]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
gdb: move store/extract integer functions to extract-store-integer.{c,h}
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2024 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "arch-utils.h"
23 #include "bfdlink.h"
24 #include "extract-store-integer.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h"
42 #include "gdbsupport/gdb_obstack.h"
43 #include "completer.h"
44 #include "bcache.h"
45 #include "hashtab.h"
46 #include "readline/tilde.h"
47 #include "block.h"
48 #include "observable.h"
49 #include "exec.h"
50 #include "parser-defs.h"
51 #include "varobj.h"
52 #include "elf-bfd.h"
53 #include "solib.h"
54 #include "remote.h"
55 #include "stack.h"
56 #include "gdb_bfd.h"
57 #include "cli/cli-utils.h"
58 #include "gdbsupport/byte-vector.h"
59 #include "gdbsupport/pathstuff.h"
60 #include "gdbsupport/selftest.h"
61 #include "cli/cli-style.h"
62 #include "gdbsupport/forward-scope-exit.h"
63 #include "gdbsupport/buildargv.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 int (*deprecated_ui_load_progress_hook) (const char *section,
73 unsigned long num);
74 void (*deprecated_show_load_progress) (const char *section,
75 unsigned long section_sent,
76 unsigned long section_size,
77 unsigned long total_sent,
78 unsigned long total_size);
79 void (*deprecated_pre_add_symbol_hook) (const char *);
80 void (*deprecated_post_add_symbol_hook) (void);
81
82 using clear_symtab_users_cleanup
83 = FORWARD_SCOPE_EXIT (clear_symtab_users);
84
85 /* Global variables owned by this file. */
86
87 /* See symfile.h. */
88
89 int readnow_symbol_files;
90
91 /* See symfile.h. */
92
93 int readnever_symbol_files;
94
95 /* Functions this file defines. */
96
97 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
98 objfile_flags flags, CORE_ADDR reloff);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void overlay_invalidate_all (void);
103
104 static void simple_free_overlay_table (void);
105
106 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
107 enum bfd_endian);
108
109 static int simple_read_overlay_table (void);
110
111 static int simple_overlay_update_1 (struct obj_section *);
112
113 static void symfile_find_segment_sections (struct objfile *objfile);
114
115 /* List of all available sym_fns. On gdb startup, each object file reader
116 calls add_symtab_fns() to register information on each format it is
117 prepared to read. */
118
119 struct registered_sym_fns
120 {
121 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
122 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
123 {}
124
125 /* BFD flavour that we handle. */
126 enum bfd_flavour sym_flavour;
127
128 /* The "vtable" of symbol functions. */
129 const struct sym_fns *sym_fns;
130 };
131
132 static std::vector<registered_sym_fns> symtab_fns;
133
134 /* Values for "set print symbol-loading". */
135
136 const char print_symbol_loading_off[] = "off";
137 const char print_symbol_loading_brief[] = "brief";
138 const char print_symbol_loading_full[] = "full";
139 static const char *print_symbol_loading_enums[] =
140 {
141 print_symbol_loading_off,
142 print_symbol_loading_brief,
143 print_symbol_loading_full,
144 NULL
145 };
146 static const char *print_symbol_loading = print_symbol_loading_full;
147
148 /* See symfile.h. */
149
150 bool auto_solib_add = true;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 static void
202 find_lowest_section (asection *sect, asection **lowest)
203 {
204 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
205 return;
206 if (!*lowest)
207 *lowest = sect; /* First loadable section */
208 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
209 *lowest = sect; /* A lower loadable section */
210 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
211 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
212 *lowest = sect;
213 }
214
215 /* Build (allocate and populate) a section_addr_info struct from
216 an existing section table. */
217
218 section_addr_info
219 build_section_addr_info_from_section_table (const std::vector<target_section> &table)
220 {
221 section_addr_info sap;
222
223 for (const target_section &stp : table)
224 {
225 struct bfd_section *asect = stp.the_bfd_section;
226 bfd *abfd = asect->owner;
227
228 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
229 && sap.size () < table.size ())
230 sap.emplace_back (stp.addr,
231 bfd_section_name (asect),
232 gdb_bfd_section_index (abfd, asect));
233 }
234
235 return sap;
236 }
237
238 /* Create a section_addr_info from section offsets in ABFD. */
239
240 static section_addr_info
241 build_section_addr_info_from_bfd (bfd *abfd)
242 {
243 struct bfd_section *sec;
244
245 section_addr_info sap;
246 for (sec = abfd->sections; sec != NULL; sec = sec->next)
247 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
248 sap.emplace_back (bfd_section_vma (sec),
249 bfd_section_name (sec),
250 gdb_bfd_section_index (abfd, sec));
251
252 return sap;
253 }
254
255 /* Create a section_addr_info from section offsets in OBJFILE. */
256
257 section_addr_info
258 build_section_addr_info_from_objfile (const struct objfile *objfile)
259 {
260 int i;
261
262 /* Before reread_symbols gets rewritten it is not safe to call:
263 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
264 */
265 section_addr_info sap
266 = build_section_addr_info_from_bfd (objfile->obfd.get ());
267 for (i = 0; i < sap.size (); i++)
268 {
269 int sectindex = sap[i].sectindex;
270
271 sap[i].addr += objfile->section_offsets[sectindex];
272 }
273 return sap;
274 }
275
276 /* Initialize OBJFILE's sect_index_* members. */
277
278 static void
279 init_objfile_sect_indices (struct objfile *objfile)
280 {
281 asection *sect;
282 int i;
283
284 sect = bfd_get_section_by_name (objfile->obfd.get (), ".text");
285 if (sect)
286 objfile->sect_index_text = sect->index;
287
288 sect = bfd_get_section_by_name (objfile->obfd.get (), ".data");
289 if (sect)
290 objfile->sect_index_data = sect->index;
291
292 sect = bfd_get_section_by_name (objfile->obfd.get (), ".bss");
293 if (sect)
294 objfile->sect_index_bss = sect->index;
295
296 sect = bfd_get_section_by_name (objfile->obfd.get (), ".rodata");
297 if (sect)
298 objfile->sect_index_rodata = sect->index;
299
300 /* This is where things get really weird... We MUST have valid
301 indices for the various sect_index_* members or gdb will abort.
302 So if for example, there is no ".text" section, we have to
303 accommodate that. First, check for a file with the standard
304 one or two segments. */
305
306 symfile_find_segment_sections (objfile);
307
308 /* Except when explicitly adding symbol files at some address,
309 section_offsets contains nothing but zeros, so it doesn't matter
310 which slot in section_offsets the individual sect_index_* members
311 index into. So if they are all zero, it is safe to just point
312 all the currently uninitialized indices to the first slot. But
313 beware: if this is the main executable, it may be relocated
314 later, e.g. by the remote qOffsets packet, and then this will
315 be wrong! That's why we try segments first. */
316
317 for (i = 0; i < objfile->section_offsets.size (); i++)
318 {
319 if (objfile->section_offsets[i] != 0)
320 {
321 break;
322 }
323 }
324 if (i == objfile->section_offsets.size ())
325 {
326 if (objfile->sect_index_text == -1)
327 objfile->sect_index_text = 0;
328 if (objfile->sect_index_data == -1)
329 objfile->sect_index_data = 0;
330 if (objfile->sect_index_bss == -1)
331 objfile->sect_index_bss = 0;
332 if (objfile->sect_index_rodata == -1)
333 objfile->sect_index_rodata = 0;
334 }
335 }
336
337 /* Find a unique offset to use for loadable section SECT if
338 the user did not provide an offset. */
339
340 static void
341 place_section (bfd *abfd, asection *sect, section_offsets &offsets,
342 CORE_ADDR &lowest)
343 {
344 CORE_ADDR start_addr;
345 int done;
346 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
347
348 /* We are only interested in allocated sections. */
349 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
350 return;
351
352 /* If the user specified an offset, honor it. */
353 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
354 return;
355
356 /* Otherwise, let's try to find a place for the section. */
357 start_addr = (lowest + align - 1) & -align;
358
359 do {
360 asection *cur_sec;
361
362 done = 1;
363
364 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
365 {
366 int indx = cur_sec->index;
367
368 /* We don't need to compare against ourself. */
369 if (cur_sec == sect)
370 continue;
371
372 /* We can only conflict with allocated sections. */
373 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
374 continue;
375
376 /* If the section offset is 0, either the section has not been placed
377 yet, or it was the lowest section placed (in which case LOWEST
378 will be past its end). */
379 if (offsets[indx] == 0)
380 continue;
381
382 /* If this section would overlap us, then we must move up. */
383 if (start_addr + bfd_section_size (sect) > offsets[indx]
384 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
385 {
386 start_addr = offsets[indx] + bfd_section_size (cur_sec);
387 start_addr = (start_addr + align - 1) & -align;
388 done = 0;
389 break;
390 }
391
392 /* Otherwise, we appear to be OK. So far. */
393 }
394 }
395 while (!done);
396
397 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
398 lowest = start_addr + bfd_section_size (sect);
399 }
400
401 /* Store section_addr_info as prepared (made relative and with SECTINDEX
402 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
403
404 void
405 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
406 const section_addr_info &addrs)
407 {
408 int i;
409
410 section_offsets.assign (section_offsets.size (), 0);
411
412 /* Now calculate offsets for section that were specified by the caller. */
413 for (i = 0; i < addrs.size (); i++)
414 {
415 const struct other_sections *osp;
416
417 osp = &addrs[i];
418 if (osp->sectindex == -1)
419 continue;
420
421 /* Record all sections in offsets. */
422 /* The section_offsets in the objfile are here filled in using
423 the BFD index. */
424 section_offsets[osp->sectindex] = osp->addr;
425 }
426 }
427
428 /* Transform section name S for a name comparison. prelink can split section
429 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
430 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
431 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
432 (`.sbss') section has invalid (increased) virtual address. */
433
434 static const char *
435 addr_section_name (const char *s)
436 {
437 if (strcmp (s, ".dynbss") == 0)
438 return ".bss";
439 if (strcmp (s, ".sdynbss") == 0)
440 return ".sbss";
441
442 return s;
443 }
444
445 /* std::sort comparator for addrs_section_sort. Sort entries in
446 ascending order by their (name, sectindex) pair. sectindex makes
447 the sort by name stable. */
448
449 static bool
450 addrs_section_compar (const struct other_sections *a,
451 const struct other_sections *b)
452 {
453 int retval;
454
455 retval = strcmp (addr_section_name (a->name.c_str ()),
456 addr_section_name (b->name.c_str ()));
457 if (retval != 0)
458 return retval < 0;
459
460 return a->sectindex < b->sectindex;
461 }
462
463 /* Provide sorted array of pointers to sections of ADDRS. */
464
465 static std::vector<const struct other_sections *>
466 addrs_section_sort (const section_addr_info &addrs)
467 {
468 int i;
469
470 std::vector<const struct other_sections *> array (addrs.size ());
471 for (i = 0; i < addrs.size (); i++)
472 array[i] = &addrs[i];
473
474 std::sort (array.begin (), array.end (), addrs_section_compar);
475
476 return array;
477 }
478
479 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
480 also SECTINDEXes specific to ABFD there. This function can be used to
481 rebase ADDRS to start referencing different BFD than before. */
482
483 void
484 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
485 {
486 asection *lower_sect;
487 CORE_ADDR lower_offset;
488 int i;
489
490 /* Find lowest loadable section to be used as starting point for
491 contiguous sections. */
492 lower_sect = NULL;
493 for (asection *iter : gdb_bfd_sections (abfd))
494 find_lowest_section (iter, &lower_sect);
495 if (lower_sect == NULL)
496 {
497 warning (_("no loadable sections found in added symbol-file %s"),
498 bfd_get_filename (abfd));
499 lower_offset = 0;
500 }
501 else
502 lower_offset = bfd_section_vma (lower_sect);
503
504 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
505 in ABFD. Section names are not unique - there can be multiple sections of
506 the same name. Also the sections of the same name do not have to be
507 adjacent to each other. Some sections may be present only in one of the
508 files. Even sections present in both files do not have to be in the same
509 order.
510
511 Use stable sort by name for the sections in both files. Then linearly
512 scan both lists matching as most of the entries as possible. */
513
514 std::vector<const struct other_sections *> addrs_sorted
515 = addrs_section_sort (*addrs);
516
517 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
518 std::vector<const struct other_sections *> abfd_addrs_sorted
519 = addrs_section_sort (abfd_addrs);
520
521 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
522 ABFD_ADDRS_SORTED. */
523
524 std::vector<const struct other_sections *>
525 addrs_to_abfd_addrs (addrs->size (), nullptr);
526
527 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
528 = abfd_addrs_sorted.begin ();
529 for (const other_sections *sect : addrs_sorted)
530 {
531 const char *sect_name = addr_section_name (sect->name.c_str ());
532
533 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
534 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
535 sect_name) < 0)
536 abfd_sorted_iter++;
537
538 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
539 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
540 sect_name) == 0)
541 {
542 int index_in_addrs;
543
544 /* Make the found item directly addressable from ADDRS. */
545 index_in_addrs = sect - addrs->data ();
546 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
547 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
548
549 /* Never use the same ABFD entry twice. */
550 abfd_sorted_iter++;
551 }
552 }
553
554 /* Calculate offsets for the loadable sections.
555 FIXME! Sections must be in order of increasing loadable section
556 so that contiguous sections can use the lower-offset!!!
557
558 Adjust offsets if the segments are not contiguous.
559 If the section is contiguous, its offset should be set to
560 the offset of the highest loadable section lower than it
561 (the loadable section directly below it in memory).
562 this_offset = lower_offset = lower_addr - lower_orig_addr */
563
564 for (i = 0; i < addrs->size (); i++)
565 {
566 const struct other_sections *sect = addrs_to_abfd_addrs[i];
567
568 if (sect)
569 {
570 /* This is the index used by BFD. */
571 (*addrs)[i].sectindex = sect->sectindex;
572
573 if ((*addrs)[i].addr != 0)
574 {
575 (*addrs)[i].addr -= sect->addr;
576 lower_offset = (*addrs)[i].addr;
577 }
578 else
579 (*addrs)[i].addr = lower_offset;
580 }
581 else
582 {
583 /* addr_section_name transformation is not used for SECT_NAME. */
584 const std::string &sect_name = (*addrs)[i].name;
585
586 /* This section does not exist in ABFD, which is normally
587 unexpected and we want to issue a warning.
588
589 However, the ELF prelinker does create a few sections which are
590 marked in the main executable as loadable (they are loaded in
591 memory from the DYNAMIC segment) and yet are not present in
592 separate debug info files. This is fine, and should not cause
593 a warning. Shared libraries contain just the section
594 ".gnu.liblist" but it is not marked as loadable there. There is
595 no other way to identify them than by their name as the sections
596 created by prelink have no special flags.
597
598 For the sections `.bss' and `.sbss' see addr_section_name. */
599
600 if (!(sect_name == ".gnu.liblist"
601 || sect_name == ".gnu.conflict"
602 || (sect_name == ".bss"
603 && i > 0
604 && (*addrs)[i - 1].name == ".dynbss"
605 && addrs_to_abfd_addrs[i - 1] != NULL)
606 || (sect_name == ".sbss"
607 && i > 0
608 && (*addrs)[i - 1].name == ".sdynbss"
609 && addrs_to_abfd_addrs[i - 1] != NULL)))
610 warning (_("section %s not found in %s"), sect_name.c_str (),
611 bfd_get_filename (abfd));
612
613 (*addrs)[i].addr = 0;
614 (*addrs)[i].sectindex = -1;
615 }
616 }
617 }
618
619 /* Parse the user's idea of an offset for dynamic linking, into our idea
620 of how to represent it for fast symbol reading. This is the default
621 version of the sym_fns.sym_offsets function for symbol readers that
622 don't need to do anything special. It allocates a section_offsets table
623 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
624
625 void
626 default_symfile_offsets (struct objfile *objfile,
627 const section_addr_info &addrs)
628 {
629 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd.get ()));
630 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
631
632 /* For relocatable files, all loadable sections will start at zero.
