]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
import gdb-1999-08-09 snapshot
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40
41 #include <assert.h>
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48 #ifdef HAVE_UNISTD_H
49 #include <unistd.h>
50 #endif
51
52 #ifndef O_BINARY
53 #define O_BINARY 0
54 #endif
55
56 #ifdef HPUXHPPA
57
58 /* Some HP-UX related globals to clear when a new "main"
59 symbol file is loaded. HP-specific. */
60
61 extern int hp_som_som_object_present;
62 extern int hp_cxx_exception_support_initialized;
63 #define RESET_HP_UX_GLOBALS() do {\
64 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
65 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
66 } while (0)
67 #endif
68
69 int (*ui_load_progress_hook) PARAMS ((char *, unsigned long));
70 void (*pre_add_symbol_hook) PARAMS ((char *));
71 void (*post_add_symbol_hook) PARAMS ((void));
72
73 /* Global variables owned by this file */
74 int readnow_symbol_files; /* Read full symbols immediately */
75
76 struct complaint oldsyms_complaint =
77 {
78 "Replacing old symbols for `%s'", 0, 0
79 };
80
81 struct complaint empty_symtab_complaint =
82 {
83 "Empty symbol table found for `%s'", 0, 0
84 };
85
86 /* External variables and functions referenced. */
87
88 extern int info_verbose;
89
90 extern void report_transfer_performance PARAMS ((unsigned long,
91 time_t, time_t));
92
93 /* Functions this file defines */
94
95 #if 0
96 static int simple_read_overlay_region_table PARAMS ((void));
97 static void simple_free_overlay_region_table PARAMS ((void));
98 #endif
99
100 static void set_initial_language PARAMS ((void));
101
102 static void load_command PARAMS ((char *, int));
103
104 static void add_symbol_file_command PARAMS ((char *, int));
105
106 static void add_shared_symbol_files_command PARAMS ((char *, int));
107
108 static void cashier_psymtab PARAMS ((struct partial_symtab *));
109
110 static int compare_psymbols PARAMS ((const void *, const void *));
111
112 static int compare_symbols PARAMS ((const void *, const void *));
113
114 bfd *symfile_bfd_open PARAMS ((char *));
115
116 static void find_sym_fns PARAMS ((struct objfile *));
117
118 static void decrement_reading_symtab PARAMS ((void *));
119
120 static void overlay_invalidate_all PARAMS ((void));
121
122 static int overlay_is_mapped PARAMS ((struct obj_section *));
123
124 void list_overlays_command PARAMS ((char *, int));
125
126 void map_overlay_command PARAMS ((char *, int));
127
128 void unmap_overlay_command PARAMS ((char *, int));
129
130 static void overlay_auto_command PARAMS ((char *, int));
131
132 static void overlay_manual_command PARAMS ((char *, int));
133
134 static void overlay_off_command PARAMS ((char *, int));
135
136 static void overlay_load_command PARAMS ((char *, int));
137
138 static void overlay_command PARAMS ((char *, int));
139
140 static void simple_free_overlay_table PARAMS ((void));
141
142 static void read_target_long_array PARAMS ((CORE_ADDR, unsigned int *, int));
143
144 static int simple_read_overlay_table PARAMS ((void));
145
146 static int simple_overlay_update_1 PARAMS ((struct obj_section *));
147
148 static void add_filename_language PARAMS ((char *ext, enum language lang));
149
150 static void set_ext_lang_command PARAMS ((char *args, int from_tty));
151
152 static void info_ext_lang_command PARAMS ((char *args, int from_tty));
153
154 static void init_filename_language_table PARAMS ((void));
155
156 void _initialize_symfile PARAMS ((void));
157
158 /* List of all available sym_fns. On gdb startup, each object file reader
159 calls add_symtab_fns() to register information on each format it is
160 prepared to read. */
161
162 static struct sym_fns *symtab_fns = NULL;
163
164 /* Flag for whether user will be reloading symbols multiple times.
165 Defaults to ON for VxWorks, otherwise OFF. */
166
167 #ifdef SYMBOL_RELOADING_DEFAULT
168 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
169 #else
170 int symbol_reloading = 0;
171 #endif
172
173 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
174 this variable is interpreted as a threshhold. If adding a new
175 library's symbol table to those already known to the debugger would
176 exceed this threshhold, then the shlib's symbols are not added.
177
178 If non-zero on other platforms, shared library symbols will be added
179 automatically when the inferior is created, new libraries are loaded,
180 or when attaching to the inferior. This is almost always what users
181 will want to have happen; but for very large programs, the startup
182 time will be excessive, and so if this is a problem, the user can
183 clear this flag and then add the shared library symbols as needed.
184 Note that there is a potential for confusion, since if the shared
185 library symbols are not loaded, commands like "info fun" will *not*
186 report all the functions that are actually present.
187
188 Note that HP-UX interprets this variable to mean, "threshhold size
189 in megabytes, where zero means never add". Other platforms interpret
190 this variable to mean, "always add if non-zero, never add if zero."
191 */
192
193 int auto_solib_add = 1;
194 \f
195
196 /* Since this function is called from within qsort, in an ANSI environment
197 it must conform to the prototype for qsort, which specifies that the
198 comparison function takes two "void *" pointers. */
199
200 static int
201 compare_symbols (s1p, s2p)
202 const PTR s1p;
203 const PTR s2p;
204 {
205 register struct symbol **s1, **s2;
206
207 s1 = (struct symbol **) s1p;
208 s2 = (struct symbol **) s2p;
209
210 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
211 }
212
213 /*
214
215 LOCAL FUNCTION
216
217 compare_psymbols -- compare two partial symbols by name
218
219 DESCRIPTION
220
221 Given pointers to pointers to two partial symbol table entries,
222 compare them by name and return -N, 0, or +N (ala strcmp).
223 Typically used by sorting routines like qsort().
224
225 NOTES
226
227 Does direct compare of first two characters before punting
228 and passing to strcmp for longer compares. Note that the
229 original version had a bug whereby two null strings or two
230 identically named one character strings would return the
231 comparison of memory following the null byte.
232
233 */
234
235 static int
236 compare_psymbols (s1p, s2p)
237 const PTR s1p;
238 const PTR s2p;
239 {
240 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
241 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
242
243 if ((st1[0] - st2[0]) || !st1[0])
244 {
245 return (st1[0] - st2[0]);
246 }
247 else if ((st1[1] - st2[1]) || !st1[1])
248 {
249 return (st1[1] - st2[1]);
250 }
251 else
252 {
253 /* Note: I replaced the STRCMP line (commented out below)
254 * with a simpler "strcmp()" which compares the 2 strings
255 * from the beginning. (STRCMP is a macro which first compares
256 * the initial characters, then falls back on strcmp).
257 * The reason is that the STRCMP line was tickling a C compiler
258 * bug on HP-UX 10.30, which is avoided with the simpler
259 * code. The performance gain from the more complicated code
260 * is negligible, given that we have already checked the
261 * initial 2 characters above. I reported the compiler bug,
262 * and once it is fixed the original line can be put back. RT
263 */
264 /* return ( STRCMP (st1 + 2, st2 + 2)); */
265 return (strcmp (st1, st2));
266 }
267 }
268
269 void
270 sort_pst_symbols (pst)
271 struct partial_symtab *pst;
272 {
273 /* Sort the global list; don't sort the static list */
274
275 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
276 pst->n_global_syms, sizeof (struct partial_symbol *),
277 compare_psymbols);
278 }
279
280 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
281
282 void
283 sort_block_syms (b)
284 register struct block *b;
285 {
286 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
287 sizeof (struct symbol *), compare_symbols);
288 }
289
290 /* Call sort_symtab_syms to sort alphabetically
291 the symbols of each block of one symtab. */
292
293 void
294 sort_symtab_syms (s)
295 register struct symtab *s;
296 {
297 register struct blockvector *bv;
298 int nbl;
299 int i;
300 register struct block *b;
301
302 if (s == 0)
303 return;
304 bv = BLOCKVECTOR (s);
305 nbl = BLOCKVECTOR_NBLOCKS (bv);
306 for (i = 0; i < nbl; i++)
307 {
308 b = BLOCKVECTOR_BLOCK (bv, i);
309 if (BLOCK_SHOULD_SORT (b))
310 sort_block_syms (b);
311 }
312 }
313
314 /* Make a null terminated copy of the string at PTR with SIZE characters in
315 the obstack pointed to by OBSTACKP . Returns the address of the copy.
316 Note that the string at PTR does not have to be null terminated, I.E. it
317 may be part of a larger string and we are only saving a substring. */
318
319 char *
320 obsavestring (ptr, size, obstackp)
321 char *ptr;
322 int size;
323 struct obstack *obstackp;
324 {
325 register char *p = (char *) obstack_alloc (obstackp, size + 1);
326 /* Open-coded memcpy--saves function call time. These strings are usually
327 short. FIXME: Is this really still true with a compiler that can
328 inline memcpy? */
329 {
330 register char *p1 = ptr;
331 register char *p2 = p;
332 char *end = ptr + size;
333 while (p1 != end)
334 *p2++ = *p1++;
335 }
336 p[size] = 0;
337 return p;
338 }
339
340 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
341 in the obstack pointed to by OBSTACKP. */
342
343 char *
344 obconcat (obstackp, s1, s2, s3)
345 struct obstack *obstackp;
346 const char *s1, *s2, *s3;
347 {
348 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
349 register char *val = (char *) obstack_alloc (obstackp, len);
350 strcpy (val, s1);
351 strcat (val, s2);
352 strcat (val, s3);
353 return val;
354 }
355
356 /* True if we are nested inside psymtab_to_symtab. */
357
358 int currently_reading_symtab = 0;
359
360 static void
361 decrement_reading_symtab (dummy)
362 void *dummy;
363 {
364 currently_reading_symtab--;
365 }
366
367 /* Get the symbol table that corresponds to a partial_symtab.
368 This is fast after the first time you do it. In fact, there
369 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
370 case inline. */
371
372 struct symtab *
373 psymtab_to_symtab (pst)
374 register struct partial_symtab *pst;
375 {
376 /* If it's been looked up before, return it. */
377 if (pst->symtab)
378 return pst->symtab;
379
380 /* If it has not yet been read in, read it. */
381 if (!pst->readin)
382 {
383 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
384 currently_reading_symtab++;
385 (*pst->read_symtab) (pst);
386 do_cleanups (back_to);
387 }
388
389 return pst->symtab;
390 }
391
392 /* Initialize entry point information for this objfile. */
393
394 void
395 init_entry_point_info (objfile)
396 struct objfile *objfile;
397 {
398 /* Save startup file's range of PC addresses to help blockframe.c
399 decide where the bottom of the stack is. */
400
401 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
402 {
403 /* Executable file -- record its entry point so we'll recognize
404 the startup file because it contains the entry point. */
405 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
406 }
407 else
408 {
409 /* Examination of non-executable.o files. Short-circuit this stuff. */
410 objfile->ei.entry_point = INVALID_ENTRY_POINT;
411 }
412 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
413 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
414 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
415 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
416 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
417 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
418 }
419
420 /* Get current entry point address. */
421
422 CORE_ADDR
423 entry_point_address ()
424 {
425 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
426 }
427
428 /* Remember the lowest-addressed loadable section we've seen.
