]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include "bfdlink.h"
28 #include "symtab.h"
29 #include "gdbtypes.h"
30 #include "gdbcore.h"
31 #include "frame.h"
32 #include "target.h"
33 #include "value.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "source.h"
37 #include "gdbcmd.h"
38 #include "breakpoint.h"
39 #include "language.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "inferior.h" /* for write_pc */
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55
56 #include <sys/types.h>
57 #include <fcntl.h>
58 #include "gdb_string.h"
59 #include "gdb_stat.h"
60 #include <ctype.h>
61 #include <time.h>
62 #include <sys/time.h>
63
64
65 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*deprecated_show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*deprecated_pre_add_symbol_hook) (const char *);
72 void (*deprecated_post_add_symbol_hook) (void);
73 void (*deprecated_target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 /* External variables and functions referenced. */
81
82 extern void report_transfer_performance (unsigned long, time_t, time_t);
83
84 /* Functions this file defines */
85
86 #if 0
87 static int simple_read_overlay_region_table (void);
88 static void simple_free_overlay_region_table (void);
89 #endif
90
91 static void set_initial_language (void);
92
93 static void load_command (char *, int);
94
95 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
96
97 static void add_symbol_file_command (char *, int);
98
99 static void add_shared_symbol_files_command (char *, int);
100
101 static void reread_separate_symbols (struct objfile *objfile);
102
103 static void cashier_psymtab (struct partial_symtab *);
104
105 bfd *symfile_bfd_open (char *);
106
107 int get_section_index (struct objfile *, char *);
108
109 static void find_sym_fns (struct objfile *);
110
111 static void decrement_reading_symtab (void *);
112
113 static void overlay_invalidate_all (void);
114
115 static int overlay_is_mapped (struct obj_section *);
116
117 void list_overlays_command (char *, int);
118
119 void map_overlay_command (char *, int);
120
121 void unmap_overlay_command (char *, int);
122
123 static void overlay_auto_command (char *, int);
124
125 static void overlay_manual_command (char *, int);
126
127 static void overlay_off_command (char *, int);
128
129 static void overlay_load_command (char *, int);
130
131 static void overlay_command (char *, int);
132
133 static void simple_free_overlay_table (void);
134
135 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
136
137 static int simple_read_overlay_table (void);
138
139 static int simple_overlay_update_1 (struct obj_section *);
140
141 static void add_filename_language (char *ext, enum language lang);
142
143 static void info_ext_lang_command (char *args, int from_tty);
144
145 static char *find_separate_debug_file (struct objfile *objfile);
146
147 static void init_filename_language_table (void);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174
175 /* If non-zero, shared library symbols will be added automatically
176 when the inferior is created, new libraries are loaded, or when
177 attaching to the inferior. This is almost always what users will
178 want to have happen; but for very large programs, the startup time
179 will be excessive, and so if this is a problem, the user can clear
180 this flag and then add the shared library symbols as needed. Note
181 that there is a potential for confusion, since if the shared
182 library symbols are not loaded, commands like "info fun" will *not*
183 report all the functions that are actually present. */
184
185 int auto_solib_add = 1;
186
187 /* For systems that support it, a threshold size in megabytes. If
188 automatically adding a new library's symbol table to those already
189 known to the debugger would cause the total shared library symbol
190 size to exceed this threshhold, then the shlib's symbols are not
191 added. The threshold is ignored if the user explicitly asks for a
192 shlib to be added, such as when using the "sharedlibrary"
193 command. */
194
195 int auto_solib_limit;
196 \f
197
198 /* This compares two partial symbols by names, using strcmp_iw_ordered
199 for the comparison. */
200
201 static int
202 compare_psymbols (const void *s1p, const void *s2p)
203 {
204 struct partial_symbol *const *s1 = s1p;
205 struct partial_symbol *const *s2 = s2p;
206
207 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
208 SYMBOL_SEARCH_NAME (*s2));
209 }
210
211 void
212 sort_pst_symbols (struct partial_symtab *pst)
213 {
214 /* Sort the global list; don't sort the static list */
215
216 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
217 pst->n_global_syms, sizeof (struct partial_symbol *),
218 compare_psymbols);
219 }
220
221 /* Make a null terminated copy of the string at PTR with SIZE characters in
222 the obstack pointed to by OBSTACKP . Returns the address of the copy.
223 Note that the string at PTR does not have to be null terminated, I.E. it
224 may be part of a larger string and we are only saving a substring. */
225
226 char *
227 obsavestring (const char *ptr, int size, struct obstack *obstackp)
228 {
229 char *p = (char *) obstack_alloc (obstackp, size + 1);
230 /* Open-coded memcpy--saves function call time. These strings are usually
231 short. FIXME: Is this really still true with a compiler that can
232 inline memcpy? */
233 {
234 const char *p1 = ptr;
235 char *p2 = p;
236 const char *end = ptr + size;
237 while (p1 != end)
238 *p2++ = *p1++;
239 }
240 p[size] = 0;
241 return p;
242 }
243
244 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
245 in the obstack pointed to by OBSTACKP. */
246
247 char *
248 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
249 const char *s3)
250 {
251 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
252 char *val = (char *) obstack_alloc (obstackp, len);
253 strcpy (val, s1);
254 strcat (val, s2);
255 strcat (val, s3);
256 return val;
257 }
258
259 /* True if we are nested inside psymtab_to_symtab. */
260
261 int currently_reading_symtab = 0;
262
263 static void
264 decrement_reading_symtab (void *dummy)
265 {
266 currently_reading_symtab--;
267 }
268
269 /* Get the symbol table that corresponds to a partial_symtab.
270 This is fast after the first time you do it. In fact, there
271 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
272 case inline. */
273
274 struct symtab *
275 psymtab_to_symtab (struct partial_symtab *pst)
276 {
277 /* If it's been looked up before, return it. */
278 if (pst->symtab)
279 return pst->symtab;
280
281 /* If it has not yet been read in, read it. */
282 if (!pst->readin)
283 {
284 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
285 currently_reading_symtab++;
286 (*pst->read_symtab) (pst);
287 do_cleanups (back_to);
288 }
289
290 return pst->symtab;
291 }
292
293 /* Remember the lowest-addressed loadable section we've seen.
294 This function is called via bfd_map_over_sections.
295
296 In case of equal vmas, the section with the largest size becomes the
297 lowest-addressed loadable section.
298
299 If the vmas and sizes are equal, the last section is considered the
300 lowest-addressed loadable section. */
301
302 void
303 find_lowest_section (bfd *abfd, asection *sect, void *obj)
304 {
305 asection **lowest = (asection **) obj;
306
307 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
308 return;
309 if (!*lowest)
310 *lowest = sect; /* First loadable section */
311 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
312 *lowest = sect; /* A lower loadable section */
313 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
314 && (bfd_section_size (abfd, (*lowest))
315 <= bfd_section_size (abfd, sect)))
316 *lowest = sect;
317 }
318
319 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
320
321 struct section_addr_info *
322 alloc_section_addr_info (size_t num_sections)
323 {
324 struct section_addr_info *sap;
325 size_t size;
326
327 size = (sizeof (struct section_addr_info)
328 + sizeof (struct other_sections) * (num_sections - 1));
329 sap = (struct section_addr_info *) xmalloc (size);
330 memset (sap, 0, size);
331 sap->num_sections = num_sections;
332
333 return sap;
334 }
335
336
337 /* Return a freshly allocated copy of ADDRS. The section names, if
338 any, are also freshly allocated copies of those in ADDRS. */
339 struct section_addr_info *
340 copy_section_addr_info (struct section_addr_info *addrs)
341 {
342 struct section_addr_info *copy
343 = alloc_section_addr_info (addrs->num_sections);
344 int i;
345
346 copy->num_sections = addrs->num_sections;
347 for (i = 0; i < addrs->num_sections; i++)
348 {
349 copy->other[i].addr = addrs->other[i].addr;
350 if (addrs->other[i].name)
351 copy->other[i].name = xstrdup (addrs->other[i].name);
352 else
353 copy->other[i].name = NULL;
354 copy->other[i].sectindex = addrs->other[i].sectindex;
355 }
356
357 return copy;
358 }
359
360
361
362 /* Build (allocate and populate) a section_addr_info struct from
363 an existing section table. */
364
365 extern struct section_addr_info *
366 build_section_addr_info_from_section_table (const struct section_table *start,
367 const struct section_table *end)
368 {
369 struct section_addr_info *sap;
370 const struct section_table *stp;
371 int oidx;
372
373 sap = alloc_section_addr_info (end - start);
374
375 for (stp = start, oidx = 0; stp != end; stp++)
376 {
377 if (bfd_get_section_flags (stp->bfd,
378 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
379 && oidx < end - start)
380 {
381 sap->other[oidx].addr = stp->addr;
382 sap->other[oidx].name
383 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
384 sap->other[oidx].sectindex = stp->the_bfd_section->index;
385 oidx++;
386 }
387 }
388
389 return sap;
390 }
391
392
393 /* Free all memory allocated by build_section_addr_info_from_section_table. */
394
395 extern void
396 free_section_addr_info (struct section_addr_info *sap)
397 {
398 int idx;
399
400 for (idx = 0; idx < sap->num_sections; idx++)
401 if (sap->other[idx].name)
402 xfree (sap->other[idx].name);
403 xfree (sap);
404 }
405
406
407 /* Initialize OBJFILE's sect_index_* members. */
408 static void
409 init_objfile_sect_indices (struct objfile *objfile)
410 {
411 asection *sect;
412 int i;
413
414 sect = bfd_get_section_by_name (objfile->obfd, ".text");
415 if (sect)
416 objfile->sect_index_text = sect->index;
417
418 sect = bfd_get_section_by_name (objfile->obfd, ".data");
419 if (sect)
420 objfile->sect_index_data = sect->index;
421
422 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
423 if (sect)
424 objfile->sect_index_bss = sect->index;
425
426 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
427 if (sect)
428 objfile->sect_index_rodata = sect->index;
429
430 /* This is where things get really weird... We MUST have valid
431 indices for the various sect_index_* members or gdb will abort.
432 So if for example, there is no ".text" section, we have to
433 accomodate that. Except when explicitly adding symbol files at
434 some address, section_offsets contains nothing but zeros, so it
435 doesn't matter which slot in section_offsets the individual
436 sect_index_* members index into. So if they are all zero, it is
437 safe to just point all the currently uninitialized indices to the
438 first slot. */
439
440 for (i = 0; i < objfile->num_sections; i++)
441 {
442 if (ANOFFSET (objfile->section_offsets, i) != 0)
443 {
444 break;
445 }
446 }
447 if (i == objfile->num_sections)
448 {
449 if (objfile->sect_index_text == -1)
450 objfile->sect_index_text = 0;
451 if (objfile->sect_index_data == -1)
452 objfile->sect_index_data = 0;
453 if (objfile->sect_index_bss == -1)
454 objfile->sect_index_bss = 0;
455 if (objfile->sect_index_rodata == -1)
456 objfile->sect_index_rodata = 0;
457 }
458 }
459
460 /* The arguments to place_section. */
461
462 struct place_section_arg
463 {
464 struct section_offsets *offsets;
465 CORE_ADDR lowest;
466 };
467
468 /* Find a unique offset to use for loadable section SECT if
469 the user did not provide an offset. */
470
471 void
472 place_section (bfd *abfd, asection *sect, void *obj)
473 {
474 struct place_section_arg *arg = obj;
475 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
476 int done;
477 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 start_addr = (arg->lowest + align - 1) & -align;
489
490 do {
491 asection *cur_sec;
492
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 break;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591 }
592
593
594 /* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
597 OBJFILE is where the symbols are to be read from.
598
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
625
626 void
627 syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
633 {
634 struct section_addr_info *local_addr = NULL;
635 struct cleanup *old_chain;
636
637 gdb_assert (! (addrs && offsets));
638
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
647 old_chain = make_cleanup_free_objfile (objfile);
648
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
654 local_addr
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
662 if (mainline)
663 {
664 /* We will modify the main symbol table, make sure that all its users
665 will be cleaned up if an error occurs during symbol reading. */
666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
680
681 (*objfile->sf->sym_new_init) (objfile);
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
686 and assume that <addr> is where that got loaded.
687
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
690 if (!mainline && addrs && addrs->other[0].name)
691 {
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
697 /* Find lowest loadable section to be used as starting point for
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
703 &lower_sect);
704 if (lower_sect == NULL)
705 warning (_("no loadable sections found in added symbol-file %s"),
706 objfile->name);
707 else
708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
709 warning (_("Lowest section in %s is %s at %s"),
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
717
718 /* Calculate offsets for the loadable sections.
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
721
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
744 warning (_("section %s not found in %s"),
745 addrs->other[i].name,
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
759 (*objfile->sf->sym_init) (objfile);
760 clear_complaints (&symfile_complaints, 1, verbo);
761
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
772 obstack_alloc (&objfile->objfile_obstack, size));
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
777
778 #ifndef DEPRECATED_IBM6000_TARGET
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
792 has a different algorithm for finding section offsets.