633 The zero is meaningless, so try to pick arbitrary addresses such
634 that no loadable sections overlap. This algorithm is quadratic,
635 but the number of sections in a single object file is generally
636 small. */
637 if ((bfd_get_file_flags (objfile->obfd.get ()) & (EXEC_P | DYNAMIC)) == 0)
638 {
639 bfd *abfd = objfile->obfd.get ();
640 asection *cur_sec;
641
642 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
643 /* We do not expect this to happen; just skip this step if the
644 relocatable file has a section with an assigned VMA. */
645 if (bfd_section_vma (cur_sec) != 0)
646 break;
647
648 if (cur_sec == NULL)
649 {
650 section_offsets &offsets = objfile->section_offsets;
651
652 /* Pick non-overlapping offsets for sections the user did not
653 place explicitly. */
654 CORE_ADDR lowest = 0;
655 for (asection *sect : gdb_bfd_sections (objfile->obfd.get ()))
656 place_section (objfile->obfd.get (), sect, objfile->section_offsets,
657 lowest);
658
659 /* Correctly filling in the section offsets is not quite
660 enough. Relocatable files have two properties that
661 (most) shared objects do not:
662
663 - Their debug information will contain relocations. Some
664 shared libraries do also, but many do not, so this can not
665 be assumed.
666
667 - If there are multiple code sections they will be loaded
668 at different relative addresses in memory than they are
669 in the objfile, since all sections in the file will start
670 at address zero.
671
672 Because GDB has very limited ability to map from an
673 address in debug info to the correct code section,
674 it relies on adding SECT_OFF_TEXT to things which might be
675 code. If we clear all the section offsets, and set the
676 section VMAs instead, then symfile_relocate_debug_section
677 will return meaningful debug information pointing at the
678 correct sections.
679
680 GDB has too many different data structures for section
681 addresses - a bfd, objfile, and so_list all have section
682 tables, as does exec_ops. Some of these could probably
683 be eliminated. */
684
685 for (cur_sec = abfd->sections; cur_sec != NULL;
686 cur_sec = cur_sec->next)
687 {
688 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
689 continue;
690
691 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
692 exec_set_section_address (bfd_get_filename (abfd),
693 cur_sec->index,
694 offsets[cur_sec->index]);
695 offsets[cur_sec->index] = 0;
696 }
697 }
698 }
699
700 /* Remember the bfd indexes for the .text, .data, .bss and
701 .rodata sections. */
702 init_objfile_sect_indices (objfile);
703 }
704
705 /* Divide the file into segments, which are individual relocatable units.
706 This is the default version of the sym_fns.sym_segments function for
707 symbol readers that do not have an explicit representation of segments.
708 It assumes that object files do not have segments, and fully linked
709 files have a single segment. */
710
711 symfile_segment_data_up
712 default_symfile_segments (bfd *abfd)
713 {
714 int num_sections, i;
715 asection *sect;
716 CORE_ADDR low, high;
717
718 /* Relocatable files contain enough information to position each
719 loadable section independently; they should not be relocated
720 in segments. */
721 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
722 return NULL;
723
724 /* Make sure there is at least one loadable section in the file. */
725 for (sect = abfd->sections; sect != NULL; sect = sect->next)
726 {
727 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
728 continue;
729
730 break;
731 }
732 if (sect == NULL)
733 return NULL;
734
735 low = bfd_section_vma (sect);
736 high = low + bfd_section_size (sect);
737
738 symfile_segment_data_up data (new symfile_segment_data);
739
740 num_sections = bfd_count_sections (abfd);
741
742 /* All elements are initialized to 0 (map to no segment). */
743 data->segment_info.resize (num_sections);
744
745 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
746 {
747 CORE_ADDR vma;
748
749 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
750 continue;
751
752 vma = bfd_section_vma (sect);
753 if (vma < low)
754 low = vma;
755 if (vma + bfd_section_size (sect) > high)
756 high = vma + bfd_section_size (sect);
757
758 data->segment_info[i] = 1;
759 }
760
761 data->segments.emplace_back (low, high - low);
762
763 return data;
764 }
765
766 /* This is a convenience function to call sym_read for OBJFILE and
767 possibly force the partial symbols to be read. */
768
769 static void
770 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
771 {
772 (*objfile->sf->sym_read) (objfile, add_flags);
773 objfile->per_bfd->minsyms_read = true;
774
775 /* find_separate_debug_file_in_section should be called only if there is
776 single binary with no existing separate debug info file. */
777 if (!objfile->has_partial_symbols ()
778 && objfile->separate_debug_objfile == NULL
779 && objfile->separate_debug_objfile_backlink == NULL)
780 {
781 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
782
783 if (abfd != NULL)
784 {
785 /* find_separate_debug_file_in_section uses the same filename for the
786 virtual section-as-bfd like the bfd filename containing the
787 section. Therefore use also non-canonical name form for the same
788 file containing the section. */
789 symbol_file_add_separate (abfd, bfd_get_filename (abfd.get ()),
790 add_flags | SYMFILE_NOT_FILENAME, objfile);
791 }
792 }
793 }
794
795 /* Initialize entry point information for this objfile. */
796
797 static void
798 init_entry_point_info (struct objfile *objfile)
799 {
800 struct entry_info *ei = &objfile->per_bfd->ei;
801
802 if (ei->initialized)
803 return;
804 ei->initialized = 1;
805
806 /* Save startup file's range of PC addresses to help blockframe.c
807 decide where the bottom of the stack is. */
808
809 if (bfd_get_file_flags (objfile->obfd.get ()) & EXEC_P)
810 {
811 /* Executable file -- record its entry point so we'll recognize
812 the startup file because it contains the entry point. */
813 ei->entry_point = bfd_get_start_address (objfile->obfd.get ());
814 ei->entry_point_p = 1;
815 }
816 else if (bfd_get_file_flags (objfile->obfd.get ()) & DYNAMIC
817 && bfd_get_start_address (objfile->obfd.get ()) != 0)
818 {
819 /* Some shared libraries may have entry points set and be
820 runnable. There's no clear way to indicate this, so just check
821 for values other than zero. */
822 ei->entry_point = bfd_get_start_address (objfile->obfd.get ());
823 ei->entry_point_p = 1;
824 }
825 else
826 {
827 /* Examination of non-executable.o files. Short-circuit this stuff. */
828 ei->entry_point_p = 0;
829 }
830
831 if (ei->entry_point_p)
832 {
833 CORE_ADDR entry_point = ei->entry_point;
834 int found;
835
836 /* Make certain that the address points at real code, and not a
837 function descriptor. */
838 entry_point = gdbarch_convert_from_func_ptr_addr
839 (objfile->arch (), entry_point, current_inferior ()->top_target ());
840
841 /* Remove any ISA markers, so that this matches entries in the
842 symbol table. */
843 ei->entry_point
844 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
845
846 found = 0;
847 for (obj_section *osect : objfile->sections ())
848 {
849 struct bfd_section *sect = osect->the_bfd_section;
850
851 if (entry_point >= bfd_section_vma (sect)
852 && entry_point < (bfd_section_vma (sect)
853 + bfd_section_size (sect)))
854 {
855 ei->the_bfd_section_index
856 = gdb_bfd_section_index (objfile->obfd.get (), sect);
857 found = 1;
858 break;
859 }
860 }
861
862 if (!found)
863 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
864 }
865 }
866
867 /* Process a symbol file, as either the main file or as a dynamically
868 loaded file.
869
870 This function does not set the OBJFILE's entry-point info.
871
872 OBJFILE is where the symbols are to be read from.
873
874 ADDRS is the list of section load addresses. If the user has given
875 an 'add-symbol-file' command, then this is the list of offsets and
876 addresses he or she provided as arguments to the command; or, if
877 we're handling a shared library, these are the actual addresses the
878 sections are loaded at, according to the inferior's dynamic linker
879 (as gleaned by GDB's shared library code). We convert each address
880 into an offset from the section VMA's as it appears in the object
881 file, and then call the file's sym_offsets function to convert this
882 into a format-specific offset table --- a `section_offsets'.
883 The sectindex field is used to control the ordering of sections
884 with the same name. Upon return, it is updated to contain the
885 corresponding BFD section index, or -1 if the section was not found.
886
887 ADD_FLAGS encodes verbosity level, whether this is main symbol or
888 an extra symbol file such as dynamically loaded code, and whether
889 breakpoint reset should be deferred. */
890
891 static void
892 syms_from_objfile_1 (struct objfile *objfile,
893 section_addr_info *addrs,
894 symfile_add_flags add_flags)
895 {
896 section_addr_info local_addr;
897 const int mainline = add_flags & SYMFILE_MAINLINE;
898
899 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd.get ()));
900 objfile->qf.clear ();
901
902 if (objfile->sf == NULL)
903 {
904 /* No symbols to load, but we still need to make sure
905 that the section_offsets table is allocated. */
906 int num_sections = gdb_bfd_count_sections (objfile->obfd.get ());
907
908 objfile->section_offsets.assign (num_sections, 0);
909 return;
910 }
911
912 /* Make sure that partially constructed symbol tables will be cleaned up
913 if an error occurs during symbol reading. */
914 std::optional<clear_symtab_users_cleanup> defer_clear_users;
915
916 objfile_up objfile_holder (objfile);
917
918 /* If ADDRS is NULL, put together a dummy address list.
919 We now establish the convention that an addr of zero means
920 no load address was specified. */
921 if (! addrs)
922 addrs = &local_addr;
923
924 if (mainline)
925 {
926 /* We will modify the main symbol table, make sure that all its users
927 will be cleaned up if an error occurs during symbol reading. */
928 defer_clear_users.emplace ((symfile_add_flag) 0);
929
930 /* Since no error yet, throw away the old symbol table. */
931
932 if (current_program_space->symfile_object_file != NULL)
933 {
934 current_program_space->symfile_object_file->unlink ();
935 gdb_assert (current_program_space->symfile_object_file == NULL);
936 }
937
938 /* Currently we keep symbols from the add-symbol-file command.
939 If the user wants to get rid of them, they should do "symbol-file"
940 without arguments first. Not sure this is the best behavior
941 (PR 2207). */
942
943 (*objfile->sf->sym_new_init) (objfile);
944 }
945
946 /* Convert addr into an offset rather than an absolute address.
947 We find the lowest address of a loaded segment in the objfile,
948 and assume that <addr> is where that got loaded.
949
950 We no longer warn if the lowest section is not a text segment (as
951 happens for the PA64 port. */
952 if (addrs->size () > 0)
953 addr_info_make_relative (addrs, objfile->obfd.get ());
954
955 /* Initialize symbol reading routines for this objfile, allow complaints to
956 appear for this new file, and record how verbose to be, then do the
957 initial symbol reading for this file. */
958
959 (*objfile->sf->sym_init) (objfile);
960 clear_complaints ();
961
962 (*objfile->sf->sym_offsets) (objfile, *addrs);
963
964 read_symbols (objfile, add_flags);
965
966 /* Discard cleanups as symbol reading was successful. */
967
968 objfile_holder.release ();
969 if (defer_clear_users)
970 defer_clear_users->release ();
971 }
972
973 /* Same as syms_from_objfile_1, but also initializes the objfile
974 entry-point info. */
975
976 static void
977 syms_from_objfile (struct objfile *objfile,
978 section_addr_info *addrs,
979 symfile_add_flags add_flags)
980 {
981 syms_from_objfile_1 (objfile, addrs, add_flags);
982 init_entry_point_info (objfile);
983 }
984
985 /* Perform required actions after either reading in the initial
986 symbols for a new objfile, or mapping in the symbols from a reusable
987 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
988
989 static void
990 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
991 {
992 /* If this is the main symbol file we have to clean up all users of the
993 old main symbol file. Otherwise it is sufficient to fixup all the
994 breakpoints that may have been redefined by this symbol file. */
995 if (add_flags & SYMFILE_MAINLINE)
996 {
997 /* OK, make it the "real" symbol file. */
998 current_program_space->symfile_object_file = objfile;
999
1000 clear_symtab_users (add_flags);
1001 }
1002 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1003 {
1004 breakpoint_re_set ();
1005 }
1006
1007 /* We're done reading the symbol file; finish off complaints. */
1008 clear_complaints ();
1009 }
1010
1011 /* Process a symbol file, as either the main file or as a dynamically
1012 loaded file.
1013
1014 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1015 A new reference is acquired by this function.
1016
1017 For NAME description see the objfile constructor.
1018
1019 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1020 extra, such as dynamically loaded code, and what to do with breakpoints.
1021
1022 ADDRS is as described for syms_from_objfile_1, above.
1023 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1024
1025 PARENT is the original objfile if ABFD is a separate debug info file.
1026 Otherwise PARENT is NULL.
1027
1028 Upon success, returns a pointer to the objfile that was added.
1029 Upon failure, jumps back to command level (never returns). */
1030
1031 static struct objfile *
1032 symbol_file_add_with_addrs (const gdb_bfd_ref_ptr &abfd, const char *name,
1033 symfile_add_flags add_flags,
1034 section_addr_info *addrs,
1035 objfile_flags flags, struct objfile *parent)
1036 {
1037 struct objfile *objfile;
1038 const int from_tty = add_flags & SYMFILE_VERBOSE;
1039 const int mainline = add_flags & SYMFILE_MAINLINE;
1040 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1041 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1042 && (readnow_symbol_files
1043 || (add_flags & SYMFILE_NO_READ) == 0));
1044
1045 if (readnow_symbol_files)
1046 {
1047 flags |= OBJF_READNOW;
1048 add_flags &= ~SYMFILE_NO_READ;
1049 }
1050 else if (readnever_symbol_files
1051 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1052 {
1053 flags |= OBJF_READNEVER;
1054 add_flags |= SYMFILE_NO_READ;
1055 }
1056 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1057 flags |= OBJF_NOT_FILENAME;
1058
1059 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1060 interactively wiping out any existing symbols. */
1061
1062 if (from_tty
1063 && (always_confirm
1064 || ((have_full_symbols () || have_partial_symbols ())
1065 && mainline))
1066 && !query (_("Load new symbol table from \"%s\"? "), name))
1067 error (_("Not confirmed."));
1068
1069 if (mainline)
1070 flags |= OBJF_MAINLINE;
1071 objfile = objfile::make (abfd, name, flags, parent);
1072
1073 /* We either created a new mapped symbol table, mapped an existing
1074 symbol table file which has not had initial symbol reading
1075 performed, or need to read an unmapped symbol table. */
1076 if (should_print)
1077 {
1078 if (deprecated_pre_add_symbol_hook)
1079 deprecated_pre_add_symbol_hook (name);
1080 else
1081 gdb_printf (_("Reading symbols from %ps...\n"),
1082 styled_string (file_name_style.style (), name));
1083 }
1084 syms_from_objfile (objfile, addrs, add_flags);
1085
1086 /* We now have at least a partial symbol table. Check to see if the
1087 user requested that all symbols be read on initial access via either
1088 the gdb startup command line or on a per symbol file basis. Expand
1089 all partial symbol tables for this objfile if so. */
1090
1091 if ((flags & OBJF_READNOW))
1092 {
1093 if (should_print)
1094 gdb_printf (_("Expanding full symbols from %ps...\n"),
1095 styled_string (file_name_style.style (), name));
1096
1097 objfile->expand_all_symtabs ();
1098 }
1099
1100 /* Note that we only print a message if we have no symbols and have
1101 no separate debug file. If there is a separate debug file which
1102 does not have symbols, we'll have emitted this message for that
1103 file, and so printing it twice is just redundant. */
1104 if (should_print && !objfile_has_symbols (objfile)
1105 && objfile->separate_debug_objfile == nullptr)
1106 gdb_printf (_("(No debugging symbols found in %ps)\n"),
1107 styled_string (file_name_style.style (), name));
1108
1109 if (should_print)
1110 {
1111 if (deprecated_post_add_symbol_hook)
1112 deprecated_post_add_symbol_hook ();
1113 }
1114
1115 /* We print some messages regardless of whether 'from_tty ||
1116 info_verbose' is true, so make sure they go out at the right
1117 time. */
1118 gdb_flush (gdb_stdout);
1119
1120 if (objfile->sf != nullptr)
1121 finish_new_objfile (objfile, add_flags);
1122
1123 gdb::observers::new_objfile.notify (objfile);
1124
1125 return objfile;
1126 }
1127
1128 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1129 see the objfile constructor. */
1130
1131 void
1132 symbol_file_add_separate (const gdb_bfd_ref_ptr &bfd, const char *name,
1133 symfile_add_flags symfile_flags,
1134 struct objfile *objfile)
1135 {
1136 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1137 because sections of BFD may not match sections of OBJFILE and because
1138 vma may have been modified by tools such as prelink. */
1139 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1140
1141 symbol_file_add_with_addrs
1142 (bfd, name, symfile_flags, &sap,
1143 objfile->flags & (OBJF_SHARED | OBJF_READNOW
1144 | OBJF_USERLOADED | OBJF_MAINLINE),
1145 objfile);
1146 }
1147
1148 /* Process the symbol file ABFD, as either the main file or as a
1149 dynamically loaded file.
