]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
* symfile.c (symfile_bfd_open): Don't copy name. Call
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
158 library symbols are not loaded, commands like "info fun" will *not*
159 report all the functions that are actually present. */
160
161 int auto_solib_add = 1;
162 \f
163
164 /* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
166 Note that the string at PTR does not have to be null terminated, I.e. it
167 may be part of a larger string and we are only saving a substring. */
168
169 char *
170 obsavestring (const char *ptr, int size, struct obstack *obstackp)
171 {
172 char *p = (char *) obstack_alloc (obstackp, size + 1);
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
175 inline memcpy? */
176 {
177 const char *p1 = ptr;
178 char *p2 = p;
179 const char *end = ptr + size;
180
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186 }
187
188 /* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
192
193 char *
194 obconcat (struct obstack *obstackp, ...)
195 {
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
212 }
213
214 /* True if we are reading a symbol table. */
215
216 int currently_reading_symtab = 0;
217
218 static void
219 decrement_reading_symtab (void *dummy)
220 {
221 currently_reading_symtab--;
222 }
223
224 /* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226 struct cleanup *
227 increment_reading_symtab (void)
228 {
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
231 }
232
233 /* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242 void
243 find_lowest_section (bfd *abfd, asection *sect, void *obj)
244 {
245 asection **lowest = (asection **) obj;
246
247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257 }
258
259 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261 struct section_addr_info *
262 alloc_section_addr_info (size_t num_sections)
263 {
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274 }
275
276 /* Build (allocate and populate) a section_addr_info struct from
277 an existing section table. */
278
279 extern struct section_addr_info *
280 build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
282 {
283 struct section_addr_info *sap;
284 const struct target_section *stp;
285 int oidx;
286
287 sap = alloc_section_addr_info (end - start);
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
291 if (bfd_get_section_flags (stp->bfd,
292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
293 && oidx < end - start)
294 {
295 sap->other[oidx].addr = stp->addr;
296 sap->other[oidx].name
297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in ABFD. */
307
308 static struct section_addr_info *
309 build_section_addr_info_from_bfd (bfd *abfd)
310 {
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
318 {
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
324 return sap;
325 }
326
327 /* Create a section_addr_info from section offsets in OBJFILE. */
328
329 struct section_addr_info *
330 build_section_addr_info_from_objfile (const struct objfile *objfile)
331 {
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346 }
347
348 /* Free all memory allocated by build_section_addr_info_from_section_table. */
349
350 extern void
351 free_section_addr_info (struct section_addr_info *sap)
352 {
353 int idx;
354
355 for (idx = 0; idx < sap->num_sections; idx++)
356 if (sap->other[idx].name)
357 xfree (sap->other[idx].name);
358 xfree (sap);
359 }
360
361
362 /* Initialize OBJFILE's sect_index_* members. */
363 static void
364 init_objfile_sect_indices (struct objfile *objfile)
365 {
366 asection *sect;
367 int i;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
370 if (sect)
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
374 if (sect)
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
378 if (sect)
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
382 if (sect)
383 objfile->sect_index_rodata = sect->index;
384
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
420 }
421
422 /* The arguments to place_section. */
423
424 struct place_section_arg
425 {
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428 };
429
430 /* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
433 static void
434 place_section (bfd *abfd, asection *sect, void *obj)
435 {
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
440
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
450 start_addr = (arg->lowest + align - 1) & -align;
451
452 do {
453 asection *cur_sec;
454
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
482 break;
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
492 }
493
494 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
497
498 void
499 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
502 {
503 int i;
504
505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
506
507 /* Now calculate offsets for section that were specified by the caller. */
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 {
510 struct other_sections *osp;
511
512 osp = &addrs->other[i];
513 if (osp->sectindex == -1)
514 continue;
515
516 /* Record all sections in offsets. */
517 /* The section_offsets in the objfile are here filled in using
518 the BFD index. */
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521 }
522
523 /* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529 static const char *
530 addr_section_name (const char *s)
531 {
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538 }
539
540 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543 static int
544 addrs_section_compar (const void *ap, const void *bp)
545 {
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval;
549
550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
551 if (retval)
552 return retval;
553
554 return a->sectindex - b->sectindex;
555 }
556
557 /* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560 static struct other_sections **
561 addrs_section_sort (struct section_addr_info *addrs)
562 {
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575 }
576
577 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
580
581 void
582 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583 {
584 asection *lower_sect;
585 CORE_ADDR lower_offset;
586 int i;
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
591
592 /* Find lowest loadable section to be used as starting point for
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
601 }
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
633
634 while (*abfd_addrs_sorted
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
669 struct other_sections *sect = addrs_to_abfd_addrs[i];
670
671 if (sect)
672 {
673 /* This is the index used by BFD. */
674 addrs->other[i].sectindex = sect->sectindex;
675
676 if (addrs->other[i].addr != 0)
677 {
678 addrs->other[i].addr -= sect->addr;
679 lower_offset = addrs->other[i].addr;
680 }
681 else
682 addrs->other[i].addr = lower_offset;
683 }
684 else
685 {
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
704 || strcmp (sect_name, ".gnu.conflict") == 0
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717 addrs->other[i].sectindex = -1;
718 }
719 }
720
721 do_cleanups (my_cleanup);
722 }
723
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730 void
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733 {
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
740
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1013
1014 void
1015 new_symfile_objfile (struct objfile *objfile, int add_flags)
1016 {
1017 /* If this is the main symbol file we have to clean up all users of the
1018 old main symbol file. Otherwise it is sufficient to fixup all the
1019 breakpoints that may have been redefined by this symbol file. */
1020 if (add_flags & SYMFILE_MAINLINE)
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
1025 clear_symtab_users (add_flags);
1026 }
1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1028 {
1029 breakpoint_re_set ();
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1034 }
1035
1036 /* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 This BFD will be closed on error, and is always consumed by this function.
1041
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1048
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
1052 Upon success, returns a pointer to the objfile that was added.
1053 Upon failure, jumps back to command level (never returns). */
1054
1055 static struct objfile *
1056 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
1061 int flags, struct objfile *parent)
1062 {
1063 struct objfile *objfile;
1064 struct cleanup *my_cleanups;
1065 const char *name = bfd_get_filename (abfd);
1066 const int from_tty = add_flags & SYMFILE_VERBOSE;
1067 const int mainline = add_flags & SYMFILE_MAINLINE;
1068 const int should_print = ((from_tty || info_verbose)
1069 && (readnow_symbol_files
1070 || (add_flags & SYMFILE_NO_READ) == 0));
1071
1072 if (readnow_symbol_files)
1073 {
1074 flags |= OBJF_READNOW;
1075 add_flags &= ~SYMFILE_NO_READ;
1076 }
1077
1078 my_cleanups = make_cleanup_bfd_close (abfd);
1079
1080 /* Give user a chance to burp if we'd be
1081 interactively wiping out any existing symbols. */
1082
1083 if ((have_full_symbols () || have_partial_symbols ())
1084 && mainline
1085 && from_tty
1086 && !query (_("Load new symbol table from \"%s\"? "), name))
1087 error (_("Not confirmed."));
1088
1089 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1090 discard_cleanups (my_cleanups);
1091
1092 if (parent)
1093 add_separate_debug_objfile (objfile, parent);
1094
1095 /* We either created a new mapped symbol table, mapped an existing
1096 symbol table file which has not had initial symbol reading
1097 performed, or need to read an unmapped symbol table. */
1098 if (should_print)
1099 {
1100 if (deprecated_pre_add_symbol_hook)
1101 deprecated_pre_add_symbol_hook (name);
1102 else
1103 {
1104 printf_unfiltered (_("Reading symbols from %s..."), name);
1105 wrap_here ("");
1106 gdb_flush (gdb_stdout);
1107 }
1108 }
1109 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1110 add_flags);
1111
1112 /* We now have at least a partial symbol table. Check to see if the
1113 user requested that all symbols be read on initial access via either
1114 the gdb startup command line or on a per symbol file basis. Expand
1115 all partial symbol tables for this objfile if so. */
1116
1117 if ((flags & OBJF_READNOW))
1118 {
1119 if (should_print)
1120 {
1121 printf_unfiltered (_("expanding to full symbols..."));
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125
1126 if (objfile->sf)
1127 objfile->sf->qf->expand_all_symtabs (objfile);
1128 }
1129
1130 if (should_print && !objfile_has_symbols (objfile))
1131 {
1132 wrap_here ("");
1133 printf_unfiltered (_("(no debugging symbols found)..."));
1134 wrap_here ("");
1135 }
1136
1137 if (should_print)
1138 {
1139 if (deprecated_post_add_symbol_hook)
1140 deprecated_post_add_symbol_hook ();
1141 else
1142 printf_unfiltered (_("done.\n"));
1143 }
1144
1145 /* We print some messages regardless of whether 'from_tty ||
1146 info_verbose' is true, so make sure they go out at the right
1147 time. */
1148 gdb_flush (gdb_stdout);
1149
1150 if (objfile->sf == NULL)
1151 {
1152 observer_notify_new_objfile (objfile);
1153 return objfile; /* No symbols. */
1154 }
1155
1156 new_symfile_objfile (objfile, add_flags);
1157
1158 observer_notify_new_objfile (objfile);
1159
1160 bfd_cache_close_all ();
1161 return (objfile);
1162 }
1163
1164 /* Add BFD as a separate debug file for OBJFILE. */
1165
1166 void
1167 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1168 {
1169 struct objfile *new_objfile;
1170 struct section_addr_info *sap;
1171 struct cleanup *my_cleanup;
1172
1173 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1174 because sections of BFD may not match sections of OBJFILE and because
1175 vma may have been modified by tools such as prelink. */
1176 sap = build_section_addr_info_from_objfile (objfile);
1177 my_cleanup = make_cleanup_free_section_addr_info (sap);
1178
1179 new_objfile = symbol_file_add_with_addrs_or_offsets
1180 (bfd, symfile_flags,
1181 sap, NULL, 0,
1182 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1183 | OBJF_USERLOADED),
1184 objfile);
1185
1186 do_cleanups (my_cleanup);
1187 }
1188
1189 /* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
1191
1192 See symbol_file_add_with_addrs_or_offsets's comments for
1193 details. */
1194 struct objfile *
1195 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1196 struct section_addr_info *addrs,
1197 int flags, struct objfile *parent)
1198 {
1199 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1200 flags, parent);
1201 }
1202
1203
1204 /* Process a symbol file, as either the main file or as a dynamically
1205 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1206 for details. */
1207 struct objfile *
1208 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1209 int flags)
1210 {
1211 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1212 flags, NULL);
1213 }
1214
1215
1216 /* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
1223
1224 void
1225 symbol_file_add_main (char *args, int from_tty)
1226 {
1227 symbol_file_add_main_1 (args, from_tty, 0);
1228 }
1229
1230 static void
1231 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1232 {
1233 const int add_flags = (current_inferior ()->symfile_flags
1234 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1235
1236 symbol_file_add (args, add_flags, NULL, flags);
1237
1238 /* Getting new symbols may change our opinion about
1239 what is frameless. */
1240 reinit_frame_cache ();
1241
1242 if ((flags & SYMFILE_NO_READ) == 0)
1243 set_initial_language ();
1244 }
1245
1246 void
1247 symbol_file_clear (int from_tty)
1248 {
1249 if ((have_full_symbols () || have_partial_symbols ())
1250 && from_tty
1251 && (symfile_objfile
1252 ? !query (_("Discard symbol table from `%s'? "),
1253 symfile_objfile->name)
1254 : !query (_("Discard symbol table? "))))
1255 error (_("Not confirmed."));
1256
1257 /* solib descriptors may have handles to objfiles. Wipe them before their
1258 objfiles get stale by free_all_objfiles. */
1259 no_shared_libraries (NULL, from_tty);
1260
1261 free_all_objfiles ();
1262
1263 gdb_assert (symfile_objfile == NULL);
1264 if (from_tty)
1265 printf_unfiltered (_("No symbol file now.\n"));
1266 }
1267
1268 static char *
1269 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1270 {
1271 asection *sect;
1272 bfd_size_type debuglink_size;
1273 unsigned long crc32;
1274 char *contents;
1275 int crc_offset;
1276
1277 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1278
1279 if (sect == NULL)
1280 return NULL;
1281
1282 debuglink_size = bfd_section_size (objfile->obfd, sect);
1283
1284 contents = xmalloc (debuglink_size);
1285 bfd_get_section_contents (objfile->obfd, sect, contents,
1286 (file_ptr)0, (bfd_size_type)debuglink_size);
1287
1288 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1289 crc_offset = strlen (contents) + 1;
1290 crc_offset = (crc_offset + 3) & ~3;
1291
1292 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1293
1294 *crc32_out = crc32;
1295 return contents;
1296 }
1297
1298 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1299 return 1. Otherwise print a warning and return 0. ABFD seek position is
1300 not preserved. */
1301
1302 static int
1303 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1304 {
1305 unsigned long file_crc = 0;
1306
1307 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1308 {
1309 warning (_("Problem reading \"%s\" for CRC: %s"),
1310 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1311 return 0;
1312 }
1313
1314 for (;;)
1315 {
1316 gdb_byte buffer[8 * 1024];
1317 bfd_size_type count;
1318
1319 count = bfd_bread (buffer, sizeof (buffer), abfd);
1320 if (count == (bfd_size_type) -1)
1321 {
1322 warning (_("Problem reading \"%s\" for CRC: %s"),
1323 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1324 return 0;
1325 }
1326 if (count == 0)
1327 break;
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329 }
1330
1331 *file_crc_return = file_crc;
1332 return 1;
1333 }
1334
1335 static int
1336 separate_debug_file_exists (const char *name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 bfd *abfd;
1342 struct stat parent_stat, abfd_stat;
1343 int verified_as_different;
1344
1345 /* Find a separate debug info file as if symbols would be present in
1346 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1347 section can contain just the basename of PARENT_OBJFILE without any
1348 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1349 the separate debug infos with the same basename can exist. */
1350
1351 if (filename_cmp (name, parent_objfile->name) == 0)
1352 return 0;
1353
1354 abfd = bfd_open_maybe_remote (name);
1355
1356 if (!abfd)
1357 return 0;
1358
1359 /* Verify symlinks were not the cause of filename_cmp name difference above.