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
797 if (addrs)
798 {
799 struct obj_section *s;
800
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
805
806 ALL_OBJFILE_OSECTIONS (objfile, s)
807 {
808 CORE_ADDR s_addr = 0;
809 int i;
810
811 for (i = 0;
812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
813 i++)
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
816 addrs->other[i].name) == 0)
817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
818
819 s->addr -= s->offset;
820 s->addr += s_addr;
821 s->endaddr -= s->offset;
822 s->endaddr += s_addr;
823 s->offset += s_addr;
824 }
825 }
826 #endif /* not DEPRECATED_IBM6000_TARGET */
827
828 (*objfile->sf->sym_read) (objfile, mainline);
829
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
841 objfile->flags |= OBJF_SYMS;
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
846 }
847
848 /* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
851
852 void
853 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
854 {
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
872 clear_complaints (&symfile_complaints, 0, verbo);
873 }
874
875 /* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
889
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
892 static struct objfile *
893 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
898 {
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
901 char *debugfile;
902 struct section_addr_info *orig_addrs = NULL;
903 struct cleanup *my_cleanups;
904 const char *name = bfd_get_filename (abfd);
905
906 my_cleanups = make_cleanup_bfd_close (abfd);
907
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
915 error (_("Not confirmed."));
916
917 objfile = allocate_objfile (abfd, flags);
918 discard_cleanups (my_cleanups);
919
920 if (addrs)
921 {
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
924 }
925
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
930 {
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
933 else
934 {
935 printf_unfiltered (_("Reading symbols from %s..."), name);
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
939 }
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
949 {
950 if (from_tty || info_verbose)
951 {
952 printf_unfiltered (_("expanding to full symbols..."));
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
957 for (psymtab = objfile->psymtabs;
958 psymtab != NULL;
959 psymtab = psymtab->next)
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
980
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
984
985 xfree (debugfile);
986 }
987
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
991 printf_filtered (_("(no debugging symbols found)"));
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
996 wrap_here ("");
997 }
998
999 if (from_tty || info_verbose)
1000 {
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
1003 else
1004 {
1005 printf_unfiltered (_("done.\n"));
1006 }
1007 }
1008
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
1014 do_cleanups (my_cleanups);
1015
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
1023
1024 bfd_cache_close_all ();
1025 return (objfile);
1026 }
1027
1028
1029 /* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034 struct objfile *
1035 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038 {
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042 }
1043
1044
1045 /* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048 struct objfile *
1049 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051 {
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
1054 }
1055
1056
1057 /* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
1064
1065 void
1066 symbol_file_add_main (char *args, int from_tty)
1067 {
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069 }
1070
1071 static void
1072 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073 {
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1081 }
1082
1083 void
1084 symbol_file_clear (int from_tty)
1085 {
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
1092 error (_("Not confirmed."));
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099 #if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101 #endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
1105 printf_unfiltered (_("No symbol file now.\n"));
1106 }
1107
1108 static char *
1109 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110 {
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
1117
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
1124
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1134
1135 *crc32_out = crc32;
1136 return contents;
1137 }
1138
1139 static int
1140 separate_debug_file_exists (const char *name, unsigned long crc)
1141 {
1142 unsigned long file_crc = 0;
1143 int fd;
1144 gdb_byte buffer[8*1024];
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157 }
1158
1159 static char *debug_file_directory = NULL;
1160 static void
1161 show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163 {
1164 fprintf_filtered (file, _("\
1165 The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167 }
1168
1169 #if ! defined (DEBUG_SUBDIRECTORY)
1170 #define DEBUG_SUBDIRECTORY ".debug"
1171 #endif
1172
1173 static char *
1174 find_separate_debug_file (struct objfile *objfile)
1175 {
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
1181 bfd_size_type debuglink_size;
1182 unsigned long crc32;
1183 int i;
1184
1185 basename = get_debug_link_info (objfile, &crc32);
1186
1187 if (basename == NULL)
1188 return NULL;
1189
1190 dir = xstrdup (objfile->name);
1191
1192 /* Strip off the final filename part, leaving the directory name,
1193 followed by a slash. Objfile names should always be absolute and
1194 tilde-expanded, so there should always be a slash in there
1195 somewhere. */
1196 for (i = strlen(dir) - 1; i >= 0; i--)
1197 {
1198 if (IS_DIR_SEPARATOR (dir[i]))
1199 break;
1200 }
1201 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1202 dir[i+1] = '\0';
1203
1204 debugfile = alloca (strlen (debug_file_directory) + 1
1205 + strlen (dir)
1206 + strlen (DEBUG_SUBDIRECTORY)
1207 + strlen ("/")
1208 + strlen (basename)
1209 + 1);
1210
1211 /* First try in the same directory as the original file. */
1212 strcpy (debugfile, dir);
1213 strcat (debugfile, basename);
1214
1215 if (separate_debug_file_exists (debugfile, crc32))
1216 {
1217 xfree (basename);
1218 xfree (dir);
1219 return xstrdup (debugfile);
1220 }
1221
1222 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1223 strcpy (debugfile, dir);
1224 strcat (debugfile, DEBUG_SUBDIRECTORY);
1225 strcat (debugfile, "/");
1226 strcat (debugfile, basename);
1227
1228 if (separate_debug_file_exists (debugfile, crc32))
1229 {
1230 xfree (basename);
1231 xfree (dir);
1232 return xstrdup (debugfile);
1233 }
1234
1235 /* Then try in the global debugfile directory. */
1236 strcpy (debugfile, debug_file_directory);
1237 strcat (debugfile, "/");
1238 strcat (debugfile, dir);
1239 strcat (debugfile, basename);
1240
1241 if (separate_debug_file_exists (debugfile, crc32))
1242 {
1243 xfree (basename);
1244 xfree (dir);
1245 return xstrdup (debugfile);
1246 }
1247
1248 xfree (basename);
1249 xfree (dir);
1250 return NULL;
1251 }
1252
1253
1254 /* This is the symbol-file command. Read the file, analyze its
1255 symbols, and add a struct symtab to a symtab list. The syntax of
1256 the command is rather bizarre:
1257
1258 1. The function buildargv implements various quoting conventions
1259 which are undocumented and have little or nothing in common with
1260 the way things are quoted (or not quoted) elsewhere in GDB.
1261
1262 2. Options are used, which are not generally used in GDB (perhaps
1263 "set mapped on", "set readnow on" would be better)
1264
1265 3. The order of options matters, which is contrary to GNU
1266 conventions (because it is confusing and inconvenient). */
1267
1268 void
1269 symbol_file_command (char *args, int from_tty)
1270 {
1271 dont_repeat ();
1272
1273 if (args == NULL)
1274 {
1275 symbol_file_clear (from_tty);
1276 }
1277 else
1278 {
1279 char **argv = buildargv (args);
1280 int flags = OBJF_USERLOADED;
1281 struct cleanup *cleanups;
1282 char *name = NULL;
1283
1284 if (argv == NULL)
1285 nomem (0);
1286
1287 cleanups = make_cleanup_freeargv (argv);
1288 while (*argv != NULL)
1289 {
1290 if (strcmp (*argv, "-readnow") == 0)
1291 flags |= OBJF_READNOW;
1292 else if (**argv == '-')
1293 error (_("unknown option `%s'"), *argv);
1294 else
1295 {
1296 symbol_file_add_main_1 (*argv, from_tty, flags);
1297 name = *argv;
1298 }
1299
1300 argv++;
1301 }
1302
1303 if (name == NULL)
1304 error (_("no symbol file name was specified"));
1305
1306 do_cleanups (cleanups);
1307 }
1308 }
1309
1310 /* Set the initial language.
1311
1312 FIXME: A better solution would be to record the language in the
1313 psymtab when reading partial symbols, and then use it (if known) to
1314 set the language. This would be a win for formats that encode the
1315 language in an easily discoverable place, such as DWARF. For
1316 stabs, we can jump through hoops looking for specially named
1317 symbols or try to intuit the language from the specific type of
1318 stabs we find, but we can't do that until later when we read in
1319 full symbols. */
1320
1321 static void
1322 set_initial_language (void)
1323 {
1324 struct partial_symtab *pst;
1325 enum language lang = language_unknown;
1326
1327 pst = find_main_psymtab ();
1328 if (pst != NULL)
1329 {
1330 if (pst->filename != NULL)
1331 lang = deduce_language_from_filename (pst->filename);
1332
1333 if (lang == language_unknown)
1334 {
1335 /* Make C the default language */
1336 lang = language_c;
1337 }
1338
1339 set_language (lang);
1340 expected_language = current_language; /* Don't warn the user. */
1341 }
1342 }
1343
1344 /* Open the file specified by NAME and hand it off to BFD for
1345 preliminary analysis. Return a newly initialized bfd *, which
1346 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1347 absolute). In case of trouble, error() is called. */
1348
1349 bfd *
1350 symfile_bfd_open (char *name)
1351 {
1352 bfd *sym_bfd;
1353 int desc;
1354 char *absolute_name;
1355
1356 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1357
1358 /* Look down path for it, allocate 2nd new malloc'd copy. */
1359 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1360 O_RDONLY | O_BINARY, 0, &absolute_name);
1361 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1362 if (desc < 0)
1363 {
1364 char *exename = alloca (strlen (name) + 5);
1365 strcat (strcpy (exename, name), ".exe");
1366 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1367 O_RDONLY | O_BINARY, 0, &absolute_name);
1368 }
1369 #endif
1370 if (desc < 0)
1371 {
1372 make_cleanup (xfree, name);
1373 perror_with_name (name);
1374 }
1375
1376 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1377 bfd. It'll be freed in free_objfile(). */
1378 xfree (name);
1379 name = absolute_name;
1380
1381 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1382 if (!sym_bfd)
1383 {
1384 close (desc);
1385 make_cleanup (xfree, name);
1386 error (_("\"%s\": can't open to read symbols: %s."), name,
1387 bfd_errmsg (bfd_get_error ()));
1388 }
1389 bfd_set_cacheable (sym_bfd, 1);
1390
1391 if (!bfd_check_format (sym_bfd, bfd_object))
1392 {
1393 /* FIXME: should be checking for errors from bfd_close (for one
1394 thing, on error it does not free all the storage associated
1395 with the bfd). */
1396 bfd_close (sym_bfd); /* This also closes desc. */
1397 make_cleanup (xfree, name);
1398 error (_("\"%s\": can't read symbols: %s."), name,
1399 bfd_errmsg (bfd_get_error ()));
1400 }
1401
1402 return sym_bfd;
1403 }
1404
1405 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1406 the section was not found. */
1407
1408 int
1409 get_section_index (struct objfile *objfile, char *section_name)
1410 {
1411 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1412
1413 if (sect)
1414 return sect->index;
1415 else
1416 return -1;
1417 }
1418
1419 /* Link SF into the global symtab_fns list. Called on startup by the
1420 _initialize routine in each object file format reader, to register
1421 information about each format the the reader is prepared to
1422 handle. */
1423
1424 void
1425 add_symtab_fns (struct sym_fns *sf)
1426 {
1427 sf->next = symtab_fns;
1428 symtab_fns = sf;
1429 }
1430
1431 /* Initialize OBJFILE to read symbols from its associated BFD. It
1432 either returns or calls error(). The result is an initialized
1433 struct sym_fns in the objfile structure, that contains cached
1434 information about the symbol file. */
1435
1436 static void
1437 find_sym_fns (struct objfile *objfile)
1438 {
1439 struct sym_fns *sf;
1440 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1441 char *our_target = bfd_get_target (objfile->obfd);
1442
1443 if (our_flavour == bfd_target_srec_flavour
1444 || our_flavour == bfd_target_ihex_flavour
1445 || our_flavour == bfd_target_tekhex_flavour)
1446 return; /* No symbols. */
1447
1448 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1449 {
1450 if (our_flavour == sf->sym_flavour)
1451 {
1452 objfile->sf = sf;
1453 return;
1454 }
1455 }
1456
1457 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1458 bfd_get_target (objfile->obfd));
1459 }
1460 \f
1461
1462 /* This function runs the load command of our current target. */
1463
1464 static void
1465 load_command (char *arg, int from_tty)
1466 {
1467 if (arg == NULL)
1468 {
1469 char *parg;
1470 int count = 0;
1471
1472 parg = arg = get_exec_file (1);
1473
1474 /* Count how many \ " ' tab space there are in the name. */
1475 while ((parg = strpbrk (parg, "\\\"'\t ")))
1476 {
1477 parg++;
1478 count++;
1479 }
1480
1481 if (count)
1482 {
1483 /* We need to quote this string so buildargv can pull it apart. */
1484 char *temp = xmalloc (strlen (arg) + count + 1 );
1485 char *ptemp = temp;
1486 char *prev;
1487
1488 make_cleanup (xfree, temp);
1489
1490 prev = parg = arg;
1491 while ((parg = strpbrk (parg, "\\\"'\t ")))
1492 {
1493 strncpy (ptemp, prev, parg - prev);
1494 ptemp += parg - prev;
1495 prev = parg++;
1496 *ptemp++ = '\\';
1497 }
1498 strcpy (ptemp, prev);
1499
1500 arg = temp;
1501 }
1502 }
1503
1504 /* The user might be reloading because the binary has changed. Take
1505 this opportunity to check. */
1506 reopen_exec_file ();
1507 reread_symbols ();
1508
1509 target_load (arg, from_tty);
1510
1511 /* After re-loading the executable, we don't really know which
1512 overlays are mapped any more. */
1513 overlay_cache_invalid = 1;
1514 }
1515
1516 /* This version of "load" should be usable for any target. Currently
1517 it is just used for remote targets, not inftarg.c or core files,
1518 on the theory that only in that case is it useful.