1150 See symbol_file_add_with_addrs's comments for details. */
1151
1152 struct objfile *
1153 symbol_file_add_from_bfd (const gdb_bfd_ref_ptr &abfd, const char *name,
1154 symfile_add_flags add_flags,
1155 section_addr_info *addrs,
1156 objfile_flags flags, struct objfile *parent)
1157 {
1158 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1159 parent);
1160 }
1161
1162 /* Process a symbol file, as either the main file or as a dynamically
1163 loaded file. See symbol_file_add_with_addrs's comments for details. */
1164
1165 struct objfile *
1166 symbol_file_add (const char *name, symfile_add_flags add_flags,
1167 section_addr_info *addrs, objfile_flags flags)
1168 {
1169 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1170
1171 return symbol_file_add_from_bfd (bfd, name, add_flags, addrs,
1172 flags, NULL);
1173 }
1174
1175 /* Call symbol_file_add() with default values and update whatever is
1176 affected by the loading of a new main().
1177 Used when the file is supplied in the gdb command line
1178 and by some targets with special loading requirements.
1179 The auxiliary function, symbol_file_add_main_1(), has the flags
1180 argument for the switches that can only be specified in the symbol_file
1181 command itself. */
1182
1183 void
1184 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1185 {
1186 symbol_file_add_main_1 (args, add_flags, 0, 0);
1187 }
1188
1189 static void
1190 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1191 objfile_flags flags, CORE_ADDR reloff)
1192 {
1193 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1194
1195 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1196 if (reloff != 0)
1197 objfile_rebase (objfile, reloff);
1198
1199 /* Getting new symbols may change our opinion about
1200 what is frameless. */
1201 reinit_frame_cache ();
1202
1203 if ((add_flags & SYMFILE_NO_READ) == 0)
1204 set_initial_language ();
1205 }
1206
1207 void
1208 symbol_file_clear (int from_tty)
1209 {
1210 if ((have_full_symbols () || have_partial_symbols ())
1211 && from_tty
1212 && (current_program_space->symfile_object_file
1213 ? !query (_("Discard symbol table from `%s'? "),
1214 objfile_name (current_program_space->symfile_object_file))
1215 : !query (_("Discard symbol table? "))))
1216 error (_("Not confirmed."));
1217
1218 /* solib descriptors may have handles to objfiles. Wipe them before their
1219 objfiles get stale by free_all_objfiles. */
1220 no_shared_libraries (NULL, from_tty);
1221
1222 current_program_space->free_all_objfiles ();
1223
1224 clear_symtab_users (0);
1225
1226 gdb_assert (current_program_space->symfile_object_file == NULL);
1227 if (from_tty)
1228 gdb_printf (_("No symbol file now.\n"));
1229 }
1230
1231 /* See symfile.h. */
1232
1233 bool separate_debug_file_debug = false;
1234
1235 static int
1236 separate_debug_file_exists (const std::string &name, unsigned long crc,
1237 struct objfile *parent_objfile,
1238 deferred_warnings *warnings)
1239 {
1240 unsigned long file_crc;
1241 int file_crc_p;
1242 struct stat parent_stat, abfd_stat;
1243 int verified_as_different;
1244
1245 /* Find a separate debug info file as if symbols would be present in
1246 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1247 section can contain just the basename of PARENT_OBJFILE without any
1248 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1249 the separate debug infos with the same basename can exist. */
1250
1251 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1252 return 0;
1253
1254 if (separate_debug_file_debug)
1255 {
1256 gdb_printf (gdb_stdlog, _(" Trying %s..."), name.c_str ());
1257 gdb_flush (gdb_stdlog);
1258 }
1259
1260 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1261
1262 if (abfd == NULL)
1263 {
1264 if (separate_debug_file_debug)
1265 gdb_printf (gdb_stdlog, _(" no, unable to open.\n"));
1266
1267 return 0;
1268 }
1269
1270 /* Verify symlinks were not the cause of filename_cmp name difference above.
1271
1272 Some operating systems, e.g. Windows, do not provide a meaningful
1273 st_ino; they always set it to zero. (Windows does provide a
1274 meaningful st_dev.) Files accessed from gdbservers that do not
1275 support the vFile:fstat packet will also have st_ino set to zero.
1276 Do not indicate a duplicate library in either case. While there
1277 is no guarantee that a system that provides meaningful inode
1278 numbers will never set st_ino to zero, this is merely an
1279 optimization, so we do not need to worry about false negatives. */
1280
1281 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1282 && abfd_stat.st_ino != 0
1283 && bfd_stat (parent_objfile->obfd.get (), &parent_stat) == 0)
1284 {
1285 if (abfd_stat.st_dev == parent_stat.st_dev
1286 && abfd_stat.st_ino == parent_stat.st_ino)
1287 {
1288 if (separate_debug_file_debug)
1289 gdb_printf (gdb_stdlog,
1290 _(" no, same file as the objfile.\n"));
1291
1292 return 0;
1293 }
1294 verified_as_different = 1;
1295 }
1296 else
1297 verified_as_different = 0;
1298
1299 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1300
1301 if (!file_crc_p)
1302 {
1303 if (separate_debug_file_debug)
1304 gdb_printf (gdb_stdlog, _(" no, error computing CRC.\n"));
1305
1306 return 0;
1307 }
1308
1309 if (crc != file_crc)
1310 {
1311 unsigned long parent_crc;
1312
1313 /* If the files could not be verified as different with
1314 bfd_stat then we need to calculate the parent's CRC
1315 to verify whether the files are different or not. */
1316
1317 if (!verified_as_different)
1318 {
1319 if (!gdb_bfd_crc (parent_objfile->obfd.get (), &parent_crc))
1320 {
1321 if (separate_debug_file_debug)
1322 gdb_printf (gdb_stdlog,
1323 _(" no, error computing CRC.\n"));
1324
1325 return 0;
1326 }
1327 }
1328
1329 if (verified_as_different || parent_crc != file_crc)
1330 {
1331 if (separate_debug_file_debug)
1332 gdb_printf (gdb_stdlog, "the debug information found in \"%s\""
1333 " does not match \"%s\" (CRC mismatch).\n",
1334 name.c_str (), objfile_name (parent_objfile));
1335 warnings->warn (_("the debug information found in \"%ps\""
1336 " does not match \"%ps\" (CRC mismatch)."),
1337 styled_string (file_name_style.style (),
1338 name.c_str ()),
1339 styled_string (file_name_style.style (),
1340 objfile_name (parent_objfile)));
1341 }
1342
1343 return 0;
1344 }
1345
1346 if (separate_debug_file_debug)
1347 gdb_printf (gdb_stdlog, _(" yes!\n"));
1348
1349 return 1;
1350 }
1351
1352 std::string debug_file_directory;
1353 static void
1354 show_debug_file_directory (struct ui_file *file, int from_tty,
1355 struct cmd_list_element *c, const char *value)
1356 {
1357 gdb_printf (file,
1358 _("The directory where separate debug "
1359 "symbols are searched for is \"%s\".\n"),
1360 value);
1361 }
1362
1363 #if ! defined (DEBUG_SUBDIRECTORY)
1364 #define DEBUG_SUBDIRECTORY ".debug"
1365 #endif
1366
1367 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1368 where the original file resides (may not be the same as
1369 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1370 looking for. CANON_DIR is the "realpath" form of DIR.
1371 DIR must contain a trailing '/'.
1372 Returns the path of the file with separate debug info, or an empty
1373 string.
1374
1375 Any warnings generated as part of the lookup process are added to
1376 WARNINGS. If some other mechanism can be used to lookup the debug
1377 information then the warning will not be shown, however, if GDB fails to
1378 find suitable debug information using any approach, then any warnings
1379 will be printed. */
1380
1381 static std::string
1382 find_separate_debug_file (const char *dir,
1383 const char *canon_dir,
1384 const char *debuglink,
1385 unsigned long crc32, struct objfile *objfile,
1386 deferred_warnings *warnings)
1387 {
1388 if (separate_debug_file_debug)
1389 gdb_printf (gdb_stdlog,
1390 _("\nLooking for separate debug info (debug link) for "
1391 "%s\n"), objfile_name (objfile));
1392
1393 /* First try in the same directory as the original file. */
1394 std::string debugfile = dir;
1395 debugfile += debuglink;
1396
1397 if (separate_debug_file_exists (debugfile, crc32, objfile, warnings))
1398 return debugfile;
1399
1400 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1401 debugfile = dir;
1402 debugfile += DEBUG_SUBDIRECTORY;
1403 debugfile += "/";
1404 debugfile += debuglink;
1405
1406 if (separate_debug_file_exists (debugfile, crc32, objfile, warnings))
1407 return debugfile;
1408
1409 /* Then try in the global debugfile directories.
1410
1411 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1412 cause "/..." lookups. */
1413
1414 bool target_prefix = is_target_filename (dir);
1415 const char *dir_notarget
1416 = target_prefix ? dir + strlen (TARGET_SYSROOT_PREFIX) : dir;
1417 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1418 = dirnames_to_char_ptr_vec (debug_file_directory.c_str ());
1419 gdb::unique_xmalloc_ptr<char> canon_sysroot
1420 = gdb_realpath (gdb_sysroot.c_str ());
1421
1422 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1423 convert the drive letter into a one-letter directory, so that the
1424 file name resulting from splicing below will be valid.
1425
1426 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1427 There are various remote-debugging scenarios where such a
1428 transformation of the drive letter might be required when GDB runs
1429 on a Posix host, see
1430
1431 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1432
1433 If some of those scenarios need to be supported, we will need to
1434 use a different condition for HAS_DRIVE_SPEC and a different macro
1435 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1436 std::string drive;
1437 if (HAS_DRIVE_SPEC (dir_notarget))
1438 {
1439 drive = dir_notarget[0];
1440 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1441 }
1442
1443 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1444 {
1445 debugfile = target_prefix ? TARGET_SYSROOT_PREFIX : "";
1446 debugfile += debugdir;
1447 debugfile += "/";
1448 debugfile += drive;
1449 debugfile += dir_notarget;
1450 debugfile += debuglink;
1451
1452 if (separate_debug_file_exists (debugfile, crc32, objfile, warnings))
1453 return debugfile;
1454
1455 const char *base_path = NULL;
1456 if (canon_dir != NULL)
1457 {
1458 if (canon_sysroot.get () != NULL)
1459 base_path = child_path (canon_sysroot.get (), canon_dir);
1460 else
1461 base_path = child_path (gdb_sysroot.c_str (), canon_dir);
1462 }
1463 if (base_path != NULL)
1464 {
1465 /* If the file is in the sysroot, try using its base path in
1466 the global debugfile directory. */
1467 debugfile = target_prefix ? TARGET_SYSROOT_PREFIX : "";
1468 debugfile += debugdir;
1469 debugfile += "/";
1470 debugfile += base_path;
1471 debugfile += "/";
1472 debugfile += debuglink;
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile, warnings))
1475 return debugfile;
1476
1477 /* If the file is in the sysroot, try using its base path in
1478 the sysroot's global debugfile directory. GDB_SYSROOT
1479 might refer to a target: path; we strip the "target:"
1480 prefix -- but if that would yield the empty string, we
1481 don't bother at all, because that would just give the
1482 same result as above. */
1483 if (gdb_sysroot != TARGET_SYSROOT_PREFIX)
1484 {
1485 debugfile = target_prefix ? TARGET_SYSROOT_PREFIX : "";
1486 if (is_target_filename (gdb_sysroot))
1487 {
1488 std::string root
1489 = gdb_sysroot.substr (strlen (TARGET_SYSROOT_PREFIX));
1490 gdb_assert (!root.empty ());
1491 debugfile += root;
1492 }
1493 else
1494 debugfile += gdb_sysroot;
1495 debugfile += debugdir;
1496 debugfile += "/";
1497 debugfile += base_path;
1498 debugfile += "/";
1499 debugfile += debuglink;
1500
1501 if (separate_debug_file_exists (debugfile, crc32, objfile,
1502 warnings))
1503 return debugfile;
1504 }
1505 }
1506 }
1507
1508 return std::string ();
1509 }
1510
1511 /* Modify PATH to contain only "[/]directory/" part of PATH.
1512 If there were no directory separators in PATH, PATH will be empty
1513 string on return. */
1514
1515 static void
1516 terminate_after_last_dir_separator (char *path)
1517 {
1518 int i;
1519
1520 /* Strip off the final filename part, leaving the directory name,
1521 followed by a slash. The directory can be relative or absolute. */
1522 for (i = strlen(path) - 1; i >= 0; i--)
1523 if (IS_DIR_SEPARATOR (path[i]))
1524 break;
1525
1526 /* If I is -1 then no directory is present there and DIR will be "". */
1527 path[i + 1] = '\0';
1528 }
1529
1530 /* See symtab.h. */
1531
1532 std::string
1533 find_separate_debug_file_by_debuglink
1534 (struct objfile *objfile, deferred_warnings *warnings)
1535 {
1536 uint32_t crc32;
1537
1538 gdb::unique_xmalloc_ptr<char> debuglink
1539 (bfd_get_debug_link_info (objfile->obfd.get (), &crc32));
1540
1541 if (debuglink == NULL)
1542 {
1543 /* There's no separate debug info, hence there's no way we could
1544 load it => no warning. */
1545 return std::string ();
1546 }
1547
1548 std::string dir = objfile_name (objfile);
1549 terminate_after_last_dir_separator (&dir[0]);
1550 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1551
1552 std::string debugfile
1553 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1554 debuglink.get (), crc32, objfile,
1555 warnings);
1556
1557 if (debugfile.empty ())
1558 {
1559 /* For PR gdb/9538, try again with realpath (if different from the
1560 original). */
1561
1562 struct stat st_buf;
1563
1564 if (lstat (objfile_name (objfile), &st_buf) == 0
1565 && S_ISLNK (st_buf.st_mode))
1566 {
1567 gdb::unique_xmalloc_ptr<char> symlink_dir
1568 (lrealpath (objfile_name (objfile)));
1569 if (symlink_dir != NULL)
1570 {
1571 terminate_after_last_dir_separator (symlink_dir.get ());
1572 if (dir != symlink_dir.get ())
1573 {
1574 /* Different directory, so try using it. */
1575 debugfile = find_separate_debug_file (symlink_dir.get (),
1576 symlink_dir.get (),
1577 debuglink.get (),
1578 crc32,
1579 objfile,
1580 warnings);
1581 }
1582 }
1583 }
1584 }
1585
1586 return debugfile;
1587 }
1588
1589 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1590 simultaneously. */
1591
1592 static void
1593 validate_readnow_readnever (objfile_flags flags)
1594 {
1595 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1596 error (_("-readnow and -readnever cannot be used simultaneously"));
1597 }
1598
1599 /* This is the symbol-file command. Read the file, analyze its
1600 symbols, and add a struct symtab to a symtab list. The syntax of
1601 the command is rather bizarre:
1602
1603 1. The function buildargv implements various quoting conventions
1604 which are undocumented and have little or nothing in common with
1605 the way things are quoted (or not quoted) elsewhere in GDB.