429 This function is called via bfd_map_over_sections.
430
431 In case of equal vmas, the section with the largest size becomes the
432 lowest-addressed loadable section.
433
434 If the vmas and sizes are equal, the last section is considered the
435 lowest-addressed loadable section. */
436
437 void
438 find_lowest_section (abfd, sect, obj)
439 bfd *abfd;
440 asection *sect;
441 PTR obj;
442 {
443 asection **lowest = (asection **) obj;
444
445 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
446 return;
447 if (!*lowest)
448 *lowest = sect; /* First loadable section */
449 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
450 *lowest = sect; /* A lower loadable section */
451 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
452 && (bfd_section_size (abfd, (*lowest))
453 <= bfd_section_size (abfd, sect)))
454 *lowest = sect;
455 }
456
457 /* Parse the user's idea of an offset for dynamic linking, into our idea
458 of how to represent it for fast symbol reading. This is the default
459 version of the sym_fns.sym_offsets function for symbol readers that
460 don't need to do anything special. It allocates a section_offsets table
461 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
462
463 struct section_offsets *
464 default_symfile_offsets (objfile, addr)
465 struct objfile *objfile;
466 CORE_ADDR addr;
467 {
468 struct section_offsets *section_offsets;
469 int i;
470
471 objfile->num_sections = SECT_OFF_MAX;
472 section_offsets = (struct section_offsets *)
473 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
474 memset (section_offsets, 0, SIZEOF_SECTION_OFFSETS);
475
476 for (i = 0; i < SECT_OFF_MAX; i++)
477 ANOFFSET (section_offsets, i) = addr;
478
479 return section_offsets;
480 }
481
482
483 /* Process a symbol file, as either the main file or as a dynamically
484 loaded file.
485
486 OBJFILE is where the symbols are to be read from.
487
488 ADDR is the address where the text segment was loaded, unless the
489 objfile is the main symbol file, in which case it is zero.
490
491 MAINLINE is nonzero if this is the main symbol file, or zero if
492 it's an extra symbol file such as dynamically loaded code.
493
494 VERBO is nonzero if the caller has printed a verbose message about
495 the symbol reading (and complaints can be more terse about it). */
496
497 void
498 syms_from_objfile (objfile, addr, mainline, verbo)
499 struct objfile *objfile;
500 CORE_ADDR addr;
501 int mainline;
502 int verbo;
503 {
504 struct section_offsets *section_offsets;
505 asection *lowest_sect;
506 struct cleanup *old_chain;
507
508 init_entry_point_info (objfile);
509 find_sym_fns (objfile);
510
511 /* Make sure that partially constructed symbol tables will be cleaned up
512 if an error occurs during symbol reading. */
513 old_chain = make_cleanup ((make_cleanup_func) free_objfile, objfile);
514
515 if (mainline)
516 {
517 /* We will modify the main symbol table, make sure that all its users
518 will be cleaned up if an error occurs during symbol reading. */
519 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
520
521 /* Since no error yet, throw away the old symbol table. */
522
523 if (symfile_objfile != NULL)
524 {
525 free_objfile (symfile_objfile);
526 symfile_objfile = NULL;
527 }
528
529 /* Currently we keep symbols from the add-symbol-file command.
530 If the user wants to get rid of them, they should do "symbol-file"
531 without arguments first. Not sure this is the best behavior
532 (PR 2207). */
533
534 (*objfile->sf->sym_new_init) (objfile);
535 }
536
537 /* Convert addr into an offset rather than an absolute address.
538 We find the lowest address of a loaded segment in the objfile,
539 and assume that <addr> is where that got loaded. Due to historical
540 precedent, we warn if that doesn't happen to be a text segment. */
541
542 if (mainline)
543 {
544 addr = 0; /* No offset from objfile addresses. */
545 }
546 else
547 {
548 lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text");
549 if (lowest_sect == NULL)
550 bfd_map_over_sections (objfile->obfd, find_lowest_section,
551 (PTR) &lowest_sect);
552
553 if (lowest_sect == NULL)
554 warning ("no loadable sections found in added symbol-file %s",
555 objfile->name);
556 else if ((bfd_get_section_flags (objfile->obfd, lowest_sect) & SEC_CODE)
557 == 0)
558 /* FIXME-32x64--assumes bfd_vma fits in long. */
559 warning ("Lowest section in %s is %s at 0x%lx",
560 objfile->name,
561 bfd_section_name (objfile->obfd, lowest_sect),
562 (unsigned long) bfd_section_vma (objfile->obfd, lowest_sect));
563
564 if (lowest_sect)
565 addr -= bfd_section_vma (objfile->obfd, lowest_sect);
566 }
567
568 /* Initialize symbol reading routines for this objfile, allow complaints to
569 appear for this new file, and record how verbose to be, then do the
570 initial symbol reading for this file. */
571
572 (*objfile->sf->sym_init) (objfile);
573 clear_complaints (1, verbo);
574
575 section_offsets = (*objfile->sf->sym_offsets) (objfile, addr);
576 objfile->section_offsets = section_offsets;
577
578 #ifndef IBM6000_TARGET
579 /* This is a SVR4/SunOS specific hack, I think. In any event, it
580 screws RS/6000. sym_offsets should be doing this sort of thing,
581 because it knows the mapping between bfd sections and
582 section_offsets. */
583 /* This is a hack. As far as I can tell, section offsets are not
584 target dependent. They are all set to addr with a couple of
585 exceptions. The exceptions are sysvr4 shared libraries, whose
586 offsets are kept in solib structures anyway and rs6000 xcoff
587 which handles shared libraries in a completely unique way.
588
589 Section offsets are built similarly, except that they are built
590 by adding addr in all cases because there is no clear mapping
591 from section_offsets into actual sections. Note that solib.c
592 has a different algorithm for finding section offsets.
593
594 These should probably all be collapsed into some target
595 independent form of shared library support. FIXME. */
596
597 if (addr)
598 {
599 struct obj_section *s;
600
601 ALL_OBJFILE_OSECTIONS (objfile, s)
602 {
603 s->addr -= s->offset;
604 s->addr += addr;
605 s->endaddr -= s->offset;
606 s->endaddr += addr;
607 s->offset += addr;
608 }
609 }
610 #endif /* not IBM6000_TARGET */
611
612 (*objfile->sf->sym_read) (objfile, mainline);
613
614 if (!have_partial_symbols () && !have_full_symbols ())
615 {
616 wrap_here ("");
617 printf_filtered ("(no debugging symbols found)...");
618 wrap_here ("");
619 }
620
621 /* Don't allow char * to have a typename (else would get caddr_t).
622 Ditto void *. FIXME: Check whether this is now done by all the
623 symbol readers themselves (many of them now do), and if so remove
624 it from here. */
625
626 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
627 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
628
629 /* Mark the objfile has having had initial symbol read attempted. Note
630 that this does not mean we found any symbols... */
631
632 objfile->flags |= OBJF_SYMS;
633
634 /* Discard cleanups as symbol reading was successful. */
635
636 discard_cleanups (old_chain);
637
638 /* Call this after reading in a new symbol table to give target
639 dependant code a crack at the new symbols. For instance, this
640 could be used to update the values of target-specific symbols GDB
641 needs to keep track of (such as _sigtramp, or whatever). */
642
643 TARGET_SYMFILE_POSTREAD (objfile);
644 }
645
646 /* Perform required actions after either reading in the initial
647 symbols for a new objfile, or mapping in the symbols from a reusable
648 objfile. */
649
650 void
651 new_symfile_objfile (objfile, mainline, verbo)
652 struct objfile *objfile;
653 int mainline;
654 int verbo;
655 {
656
657 /* If this is the main symbol file we have to clean up all users of the
658 old main symbol file. Otherwise it is sufficient to fixup all the
659 breakpoints that may have been redefined by this symbol file. */
660 if (mainline)
661 {
662 /* OK, make it the "real" symbol file. */
663 symfile_objfile = objfile;
664
665 clear_symtab_users ();
666 }
667 else
668 {
669 breakpoint_re_set ();
670 }
671
672 /* We're done reading the symbol file; finish off complaints. */
673 clear_complaints (0, verbo);
674 }
675
676 /* Process a symbol file, as either the main file or as a dynamically
677 loaded file.
678
679 NAME is the file name (which will be tilde-expanded and made
680 absolute herein) (but we don't free or modify NAME itself).
681 FROM_TTY says how verbose to be. MAINLINE specifies whether this
682 is the main symbol file, or whether it's an extra symbol file such
683 as dynamically loaded code. If !mainline, ADDR is the address
684 where the text segment was loaded.
685
686 USER_LOADED is TRUE if the add-symbol-file command was how this
687 symbol file came to be processed.
688
689 IS_SOLIB is TRUE if this symbol file represents a solib, as discovered
690 by the target's implementation of the solib package.
691
692 Upon success, returns a pointer to the objfile that was added.
693 Upon failure, jumps back to command level (never returns). */
694
695 struct objfile *
696 symbol_file_add (name, from_tty, addr, mainline, mapped, readnow, user_loaded, is_solib)
697 char *name;
698 int from_tty;
699 CORE_ADDR addr;
700 int mainline;
701 int mapped;
702 int readnow;
703 int user_loaded;
704 int is_solib;
705 {
706 struct objfile *objfile;
707 struct partial_symtab *psymtab;
708 bfd *abfd;
709
710 /* Open a bfd for the file, and give user a chance to burp if we'd be
711 interactively wiping out any existing symbols. */
712
713 abfd = symfile_bfd_open (name);
714
715 if ((have_full_symbols () || have_partial_symbols ())
716 && mainline
717 && from_tty
718 && !query ("Load new symbol table from \"%s\"? ", name))
719 error ("Not confirmed.");
720
721 objfile = allocate_objfile (abfd, mapped, user_loaded, is_solib);
722
723 /* If the objfile uses a mapped symbol file, and we have a psymtab for
724 it, then skip reading any symbols at this time. */
725
726 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
727 {
728 /* We mapped in an existing symbol table file that already has had
729 initial symbol reading performed, so we can skip that part. Notify
730 the user that instead of reading the symbols, they have been mapped.