1519
1520 Avoiding xmodem and the like seems like a win (a) because we don't have
1521 to worry about finding it, and (b) On VMS, fork() is very slow and so
1522 we don't want to run a subprocess. On the other hand, I'm not sure how
1523 performance compares. */
1524
1525 static int validate_download = 0;
1526
1527 /* Callback service function for generic_load (bfd_map_over_sections). */
1528
1529 static void
1530 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1531 {
1532 bfd_size_type *sum = data;
1533
1534 *sum += bfd_get_section_size (asec);
1535 }
1536
1537 /* Opaque data for load_section_callback. */
1538 struct load_section_data {
1539 unsigned long load_offset;
1540 struct load_progress_data *progress_data;
1541 VEC(memory_write_request_s) *requests;
1542 };
1543
1544 /* Opaque data for load_progress. */
1545 struct load_progress_data {
1546 /* Cumulative data. */
1547 unsigned long write_count;
1548 unsigned long data_count;
1549 bfd_size_type total_size;
1550 };
1551
1552 /* Opaque data for load_progress for a single section. */
1553 struct load_progress_section_data {
1554 struct load_progress_data *cumulative;
1555
1556 /* Per-section data. */
1557 const char *section_name;
1558 ULONGEST section_sent;
1559 ULONGEST section_size;
1560 CORE_ADDR lma;
1561 gdb_byte *buffer;
1562 };
1563
1564 /* Target write callback routine for progress reporting. */
1565
1566 static void
1567 load_progress (ULONGEST bytes, void *untyped_arg)
1568 {
1569 struct load_progress_section_data *args = untyped_arg;
1570 struct load_progress_data *totals;
1571
1572 if (args == NULL)
1573 /* Writing padding data. No easy way to get at the cumulative
1574 stats, so just ignore this. */
1575 return;
1576
1577 totals = args->cumulative;
1578
1579 if (bytes == 0 && args->section_sent == 0)
1580 {
1581 /* The write is just starting. Let the user know we've started
1582 this section. */
1583 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1584 args->section_name, paddr_nz (args->section_size),
1585 paddr_nz (args->lma));
1586 return;
1587 }
1588
1589 if (validate_download)
1590 {
1591 /* Broken memories and broken monitors manifest themselves here
1592 when bring new computers to life. This doubles already slow
1593 downloads. */
1594 /* NOTE: cagney/1999-10-18: A more efficient implementation
1595 might add a verify_memory() method to the target vector and
1596 then use that. remote.c could implement that method using
1597 the ``qCRC'' packet. */
1598 gdb_byte *check = xmalloc (bytes);
1599 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1600
1601 if (target_read_memory (args->lma, check, bytes) != 0)
1602 error (_("Download verify read failed at 0x%s"),
1603 paddr (args->lma));
1604 if (memcmp (args->buffer, check, bytes) != 0)
1605 error (_("Download verify compare failed at 0x%s"),
1606 paddr (args->lma));
1607 do_cleanups (verify_cleanups);
1608 }
1609 totals->data_count += bytes;
1610 args->lma += bytes;
1611 args->buffer += bytes;
1612 totals->write_count += 1;
1613 args->section_sent += bytes;
1614 if (quit_flag
1615 || (deprecated_ui_load_progress_hook != NULL
1616 && deprecated_ui_load_progress_hook (args->section_name,
1617 args->section_sent)))
1618 error (_("Canceled the download"));
1619
1620 if (deprecated_show_load_progress != NULL)
1621 deprecated_show_load_progress (args->section_name,
1622 args->section_sent,
1623 args->section_size,
1624 totals->data_count,
1625 totals->total_size);
1626 }
1627
1628 /* Callback service function for generic_load (bfd_map_over_sections). */
1629
1630 static void
1631 load_section_callback (bfd *abfd, asection *asec, void *data)
1632 {
1633 struct memory_write_request *new_request;
1634 struct load_section_data *args = data;
1635 struct load_progress_section_data *section_data;
1636 bfd_size_type size = bfd_get_section_size (asec);
1637 gdb_byte *buffer;
1638 const char *sect_name = bfd_get_section_name (abfd, asec);
1639
1640 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1641 return;
1642
1643 if (size == 0)
1644 return;
1645
1646 new_request = VEC_safe_push (memory_write_request_s,
1647 args->requests, NULL);
1648 memset (new_request, 0, sizeof (struct memory_write_request));
1649 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1650 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1651 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1652 new_request->data = xmalloc (size);
1653 new_request->baton = section_data;
1654
1655 buffer = new_request->data;
1656
1657 section_data->cumulative = args->progress_data;
1658 section_data->section_name = sect_name;
1659 section_data->section_size = size;
1660 section_data->lma = new_request->begin;
1661 section_data->buffer = buffer;
1662
1663 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1664 }
1665
1666 /* Clean up an entire memory request vector, including load
1667 data and progress records. */
1668
1669 static void
1670 clear_memory_write_data (void *arg)
1671 {
1672 VEC(memory_write_request_s) **vec_p = arg;
1673 VEC(memory_write_request_s) *vec = *vec_p;
1674 int i;
1675 struct memory_write_request *mr;
1676
1677 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1678 {
1679 xfree (mr->data);
1680 xfree (mr->baton);
1681 }
1682 VEC_free (memory_write_request_s, vec);
1683 }
1684
1685 void
1686 generic_load (char *args, int from_tty)
1687 {
1688 bfd *loadfile_bfd;
1689 struct timeval start_time, end_time;
1690 char *filename;
1691 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1692 struct load_section_data cbdata;
1693 struct load_progress_data total_progress;
1694
1695 CORE_ADDR entry;
1696 char **argv;
1697
1698 memset (&cbdata, 0, sizeof (cbdata));
1699 memset (&total_progress, 0, sizeof (total_progress));
1700 cbdata.progress_data = &total_progress;
1701
1702 make_cleanup (clear_memory_write_data, &cbdata.requests);
1703
1704 argv = buildargv (args);
1705
1706 if (argv == NULL)
1707 nomem(0);
1708
1709 make_cleanup_freeargv (argv);
1710
1711 filename = tilde_expand (argv[0]);
1712 make_cleanup (xfree, filename);
1713
1714 if (argv[1] != NULL)
1715 {
1716 char *endptr;
1717
1718 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1719
1720 /* If the last word was not a valid number then
1721 treat it as a file name with spaces in. */
1722 if (argv[1] == endptr)
1723 error (_("Invalid download offset:%s."), argv[1]);
1724
1725 if (argv[2] != NULL)
1726 error (_("Too many parameters."));
1727 }
1728
1729 /* Open the file for loading. */
1730 loadfile_bfd = bfd_openr (filename, gnutarget);
1731 if (loadfile_bfd == NULL)
1732 {
1733 perror_with_name (filename);
1734 return;
1735 }
1736
1737 /* FIXME: should be checking for errors from bfd_close (for one thing,
1738 on error it does not free all the storage associated with the
1739 bfd). */
1740 make_cleanup_bfd_close (loadfile_bfd);
1741
1742 if (!bfd_check_format (loadfile_bfd, bfd_object))
1743 {
1744 error (_("\"%s\" is not an object file: %s"), filename,
1745 bfd_errmsg (bfd_get_error ()));
1746 }
1747
1748 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1749 (void *) &total_progress.total_size);
1750
1751 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1752
1753 gettimeofday (&start_time, NULL);
1754
1755 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1756 load_progress) != 0)
1757 error (_("Load failed"));
1758
1759 gettimeofday (&end_time, NULL);
1760
1761 entry = bfd_get_start_address (loadfile_bfd);
1762 ui_out_text (uiout, "Start address ");
1763 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1764 ui_out_text (uiout, ", load size ");
1765 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1766 ui_out_text (uiout, "\n");
1767 /* We were doing this in remote-mips.c, I suspect it is right
1768 for other targets too. */
1769 write_pc (entry);
1770
1771 /* FIXME: are we supposed to call symbol_file_add or not? According
1772 to a comment from remote-mips.c (where a call to symbol_file_add
1773 was commented out), making the call confuses GDB if more than one
1774 file is loaded in. Some targets do (e.g., remote-vx.c) but
1775 others don't (or didn't - perhaps they have all been deleted). */
1776
1777 print_transfer_performance (gdb_stdout, total_progress.data_count,
1778 total_progress.write_count,
1779 &start_time, &end_time);
1780
1781 do_cleanups (old_cleanups);
1782 }
1783
1784 /* Report how fast the transfer went. */
1785
1786 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1787 replaced by print_transfer_performance (with a very different
1788 function signature). */
1789
1790 void
1791 report_transfer_performance (unsigned long data_count, time_t start_time,
1792 time_t end_time)
1793 {
1794 struct timeval start, end;
1795
1796 start.tv_sec = start_time;
1797 start.tv_usec = 0;
1798 end.tv_sec = end_time;
1799 end.tv_usec = 0;
1800
1801 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1802 }
1803
1804 void
1805 print_transfer_performance (struct ui_file *stream,
1806 unsigned long data_count,
1807 unsigned long write_count,
1808 const struct timeval *start_time,
1809 const struct timeval *end_time)
1810 {
1811 unsigned long time_count;
1812
1813 /* Compute the elapsed time in milliseconds, as a tradeoff between
1814 accuracy and overflow. */
1815 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1816 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1817
1818 ui_out_text (uiout, "Transfer rate: ");
1819 if (time_count > 0)
1820 {
1821 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1822 1000 * (data_count * 8) / time_count);
1823 ui_out_text (uiout, " bits/sec");
1824 }
1825 else
1826 {
1827 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1828 ui_out_text (uiout, " bits in <1 sec");
1829 }
1830 if (write_count > 0)
1831 {
1832 ui_out_text (uiout, ", ");
1833 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1834 ui_out_text (uiout, " bytes/write");
1835 }
1836 ui_out_text (uiout, ".\n");
1837 }
1838
1839 /* This function allows the addition of incrementally linked object files.
1840 It does not modify any state in the target, only in the debugger. */
1841 /* Note: ezannoni 2000-04-13 This function/command used to have a
1842 special case syntax for the rombug target (Rombug is the boot
1843 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1844 rombug case, the user doesn't need to supply a text address,
1845 instead a call to target_link() (in target.c) would supply the
1846 value to use. We are now discontinuing this type of ad hoc syntax. */
1847
1848 static void
1849 add_symbol_file_command (char *args, int from_tty)
1850 {
1851 char *filename = NULL;
1852 int flags = OBJF_USERLOADED;
1853 char *arg;
1854 int expecting_option = 0;
1855 int section_index = 0;
1856 int argcnt = 0;
1857 int sec_num = 0;
1858 int i;
1859 int expecting_sec_name = 0;
1860 int expecting_sec_addr = 0;
1861 char **argv;
1862
1863 struct sect_opt
1864 {
1865 char *name;
1866 char *value;
1867 };
1868
1869 struct section_addr_info *section_addrs;
1870 struct sect_opt *sect_opts = NULL;
1871 size_t num_sect_opts = 0;
1872 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1873
1874 num_sect_opts = 16;
1875 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1876 * sizeof (struct sect_opt));
1877
1878 dont_repeat ();
1879
1880 if (args == NULL)
1881 error (_("add-symbol-file takes a file name and an address"));
1882
1883 argv = buildargv (args);
1884 make_cleanup_freeargv (argv);
1885
1886 if (argv == NULL)
1887 nomem (0);
1888
1889 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
1890 {
1891 /* Process the argument. */
1892 if (argcnt == 0)
1893 {
1894 /* The first argument is the file name. */
1895 filename = tilde_expand (arg);
1896 make_cleanup (xfree, filename);
1897 }
1898 else
1899 if (argcnt == 1)
1900 {
1901 /* The second argument is always the text address at which
1902 to load the program. */
1903 sect_opts[section_index].name = ".text";
1904 sect_opts[section_index].value = arg;
1905 if (++section_index >= num_sect_opts)
1906 {
1907 num_sect_opts *= 2;
1908 sect_opts = ((struct sect_opt *)
1909 xrealloc (sect_opts,
1910 num_sect_opts
1911 * sizeof (struct sect_opt)));
1912 }
1913 }
1914 else
1915 {
1916 /* It's an option (starting with '-') or it's an argument
1917 to an option */
1918
1919 if (*arg == '-')
1920 {
1921 if (strcmp (arg, "-readnow") == 0)
1922 flags |= OBJF_READNOW;
1923 else if (strcmp (arg, "-s") == 0)
1924 {
1925 expecting_sec_name = 1;
1926 expecting_sec_addr = 1;
1927 }
1928 }
1929 else
1930 {
1931 if (expecting_sec_name)
1932 {
1933 sect_opts[section_index].name = arg;
1934 expecting_sec_name = 0;
1935 }
1936 else
1937 if (expecting_sec_addr)
1938 {
1939 sect_opts[section_index].value = arg;
1940 expecting_sec_addr = 0;
1941 if (++section_index >= num_sect_opts)
1942 {
1943 num_sect_opts *= 2;
1944 sect_opts = ((struct sect_opt *)
1945 xrealloc (sect_opts,
1946 num_sect_opts
1947 * sizeof (struct sect_opt)));
1948 }
1949 }
1950 else
1951 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1952 }
1953 }
1954 }
1955
1956 /* This command takes at least two arguments. The first one is a
1957 filename, and the second is the address where this file has been
1958 loaded. Abort now if this address hasn't been provided by the
1959 user. */
1960 if (section_index < 1)
1961 error (_("The address where %s has been loaded is missing"), filename);
1962
1963 /* Print the prompt for the query below. And save the arguments into
1964 a sect_addr_info structure to be passed around to other
1965 functions. We have to split this up into separate print
1966 statements because hex_string returns a local static
1967 string. */
1968
1969 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1970 section_addrs = alloc_section_addr_info (section_index);
1971 make_cleanup (xfree, section_addrs);
1972 for (i = 0; i < section_index; i++)
1973 {
1974 CORE_ADDR addr;
1975 char *val = sect_opts[i].value;
1976 char *sec = sect_opts[i].name;
1977
1978 addr = parse_and_eval_address (val);
1979
1980 /* Here we store the section offsets in the order they were
1981 entered on the command line. */
1982 section_addrs->other[sec_num].name = sec;
1983 section_addrs->other[sec_num].addr = addr;
1984 printf_unfiltered ("\t%s_addr = %s\n",
1985 sec, hex_string ((unsigned long)addr));
1986 sec_num++;
1987
1988 /* The object's sections are initialized when a
1989 call is made to build_objfile_section_table (objfile).
