 &separate_debug_file_debug, _("\
3971 Set printing of separate debug info file search debug."), _("\
3972 Show printing of separate debug info file search debug."), _("\
3973 When on, GDB prints the searched locations while looking for separate debug \
3974 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3975
3976 #if GDB_SELF_TEST
3977 selftests::register_test
3978 ("filename_language", selftests::filename_language::test_filename_language);
3979 selftests::register_test
3980 ("set_ext_lang_command",
3981 selftests::filename_language::test_set_ext_lang_command);
3982 #endif
3983 }