1606
1607 2. Options are used, which are not generally used in GDB (perhaps
1608 "set mapped on", "set readnow on" would be better)
1609
1610 3. The order of options matters, which is contrary to GNU
1611 conventions (because it is confusing and inconvenient). */
1612
1613 void
1614 symbol_file_command (const char *args, int from_tty)
1615 {
1616 dont_repeat ();
1617
1618 if (args == NULL)
1619 {
1620 symbol_file_clear (from_tty);
1621 }
1622 else
1623 {
1624 objfile_flags flags = OBJF_USERLOADED;
1625 symfile_add_flags add_flags = 0;
1626 char *name = NULL;
1627 bool stop_processing_options = false;
1628 CORE_ADDR offset = 0;
1629 int idx;
1630 char *arg;
1631
1632 if (from_tty)
1633 add_flags |= SYMFILE_VERBOSE;
1634
1635 gdb_argv built_argv (args);
1636 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1637 {
1638 if (stop_processing_options || *arg != '-')
1639 {
1640 if (name == NULL)
1641 name = arg;
1642 else
1643 error (_("Unrecognized argument \"%s\""), arg);
1644 }
1645 else if (strcmp (arg, "-readnow") == 0)
1646 flags |= OBJF_READNOW;
1647 else if (strcmp (arg, "-readnever") == 0)
1648 flags |= OBJF_READNEVER;
1649 else if (strcmp (arg, "-o") == 0)
1650 {
1651 arg = built_argv[++idx];
1652 if (arg == NULL)
1653 error (_("Missing argument to -o"));
1654
1655 offset = parse_and_eval_address (arg);
1656 }
1657 else if (strcmp (arg, "--") == 0)
1658 stop_processing_options = true;
1659 else
1660 error (_("Unrecognized argument \"%s\""), arg);
1661 }
1662
1663 if (name == NULL)
1664 error (_("no symbol file name was specified"));
1665
1666 validate_readnow_readnever (flags);
1667
1668 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1669 (Position Independent Executable) main symbol file will only be
1670 computed by the solib_create_inferior_hook below. Without it,
1671 breakpoint_re_set would fail to insert the breakpoints with the zero
1672 displacement. */
1673 add_flags |= SYMFILE_DEFER_BP_RESET;
1674
1675 symbol_file_add_main_1 (name, add_flags, flags, offset);
1676
1677 solib_create_inferior_hook (from_tty);
1678
1679 /* Now it's safe to re-add the breakpoints. */
1680 breakpoint_re_set ();
1681
1682 /* Also, it's safe to re-add varobjs. */
1683 varobj_re_set ();
1684 }
1685 }
1686
1687 /* Lazily set the initial language. */
1688
1689 static void
1690 set_initial_language_callback ()
1691 {
1692 enum language lang = main_language ();
1693 /* Make C the default language. */
1694 enum language default_lang = language_c;
1695
1696 if (lang == language_unknown)
1697 {
1698 const char *name = main_name ();
1699 struct symbol *sym
1700 = lookup_symbol_in_language (name, nullptr, SEARCH_FUNCTION_DOMAIN,
1701 default_lang, nullptr).symbol;
1702
1703 if (sym != NULL)
1704 lang = sym->language ();
1705 }
1706
1707 if (lang == language_unknown)
1708 {
1709 lang = default_lang;
1710 }
1711
1712 set_language (lang);
1713 expected_language = current_language; /* Don't warn the user. */
1714 }
1715
1716 /* Set the initial language. */
1717
1718 void
1719 set_initial_language (void)
1720 {
1721 if (language_mode == language_mode_manual)
1722 return;
1723 lazily_set_language (set_initial_language_callback);
1724 }
1725
1726 /* Open the file specified by NAME and hand it off to BFD for
1727 preliminary analysis. Return a newly initialized bfd *, which
1728 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1729 absolute). In case of trouble, error() is called. */
1730
1731 gdb_bfd_ref_ptr
1732 symfile_bfd_open (const char *name)
1733 {
1734 int desc = -1;
1735
1736 gdb::unique_xmalloc_ptr<char> absolute_name;
1737 if (!is_target_filename (name))
1738 {
1739 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1740
1741 /* Look down path for it, allocate 2nd new malloc'd copy. */
1742 desc = openp (getenv ("PATH"),
1743 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1744 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1745 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1746 if (desc < 0)
1747 {
1748 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1749
1750 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1751 desc = openp (getenv ("PATH"),
1752 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1753 exename, O_RDONLY | O_BINARY, &absolute_name);
1754 }
1755 #endif
1756 if (desc < 0)
1757 perror_with_name (expanded_name.get ());
1758
1759 name = absolute_name.get ();
1760 }
1761
1762 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1763 if (sym_bfd == NULL)
1764 error (_("`%s': can't open to read symbols: %s."), name,
1765 bfd_errmsg (bfd_get_error ()));
1766
1767 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1768 error (_("`%s': can't read symbols: %s."), name,
1769 bfd_errmsg (bfd_get_error ()));
1770
1771 return sym_bfd;
1772 }
1773
1774 /* See symfile.h. */
1775
1776 gdb_bfd_ref_ptr
1777 symfile_bfd_open_no_error (const char *name) noexcept
1778 {
1779 try
1780 {
1781 return symfile_bfd_open (name);
1782 }
1783 catch (const gdb_exception_error &err)
1784 {
1785 warning ("%s", err.what ());
1786 }
1787
1788 return nullptr;
1789 }
1790
1791 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1792 the section was not found. */
1793
1794 int
1795 get_section_index (struct objfile *objfile, const char *section_name)
1796 {
1797 asection *sect = bfd_get_section_by_name (objfile->obfd.get (), section_name);
1798
1799 if (sect)
1800 return sect->index;
1801 else
1802 return -1;
1803 }
1804
1805 /* Link SF into the global symtab_fns list.
1806 FLAVOUR is the file format that SF handles.
1807 Called on startup by the _initialize routine in each object file format
1808 reader, to register information about each format the reader is prepared
1809 to handle. */
1810
1811 void
1812 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1813 {
1814 symtab_fns.emplace_back (flavour, sf);
1815 }
1816
1817 /* Initialize OBJFILE to read symbols from its associated BFD. It
1818 either returns or calls error(). The result is an initialized
1819 struct sym_fns in the objfile structure, that contains cached
1820 information about the symbol file. */
1821
1822 static const struct sym_fns *
1823 find_sym_fns (bfd *abfd)
1824 {
1825 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1826
1827 if (our_flavour == bfd_target_srec_flavour
1828 || our_flavour == bfd_target_ihex_flavour
1829 || our_flavour == bfd_target_tekhex_flavour)
1830 return NULL; /* No symbols. */
1831
1832 for (const registered_sym_fns &rsf : symtab_fns)
1833 if (our_flavour == rsf.sym_flavour)
1834 return rsf.sym_fns;
1835
1836 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1837 bfd_get_target (abfd));
1838 }
1839 \f
1840
1841 /* This function runs the load command of our current target. */
1842
1843 static void
1844 load_command (const char *arg, int from_tty)
1845 {
1846 dont_repeat ();
1847
1848 /* The user might be reloading because the binary has changed. Take
1849 this opportunity to check. */
1850 reopen_exec_file ();
1851 reread_symbols (from_tty);
1852
1853 std::string temp;
1854 if (arg == NULL)
1855 {
1856 const char *parg, *prev;
1857
1858 arg = get_exec_file (1);
1859
1860 /* We may need to quote this string so buildargv can pull it
1861 apart. */
1862 prev = parg = arg;
1863 while ((parg = strpbrk (parg, "\\\"'\t ")))
1864 {
1865 temp.append (prev, parg - prev);
1866 prev = parg++;
1867 temp.push_back ('\\');
1868 }
1869 /* If we have not copied anything yet, then we didn't see a
1870 character to quote, and we can just leave ARG unchanged. */
1871 if (!temp.empty ())
1872 {
1873 temp.append (prev);
1874 arg = temp.c_str ();
1875 }
1876 }
1877
1878 target_load (arg, from_tty);
1879
1880 /* After re-loading the executable, we don't really know which
1881 overlays are mapped any more. */
1882 overlay_cache_invalid = 1;
1883 }
1884
1885 /* This version of "load" should be usable for any target. Currently
1886 it is just used for remote targets, not inftarg.c or core files,
1887 on the theory that only in that case is it useful.
1888
1889 Avoiding xmodem and the like seems like a win (a) because we don't have
1890 to worry about finding it, and (b) On VMS, fork() is very slow and so
1891 we don't want to run a subprocess. On the other hand, I'm not sure how
1892 performance compares. */
1893
1894 static int validate_download = 0;
1895
1896 /* Opaque data for load_progress. */
1897 struct load_progress_data
1898 {
1899 /* Cumulative data. */
1900 unsigned long write_count = 0;
1901 unsigned long data_count = 0;
1902 bfd_size_type total_size = 0;
1903 };
1904
1905 /* Opaque data for load_progress for a single section. */
1906 struct load_progress_section_data
1907 {
1908 load_progress_section_data (load_progress_data *cumulative_,
1909 const char *section_name_, ULONGEST section_size_,
1910 CORE_ADDR lma_, gdb_byte *buffer_)
1911 : cumulative (cumulative_), section_name (section_name_),
1912 section_size (section_size_), lma (lma_), buffer (buffer_)
1913 {}
1914
1915 struct load_progress_data *cumulative;
1916
1917 /* Per-section data. */
1918 const char *section_name;
1919 ULONGEST section_sent = 0;
1920 ULONGEST section_size;
1921 CORE_ADDR lma;
1922 gdb_byte *buffer;
1923 };
1924
1925 /* Opaque data for load_section_callback. */
1926 struct load_section_data
1927 {
1928 load_section_data (load_progress_data *progress_data_)
1929 : progress_data (progress_data_)
1930 {}
1931
1932 ~load_section_data ()
1933 {
1934 for (auto &&request : requests)
1935 {
1936 xfree (request.data);
1937 delete ((load_progress_section_data *) request.baton);
1938 }
1939 }
1940
1941 CORE_ADDR load_offset = 0;
1942 struct load_progress_data *progress_data;
1943 std::vector<struct memory_write_request> requests;
1944 };
1945
1946 /* Target write callback routine for progress reporting. */
1947
1948 static void
1949 load_progress (ULONGEST bytes, void *untyped_arg)
1950 {
1951 struct load_progress_section_data *args
1952 = (struct load_progress_section_data *) untyped_arg;
1953 struct load_progress_data *totals;
1954
1955 if (args == NULL)
1956 /* Writing padding data. No easy way to get at the cumulative
1957 stats, so just ignore this. */
1958 return;
1959
1960 totals = args->cumulative;
1961
1962 if (bytes == 0 && args->section_sent == 0)
1963 {
1964 /* The write is just starting. Let the user know we've started
1965 this section. */
1966 current_uiout->message ("Loading section %s, size %s lma %s\n",
1967 args->section_name,
1968 hex_string (args->section_size),
1969 paddress (current_inferior ()->arch (),
1970 args->lma));
1971 return;
1972 }
1973
1974 if (validate_download)
1975 {
1976 /* Broken memories and broken monitors manifest themselves here
1977 when bring new computers to life. This doubles already slow
1978 downloads. */
1979 /* NOTE: cagney/1999-10-18: A more efficient implementation
1980 might add a verify_memory() method to the target vector and
1981 then use that. remote.c could implement that method using
1982 the ``qCRC'' packet. */
1983 gdb::byte_vector check (bytes);
1984
1985 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1986 error (_("Download verify read failed at %s"),
1987 paddress (current_inferior ()->arch (), args->lma));
1988 if (memcmp (args->buffer, check.data (), bytes) != 0)
1989 error (_("Download verify compare failed at %s"),
1990 paddress (current_inferior ()->arch (), args->lma));
1991 }
1992 totals->data_count += bytes;
1993 args->lma += bytes;
1994 args->buffer += bytes;
1995 totals->write_count += 1;
1996 args->section_sent += bytes;
1997 if (check_quit_flag ()
1998 || (deprecated_ui_load_progress_hook != NULL
1999 && deprecated_ui_load_progress_hook (args->section_name,
2000 args->section_sent)))
2001 error (_("Canceled the download"));
2002
2003 if (deprecated_show_load_progress != NULL)
2004 deprecated_show_load_progress (args->section_name,
2005 args->section_sent,
2006 args->section_size,
2007 totals->data_count,
2008 totals->total_size);
2009 }
2010
2011 /* Service function for generic_load. */
2012
2013 static void
2014 load_one_section (bfd *abfd, asection *asec,
2015 struct load_section_data *args)
2016 {
2017 bfd_size_type size = bfd_section_size (asec);
2018 const char *sect_name = bfd_section_name (asec);
2019
2020 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
2021 return;
2022
2023 if (size == 0)
2024 return;
2025
2026 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
2027 ULONGEST end = begin + size;
2028 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2029 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2030
2031 load_progress_section_data *section_data
2032 = new load_progress_section_data (args->progress_data, sect_name, size,
2033 begin, buffer);
2034
2035 args->requests.emplace_back (begin, end, buffer, section_data);
2036 }
2037
2038 static void print_transfer_performance (struct ui_file *stream,
2039 unsigned long data_count,
2040 unsigned long write_count,
2041 std::chrono::steady_clock::duration d);
2042
2043 /* See symfile.h. */
2044
2045 void
2046 generic_load (const char *args, int from_tty)
2047 {
2048 struct load_progress_data total_progress;
2049 struct load_section_data cbdata (&total_progress);
2050 struct ui_out *uiout = current_uiout;
2051
2052 if (args == NULL)
2053 error_no_arg (_("file to load"));
2054
2055 gdb_argv argv (args);
2056
2057 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2058
2059 if (argv[1] != NULL)
2060 {
2061 const char *endptr;
2062
2063 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2064
2065 /* If the last word was not a valid number then
2066 treat it as a file name with spaces in. */
2067 if (argv[1] == endptr)
2068 error (_("Invalid download offset:%s."), argv[1]);
2069
2070 if (argv[2] != NULL)
2071 error (_("Too many parameters."));
2072 }
2073
2074 /* Open the file for loading. */
2075 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2076 if (loadfile_bfd == NULL)
2077 perror_with_name (filename.get ());
2078
2079 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2080 {
2081 error (_("\"%s\" is not an object file: %s"), filename.get (),
2082 bfd_errmsg (bfd_get_error ()));
2083 }
2084
2085 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2086 total_progress.total_size += bfd_section_size (asec);
2087
2088 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2089 load_one_section (loadfile_bfd.get (), asec, &cbdata);
2090
2091 using namespace std::chrono;
2092
2093 steady_clock::time_point start_time = steady_clock::now ();
2094
2095 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2096 load_progress) != 0)
2097 error (_("Load failed"));
2098
2099 steady_clock::time_point end_time = steady_clock::now ();
2100
2101 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2102 entry = gdbarch_addr_bits_remove (current_inferior ()->arch (), entry);
2103 uiout->text ("Start address ");
2104 uiout->field_core_addr ("address", current_inferior ()->arch (), entry);
2105 uiout->text (", load size ");
2106 uiout->field_unsigned ("load-size", total_progress.data_count);
2107 uiout->text ("\n");
2108 regcache_write_pc (get_thread_regcache (inferior_thread ()), entry);
2109
2110 /* Reset breakpoints, now that we have changed the load image. For
2111 instance, breakpoints may have been set (or reset, by
2112 post_create_inferior) while connected to the target but before we
2113 loaded the program. In that case, the prologue analyzer could
2114 have read instructions from the target to find the right
2115 breakpoint locations. Loading has changed the contents of that
2116 memory. */
2117
2118 breakpoint_re_set ();
2119
2120 print_transfer_performance (gdb_stdout, total_progress.data_count,
2121 total_progress.write_count,
2122 end_time - start_time);
2123 }
2124
2125 /* Report on STREAM the performance of a memory transfer operation,
2126 such as 'load'. DATA_COUNT is the number of bytes transferred.