731 */
732 if (from_tty || info_verbose)
733 {
734 printf_filtered ("Mapped symbols for %s...", name);
735 wrap_here ("");
736 gdb_flush (gdb_stdout);
737 }
738 init_entry_point_info (objfile);
739 find_sym_fns (objfile);
740 }
741 else
742 {
743 /* We either created a new mapped symbol table, mapped an existing
744 symbol table file which has not had initial symbol reading
745 performed, or need to read an unmapped symbol table. */
746 if (from_tty || info_verbose)
747 {
748 if (pre_add_symbol_hook)
749 pre_add_symbol_hook (name);
750 else
751 {
752 printf_filtered ("Reading symbols from %s...", name);
753 wrap_here ("");
754 gdb_flush (gdb_stdout);
755 }
756 }
757 syms_from_objfile (objfile, addr, mainline, from_tty);
758 }
759
760 /* We now have at least a partial symbol table. Check to see if the
761 user requested that all symbols be read on initial access via either
762 the gdb startup command line or on a per symbol file basis. Expand
763 all partial symbol tables for this objfile if so. */
764
765 if (readnow || readnow_symbol_files)
766 {
767 if (from_tty || info_verbose)
768 {
769 printf_filtered ("expanding to full symbols...");
770 wrap_here ("");
771 gdb_flush (gdb_stdout);
772 }
773
774 for (psymtab = objfile->psymtabs;
775 psymtab != NULL;
776 psymtab = psymtab->next)
777 {
778 psymtab_to_symtab (psymtab);
779 }
780 }
781
782 if (from_tty || info_verbose)
783 {
784 if (post_add_symbol_hook)
785 post_add_symbol_hook ();
786 else
787 {
788 printf_filtered ("done.\n");
789 gdb_flush (gdb_stdout);
790 }
791 }
792
793 new_symfile_objfile (objfile, mainline, from_tty);
794
795 target_new_objfile (objfile);
796
797 return (objfile);
798 }
799
800 /* This is the symbol-file command. Read the file, analyze its
801 symbols, and add a struct symtab to a symtab list. The syntax of
802 the command is rather bizarre--(1) buildargv implements various
803 quoting conventions which are undocumented and have little or
804 nothing in common with the way things are quoted (or not quoted)
805 elsewhere in GDB, (2) options are used, which are not generally
806 used in GDB (perhaps "set mapped on", "set readnow on" would be
807 better), (3) the order of options matters, which is contrary to GNU
808 conventions (because it is confusing and inconvenient). */
809
810 void
811 symbol_file_command (args, from_tty)
812 char *args;
813 int from_tty;
814 {
815 char **argv;
816 char *name = NULL;
817 CORE_ADDR text_relocation = 0; /* text_relocation */
818 struct cleanup *cleanups;
819 int mapped = 0;
820 int readnow = 0;
821
822 dont_repeat ();
823
824 if (args == NULL)
825 {
826 if ((have_full_symbols () || have_partial_symbols ())
827 && from_tty
828 && !query ("Discard symbol table from `%s'? ",
829 symfile_objfile->name))
830 error ("Not confirmed.");
831 free_all_objfiles ();
832
833 /* solib descriptors may have handles to objfiles. Since their
834 storage has just been released, we'd better wipe the solib
835 descriptors as well.
836 */
837 #if defined(SOLIB_RESTART)
838 SOLIB_RESTART ();
839 #endif
840
841 symfile_objfile = NULL;
842 if (from_tty)
843 {
844 printf_unfiltered ("No symbol file now.\n");
845 }
846 #ifdef HPUXHPPA
847 RESET_HP_UX_GLOBALS ();
848 #endif
849 }
850 else
851 {
852 if ((argv = buildargv (args)) == NULL)
853 {
854 nomem (0);
855 }
856 cleanups = make_cleanup_freeargv (argv);
857 while (*argv != NULL)
858 {
859 if (STREQ (*argv, "-mapped"))
860 {
861 mapped = 1;
862 }
863 else if (STREQ (*argv, "-readnow"))
864 {
865 readnow = 1;
866 }
867 else if (**argv == '-')
868 {
869 error ("unknown option `%s'", *argv);
870 }
871 else
872 {
873 char *p;
874
875 name = *argv;
876
877 /* this is for rombug remote only, to get the text relocation by
878 using link command */
879 p = strrchr (name, '/');
880 if (p != NULL)
881 p++;
882 else
883 p = name;
884
885 target_link (p, &text_relocation);
886
887 if (text_relocation == (CORE_ADDR) 0)
888 return;
889 else if (text_relocation == (CORE_ADDR) -1)
890 {
891 symbol_file_add (name, from_tty, (CORE_ADDR) 0,
892 1, mapped, readnow, 1, 0);
893 #ifdef HPUXHPPA
894 RESET_HP_UX_GLOBALS ();
895 #endif
896 }
897 else
898 symbol_file_add (name, from_tty, (CORE_ADDR) text_relocation,
899 0, mapped, readnow, 1, 0);
900
901 /* Getting new symbols may change our opinion about what is
902 frameless. */
903 reinit_frame_cache ();
904
905 set_initial_language ();
906 }
907 argv++;
908 }
909
910 if (name == NULL)
911 {
912 error ("no symbol file name was specified");
913 }
914 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
915 do_cleanups (cleanups);
916 }
917 }
918
919 /* Set the initial language.
920
921 A better solution would be to record the language in the psymtab when reading
922 partial symbols, and then use it (if known) to set the language. This would
923 be a win for formats that encode the language in an easily discoverable place,
924 such as DWARF. For stabs, we can jump through hoops looking for specially
925 named symbols or try to intuit the language from the specific type of stabs
926 we find, but we can't do that until later when we read in full symbols.
927 FIXME. */
928
929 static void
930 set_initial_language ()
931 {
932 struct partial_symtab *pst;
933 enum language lang = language_unknown;
934
935 pst = find_main_psymtab ();
936 if (pst != NULL)
937 {
938 if (pst->filename != NULL)
939 {
940 lang = deduce_language_from_filename (pst->filename);
941 }
942 if (lang == language_unknown)
943 {
944 /* Make C the default language */
945 lang = language_c;
946 }
947 set_language (lang);
948 expected_language = current_language; /* Don't warn the user */
949 }
950 }
951
952 /* Open file specified by NAME and hand it off to BFD for preliminary
953 analysis. Result is a newly initialized bfd *, which includes a newly
954 malloc'd` copy of NAME (tilde-expanded and made absolute).
955 In case of trouble, error() is called. */
956
957 bfd *
958 symfile_bfd_open (name)
959 char *name;
960 {
961 bfd *sym_bfd;
962 int desc;
963 char *absolute_name;
964
965
966
967 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
968
969 /* Look down path for it, allocate 2nd new malloc'd copy. */
970 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
971 #if defined(__GO32__) || defined(_WIN32)
972 if (desc < 0)
973 {
974 char *exename = alloca (strlen (name) + 5);
975 strcat (strcpy (exename, name), ".exe");
976 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
977 0, &absolute_name);
978 }
979 #endif
980 if (desc < 0)
981 {
982 make_cleanup (free, name);
983 perror_with_name (name);
984 }
985 free (name); /* Free 1st new malloc'd copy */
986 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
987 /* It'll be freed in free_objfile(). */
988
989 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
990 if (!sym_bfd)
991 {
992 close (desc);
993 make_cleanup (free, name);
994 error ("\"%s\": can't open to read symbols: %s.", name,
995 bfd_errmsg (bfd_get_error ()));
996 }
997 sym_bfd->cacheable = true;
998
999 if (!bfd_check_format (sym_bfd, bfd_object))
1000 {
1001 /* FIXME: should be checking for errors from bfd_close (for one thing,
1002 on error it does not free all the storage associated with the
1003 bfd). */
1004 bfd_close (sym_bfd); /* This also closes desc */
1005 make_cleanup (free, name);
1006 error ("\"%s\": can't read symbols: %s.", name,
1007 bfd_errmsg (bfd_get_error ()));
1008 }
1009 return (sym_bfd);
1010 }
1011
1012 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1013 startup by the _initialize routine in each object file format reader,
1014 to register information about each format the the reader is prepared
1015 to handle. */
1016
1017 void
1018 add_symtab_fns (sf)
1019 struct sym_fns *sf;
1020 {
1021 sf->next = symtab_fns;
1022 symtab_fns = sf;
1023 }
1024
1025
1026 /* Initialize to read symbols from the symbol file sym_bfd. It either
1027 returns or calls error(). The result is an initialized struct sym_fns
1028 in the objfile structure, that contains cached information about the
1029 symbol file. */
1030
1031 static void
1032 find_sym_fns (objfile)
1033 struct objfile *objfile;
1034 {
1035 struct sym_fns *sf;
1036 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1037 char *our_target = bfd_get_target (objfile->obfd);
1038
1039 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1040 if (STREQ (our_target, "aixcoff-rs6000") ||
1041 STREQ (our_target, "xcoff-powermac"))
1042 our_flavour = (enum bfd_flavour) -1;
1043
1044 /* Special kludge for apollo. See dstread.c. */
1045 if (STREQN (our_target, "apollo", 6))
1046 our_flavour = (enum bfd_flavour) -2;
1047
1048 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1049 {
1050 if (our_flavour == sf->sym_flavour)
1051 {
1052 objfile->sf = sf;
1053 return;
1054 }
1055 }
1056 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1057 bfd_get_target (objfile->obfd));
1058 }
1059 \f
1060 /* This function runs the load command of our current target. */
1061
1062 static void
1063 load_command (arg, from_tty)
1064 char *arg;
1065 int from_tty;
1066 {
1067 if (arg == NULL)
1068 arg = get_exec_file (1);
1069 target_load (arg, from_tty);
1070 }
1071
1072 /* This version of "load" should be usable for any target. Currently
1073 it is just used for remote targets, not inftarg.c or core files,
1074 on the theory that only in that case is it useful.
1075
1076 Avoiding xmodem and the like seems like a win (a) because we don't have
1077 to worry about finding it, and (b) On VMS, fork() is very slow and so
1078 we don't want to run a subprocess. On the other hand, I'm not sure how
1079 performance compares. */
1080 #define GENERIC_LOAD_CHUNK 256
1081 #define VALIDATE_DOWNLOAD 0
1082 void
1083 generic_load (filename, from_tty)
1084 char *filename;
1085 int from_tty;
1086 {
1087 struct cleanup *old_cleanups;
1088 asection *s;
1089 bfd *loadfile_bfd;
1090 time_t start_time, end_time; /* Start and end times of download */
1091 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1092 int n;
1093 unsigned long load_offset = 0; /* offset to add to vma for each section */
1094 char buf[GENERIC_LOAD_CHUNK + 8];
1095 #if VALIDATE_DOWNLOAD
1096 char verify_buffer[GENERIC_LOAD_CHUNK + 8];
1097 #endif
1098
1099 /* enable user to specify address for downloading as 2nd arg to load */
1100 n = sscanf (filename, "%s 0x%lx", buf, &load_offset);
1101 if (n > 1)
1102 filename = buf;
1103 else
1104 load_offset = 0;
1105
1106 loadfile_bfd = bfd_openr (filename, gnutarget);
1107 if (loadfile_bfd == NULL)
1108 {
1109 perror_with_name (filename);
1110 return;
1111 }
1112 /* FIXME: should be checking for errors from bfd_close (for one thing,
1113 on error it does not free all the storage associated with the
1114 bfd). */
1115 old_cleanups = make_cleanup ((make_cleanup_func) bfd_close, loadfile_bfd);
1116
1117 if (!bfd_check_format (loadfile_bfd, bfd_object))
1118 {
1119 error ("\"%s\" is not an object file: %s", filename,
1120 bfd_errmsg (bfd_get_error ()));
1121 }
1122
1123 start_time = time (NULL);
1124
1125 for (s = loadfile_bfd->sections; s; s = s->next)
1126 {
1127 if (s->flags & SEC_LOAD)
1128 {
1129 bfd_size_type size;
1130
1131 size = bfd_get_section_size_before_reloc (s);
1132 if (size > 0)
1133 {
1134 char *buffer;
1135 struct cleanup *old_chain;
1136 bfd_vma lma;
1137 unsigned long l = size;
1138 int err;
1139 char *sect;
1140 unsigned long sent;
1141 unsigned long len;
1142
1143 l = l > GENERIC_LOAD_CHUNK ? GENERIC_LOAD_CHUNK : l;
1144
1145 buffer = xmalloc (size);
1146 old_chain = make_cleanup (free, buffer);
1147
1148 lma = s->lma;
1149 lma += load_offset;
1150
1151 /* Is this really necessary? I guess it gives the user something
1152 to look at during a long download. */
1153 printf_filtered ("Loading section %s, size 0x%lx lma ",
1154 bfd_get_section_name (loadfile_bfd, s),
1155 (unsigned long) size);
1156 print_address_numeric (lma, 1, gdb_stdout);
1157 printf_filtered ("\n");
1158
1159 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1160
1161 sect = (char *) bfd_get_section_name (loadfile_bfd, s);
1162 sent = 0;
1163 do
1164 {
1165 len = (size - sent) < l ? (size - sent) : l;
1166 sent += len;
1167 err = target_write_memory (lma, buffer, len);
1168 if (ui_load_progress_hook)
1169 if (ui_load_progress_hook (sect, sent))
1170 error ("Canceled the download");
1171 #if VALIDATE_DOWNLOAD
1172 /* Broken memories and broken monitors manifest themselves
1173 here when bring new computers to life.