1360
1361 Some operating systems, e.g. Windows, do not provide a meaningful
1362 st_ino; they always set it to zero. (Windows does provide a
1363 meaningful st_dev.) Do not indicate a duplicate library in that
1364 case. While there is no guarantee that a system that provides
1365 meaningful inode numbers will never set st_ino to zero, this is
1366 merely an optimization, so we do not need to worry about false
1367 negatives. */
1368
1369 if (bfd_stat (abfd, &abfd_stat) == 0
1370 && abfd_stat.st_ino != 0
1371 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1372 {
1373 if (abfd_stat.st_dev == parent_stat.st_dev
1374 && abfd_stat.st_ino == parent_stat.st_ino)
1375 {
1376 gdb_bfd_unref (abfd);
1377 return 0;
1378 }
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = get_file_crc (abfd, &file_crc);
1385
1386 gdb_bfd_unref (abfd);
1387
1388 if (!file_crc_p)
1389 return 0;
1390
1391 if (crc != file_crc)
1392 {
1393 /* If one (or both) the files are accessed for example the via "remote:"
1394 gdbserver way it does not support the bfd_stat operation. Verify
1395 whether those two files are not the same manually. */
1396
1397 if (!verified_as_different && !parent_objfile->crc32_p)
1398 {
1399 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1400 &parent_objfile->crc32);
1401 if (!parent_objfile->crc32_p)
1402 return 0;
1403 }
1404
1405 if (verified_as_different || parent_objfile->crc32 != file_crc)
1406 warning (_("the debug information found in \"%s\""
1407 " does not match \"%s\" (CRC mismatch).\n"),
1408 name, parent_objfile->name);
1409
1410 return 0;
1411 }
1412
1413 return 1;
1414 }
1415
1416 char *debug_file_directory = NULL;
1417 static void
1418 show_debug_file_directory (struct ui_file *file, int from_tty,
1419 struct cmd_list_element *c, const char *value)
1420 {
1421 fprintf_filtered (file,
1422 _("The directory where separate debug "
1423 "symbols are searched for is \"%s\".\n"),
1424 value);
1425 }
1426
1427 #if ! defined (DEBUG_SUBDIRECTORY)
1428 #define DEBUG_SUBDIRECTORY ".debug"
1429 #endif
1430
1431 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1432 where the original file resides (may not be the same as
1433 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1434 looking for. Returns the name of the debuginfo, of NULL. */
1435
1436 static char *
1437 find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
1441 {
1442 char *debugdir;
1443 char *debugfile;
1444 int i;
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
1448
1449 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1450 i = strlen (dir);
1451 if (canon_dir != NULL && strlen (canon_dir) > i)
1452 i = strlen (canon_dir);
1453
1454 debugfile = xmalloc (strlen (debug_file_directory) + 1
1455 + i
1456 + strlen (DEBUG_SUBDIRECTORY)
1457 + strlen ("/")
1458 + strlen (debuglink)
1459 + 1);
1460
1461 /* First try in the same directory as the original file. */
1462 strcpy (debugfile, dir);
1463 strcat (debugfile, debuglink);
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 return debugfile;
1467
1468 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1469 strcpy (debugfile, dir);
1470 strcat (debugfile, DEBUG_SUBDIRECTORY);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, debuglink);
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 return debugfile;
1476
1477 /* Then try in the global debugfile directories.
1478
1479 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1480 cause "/..." lookups. */
1481
1482 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1483 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1484
1485 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1486 {
1487 strcpy (debugfile, debugdir);
1488 strcat (debugfile, "/");
1489 strcat (debugfile, dir);
1490 strcat (debugfile, debuglink);
1491
1492 if (separate_debug_file_exists (debugfile, crc32, objfile))
1493 return debugfile;
1494
1495 /* If the file is in the sysroot, try using its base path in the
1496 global debugfile directory. */
1497 if (canon_dir != NULL
1498 && filename_ncmp (canon_dir, gdb_sysroot,
1499 strlen (gdb_sysroot)) == 0
1500 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1501 {
1502 strcpy (debugfile, debugdir);
1503 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1504 strcat (debugfile, "/");
1505 strcat (debugfile, debuglink);
1506
1507 if (separate_debug_file_exists (debugfile, crc32, objfile))
1508 return debugfile;
1509 }
1510 }
1511
1512 do_cleanups (back_to);
1513 xfree (debugfile);
1514 return NULL;
1515 }
1516
1517 /* Modify PATH to contain only "directory/" part of PATH.
1518 If there were no directory separators in PATH, PATH will be empty
1519 string on return. */
1520
1521 static void
1522 terminate_after_last_dir_separator (char *path)
1523 {
1524 int i;
1525
1526 /* Strip off the final filename part, leaving the directory name,
1527 followed by a slash. The directory can be relative or absolute. */
1528 for (i = strlen(path) - 1; i >= 0; i--)
1529 if (IS_DIR_SEPARATOR (path[i]))
1530 break;
1531
1532 /* If I is -1 then no directory is present there and DIR will be "". */
1533 path[i + 1] = '\0';
1534 }
1535
1536 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1537 Returns pathname, or NULL. */
1538
1539 char *
1540 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1541 {
1542 char *debuglink;
1543 char *dir, *canon_dir;
1544 char *debugfile;
1545 unsigned long crc32;
1546 struct cleanup *cleanups;
1547
1548 debuglink = get_debug_link_info (objfile, &crc32);
1549
1550 if (debuglink == NULL)
1551 {
1552 /* There's no separate debug info, hence there's no way we could
1553 load it => no warning. */
1554 return NULL;
1555 }
1556
1557 cleanups = make_cleanup (xfree, debuglink);
1558 dir = xstrdup (objfile->name);
1559 make_cleanup (xfree, dir);
1560 terminate_after_last_dir_separator (dir);
1561 canon_dir = lrealpath (dir);
1562
1563 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1564 crc32, objfile);
1565 xfree (canon_dir);
1566
1567 if (debugfile == NULL)
1568 {
1569 #ifdef HAVE_LSTAT
1570 /* For PR gdb/9538, try again with realpath (if different from the
1571 original). */
1572
1573 struct stat st_buf;
1574
1575 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1576 {
1577 char *symlink_dir;
1578
1579 symlink_dir = lrealpath (objfile->name);
1580 if (symlink_dir != NULL)
1581 {
1582 make_cleanup (xfree, symlink_dir);
1583 terminate_after_last_dir_separator (symlink_dir);
1584 if (strcmp (dir, symlink_dir) != 0)
1585 {
1586 /* Different directory, so try using it. */
1587 debugfile = find_separate_debug_file (symlink_dir,
1588 symlink_dir,
1589 debuglink,
1590 crc32,
1591 objfile);
1592 }
1593 }
1594 }
1595 #endif /* HAVE_LSTAT */
1596 }
1597
1598 do_cleanups (cleanups);
1599 return debugfile;
1600 }
1601
1602
1603 /* This is the symbol-file command. Read the file, analyze its
1604 symbols, and add a struct symtab to a symtab list. The syntax of
1605 the command is rather bizarre:
1606
1607 1. The function buildargv implements various quoting conventions
1608 which are undocumented and have little or nothing in common with
1609 the way things are quoted (or not quoted) elsewhere in GDB.
1610
1611 2. Options are used, which are not generally used in GDB (perhaps
1612 "set mapped on", "set readnow on" would be better)
1613
1614 3. The order of options matters, which is contrary to GNU
1615 conventions (because it is confusing and inconvenient). */
1616
1617 void
1618 symbol_file_command (char *args, int from_tty)
1619 {
1620 dont_repeat ();
1621
1622 if (args == NULL)
1623 {
1624 symbol_file_clear (from_tty);
1625 }
1626 else
1627 {
1628 char **argv = gdb_buildargv (args);
1629 int flags = OBJF_USERLOADED;
1630 struct cleanup *cleanups;
1631 char *name = NULL;
1632
1633 cleanups = make_cleanup_freeargv (argv);
1634 while (*argv != NULL)
1635 {
1636 if (strcmp (*argv, "-readnow") == 0)
1637 flags |= OBJF_READNOW;
1638 else if (**argv == '-')
1639 error (_("unknown option `%s'"), *argv);
1640 else
1641 {
1642 symbol_file_add_main_1 (*argv, from_tty, flags);
1643 name = *argv;
1644 }
1645
1646 argv++;
1647 }
1648
1649 if (name == NULL)
1650 error (_("no symbol file name was specified"));
1651
1652 do_cleanups (cleanups);
1653 }
1654 }
1655
1656 /* Set the initial language.