2127 WRITE_COUNT is the number of separate write operations, or 0, if
2128 that information is not available. TIME is how long the operation
2129 lasted. */
2130
2131 static void
2132 print_transfer_performance (struct ui_file *stream,
2133 unsigned long data_count,
2134 unsigned long write_count,
2135 std::chrono::steady_clock::duration time)
2136 {
2137 using namespace std::chrono;
2138 struct ui_out *uiout = current_uiout;
2139
2140 milliseconds ms = duration_cast<milliseconds> (time);
2141
2142 uiout->text ("Transfer rate: ");
2143 if (ms.count () > 0)
2144 {
2145 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2146
2147 if (uiout->is_mi_like_p ())
2148 {
2149 uiout->field_unsigned ("transfer-rate", rate * 8);
2150 uiout->text (" bits/sec");
2151 }
2152 else if (rate < 1024)
2153 {
2154 uiout->field_unsigned ("transfer-rate", rate);
2155 uiout->text (" bytes/sec");
2156 }
2157 else
2158 {
2159 uiout->field_unsigned ("transfer-rate", rate / 1024);
2160 uiout->text (" KB/sec");
2161 }
2162 }
2163 else
2164 {
2165 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2166 uiout->text (" bits in <1 sec");
2167 }
2168 if (write_count > 0)
2169 {
2170 uiout->text (", ");
2171 uiout->field_unsigned ("write-rate", data_count / write_count);
2172 uiout->text (" bytes/write");
2173 }
2174 uiout->text (".\n");
2175 }
2176
2177 /* Add an OFFSET to the start address of each section in OBJF, except
2178 sections that were specified in ADDRS. */
2179
2180 static void
2181 set_objfile_default_section_offset (struct objfile *objf,
2182 const section_addr_info &addrs,
2183 CORE_ADDR offset)
2184 {
2185 /* Add OFFSET to all sections by default. */
2186 section_offsets offsets (objf->section_offsets.size (), offset);
2187
2188 /* Create sorted lists of all sections in ADDRS as well as all
2189 sections in OBJF. */
2190
2191 std::vector<const struct other_sections *> addrs_sorted
2192 = addrs_section_sort (addrs);
2193
2194 section_addr_info objf_addrs
2195 = build_section_addr_info_from_objfile (objf);
2196 std::vector<const struct other_sections *> objf_addrs_sorted
2197 = addrs_section_sort (objf_addrs);
2198
2199 /* Walk the BFD section list, and if a matching section is found in
2200 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2201 unchanged.
2202
2203 Note that both lists may contain multiple sections with the same
2204 name, and then the sections from ADDRS are matched in BFD order
2205 (thanks to sectindex). */
2206
2207 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2208 = addrs_sorted.begin ();
2209 for (const other_sections *objf_sect : objf_addrs_sorted)
2210 {
2211 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2212 int cmp = -1;
2213
2214 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2215 {
2216 const struct other_sections *sect = *addrs_sorted_iter;
2217 const char *sect_name = addr_section_name (sect->name.c_str ());
2218 cmp = strcmp (sect_name, objf_name);
2219 if (cmp <= 0)
2220 ++addrs_sorted_iter;
2221 }
2222
2223 if (cmp == 0)
2224 offsets[objf_sect->sectindex] = 0;
2225 }
2226
2227 /* Apply the new section offsets. */
2228 objfile_relocate (objf, offsets);
2229 }
2230
2231 /* This function allows the addition of incrementally linked object files.
2232 It does not modify any state in the target, only in the debugger. */
2233
2234 static void
2235 add_symbol_file_command (const char *args, int from_tty)
2236 {
2237 struct gdbarch *gdbarch = get_current_arch ();
2238 gdb::unique_xmalloc_ptr<char> filename;
2239 char *arg;
2240 int argcnt = 0;
2241 struct objfile *objf;
2242 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2243 symfile_add_flags add_flags = 0;
2244
2245 if (from_tty)
2246 add_flags |= SYMFILE_VERBOSE;
2247
2248 struct sect_opt
2249 {
2250 const char *name;
2251 const char *value;
2252 };
2253
2254 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2255 bool stop_processing_options = false;
2256 CORE_ADDR offset = 0;
2257
2258 dont_repeat ();
2259
2260 if (args == NULL)
2261 error (_("add-symbol-file takes a file name and an address"));
2262
2263 bool seen_addr = false;
2264 bool seen_offset = false;
2265 gdb_argv argv (args);
2266
2267 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2268 {
2269 if (stop_processing_options || *arg != '-')
2270 {
2271 if (filename == NULL)
2272 {
2273 /* First non-option argument is always the filename. */
2274 filename.reset (tilde_expand (arg));
2275 }
2276 else if (!seen_addr)
2277 {
2278 /* The second non-option argument is always the text
2279 address at which to load the program. */
2280 sect_opts[0].value = arg;
2281 seen_addr = true;
2282 }
2283 else
2284 error (_("Unrecognized argument \"%s\""), arg);
2285 }
2286 else if (strcmp (arg, "-readnow") == 0)
2287 flags |= OBJF_READNOW;
2288 else if (strcmp (arg, "-readnever") == 0)
2289 flags |= OBJF_READNEVER;
2290 else if (strcmp (arg, "-s") == 0)
2291 {
2292 if (argv[argcnt + 1] == NULL)
2293 error (_("Missing section name after \"-s\""));
2294 else if (argv[argcnt + 2] == NULL)
2295 error (_("Missing section address after \"-s\""));
2296
2297 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2298
2299 sect_opts.push_back (sect);
2300 argcnt += 2;
2301 }
2302 else if (strcmp (arg, "-o") == 0)
2303 {
2304 arg = argv[++argcnt];
2305 if (arg == NULL)
2306 error (_("Missing argument to -o"));
2307
2308 offset = parse_and_eval_address (arg);
2309 seen_offset = true;
2310 }
2311 else if (strcmp (arg, "--") == 0)
2312 stop_processing_options = true;
2313 else
2314 error (_("Unrecognized argument \"%s\""), arg);
2315 }
2316
2317 if (filename == NULL)
2318 error (_("You must provide a filename to be loaded."));
2319
2320 validate_readnow_readnever (flags);
2321
2322 /* Print the prompt for the query below. And save the arguments into
2323 a sect_addr_info structure to be passed around to other
2324 functions. We have to split this up into separate print
2325 statements because hex_string returns a local static
2326 string. */
2327
2328 gdb_printf (_("add symbol table from file \"%ps\""),
2329 styled_string (file_name_style.style (), filename.get ()));
2330 section_addr_info section_addrs;
2331 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2332 if (!seen_addr)
2333 ++it;
2334 for (; it != sect_opts.end (); ++it)
2335 {
2336 CORE_ADDR addr;
2337 const char *val = it->value;
2338 const char *sec = it->name;
2339
2340 if (section_addrs.empty ())
2341 gdb_printf (_(" at\n"));
2342 addr = parse_and_eval_address (val);
2343
2344 /* Here we store the section offsets in the order they were
2345 entered on the command line. Every array element is
2346 assigned an ascending section index to preserve the above
2347 order over an unstable sorting algorithm. This dummy
2348 index is not used for any other purpose.
2349 */
2350 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2351 gdb_printf ("\t%s_addr = %s\n", sec,
2352 paddress (gdbarch, addr));
2353
2354 /* The object's sections are initialized when a
2355 call is made to build_objfile_section_table (objfile).
2356 This happens in reread_symbols.
2357 At this point, we don't know what file type this is,
2358 so we can't determine what section names are valid. */
2359 }
2360 if (seen_offset)
2361 gdb_printf (_("%s offset by %s\n"),
2362 (section_addrs.empty ()
2363 ? _(" with all sections")
2364 : _("with other sections")),
2365 paddress (gdbarch, offset));
2366 else if (section_addrs.empty ())
2367 gdb_printf ("\n");
2368
2369 if (from_tty && (!query ("%s", "")))
2370 error (_("Not confirmed."));
2371
2372 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2373 flags);
2374 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2375 warning (_("newly-added symbol file \"%ps\" does not provide any symbols"),
2376 styled_string (file_name_style.style (), filename.get ()));
2377
2378 if (seen_offset)
2379 set_objfile_default_section_offset (objf, section_addrs, offset);
2380
2381 current_program_space->add_target_sections (objf);
2382
2383 /* Getting new symbols may change our opinion about what is
2384 frameless. */
2385 reinit_frame_cache ();
2386 }
2387 \f
2388
2389 /* This function removes a symbol file that was added via add-symbol-file. */
2390
2391 static void
2392 remove_symbol_file_command (const char *args, int from_tty)
2393 {
2394 struct objfile *objf = NULL;
2395 struct program_space *pspace = current_program_space;
2396
2397 dont_repeat ();
2398
2399 if (args == NULL)
2400 error (_("remove-symbol-file: no symbol file provided"));
2401
2402 gdb_argv argv (args);
2403
2404 if (strcmp (argv[0], "-a") == 0)
2405 {
2406 /* Interpret the next argument as an address. */
2407 CORE_ADDR addr;
2408
2409 if (argv[1] == NULL)
2410 error (_("Missing address argument"));
2411
2412 if (argv[2] != NULL)
2413 error (_("Junk after %s"), argv[1]);
2414
2415 addr = parse_and_eval_address (argv[1]);
2416
2417 for (objfile *objfile : current_program_space->objfiles ())
2418 {
2419 if ((objfile->flags & OBJF_USERLOADED) != 0
2420 && (objfile->flags & OBJF_SHARED) != 0
2421 && objfile->pspace == pspace
2422 && is_addr_in_objfile (addr, objfile))
2423 {
2424 objf = objfile;
2425 break;
2426 }
2427 }
2428 }
2429 else if (argv[0] != NULL)
2430 {
2431 /* Interpret the current argument as a file name. */
2432
2433 if (argv[1] != NULL)
2434 error (_("Junk after %s"), argv[0]);
2435
2436 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2437
2438 for (objfile *objfile : current_program_space->objfiles ())
2439 {
2440 if ((objfile->flags & OBJF_USERLOADED) != 0
2441 && (objfile->flags & OBJF_SHARED) != 0
2442 && objfile->pspace == pspace
2443 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2444 {
2445 objf = objfile;
2446 break;
2447 }
2448 }
2449 }
2450
2451 if (objf == NULL)
2452 error (_("No symbol file found"));
2453
2454 if (from_tty
2455 && !query (_("Remove symbol table from file \"%s\"? "),
2456 objfile_name (objf)))
2457 error (_("Not confirmed."));
2458
2459 objf->unlink ();
2460 clear_symtab_users (0);
2461 }
2462
2463 /* Re-read symbols if a symbol-file has changed. */
2464
2465 void
2466 reread_symbols (int from_tty)
2467 {
2468 std::vector<struct objfile *> new_objfiles;
2469
2470 /* Check to see if the executable has changed, and if so reopen it. The
2471 executable might not be in the list of objfiles (if the user set
2472 different values for 'exec-file' and 'symbol-file'), and even if it
2473 is, then we use a separate timestamp (within the program_space) to
2474 indicate when the executable was last reloaded. */
2475 reopen_exec_file ();
2476
2477 for (objfile *objfile : current_program_space->objfiles ())
2478 {
2479 if (objfile->obfd.get () == NULL)
2480 continue;
2481
2482 /* Separate debug objfiles are handled in the main objfile. */
2483 if (objfile->separate_debug_objfile_backlink)
2484 continue;
2485
2486 /* When a in-memory BFD is initially created, it's mtime (as
2487 returned by bfd_get_mtime) is the creation time of the BFD.
2488 However, we call bfd_stat here as we want to see if the
2489 underlying file has changed, and in this case an in-memory BFD
2490 will return an st_mtime of zero, so it appears that the in-memory
2491 file has changed, which isn't what we want here -- this code is
2492 about reloading BFDs that changed on disk.
2493
2494 Just skip any in-memory BFD. */
2495 if (objfile->obfd.get ()->flags & BFD_IN_MEMORY)
2496 continue;
2497
2498 struct stat new_statbuf;
2499 int res = bfd_stat (objfile->obfd.get (), &new_statbuf);
2500 if (res != 0)
2501 {
2502 /* If this object is from an archive (what you usually create
2503 with `ar', often called a `static library' on most systems,
2504 though a `shared library' on AIX is also an archive), then you
2505 should stat on the archive name, not member name. */
2506 const char *filename;
2507 if (objfile->obfd->my_archive)
2508 filename = bfd_get_filename (objfile->obfd->my_archive);
2509 else
2510 filename = objfile_name (objfile);
2511
2512 warning (_("`%ps' has disappeared; keeping its symbols."),
2513 styled_string (file_name_style.style (), filename));
2514 continue;
2515 }
2516 time_t new_modtime = new_statbuf.st_mtime;
2517 if (new_modtime != objfile->mtime)
2518 {
2519 gdb_printf (_("`%ps' has changed; re-reading symbols.\n"),
2520 styled_string (file_name_style.style (),
2521 objfile_name (objfile)));
2522
2523 /* There are various functions like symbol_file_add,
2524 symfile_bfd_open, syms_from_objfile, etc., which might
2525 appear to do what we want. But they have various other
2526 effects which we *don't* want. So we just do stuff
2527 ourselves. We don't worry about mapped files (for one thing,
2528 any mapped file will be out of date). */
2529
2530 /* If we get an error, blow away this objfile (not sure if
2531 that is the correct response for things like shared
2532 libraries). */
2533 objfile_up objfile_holder (objfile);
2534
2535 /* We need to do this whenever any symbols go away. */
2536 clear_symtab_users_cleanup defer_clear_users (0);
2537
2538 /* Keep the calls order approx. the same as in free_objfile. */
2539
2540 /* Free the separate debug objfiles. It will be
2541 automatically recreated by sym_read. */
2542 free_objfile_separate_debug (objfile);
2543
2544 /* Clear the stale source cache. */
2545 forget_cached_source_info ();
2546
2547 /* Remove any references to this objfile in the global
2548 value lists. */
2549 preserve_values (objfile);
2550
2551 /* Nuke all the state that we will re-read. Much of the following
2552 code which sets things to NULL really is necessary to tell
2553 other parts of GDB that there is nothing currently there.