1174 This doubles already slow downloads.
1175 */
1176 if (err)
1177 break;
1178 {
1179 target_read_memory (lma, verify_buffer, len);
1180 if (0 != bcmp (buffer, verify_buffer, len))
1181 error ("Download verify failed at %08x",
1182 (unsigned long) lma);
1183 }
1184
1185 #endif
1186 data_count += len;
1187 lma += len;
1188 buffer += len;
1189 } /* od */
1190 while (err == 0 && sent < size);
1191
1192 if (err != 0)
1193 error ("Memory access error while loading section %s.",
1194 bfd_get_section_name (loadfile_bfd, s));
1195
1196 do_cleanups (old_chain);
1197 }
1198 }
1199 }
1200
1201 end_time = time (NULL);
1202 {
1203 unsigned long entry;
1204 entry = bfd_get_start_address (loadfile_bfd);
1205 printf_filtered ("Start address 0x%lx , load size %d\n", entry, data_count);
1206 /* We were doing this in remote-mips.c, I suspect it is right
1207 for other targets too. */
1208 write_pc (entry);
1209 }
1210
1211 /* FIXME: are we supposed to call symbol_file_add or not? According to
1212 a comment from remote-mips.c (where a call to symbol_file_add was
1213 commented out), making the call confuses GDB if more than one file is
1214 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1215 does. */
1216
1217 report_transfer_performance (data_count, start_time, end_time);
1218
1219 do_cleanups (old_cleanups);
1220 }
1221
1222 /* Report how fast the transfer went. */
1223
1224 void
1225 report_transfer_performance (data_count, start_time, end_time)
1226 unsigned long data_count;
1227 time_t start_time, end_time;
1228 {
1229 printf_filtered ("Transfer rate: ");
1230 if (end_time != start_time)
1231 printf_filtered ("%d bits/sec",
1232 (data_count * 8) / (end_time - start_time));
1233 else
1234 printf_filtered ("%d bits in <1 sec", (data_count * 8));
1235 printf_filtered (".\n");
1236 }
1237
1238 /* This function allows the addition of incrementally linked object files.
1239 It does not modify any state in the target, only in the debugger. */
1240
1241 /* ARGSUSED */
1242 static void
1243 add_symbol_file_command (args, from_tty)
1244 char *args;
1245 int from_tty;
1246 {
1247 char *name = NULL;
1248 CORE_ADDR text_addr;
1249 char *arg;
1250 int readnow = 0;
1251 int mapped = 0;
1252
1253 dont_repeat ();
1254
1255 if (args == NULL)
1256 {
1257 error ("add-symbol-file takes a file name and an address");
1258 }
1259
1260 /* Make a copy of the string that we can safely write into. */
1261
1262 args = strdup (args);
1263 make_cleanup (free, args);
1264
1265 /* Pick off any -option args and the file name. */
1266
1267 while ((*args != '\000') && (name == NULL))
1268 {
1269 while (isspace (*args))
1270 {
1271 args++;
1272 }
1273 arg = args;
1274 while ((*args != '\000') && !isspace (*args))
1275 {
1276 args++;
1277 }
1278 if (*args != '\000')
1279 {
1280 *args++ = '\000';
1281 }
1282 if (*arg != '-')
1283 {
1284 name = arg;
1285 }
1286 else if (STREQ (arg, "-mapped"))
1287 {
1288 mapped = 1;
1289 }
1290 else if (STREQ (arg, "-readnow"))
1291 {
1292 readnow = 1;
1293 }
1294 else
1295 {
1296 error ("unknown option `%s'", arg);
1297 }
1298 }
1299
1300 /* After picking off any options and the file name, args should be
1301 left pointing at the remainder of the command line, which should
1302 be the address expression to evaluate. */
1303
1304 if (name == NULL)
1305 {
1306 error ("add-symbol-file takes a file name");
1307 }
1308 name = tilde_expand (name);
1309 make_cleanup (free, name);
1310
1311 if (*args != '\000')
1312 {
1313 text_addr = parse_and_eval_address (args);
1314 }
1315 else
1316 {
1317 target_link (name, &text_addr);
1318 if (text_addr == (CORE_ADDR) -1)
1319 error ("Don't know how to get text start location for this file");
1320 }
1321
1322 /* FIXME-32x64: Assumes text_addr fits in a long. */
1323 if ((from_tty)
1324 && (!query ("add symbol table from file \"%s\" at text_addr = %s?\n",
1325 name, local_hex_string ((unsigned long) text_addr))))
1326 error ("Not confirmed.");
1327
1328 symbol_file_add (name, from_tty, text_addr, 0, mapped, readnow,
1329 1, /* user_loaded */
1330 0); /* We'll guess it's ! is_solib */
1331
1332 /* Getting new symbols may change our opinion about what is
1333 frameless. */
1334 reinit_frame_cache ();
1335 }
1336 \f
1337 static void
1338 add_shared_symbol_files_command (args, from_tty)
1339 char *args;
1340 int from_tty;
1341 {
1342 #ifdef ADD_SHARED_SYMBOL_FILES
1343 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1344 #else
1345 error ("This command is not available in this configuration of GDB.");
1346 #endif
1347 }
1348 \f
1349 /* Re-read symbols if a symbol-file has changed. */
1350 void
1351 reread_symbols ()
1352 {
1353 struct objfile *objfile;
1354 long new_modtime;
1355 int reread_one = 0;
1356 struct stat new_statbuf;
1357 int res;
1358
1359 /* With the addition of shared libraries, this should be modified,
1360 the load time should be saved in the partial symbol tables, since
1361 different tables may come from different source files. FIXME.
1362 This routine should then walk down each partial symbol table
1363 and see if the symbol table that it originates from has been changed */
1364
1365 for (objfile = object_files; objfile; objfile = objfile->next)
1366 {
1367 if (objfile->obfd)
1368 {
1369 #ifdef IBM6000_TARGET
1370 /* If this object is from a shared library, then you should
1371 stat on the library name, not member name. */
1372
1373 if (objfile->obfd->my_archive)
1374 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1375 else
1376 #endif
1377 res = stat (objfile->name, &new_statbuf);
1378 if (res != 0)
1379 {
1380 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1381 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1382 objfile->name);
1383 continue;
1384 }
1385 new_modtime = new_statbuf.st_mtime;
1386 if (new_modtime != objfile->mtime)
1387 {
1388 struct cleanup *old_cleanups;
1389 struct section_offsets *offsets;
1390 int num_offsets;
1391 int section_offsets_size;
1392 char *obfd_filename;
1393
1394 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1395 objfile->name);
1396
1397 /* There are various functions like symbol_file_add,
1398 symfile_bfd_open, syms_from_objfile, etc., which might
1399 appear to do what we want. But they have various other
1400 effects which we *don't* want. So we just do stuff
1401 ourselves. We don't worry about mapped files (for one thing,
1402 any mapped file will be out of date). */
1403
1404 /* If we get an error, blow away this objfile (not sure if
1405 that is the correct response for things like shared
1406 libraries). */
1407 old_cleanups = make_cleanup ((make_cleanup_func) free_objfile,
1408 objfile);
1409 /* We need to do this whenever any symbols go away. */
1410 make_cleanup ((make_cleanup_func) clear_symtab_users, 0);
1411
1412 /* Clean up any state BFD has sitting around. We don't need
1413 to close the descriptor but BFD lacks a way of closing the
1414 BFD without closing the descriptor. */
1415 obfd_filename = bfd_get_filename (objfile->obfd);
1416 if (!bfd_close (objfile->obfd))
1417 error ("Can't close BFD for %s: %s", objfile->name,
1418 bfd_errmsg (bfd_get_error ()));
1419 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1420 if (objfile->obfd == NULL)
1421 error ("Can't open %s to read symbols.", objfile->name);
1422 /* bfd_openr sets cacheable to true, which is what we want. */
1423 if (!bfd_check_format (objfile->obfd, bfd_object))
1424 error ("Can't read symbols from %s: %s.", objfile->name,
1425 bfd_errmsg (bfd_get_error ()));
1426
1427 /* Save the offsets, we will nuke them with the rest of the
1428 psymbol_obstack. */
1429 num_offsets = objfile->num_sections;
1430 section_offsets_size =
1431 sizeof (struct section_offsets)
1432 + sizeof (objfile->section_offsets->offsets) * num_offsets;
1433 offsets = (struct section_offsets *) alloca (section_offsets_size);
1434 memcpy (offsets, objfile->section_offsets, section_offsets_size);
1435
1436 /* Nuke all the state that we will re-read. Much of the following
1437 code which sets things to NULL really is necessary to tell
1438 other parts of GDB that there is nothing currently there. */
1439
1440 /* FIXME: Do we have to free a whole linked list, or is this
1441 enough? */
1442 if (objfile->global_psymbols.list)
1443 mfree (objfile->md, objfile->global_psymbols.list);
1444 memset (&objfile->global_psymbols, 0,
1445 sizeof (objfile->global_psymbols));
1446 if (objfile->static_psymbols.list)
1447 mfree (objfile->md, objfile->static_psymbols.list);
1448 memset (&objfile->static_psymbols, 0,
1449 sizeof (objfile->static_psymbols));
1450
1451 /* Free the obstacks for non-reusable objfiles */
1452 obstack_free (&objfile->psymbol_cache.cache, 0);
1453 memset (&objfile->psymbol_cache, 0,
1454 sizeof (objfile->psymbol_cache));
1455 obstack_free (&objfile->psymbol_obstack, 0);
1456 obstack_free (&objfile->symbol_obstack, 0);
1457 obstack_free (&objfile->type_obstack, 0);
1458 objfile->sections = NULL;
1459 objfile->symtabs = NULL;
1460 objfile->psymtabs = NULL;
1461 objfile->free_psymtabs = NULL;
1462 objfile->msymbols = NULL;
1463 objfile->minimal_symbol_count = 0;
1464 objfile->fundamental_types = NULL;
1465 if (objfile->sf != NULL)
1466 {
1467 (*objfile->sf->sym_finish) (objfile);
1468 }
1469
1470 /* We never make this a mapped file. */
1471 objfile->md = NULL;
1472 /* obstack_specify_allocation also initializes the obstack so
1473 it is empty. */
1474 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1475 xmalloc, free);
1476 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1477 xmalloc, free);
1478 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1479 xmalloc, free);
1480 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1481 xmalloc, free);
1482 if (build_objfile_section_table (objfile))
1483 {
1484 error ("Can't find the file sections in `%s': %s",
1485 objfile->name, bfd_errmsg (bfd_get_error ()));
1486 }
1487
1488 /* We use the same section offsets as from last time. I'm not
1489 sure whether that is always correct for shared libraries. */
1490 objfile->section_offsets = (struct section_offsets *)
1491 obstack_alloc (&objfile->psymbol_obstack, section_offsets_size);
1492 memcpy (objfile->section_offsets, offsets, section_offsets_size);
1493 objfile->num_sections = num_offsets;
1494
1495 /* What the hell is sym_new_init for, anyway? The concept of
1496 distinguishing between the main file and additional files