1990 This happens in reread_symbols.
1991 At this point, we don't know what file type this is,
1992 so we can't determine what section names are valid. */
1993 }
1994
1995 if (from_tty && (!query ("%s", "")))
1996 error (_("Not confirmed."));
1997
1998 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1999
2000 /* Getting new symbols may change our opinion about what is
2001 frameless. */
2002 reinit_frame_cache ();
2003 do_cleanups (my_cleanups);
2004 }
2005 \f
2006 static void
2007 add_shared_symbol_files_command (char *args, int from_tty)
2008 {
2009 #ifdef ADD_SHARED_SYMBOL_FILES
2010 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2011 #else
2012 error (_("This command is not available in this configuration of GDB."));
2013 #endif
2014 }
2015 \f
2016 /* Re-read symbols if a symbol-file has changed. */
2017 void
2018 reread_symbols (void)
2019 {
2020 struct objfile *objfile;
2021 long new_modtime;
2022 int reread_one = 0;
2023 struct stat new_statbuf;
2024 int res;
2025
2026 /* With the addition of shared libraries, this should be modified,
2027 the load time should be saved in the partial symbol tables, since
2028 different tables may come from different source files. FIXME.
2029 This routine should then walk down each partial symbol table
2030 and see if the symbol table that it originates from has been changed */
2031
2032 for (objfile = object_files; objfile; objfile = objfile->next)
2033 {
2034 if (objfile->obfd)
2035 {
2036 #ifdef DEPRECATED_IBM6000_TARGET
2037 /* If this object is from a shared library, then you should
2038 stat on the library name, not member name. */
2039
2040 if (objfile->obfd->my_archive)
2041 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2042 else
2043 #endif
2044 res = stat (objfile->name, &new_statbuf);
2045 if (res != 0)
2046 {
2047 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2048 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2049 objfile->name);
2050 continue;
2051 }
2052 new_modtime = new_statbuf.st_mtime;
2053 if (new_modtime != objfile->mtime)
2054 {
2055 struct cleanup *old_cleanups;
2056 struct section_offsets *offsets;
2057 int num_offsets;
2058 char *obfd_filename;
2059
2060 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2061 objfile->name);
2062
2063 /* There are various functions like symbol_file_add,
2064 symfile_bfd_open, syms_from_objfile, etc., which might
2065 appear to do what we want. But they have various other
2066 effects which we *don't* want. So we just do stuff
2067 ourselves. We don't worry about mapped files (for one thing,
2068 any mapped file will be out of date). */
2069
2070 /* If we get an error, blow away this objfile (not sure if
2071 that is the correct response for things like shared
2072 libraries). */
2073 old_cleanups = make_cleanup_free_objfile (objfile);
2074 /* We need to do this whenever any symbols go away. */
2075 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2076
2077 /* Clean up any state BFD has sitting around. We don't need
2078 to close the descriptor but BFD lacks a way of closing the
2079 BFD without closing the descriptor. */
2080 obfd_filename = bfd_get_filename (objfile->obfd);
2081 if (!bfd_close (objfile->obfd))
2082 error (_("Can't close BFD for %s: %s"), objfile->name,
2083 bfd_errmsg (bfd_get_error ()));
2084 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2085 if (objfile->obfd == NULL)
2086 error (_("Can't open %s to read symbols."), objfile->name);
2087 /* bfd_openr sets cacheable to true, which is what we want. */
2088 if (!bfd_check_format (objfile->obfd, bfd_object))
2089 error (_("Can't read symbols from %s: %s."), objfile->name,
2090 bfd_errmsg (bfd_get_error ()));
2091
2092 /* Save the offsets, we will nuke them with the rest of the
2093 objfile_obstack. */
2094 num_offsets = objfile->num_sections;
2095 offsets = ((struct section_offsets *)
2096 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2097 memcpy (offsets, objfile->section_offsets,
2098 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2099
2100 /* Remove any references to this objfile in the global
2101 value lists. */
2102 preserve_values (objfile);
2103
2104 /* Nuke all the state that we will re-read. Much of the following
2105 code which sets things to NULL really is necessary to tell
2106 other parts of GDB that there is nothing currently there. */
2107
2108 /* FIXME: Do we have to free a whole linked list, or is this
2109 enough? */
2110 if (objfile->global_psymbols.list)
2111 xfree (objfile->global_psymbols.list);
2112 memset (&objfile->global_psymbols, 0,
2113 sizeof (objfile->global_psymbols));
2114 if (objfile->static_psymbols.list)
2115 xfree (objfile->static_psymbols.list);
2116 memset (&objfile->static_psymbols, 0,
2117 sizeof (objfile->static_psymbols));
2118
2119 /* Free the obstacks for non-reusable objfiles */
2120 bcache_xfree (objfile->psymbol_cache);
2121 objfile->psymbol_cache = bcache_xmalloc ();
2122 bcache_xfree (objfile->macro_cache);
2123 objfile->macro_cache = bcache_xmalloc ();
2124 if (objfile->demangled_names_hash != NULL)
2125 {
2126 htab_delete (objfile->demangled_names_hash);
2127 objfile->demangled_names_hash = NULL;
2128 }
2129 obstack_free (&objfile->objfile_obstack, 0);
2130 objfile->sections = NULL;
2131 objfile->symtabs = NULL;
2132 objfile->psymtabs = NULL;
2133 objfile->free_psymtabs = NULL;
2134 objfile->cp_namespace_symtab = NULL;
2135 objfile->msymbols = NULL;
2136 objfile->deprecated_sym_private = NULL;
2137 objfile->minimal_symbol_count = 0;
2138 memset (&objfile->msymbol_hash, 0,
2139 sizeof (objfile->msymbol_hash));
2140 memset (&objfile->msymbol_demangled_hash, 0,
2141 sizeof (objfile->msymbol_demangled_hash));
2142 objfile->fundamental_types = NULL;
2143 clear_objfile_data (objfile);
2144 if (objfile->sf != NULL)
2145 {
2146 (*objfile->sf->sym_finish) (objfile);
2147 }
2148
2149 /* We never make this a mapped file. */
2150 objfile->md = NULL;
2151 objfile->psymbol_cache = bcache_xmalloc ();
2152 objfile->macro_cache = bcache_xmalloc ();
2153 /* obstack_init also initializes the obstack so it is
2154 empty. We could use obstack_specify_allocation but
2155 gdb_obstack.h specifies the alloc/dealloc
2156 functions. */
2157 obstack_init (&objfile->objfile_obstack);
2158 if (build_objfile_section_table (objfile))
2159 {
2160 error (_("Can't find the file sections in `%s': %s"),
2161 objfile->name, bfd_errmsg (bfd_get_error ()));
2162 }
2163 terminate_minimal_symbol_table (objfile);
2164
2165 /* We use the same section offsets as from last time. I'm not
2166 sure whether that is always correct for shared libraries. */
2167 objfile->section_offsets = (struct section_offsets *)
2168 obstack_alloc (&objfile->objfile_obstack,
2169 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2170 memcpy (objfile->section_offsets, offsets,
2171 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2172 objfile->num_sections = num_offsets;
2173
2174 /* What the hell is sym_new_init for, anyway? The concept of
2175 distinguishing between the main file and additional files
2176 in this way seems rather dubious. */
2177 if (objfile == symfile_objfile)
2178 {
2179 (*objfile->sf->sym_new_init) (objfile);
2180 }
2181
2182 (*objfile->sf->sym_init) (objfile);
2183 clear_complaints (&symfile_complaints, 1, 1);
2184 /* The "mainline" parameter is a hideous hack; I think leaving it
2185 zero is OK since dbxread.c also does what it needs to do if
2186 objfile->global_psymbols.size is 0. */
2187 (*objfile->sf->sym_read) (objfile, 0);
2188 if (!have_partial_symbols () && !have_full_symbols ())
2189 {
2190 wrap_here ("");
2191 printf_unfiltered (_("(no debugging symbols found)\n"));
2192 wrap_here ("");
2193 }
2194 objfile->flags |= OBJF_SYMS;
2195
2196 /* We're done reading the symbol file; finish off complaints. */
2197 clear_complaints (&symfile_complaints, 0, 1);
2198
2199 /* Getting new symbols may change our opinion about what is
2200 frameless. */
2201
2202 reinit_frame_cache ();
2203
2204 /* Discard cleanups as symbol reading was successful. */
2205 discard_cleanups (old_cleanups);
2206
2207 /* If the mtime has changed between the time we set new_modtime
2208 and now, we *want* this to be out of date, so don't call stat
2209 again now. */
2210 objfile->mtime = new_modtime;
2211 reread_one = 1;
2212 reread_separate_symbols (objfile);
2213 }
2214 }
2215 }
2216
2217 if (reread_one)
2218 {
2219 clear_symtab_users ();
2220 /* At least one objfile has changed, so we can consider that
2221 the executable we're debugging has changed too. */
2222 observer_notify_executable_changed (NULL);
2223 }
2224
2225 }
2226
2227
2228 /* Handle separate debug info for OBJFILE, which has just been
2229 re-read:
2230 - If we had separate debug info before, but now we don't, get rid
2231 of the separated objfile.
2232 - If we didn't have separated debug info before, but now we do,
2233 read in the new separated debug info file.
2234 - If the debug link points to a different file, toss the old one
2235 and read the new one.
2236 This function does *not* handle the case where objfile is still
2237 using the same separate debug info file, but that file's timestamp
2238 has changed. That case should be handled by the loop in
2239 reread_symbols already. */
2240 static void
2241 reread_separate_symbols (struct objfile *objfile)
2242 {
2243 char *debug_file;
2244 unsigned long crc32;
2245
2246 /* Does the updated objfile's debug info live in a
2247 separate file? */
2248 debug_file = find_separate_debug_file (objfile);
2249
2250 if (objfile->separate_debug_objfile)
2251 {
2252 /* There are two cases where we need to get rid of
2253 the old separated debug info objfile:
2254 - if the new primary objfile doesn't have
2255 separated debug info, or
2256 - if the new primary objfile has separate debug
2257 info, but it's under a different filename.
2258
2259 If the old and new objfiles both have separate
2260 debug info, under the same filename, then we're
2261 okay --- if the separated file's contents have
2262 changed, we will have caught that when we
2263 visited it in this function's outermost
2264 loop. */
2265 if (! debug_file
2266 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2267 free_objfile (objfile->separate_debug_objfile);
2268 }
2269
2270 /* If the new objfile has separate debug info, and we
2271 haven't loaded it already, do so now. */
2272 if (debug_file
2273 && ! objfile->separate_debug_objfile)
2274 {
2275 /* Use the same section offset table as objfile itself.