1657
1658 FIXME: A better solution would be to record the language in the
1659 psymtab when reading partial symbols, and then use it (if known) to
1660 set the language. This would be a win for formats that encode the
1661 language in an easily discoverable place, such as DWARF. For
1662 stabs, we can jump through hoops looking for specially named
1663 symbols or try to intuit the language from the specific type of
1664 stabs we find, but we can't do that until later when we read in
1665 full symbols. */
1666
1667 void
1668 set_initial_language (void)
1669 {
1670 enum language lang = language_unknown;
1671
1672 if (language_of_main != language_unknown)
1673 lang = language_of_main;
1674 else
1675 {
1676 const char *filename;
1677
1678 filename = find_main_filename ();
1679 if (filename != NULL)
1680 lang = deduce_language_from_filename (filename);
1681 }
1682
1683 if (lang == language_unknown)
1684 {
1685 /* Make C the default language */
1686 lang = language_c;
1687 }
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
1691 }
1692
1693 /* If NAME is a remote name open the file using remote protocol, otherwise
1694 open it normally. Returns a new reference to the BFD. On error,
1695 returns NULL with the BFD error set. */
1696
1697 bfd *
1698 bfd_open_maybe_remote (const char *name)
1699 {
1700 if (remote_filename_p (name))
1701 return gdb_bfd_ref (remote_bfd_open (name, gnutarget));
1702 else
1703 {
1704 bfd *result = gdb_bfd_ref (bfd_openr (name, gnutarget));
1705
1706 if (result != NULL)
1707 gdb_bfd_stash_filename (result);
1708 return result;
1709 }
1710 }
1711
1712
1713 /* Open the file specified by NAME and hand it off to BFD for
1714 preliminary analysis. Return a newly initialized bfd *, which
1715 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1716 absolute). In case of trouble, error() is called. */
1717
1718 bfd *
1719 symfile_bfd_open (char *name)
1720 {
1721 bfd *sym_bfd;
1722 int desc;
1723 char *absolute_name;
1724
1725 if (remote_filename_p (name))
1726 {
1727 sym_bfd = gdb_bfd_ref (remote_bfd_open (name, gnutarget));
1728 if (!sym_bfd)
1729 error (_("`%s': can't open to read symbols: %s."), name,
1730 bfd_errmsg (bfd_get_error ()));
1731
1732 if (!bfd_check_format (sym_bfd, bfd_object))
1733 {
1734 make_cleanup_bfd_close (sym_bfd);
1735 error (_("`%s': can't read symbols: %s."), name,
1736 bfd_errmsg (bfd_get_error ()));
1737 }
1738
1739 return sym_bfd;
1740 }
1741
1742 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1743
1744 /* Look down path for it, allocate 2nd new malloc'd copy. */
1745 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1746 O_RDONLY | O_BINARY, &absolute_name);
1747 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1748 if (desc < 0)
1749 {
1750 char *exename = alloca (strlen (name) + 5);
1751
1752 strcat (strcpy (exename, name), ".exe");
1753 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1754 O_RDONLY | O_BINARY, &absolute_name);
1755 }
1756 #endif
1757 if (desc < 0)
1758 {
1759 make_cleanup (xfree, name);
1760 perror_with_name (name);
1761 }
1762
1763 xfree (name);
1764 name = absolute_name;
1765 make_cleanup (xfree, name);
1766
1767 sym_bfd = gdb_bfd_ref (bfd_fopen (name, gnutarget, FOPEN_RB, desc));
1768 if (!sym_bfd)
1769 {
1770 make_cleanup (xfree, name);
1771 error (_("`%s': can't open to read symbols: %s."), name,
1772 bfd_errmsg (bfd_get_error ()));
1773 }
1774 bfd_set_cacheable (sym_bfd, 1);
1775
1776 if (!bfd_check_format (sym_bfd, bfd_object))
1777 {
1778 make_cleanup_bfd_close (sym_bfd);
1779 error (_("`%s': can't read symbols: %s."), name,
1780 bfd_errmsg (bfd_get_error ()));
1781 }
1782
1783 gdb_bfd_stash_filename (sym_bfd);
1784
1785 return sym_bfd;
1786 }
1787
1788 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1789 the section was not found. */
1790
1791 int
1792 get_section_index (struct objfile *objfile, char *section_name)
1793 {
1794 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1795
1796 if (sect)
1797 return sect->index;
1798 else
1799 return -1;
1800 }
1801
1802 /* Link SF into the global symtab_fns list. Called on startup by the
1803 _initialize routine in each object file format reader, to register
1804 information about each format the reader is prepared to handle. */
1805
1806 void
1807 add_symtab_fns (const struct sym_fns *sf)
1808 {
1809 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1810 }
1811
1812 /* Initialize OBJFILE to read symbols from its associated BFD. It
1813 either returns or calls error(). The result is an initialized
1814 struct sym_fns in the objfile structure, that contains cached
1815 information about the symbol file. */
1816
1817 static const struct sym_fns *
1818 find_sym_fns (bfd *abfd)
1819 {
1820 const struct sym_fns *sf;
1821 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1822 int i;
1823
1824 if (our_flavour == bfd_target_srec_flavour
1825 || our_flavour == bfd_target_ihex_flavour
1826 || our_flavour == bfd_target_tekhex_flavour)
1827 return NULL; /* No symbols. */
1828
1829 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1830 if (our_flavour == sf->sym_flavour)
1831 return sf;
1832
1833 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1834 bfd_get_target (abfd));
1835 }
1836 \f
1837
1838 /* This function runs the load command of our current target. */
1839
1840 static void
1841 load_command (char *arg, int from_tty)
1842 {
1843 dont_repeat ();
1844
1845 /* The user might be reloading because the binary has changed. Take
1846 this opportunity to check. */
1847 reopen_exec_file ();
1848 reread_symbols ();
1849
1850 if (arg == NULL)
1851 {
1852 char *parg;
1853 int count = 0;
1854
1855 parg = arg = get_exec_file (1);
1856
1857 /* Count how many \ " ' tab space there are in the name. */
1858 while ((parg = strpbrk (parg, "\\\"'\t ")))
1859 {
1860 parg++;
1861 count++;
1862 }
1863
1864 if (count)
1865 {
1866 /* We need to quote this string so buildargv can pull it apart. */
1867 char *temp = xmalloc (strlen (arg) + count + 1 );
1868 char *ptemp = temp;
1869 char *prev;
1870
1871 make_cleanup (xfree, temp);
1872
1873 prev = parg = arg;
1874 while ((parg = strpbrk (parg, "\\\"'\t ")))
1875 {
1876 strncpy (ptemp, prev, parg - prev);
1877 ptemp += parg - prev;
1878 prev = parg++;
1879 *ptemp++ = '\\';
1880 }
1881 strcpy (ptemp, prev);
1882
1883 arg = temp;
1884 }
1885 }
1886
1887 target_load (arg, from_tty);
1888
1889 /* After re-loading the executable, we don't really know which
1890 overlays are mapped any more. */
1891 overlay_cache_invalid = 1;
1892 }
1893
1894 /* This version of "load" should be usable for any target. Currently
1895 it is just used for remote targets, not inftarg.c or core files,
1896 on the theory that only in that case is it useful.
1897
1898 Avoiding xmodem and the like seems like a win (a) because we don't have
1899 to worry about finding it, and (b) On VMS, fork() is very slow and so
1900 we don't want to run a subprocess. On the other hand, I'm not sure how
1901 performance compares. */
1902
1903 static int validate_download = 0;
1904
1905 /* Callback service function for generic_load (bfd_map_over_sections). */
1906
1907 static void
1908 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1909 {
1910 bfd_size_type *sum = data;
1911
1912 *sum += bfd_get_section_size (asec);
1913 }
1914
1915 /* Opaque data for load_section_callback. */
1916 struct load_section_data {
1917 unsigned long load_offset;
1918 struct load_progress_data *progress_data;
1919 VEC(memory_write_request_s) *requests;
1920 };
1921
1922 /* Opaque data for load_progress. */
1923 struct load_progress_data {
1924 /* Cumulative data. */
1925 unsigned long write_count;
1926 unsigned long data_count;
1927 bfd_size_type total_size;
1928 };
1929
1930 /* Opaque data for load_progress for a single section. */
1931 struct load_progress_section_data {
1932 struct load_progress_data *cumulative;
1933
1934 /* Per-section data. */
1935 const char *section_name;
1936 ULONGEST section_sent;
1937 ULONGEST section_size;
1938 CORE_ADDR lma;
1939 gdb_byte *buffer;
1940 };
1941
1942 /* Target write callback routine for progress reporting. */
1943
1944 static void
1945 load_progress (ULONGEST bytes, void *untyped_arg)
1946 {
1947 struct load_progress_section_data *args = untyped_arg;
1948 struct load_progress_data *totals;
1949
1950 if (args == NULL)
1951 /* Writing padding data. No easy way to get at the cumulative
1952 stats, so just ignore this. */
1953 return;
1954
1955 totals = args->cumulative;
1956
1957 if (bytes == 0 && args->section_sent == 0)
1958 {
1959 /* The write is just starting. Let the user know we've started
1960 this section. */
1961 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1962 args->section_name, hex_string (args->section_size),
1963 paddress (target_gdbarch, args->lma));
1964 return;
1965 }
1966
1967 if (validate_download)
1968 {
1969 /* Broken memories and broken monitors manifest themselves here
1970 when bring new computers to life. This doubles already slow
1971 downloads. */
1972 /* NOTE: cagney/1999-10-18: A more efficient implementation
1973 might add a verify_memory() method to the target vector and
1974 then use that. remote.c could implement that method using
1975 the ``qCRC'' packet. */
1976 gdb_byte *check = xmalloc (bytes);
1977 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1978
1979 if (target_read_memory (args->lma, check, bytes) != 0)
1980 error (_("Download verify read failed at %s"),
1981 paddress (target_gdbarch, args->lma));
1982 if (memcmp (args->buffer, check, bytes) != 0)
1983 error (_("Download verify compare failed at %s"),
1984 paddress (target_gdbarch, args->lma));
1985 do_cleanups (verify_cleanups);
1986 }
1987 totals->data_count += bytes;
1988 args->lma += bytes;
1989 args->buffer += bytes;
1990 totals->write_count += 1;
1991 args->section_sent += bytes;
1992 if (quit_flag
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1997
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2000 args->section_sent,
2001 args->section_size,
2002 totals->data_count,
2003 totals->total_size);
2004 }
2005
2006 /* Callback service function for generic_load (bfd_map_over_sections). */
2007
2008 static void
2009 load_section_callback (bfd *abfd, asection *asec, void *data)
2010 {
2011 struct memory_write_request *new_request;
2012 struct load_section_data *args = data;
2013 struct load_progress_section_data *section_data;
2014 bfd_size_type size = bfd_get_section_size (asec);
2015 gdb_byte *buffer;
2016 const char *sect_name = bfd_get_section_name (abfd, asec);
2017
2018 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2019 return;
2020
2021 if (size == 0)
2022 return;
2023
2024 new_request = VEC_safe_push (memory_write_request_s,
2025 args->requests, NULL);
2026 memset (new_request, 0, sizeof (struct memory_write_request));
2027 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2028 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2029 new_request->end = new_request->begin + size; /* FIXME Should size
2030 be in instead? */
2031 new_request->data = xmalloc (size);
2032 new_request->baton = section_data;
2033
2034 buffer = new_request->data;
2035
2036 section_data->cumulative = args->progress_data;
2037 section_data->section_name = sect_name;
2038 section_data->section_size = size;
2039 section_data->lma = new_request->begin;
2040 section_data->buffer = buffer;
2041
2042 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2043 }
2044
2045 /* Clean up an entire memory request vector, including load
2046 data and progress records. */
2047
2048 static void
2049 clear_memory_write_data (void *arg)
2050 {
2051 VEC(memory_write_request_s) **vec_p = arg;
2052 VEC(memory_write_request_s) *vec = *vec_p;
2053 int i;
2054 struct memory_write_request *mr;
2055
2056 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2057 {
2058 xfree (mr->data);
2059 xfree (mr->baton);
2060 }
2061 VEC_free (memory_write_request_s, vec);
2062 }
2063
2064 void
2065 generic_load (char *args, int from_tty)
2066 {
2067 bfd *loadfile_bfd;
2068 struct timeval start_time, end_time;
2069 char *filename;
2070 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2071 struct load_section_data cbdata;
2072 struct load_progress_data total_progress;
2073 struct ui_out *uiout = current_uiout;
2074
2075 CORE_ADDR entry;
2076 char **argv;
2077
2078 memset (&cbdata, 0, sizeof (cbdata));
2079 memset (&total_progress, 0, sizeof (total_progress));
2080 cbdata.progress_data = &total_progress;
2081
2082 make_cleanup (clear_memory_write_data, &cbdata.requests);
2083
2084 if (args == NULL)
2085 error_no_arg (_("file to load"));
2086
2087 argv = gdb_buildargv (args);
2088 make_cleanup_freeargv (argv);
2089
2090 filename = tilde_expand (argv[0]);
2091 make_cleanup (xfree, filename);
2092
2093 if (argv[1] != NULL)
2094 {
2095 char *endptr;
2096
2097 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2098