2554
2555 Try to keep the freeing order compatible with free_objfile. */
2556
2557 if (objfile->sf != NULL)
2558 {
2559 (*objfile->sf->sym_finish) (objfile);
2560 }
2561
2562 objfile->registry_fields.clear_registry ();
2563
2564 /* Clean up any state BFD has sitting around. */
2565 {
2566 gdb_bfd_ref_ptr obfd = objfile->obfd;
2567 const char *obfd_filename;
2568
2569 obfd_filename = bfd_get_filename (objfile->obfd.get ());
2570 /* Open the new BFD before freeing the old one, so that
2571 the filename remains live. */
2572 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2573 objfile->obfd = std::move (temp);
2574 if (objfile->obfd == NULL)
2575 error (_("Can't open %s to read symbols."), obfd_filename);
2576 }
2577
2578 std::string original_name = objfile->original_name;
2579
2580 /* bfd_openr sets cacheable to true, which is what we want. */
2581 if (!bfd_check_format (objfile->obfd.get (), bfd_object))
2582 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2583 bfd_errmsg (bfd_get_error ()));
2584
2585 /* NB: after this call to obstack_free, objfiles_changed
2586 will need to be called (see discussion below). */
2587 obstack_free (&objfile->objfile_obstack, 0);
2588 objfile->sections_start = NULL;
2589 objfile->section_offsets.clear ();
2590 objfile->sect_index_bss = -1;
2591 objfile->sect_index_data = -1;
2592 objfile->sect_index_rodata = -1;
2593 objfile->sect_index_text = -1;
2594 objfile->compunit_symtabs = NULL;
2595 objfile->template_symbols = NULL;
2596 objfile->static_links.reset (nullptr);
2597
2598 /* obstack_init also initializes the obstack so it is
2599 empty. We could use obstack_specify_allocation but
2600 gdb_obstack.h specifies the alloc/dealloc functions. */
2601 obstack_init (&objfile->objfile_obstack);
2602
2603 /* set_objfile_per_bfd potentially allocates the per-bfd
2604 data on the objfile's obstack (if sharing data across
2605 multiple users is not possible), so it's important to
2606 do it *after* the obstack has been initialized. */
2607 set_objfile_per_bfd (objfile);
2608
2609 objfile->original_name
2610 = obstack_strdup (&objfile->objfile_obstack, original_name);
2611
2612 /* Reset the sym_fns pointer. The ELF reader can change it
2613 based on whether .gdb_index is present, and we need it to
2614 start over. PR symtab/15885 */
2615 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd.get ()));
2616 objfile->qf.clear ();
2617
2618 build_objfile_section_table (objfile);
2619
2620 /* What the hell is sym_new_init for, anyway? The concept of
2621 distinguishing between the main file and additional files
2622 in this way seems rather dubious. */
2623 if (objfile == current_program_space->symfile_object_file)
2624 {
2625 (*objfile->sf->sym_new_init) (objfile);
2626 }
2627
2628 (*objfile->sf->sym_init) (objfile);
2629 clear_complaints ();
2630
2631 /* We are about to read new symbols and potentially also
2632 DWARF information. Some targets may want to pass addresses
2633 read from DWARF DIE's through an adjustment function before
2634 saving them, like MIPS, which may call into
2635 "find_pc_section". When called, that function will make
2636 use of per-objfile program space data.
2637
2638 Since we discarded our section information above, we have
2639 dangling pointers in the per-objfile program space data
2640 structure. Force GDB to update the section mapping
2641 information by letting it know the objfile has changed,
2642 making the dangling pointers point to correct data
2643 again. */
2644
2645 objfiles_changed ();
2646
2647 /* Recompute section offsets and section indices. */
2648 objfile->sf->sym_offsets (objfile, {});
2649
2650 read_symbols (objfile, 0);
2651
2652 if ((objfile->flags & OBJF_READNOW))
2653 {
2654 const int mainline = objfile->flags & OBJF_MAINLINE;
2655 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
2656 && readnow_symbol_files);
2657 if (should_print)
2658 gdb_printf (_("Expanding full symbols from %ps...\n"),
2659 styled_string (file_name_style.style (),
2660 objfile_name (objfile)));
2661
2662 objfile->expand_all_symtabs ();
2663 }
2664
2665 if (!objfile_has_symbols (objfile))
2666 {
2667 gdb_stdout->wrap_here (0);
2668 gdb_printf (_("(no debugging symbols found)\n"));
2669 gdb_stdout->wrap_here (0);
2670 }
2671
2672 /* We're done reading the symbol file; finish off complaints. */
2673 clear_complaints ();
2674
2675 /* Getting new symbols may change our opinion about what is
2676 frameless. */
2677
2678 reinit_frame_cache ();
2679
2680 /* Discard cleanups as symbol reading was successful. */
2681 objfile_holder.release ();
2682 defer_clear_users.release ();
2683
2684 /* If the mtime has changed between the time we set new_modtime
2685 and now, we *want* this to be out of date, so don't call stat
2686 again now. */
2687 objfile->mtime = new_modtime;
2688 init_entry_point_info (objfile);
2689
2690 new_objfiles.push_back (objfile);
2691 }
2692 }
2693
2694 if (!new_objfiles.empty ())
2695 {
2696 clear_symtab_users (0);
2697
2698 /* The registry for each objfile was cleared and
2699 gdb::observers::new_objfile.notify (NULL) has been called by
2700 clear_symtab_users above. Notify the new files now. */
2701 for (auto iter : new_objfiles)
2702 gdb::observers::new_objfile.notify (iter);
2703 }
2704 }
2705 \f
2706
2707 struct filename_language
2708 {
2709 filename_language (const std::string &ext_, enum language lang_)
2710 : ext (ext_), lang (lang_)
2711 {}
2712
2713 std::string ext;
2714 enum language lang;
2715 };
2716
2717 static std::vector<filename_language> filename_language_table;
2718
2719 /* See symfile.h. */
2720
2721 void
2722 add_filename_language (const char *ext, enum language lang)
2723 {
2724 gdb_assert (ext != nullptr);
2725 filename_language_table.emplace_back (ext, lang);
2726 }
2727
2728 static std::string ext_args;
2729 static void
2730 show_ext_args (struct ui_file *file, int from_tty,
2731 struct cmd_list_element *c, const char *value)
2732 {
2733 gdb_printf (file,
2734 _("Mapping between filename extension "
2735 "and source language is \"%s\".\n"),
2736 value);
2737 }
2738
2739 static void
2740 set_ext_lang_command (const char *args,
2741 int from_tty, struct cmd_list_element *e)
2742 {
2743 const char *begin = ext_args.c_str ();
2744 const char *end = ext_args.c_str ();
2745
2746 /* First arg is filename extension, starting with '.' */
2747 if (*end != '.')
2748 error (_("'%s': Filename extension must begin with '.'"), ext_args.c_str ());
2749
2750 /* Find end of first arg. */
2751 while (*end != '\0' && !isspace (*end))
2752 end++;
2753
2754 if (*end == '\0')
2755 error (_("'%s': two arguments required -- "
2756 "filename extension and language"),
2757 ext_args.c_str ());
2758
2759 /* Extract first arg, the extension. */
2760 std::string extension = ext_args.substr (0, end - begin);
2761
2762 /* Find beginning of second arg, which should be a source language. */
2763 begin = skip_spaces (end);
2764
2765 if (*begin == '\0')
2766 error (_("'%s': two arguments required -- "
2767 "filename extension and language"),
2768 ext_args.c_str ());
2769
2770 /* Lookup the language from among those we know. */
2771 language lang = language_enum (begin);
2772
2773 auto it = filename_language_table.begin ();
2774 /* Now lookup the filename extension: do we already know it? */
2775 for (; it != filename_language_table.end (); it++)
2776 {
2777 if (it->ext == extension)
2778 break;
2779 }
2780
2781 if (it == filename_language_table.end ())
2782 {
2783 /* New file extension. */
2784 add_filename_language (extension.data (), lang);
2785 }
2786 else
2787 {
2788 /* Redefining a previously known filename extension. */
2789
2790 /* if (from_tty) */
2791 /* query ("Really make files of type %s '%s'?", */
2792 /* ext_args, language_str (lang)); */
2793
2794 it->lang = lang;
2795 }
2796 }
2797
2798 static void
2799 info_ext_lang_command (const char *args, int from_tty)
2800 {
2801 gdb_printf (_("Filename extensions and the languages they represent:"));
2802 gdb_printf ("\n\n");
2803 for (const filename_language &entry : filename_language_table)
2804 gdb_printf ("\t%s\t- %s\n", entry.ext.c_str (),
2805 language_str (entry.lang));
2806 }
2807
2808 enum language
2809 deduce_language_from_filename (const char *filename)
2810 {
2811 const char *cp;
2812
2813 if (filename != NULL)
2814 if ((cp = strrchr (filename, '.')) != NULL)
2815 {
2816 for (const filename_language &entry : filename_language_table)
2817 if (entry.ext == cp)
2818 return entry.lang;
2819 }
2820
2821 return language_unknown;
2822 }
2823 \f
2824 /* Allocate and initialize a new symbol table.
2825 CUST is from the result of allocate_compunit_symtab. */
2826
2827 struct symtab *
2828 allocate_symtab (struct compunit_symtab *cust, const char *filename,
2829 const char *filename_for_id)
2830 {
2831 struct objfile *objfile = cust->objfile ();
2832 struct symtab *symtab
2833 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2834
2835 symtab->filename = objfile->intern (filename);
2836 symtab->filename_for_id = objfile->intern (filename_for_id);
2837 symtab->fullname = NULL;
2838 symtab->set_language (deduce_language_from_filename (filename));
2839
2840 /* This can be very verbose with lots of headers.
2841 Only print at higher debug levels. */
2842 if (symtab_create_debug >= 2)
2843 {
2844 /* Be a bit clever with debugging messages, and don't print objfile
2845 every time, only when it changes. */
2846 static std::string last_objfile_name;
2847 const char *this_objfile_name = objfile_name (objfile);
2848
2849 if (last_objfile_name.empty () || last_objfile_name != this_objfile_name)
2850 {
2851 last_objfile_name = this_objfile_name;
2852
2853 symtab_create_debug_printf_v
2854 ("creating one or more symtabs for objfile %s", this_objfile_name);
2855 }
2856
2857 symtab_create_debug_printf_v ("created symtab %s for module %s",
2858 host_address_to_string (symtab), filename);
2859 }
2860
2861 /* Add it to CUST's list of symtabs. */
2862 cust->add_filetab (symtab);
2863
2864 /* Backlink to the containing compunit symtab. */
2865 symtab->set_compunit (cust);
2866
2867 return symtab;
2868 }
2869
2870 /* Allocate and initialize a new compunit.
2871 NAME is the name of the main source file, if there is one, or some
2872 descriptive text if there are no source files. */
2873
2874 struct compunit_symtab *
2875 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2876 {
2877 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2878 struct compunit_symtab);
2879 const char *saved_name;
2880
2881 cu->set_objfile (objfile);
2882
2883 /* The name we record here is only for display/debugging purposes.
2884 Just save the basename to avoid path issues (too long for display,
2885 relative vs absolute, etc.). */
2886 saved_name = lbasename (name);
2887 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2888
2889 cu->set_debugformat ("unknown");
2890
2891 symtab_create_debug_printf_v ("created compunit symtab %s for %s",
2892 host_address_to_string (cu),
2893 cu->name);
2894
2895 return cu;
2896 }
2897
2898 /* Hook CU to the objfile it comes from. */
2899
2900 void
2901 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2902 {
2903 cu->next = cu->objfile ()->compunit_symtabs;
2904 cu->objfile ()->compunit_symtabs = cu;
2905 }
2906 \f
2907
2908 /* Reset all data structures in gdb which may contain references to
2909 symbol table data. */
2910
2911 void
2912 clear_symtab_users (symfile_add_flags add_flags)
2913 {
2914 /* Someday, we should do better than this, by only blowing away
2915 the things that really need to be blown. */
2916
2917 /* Clear the "current" symtab first, because it is no longer valid.
2918 breakpoint_re_set may try to access the current symtab. */
2919 clear_current_source_symtab_and_line ();
2920
2921 clear_displays ();
2922 clear_last_displayed_sal ();
2923 clear_pc_function_cache ();
2924 gdb::observers::all_objfiles_removed.notify (current_program_space);
2925
2926 /* Now that the various caches have been cleared, we can re_set
2927 our breakpoints without risking it using stale data. */
2928 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2929 breakpoint_re_set ();
2930 }
2931 \f
2932 /* OVERLAYS:
2933 The following code implements an abstraction for debugging overlay sections.
2934
2935 The target model is as follows:
2936 1) The gnu linker will permit multiple sections to be mapped into the
2937 same VMA, each with its own unique LMA (or load address).
2938 2) It is assumed that some runtime mechanism exists for mapping the
2939 sections, one by one, from the load address into the VMA address.
2940 3) This code provides a mechanism for gdb to keep track of which
2941 sections should be considered to be mapped from the VMA to the LMA.
2942 This information is used for symbol lookup, and memory read/write.
2943 For instance, if a section has been mapped then its contents
2944 should be read from the VMA, otherwise from the LMA.
2945
2946 Two levels of debugger support for overlays are available. One is
2947 "manual", in which the debugger relies on the user to tell it which
2948 overlays are currently mapped. This level of support is
2949 implemented entirely in the core debugger, and the information about
2950 whether a section is mapped is kept in the objfile->obj_section table.
2951
2952 The second level of support is "automatic", and is only available if
2953 the target-specific code provides functionality to read the target's
2954 overlay mapping table, and translate its contents for the debugger
2955 (by updating the mapped state information in the obj_section tables).
2956
2957 The interface is as follows:
2958 User commands:
2959 overlay map <name> -- tell gdb to consider this section mapped
2960 overlay unmap <name> -- tell gdb to consider this section unmapped
2961 overlay list -- list the sections that GDB thinks are mapped
2962 overlay read-target -- get the target's state of what's mapped
2963 overlay off/manual/auto -- set overlay debugging state
2964 Functional interface:
2965 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2966 section, return that section.
2967 find_pc_overlay(pc): find any overlay section that contains
2968 the pc, either in its VMA or its LMA
2969 section_is_mapped(sect): true if overlay is marked as mapped
2970 section_is_overlay(sect): true if section's VMA != LMA
2971 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2972 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2973 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2974 overlay_mapped_address(...): map an address from section's LMA to VMA
2975 overlay_unmapped_address(...): map an address from section's VMA to LMA
2976 symbol_overlayed_address(...): Return a "current" address for symbol:
2977 either in VMA or LMA depending on whether
2978 the symbol's section is currently mapped. */
2979
2980 /* Overlay debugging state: */
2981
2982 enum overlay_debugging_state overlay_debugging = ovly_off;
2983 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2984
2985 /* Function: section_is_overlay (SECTION)
2986 Returns true if SECTION has VMA not equal to LMA, ie.
2987 SECTION is loaded at an address different from where it will "run". */
2988
2989 int
2990 section_is_overlay (struct obj_section *section)
2991 {
2992 if (overlay_debugging && section)
2993 {
2994 asection *bfd_section = section->the_bfd_section;
2995
2996 if (bfd_section_lma (bfd_section) != 0
2997 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2998 return 1;
2999 }
3000
3001 return 0;
3002 }
3003
3004 /* Function: overlay_invalidate_all (void)
3005 Invalidate the mapped state of all overlay sections (mark it as stale). */
3006
3007 static void
3008 overlay_invalidate_all (void)
3009 {
3010 for (objfile *objfile : current_program_space->objfiles ())
3011 for (obj_section *sect : objfile->sections ())
3012 if (section_is_overlay (sect))
3013 sect->ovly_mapped = -1;
3014 }
3015
3016 /* Function: section_is_mapped (SECTION)