2276 Preserve the flags from objfile that make sense. */
2277 objfile->separate_debug_objfile
2278 = (symbol_file_add_with_addrs_or_offsets
2279 (symfile_bfd_open (debug_file),
2280 info_verbose, /* from_tty: Don't override the default. */
2281 0, /* No addr table. */
2282 objfile->section_offsets, objfile->num_sections,
2283 0, /* Not mainline. See comments about this above. */
2284 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2285 | OBJF_USERLOADED)));
2286 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2287 = objfile;
2288 }
2289 }
2290
2291
2292 \f
2293
2294
2295 typedef struct
2296 {
2297 char *ext;
2298 enum language lang;
2299 }
2300 filename_language;
2301
2302 static filename_language *filename_language_table;
2303 static int fl_table_size, fl_table_next;
2304
2305 static void
2306 add_filename_language (char *ext, enum language lang)
2307 {
2308 if (fl_table_next >= fl_table_size)
2309 {
2310 fl_table_size += 10;
2311 filename_language_table =
2312 xrealloc (filename_language_table,
2313 fl_table_size * sizeof (*filename_language_table));
2314 }
2315
2316 filename_language_table[fl_table_next].ext = xstrdup (ext);
2317 filename_language_table[fl_table_next].lang = lang;
2318 fl_table_next++;
2319 }
2320
2321 static char *ext_args;
2322 static void
2323 show_ext_args (struct ui_file *file, int from_tty,
2324 struct cmd_list_element *c, const char *value)
2325 {
2326 fprintf_filtered (file, _("\
2327 Mapping between filename extension and source language is \"%s\".\n"),
2328 value);
2329 }
2330
2331 static void
2332 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2333 {
2334 int i;
2335 char *cp = ext_args;
2336 enum language lang;
2337
2338 /* First arg is filename extension, starting with '.' */
2339 if (*cp != '.')
2340 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2341
2342 /* Find end of first arg. */
2343 while (*cp && !isspace (*cp))
2344 cp++;
2345
2346 if (*cp == '\0')
2347 error (_("'%s': two arguments required -- filename extension and language"),
2348 ext_args);
2349
2350 /* Null-terminate first arg */
2351 *cp++ = '\0';
2352
2353 /* Find beginning of second arg, which should be a source language. */
2354 while (*cp && isspace (*cp))
2355 cp++;
2356
2357 if (*cp == '\0')
2358 error (_("'%s': two arguments required -- filename extension and language"),
2359 ext_args);
2360
2361 /* Lookup the language from among those we know. */
2362 lang = language_enum (cp);
2363
2364 /* Now lookup the filename extension: do we already know it? */
2365 for (i = 0; i < fl_table_next; i++)
2366 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2367 break;
2368
2369 if (i >= fl_table_next)
2370 {
2371 /* new file extension */
2372 add_filename_language (ext_args, lang);
2373 }
2374 else
2375 {
2376 /* redefining a previously known filename extension */
2377
2378 /* if (from_tty) */
2379 /* query ("Really make files of type %s '%s'?", */
2380 /* ext_args, language_str (lang)); */
2381
2382 xfree (filename_language_table[i].ext);
2383 filename_language_table[i].ext = xstrdup (ext_args);
2384 filename_language_table[i].lang = lang;
2385 }
2386 }
2387
2388 static void
2389 info_ext_lang_command (char *args, int from_tty)
2390 {
2391 int i;
2392
2393 printf_filtered (_("Filename extensions and the languages they represent:"));
2394 printf_filtered ("\n\n");
2395 for (i = 0; i < fl_table_next; i++)
2396 printf_filtered ("\t%s\t- %s\n",
2397 filename_language_table[i].ext,
2398 language_str (filename_language_table[i].lang));
2399 }
2400
2401 static void
2402 init_filename_language_table (void)
2403 {
2404 if (fl_table_size == 0) /* protect against repetition */
2405 {
2406 fl_table_size = 20;
2407 fl_table_next = 0;
2408 filename_language_table =
2409 xmalloc (fl_table_size * sizeof (*filename_language_table));
2410 add_filename_language (".c", language_c);
2411 add_filename_language (".C", language_cplus);
2412 add_filename_language (".cc", language_cplus);
2413 add_filename_language (".cp", language_cplus);
2414 add_filename_language (".cpp", language_cplus);
2415 add_filename_language (".cxx", language_cplus);
2416 add_filename_language (".c++", language_cplus);
2417 add_filename_language (".java", language_java);
2418 add_filename_language (".class", language_java);
2419 add_filename_language (".m", language_objc);
2420 add_filename_language (".f", language_fortran);
2421 add_filename_language (".F", language_fortran);
2422 add_filename_language (".s", language_asm);
2423 add_filename_language (".S", language_asm);
2424 add_filename_language (".pas", language_pascal);
2425 add_filename_language (".p", language_pascal);
2426 add_filename_language (".pp", language_pascal);
2427 add_filename_language (".adb", language_ada);
2428 add_filename_language (".ads", language_ada);
2429 add_filename_language (".a", language_ada);
2430 add_filename_language (".ada", language_ada);
2431 }
2432 }
2433
2434 enum language
2435 deduce_language_from_filename (char *filename)
2436 {
2437 int i;
2438 char *cp;
2439
2440 if (filename != NULL)
2441 if ((cp = strrchr (filename, '.')) != NULL)
2442 for (i = 0; i < fl_table_next; i++)
2443 if (strcmp (cp, filename_language_table[i].ext) == 0)
2444 return filename_language_table[i].lang;
2445
2446 return language_unknown;
2447 }
2448 \f
2449 /* allocate_symtab:
2450
2451 Allocate and partly initialize a new symbol table. Return a pointer
2452 to it. error() if no space.
2453
2454 Caller must set these fields:
2455 LINETABLE(symtab)
2456 symtab->blockvector
2457 symtab->dirname
2458 symtab->free_code
2459 symtab->free_ptr
2460 possibly free_named_symtabs (symtab->filename);
2461 */
2462
2463 struct symtab *
2464 allocate_symtab (char *filename, struct objfile *objfile)
2465 {
2466 struct symtab *symtab;
2467
2468 symtab = (struct symtab *)
2469 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2470 memset (symtab, 0, sizeof (*symtab));
2471 symtab->filename = obsavestring (filename, strlen (filename),
2472 &objfile->objfile_obstack);
2473 symtab->fullname = NULL;
2474 symtab->language = deduce_language_from_filename (filename);
2475 symtab->debugformat = obsavestring ("unknown", 7,
2476 &objfile->objfile_obstack);
2477
2478 /* Hook it to the objfile it comes from */
2479
2480 symtab->objfile = objfile;
2481 symtab->next = objfile->symtabs;
2482 objfile->symtabs = symtab;
2483
2484 /* FIXME: This should go away. It is only defined for the Z8000,
2485 and the Z8000 definition of this macro doesn't have anything to
2486 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2487 here for convenience. */
2488 #ifdef INIT_EXTRA_SYMTAB_INFO
2489 INIT_EXTRA_SYMTAB_INFO (symtab);
2490 #endif
2491
2492 return (symtab);
2493 }
2494
2495 struct partial_symtab *
2496 allocate_psymtab (char *filename, struct objfile *objfile)
2497 {
2498 struct partial_symtab *psymtab;
2499
2500 if (objfile->free_psymtabs)
2501 {
2502 psymtab = objfile->free_psymtabs;
2503 objfile->free_psymtabs = psymtab->next;
2504 }
2505 else
2506 psymtab = (struct partial_symtab *)
2507 obstack_alloc (&objfile->objfile_obstack,
2508 sizeof (struct partial_symtab));
2509
2510 memset (psymtab, 0, sizeof (struct partial_symtab));
2511 psymtab->filename = obsavestring (filename, strlen (filename),
2512 &objfile->objfile_obstack);
2513 psymtab->symtab = NULL;
2514
2515 /* Prepend it to the psymtab list for the objfile it belongs to.
2516 Psymtabs are searched in most recent inserted -> least recent
2517 inserted order. */
2518
2519 psymtab->objfile = objfile;
2520 psymtab->next = objfile->psymtabs;
2521 objfile->psymtabs = psymtab;
2522 #if 0
2523 {
2524 struct partial_symtab **prev_pst;
2525 psymtab->objfile = objfile;
2526 psymtab->next = NULL;
2527 prev_pst = &(objfile->psymtabs);
2528 while ((*prev_pst) != NULL)
2529 prev_pst = &((*prev_pst)->next);
2530 (*prev_pst) = psymtab;
2531 }
2532 #endif
2533
2534 return (psymtab);
2535 }
2536
2537 void
2538 discard_psymtab (struct partial_symtab *pst)
2539 {
2540 struct partial_symtab **prev_pst;
2541
2542 /* From dbxread.c:
2543 Empty psymtabs happen as a result of header files which don't
2544 have any symbols in them. There can be a lot of them. But this
2545 check is wrong, in that a psymtab with N_SLINE entries but
2546 nothing else is not empty, but we don't realize that. Fixing
2547 that without slowing things down might be tricky. */
2548
2549 /* First, snip it out of the psymtab chain */
2550
2551 prev_pst = &(pst->objfile->psymtabs);
2552 while ((*prev_pst) != pst)
2553 prev_pst = &((*prev_pst)->next);
2554 (*prev_pst) = pst->next;
2555
2556 /* Next, put it on a free list for recycling */
2557
2558 pst->next = pst->objfile->free_psymtabs;
2559 pst->objfile->free_psymtabs = pst;
2560 }
2561 \f
2562
2563 /* Reset all data structures in gdb which may contain references to symbol
2564 table data. */
2565
2566 void
2567 clear_symtab_users (void)
2568 {
2569 /* Someday, we should do better than this, by only blowing away
2570 the things that really need to be blown. */
2571
2572 /* Clear the "current" symtab first, because it is no longer valid.
2573 breakpoint_re_set may try to access the current symtab. */
2574 clear_current_source_symtab_and_line ();
2575
2576 clear_displays ();
2577 breakpoint_re_set ();
2578 set_default_breakpoint (0, 0, 0, 0);
2579 clear_pc_function_cache ();
2580 if (deprecated_target_new_objfile_hook)
2581 deprecated_target_new_objfile_hook (NULL);
2582
2583 /* Clear globals which might have pointed into a removed objfile.
2584 FIXME: It's not clear which of these are supposed to persist
2585 between expressions and which ought to be reset each time. */
2586 expression_context_block = NULL;
2587 innermost_block = NULL;
2588 }
2589
2590 static void
2591 clear_symtab_users_cleanup (void *ignore)
2592 {
2593 clear_symtab_users ();
2594 }
2595
2596 /* clear_symtab_users_once:
2597
2598 This function is run after symbol reading, or from a cleanup.
2599 If an old symbol table was obsoleted, the old symbol table
2600 has been blown away, but the other GDB data structures that may
2601 reference it have not yet been cleared or re-directed. (The old
2602 symtab was zapped, and the cleanup queued, in free_named_symtab()
2603 below.)
2604
2605 This function can be queued N times as a cleanup, or called
2606 directly; it will do all the work the first time, and then will be a
2607 no-op until the next time it is queued. This works by bumping a
2608 counter at queueing time. Much later when the cleanup is run, or at
2609 the end of symbol processing (in case the cleanup is discarded), if
2610 the queued count is greater than the "done-count", we do the work
2611 and set the done-count to the queued count. If the queued count is
2612 less than or equal to the done-count, we just ignore the call. This
2613 is needed because reading a single .o file will often replace many
2614 symtabs (one per .h file, for example), and we don't want to reset
2615 the breakpoints N times in the user's face.
2616
2617 The reason we both queue a cleanup, and call it directly after symbol
2618 reading, is because the cleanup protects us in case of errors, but is
2619 discarded if symbol reading is successful. */
2620
2621 #if 0
2622 /* FIXME: As free_named_symtabs is currently a big noop this function
2623 is no longer needed. */
2624 static void clear_symtab_users_once (void);
2625
2626 static int clear_symtab_users_queued;
2627 static int clear_symtab_users_done;
2628
2629 static void
2630 clear_symtab_users_once (void)
2631 {
2632 /* Enforce once-per-`do_cleanups'-semantics */
2633 if (clear_symtab_users_queued <= clear_symtab_users_done)
2634 return;
2635 clear_symtab_users_done = clear_symtab_users_queued;
2636
2637 clear_symtab_users ();
2638 }
2639 #endif
2640
2641 /* Delete the specified psymtab, and any others that reference it. */
2642
2643 static void
2644 cashier_psymtab (struct partial_symtab *pst)
2645 {
2646 struct partial_symtab *ps, *pprev = NULL;
2647 int i;
2648
2649 /* Find its previous psymtab in the chain */
2650 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2651 {
2652 if (ps == pst)
2653 break;
2654 pprev = ps;
2655 }
2656
2657 if (ps)
2658 {
2659 /* Unhook it from the chain. */
2660 if (ps == pst->objfile->psymtabs)
2661 pst->objfile->psymtabs = ps->next;
2662 else
2663 pprev->next = ps->next;
2664
2665 /* FIXME, we can't conveniently deallocate the entries in the
2666 partial_symbol lists (global_psymbols/static_psymbols) that
2667 this psymtab points to. These just take up space until all
2668 the psymtabs are reclaimed. Ditto the dependencies list and
2669 filename, which are all in the objfile_obstack. */
2670
2671 /* We need to cashier any psymtab that has this one as a dependency... */
2672 again:
2673 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2674 {
2675 for (i = 0; i < ps->number_of_dependencies; i++)
2676 {
2677 if (ps->dependencies[i] == pst)
2678 {
2679 cashier_psymtab (ps);
2680 goto again; /* Must restart, chain has been munged. */
2681 }
2682 }
2683 }
2684 }
2685 }
2686
2687 /* If a symtab or psymtab for filename NAME is found, free it along
2688 with any dependent breakpoints, displays, etc.