2099 /* If the last word was not a valid number then
2100 treat it as a file name with spaces in. */
2101 if (argv[1] == endptr)
2102 error (_("Invalid download offset:%s."), argv[1]);
2103
2104 if (argv[2] != NULL)
2105 error (_("Too many parameters."));
2106 }
2107
2108 /* Open the file for loading. */
2109 loadfile_bfd = gdb_bfd_ref (bfd_openr (filename, gnutarget));
2110 if (loadfile_bfd == NULL)
2111 {
2112 perror_with_name (filename);
2113 return;
2114 }
2115
2116 make_cleanup_bfd_close (loadfile_bfd);
2117
2118 if (!bfd_check_format (loadfile_bfd, bfd_object))
2119 {
2120 error (_("\"%s\" is not an object file: %s"), filename,
2121 bfd_errmsg (bfd_get_error ()));
2122 }
2123
2124 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2125 (void *) &total_progress.total_size);
2126
2127 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2128
2129 gettimeofday (&start_time, NULL);
2130
2131 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2132 load_progress) != 0)
2133 error (_("Load failed"));
2134
2135 gettimeofday (&end_time, NULL);
2136
2137 entry = bfd_get_start_address (loadfile_bfd);
2138 ui_out_text (uiout, "Start address ");
2139 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2140 ui_out_text (uiout, ", load size ");
2141 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2142 ui_out_text (uiout, "\n");
2143 /* We were doing this in remote-mips.c, I suspect it is right
2144 for other targets too. */
2145 regcache_write_pc (get_current_regcache (), entry);
2146
2147 /* Reset breakpoints, now that we have changed the load image. For
2148 instance, breakpoints may have been set (or reset, by
2149 post_create_inferior) while connected to the target but before we
2150 loaded the program. In that case, the prologue analyzer could
2151 have read instructions from the target to find the right
2152 breakpoint locations. Loading has changed the contents of that
2153 memory. */
2154
2155 breakpoint_re_set ();
2156
2157 /* FIXME: are we supposed to call symbol_file_add or not? According
2158 to a comment from remote-mips.c (where a call to symbol_file_add
2159 was commented out), making the call confuses GDB if more than one
2160 file is loaded in. Some targets do (e.g., remote-vx.c) but
2161 others don't (or didn't - perhaps they have all been deleted). */
2162
2163 print_transfer_performance (gdb_stdout, total_progress.data_count,
2164 total_progress.write_count,
2165 &start_time, &end_time);
2166
2167 do_cleanups (old_cleanups);
2168 }
2169
2170 /* Report how fast the transfer went. */
2171
2172 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2173 replaced by print_transfer_performance (with a very different
2174 function signature). */
2175
2176 void
2177 report_transfer_performance (unsigned long data_count, time_t start_time,
2178 time_t end_time)
2179 {
2180 struct timeval start, end;
2181
2182 start.tv_sec = start_time;
2183 start.tv_usec = 0;
2184 end.tv_sec = end_time;
2185 end.tv_usec = 0;
2186
2187 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2188 }
2189
2190 void
2191 print_transfer_performance (struct ui_file *stream,
2192 unsigned long data_count,
2193 unsigned long write_count,
2194 const struct timeval *start_time,
2195 const struct timeval *end_time)
2196 {
2197 ULONGEST time_count;
2198 struct ui_out *uiout = current_uiout;
2199
2200 /* Compute the elapsed time in milliseconds, as a tradeoff between
2201 accuracy and overflow. */
2202 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2203 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2204
2205 ui_out_text (uiout, "Transfer rate: ");
2206 if (time_count > 0)
2207 {
2208 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2209
2210 if (ui_out_is_mi_like_p (uiout))
2211 {
2212 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2213 ui_out_text (uiout, " bits/sec");
2214 }
2215 else if (rate < 1024)
2216 {
2217 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2218 ui_out_text (uiout, " bytes/sec");
2219 }
2220 else
2221 {
2222 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2223 ui_out_text (uiout, " KB/sec");
2224 }
2225 }
2226 else
2227 {
2228 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2229 ui_out_text (uiout, " bits in <1 sec");
2230 }
2231 if (write_count > 0)
2232 {
2233 ui_out_text (uiout, ", ");
2234 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2235 ui_out_text (uiout, " bytes/write");
2236 }
2237 ui_out_text (uiout, ".\n");
2238 }
2239
2240 /* This function allows the addition of incrementally linked object files.
2241 It does not modify any state in the target, only in the debugger. */
2242 /* Note: ezannoni 2000-04-13 This function/command used to have a
2243 special case syntax for the rombug target (Rombug is the boot
2244 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2245 rombug case, the user doesn't need to supply a text address,
2246 instead a call to target_link() (in target.c) would supply the
2247 value to use. We are now discontinuing this type of ad hoc syntax. */
2248
2249 static void
2250 add_symbol_file_command (char *args, int from_tty)
2251 {
2252 struct gdbarch *gdbarch = get_current_arch ();
2253 char *filename = NULL;
2254 int flags = OBJF_USERLOADED;
2255 char *arg;
2256 int section_index = 0;
2257 int argcnt = 0;
2258 int sec_num = 0;
2259 int i;
2260 int expecting_sec_name = 0;
2261 int expecting_sec_addr = 0;
2262 char **argv;
2263
2264 struct sect_opt
2265 {
2266 char *name;
2267 char *value;
2268 };
2269
2270 struct section_addr_info *section_addrs;
2271 struct sect_opt *sect_opts = NULL;
2272 size_t num_sect_opts = 0;
2273 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2274
2275 num_sect_opts = 16;
2276 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2277 * sizeof (struct sect_opt));
2278
2279 dont_repeat ();
2280
2281 if (args == NULL)
2282 error (_("add-symbol-file takes a file name and an address"));
2283
2284 argv = gdb_buildargv (args);
2285 make_cleanup_freeargv (argv);
2286
2287 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2288 {
2289 /* Process the argument. */
2290 if (argcnt == 0)
2291 {
2292 /* The first argument is the file name. */
2293 filename = tilde_expand (arg);
2294 make_cleanup (xfree, filename);
2295 }
2296 else
2297 if (argcnt == 1)
2298 {
2299 /* The second argument is always the text address at which
2300 to load the program. */
2301 sect_opts[section_index].name = ".text";
2302 sect_opts[section_index].value = arg;
2303 if (++section_index >= num_sect_opts)
2304 {
2305 num_sect_opts *= 2;
2306 sect_opts = ((struct sect_opt *)
2307 xrealloc (sect_opts,
2308 num_sect_opts
2309 * sizeof (struct sect_opt)));
2310 }
2311 }
2312 else
2313 {
2314 /* It's an option (starting with '-') or it's an argument
2315 to an option. */
2316
2317 if (*arg == '-')
2318 {
2319 if (strcmp (arg, "-readnow") == 0)
2320 flags |= OBJF_READNOW;
2321 else if (strcmp (arg, "-s") == 0)
2322 {
2323 expecting_sec_name = 1;
2324 expecting_sec_addr = 1;
2325 }
2326 }
2327 else
2328 {
2329 if (expecting_sec_name)
2330 {
2331 sect_opts[section_index].name = arg;
2332 expecting_sec_name = 0;
2333 }
2334 else
2335 if (expecting_sec_addr)
2336 {
2337 sect_opts[section_index].value = arg;
2338 expecting_sec_addr = 0;
2339 if (++section_index >= num_sect_opts)
2340 {
2341 num_sect_opts *= 2;
2342 sect_opts = ((struct sect_opt *)
2343 xrealloc (sect_opts,
2344 num_sect_opts
2345 * sizeof (struct sect_opt)));
2346 }
2347 }
2348 else
2349 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2350 " [-readnow] [-s <secname> <addr>]*"));
2351 }
2352 }
2353 }
2354
2355 /* This command takes at least two arguments. The first one is a
2356 filename, and the second is the address where this file has been
2357 loaded. Abort now if this address hasn't been provided by the
2358 user. */
2359 if (section_index < 1)
2360 error (_("The address where %s has been loaded is missing"), filename);
2361
2362 /* Print the prompt for the query below. And save the arguments into
2363 a sect_addr_info structure to be passed around to other
2364 functions. We have to split this up into separate print
2365 statements because hex_string returns a local static
2366 string. */
2367
2368 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2369 section_addrs = alloc_section_addr_info (section_index);
2370 make_cleanup (xfree, section_addrs);
2371 for (i = 0; i < section_index; i++)
2372 {
2373 CORE_ADDR addr;
2374 char *val = sect_opts[i].value;
2375 char *sec = sect_opts[i].name;
2376
2377 addr = parse_and_eval_address (val);
2378
2379 /* Here we store the section offsets in the order they were
2380 entered on the command line. */
2381 section_addrs->other[sec_num].name = sec;
2382 section_addrs->other[sec_num].addr = addr;
2383 printf_unfiltered ("\t%s_addr = %s\n", sec,
2384 paddress (gdbarch, addr));
2385 sec_num++;
2386
2387 /* The object's sections are initialized when a
2388 call is made to build_objfile_section_table (objfile).
2389 This happens in reread_symbols.
2390 At this point, we don't know what file type this is,
2391 so we can't determine what section names are valid. */
2392 }
2393
2394 if (from_tty && (!query ("%s", "")))
2395 error (_("Not confirmed."));
2396
2397 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2398 section_addrs, flags);
2399
2400 /* Getting new symbols may change our opinion about what is
2401 frameless. */
2402 reinit_frame_cache ();
2403 do_cleanups (my_cleanups);
2404 }
2405 \f
2406
2407 typedef struct objfile *objfilep;
2408
2409 DEF_VEC_P (objfilep);
2410
2411 /* Re-read symbols if a symbol-file has changed. */
2412 void
2413 reread_symbols (void)
2414 {
2415 struct objfile *objfile;
2416 long new_modtime;
2417 struct stat new_statbuf;
2418 int res;
2419 VEC (objfilep) *new_objfiles = NULL;
2420 struct cleanup *all_cleanups;
2421
2422 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2423
2424 /* With the addition of shared libraries, this should be modified,
2425 the load time should be saved in the partial symbol tables, since
2426 different tables may come from different source files. FIXME.
2427 This routine should then walk down each partial symbol table
2428 and see if the symbol table that it originates from has been changed. */
2429
2430 for (objfile = object_files; objfile; objfile = objfile->next)
2431 {
2432 /* solib-sunos.c creates one objfile with obfd. */
2433 if (objfile->obfd == NULL)
2434 continue;
2435
2436 /* Separate debug objfiles are handled in the main objfile. */
2437 if (objfile->separate_debug_objfile_backlink)
2438 continue;
2439
2440 /* If this object is from an archive (what you usually create with
2441 `ar', often called a `static library' on most systems, though
2442 a `shared library' on AIX is also an archive), then you should
2443 stat on the archive name, not member name. */
2444 if (objfile->obfd->my_archive)
2445 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2446 else
2447 res = stat (objfile->name, &new_statbuf);
2448 if (res != 0)
2449 {
2450 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2451 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2452 objfile->name);
2453 continue;
2454 }
2455 new_modtime = new_statbuf.st_mtime;
2456 if (new_modtime != objfile->mtime)
2457 {
2458 struct cleanup *old_cleanups;
2459 struct section_offsets *offsets;
2460 int num_offsets;
2461 char *obfd_filename;
2462
2463 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2464 objfile->name);
2465
2466 /* There are various functions like symbol_file_add,
2467 symfile_bfd_open, syms_from_objfile, etc., which might
2468 appear to do what we want. But they have various other
2469 effects which we *don't* want. So we just do stuff
2470 ourselves. We don't worry about mapped files (for one thing,
2471 any mapped file will be out of date). */
2472
2473 /* If we get an error, blow away this objfile (not sure if
2474 that is the correct response for things like shared
2475 libraries). */
2476 old_cleanups = make_cleanup_free_objfile (objfile);
2477 /* We need to do this whenever any symbols go away. */
2478 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2479
2480 if (exec_bfd != NULL
2481 && filename_cmp (bfd_get_filename (objfile->obfd),
2482 bfd_get_filename (exec_bfd)) == 0)
2483 {
2484 /* Reload EXEC_BFD without asking anything. */
2485
2486 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2487 }
2488
2489 /* Keep the calls order approx. the same as in free_objfile. */
2490
2491 /* Free the separate debug objfiles. It will be
2492 automatically recreated by sym_read. */
2493 free_objfile_separate_debug (objfile);
2494
2495 /* Remove any references to this objfile in the global
2496 value lists. */
2497 preserve_values (objfile);
2498
2499 /* Nuke all the state that we will re-read. Much of the following
2500 code which sets things to NULL really is necessary to tell
2501 other parts of GDB that there is nothing currently there.