3017 Returns true if section is an overlay, and is currently mapped.
3018
3019 Access to the ovly_mapped flag is restricted to this function, so
3020 that we can do automatic update. If the global flag
3021 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3022 overlay_invalidate_all. If the mapped state of the particular
3023 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3024
3025 int
3026 section_is_mapped (struct obj_section *osect)
3027 {
3028 struct gdbarch *gdbarch;
3029
3030 if (osect == 0 || !section_is_overlay (osect))
3031 return 0;
3032
3033 switch (overlay_debugging)
3034 {
3035 default:
3036 case ovly_off:
3037 return 0; /* overlay debugging off */
3038 case ovly_auto: /* overlay debugging automatic */
3039 /* Unles there is a gdbarch_overlay_update function,
3040 there's really nothing useful to do here (can't really go auto). */
3041 gdbarch = osect->objfile->arch ();
3042 if (gdbarch_overlay_update_p (gdbarch))
3043 {
3044 if (overlay_cache_invalid)
3045 {
3046 overlay_invalidate_all ();
3047 overlay_cache_invalid = 0;
3048 }
3049 if (osect->ovly_mapped == -1)
3050 gdbarch_overlay_update (gdbarch, osect);
3051 }
3052 [[fallthrough]];
3053 case ovly_on: /* overlay debugging manual */
3054 return osect->ovly_mapped == 1;
3055 }
3056 }
3057
3058 /* Function: pc_in_unmapped_range
3059 If PC falls into the lma range of SECTION, return true, else false. */
3060
3061 bool
3062 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3063 {
3064 if (section_is_overlay (section))
3065 {
3066 asection *bfd_section = section->the_bfd_section;
3067
3068 /* We assume the LMA is relocated by the same offset as the VMA. */
3069 bfd_vma size = bfd_section_size (bfd_section);
3070 CORE_ADDR offset = section->offset ();
3071
3072 if (bfd_section_lma (bfd_section) + offset <= pc
3073 && pc < bfd_section_lma (bfd_section) + offset + size)
3074 return true;
3075 }
3076
3077 return false;
3078 }
3079
3080 /* Function: pc_in_mapped_range
3081 If PC falls into the vma range of SECTION, return true, else false. */
3082
3083 bool
3084 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3085 {
3086 if (section_is_overlay (section))
3087 {
3088 if (section->contains (pc))
3089 return true;
3090 }
3091
3092 return false;
3093 }
3094
3095 /* Return true if the mapped ranges of sections A and B overlap, false
3096 otherwise. */
3097
3098 static int
3099 sections_overlap (struct obj_section *a, struct obj_section *b)
3100 {
3101 CORE_ADDR a_start = a->addr ();
3102 CORE_ADDR a_end = a->endaddr ();
3103 CORE_ADDR b_start = b->addr ();
3104 CORE_ADDR b_end = b->endaddr ();
3105
3106 return (a_start < b_end && b_start < a_end);
3107 }
3108
3109 /* Function: overlay_unmapped_address (PC, SECTION)
3110 Returns the address corresponding to PC in the unmapped (load) range.
3111 May be the same as PC. */
3112
3113 CORE_ADDR
3114 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3115 {
3116 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3117 {
3118 asection *bfd_section = section->the_bfd_section;
3119
3120 return (pc + bfd_section_lma (bfd_section)
3121 - bfd_section_vma (bfd_section));
3122 }
3123
3124 return pc;
3125 }
3126
3127 /* Function: overlay_mapped_address (PC, SECTION)
3128 Returns the address corresponding to PC in the mapped (runtime) range.
3129 May be the same as PC. */
3130
3131 CORE_ADDR
3132 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3133 {
3134 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3135 {
3136 asection *bfd_section = section->the_bfd_section;
3137
3138 return (pc + bfd_section_vma (bfd_section)
3139 - bfd_section_lma (bfd_section));
3140 }
3141
3142 return pc;
3143 }
3144
3145 /* Function: symbol_overlayed_address
3146 Return one of two addresses (relative to the VMA or to the LMA),
3147 depending on whether the section is mapped or not. */
3148
3149 CORE_ADDR
3150 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3151 {
3152 if (overlay_debugging)
3153 {
3154 /* If the symbol has no section, just return its regular address. */
3155 if (section == 0)
3156 return address;
3157 /* If the symbol's section is not an overlay, just return its
3158 address. */
3159 if (!section_is_overlay (section))
3160 return address;
3161 /* If the symbol's section is mapped, just return its address. */
3162 if (section_is_mapped (section))
3163 return address;
3164 /*
3165 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3166 * then return its LOADED address rather than its vma address!!
3167 */
3168 return overlay_unmapped_address (address, section);
3169 }
3170 return address;
3171 }
3172
3173 /* Function: find_pc_overlay (PC)
3174 Return the best-match overlay section for PC:
3175 If PC matches a mapped overlay section's VMA, return that section.
3176 Else if PC matches an unmapped section's VMA, return that section.
3177 Else if PC matches an unmapped section's LMA, return that section. */
3178
3179 struct obj_section *
3180 find_pc_overlay (CORE_ADDR pc)
3181 {
3182 struct obj_section *best_match = NULL;
3183
3184 if (overlay_debugging)
3185 {
3186 for (objfile *objfile : current_program_space->objfiles ())
3187 for (obj_section *osect : objfile->sections ())
3188 if (section_is_overlay (osect))
3189 {
3190 if (pc_in_mapped_range (pc, osect))
3191 {
3192 if (section_is_mapped (osect))
3193 return osect;
3194 else
3195 best_match = osect;
3196 }
3197 else if (pc_in_unmapped_range (pc, osect))
3198 best_match = osect;
3199 }
3200 }
3201 return best_match;
3202 }
3203
3204 /* Function: find_pc_mapped_section (PC)
3205 If PC falls into the VMA address range of an overlay section that is
3206 currently marked as MAPPED, return that section. Else return NULL. */
3207
3208 struct obj_section *
3209 find_pc_mapped_section (CORE_ADDR pc)
3210 {
3211 if (overlay_debugging)
3212 {
3213 for (objfile *objfile : current_program_space->objfiles ())
3214 for (obj_section *osect : objfile->sections ())
3215 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3216 return osect;
3217 }
3218
3219 return NULL;
3220 }
3221
3222 /* Function: list_overlays_command
3223 Print a list of mapped sections and their PC ranges. */
3224
3225 static void
3226 list_overlays_command (const char *args, int from_tty)
3227 {
3228 int nmapped = 0;
3229
3230 if (overlay_debugging)
3231 {
3232 for (objfile *objfile : current_program_space->objfiles ())
3233 for (obj_section *osect : objfile->sections ())
3234 if (section_is_mapped (osect))
3235 {
3236 struct gdbarch *gdbarch = objfile->arch ();
3237 const char *name;
3238 bfd_vma lma, vma;
3239 int size;
3240
3241 vma = bfd_section_vma (osect->the_bfd_section);
3242 lma = bfd_section_lma (osect->the_bfd_section);
3243 size = bfd_section_size (osect->the_bfd_section);
3244 name = bfd_section_name (osect->the_bfd_section);
3245
3246 gdb_printf ("Section %s, loaded at ", name);
3247 gdb_puts (paddress (gdbarch, lma));
3248 gdb_puts (" - ");
3249 gdb_puts (paddress (gdbarch, lma + size));
3250 gdb_printf (", mapped at ");
3251 gdb_puts (paddress (gdbarch, vma));
3252 gdb_puts (" - ");
3253 gdb_puts (paddress (gdbarch, vma + size));
3254 gdb_puts ("\n");
3255
3256 nmapped++;
3257 }
3258 }
3259 if (nmapped == 0)
3260 gdb_printf (_("No sections are mapped.\n"));
3261 }
3262
3263 /* Function: map_overlay_command
3264 Mark the named section as mapped (ie. residing at its VMA address). */
3265
3266 static void
3267 map_overlay_command (const char *args, int from_tty)
3268 {
3269 if (!overlay_debugging)
3270 error (_("Overlay debugging not enabled. Use "
3271 "either the 'overlay auto' or\n"
3272 "the 'overlay manual' command."));
3273
3274 if (args == 0 || *args == 0)
3275 error (_("Argument required: name of an overlay section"));
3276
3277 /* First, find a section matching the user supplied argument. */
3278 for (objfile *obj_file : current_program_space->objfiles ())
3279 for (obj_section *sec : obj_file->sections ())
3280 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3281 {
3282 /* Now, check to see if the section is an overlay. */
3283 if (!section_is_overlay (sec))
3284 continue; /* not an overlay section */
3285
3286 /* Mark the overlay as "mapped". */
3287 sec->ovly_mapped = 1;
3288
3289 /* Next, make a pass and unmap any sections that are
3290 overlapped by this new section: */
3291 for (objfile *objfile2 : current_program_space->objfiles ())
3292 for (obj_section *sec2 : objfile2->sections ())
3293 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3294 sec2))
3295 {
3296 if (info_verbose)
3297 gdb_printf (_("Note: section %s unmapped by overlap\n"),
3298 bfd_section_name (sec2->the_bfd_section));
3299 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3300 }
3301 return;
3302 }
3303 error (_("No overlay section called %s"), args);
3304 }
3305
3306 /* Function: unmap_overlay_command
3307 Mark the overlay section as unmapped
3308 (ie. resident in its LMA address range, rather than the VMA range). */
3309
3310 static void
3311 unmap_overlay_command (const char *args, int from_tty)
3312 {
3313 if (!overlay_debugging)
3314 error (_("Overlay debugging not enabled. "
3315 "Use either the 'overlay auto' or\n"
3316 "the 'overlay manual' command."));
3317
3318 if (args == 0 || *args == 0)
3319 error (_("Argument required: name of an overlay section"));
3320
3321 /* First, find a section matching the user supplied argument. */
3322 for (objfile *objfile : current_program_space->objfiles ())
3323 for (obj_section *sec : objfile->sections ())
3324 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3325 {
3326 if (!sec->ovly_mapped)
3327 error (_("Section %s is not mapped"), args);
3328 sec->ovly_mapped = 0;
3329 return;
3330 }
3331 error (_("No overlay section called %s"), args);
3332 }
3333
3334 /* Function: overlay_auto_command
3335 A utility command to turn on overlay debugging.
3336 Possibly this should be done via a set/show command. */
3337
3338 static void
3339 overlay_auto_command (const char *args, int from_tty)
3340 {
3341 overlay_debugging = ovly_auto;
3342 enable_overlay_breakpoints ();
3343 if (info_verbose)
3344 gdb_printf (_("Automatic overlay debugging enabled."));
3345 }
3346
3347 /* Function: overlay_manual_command
3348 A utility command to turn on overlay debugging.
3349 Possibly this should be done via a set/show command. */
3350
3351 static void
3352 overlay_manual_command (const char *args, int from_tty)
3353 {
3354 overlay_debugging = ovly_on;
3355 disable_overlay_breakpoints ();
3356 if (info_verbose)
3357 gdb_printf (_("Overlay debugging enabled."));
3358 }
3359
3360 /* Function: overlay_off_command
3361 A utility command to turn on overlay debugging.
3362 Possibly this should be done via a set/show command. */
3363
3364 static void
3365 overlay_off_command (const char *args, int from_tty)
3366 {
3367 overlay_debugging = ovly_off;
3368 disable_overlay_breakpoints ();
3369 if (info_verbose)
3370 gdb_printf (_("Overlay debugging disabled."));
3371 }
3372
3373 static void
3374 overlay_load_command (const char *args, int from_tty)
3375 {
3376 struct gdbarch *gdbarch = get_current_arch ();
3377
3378 if (gdbarch_overlay_update_p (gdbarch))
3379 gdbarch_overlay_update (gdbarch, NULL);
3380 else
3381 error (_("This target does not know how to read its overlay state."));
3382 }
3383
3384 /* Command list chain containing all defined "overlay" subcommands. */
3385 static struct cmd_list_element *overlaylist;
3386
3387 /* Target Overlays for the "Simplest" overlay manager:
3388
3389 This is GDB's default target overlay layer. It works with the
3390 minimal overlay manager supplied as an example by Cygnus. The
3391 entry point is via a function pointer "gdbarch_overlay_update",
3392 so targets that use a different runtime overlay manager can
3393 substitute their own overlay_update function and take over the
3394 function pointer.
3395
3396 The overlay_update function pokes around in the target's data structures
3397 to see what overlays are mapped, and updates GDB's overlay mapping with
3398 this information.
3399
3400 In this simple implementation, the target data structures are as follows:
3401 unsigned _novlys; /# number of overlay sections #/
3402 unsigned _ovly_table[_novlys][4] = {
3403 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3404 {..., ..., ..., ...},
3405 }
3406 unsigned _novly_regions; /# number of overlay regions #/
3407 unsigned _ovly_region_table[_novly_regions][3] = {
3408 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3409 {..., ..., ...},
3410 }
3411 These functions will attempt to update GDB's mappedness state in the
3412 symbol section table, based on the target's mappedness state.
3413
3414 To do this, we keep a cached copy of the target's _ovly_table, and
3415 attempt to detect when the cached copy is invalidated. The main
3416 entry point is "simple_overlay_update(SECT), which looks up SECT in
3417 the cached table and re-reads only the entry for that section from
3418 the target (whenever possible). */
3419
3420 /* Cached, dynamically allocated copies of the target data structures: */
3421 static unsigned (*cache_ovly_table)[4] = 0;
3422 static unsigned cache_novlys = 0;
3423 static CORE_ADDR cache_ovly_table_base = 0;
3424 enum ovly_index
3425 {
3426 VMA, OSIZE, LMA, MAPPED
3427 };
3428
3429 /* Throw away the cached copy of _ovly_table. */
3430
3431 static void
3432 simple_free_overlay_table (void)
3433 {
3434 xfree (cache_ovly_table);
3435 cache_novlys = 0;
3436 cache_ovly_table = NULL;
3437 cache_ovly_table_base = 0;
3438 }
3439
3440 /* Read an array of ints of size SIZE from the target into a local buffer.
3441 Convert to host order. int LEN is number of ints. */
3442
3443 static void
3444 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3445 int len, int size, enum bfd_endian byte_order)
3446 {
3447 /* FIXME (alloca): Not safe if array is very large. */
3448 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3449 int i;
3450
3451 read_memory (memaddr, buf, len * size);
3452 for (i = 0; i < len; i++)
3453 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3454 }
3455
3456 /* Find and grab a copy of the target _ovly_table
3457 (and _novlys, which is needed for the table's size). */
3458
3459 static int
3460 simple_read_overlay_table (void)
3461 {
3462 struct bound_minimal_symbol novlys_msym;
3463 struct bound_minimal_symbol ovly_table_msym;
3464 struct gdbarch *gdbarch;
3465 int word_size;
3466 enum bfd_endian byte_order;
3467
3468 simple_free_overlay_table ();
3469 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3470 if (! novlys_msym.minsym)
3471 {
3472 error (_("Error reading inferior's overlay table: "
3473 "couldn't find `_novlys' variable\n"
3474 "in inferior. Use `overlay manual' mode."));
3475 return 0;
3476 }
3477
3478 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3479 if (! ovly_table_msym.minsym)
3480 {
3481 error (_("Error reading inferior's overlay table: couldn't find "
3482 "`_ovly_table' array\n"
3483 "in inferior. Use `overlay manual' mode."));
3484 return 0;
3485 }
3486
3487 gdbarch = ovly_table_msym.objfile->arch ();
3488 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3489 byte_order = gdbarch_byte_order (gdbarch);
3490
3491 cache_novlys = read_memory_integer (novlys_msym.value_address (),
3492 4, byte_order);
3493 cache_ovly_table
3494 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3495 cache_ovly_table_base = ovly_table_msym.value_address ();
3496 read_target_long_array (cache_ovly_table_base,
3497 (unsigned int *) cache_ovly_table,
3498 cache_novlys * 4, word_size, byte_order);
3499
3500 return 1; /* SUCCESS */
3501 }
3502
3503 /* Function: simple_overlay_update_1
3504 A helper function for simple_overlay_update. Assuming a cached copy
3505 of _ovly_table exists, look through it to find an entry whose vma,
3506 lma and size match those of OSECT. Re-read the entry and make sure
3507 it still matches OSECT (else the table may no longer be valid).