2689 Used when loading new versions of object modules with the "add-file"
2690 command. This is only called on the top-level symtab or psymtab's name;
2691 it is not called for subsidiary files such as .h files.
2692
2693 Return value is 1 if we blew away the environment, 0 if not.
2694 FIXME. The return value appears to never be used.
2695
2696 FIXME. I think this is not the best way to do this. We should
2697 work on being gentler to the environment while still cleaning up
2698 all stray pointers into the freed symtab. */
2699
2700 int
2701 free_named_symtabs (char *name)
2702 {
2703 #if 0
2704 /* FIXME: With the new method of each objfile having it's own
2705 psymtab list, this function needs serious rethinking. In particular,
2706 why was it ever necessary to toss psymtabs with specific compilation
2707 unit filenames, as opposed to all psymtabs from a particular symbol
2708 file? -- fnf
2709 Well, the answer is that some systems permit reloading of particular
2710 compilation units. We want to blow away any old info about these
2711 compilation units, regardless of which objfiles they arrived in. --gnu. */
2712
2713 struct symtab *s;
2714 struct symtab *prev;
2715 struct partial_symtab *ps;
2716 struct blockvector *bv;
2717 int blewit = 0;
2718
2719 /* We only wack things if the symbol-reload switch is set. */
2720 if (!symbol_reloading)
2721 return 0;
2722
2723 /* Some symbol formats have trouble providing file names... */
2724 if (name == 0 || *name == '\0')
2725 return 0;
2726
2727 /* Look for a psymtab with the specified name. */
2728
2729 again2:
2730 for (ps = partial_symtab_list; ps; ps = ps->next)
2731 {
2732 if (strcmp (name, ps->filename) == 0)
2733 {
2734 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2735 goto again2; /* Must restart, chain has been munged */
2736 }
2737 }
2738
2739 /* Look for a symtab with the specified name. */
2740
2741 for (s = symtab_list; s; s = s->next)
2742 {
2743 if (strcmp (name, s->filename) == 0)
2744 break;
2745 prev = s;
2746 }
2747
2748 if (s)
2749 {
2750 if (s == symtab_list)
2751 symtab_list = s->next;
2752 else
2753 prev->next = s->next;
2754
2755 /* For now, queue a delete for all breakpoints, displays, etc., whether
2756 or not they depend on the symtab being freed. This should be
2757 changed so that only those data structures affected are deleted. */
2758
2759 /* But don't delete anything if the symtab is empty.
2760 This test is necessary due to a bug in "dbxread.c" that
2761 causes empty symtabs to be created for N_SO symbols that
2762 contain the pathname of the object file. (This problem
2763 has been fixed in GDB 3.9x). */
2764
2765 bv = BLOCKVECTOR (s);
2766 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2767 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2768 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2769 {
2770 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2771 name);
2772 clear_symtab_users_queued++;
2773 make_cleanup (clear_symtab_users_once, 0);
2774 blewit = 1;
2775 }
2776 else
2777 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2778 name);
2779
2780 free_symtab (s);
2781 }
2782 else
2783 {
2784 /* It is still possible that some breakpoints will be affected
2785 even though no symtab was found, since the file might have
2786 been compiled without debugging, and hence not be associated
2787 with a symtab. In order to handle this correctly, we would need
2788 to keep a list of text address ranges for undebuggable files.
2789 For now, we do nothing, since this is a fairly obscure case. */
2790 ;
2791 }
2792
2793 /* FIXME, what about the minimal symbol table? */
2794 return blewit;
2795 #else
2796 return (0);
2797 #endif
2798 }
2799 \f
2800 /* Allocate and partially fill a partial symtab. It will be
2801 completely filled at the end of the symbol list.
2802
2803 FILENAME is the name of the symbol-file we are reading from. */
2804
2805 struct partial_symtab *
2806 start_psymtab_common (struct objfile *objfile,
2807 struct section_offsets *section_offsets, char *filename,
2808 CORE_ADDR textlow, struct partial_symbol **global_syms,
2809 struct partial_symbol **static_syms)
2810 {
2811 struct partial_symtab *psymtab;
2812
2813 psymtab = allocate_psymtab (filename, objfile);
2814 psymtab->section_offsets = section_offsets;
2815 psymtab->textlow = textlow;
2816 psymtab->texthigh = psymtab->textlow; /* default */
2817 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2818 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2819 return (psymtab);
2820 }
2821 \f
2822 /* Add a symbol with a long value to a psymtab.
2823 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2824 Return the partial symbol that has been added. */
2825
2826 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2827 symbol is so that callers can get access to the symbol's demangled
2828 name, which they don't have any cheap way to determine otherwise.
2829 (Currenly, dwarf2read.c is the only file who uses that information,
2830 though it's possible that other readers might in the future.)
2831 Elena wasn't thrilled about that, and I don't blame her, but we
2832 couldn't come up with a better way to get that information. If
2833 it's needed in other situations, we could consider breaking up
2834 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2835 cache. */
2836
2837 const struct partial_symbol *
2838 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2839 enum address_class class,
2840 struct psymbol_allocation_list *list, long val, /* Value as a long */
2841 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2842 enum language language, struct objfile *objfile)
2843 {
2844 struct partial_symbol *psym;
2845 char *buf = alloca (namelength + 1);
2846 /* psymbol is static so that there will be no uninitialized gaps in the
2847 structure which might contain random data, causing cache misses in
2848 bcache. */
2849 static struct partial_symbol psymbol;
2850
2851 /* Create local copy of the partial symbol */
2852 memcpy (buf, name, namelength);
2853 buf[namelength] = '\0';
2854 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2855 if (val != 0)
2856 {
2857 SYMBOL_VALUE (&psymbol) = val;
2858 }
2859 else
2860 {
2861 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2862 }
2863 SYMBOL_SECTION (&psymbol) = 0;
2864 SYMBOL_LANGUAGE (&psymbol) = language;
2865 PSYMBOL_DOMAIN (&psymbol) = domain;
2866 PSYMBOL_CLASS (&psymbol) = class;
2867
2868 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2869
2870 /* Stash the partial symbol away in the cache */
2871 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2872 objfile->psymbol_cache);
2873
2874 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2875 if (list->next >= list->list + list->size)
2876 {
2877 extend_psymbol_list (list, objfile);
2878 }
2879 *list->next++ = psym;
2880 OBJSTAT (objfile, n_psyms++);
2881
2882 return psym;
2883 }
2884
2885 /* Add a symbol with a long value to a psymtab. This differs from
2886 * add_psymbol_to_list above in taking both a mangled and a demangled
2887 * name. */
2888
2889 void
2890 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2891 int dem_namelength, domain_enum domain,
2892 enum address_class class,
2893 struct psymbol_allocation_list *list, long val, /* Value as a long */
2894 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2895 enum language language,
2896 struct objfile *objfile)
2897 {
2898 struct partial_symbol *psym;
2899 char *buf = alloca (namelength + 1);
2900 /* psymbol is static so that there will be no uninitialized gaps in the
2901 structure which might contain random data, causing cache misses in
2902 bcache. */
2903 static struct partial_symbol psymbol;
2904
2905 /* Create local copy of the partial symbol */
2906
2907 memcpy (buf, name, namelength);
2908 buf[namelength] = '\0';
2909 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2910 objfile->psymbol_cache);
2911
2912 buf = alloca (dem_namelength + 1);
2913 memcpy (buf, dem_name, dem_namelength);
2914 buf[dem_namelength] = '\0';
2915
2916 switch (language)
2917 {
2918 case language_c:
2919 case language_cplus:
2920 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2921 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2922 break;
2923 /* FIXME What should be done for the default case? Ignoring for now. */
2924 }
2925
2926 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2927 if (val != 0)
2928 {
2929 SYMBOL_VALUE (&psymbol) = val;
2930 }
2931 else
2932 {
2933 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2934 }
2935 SYMBOL_SECTION (&psymbol) = 0;
2936 SYMBOL_LANGUAGE (&psymbol) = language;
2937 PSYMBOL_DOMAIN (&psymbol) = domain;
2938 PSYMBOL_CLASS (&psymbol) = class;
2939 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2940
2941 /* Stash the partial symbol away in the cache */
2942 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2943 objfile->psymbol_cache);
2944
2945 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2946 if (list->next >= list->list + list->size)
2947 {
2948 extend_psymbol_list (list, objfile);
2949 }
2950 *list->next++ = psym;
2951 OBJSTAT (objfile, n_psyms++);
2952 }
2953
2954 /* Initialize storage for partial symbols. */
2955
2956 void
2957 init_psymbol_list (struct objfile *objfile, int total_symbols)
2958 {
2959 /* Free any previously allocated psymbol lists. */
2960
2961 if (objfile->global_psymbols.list)
2962 {
2963 xfree (objfile->global_psymbols.list);
2964 }
2965 if (objfile->static_psymbols.list)
2966 {
2967 xfree (objfile->static_psymbols.list);
2968 }
2969
2970 /* Current best guess is that approximately a twentieth
2971 of the total symbols (in a debugging file) are global or static
2972 oriented symbols */
2973
2974 objfile->global_psymbols.size = total_symbols / 10;
2975 objfile->static_psymbols.size = total_symbols / 10;
2976
2977 if (objfile->global_psymbols.size > 0)
2978 {
2979 objfile->global_psymbols.next =
2980 objfile->global_psymbols.list = (struct partial_symbol **)
2981 xmalloc ((objfile->global_psymbols.size
2982 * sizeof (struct partial_symbol *)));
2983 }
2984 if (objfile->static_psymbols.size > 0)
2985 {
2986 objfile->static_psymbols.next =
2987 objfile->static_psymbols.list = (struct partial_symbol **)
2988 xmalloc ((objfile->static_psymbols.size
2989 * sizeof (struct partial_symbol *)));
2990 }
2991 }
2992
2993 /* OVERLAYS:
2994 The following code implements an abstraction for debugging overlay sections.
2995
2996 The target model is as follows:
2997 1) The gnu linker will permit multiple sections to be mapped into the
2998 same VMA, each with its own unique LMA (or load address).
2999 2) It is assumed that some runtime mechanism exists for mapping the
3000 sections, one by one, from the load address into the VMA address.
3001 3) This code provides a mechanism for gdb to keep track of which
3002 sections should be considered to be mapped from the VMA to the LMA.
3003 This information is used for symbol lookup, and memory read/write.
3004 For instance, if a section has been mapped then its contents
3005 should be read from the VMA, otherwise from the LMA.
3006
3007 Two levels of debugger support for overlays are available. One is
3008 "manual", in which the debugger relies on the user to tell it which
3009 overlays are currently mapped. This level of support is
3010 implemented entirely in the core debugger, and the information about
3011 whether a section is mapped is kept in the objfile->obj_section table.
3012
3013 The second level of support is "automatic", and is only available if
3014 the target-specific code provides functionality to read the target's
3015 overlay mapping table, and translate its contents for the debugger
3016 (by updating the mapped state information in the obj_section tables).
3017
3018 The interface is as follows:
3019 User commands:
3020 overlay map <name> -- tell gdb to consider this section mapped
3021 overlay unmap <name> -- tell gdb to consider this section unmapped
3022 overlay list -- list the sections that GDB thinks are mapped
3023 overlay read-target -- get the target's state of what's mapped
3024 overlay off/manual/auto -- set overlay debugging state
3025 Functional interface:
3026 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3027 section, return that section.