2502
2503 Try to keep the freeing order compatible with free_objfile. */
2504
2505 if (objfile->sf != NULL)
2506 {
2507 (*objfile->sf->sym_finish) (objfile);
2508 }
2509
2510 clear_objfile_data (objfile);
2511
2512 /* Clean up any state BFD has sitting around. We don't need
2513 to close the descriptor but BFD lacks a way of closing the
2514 BFD without closing the descriptor. */
2515 {
2516 struct bfd *obfd = objfile->obfd;
2517
2518 obfd_filename = bfd_get_filename (objfile->obfd);
2519 /* Open the new BFD before freeing the old one, so that
2520 the filename remains live. */
2521 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2522 gdb_bfd_unref (obfd);
2523 }
2524
2525 if (objfile->obfd == NULL)
2526 error (_("Can't open %s to read symbols."), objfile->name);
2527 /* bfd_openr sets cacheable to true, which is what we want. */
2528 if (!bfd_check_format (objfile->obfd, bfd_object))
2529 error (_("Can't read symbols from %s: %s."), objfile->name,
2530 bfd_errmsg (bfd_get_error ()));
2531
2532 /* Save the offsets, we will nuke them with the rest of the
2533 objfile_obstack. */
2534 num_offsets = objfile->num_sections;
2535 offsets = ((struct section_offsets *)
2536 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2537 memcpy (offsets, objfile->section_offsets,
2538 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2539
2540 /* FIXME: Do we have to free a whole linked list, or is this
2541 enough? */
2542 if (objfile->global_psymbols.list)
2543 xfree (objfile->global_psymbols.list);
2544 memset (&objfile->global_psymbols, 0,
2545 sizeof (objfile->global_psymbols));
2546 if (objfile->static_psymbols.list)
2547 xfree (objfile->static_psymbols.list);
2548 memset (&objfile->static_psymbols, 0,
2549 sizeof (objfile->static_psymbols));
2550
2551 /* Free the obstacks for non-reusable objfiles. */
2552 psymbol_bcache_free (objfile->psymbol_cache);
2553 objfile->psymbol_cache = psymbol_bcache_init ();
2554 bcache_xfree (objfile->macro_cache);
2555 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2556 bcache_xfree (objfile->filename_cache);
2557 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2558 if (objfile->demangled_names_hash != NULL)
2559 {
2560 htab_delete (objfile->demangled_names_hash);
2561 objfile->demangled_names_hash = NULL;
2562 }
2563 obstack_free (&objfile->objfile_obstack, 0);
2564 objfile->sections = NULL;
2565 objfile->symtabs = NULL;
2566 objfile->psymtabs = NULL;
2567 objfile->psymtabs_addrmap = NULL;
2568 objfile->free_psymtabs = NULL;
2569 objfile->template_symbols = NULL;
2570 objfile->msymbols = NULL;
2571 objfile->deprecated_sym_private = NULL;
2572 objfile->minimal_symbol_count = 0;
2573 memset (&objfile->msymbol_hash, 0,
2574 sizeof (objfile->msymbol_hash));
2575 memset (&objfile->msymbol_demangled_hash, 0,
2576 sizeof (objfile->msymbol_demangled_hash));
2577
2578 /* obstack_init also initializes the obstack so it is
2579 empty. We could use obstack_specify_allocation but
2580 gdb_obstack.h specifies the alloc/dealloc functions. */
2581 obstack_init (&objfile->objfile_obstack);
2582 build_objfile_section_table (objfile);
2583 terminate_minimal_symbol_table (objfile);
2584
2585 /* We use the same section offsets as from last time. I'm not
2586 sure whether that is always correct for shared libraries. */
2587 objfile->section_offsets = (struct section_offsets *)
2588 obstack_alloc (&objfile->objfile_obstack,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590 memcpy (objfile->section_offsets, offsets,
2591 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2592 objfile->num_sections = num_offsets;
2593
2594 /* What the hell is sym_new_init for, anyway? The concept of
2595 distinguishing between the main file and additional files
2596 in this way seems rather dubious. */
2597 if (objfile == symfile_objfile)
2598 {
2599 (*objfile->sf->sym_new_init) (objfile);
2600 }
2601
2602 (*objfile->sf->sym_init) (objfile);
2603 clear_complaints (&symfile_complaints, 1, 1);
2604 /* Do not set flags as this is safe and we don't want to be
2605 verbose. */
2606 (*objfile->sf->sym_read) (objfile, 0);
2607 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2608 {
2609 objfile->flags &= ~OBJF_PSYMTABS_READ;
2610 require_partial_symbols (objfile, 0);
2611 }
2612
2613 if (!objfile_has_symbols (objfile))
2614 {
2615 wrap_here ("");
2616 printf_unfiltered (_("(no debugging symbols found)\n"));
2617 wrap_here ("");
2618 }
2619
2620 /* We're done reading the symbol file; finish off complaints. */
2621 clear_complaints (&symfile_complaints, 0, 1);
2622
2623 /* Getting new symbols may change our opinion about what is
2624 frameless. */
2625
2626 reinit_frame_cache ();
2627
2628 /* Discard cleanups as symbol reading was successful. */
2629 discard_cleanups (old_cleanups);
2630
2631 /* If the mtime has changed between the time we set new_modtime
2632 and now, we *want* this to be out of date, so don't call stat
2633 again now. */
2634 objfile->mtime = new_modtime;
2635 init_entry_point_info (objfile);
2636
2637 VEC_safe_push (objfilep, new_objfiles, objfile);
2638 }
2639 }
2640
2641 if (new_objfiles)
2642 {
2643 int ix;
2644
2645 /* Notify objfiles that we've modified objfile sections. */
2646 objfiles_changed ();
2647
2648 clear_symtab_users (0);
2649
2650 /* clear_objfile_data for each objfile was called before freeing it and
2651 observer_notify_new_objfile (NULL) has been called by
2652 clear_symtab_users above. Notify the new files now. */
2653 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2654 observer_notify_new_objfile (objfile);
2655
2656 /* At least one objfile has changed, so we can consider that
2657 the executable we're debugging has changed too. */
2658 observer_notify_executable_changed ();
2659 }
2660
2661 do_cleanups (all_cleanups);
2662 }
2663 \f
2664
2665
2666 typedef struct
2667 {
2668 char *ext;
2669 enum language lang;
2670 }
2671 filename_language;
2672
2673 static filename_language *filename_language_table;
2674 static int fl_table_size, fl_table_next;
2675
2676 static void
2677 add_filename_language (char *ext, enum language lang)
2678 {
2679 if (fl_table_next >= fl_table_size)
2680 {
2681 fl_table_size += 10;
2682 filename_language_table =
2683 xrealloc (filename_language_table,
2684 fl_table_size * sizeof (*filename_language_table));
2685 }
2686
2687 filename_language_table[fl_table_next].ext = xstrdup (ext);
2688 filename_language_table[fl_table_next].lang = lang;
2689 fl_table_next++;
2690 }
2691
2692 static char *ext_args;
2693 static void
2694 show_ext_args (struct ui_file *file, int from_tty,
2695 struct cmd_list_element *c, const char *value)
2696 {
2697 fprintf_filtered (file,
2698 _("Mapping between filename extension "
2699 "and source language is \"%s\".\n"),
2700 value);
2701 }
2702
2703 static void
2704 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2705 {
2706 int i;
2707 char *cp = ext_args;
2708 enum language lang;
2709
2710 /* First arg is filename extension, starting with '.' */
2711 if (*cp != '.')
2712 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2713
2714 /* Find end of first arg. */
2715 while (*cp && !isspace (*cp))
2716 cp++;
2717
2718 if (*cp == '\0')
2719 error (_("'%s': two arguments required -- "
2720 "filename extension and language"),
2721 ext_args);
2722
2723 /* Null-terminate first arg. */
2724 *cp++ = '\0';
2725
2726 /* Find beginning of second arg, which should be a source language. */
2727 while (*cp && isspace (*cp))
2728 cp++;
2729
2730 if (*cp == '\0')
2731 error (_("'%s': two arguments required -- "
2732 "filename extension and language"),
2733 ext_args);
2734
2735 /* Lookup the language from among those we know. */
2736 lang = language_enum (cp);
2737
2738 /* Now lookup the filename extension: do we already know it? */
2739 for (i = 0; i < fl_table_next; i++)
2740 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2741 break;
2742
2743 if (i >= fl_table_next)
2744 {
2745 /* New file extension. */
2746 add_filename_language (ext_args, lang);
2747 }
2748 else
2749 {
2750 /* Redefining a previously known filename extension. */
2751
2752 /* if (from_tty) */
2753 /* query ("Really make files of type %s '%s'?", */
2754 /* ext_args, language_str (lang)); */
2755
2756 xfree (filename_language_table[i].ext);
2757 filename_language_table[i].ext = xstrdup (ext_args);
2758 filename_language_table[i].lang = lang;
2759 }
2760 }
2761
2762 static void
2763 info_ext_lang_command (char *args, int from_tty)
2764 {
2765 int i;
2766
2767 printf_filtered (_("Filename extensions and the languages they represent:"));
2768 printf_filtered ("\n\n");
2769 for (i = 0; i < fl_table_next; i++)
2770 printf_filtered ("\t%s\t- %s\n",
2771 filename_language_table[i].ext,
2772 language_str (filename_language_table[i].lang));
2773 }
2774
2775 static void
2776 init_filename_language_table (void)
2777 {
2778 if (fl_table_size == 0) /* Protect against repetition. */
2779 {
2780 fl_table_size = 20;
2781 fl_table_next = 0;
2782 filename_language_table =
2783 xmalloc (fl_table_size * sizeof (*filename_language_table));
2784 add_filename_language (".c", language_c);
2785 add_filename_language (".d", language_d);
2786 add_filename_language (".C", language_cplus);
2787 add_filename_language (".cc", language_cplus);
2788 add_filename_language (".cp", language_cplus);
2789 add_filename_language (".cpp", language_cplus);
2790 add_filename_language (".cxx", language_cplus);
2791 add_filename_language (".c++", language_cplus);
2792 add_filename_language (".java", language_java);
2793 add_filename_language (".class", language_java);
2794 add_filename_language (".m", language_objc);
2795 add_filename_language (".f", language_fortran);
2796 add_filename_language (".F", language_fortran);
2797 add_filename_language (".for", language_fortran);
2798 add_filename_language (".FOR", language_fortran);
2799 add_filename_language (".ftn", language_fortran);
2800 add_filename_language (".FTN", language_fortran);
2801 add_filename_language (".fpp", language_fortran);
2802 add_filename_language (".FPP", language_fortran);
2803 add_filename_language (".f90", language_fortran);
2804 add_filename_language (".F90", language_fortran);
2805 add_filename_language (".f95", language_fortran);
2806 add_filename_language (".F95", language_fortran);
2807 add_filename_language (".f03", language_fortran);
2808 add_filename_language (".F03", language_fortran);
2809 add_filename_language (".f08", language_fortran);
2810 add_filename_language (".F08", language_fortran);
2811 add_filename_language (".s", language_asm);
2812 add_filename_language (".sx", language_asm);
2813 add_filename_language (".S", language_asm);
2814 add_filename_language (".pas", language_pascal);
2815 add_filename_language (".p", language_pascal);
2816 add_filename_language (".pp", language_pascal);
2817 add_filename_language (".adb", language_ada);
2818 add_filename_language (".ads", language_ada);
2819 add_filename_language (".a", language_ada);
2820 add_filename_language (".ada", language_ada);
2821 add_filename_language (".dg", language_ada);
2822 }
2823 }
2824
2825 enum language
2826 deduce_language_from_filename (const char *filename)
2827 {
2828 int i;
2829 char *cp;
2830
2831 if (filename != NULL)
2832 if ((cp = strrchr (filename, '.')) != NULL)
2833 for (i = 0; i < fl_table_next; i++)
2834 if (strcmp (cp, filename_language_table[i].ext) == 0)
2835 return filename_language_table[i].lang;
2836
2837 return language_unknown;
2838 }
2839 \f
2840 /* allocate_symtab:
2841
2842 Allocate and partly initialize a new symbol table. Return a pointer
2843 to it. error() if no space.