3508 Set OSECT's mapped state to match the entry. Return: 1 for
3509 success, 0 for failure. */
3510
3511 static int
3512 simple_overlay_update_1 (struct obj_section *osect)
3513 {
3514 int i;
3515 asection *bsect = osect->the_bfd_section;
3516 struct gdbarch *gdbarch = osect->objfile->arch ();
3517 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3518 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3519
3520 for (i = 0; i < cache_novlys; i++)
3521 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3522 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3523 {
3524 read_target_long_array (cache_ovly_table_base + i * word_size,
3525 (unsigned int *) cache_ovly_table[i],
3526 4, word_size, byte_order);
3527 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3528 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3529 {
3530 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3531 return 1;
3532 }
3533 else /* Warning! Warning! Target's ovly table has changed! */
3534 return 0;
3535 }
3536 return 0;
3537 }
3538
3539 /* Function: simple_overlay_update
3540 If OSECT is NULL, then update all sections' mapped state
3541 (after re-reading the entire target _ovly_table).
3542 If OSECT is non-NULL, then try to find a matching entry in the
3543 cached ovly_table and update only OSECT's mapped state.
3544 If a cached entry can't be found or the cache isn't valid, then
3545 re-read the entire cache, and go ahead and update all sections. */
3546
3547 void
3548 simple_overlay_update (struct obj_section *osect)
3549 {
3550 /* Were we given an osect to look up? NULL means do all of them. */
3551 if (osect)
3552 /* Have we got a cached copy of the target's overlay table? */
3553 if (cache_ovly_table != NULL)
3554 {
3555 /* Does its cached location match what's currently in the
3556 symtab? */
3557 struct bound_minimal_symbol minsym
3558 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3559
3560 if (minsym.minsym == NULL)
3561 error (_("Error reading inferior's overlay table: couldn't "
3562 "find `_ovly_table' array\n"
3563 "in inferior. Use `overlay manual' mode."));
3564
3565 if (cache_ovly_table_base == minsym.value_address ())
3566 /* Then go ahead and try to look up this single section in
3567 the cache. */
3568 if (simple_overlay_update_1 (osect))
3569 /* Found it! We're done. */
3570 return;
3571 }
3572
3573 /* Cached table no good: need to read the entire table anew.
3574 Or else we want all the sections, in which case it's actually
3575 more efficient to read the whole table in one block anyway. */
3576
3577 if (! simple_read_overlay_table ())
3578 return;
3579
3580 /* Now may as well update all sections, even if only one was requested. */
3581 for (objfile *objfile : current_program_space->objfiles ())
3582 for (obj_section *sect : objfile->sections ())
3583 if (section_is_overlay (sect))
3584 {
3585 int i;
3586 asection *bsect = sect->the_bfd_section;
3587
3588 for (i = 0; i < cache_novlys; i++)
3589 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3590 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3591 { /* obj_section matches i'th entry in ovly_table. */
3592 sect->ovly_mapped = cache_ovly_table[i][MAPPED];
3593 break; /* finished with inner for loop: break out. */
3594 }
3595 }
3596 }
3597
3598 /* Default implementation for sym_relocate. */
3599
3600 bfd_byte *
3601 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3602 bfd_byte *buf)
3603 {
3604 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3605 DWO file. */
3606 bfd *abfd = sectp->owner;
3607
3608 /* We're only interested in sections with relocation
3609 information. */
3610 if ((sectp->flags & SEC_RELOC) == 0)
3611 return NULL;
3612
3613 /* We will handle section offsets properly elsewhere, so relocate as if
3614 all sections begin at 0. */
3615 for (asection *sect : gdb_bfd_sections (abfd))
3616 {
3617 sect->output_section = sect;
3618 sect->output_offset = 0;
3619 }
3620
3621 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3622 }
3623
3624 /* Relocate the contents of a debug section SECTP in ABFD. The
3625 contents are stored in BUF if it is non-NULL, or returned in a
3626 malloc'd buffer otherwise.
3627
3628 For some platforms and debug info formats, shared libraries contain
3629 relocations against the debug sections (particularly for DWARF-2;
3630 one affected platform is PowerPC GNU/Linux, although it depends on
3631 the version of the linker in use). Also, ELF object files naturally
3632 have unresolved relocations for their debug sections. We need to apply
3633 the relocations in order to get the locations of symbols correct.
3634 Another example that may require relocation processing, is the
3635 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3636 debug section. */
3637
3638 bfd_byte *
3639 symfile_relocate_debug_section (struct objfile *objfile,
3640 asection *sectp, bfd_byte *buf)
3641 {
3642 gdb_assert (objfile->sf->sym_relocate);
3643
3644 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3645 }
3646
3647 symfile_segment_data_up
3648 get_symfile_segment_data (bfd *abfd)
3649 {
3650 const struct sym_fns *sf = find_sym_fns (abfd);
3651
3652 if (sf == NULL)
3653 return NULL;
3654
3655 return sf->sym_segments (abfd);
3656 }
3657
3658 /* Given:
3659 - DATA, containing segment addresses from the object file ABFD, and
3660 the mapping from ABFD's sections onto the segments that own them,
3661 and
3662 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3663 segment addresses reported by the target,
3664 store the appropriate offsets for each section in OFFSETS.
3665
3666 If there are fewer entries in SEGMENT_BASES than there are segments
3667 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3668
3669 If there are more entries, then ignore the extra. The target may
3670 not be able to distinguish between an empty data segment and a
3671 missing data segment; a missing text segment is less plausible. */
3672
3673 int
3674 symfile_map_offsets_to_segments (bfd *abfd,
3675 const struct symfile_segment_data *data,
3676 section_offsets &offsets,
3677 int num_segment_bases,
3678 const CORE_ADDR *segment_bases)
3679 {
3680 int i;
3681 asection *sect;
3682
3683 /* It doesn't make sense to call this function unless you have some
3684 segment base addresses. */
3685 gdb_assert (num_segment_bases > 0);
3686
3687 /* If we do not have segment mappings for the object file, we
3688 can not relocate it by segments. */
3689 gdb_assert (data != NULL);
3690 gdb_assert (data->segments.size () > 0);
3691
3692 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3693 {
3694 int which = data->segment_info[i];
3695
3696 gdb_assert (0 <= which && which <= data->segments.size ());
3697
3698 /* Don't bother computing offsets for sections that aren't
3699 loaded as part of any segment. */
3700 if (! which)
3701 continue;
3702
3703 /* Use the last SEGMENT_BASES entry as the address of any extra
3704 segments mentioned in DATA->segment_info. */
3705 if (which > num_segment_bases)
3706 which = num_segment_bases;
3707
3708 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3709 }
3710
3711 return 1;
3712 }
3713
3714 static void
3715 symfile_find_segment_sections (struct objfile *objfile)
3716 {
3717 bfd *abfd = objfile->obfd.get ();
3718 int i;
3719 asection *sect;
3720
3721 symfile_segment_data_up data = get_symfile_segment_data (abfd);
3722 if (data == NULL)
3723 return;
3724
3725 if (data->segments.size () != 1 && data->segments.size () != 2)
3726 return;
3727
3728 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3729 {
3730 int which = data->segment_info[i];
3731
3732 if (which == 1)
3733 {
3734 if (objfile->sect_index_text == -1)
3735 objfile->sect_index_text = sect->index;
3736
3737 if (objfile->sect_index_rodata == -1)
3738 objfile->sect_index_rodata = sect->index;
3739 }
3740 else if (which == 2)
3741 {
3742 if (objfile->sect_index_data == -1)
3743 objfile->sect_index_data = sect->index;
3744
3745 if (objfile->sect_index_bss == -1)
3746 objfile->sect_index_bss = sect->index;
3747 }
3748 }
3749 }
3750
3751 /* Listen for free_objfile events. */
3752
3753 static void
3754 symfile_free_objfile (struct objfile *objfile)
3755 {
3756 /* Remove the target sections owned by this objfile. */
3757 objfile->pspace->remove_target_sections (objfile);
3758 }
3759
3760 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3761 Expand all symtabs that match the specified criteria.
3762 See quick_symbol_functions.expand_symtabs_matching for details. */
3763
3764 bool
3765 expand_symtabs_matching
3766 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3767 const lookup_name_info &lookup_name,
3768 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3769 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3770 block_search_flags search_flags,
3771 domain_search_flags domain)
3772 {
3773 for (objfile *objfile : current_program_space->objfiles ())
3774 if (!objfile->expand_symtabs_matching (file_matcher,
3775 &lookup_name,
3776 symbol_matcher,
3777 expansion_notify,
3778 search_flags,
3779 domain))
3780 return false;
3781 return true;
3782 }
3783
3784 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3785 Map function FUN over every file.
3786 See quick_symbol_functions.map_symbol_filenames for details. */
3787
3788 void
3789 map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
3790 bool need_fullname)
3791 {
3792 for (objfile *objfile : current_program_space->objfiles ())
3793 objfile->map_symbol_filenames (fun, need_fullname);
3794 }
3795
3796 #if GDB_SELF_TEST
3797
3798 namespace selftests {
3799 namespace filename_language {
3800
3801 static void test_filename_language ()
3802 {
3803 /* This test messes up the filename_language_table global. */
3804 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3805
3806 /* Test deducing an unknown extension. */
3807 language lang = deduce_language_from_filename ("myfile.blah");
3808 SELF_CHECK (lang == language_unknown);
3809
3810 /* Test deducing a known extension. */
3811 lang = deduce_language_from_filename ("myfile.c");
3812 SELF_CHECK (lang == language_c);
3813
3814 /* Test adding a new extension using the internal API. */
3815 add_filename_language (".blah", language_pascal);
3816 lang = deduce_language_from_filename ("myfile.blah");
3817 SELF_CHECK (lang == language_pascal);
3818 }
3819
3820 static void
3821 test_set_ext_lang_command ()
3822 {
3823 /* This test messes up the filename_language_table global. */
3824 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3825
3826 /* Confirm that the .hello extension is not known. */
3827 language lang = deduce_language_from_filename ("cake.hello");
3828 SELF_CHECK (lang == language_unknown);
3829
3830 /* Test adding a new extension using the CLI command. */
3831 ext_args = ".hello rust";
3832 set_ext_lang_command (NULL, 1, NULL);
3833
3834 lang = deduce_language_from_filename ("cake.hello");
3835 SELF_CHECK (lang == language_rust);
3836
3837 /* Test overriding an existing extension using the CLI command. */
3838 int size_before = filename_language_table.size ();
3839 ext_args = ".hello pascal";
3840 set_ext_lang_command (NULL, 1, NULL);
3841 int size_after = filename_language_table.size ();
3842
3843 lang = deduce_language_from_filename ("cake.hello");
3844 SELF_CHECK (lang == language_pascal);
3845 SELF_CHECK (size_before == size_after);
3846 }
3847
3848 } /* namespace filename_language */
3849 } /* namespace selftests */
3850
3851 #endif /* GDB_SELF_TEST */
3852
3853 void _initialize_symfile ();
3854 void
3855 _initialize_symfile ()
3856 {
3857 struct cmd_list_element *c;
3858
3859 gdb::observers::free_objfile.attach (symfile_free_objfile, "symfile");
3860
3861 #define READNOW_READNEVER_HELP \
3862 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3863 immediately. This makes the command slower, but may make future operations\n\
3864 faster.\n\
3865 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3866 symbolic debug information."
3867
3868 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3869 Load symbol table from executable file FILE.\n\
3870 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3871 OFF is an optional offset which is added to each section address.\n\
3872 The `file' command can also load symbol tables, as well as setting the file\n\
3873 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3874 set_cmd_completer (c, filename_completer);
3875
3876 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3877 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3878 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3879 [-s SECT-NAME SECT-ADDR]...\n\
3880 ADDR is the starting address of the file's text.\n\
3881 Each '-s' argument provides a section name and address, and\n\
3882 should be specified if the data and bss segments are not contiguous\n\
3883 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3884 OFF is an optional offset which is added to the default load addresses\n\
3885 of all sections for which no other address was specified.\n"
3886 READNOW_READNEVER_HELP),
3887 &cmdlist);
3888 set_cmd_completer (c, filename_completer);
3889
3890 c = add_cmd ("remove-symbol-file", class_files,
3891 remove_symbol_file_command, _("\
3892 Remove a symbol file added via the add-symbol-file command.\n\
3893 Usage: remove-symbol-file FILENAME\n\
3894 remove-symbol-file -a ADDRESS\n\
3895 The file to remove can be identified by its filename or by an address\n\
3896 that lies within the boundaries of this symbol file in memory."),
3897 &cmdlist);
3898
3899 c = add_cmd ("load", class_files, load_command, _("\
3900 Dynamically load FILE into the running program.\n\
3901 FILE symbols are recorded for access from GDB.\n\
3902 Usage: load [FILE] [OFFSET]\n\
3903 An optional load OFFSET may also be given as a literal address.\n\
3904 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3905 on its own."), &cmdlist);
3906 set_cmd_completer (c, filename_completer);
3907
3908 cmd_list_element *overlay_cmd
3909 = add_basic_prefix_cmd ("overlay", class_support,
3910 _("Commands for debugging overlays."), &overlaylist,
3911 0, &cmdlist);
3912
3913 add_com_alias ("ovly", overlay_cmd, class_support, 1);
3914 add_com_alias ("ov", overlay_cmd, class_support, 1);
3915
3916 add_cmd ("map-overlay", class_support, map_overlay_command,
3917 _("Assert that an overlay section is mapped."), &overlaylist);
3918
3919 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3920 _("Assert that an overlay section is unmapped."), &overlaylist);
3921
3922 add_cmd ("list-overlays", class_support, list_overlays_command,
3923 _("List mappings of overlay sections."), &overlaylist);
3924
3925 add_cmd ("manual", class_support, overlay_manual_command,
3926 _("Enable overlay debugging."), &overlaylist);
3927 add_cmd ("off", class_support, overlay_off_command,
3928 _("Disable overlay debugging."), &overlaylist);
3929 add_cmd ("auto", class_support, overlay_auto_command,
3930 _("Enable automatic overlay debugging."), &overlaylist);
3931 add_cmd ("load-target", class_support, overlay_load_command,
3932 _("Read the overlay mapping state from the target."), &overlaylist);
3933
3934 /* Filename extension to source language lookup table: */
3935 add_setshow_string_noescape_cmd ("extension-language", class_files,
3936 &ext_args, _("\
3937 Set mapping between filename extension and source language."), _("\
3938 Show mapping between filename extension and source language."), _("\
3939 Usage: set extension-language .foo bar"),
3940 set_ext_lang_command,
3941 show_ext_args,
3942 &setlist, &showlist);
3943
3944 add_info ("extensions", info_ext_lang_command,
3945 _("All filename extensions associated with a source language."));
3946
3947 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3948 &debug_file_directory, _("\
3949 Set the directories where separate debug symbols are searched for."), _("\
3950 Show the directories where separate debug symbols are searched for."), _("\
3951 Separate debug symbols are first searched for in the same\n\
3952 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3953 and lastly at the path of the directory of the binary with\n\
3954 each global debug-file-directory component prepended."),
3955 NULL,
3956 show_debug_file_directory,
3957 &setlist, &showlist);
3958
3959 add_setshow_enum_cmd ("symbol-loading", no_class,
3960 print_symbol_loading_enums, &print_symbol_loading,
3961 _("\
3962 Set printing of symbol loading messages."), _("\
3963 Show printing of symbol loading messages."), _("\
3964 off == turn all messages off\n\
3965 brief == print messages for the executable,\n\
3966 and brief messages for shared libraries\n\
3967 full == print messages for the executable,\n\
3968 and messages for each shared library."),
3969 NULL,
3970 NULL,
3971 &setprintlist, &showprintlist);
3972
3973 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3974 &separate_debug_file_debug, _("\
3975 Set printing of separate debug info file search debug."), _("\
3976 Show printing of separate debug info file search debug."), _("\
3977 When on, GDB prints the searched locations while looking for separate debug \
3978 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3979
3980 #if GDB_SELF_TEST
3981 selftests::register_test
3982 ("filename_language", selftests::filename_language::test_filename_language);
3983 selftests::register_test
3984 ("set_ext_lang_command",
3985 selftests::filename_language::test_set_ext_lang_command);
3986 #endif
3987 }