1497 in this way seems rather dubious. */
1498 if (objfile == symfile_objfile)
1499 {
1500 (*objfile->sf->sym_new_init) (objfile);
1501 #ifdef HPUXHPPA
1502 RESET_HP_UX_GLOBALS ();
1503 #endif
1504 }
1505
1506 (*objfile->sf->sym_init) (objfile);
1507 clear_complaints (1, 1);
1508 /* The "mainline" parameter is a hideous hack; I think leaving it
1509 zero is OK since dbxread.c also does what it needs to do if
1510 objfile->global_psymbols.size is 0. */
1511 (*objfile->sf->sym_read) (objfile, 0);
1512 if (!have_partial_symbols () && !have_full_symbols ())
1513 {
1514 wrap_here ("");
1515 printf_filtered ("(no debugging symbols found)\n");
1516 wrap_here ("");
1517 }
1518 objfile->flags |= OBJF_SYMS;
1519
1520 /* We're done reading the symbol file; finish off complaints. */
1521 clear_complaints (0, 1);
1522
1523 /* Getting new symbols may change our opinion about what is
1524 frameless. */
1525
1526 reinit_frame_cache ();
1527
1528 /* Discard cleanups as symbol reading was successful. */
1529 discard_cleanups (old_cleanups);
1530
1531 /* If the mtime has changed between the time we set new_modtime
1532 and now, we *want* this to be out of date, so don't call stat
1533 again now. */
1534 objfile->mtime = new_modtime;
1535 reread_one = 1;
1536
1537 /* Call this after reading in a new symbol table to give target
1538 dependant code a crack at the new symbols. For instance, this
1539 could be used to update the values of target-specific symbols GDB
1540 needs to keep track of (such as _sigtramp, or whatever). */
1541
1542 TARGET_SYMFILE_POSTREAD (objfile);
1543 }
1544 }
1545 }
1546
1547 if (reread_one)
1548 clear_symtab_users ();
1549 }
1550 \f
1551
1552
1553 typedef struct
1554 {
1555 char *ext;
1556 enum language lang;
1557 }
1558 filename_language;
1559
1560 static filename_language *filename_language_table;
1561 static int fl_table_size, fl_table_next;
1562
1563 static void
1564 add_filename_language (ext, lang)
1565 char *ext;
1566 enum language lang;
1567 {
1568 if (fl_table_next >= fl_table_size)
1569 {
1570 fl_table_size += 10;
1571 filename_language_table = realloc (filename_language_table,
1572 fl_table_size);
1573 }
1574
1575 filename_language_table[fl_table_next].ext = strsave (ext);
1576 filename_language_table[fl_table_next].lang = lang;
1577 fl_table_next++;
1578 }
1579
1580 static char *ext_args;
1581
1582 static void
1583 set_ext_lang_command (args, from_tty)
1584 char *args;
1585 int from_tty;
1586 {
1587 int i;
1588 char *cp = ext_args;
1589 enum language lang;
1590
1591 /* First arg is filename extension, starting with '.' */
1592 if (*cp != '.')
1593 error ("'%s': Filename extension must begin with '.'", ext_args);
1594
1595 /* Find end of first arg. */
1596 while (*cp && !isspace (*cp))
1597 cp++;
1598
1599 if (*cp == '\0')
1600 error ("'%s': two arguments required -- filename extension and language",
1601 ext_args);
1602
1603 /* Null-terminate first arg */
1604 *cp++ = '\0';
1605
1606 /* Find beginning of second arg, which should be a source language. */
1607 while (*cp && isspace (*cp))
1608 cp++;
1609
1610 if (*cp == '\0')
1611 error ("'%s': two arguments required -- filename extension and language",
1612 ext_args);
1613
1614 /* Lookup the language from among those we know. */
1615 lang = language_enum (cp);
1616
1617 /* Now lookup the filename extension: do we already know it? */
1618 for (i = 0; i < fl_table_next; i++)
1619 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1620 break;
1621
1622 if (i >= fl_table_next)
1623 {
1624 /* new file extension */
1625 add_filename_language (ext_args, lang);
1626 }
1627 else
1628 {
1629 /* redefining a previously known filename extension */
1630
1631 /* if (from_tty) */
1632 /* query ("Really make files of type %s '%s'?", */
1633 /* ext_args, language_str (lang)); */
1634
1635 free (filename_language_table[i].ext);
1636 filename_language_table[i].ext = strsave (ext_args);
1637 filename_language_table[i].lang = lang;
1638 }
1639 }
1640
1641 static void
1642 info_ext_lang_command (args, from_tty)
1643 char *args;
1644 int from_tty;
1645 {
1646 int i;
1647
1648 printf_filtered ("Filename extensions and the languages they represent:");
1649 printf_filtered ("\n\n");
1650 for (i = 0; i < fl_table_next; i++)
1651 printf_filtered ("\t%s\t- %s\n",
1652 filename_language_table[i].ext,
1653 language_str (filename_language_table[i].lang));
1654 }
1655
1656 static void
1657 init_filename_language_table ()
1658 {
1659 if (fl_table_size == 0) /* protect against repetition */
1660 {
1661 fl_table_size = 20;
1662 fl_table_next = 0;
1663 filename_language_table =
1664 xmalloc (fl_table_size * sizeof (*filename_language_table));
1665 add_filename_language (".c", language_c);
1666 add_filename_language (".C", language_cplus);
1667 add_filename_language (".cc", language_cplus);
1668 add_filename_language (".cp", language_cplus);
1669 add_filename_language (".cpp", language_cplus);
1670 add_filename_language (".cxx", language_cplus);
1671 add_filename_language (".c++", language_cplus);
1672 add_filename_language (".java", language_java);
1673 add_filename_language (".class", language_java);
1674 add_filename_language (".ch", language_chill);
1675 add_filename_language (".c186", language_chill);
1676 add_filename_language (".c286", language_chill);
1677 add_filename_language (".f", language_fortran);
1678 add_filename_language (".F", language_fortran);
1679 add_filename_language (".s", language_asm);
1680 add_filename_language (".S", language_asm);
1681 }
1682 }
1683
1684 enum language
1685 deduce_language_from_filename (filename)
1686 char *filename;
1687 {
1688 int i;
1689 char *cp;
1690
1691 if (filename != NULL)
1692 if ((cp = strrchr (filename, '.')) != NULL)
1693 for (i = 0; i < fl_table_next; i++)
1694 if (strcmp (cp, filename_language_table[i].ext) == 0)
1695 return filename_language_table[i].lang;
1696
1697 return language_unknown;
1698 }
1699 \f
1700 /* allocate_symtab:
1701
1702 Allocate and partly initialize a new symbol table. Return a pointer
1703 to it. error() if no space.
1704
1705 Caller must set these fields:
1706 LINETABLE(symtab)
1707 symtab->blockvector
1708 symtab->dirname
1709 symtab->free_code
1710 symtab->free_ptr
1711 possibly free_named_symtabs (symtab->filename);
1712 */
1713
1714 struct symtab *
1715 allocate_symtab (filename, objfile)
1716 char *filename;
1717 struct objfile *objfile;
1718 {
1719 register struct symtab *symtab;
1720
1721 symtab = (struct symtab *)
1722 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1723 memset (symtab, 0, sizeof (*symtab));
1724 symtab->filename = obsavestring (filename, strlen (filename),
1725 &objfile->symbol_obstack);
1726 symtab->fullname = NULL;
1727 symtab->language = deduce_language_from_filename (filename);
1728 symtab->debugformat = obsavestring ("unknown", 7,
1729 &objfile->symbol_obstack);
1730
1731 /* Hook it to the objfile it comes from */
1732
1733 symtab->objfile = objfile;
1734 symtab->next = objfile->symtabs;
1735 objfile->symtabs = symtab;
1736
1737 /* FIXME: This should go away. It is only defined for the Z8000,
1738 and the Z8000 definition of this macro doesn't have anything to
1739 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1740 here for convenience. */
1741 #ifdef INIT_EXTRA_SYMTAB_INFO
1742 INIT_EXTRA_SYMTAB_INFO (symtab);
1743 #endif
1744
1745 return (symtab);
1746 }
1747
1748 struct partial_symtab *
1749 allocate_psymtab (filename, objfile)
1750 char *filename;
1751 struct objfile *objfile;
1752 {
1753 struct partial_symtab *psymtab;
1754
1755 if (objfile->free_psymtabs)
1756 {
1757 psymtab = objfile->free_psymtabs;
1758 objfile->free_psymtabs = psymtab->next;
1759 }
1760 else
1761 psymtab = (struct partial_symtab *)
1762 obstack_alloc (&objfile->psymbol_obstack,
1763 sizeof (struct partial_symtab));
1764
1765 memset (psymtab, 0, sizeof (struct partial_symtab));
1766 psymtab->filename = obsavestring (filename, strlen (filename),
1767 &objfile->psymbol_obstack);
1768 psymtab->symtab = NULL;
1769
1770 /* Prepend it to the psymtab list for the objfile it belongs to.
1771 Psymtabs are searched in most recent inserted -> least recent
1772 inserted order. */
1773
1774 psymtab->objfile = objfile;
1775 psymtab->next = objfile->psymtabs;
1776 objfile->psymtabs = psymtab;
1777 #if 0
1778 {
1779 struct partial_symtab **prev_pst;
1780 psymtab->objfile = objfile;
1781 psymtab->next = NULL;
1782 prev_pst = &(objfile->psymtabs);
1783 while ((*prev_pst) != NULL)
1784 prev_pst = &((*prev_pst)->next);
1785 (*prev_pst) = psymtab;
1786 }
1787 #endif
1788
1789 return (psymtab);
1790 }
1791
1792 void
1793 discard_psymtab (pst)
1794 struct partial_symtab *pst;
1795 {
1796 struct partial_symtab **prev_pst;
1797
1798 /* From dbxread.c:
1799 Empty psymtabs happen as a result of header files which don't
1800 have any symbols in them. There can be a lot of them. But this
1801 check is wrong, in that a psymtab with N_SLINE entries but
1802 nothing else is not empty, but we don't realize that. Fixing
1803 that without slowing things down might be tricky. */
1804
1805 /* First, snip it out of the psymtab chain */
1806
1807 prev_pst = &(pst->objfile->psymtabs);
1808 while ((*prev_pst) != pst)
1809 prev_pst = &((*prev_pst)->next);
1810 (*prev_pst) = pst->next;
1811
1812 /* Next, put it on a free list for recycling */
1813
1814 pst->next = pst->objfile->free_psymtabs;
1815 pst->objfile->free_psymtabs = pst;
1816 }
1817 \f
1818
1819 /* Reset all data structures in gdb which may contain references to symbol
1820 table data. */
1821
1822 void
1823 clear_symtab_users ()
1824 {
1825 /* Someday, we should do better than this, by only blowing away
1826 the things that really need to be blown. */
1827 clear_value_history ();
1828 clear_displays ();
1829 clear_internalvars ();
1830 breakpoint_re_set ();
1831 set_default_breakpoint (0, 0, 0, 0);
1832 current_source_symtab = 0;
1833 current_source_line = 0;
1834 clear_pc_function_cache ();
1835 target_new_objfile (NULL);
1836 }
1837
1838 /* clear_symtab_users_once:
1839
1840 This function is run after symbol reading, or from a cleanup.
1841 If an old symbol table was obsoleted, the old symbol table
1842 has been blown away, but the other GDB data structures that may
1843 reference it have not yet been cleared or re-directed. (The old
1844 symtab was zapped, and the cleanup queued, in free_named_symtab()
1845 below.)