2844
2845 Caller must set these fields:
2846 LINETABLE(symtab)
2847 symtab->blockvector
2848 symtab->dirname
2849 symtab->free_code
2850 symtab->free_ptr
2851 */
2852
2853 struct symtab *
2854 allocate_symtab (const char *filename, struct objfile *objfile)
2855 {
2856 struct symtab *symtab;
2857
2858 symtab = (struct symtab *)
2859 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2860 memset (symtab, 0, sizeof (*symtab));
2861 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2862 objfile->filename_cache);
2863 symtab->fullname = NULL;
2864 symtab->language = deduce_language_from_filename (filename);
2865 symtab->debugformat = "unknown";
2866
2867 /* Hook it to the objfile it comes from. */
2868
2869 symtab->objfile = objfile;
2870 symtab->next = objfile->symtabs;
2871 objfile->symtabs = symtab;
2872
2873 if (symtab_create_debug)
2874 {
2875 /* Be a bit clever with debugging messages, and don't print objfile
2876 every time, only when it changes. */
2877 static char *last_objfile_name = NULL;
2878
2879 if (last_objfile_name == NULL
2880 || strcmp (last_objfile_name, objfile->name) != 0)
2881 {
2882 xfree (last_objfile_name);
2883 last_objfile_name = xstrdup (objfile->name);
2884 fprintf_unfiltered (gdb_stdlog,
2885 "Creating one or more symtabs for objfile %s ...\n",
2886 last_objfile_name);
2887 }
2888 fprintf_unfiltered (gdb_stdlog,
2889 "Created symtab 0x%lx for module %s.\n",
2890 (long) symtab, filename);
2891 }
2892
2893 return (symtab);
2894 }
2895 \f
2896
2897 /* Reset all data structures in gdb which may contain references to symbol
2898 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2899
2900 void
2901 clear_symtab_users (int add_flags)
2902 {
2903 /* Someday, we should do better than this, by only blowing away
2904 the things that really need to be blown. */
2905
2906 /* Clear the "current" symtab first, because it is no longer valid.
2907 breakpoint_re_set may try to access the current symtab. */
2908 clear_current_source_symtab_and_line ();
2909
2910 clear_displays ();
2911 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2912 breakpoint_re_set ();
2913 clear_last_displayed_sal ();
2914 clear_pc_function_cache ();
2915 observer_notify_new_objfile (NULL);
2916
2917 /* Clear globals which might have pointed into a removed objfile.
2918 FIXME: It's not clear which of these are supposed to persist
2919 between expressions and which ought to be reset each time. */
2920 expression_context_block = NULL;
2921 innermost_block = NULL;
2922
2923 /* Varobj may refer to old symbols, perform a cleanup. */
2924 varobj_invalidate ();
2925
2926 }
2927
2928 static void
2929 clear_symtab_users_cleanup (void *ignore)
2930 {
2931 clear_symtab_users (0);
2932 }
2933 \f
2934 /* OVERLAYS:
2935 The following code implements an abstraction for debugging overlay sections.
2936
2937 The target model is as follows:
2938 1) The gnu linker will permit multiple sections to be mapped into the
2939 same VMA, each with its own unique LMA (or load address).
2940 2) It is assumed that some runtime mechanism exists for mapping the
2941 sections, one by one, from the load address into the VMA address.
2942 3) This code provides a mechanism for gdb to keep track of which
2943 sections should be considered to be mapped from the VMA to the LMA.
2944 This information is used for symbol lookup, and memory read/write.
2945 For instance, if a section has been mapped then its contents
2946 should be read from the VMA, otherwise from the LMA.
2947
2948 Two levels of debugger support for overlays are available. One is
2949 "manual", in which the debugger relies on the user to tell it which
2950 overlays are currently mapped. This level of support is
2951 implemented entirely in the core debugger, and the information about
2952 whether a section is mapped is kept in the objfile->obj_section table.
2953
2954 The second level of support is "automatic", and is only available if
2955 the target-specific code provides functionality to read the target's
2956 overlay mapping table, and translate its contents for the debugger
2957 (by updating the mapped state information in the obj_section tables).
2958
2959 The interface is as follows:
2960 User commands:
2961 overlay map <name> -- tell gdb to consider this section mapped
2962 overlay unmap <name> -- tell gdb to consider this section unmapped
2963 overlay list -- list the sections that GDB thinks are mapped
2964 overlay read-target -- get the target's state of what's mapped
2965 overlay off/manual/auto -- set overlay debugging state
2966 Functional interface:
2967 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2968 section, return that section.
2969 find_pc_overlay(pc): find any overlay section that contains
2970 the pc, either in its VMA or its LMA
2971 section_is_mapped(sect): true if overlay is marked as mapped
2972 section_is_overlay(sect): true if section's VMA != LMA
2973 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2974 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2975 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2976 overlay_mapped_address(...): map an address from section's LMA to VMA
2977 overlay_unmapped_address(...): map an address from section's VMA to LMA
2978 symbol_overlayed_address(...): Return a "current" address for symbol:
2979 either in VMA or LMA depending on whether
2980 the symbol's section is currently mapped. */
2981
2982 /* Overlay debugging state: */
2983
2984 enum overlay_debugging_state overlay_debugging = ovly_off;
2985 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2986
2987 /* Function: section_is_overlay (SECTION)
2988 Returns true if SECTION has VMA not equal to LMA, ie.
2989 SECTION is loaded at an address different from where it will "run". */
2990
2991 int
2992 section_is_overlay (struct obj_section *section)
2993 {
2994 if (overlay_debugging && section)
2995 {
2996 bfd *abfd = section->objfile->obfd;
2997 asection *bfd_section = section->the_bfd_section;
2998
2999 if (bfd_section_lma (abfd, bfd_section) != 0
3000 && bfd_section_lma (abfd, bfd_section)
3001 != bfd_section_vma (abfd, bfd_section))
3002 return 1;
3003 }
3004
3005 return 0;
3006 }
3007
3008 /* Function: overlay_invalidate_all (void)
3009 Invalidate the mapped state of all overlay sections (mark it as stale). */
3010
3011 static void
3012 overlay_invalidate_all (void)
3013 {
3014 struct objfile *objfile;
3015 struct obj_section *sect;
3016
3017 ALL_OBJSECTIONS (objfile, sect)
3018 if (section_is_overlay (sect))
3019 sect->ovly_mapped = -1;
3020 }
3021
3022 /* Function: section_is_mapped (SECTION)
3023 Returns true if section is an overlay, and is currently mapped.
3024
3025 Access to the ovly_mapped flag is restricted to this function, so
3026 that we can do automatic update. If the global flag
3027 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3028 overlay_invalidate_all. If the mapped state of the particular
3029 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3030
3031 int
3032 section_is_mapped (struct obj_section *osect)
3033 {
3034 struct gdbarch *gdbarch;
3035
3036 if (osect == 0 || !section_is_overlay (osect))
3037 return 0;
3038
3039 switch (overlay_debugging)
3040 {
3041 default:
3042 case ovly_off:
3043 return 0; /* overlay debugging off */
3044 case ovly_auto: /* overlay debugging automatic */
3045 /* Unles there is a gdbarch_overlay_update function,
3046 there's really nothing useful to do here (can't really go auto). */
3047 gdbarch = get_objfile_arch (osect->objfile);
3048 if (gdbarch_overlay_update_p (gdbarch))
3049 {
3050 if (overlay_cache_invalid)
3051 {
3052 overlay_invalidate_all ();
3053 overlay_cache_invalid = 0;
3054 }
3055 if (osect->ovly_mapped == -1)
3056 gdbarch_overlay_update (gdbarch, osect);
3057 }
3058 /* fall thru to manual case */
3059 case ovly_on: /* overlay debugging manual */
3060 return osect->ovly_mapped == 1;
3061 }
3062 }
3063
3064 /* Function: pc_in_unmapped_range
3065 If PC falls into the lma range of SECTION, return true, else false. */
3066
3067 CORE_ADDR
3068 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3069 {
3070 if (section_is_overlay (section))
3071 {
3072 bfd *abfd = section->objfile->obfd;
3073 asection *bfd_section = section->the_bfd_section;
3074
3075 /* We assume the LMA is relocated by the same offset as the VMA. */
3076 bfd_vma size = bfd_get_section_size (bfd_section);
3077 CORE_ADDR offset = obj_section_offset (section);
3078
3079 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3080 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3081 return 1;
3082 }
3083
3084 return 0;
3085 }
3086
3087 /* Function: pc_in_mapped_range
3088 If PC falls into the vma range of SECTION, return true, else false. */
3089
3090 CORE_ADDR
3091 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3092 {
3093 if (section_is_overlay (section))
3094 {
3095 if (obj_section_addr (section) <= pc
3096 && pc < obj_section_endaddr (section))
3097 return 1;
3098 }
3099
3100 return 0;
3101 }
3102
3103
3104 /* Return true if the mapped ranges of sections A and B overlap, false
3105 otherwise. */
3106 static int
3107 sections_overlap (struct obj_section *a, struct obj_section *b)
3108 {
3109 CORE_ADDR a_start = obj_section_addr (a);
3110 CORE_ADDR a_end = obj_section_endaddr (a);
3111 CORE_ADDR b_start = obj_section_addr (b);
3112 CORE_ADDR b_end = obj_section_endaddr (b);
3113
3114 return (a_start < b_end && b_start < a_end);
3115 }
3116
3117 /* Function: overlay_unmapped_address (PC, SECTION)
3118 Returns the address corresponding to PC in the unmapped (load) range.
3119 May be the same as PC. */
3120
3121 CORE_ADDR
3122 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3123 {
3124 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3125 {
3126 bfd *abfd = section->objfile->obfd;
3127 asection *bfd_section = section->the_bfd_section;
3128
3129 return pc + bfd_section_lma (abfd, bfd_section)
3130 - bfd_section_vma (abfd, bfd_section);
3131 }
3132
3133 return pc;
3134 }
3135
3136 /* Function: overlay_mapped_address (PC, SECTION)
3137 Returns the address corresponding to PC in the mapped (runtime) range.
3138 May be the same as PC. */
3139
3140 CORE_ADDR
3141 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3142 {
3143 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3144 {
3145 bfd *abfd = section->objfile->obfd;
3146 asection *bfd_section = section->the_bfd_section;
3147
3148 return pc + bfd_section_vma (abfd, bfd_section)
3149 - bfd_section_lma (abfd, bfd_section);
3150 }
3151
3152 return pc;
3153 }
3154
3155
3156 /* Function: symbol_overlayed_address
3157 Return one of two addresses (relative to the VMA or to the LMA),
3158 depending on whether the section is mapped or not. */
3159
3160 CORE_ADDR
3161 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3162 {
3163 if (overlay_debugging)
3164 {
3165 /* If the symbol has no section, just return its regular address. */
3166 if (section == 0)
3167 return address;
3168 /* If the symbol's section is not an overlay, just return its
3169 address. */
3170 if (!section_is_overlay (section))
3171 return address;
3172 /* If the symbol's section is mapped, just return its address. */
3173 if (section_is_mapped (section))
3174 return address;
3175 /*
3176 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3177 * then return its LOADED address rather than its vma address!!