3028 find_pc_overlay(pc): find any overlay section that contains
3029 the pc, either in its VMA or its LMA
3030 overlay_is_mapped(sect): true if overlay is marked as mapped
3031 section_is_overlay(sect): true if section's VMA != LMA
3032 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3033 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3034 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3035 overlay_mapped_address(...): map an address from section's LMA to VMA
3036 overlay_unmapped_address(...): map an address from section's VMA to LMA
3037 symbol_overlayed_address(...): Return a "current" address for symbol:
3038 either in VMA or LMA depending on whether
3039 the symbol's section is currently mapped
3040 */
3041
3042 /* Overlay debugging state: */
3043
3044 enum overlay_debugging_state overlay_debugging = ovly_off;
3045 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3046
3047 /* Target vector for refreshing overlay mapped state */
3048 static void simple_overlay_update (struct obj_section *);
3049 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
3050
3051 /* Function: section_is_overlay (SECTION)
3052 Returns true if SECTION has VMA not equal to LMA, ie.
3053 SECTION is loaded at an address different from where it will "run". */
3054
3055 int
3056 section_is_overlay (asection *section)
3057 {
3058 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3059
3060 if (overlay_debugging)
3061 if (section && section->lma != 0 &&
3062 section->vma != section->lma)
3063 return 1;
3064
3065 return 0;
3066 }
3067
3068 /* Function: overlay_invalidate_all (void)
3069 Invalidate the mapped state of all overlay sections (mark it as stale). */
3070
3071 static void
3072 overlay_invalidate_all (void)
3073 {
3074 struct objfile *objfile;
3075 struct obj_section *sect;
3076
3077 ALL_OBJSECTIONS (objfile, sect)
3078 if (section_is_overlay (sect->the_bfd_section))
3079 sect->ovly_mapped = -1;
3080 }
3081
3082 /* Function: overlay_is_mapped (SECTION)
3083 Returns true if section is an overlay, and is currently mapped.
3084 Private: public access is thru function section_is_mapped.
3085
3086 Access to the ovly_mapped flag is restricted to this function, so
3087 that we can do automatic update. If the global flag
3088 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3089 overlay_invalidate_all. If the mapped state of the particular
3090 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3091
3092 static int
3093 overlay_is_mapped (struct obj_section *osect)
3094 {
3095 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3096 return 0;
3097
3098 switch (overlay_debugging)
3099 {
3100 default:
3101 case ovly_off:
3102 return 0; /* overlay debugging off */
3103 case ovly_auto: /* overlay debugging automatic */
3104 /* Unles there is a target_overlay_update function,
3105 there's really nothing useful to do here (can't really go auto) */
3106 if (target_overlay_update)
3107 {
3108 if (overlay_cache_invalid)
3109 {
3110 overlay_invalidate_all ();
3111 overlay_cache_invalid = 0;
3112 }
3113 if (osect->ovly_mapped == -1)
3114 (*target_overlay_update) (osect);
3115 }
3116 /* fall thru to manual case */
3117 case ovly_on: /* overlay debugging manual */
3118 return osect->ovly_mapped == 1;
3119 }
3120 }
3121
3122 /* Function: section_is_mapped
3123 Returns true if section is an overlay, and is currently mapped. */
3124
3125 int
3126 section_is_mapped (asection *section)
3127 {
3128 struct objfile *objfile;
3129 struct obj_section *osect;
3130
3131 if (overlay_debugging)
3132 if (section && section_is_overlay (section))
3133 ALL_OBJSECTIONS (objfile, osect)
3134 if (osect->the_bfd_section == section)
3135 return overlay_is_mapped (osect);
3136
3137 return 0;
3138 }
3139
3140 /* Function: pc_in_unmapped_range
3141 If PC falls into the lma range of SECTION, return true, else false. */
3142
3143 CORE_ADDR
3144 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3145 {
3146 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3147
3148 int size;
3149
3150 if (overlay_debugging)
3151 if (section && section_is_overlay (section))
3152 {
3153 size = bfd_get_section_size (section);
3154 if (section->lma <= pc && pc < section->lma + size)
3155 return 1;
3156 }
3157 return 0;
3158 }
3159
3160 /* Function: pc_in_mapped_range
3161 If PC falls into the vma range of SECTION, return true, else false. */
3162
3163 CORE_ADDR
3164 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3165 {
3166 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3167
3168 int size;
3169
3170 if (overlay_debugging)
3171 if (section && section_is_overlay (section))
3172 {
3173 size = bfd_get_section_size (section);
3174 if (section->vma <= pc && pc < section->vma + size)
3175 return 1;
3176 }
3177 return 0;
3178 }
3179
3180
3181 /* Return true if the mapped ranges of sections A and B overlap, false
3182 otherwise. */
3183 static int
3184 sections_overlap (asection *a, asection *b)
3185 {
3186 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3187
3188 CORE_ADDR a_start = a->vma;
3189 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3190 CORE_ADDR b_start = b->vma;
3191 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3192
3193 return (a_start < b_end && b_start < a_end);
3194 }
3195
3196 /* Function: overlay_unmapped_address (PC, SECTION)
3197 Returns the address corresponding to PC in the unmapped (load) range.
3198 May be the same as PC. */
3199
3200 CORE_ADDR
3201 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3202 {
3203 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3204
3205 if (overlay_debugging)
3206 if (section && section_is_overlay (section) &&
3207 pc_in_mapped_range (pc, section))
3208 return pc + section->lma - section->vma;
3209
3210 return pc;
3211 }
3212
3213 /* Function: overlay_mapped_address (PC, SECTION)
3214 Returns the address corresponding to PC in the mapped (runtime) range.
3215 May be the same as PC. */
3216
3217 CORE_ADDR
3218 overlay_mapped_address (CORE_ADDR pc, asection *section)
3219 {
3220 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3221
3222 if (overlay_debugging)
3223 if (section && section_is_overlay (section) &&
3224 pc_in_unmapped_range (pc, section))
3225 return pc + section->vma - section->lma;
3226
3227 return pc;
3228 }
3229
3230
3231 /* Function: symbol_overlayed_address
3232 Return one of two addresses (relative to the VMA or to the LMA),
3233 depending on whether the section is mapped or not. */
3234
3235 CORE_ADDR
3236 symbol_overlayed_address (CORE_ADDR address, asection *section)
3237 {
3238 if (overlay_debugging)
3239 {
3240 /* If the symbol has no section, just return its regular address. */
3241 if (section == 0)
3242 return address;
3243 /* If the symbol's section is not an overlay, just return its address */
3244 if (!section_is_overlay (section))
3245 return address;
3246 /* If the symbol's section is mapped, just return its address */
3247 if (section_is_mapped (section))
3248 return address;
3249 /*
3250 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3251 * then return its LOADED address rather than its vma address!!
3252 */
3253 return overlay_unmapped_address (address, section);
3254 }
3255 return address;
3256 }
3257
3258 /* Function: find_pc_overlay (PC)
3259 Return the best-match overlay section for PC:
3260 If PC matches a mapped overlay section's VMA, return that section.
3261 Else if PC matches an unmapped section's VMA, return that section.
3262 Else if PC matches an unmapped section's LMA, return that section. */
3263
3264 asection *
3265 find_pc_overlay (CORE_ADDR pc)
3266 {
3267 struct objfile *objfile;
3268 struct obj_section *osect, *best_match = NULL;
3269
3270 if (overlay_debugging)
3271 ALL_OBJSECTIONS (objfile, osect)
3272 if (section_is_overlay (osect->the_bfd_section))
3273 {
3274 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3275 {
3276 if (overlay_is_mapped (osect))
3277 return osect->the_bfd_section;
3278 else
3279 best_match = osect;
3280 }
3281 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3282 best_match = osect;
3283 }
3284 return best_match ? best_match->the_bfd_section : NULL;
3285 }
3286
3287 /* Function: find_pc_mapped_section (PC)
3288 If PC falls into the VMA address range of an overlay section that is
3289 currently marked as MAPPED, return that section. Else return NULL. */
3290
3291 asection *
3292 find_pc_mapped_section (CORE_ADDR pc)
3293 {
3294 struct objfile *objfile;
3295 struct obj_section *osect;
3296
3297 if (overlay_debugging)
3298 ALL_OBJSECTIONS (objfile, osect)
3299 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3300 overlay_is_mapped (osect))
3301 return osect->the_bfd_section;
3302
3303 return NULL;
3304 }
3305
3306 /* Function: list_overlays_command
3307 Print a list of mapped sections and their PC ranges */
3308
3309 void
3310 list_overlays_command (char *args, int from_tty)
3311 {
3312 int nmapped = 0;
3313 struct objfile *objfile;
3314 struct obj_section *osect;
3315
3316 if (overlay_debugging)
3317 ALL_OBJSECTIONS (objfile, osect)
3318 if (overlay_is_mapped (osect))
3319 {
3320 const char *name;
3321 bfd_vma lma, vma;
3322 int size;
3323
3324 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3325 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3326 size = bfd_get_section_size (osect->the_bfd_section);
3327 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3328
3329 printf_filtered ("Section %s, loaded at ", name);
3330 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3331 puts_filtered (" - ");
3332 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3333 printf_filtered (", mapped at ");
3334 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3335 puts_filtered (" - ");
3336 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3337 puts_filtered ("\n");
3338
3339 nmapped++;
3340 }
3341 if (nmapped == 0)
3342 printf_filtered (_("No sections are mapped.\n"));
3343 }
3344
3345 /* Function: map_overlay_command
3346 Mark the named section as mapped (ie. residing at its VMA address). */
3347
3348 void
3349 map_overlay_command (char *args, int from_tty)
3350 {
3351 struct objfile *objfile, *objfile2;
3352 struct obj_section *sec, *sec2;
3353 asection *bfdsec;
3354
3355 if (!overlay_debugging)
3356 error (_("\
3357 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3358 the 'overlay manual' command."));
3359
3360 if (args == 0 || *args == 0)
3361 error (_("Argument required: name of an overlay section"));
3362
3363 /* First, find a section matching the user supplied argument */
3364 ALL_OBJSECTIONS (objfile, sec)
3365 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3366 {
3367 /* Now, check to see if the section is an overlay. */
3368 bfdsec = sec->the_bfd_section;
3369 if (!section_is_overlay (bfdsec))
3370 continue; /* not an overlay section */
3371
3372 /* Mark the overlay as "mapped" */
3373 sec->ovly_mapped = 1;
3374
3375 /* Next, make a pass and unmap any sections that are
3376 overlapped by this new section: */
3377 ALL_OBJSECTIONS (objfile2, sec2)
3378 if (sec2->ovly_mapped
3379 && sec != sec2
3380 && sec->the_bfd_section != sec2->the_bfd_section
3381 && sections_overlap (sec->the_bfd_section,
3382 sec2->the_bfd_section))
3383 {
3384 if (info_verbose)
3385 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3386 bfd_section_name (objfile->obfd,
3387 sec2->the_bfd_section));
3388 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3389 }
3390 return;
3391 }
3392 error (_("No overlay section called %s"), args);
3393 }
3394
3395 /* Function: unmap_overlay_command
3396 Mark the overlay section as unmapped
3397 (ie. resident in its LMA address range, rather than the VMA range). */
3398
3399 void
3400 unmap_overlay_command (char *args, int from_tty)
3401 {
3402 struct objfile *objfile;
3403 struct obj_section *sec;
3404
3405 if (!overlay_debugging)
3406 error (_("\
3407 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3408 the 'overlay manual' command."));
3409
3410 if (args == 0 || *args == 0)
3411 error (_("Argument required: name of an overlay section"));
3412
3413 /* First, find a section matching the user supplied argument */
3414 ALL_OBJSECTIONS (objfile, sec)
3415 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3416 {
3417 if (!sec->ovly_mapped)
3418 error (_("Section %s is not mapped"), args);
3419 sec->ovly_mapped = 0;
3420 return;
3421 }
3422 error (_("No overlay section called %s"), args);
3423 }
3424
3425 /* Function: overlay_auto_command
3426 A utility command to turn on overlay debugging.
3427 Possibly this should be done via a set/show command. */
3428
3429 static void
3430 overlay_auto_command (char *args, int from_tty)
3431 {
3432 overlay_debugging = ovly_auto;
3433 enable_overlay_breakpoints ();
3434 if (info_verbose)
3435 printf_unfiltered (_("Automatic overlay debugging enabled."));
3436 }
3437
3438 /* Function: overlay_manual_command
3439 A utility command to turn on overlay debugging.
3440 Possibly this should be done via a set/show command. */
3441
3442 static void
3443 overlay_manual_command (char *args, int from_tty)
3444 {
3445 overlay_debugging = ovly_on;
3446 disable_overlay_breakpoints ();
3447 if (info_verbose)
3448 printf_unfiltered (_("Overlay debugging enabled."));
3449 }
3450
3451 /* Function: overlay_off_command
3452 A utility command to turn on overlay debugging.
3453 Possibly this should be done via a set/show command. */
3454
3455 static void
3456 overlay_off_command (char *args, int from_tty)
3457 {
3458 overlay_debugging = ovly_off;
3459 disable_overlay_breakpoints ();
3460 if (info_verbose)
3461 printf_unfiltered (_("Overlay debugging disabled."));
3462 }
3463
3464 static void
3465 overlay_load_command (char *args, int from_tty)
3466 {
3467 if (target_overlay_update)
3468 (*target_overlay_update) (NULL);
3469 else
3470 error (_("This target does not know how to read its overlay state."));
3471 }
3472
3473 /* Function: overlay_command
3474 A place-holder for a mis-typed command */
3475
3476 /* Command list chain containing all defined "overlay" subcommands. */
3477 struct cmd_list_element *overlaylist;
3478
3479 static void
3480 overlay_command (char *args, int from_tty)
3481 {
3482 printf_unfiltered
3483 ("\"overlay\" must be followed by the name of an overlay command.\n");
3484 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3485 }
3486
3487
3488 /* Target Overlays for the "Simplest" overlay manager:
3489
3490 This is GDB's default target overlay layer. It works with the
3491 minimal overlay manager supplied as an example by Cygnus. The
3492 entry point is via a function pointer "target_overlay_update",
3493 so targets that use a different runtime overlay manager can
3494 substitute their own overlay_update function and take over the
3495 function pointer.