1846
1847 This function can be queued N times as a cleanup, or called
1848 directly; it will do all the work the first time, and then will be a
1849 no-op until the next time it is queued. This works by bumping a
1850 counter at queueing time. Much later when the cleanup is run, or at
1851 the end of symbol processing (in case the cleanup is discarded), if
1852 the queued count is greater than the "done-count", we do the work
1853 and set the done-count to the queued count. If the queued count is
1854 less than or equal to the done-count, we just ignore the call. This
1855 is needed because reading a single .o file will often replace many
1856 symtabs (one per .h file, for example), and we don't want to reset
1857 the breakpoints N times in the user's face.
1858
1859 The reason we both queue a cleanup, and call it directly after symbol
1860 reading, is because the cleanup protects us in case of errors, but is
1861 discarded if symbol reading is successful. */
1862
1863 #if 0
1864 /* FIXME: As free_named_symtabs is currently a big noop this function
1865 is no longer needed. */
1866 static void
1867 clear_symtab_users_once PARAMS ((void));
1868
1869 static int clear_symtab_users_queued;
1870 static int clear_symtab_users_done;
1871
1872 static void
1873 clear_symtab_users_once ()
1874 {
1875 /* Enforce once-per-`do_cleanups'-semantics */
1876 if (clear_symtab_users_queued <= clear_symtab_users_done)
1877 return;
1878 clear_symtab_users_done = clear_symtab_users_queued;
1879
1880 clear_symtab_users ();
1881 }
1882 #endif
1883
1884 /* Delete the specified psymtab, and any others that reference it. */
1885
1886 static void
1887 cashier_psymtab (pst)
1888 struct partial_symtab *pst;
1889 {
1890 struct partial_symtab *ps, *pprev = NULL;
1891 int i;
1892
1893 /* Find its previous psymtab in the chain */
1894 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
1895 {
1896 if (ps == pst)
1897 break;
1898 pprev = ps;
1899 }
1900
1901 if (ps)
1902 {
1903 /* Unhook it from the chain. */
1904 if (ps == pst->objfile->psymtabs)
1905 pst->objfile->psymtabs = ps->next;
1906 else
1907 pprev->next = ps->next;
1908
1909 /* FIXME, we can't conveniently deallocate the entries in the
1910 partial_symbol lists (global_psymbols/static_psymbols) that
1911 this psymtab points to. These just take up space until all
1912 the psymtabs are reclaimed. Ditto the dependencies list and
1913 filename, which are all in the psymbol_obstack. */
1914
1915 /* We need to cashier any psymtab that has this one as a dependency... */
1916 again:
1917 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
1918 {
1919 for (i = 0; i < ps->number_of_dependencies; i++)
1920 {
1921 if (ps->dependencies[i] == pst)
1922 {
1923 cashier_psymtab (ps);
1924 goto again; /* Must restart, chain has been munged. */
1925 }
1926 }
1927 }
1928 }
1929 }
1930
1931 /* If a symtab or psymtab for filename NAME is found, free it along
1932 with any dependent breakpoints, displays, etc.
1933 Used when loading new versions of object modules with the "add-file"
1934 command. This is only called on the top-level symtab or psymtab's name;
1935 it is not called for subsidiary files such as .h files.
1936
1937 Return value is 1 if we blew away the environment, 0 if not.
1938 FIXME. The return valu appears to never be used.
1939
1940 FIXME. I think this is not the best way to do this. We should
1941 work on being gentler to the environment while still cleaning up
1942 all stray pointers into the freed symtab. */
1943
1944 int
1945 free_named_symtabs (name)
1946 char *name;
1947 {
1948 #if 0
1949 /* FIXME: With the new method of each objfile having it's own
1950 psymtab list, this function needs serious rethinking. In particular,
1951 why was it ever necessary to toss psymtabs with specific compilation
1952 unit filenames, as opposed to all psymtabs from a particular symbol
1953 file? -- fnf
1954 Well, the answer is that some systems permit reloading of particular
1955 compilation units. We want to blow away any old info about these
1956 compilation units, regardless of which objfiles they arrived in. --gnu. */
1957
1958 register struct symtab *s;
1959 register struct symtab *prev;
1960 register struct partial_symtab *ps;
1961 struct blockvector *bv;
1962 int blewit = 0;
1963
1964 /* We only wack things if the symbol-reload switch is set. */
1965 if (!symbol_reloading)
1966 return 0;
1967
1968 /* Some symbol formats have trouble providing file names... */
1969 if (name == 0 || *name == '\0')
1970 return 0;
1971
1972 /* Look for a psymtab with the specified name. */
1973
1974 again2:
1975 for (ps = partial_symtab_list; ps; ps = ps->next)
1976 {
1977 if (STREQ (name, ps->filename))
1978 {
1979 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
1980 goto again2; /* Must restart, chain has been munged */
1981 }
1982 }
1983
1984 /* Look for a symtab with the specified name. */
1985
1986 for (s = symtab_list; s; s = s->next)
1987 {
1988 if (STREQ (name, s->filename))
1989 break;
1990 prev = s;
1991 }
1992
1993 if (s)
1994 {
1995 if (s == symtab_list)
1996 symtab_list = s->next;
1997 else
1998 prev->next = s->next;
1999
2000 /* For now, queue a delete for all breakpoints, displays, etc., whether
2001 or not they depend on the symtab being freed. This should be
2002 changed so that only those data structures affected are deleted. */
2003
2004 /* But don't delete anything if the symtab is empty.
2005 This test is necessary due to a bug in "dbxread.c" that
2006 causes empty symtabs to be created for N_SO symbols that
2007 contain the pathname of the object file. (This problem
2008 has been fixed in GDB 3.9x). */
2009
2010 bv = BLOCKVECTOR (s);
2011 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2012 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2013 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2014 {
2015 complain (&oldsyms_complaint, name);
2016
2017 clear_symtab_users_queued++;
2018 make_cleanup (clear_symtab_users_once, 0);
2019 blewit = 1;
2020 }
2021 else
2022 {
2023 complain (&empty_symtab_complaint, name);
2024 }
2025
2026 free_symtab (s);
2027 }
2028 else
2029 {
2030 /* It is still possible that some breakpoints will be affected
2031 even though no symtab was found, since the file might have
2032 been compiled without debugging, and hence not be associated
2033 with a symtab. In order to handle this correctly, we would need
2034 to keep a list of text address ranges for undebuggable files.
2035 For now, we do nothing, since this is a fairly obscure case. */
2036 ;
2037 }
2038
2039 /* FIXME, what about the minimal symbol table? */
2040 return blewit;
2041 #else
2042 return (0);
2043 #endif
2044 }
2045 \f
2046 /* Allocate and partially fill a partial symtab. It will be
2047 completely filled at the end of the symbol list.
2048
2049 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
2050 is the address relative to which its symbols are (incremental) or 0
2051 (normal). */
2052
2053
2054 struct partial_symtab *
2055 start_psymtab_common (objfile, section_offsets,
2056 filename, textlow, global_syms, static_syms)
2057 struct objfile *objfile;
2058 struct section_offsets *section_offsets;
2059 char *filename;
2060 CORE_ADDR textlow;
2061 struct partial_symbol **global_syms;
2062 struct partial_symbol **static_syms;
2063 {
2064 struct partial_symtab *psymtab;
2065
2066 psymtab = allocate_psymtab (filename, objfile);
2067 psymtab->section_offsets = section_offsets;
2068 psymtab->textlow = textlow;
2069 psymtab->texthigh = psymtab->textlow; /* default */
2070 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2071 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2072 return (psymtab);
2073 }
2074 \f
2075 /* Add a symbol with a long value to a psymtab.