3178 */
3179 return overlay_unmapped_address (address, section);
3180 }
3181 return address;
3182 }
3183
3184 /* Function: find_pc_overlay (PC)
3185 Return the best-match overlay section for PC:
3186 If PC matches a mapped overlay section's VMA, return that section.
3187 Else if PC matches an unmapped section's VMA, return that section.
3188 Else if PC matches an unmapped section's LMA, return that section. */
3189
3190 struct obj_section *
3191 find_pc_overlay (CORE_ADDR pc)
3192 {
3193 struct objfile *objfile;
3194 struct obj_section *osect, *best_match = NULL;
3195
3196 if (overlay_debugging)
3197 ALL_OBJSECTIONS (objfile, osect)
3198 if (section_is_overlay (osect))
3199 {
3200 if (pc_in_mapped_range (pc, osect))
3201 {
3202 if (section_is_mapped (osect))
3203 return osect;
3204 else
3205 best_match = osect;
3206 }
3207 else if (pc_in_unmapped_range (pc, osect))
3208 best_match = osect;
3209 }
3210 return best_match;
3211 }
3212
3213 /* Function: find_pc_mapped_section (PC)
3214 If PC falls into the VMA address range of an overlay section that is
3215 currently marked as MAPPED, return that section. Else return NULL. */
3216
3217 struct obj_section *
3218 find_pc_mapped_section (CORE_ADDR pc)
3219 {
3220 struct objfile *objfile;
3221 struct obj_section *osect;
3222
3223 if (overlay_debugging)
3224 ALL_OBJSECTIONS (objfile, osect)
3225 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3226 return osect;
3227
3228 return NULL;
3229 }
3230
3231 /* Function: list_overlays_command
3232 Print a list of mapped sections and their PC ranges. */
3233
3234 void
3235 list_overlays_command (char *args, int from_tty)
3236 {
3237 int nmapped = 0;
3238 struct objfile *objfile;
3239 struct obj_section *osect;
3240
3241 if (overlay_debugging)
3242 ALL_OBJSECTIONS (objfile, osect)
3243 if (section_is_mapped (osect))
3244 {
3245 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3246 const char *name;
3247 bfd_vma lma, vma;
3248 int size;
3249
3250 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3251 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3252 size = bfd_get_section_size (osect->the_bfd_section);
3253 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3254
3255 printf_filtered ("Section %s, loaded at ", name);
3256 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3257 puts_filtered (" - ");
3258 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3259 printf_filtered (", mapped at ");
3260 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3261 puts_filtered (" - ");
3262 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3263 puts_filtered ("\n");
3264
3265 nmapped++;
3266 }
3267 if (nmapped == 0)
3268 printf_filtered (_("No sections are mapped.\n"));
3269 }
3270
3271 /* Function: map_overlay_command
3272 Mark the named section as mapped (ie. residing at its VMA address). */
3273
3274 void
3275 map_overlay_command (char *args, int from_tty)
3276 {
3277 struct objfile *objfile, *objfile2;
3278 struct obj_section *sec, *sec2;
3279
3280 if (!overlay_debugging)
3281 error (_("Overlay debugging not enabled. Use "
3282 "either the 'overlay auto' or\n"
3283 "the 'overlay manual' command."));
3284
3285 if (args == 0 || *args == 0)
3286 error (_("Argument required: name of an overlay section"));
3287
3288 /* First, find a section matching the user supplied argument. */
3289 ALL_OBJSECTIONS (objfile, sec)
3290 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3291 {
3292 /* Now, check to see if the section is an overlay. */
3293 if (!section_is_overlay (sec))
3294 continue; /* not an overlay section */
3295
3296 /* Mark the overlay as "mapped". */
3297 sec->ovly_mapped = 1;
3298
3299 /* Next, make a pass and unmap any sections that are
3300 overlapped by this new section: */
3301 ALL_OBJSECTIONS (objfile2, sec2)
3302 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3303 {
3304 if (info_verbose)
3305 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3306 bfd_section_name (objfile->obfd,
3307 sec2->the_bfd_section));
3308 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3309 }
3310 return;
3311 }
3312 error (_("No overlay section called %s"), args);
3313 }
3314
3315 /* Function: unmap_overlay_command
3316 Mark the overlay section as unmapped
3317 (ie. resident in its LMA address range, rather than the VMA range). */
3318
3319 void
3320 unmap_overlay_command (char *args, int from_tty)
3321 {
3322 struct objfile *objfile;
3323 struct obj_section *sec;
3324
3325 if (!overlay_debugging)
3326 error (_("Overlay debugging not enabled. "
3327 "Use either the 'overlay auto' or\n"
3328 "the 'overlay manual' command."));
3329
3330 if (args == 0 || *args == 0)
3331 error (_("Argument required: name of an overlay section"));
3332
3333 /* First, find a section matching the user supplied argument. */
3334 ALL_OBJSECTIONS (objfile, sec)
3335 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3336 {
3337 if (!sec->ovly_mapped)
3338 error (_("Section %s is not mapped"), args);
3339 sec->ovly_mapped = 0;
3340 return;
3341 }
3342 error (_("No overlay section called %s"), args);
3343 }
3344
3345 /* Function: overlay_auto_command
3346 A utility command to turn on overlay debugging.
3347 Possibly this should be done via a set/show command. */
3348
3349 static void
3350 overlay_auto_command (char *args, int from_tty)
3351 {
3352 overlay_debugging = ovly_auto;
3353 enable_overlay_breakpoints ();
3354 if (info_verbose)
3355 printf_unfiltered (_("Automatic overlay debugging enabled."));
3356 }
3357
3358 /* Function: overlay_manual_command
3359 A utility command to turn on overlay debugging.
3360 Possibly this should be done via a set/show command. */
3361
3362 static void
3363 overlay_manual_command (char *args, int from_tty)
3364 {
3365 overlay_debugging = ovly_on;
3366 disable_overlay_breakpoints ();
3367 if (info_verbose)
3368 printf_unfiltered (_("Overlay debugging enabled."));
3369 }
3370
3371 /* Function: overlay_off_command
3372 A utility command to turn on overlay debugging.
3373 Possibly this should be done via a set/show command. */
3374
3375 static void
3376 overlay_off_command (char *args, int from_tty)
3377 {
3378 overlay_debugging = ovly_off;
3379 disable_overlay_breakpoints ();
3380 if (info_verbose)
3381 printf_unfiltered (_("Overlay debugging disabled."));
3382 }
3383
3384 static void
3385 overlay_load_command (char *args, int from_tty)
3386 {
3387 struct gdbarch *gdbarch = get_current_arch ();
3388
3389 if (gdbarch_overlay_update_p (gdbarch))
3390 gdbarch_overlay_update (gdbarch, NULL);
3391 else
3392 error (_("This target does not know how to read its overlay state."));
3393 }
3394
3395 /* Function: overlay_command
3396 A place-holder for a mis-typed command. */
3397
3398 /* Command list chain containing all defined "overlay" subcommands. */
3399 struct cmd_list_element *overlaylist;
3400
3401 static void
3402 overlay_command (char *args, int from_tty)
3403 {
3404 printf_unfiltered
3405 ("\"overlay\" must be followed by the name of an overlay command.\n");
3406 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3407 }
3408
3409
3410 /* Target Overlays for the "Simplest" overlay manager:
3411
3412 This is GDB's default target overlay layer. It works with the
3413 minimal overlay manager supplied as an example by Cygnus. The
3414 entry point is via a function pointer "gdbarch_overlay_update",
3415 so targets that use a different runtime overlay manager can
3416 substitute their own overlay_update function and take over the
3417 function pointer.
3418
3419 The overlay_update function pokes around in the target's data structures
3420 to see what overlays are mapped, and updates GDB's overlay mapping with
3421 this information.
3422
3423 In this simple implementation, the target data structures are as follows:
3424 unsigned _novlys; /# number of overlay sections #/
3425 unsigned _ovly_table[_novlys][4] = {
3426 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3427 {..., ..., ..., ...},
3428 }
3429 unsigned _novly_regions; /# number of overlay regions #/
3430 unsigned _ovly_region_table[_novly_regions][3] = {
3431 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3432 {..., ..., ...},
3433 }
3434 These functions will attempt to update GDB's mappedness state in the
3435 symbol section table, based on the target's mappedness state.
3436
3437 To do this, we keep a cached copy of the target's _ovly_table, and
3438 attempt to detect when the cached copy is invalidated. The main
3439 entry point is "simple_overlay_update(SECT), which looks up SECT in
3440 the cached table and re-reads only the entry for that section from
3441 the target (whenever possible). */
3442
3443 /* Cached, dynamically allocated copies of the target data structures: */
3444 static unsigned (*cache_ovly_table)[4] = 0;
3445 static unsigned cache_novlys = 0;
3446 static CORE_ADDR cache_ovly_table_base = 0;
3447 enum ovly_index
3448 {
3449 VMA, SIZE, LMA, MAPPED
3450 };
3451
3452 /* Throw away the cached copy of _ovly_table. */
3453 static void
3454 simple_free_overlay_table (void)
3455 {
3456 if (cache_ovly_table)
3457 xfree (cache_ovly_table);
3458 cache_novlys = 0;
3459 cache_ovly_table = NULL;
3460 cache_ovly_table_base = 0;
3461 }
3462
3463 /* Read an array of ints of size SIZE from the target into a local buffer.
3464 Convert to host order. int LEN is number of ints. */
3465 static void
3466 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3467 int len, int size, enum bfd_endian byte_order)
3468 {
3469 /* FIXME (alloca): Not safe if array is very large. */
3470 gdb_byte *buf = alloca (len * size);
3471 int i;
3472
3473 read_memory (memaddr, buf, len * size);
3474 for (i = 0; i < len; i++)
3475 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3476 }
3477
3478 /* Find and grab a copy of the target _ovly_table
3479 (and _novlys, which is needed for the table's size). */
3480 static int
3481 simple_read_overlay_table (void)
3482 {
3483 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3484 struct gdbarch *gdbarch;
3485 int word_size;
3486 enum bfd_endian byte_order;
3487
3488 simple_free_overlay_table ();
3489 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3490 if (! novlys_msym)
3491 {
3492 error (_("Error reading inferior's overlay table: "
3493 "couldn't find `_novlys' variable\n"
3494 "in inferior. Use `overlay manual' mode."));
3495 return 0;
3496 }
3497
3498 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3499 if (! ovly_table_msym)
3500 {
3501 error (_("Error reading inferior's overlay table: couldn't find "
3502 "`_ovly_table' array\n"
3503 "in inferior. Use `overlay manual' mode."));
3504 return 0;
3505 }
3506
3507 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3508 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3509 byte_order = gdbarch_byte_order (gdbarch);
3510
3511 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3512 4, byte_order);
3513 cache_ovly_table
3514 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3515 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3516 read_target_long_array (cache_ovly_table_base,
3517 (unsigned int *) cache_ovly_table,
3518 cache_novlys * 4, word_size, byte_order);
3519
3520 return 1; /* SUCCESS */
3521 }
3522
3523 /* Function: simple_overlay_update_1
3524 A helper function for simple_overlay_update. Assuming a cached copy
3525 of _ovly_table exists, look through it to find an entry whose vma,
3526 lma and size match those of OSECT. Re-read the entry and make sure
3527 it still matches OSECT (else the table may no longer be valid).