3496
3497 The overlay_update function pokes around in the target's data structures
3498 to see what overlays are mapped, and updates GDB's overlay mapping with
3499 this information.
3500
3501 In this simple implementation, the target data structures are as follows:
3502 unsigned _novlys; /# number of overlay sections #/
3503 unsigned _ovly_table[_novlys][4] = {
3504 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3505 {..., ..., ..., ...},
3506 }
3507 unsigned _novly_regions; /# number of overlay regions #/
3508 unsigned _ovly_region_table[_novly_regions][3] = {
3509 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3510 {..., ..., ...},
3511 }
3512 These functions will attempt to update GDB's mappedness state in the
3513 symbol section table, based on the target's mappedness state.
3514
3515 To do this, we keep a cached copy of the target's _ovly_table, and
3516 attempt to detect when the cached copy is invalidated. The main
3517 entry point is "simple_overlay_update(SECT), which looks up SECT in
3518 the cached table and re-reads only the entry for that section from
3519 the target (whenever possible).
3520 */
3521
3522 /* Cached, dynamically allocated copies of the target data structures: */
3523 static unsigned (*cache_ovly_table)[4] = 0;
3524 #if 0
3525 static unsigned (*cache_ovly_region_table)[3] = 0;
3526 #endif
3527 static unsigned cache_novlys = 0;
3528 #if 0
3529 static unsigned cache_novly_regions = 0;
3530 #endif
3531 static CORE_ADDR cache_ovly_table_base = 0;
3532 #if 0
3533 static CORE_ADDR cache_ovly_region_table_base = 0;
3534 #endif
3535 enum ovly_index
3536 {
3537 VMA, SIZE, LMA, MAPPED
3538 };
3539 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3540
3541 /* Throw away the cached copy of _ovly_table */
3542 static void
3543 simple_free_overlay_table (void)
3544 {
3545 if (cache_ovly_table)
3546 xfree (cache_ovly_table);
3547 cache_novlys = 0;
3548 cache_ovly_table = NULL;
3549 cache_ovly_table_base = 0;
3550 }
3551
3552 #if 0
3553 /* Throw away the cached copy of _ovly_region_table */
3554 static void
3555 simple_free_overlay_region_table (void)
3556 {
3557 if (cache_ovly_region_table)
3558 xfree (cache_ovly_region_table);
3559 cache_novly_regions = 0;
3560 cache_ovly_region_table = NULL;
3561 cache_ovly_region_table_base = 0;
3562 }
3563 #endif
3564
3565 /* Read an array of ints from the target into a local buffer.
3566 Convert to host order. int LEN is number of ints */
3567 static void
3568 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3569 {
3570 /* FIXME (alloca): Not safe if array is very large. */
3571 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3572 int i;
3573
3574 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3575 for (i = 0; i < len; i++)
3576 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3577 TARGET_LONG_BYTES);
3578 }
3579
3580 /* Find and grab a copy of the target _ovly_table
3581 (and _novlys, which is needed for the table's size) */
3582 static int
3583 simple_read_overlay_table (void)
3584 {
3585 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3586
3587 simple_free_overlay_table ();
3588 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3589 if (! novlys_msym)
3590 {
3591 error (_("Error reading inferior's overlay table: "
3592 "couldn't find `_novlys' variable\n"
3593 "in inferior. Use `overlay manual' mode."));
3594 return 0;
3595 }
3596
3597 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3598 if (! ovly_table_msym)
3599 {
3600 error (_("Error reading inferior's overlay table: couldn't find "
3601 "`_ovly_table' array\n"
3602 "in inferior. Use `overlay manual' mode."));
3603 return 0;
3604 }
3605
3606 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3607 cache_ovly_table
3608 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3609 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3610 read_target_long_array (cache_ovly_table_base,
3611 (unsigned int *) cache_ovly_table,
3612 cache_novlys * 4);
3613
3614 return 1; /* SUCCESS */
3615 }
3616
3617 #if 0
3618 /* Find and grab a copy of the target _ovly_region_table
3619 (and _novly_regions, which is needed for the table's size) */
3620 static int
3621 simple_read_overlay_region_table (void)
3622 {
3623 struct minimal_symbol *msym;
3624
3625 simple_free_overlay_region_table ();
3626 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3627 if (msym != NULL)
3628 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3629 else
3630 return 0; /* failure */
3631 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3632 if (cache_ovly_region_table != NULL)
3633 {
3634 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3635 if (msym != NULL)
3636 {
3637 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3638 read_target_long_array (cache_ovly_region_table_base,
3639 (unsigned int *) cache_ovly_region_table,
3640 cache_novly_regions * 3);
3641 }
3642 else
3643 return 0; /* failure */
3644 }
3645 else
3646 return 0; /* failure */
3647 return 1; /* SUCCESS */
3648 }
3649 #endif
3650
3651 /* Function: simple_overlay_update_1
3652 A helper function for simple_overlay_update. Assuming a cached copy
3653 of _ovly_table exists, look through it to find an entry whose vma,
3654 lma and size match those of OSECT. Re-read the entry and make sure
3655 it still matches OSECT (else the table may no longer be valid).
3656 Set OSECT's mapped state to match the entry. Return: 1 for
3657 success, 0 for failure. */
3658
3659 static int
3660 simple_overlay_update_1 (struct obj_section *osect)
3661 {
3662 int i, size;
3663 bfd *obfd = osect->objfile->obfd;
3664 asection *bsect = osect->the_bfd_section;
3665
3666 size = bfd_get_section_size (osect->the_bfd_section);
3667 for (i = 0; i < cache_novlys; i++)
3668 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3669 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3670 /* && cache_ovly_table[i][SIZE] == size */ )
3671 {
3672 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3673 (unsigned int *) cache_ovly_table[i], 4);
3674 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3675 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3676 /* && cache_ovly_table[i][SIZE] == size */ )
3677 {
3678 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3679 return 1;
3680 }
3681 else /* Warning! Warning! Target's ovly table has changed! */
3682 return 0;
3683 }
3684 return 0;
3685 }
3686
3687 /* Function: simple_overlay_update
3688 If OSECT is NULL, then update all sections' mapped state
3689 (after re-reading the entire target _ovly_table).
3690 If OSECT is non-NULL, then try to find a matching entry in the
3691 cached ovly_table and update only OSECT's mapped state.
3692 If a cached entry can't be found or the cache isn't valid, then
3693 re-read the entire cache, and go ahead and update all sections. */
3694
3695 static void
3696 simple_overlay_update (struct obj_section *osect)
3697 {
3698 struct objfile *objfile;
3699
3700 /* Were we given an osect to look up? NULL means do all of them. */
3701 if (osect)
3702 /* Have we got a cached copy of the target's overlay table? */
3703 if (cache_ovly_table != NULL)
3704 /* Does its cached location match what's currently in the symtab? */
3705 if (cache_ovly_table_base ==
3706 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3707 /* Then go ahead and try to look up this single section in the cache */
3708 if (simple_overlay_update_1 (osect))
3709 /* Found it! We're done. */
3710 return;
3711
3712 /* Cached table no good: need to read the entire table anew.
3713 Or else we want all the sections, in which case it's actually
3714 more efficient to read the whole table in one block anyway. */
3715
3716 if (! simple_read_overlay_table ())
3717 return;
3718
3719 /* Now may as well update all sections, even if only one was requested. */
3720 ALL_OBJSECTIONS (objfile, osect)
3721 if (section_is_overlay (osect->the_bfd_section))
3722 {
3723 int i, size;
3724 bfd *obfd = osect->objfile->obfd;
3725 asection *bsect = osect->the_bfd_section;
3726
3727 size = bfd_get_section_size (bsect);
3728 for (i = 0; i < cache_novlys; i++)
3729 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3730 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3731 /* && cache_ovly_table[i][SIZE] == size */ )
3732 { /* obj_section matches i'th entry in ovly_table */
3733 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3734 break; /* finished with inner for loop: break out */
3735 }
3736 }
3737 }
3738
3739 /* Set the output sections and output offsets for section SECTP in
3740 ABFD. The relocation code in BFD will read these offsets, so we
3741 need to be sure they're initialized. We map each section to itself,
3742 with no offset; this means that SECTP->vma will be honored. */
3743
3744 static void
3745 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3746 {
3747 sectp->output_section = sectp;
3748 sectp->output_offset = 0;
3749 }
3750
3751 /* Relocate the contents of a debug section SECTP in ABFD. The
3752 contents are stored in BUF if it is non-NULL, or returned in a
3753 malloc'd buffer otherwise.
3754
3755 For some platforms and debug info formats, shared libraries contain
3756 relocations against the debug sections (particularly for DWARF-2;
3757 one affected platform is PowerPC GNU/Linux, although it depends on
3758 the version of the linker in use). Also, ELF object files naturally
3759 have unresolved relocations for their debug sections. We need to apply
3760 the relocations in order to get the locations of symbols correct. */
3761
3762 bfd_byte *
3763 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3764 {
3765 /* We're only interested in debugging sections with relocation
3766 information. */
3767 if ((sectp->flags & SEC_RELOC) == 0)
3768 return NULL;
3769 if ((sectp->flags & SEC_DEBUGGING) == 0)
3770 return NULL;
3771
3772 /* We will handle section offsets properly elsewhere, so relocate as if
3773 all sections begin at 0. */
3774 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3775
3776 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3777 }
3778
3779 void
3780 _initialize_symfile (void)
3781 {
3782 struct cmd_list_element *c;
3783
3784 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3785 Load symbol table from executable file FILE.\n\
3786 The `file' command can also load symbol tables, as well as setting the file\n\
3787 to execute."), &cmdlist);
3788 set_cmd_completer (c, filename_completer);
3789
3790 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3791 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3792 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3793 ADDR is the starting address of the file's text.\n\
3794 The optional arguments are section-name section-address pairs and\n\
3795 should be specified if the data and bss segments are not contiguous\n\
3796 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3797 &cmdlist);
3798 set_cmd_completer (c, filename_completer);
3799
3800 c = add_cmd ("add-shared-symbol-files", class_files,
3801 add_shared_symbol_files_command, _("\
3802 Load the symbols from shared objects in the dynamic linker's link map."),
3803 &cmdlist);
3804 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3805 &cmdlist);
3806
3807 c = add_cmd ("load", class_files, load_command, _("\
3808 Dynamically load FILE into the running program, and record its symbols\n\
3809 for access from GDB.\n\
3810 A load OFFSET may also be given."), &cmdlist);
3811 set_cmd_completer (c, filename_completer);
3812
3813 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3814 &symbol_reloading, _("\
3815 Set dynamic symbol table reloading multiple times in one run."), _("\
3816 Show dynamic symbol table reloading multiple times in one run."), NULL,
3817 NULL,
3818 show_symbol_reloading,
3819 &setlist, &showlist);
3820
3821 add_prefix_cmd ("overlay", class_support, overlay_command,
3822 _("Commands for debugging overlays."), &overlaylist,
3823 "overlay ", 0, &cmdlist);
3824
3825 add_com_alias ("ovly", "overlay", class_alias, 1);
3826 add_com_alias ("ov", "overlay", class_alias, 1);
3827
3828 add_cmd ("map-overlay", class_support, map_overlay_command,
3829 _("Assert that an overlay section is mapped."), &overlaylist);
3830
3831 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3832 _("Assert that an overlay section is unmapped."), &overlaylist);
3833
3834 add_cmd ("list-overlays", class_support, list_overlays_command,
3835 _("List mappings of overlay sections."), &overlaylist);
3836
3837 add_cmd ("manual", class_support, overlay_manual_command,
3838 _("Enable overlay debugging."), &overlaylist);
3839 add_cmd ("off", class_support, overlay_off_command,
3840 _("Disable overlay debugging."), &overlaylist);
3841 add_cmd ("auto", class_support, overlay_auto_command,
3842 _("Enable automatic overlay debugging."), &overlaylist);
3843 add_cmd ("load-target", class_support, overlay_load_command,
3844 _("Read the overlay mapping state from the target."), &overlaylist);
3845
3846 /* Filename extension to source language lookup table: */
3847 init_filename_language_table ();
3848 add_setshow_string_noescape_cmd ("extension-language", class_files,
3849 &ext_args, _("\
3850 Set mapping between filename extension and source language."), _("\
3851 Show mapping between filename extension and source language."), _("\
3852 Usage: set extension-language .foo bar"),
3853 set_ext_lang_command,
3854 show_ext_args,
3855 &setlist, &showlist);
3856
3857 add_info ("extensions", info_ext_lang_command,
3858 _("All filename extensions associated with a source language."));
3859
3860 debug_file_directory = xstrdup (DEBUGDIR);
3861 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3862 &debug_file_directory, _("\
3863 Set the directory where separate debug symbols are searched for."), _("\
3864 Show the directory where separate debug symbols are searched for."), _("\
3865 Separate debug symbols are first searched for in the same\n\
3866 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3867 and lastly at the path of the directory of the binary with\n\
3868 the global debug-file directory prepended."),
3869 NULL,
3870 show_debug_file_directory,
3871 &setlist, &showlist);
3872 }