2076 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2077
2078 void
2079 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2080 language, objfile)
2081 char *name;
2082 int namelength;
2083 namespace_enum namespace;
2084 enum address_class class;
2085 struct psymbol_allocation_list *list;
2086 long val; /* Value as a long */
2087 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2088 enum language language;
2089 struct objfile *objfile;
2090 {
2091 register struct partial_symbol *psym;
2092 char *buf = alloca (namelength + 1);
2093 /* psymbol is static so that there will be no uninitialized gaps in the
2094 structure which might contain random data, causing cache misses in
2095 bcache. */
2096 static struct partial_symbol psymbol;
2097
2098 /* Create local copy of the partial symbol */
2099 memcpy (buf, name, namelength);
2100 buf[namelength] = '\0';
2101 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2102 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2103 if (val != 0)
2104 {
2105 SYMBOL_VALUE (&psymbol) = val;
2106 }
2107 else
2108 {
2109 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2110 }
2111 SYMBOL_SECTION (&psymbol) = 0;
2112 SYMBOL_LANGUAGE (&psymbol) = language;
2113 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2114 PSYMBOL_CLASS (&psymbol) = class;
2115 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2116
2117 /* Stash the partial symbol away in the cache */
2118 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2119
2120 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2121 if (list->next >= list->list + list->size)
2122 {
2123 extend_psymbol_list (list, objfile);
2124 }
2125 *list->next++ = psym;
2126 OBJSTAT (objfile, n_psyms++);
2127 }
2128
2129 /* Add a symbol with a long value to a psymtab. This differs from
2130 * add_psymbol_to_list above in taking both a mangled and a demangled
2131 * name. */
2132
2133 void
2134 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2135 namespace, class, list, val, coreaddr, language, objfile)
2136 char *name;
2137 int namelength;
2138 char *dem_name;
2139 int dem_namelength;
2140 namespace_enum namespace;
2141 enum address_class class;
2142 struct psymbol_allocation_list *list;
2143 long val; /* Value as a long */
2144 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2145 enum language language;
2146 struct objfile *objfile;
2147 {
2148 register struct partial_symbol *psym;
2149 char *buf = alloca (namelength + 1);
2150 /* psymbol is static so that there will be no uninitialized gaps in the
2151 structure which might contain random data, causing cache misses in
2152 bcache. */
2153 static struct partial_symbol psymbol;
2154
2155 /* Create local copy of the partial symbol */
2156
2157 memcpy (buf, name, namelength);
2158 buf[namelength] = '\0';
2159 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2160
2161 buf = alloca (dem_namelength + 1);
2162 memcpy (buf, dem_name, dem_namelength);
2163 buf[dem_namelength] = '\0';
2164
2165 switch (language)
2166 {
2167 case language_c:
2168 case language_cplus:
2169 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2170 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2171 break;
2172 case language_chill:
2173 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2174 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2175
2176 /* FIXME What should be done for the default case? Ignoring for now. */
2177 }
2178
2179 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2180 if (val != 0)
2181 {
2182 SYMBOL_VALUE (&psymbol) = val;
2183 }
2184 else
2185 {
2186 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2187 }
2188 SYMBOL_SECTION (&psymbol) = 0;
2189 SYMBOL_LANGUAGE (&psymbol) = language;
2190 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2191 PSYMBOL_CLASS (&psymbol) = class;
2192 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2193
2194 /* Stash the partial symbol away in the cache */
2195 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2196
2197 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2198 if (list->next >= list->list + list->size)
2199 {
2200 extend_psymbol_list (list, objfile);
2201 }
2202 *list->next++ = psym;
2203 OBJSTAT (objfile, n_psyms++);
2204 }
2205
2206 /* Initialize storage for partial symbols. */
2207
2208 void
2209 init_psymbol_list (objfile, total_symbols)
2210 struct objfile *objfile;
2211 int total_symbols;
2212 {
2213 /* Free any previously allocated psymbol lists. */
2214
2215 if (objfile->global_psymbols.list)
2216 {
2217 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2218 }
2219 if (objfile->static_psymbols.list)
2220 {
2221 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2222 }
2223
2224 /* Current best guess is that approximately a twentieth
2225 of the total symbols (in a debugging file) are global or static
2226 oriented symbols */
2227
2228 objfile->global_psymbols.size = total_symbols / 10;
2229 objfile->static_psymbols.size = total_symbols / 10;
2230
2231 if (objfile->global_psymbols.size > 0)
2232 {
2233 objfile->global_psymbols.next =
2234 objfile->global_psymbols.list = (struct partial_symbol **)
2235 xmmalloc (objfile->md, (objfile->global_psymbols.size
2236 * sizeof (struct partial_symbol *)));
2237 }
2238 if (objfile->static_psymbols.size > 0)
2239 {
2240 objfile->static_psymbols.next =
2241 objfile->static_psymbols.list = (struct partial_symbol **)
2242 xmmalloc (objfile->md, (objfile->static_psymbols.size
2243 * sizeof (struct partial_symbol *)));
2244 }
2245 }
2246
2247 /* OVERLAYS:
2248 The following code implements an abstraction for debugging overlay sections.
2249
2250 The target model is as follows:
2251 1) The gnu linker will permit multiple sections to be mapped into the
2252 same VMA, each with its own unique LMA (or load address).
2253 2) It is assumed that some runtime mechanism exists for mapping the
2254 sections, one by one, from the load address into the VMA address.
2255 3) This code provides a mechanism for gdb to keep track of which
2256 sections should be considered to be mapped from the VMA to the LMA.
2257 This information is used for symbol lookup, and memory read/write.
2258 For instance, if a section has been mapped then its contents
2259 should be read from the VMA, otherwise from the LMA.
2260
2261 Two levels of debugger support for overlays are available. One is
2262 "manual", in which the debugger relies on the user to tell it which
2263 overlays are currently mapped. This level of support is
2264 implemented entirely in the core debugger, and the information about
2265 whether a section is mapped is kept in the objfile->obj_section table.
2266
2267 The second level of support is "automatic", and is only available if
2268 the target-specific code provides functionality to read the target's
2269 overlay mapping table, and translate its contents for the debugger
2270 (by updating the mapped state information in the obj_section tables).
2271
2272 The interface is as follows:
2273 User commands:
2274 overlay map <name> -- tell gdb to consider this section mapped
2275 overlay unmap <name> -- tell gdb to consider this section unmapped
2276 overlay list -- list the sections that GDB thinks are mapped
2277 overlay read-target -- get the target's state of what's mapped
2278 overlay off/manual/auto -- set overlay debugging state
2279 Functional interface:
2280 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2281 section, return that section.
2282 find_pc_overlay(pc): find any overlay section that contains
2283 the pc, either in its VMA or its LMA
2284 overlay_is_mapped(sect): true if overlay is marked as mapped
2285 section_is_overlay(sect): true if section's VMA != LMA
2286 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2287 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2288 overlay_mapped_address(...): map an address from section's LMA to VMA
2289 overlay_unmapped_address(...): map an address from section's VMA to LMA
2290 symbol_overlayed_address(...): Return a "current" address for symbol:
2291 either in VMA or LMA depending on whether
2292 the symbol's section is currently mapped
2293 */
2294
2295 /* Overlay debugging state: */
2296
2297 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2298 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2299
2300 /* Target vector for refreshing overlay mapped state */
2301 static void simple_overlay_update PARAMS ((struct obj_section *));
2302 void (*target_overlay_update) PARAMS ((struct obj_section *))
2303 = simple_overlay_update;
2304
2305 /* Function: section_is_overlay (SECTION)
2306 Returns true if SECTION has VMA not equal to LMA, ie.
2307 SECTION is loaded at an address different from where it will "run". */
2308
2309 int
2310 section_is_overlay (section)
2311 asection *section;
2312 {
2313 if (overlay_debugging)
2314 if (section && section->lma != 0 &&
2315 section->vma != section->lma)
2316 return 1;
2317
2318 return 0;
2319 }
2320
2321 /* Function: overlay_invalidate_all (void)
2322 Invalidate the mapped state of all overlay sections (mark it as stale). */
2323
2324 static void
2325 overlay_invalidate_all ()
2326 {
2327 struct objfile *objfile;
2328 struct obj_section *sect;
2329
2330 ALL_OBJSECTIONS (objfile, sect)
2331 if (section_is_overlay (sect->the_bfd_section))
2332 sect->ovly_mapped = -1;
2333 }
2334
2335 /* Function: overlay_is_mapped (SECTION)
2336 Returns true if section is an overlay, and is currently mapped.
2337 Private: public access is thru function section_is_mapped.
2338
2339 Access to the ovly_mapped flag is restricted to this function, so
2340 that we can do automatic update. If the global flag
2341 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2342 overlay_invalidate_all. If the mapped state of the particular
2343 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2344
2345 static int
2346 overlay_is_mapped (osect)
2347 struct obj_section *osect;
2348 {
2349 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2350 return 0;
2351
2352 switch (overlay_debugging)
2353 {
2354 default:
2355 case 0:
2356 return 0; /* overlay debugging off */
2357 case -1: /* overlay debugging automatic */
2358 /* Unles there is a target_overlay_update function,
2359 there's really nothing useful to do here (can't really go auto) */
2360 if (target_overlay_update)
2361 {
2362 if (overlay_cache_invalid)
2363 {
2364 overlay_invalidate_all ();
2365 overlay_cache_invalid = 0;
2366 }
2367 if (osect->ovly_mapped == -1)
2368 (*target_overlay_update) (osect);
2369 }
2370 /* fall thru to manual case */
2371 case 1: /* overlay debugging manual */
2372 return osect->ovly_mapped == 1;
2373 }
2374 }
2375
2376 /* Function: section_is_mapped
2377 Returns true if section is an overlay, and is currently mapped. */
2378
2379 int
2380 section_is_mapped (section)
2381 asection *section;
2382 {
2383 struct objfile *objfile;
2384 struct obj_section *osect;
2385
2386 if (overlay_debugging)
2387 if (section && section_is_overlay (section))
2388 ALL_OBJSECTIONS (objfile, osect)
2389 if (osect->the_bfd_section == section)
2390 return overlay_is_mapped (osect);
2391
2392 return 0;
2393 }
2394
2395 /* Function: pc_in_unmapped_range
2396 If PC falls into the lma range of SECTION, return true, else false. */
2397
2398 CORE_ADDR
2399 pc_in_unmapped_range (pc, section)
2400 CORE_ADDR pc;
2401 asection *section;
2402 {
2403 int size;
2404
2405 if (overlay_debugging)
2406 if (section && section_is_overlay (section))
2407 {
2408 size = bfd_get_section_size_before_reloc (section);
2409 if (section->lma <= pc && pc < section->lma + size)
2410 return 1;
2411 }
2412 return 0;
2413 }
2414
2415 /* Function: pc_in_mapped_range
2416 If PC falls into the vma range of SECTION, return true, else false. */
2417
2418 CORE_ADDR
2419 pc_in_mapped_range (pc, section)
2420 CORE_ADDR pc;
2421 asection *section;
2422 {
2423 int size;
2424
2425 if (overlay_debugging)
2426 if (section && section_is_overlay (section))
2427 {
2428 size = bfd_get_section_size_before_reloc (section);
2429 if (section->vma <= pc && pc < section->vma + size)
2430 return 1;
2431 }
2432 return 0;
2433 }
2434
2435 /* Function: overlay_unmapped_address (PC, SECTION)
2436 Returns the address corresponding to PC in the unmapped (load) range.
2437 May be the same as PC. */
2438
2439 CORE_ADDR
2440 overlay_unmapped_address (pc, section)
2441 CORE_ADDR pc;
2442 asection *section;
2443 {
2444 if (overlay_debugging)
2445 if (section && section_is_overlay (section) &&
2446 pc_in_mapped_range (pc, section))
2447 return pc + section->lma - section->vma;
2448
2449 return pc;
2450 }
2451
2452 /* Function: overlay_mapped_address (PC, SECTION)
2453 Returns the address corresponding to PC in the mapped (runtime) range.
2454 May be the same as PC. */
2455
2456 CORE_ADDR
2457 overlay_mapped_address (pc, section)
2458 CORE_ADDR pc;
2459 asection *section;
2460 {
2461 if (overlay_debugging)
2462 if (section && section_is_overlay (section) &&
2463 pc_in_unmapped_range (pc, section))
2464 return pc + section->vma - section->lma;
2465
2466 return pc;
2467 }
2468
2469
2470 /* Function: symbol_overlayed_address
2471 Return one of two addresses (relative to the VMA or to the LMA),
2472 depending on whether the section is mapped or not. */
2473
2474 CORE_ADDR
2475 symbol_overlayed_address (address, section)
2476 CORE_ADDR address;
2477 asection *section;
2478 {
2479 if (overlay_debugging)
2480 {
2481 /* If the symbol has no section, just return its regular address. */
2482 if (section == 0)
2483 return address;
2484 /* If the symbol's section is not an overlay, just return its address */
2485 if (!section_is_overlay (section))
2486 return address;
2487 /* If the symbol's section is mapped, just return its address */
2488 if (section_is_mapped (section))
2489 return address;
2490 /*
2491 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2492 * then return its LOADED address rather than its vma address!!