3528 Set OSECT's mapped state to match the entry. Return: 1 for
3529 success, 0 for failure. */
3530
3531 static int
3532 simple_overlay_update_1 (struct obj_section *osect)
3533 {
3534 int i, size;
3535 bfd *obfd = osect->objfile->obfd;
3536 asection *bsect = osect->the_bfd_section;
3537 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3538 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3540
3541 size = bfd_get_section_size (osect->the_bfd_section);
3542 for (i = 0; i < cache_novlys; i++)
3543 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3544 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3545 /* && cache_ovly_table[i][SIZE] == size */ )
3546 {
3547 read_target_long_array (cache_ovly_table_base + i * word_size,
3548 (unsigned int *) cache_ovly_table[i],
3549 4, word_size, byte_order);
3550 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3551 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3552 /* && cache_ovly_table[i][SIZE] == size */ )
3553 {
3554 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3555 return 1;
3556 }
3557 else /* Warning! Warning! Target's ovly table has changed! */
3558 return 0;
3559 }
3560 return 0;
3561 }
3562
3563 /* Function: simple_overlay_update
3564 If OSECT is NULL, then update all sections' mapped state
3565 (after re-reading the entire target _ovly_table).
3566 If OSECT is non-NULL, then try to find a matching entry in the
3567 cached ovly_table and update only OSECT's mapped state.
3568 If a cached entry can't be found or the cache isn't valid, then
3569 re-read the entire cache, and go ahead and update all sections. */
3570
3571 void
3572 simple_overlay_update (struct obj_section *osect)
3573 {
3574 struct objfile *objfile;
3575
3576 /* Were we given an osect to look up? NULL means do all of them. */
3577 if (osect)
3578 /* Have we got a cached copy of the target's overlay table? */
3579 if (cache_ovly_table != NULL)
3580 {
3581 /* Does its cached location match what's currently in the
3582 symtab? */
3583 struct minimal_symbol *minsym
3584 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3585
3586 if (minsym == NULL)
3587 error (_("Error reading inferior's overlay table: couldn't "
3588 "find `_ovly_table' array\n"
3589 "in inferior. Use `overlay manual' mode."));
3590
3591 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3592 /* Then go ahead and try to look up this single section in
3593 the cache. */
3594 if (simple_overlay_update_1 (osect))
3595 /* Found it! We're done. */
3596 return;
3597 }
3598
3599 /* Cached table no good: need to read the entire table anew.
3600 Or else we want all the sections, in which case it's actually
3601 more efficient to read the whole table in one block anyway. */
3602
3603 if (! simple_read_overlay_table ())
3604 return;
3605
3606 /* Now may as well update all sections, even if only one was requested. */
3607 ALL_OBJSECTIONS (objfile, osect)
3608 if (section_is_overlay (osect))
3609 {
3610 int i, size;
3611 bfd *obfd = osect->objfile->obfd;
3612 asection *bsect = osect->the_bfd_section;
3613
3614 size = bfd_get_section_size (bsect);
3615 for (i = 0; i < cache_novlys; i++)
3616 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3617 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3618 /* && cache_ovly_table[i][SIZE] == size */ )
3619 { /* obj_section matches i'th entry in ovly_table. */
3620 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3621 break; /* finished with inner for loop: break out. */
3622 }
3623 }
3624 }
3625
3626 /* Set the output sections and output offsets for section SECTP in
3627 ABFD. The relocation code in BFD will read these offsets, so we
3628 need to be sure they're initialized. We map each section to itself,
3629 with no offset; this means that SECTP->vma will be honored. */
3630
3631 static void
3632 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3633 {
3634 sectp->output_section = sectp;
3635 sectp->output_offset = 0;
3636 }
3637
3638 /* Default implementation for sym_relocate. */
3639
3640
3641 bfd_byte *
3642 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3643 bfd_byte *buf)
3644 {
3645 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3646 DWO file. */
3647 bfd *abfd = sectp->owner;
3648
3649 /* We're only interested in sections with relocation
3650 information. */
3651 if ((sectp->flags & SEC_RELOC) == 0)
3652 return NULL;
3653
3654 /* We will handle section offsets properly elsewhere, so relocate as if
3655 all sections begin at 0. */
3656 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3657
3658 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3659 }
3660
3661 /* Relocate the contents of a debug section SECTP in ABFD. The
3662 contents are stored in BUF if it is non-NULL, or returned in a
3663 malloc'd buffer otherwise.
3664
3665 For some platforms and debug info formats, shared libraries contain
3666 relocations against the debug sections (particularly for DWARF-2;
3667 one affected platform is PowerPC GNU/Linux, although it depends on
3668 the version of the linker in use). Also, ELF object files naturally
3669 have unresolved relocations for their debug sections. We need to apply
3670 the relocations in order to get the locations of symbols correct.
3671 Another example that may require relocation processing, is the
3672 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3673 debug section. */
3674
3675 bfd_byte *
3676 symfile_relocate_debug_section (struct objfile *objfile,
3677 asection *sectp, bfd_byte *buf)
3678 {
3679 gdb_assert (objfile->sf->sym_relocate);
3680
3681 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3682 }
3683
3684 struct symfile_segment_data *
3685 get_symfile_segment_data (bfd *abfd)
3686 {
3687 const struct sym_fns *sf = find_sym_fns (abfd);
3688
3689 if (sf == NULL)
3690 return NULL;
3691
3692 return sf->sym_segments (abfd);
3693 }
3694
3695 void
3696 free_symfile_segment_data (struct symfile_segment_data *data)
3697 {
3698 xfree (data->segment_bases);
3699 xfree (data->segment_sizes);
3700 xfree (data->segment_info);
3701 xfree (data);
3702 }
3703
3704
3705 /* Given:
3706 - DATA, containing segment addresses from the object file ABFD, and
3707 the mapping from ABFD's sections onto the segments that own them,
3708 and
3709 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3710 segment addresses reported by the target,
3711 store the appropriate offsets for each section in OFFSETS.
3712
3713 If there are fewer entries in SEGMENT_BASES than there are segments
3714 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3715
3716 If there are more entries, then ignore the extra. The target may
3717 not be able to distinguish between an empty data segment and a
3718 missing data segment; a missing text segment is less plausible. */
3719 int
3720 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3721 struct section_offsets *offsets,
3722 int num_segment_bases,
3723 const CORE_ADDR *segment_bases)
3724 {
3725 int i;
3726 asection *sect;
3727
3728 /* It doesn't make sense to call this function unless you have some
3729 segment base addresses. */
3730 gdb_assert (num_segment_bases > 0);
3731
3732 /* If we do not have segment mappings for the object file, we
3733 can not relocate it by segments. */
3734 gdb_assert (data != NULL);
3735 gdb_assert (data->num_segments > 0);
3736
3737 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3738 {
3739 int which = data->segment_info[i];
3740
3741 gdb_assert (0 <= which && which <= data->num_segments);
3742
3743 /* Don't bother computing offsets for sections that aren't
3744 loaded as part of any segment. */
3745 if (! which)
3746 continue;
3747
3748 /* Use the last SEGMENT_BASES entry as the address of any extra
3749 segments mentioned in DATA->segment_info. */
3750 if (which > num_segment_bases)
3751 which = num_segment_bases;
3752
3753 offsets->offsets[i] = (segment_bases[which - 1]
3754 - data->segment_bases[which - 1]);
3755 }
3756
3757 return 1;
3758 }
3759
3760 static void
3761 symfile_find_segment_sections (struct objfile *objfile)
3762 {
3763 bfd *abfd = objfile->obfd;
3764 int i;
3765 asection *sect;
3766 struct symfile_segment_data *data;
3767
3768 data = get_symfile_segment_data (objfile->obfd);
3769 if (data == NULL)
3770 return;
3771
3772 if (data->num_segments != 1 && data->num_segments != 2)
3773 {
3774 free_symfile_segment_data (data);
3775 return;
3776 }
3777
3778 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3779 {
3780 int which = data->segment_info[i];
3781
3782 if (which == 1)
3783 {
3784 if (objfile->sect_index_text == -1)
3785 objfile->sect_index_text = sect->index;
3786
3787 if (objfile->sect_index_rodata == -1)
3788 objfile->sect_index_rodata = sect->index;
3789 }
3790 else if (which == 2)
3791 {
3792 if (objfile->sect_index_data == -1)
3793 objfile->sect_index_data = sect->index;
3794
3795 if (objfile->sect_index_bss == -1)
3796 objfile->sect_index_bss = sect->index;
3797 }
3798 }
3799
3800 free_symfile_segment_data (data);
3801 }
3802
3803 void
3804 _initialize_symfile (void)
3805 {
3806 struct cmd_list_element *c;
3807
3808 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3809 Load symbol table from executable file FILE.\n\
3810 The `file' command can also load symbol tables, as well as setting the file\n\
3811 to execute."), &cmdlist);
3812 set_cmd_completer (c, filename_completer);
3813
3814 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3815 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3816 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3817 ...]\nADDR is the starting address of the file's text.\n\
3818 The optional arguments are section-name section-address pairs and\n\
3819 should be specified if the data and bss segments are not contiguous\n\
3820 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3821 &cmdlist);
3822 set_cmd_completer (c, filename_completer);
3823
3824 c = add_cmd ("load", class_files, load_command, _("\
3825 Dynamically load FILE into the running program, and record its symbols\n\
3826 for access from GDB.\n\
3827 A load OFFSET may also be given."), &cmdlist);
3828 set_cmd_completer (c, filename_completer);
3829
3830 add_prefix_cmd ("overlay", class_support, overlay_command,
3831 _("Commands for debugging overlays."), &overlaylist,
3832 "overlay ", 0, &cmdlist);
3833
3834 add_com_alias ("ovly", "overlay", class_alias, 1);
3835 add_com_alias ("ov", "overlay", class_alias, 1);
3836
3837 add_cmd ("map-overlay", class_support, map_overlay_command,
3838 _("Assert that an overlay section is mapped."), &overlaylist);
3839
3840 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3841 _("Assert that an overlay section is unmapped."), &overlaylist);
3842
3843 add_cmd ("list-overlays", class_support, list_overlays_command,
3844 _("List mappings of overlay sections."), &overlaylist);
3845
3846 add_cmd ("manual", class_support, overlay_manual_command,
3847 _("Enable overlay debugging."), &overlaylist);
3848 add_cmd ("off", class_support, overlay_off_command,
3849 _("Disable overlay debugging."), &overlaylist);
3850 add_cmd ("auto", class_support, overlay_auto_command,
3851 _("Enable automatic overlay debugging."), &overlaylist);
3852 add_cmd ("load-target", class_support, overlay_load_command,
3853 _("Read the overlay mapping state from the target."), &overlaylist);
3854
3855 /* Filename extension to source language lookup table: */
3856 init_filename_language_table ();
3857 add_setshow_string_noescape_cmd ("extension-language", class_files,
3858 &ext_args, _("\
3859 Set mapping between filename extension and source language."), _("\
3860 Show mapping between filename extension and source language."), _("\
3861 Usage: set extension-language .foo bar"),
3862 set_ext_lang_command,
3863 show_ext_args,
3864 &setlist, &showlist);
3865
3866 add_info ("extensions", info_ext_lang_command,
3867 _("All filename extensions associated with a source language."));
3868
3869 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3870 &debug_file_directory, _("\
3871 Set the directories where separate debug symbols are searched for."), _("\
3872 Show the directories where separate debug symbols are searched for."), _("\
3873 Separate debug symbols are first searched for in the same\n\
3874 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3875 and lastly at the path of the directory of the binary with\n\
3876 each global debug-file-directory component prepended."),
3877 NULL,
3878 show_debug_file_directory,
3879 &setlist, &showlist);
3880 }