2493 */
2494 return overlay_unmapped_address (address, section);
2495 }
2496 return address;
2497 }
2498
2499 /* Function: find_pc_overlay (PC)
2500 Return the best-match overlay section for PC:
2501 If PC matches a mapped overlay section's VMA, return that section.
2502 Else if PC matches an unmapped section's VMA, return that section.
2503 Else if PC matches an unmapped section's LMA, return that section. */
2504
2505 asection *
2506 find_pc_overlay (pc)
2507 CORE_ADDR pc;
2508 {
2509 struct objfile *objfile;
2510 struct obj_section *osect, *best_match = NULL;
2511
2512 if (overlay_debugging)
2513 ALL_OBJSECTIONS (objfile, osect)
2514 if (section_is_overlay (osect->the_bfd_section))
2515 {
2516 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2517 {
2518 if (overlay_is_mapped (osect))
2519 return osect->the_bfd_section;
2520 else
2521 best_match = osect;
2522 }
2523 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2524 best_match = osect;
2525 }
2526 return best_match ? best_match->the_bfd_section : NULL;
2527 }
2528
2529 /* Function: find_pc_mapped_section (PC)
2530 If PC falls into the VMA address range of an overlay section that is
2531 currently marked as MAPPED, return that section. Else return NULL. */
2532
2533 asection *
2534 find_pc_mapped_section (pc)
2535 CORE_ADDR pc;
2536 {
2537 struct objfile *objfile;
2538 struct obj_section *osect;
2539
2540 if (overlay_debugging)
2541 ALL_OBJSECTIONS (objfile, osect)
2542 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2543 overlay_is_mapped (osect))
2544 return osect->the_bfd_section;
2545
2546 return NULL;
2547 }
2548
2549 /* Function: list_overlays_command
2550 Print a list of mapped sections and their PC ranges */
2551
2552 void
2553 list_overlays_command (args, from_tty)
2554 char *args;
2555 int from_tty;
2556 {
2557 int nmapped = 0;
2558 struct objfile *objfile;
2559 struct obj_section *osect;
2560
2561 if (overlay_debugging)
2562 ALL_OBJSECTIONS (objfile, osect)
2563 if (overlay_is_mapped (osect))
2564 {
2565 const char *name;
2566 bfd_vma lma, vma;
2567 int size;
2568
2569 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2570 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2571 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2572 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2573
2574 printf_filtered ("Section %s, loaded at ", name);
2575 print_address_numeric (lma, 1, gdb_stdout);
2576 puts_filtered (" - ");
2577 print_address_numeric (lma + size, 1, gdb_stdout);
2578 printf_filtered (", mapped at ");
2579 print_address_numeric (vma, 1, gdb_stdout);
2580 puts_filtered (" - ");
2581 print_address_numeric (vma + size, 1, gdb_stdout);
2582 puts_filtered ("\n");
2583
2584 nmapped++;
2585 }
2586 if (nmapped == 0)
2587 printf_filtered ("No sections are mapped.\n");
2588 }
2589
2590 /* Function: map_overlay_command
2591 Mark the named section as mapped (ie. residing at its VMA address). */
2592
2593 void
2594 map_overlay_command (args, from_tty)
2595 char *args;
2596 int from_tty;
2597 {
2598 struct objfile *objfile, *objfile2;
2599 struct obj_section *sec, *sec2;
2600 asection *bfdsec;
2601
2602 if (!overlay_debugging)
2603 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2604
2605 if (args == 0 || *args == 0)
2606 error ("Argument required: name of an overlay section");
2607
2608 /* First, find a section matching the user supplied argument */
2609 ALL_OBJSECTIONS (objfile, sec)
2610 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2611 {
2612 /* Now, check to see if the section is an overlay. */
2613 bfdsec = sec->the_bfd_section;
2614 if (!section_is_overlay (bfdsec))
2615 continue; /* not an overlay section */
2616
2617 /* Mark the overlay as "mapped" */
2618 sec->ovly_mapped = 1;
2619
2620 /* Next, make a pass and unmap any sections that are
2621 overlapped by this new section: */
2622 ALL_OBJSECTIONS (objfile2, sec2)
2623 if (sec2->ovly_mapped &&
2624 sec != sec2 &&
2625 sec->the_bfd_section != sec2->the_bfd_section &&
2626 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2627 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2628 {
2629 if (info_verbose)
2630 printf_filtered ("Note: section %s unmapped by overlap\n",
2631 bfd_section_name (objfile->obfd,
2632 sec2->the_bfd_section));
2633 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2634 }
2635 return;
2636 }
2637 error ("No overlay section called %s", args);
2638 }
2639
2640 /* Function: unmap_overlay_command
2641 Mark the overlay section as unmapped
2642 (ie. resident in its LMA address range, rather than the VMA range). */
2643
2644 void
2645 unmap_overlay_command (args, from_tty)
2646 char *args;
2647 int from_tty;
2648 {
2649 struct objfile *objfile;
2650 struct obj_section *sec;
2651
2652 if (!overlay_debugging)
2653 error ("Overlay debugging not enabled. Use the 'OVERLAY ON' command.");
2654
2655 if (args == 0 || *args == 0)
2656 error ("Argument required: name of an overlay section");
2657
2658 /* First, find a section matching the user supplied argument */
2659 ALL_OBJSECTIONS (objfile, sec)
2660 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2661 {
2662 if (!sec->ovly_mapped)
2663 error ("Section %s is not mapped", args);
2664 sec->ovly_mapped = 0;
2665 return;
2666 }
2667 error ("No overlay section called %s", args);
2668 }
2669
2670 /* Function: overlay_auto_command
2671 A utility command to turn on overlay debugging.
2672 Possibly this should be done via a set/show command. */
2673
2674 static void
2675 overlay_auto_command (args, from_tty)
2676 char *args;
2677 int from_tty;
2678 {
2679 overlay_debugging = -1;
2680 if (info_verbose)
2681 printf_filtered ("Automatic overlay debugging enabled.");
2682 }
2683
2684 /* Function: overlay_manual_command
2685 A utility command to turn on overlay debugging.
2686 Possibly this should be done via a set/show command. */
2687
2688 static void
2689 overlay_manual_command (args, from_tty)
2690 char *args;
2691 int from_tty;
2692 {
2693 overlay_debugging = 1;
2694 if (info_verbose)
2695 printf_filtered ("Overlay debugging enabled.");
2696 }
2697
2698 /* Function: overlay_off_command
2699 A utility command to turn on overlay debugging.
2700 Possibly this should be done via a set/show command. */
2701
2702 static void
2703 overlay_off_command (args, from_tty)
2704 char *args;
2705 int from_tty;
2706 {
2707 overlay_debugging = 0;
2708 if (info_verbose)
2709 printf_filtered ("Overlay debugging disabled.");
2710 }
2711
2712 static void
2713 overlay_load_command (args, from_tty)
2714 char *args;
2715 int from_tty;
2716 {
2717 if (target_overlay_update)
2718 (*target_overlay_update) (NULL);
2719 else
2720 error ("This target does not know how to read its overlay state.");
2721 }
2722
2723 /* Function: overlay_command
2724 A place-holder for a mis-typed command */
2725
2726 /* Command list chain containing all defined "overlay" subcommands. */
2727 struct cmd_list_element *overlaylist;
2728
2729 static void
2730 overlay_command (args, from_tty)
2731 char *args;
2732 int from_tty;
2733 {
2734 printf_unfiltered
2735 ("\"overlay\" must be followed by the name of an overlay command.\n");
2736 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2737 }
2738
2739
2740 /* Target Overlays for the "Simplest" overlay manager:
2741
2742 This is GDB's default target overlay layer. It works with the
2743 minimal overlay manager supplied as an example by Cygnus. The
2744 entry point is via a function pointer "target_overlay_update",
2745 so targets that use a different runtime overlay manager can
2746 substitute their own overlay_update function and take over the
2747 function pointer.
2748
2749 The overlay_update function pokes around in the target's data structures
2750 to see what overlays are mapped, and updates GDB's overlay mapping with
2751 this information.
2752
2753 In this simple implementation, the target data structures are as follows:
2754 unsigned _novlys; /# number of overlay sections #/
2755 unsigned _ovly_table[_novlys][4] = {
2756 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2757 {..., ..., ..., ...},
2758 }
2759 unsigned _novly_regions; /# number of overlay regions #/
2760 unsigned _ovly_region_table[_novly_regions][3] = {
2761 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2762 {..., ..., ...},
2763 }
2764 These functions will attempt to update GDB's mappedness state in the
2765 symbol section table, based on the target's mappedness state.
2766
2767 To do this, we keep a cached copy of the target's _ovly_table, and
2768 attempt to detect when the cached copy is invalidated. The main
2769 entry point is "simple_overlay_update(SECT), which looks up SECT in
2770 the cached table and re-reads only the entry for that section from
2771 the target (whenever possible).
2772 */
2773
2774 /* Cached, dynamically allocated copies of the target data structures: */
2775 static unsigned (*cache_ovly_table)[4] = 0;
2776 #if 0
2777 static unsigned (*cache_ovly_region_table)[3] = 0;
2778 #endif
2779 static unsigned cache_novlys = 0;
2780 #if 0
2781 static unsigned cache_novly_regions = 0;
2782 #endif
2783 static CORE_ADDR cache_ovly_table_base = 0;
2784 #if 0
2785 static CORE_ADDR cache_ovly_region_table_base = 0;
2786 #endif
2787 enum ovly_index
2788 {
2789 VMA, SIZE, LMA, MAPPED
2790 };
2791 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2792
2793 /* Throw away the cached copy of _ovly_table */
2794 static void
2795 simple_free_overlay_table ()
2796 {
2797 if (cache_ovly_table)
2798 free (cache_ovly_table);
2799 cache_novlys = 0;
2800 cache_ovly_table = NULL;
2801 cache_ovly_table_base = 0;
2802 }
2803
2804 #if 0
2805 /* Throw away the cached copy of _ovly_region_table */
2806 static void
2807 simple_free_overlay_region_table ()
2808 {
2809 if (cache_ovly_region_table)
2810 free (cache_ovly_region_table);
2811 cache_novly_regions = 0;
2812 cache_ovly_region_table = NULL;
2813 cache_ovly_region_table_base = 0;
2814 }
2815 #endif
2816
2817 /* Read an array of ints from the target into a local buffer.
2818 Convert to host order. int LEN is number of ints */
2819 static void
2820 read_target_long_array (memaddr, myaddr, len)
2821 CORE_ADDR memaddr;
2822 unsigned int *myaddr;
2823 int len;
2824 {
2825 char *buf = alloca (len * TARGET_LONG_BYTES);
2826 int i;
2827
2828 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
2829 for (i = 0; i < len; i++)
2830 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
2831 TARGET_LONG_BYTES);
2832 }
2833
2834 /* Find and grab a copy of the target _ovly_table
2835 (and _novlys, which is needed for the table's size) */
2836 static int
2837 simple_read_overlay_table ()
2838 {
2839 struct minimal_symbol *msym;
2840
2841 simple_free_overlay_table ();
2842 msym = lookup_minimal_symbol ("_novlys", 0, 0);
2843 if (msym != NULL)
2844 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
2845 else
2846 return 0; /* failure */
2847 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
2848 if (cache_ovly_table != NULL)
2849 {
2850 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
2851 if (msym != NULL)
2852 {
2853 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
2854 read_target_long_array (cache_ovly_table_base,
2855 (int *) cache_ovly_table,
2856 cache_novlys * 4);
2857 }
2858 else
2859 return 0; /* failure */
2860 }
2861 else
2862 return 0; /* failure */
2863 return 1; /* SUCCESS */
2864 }
2865
2866 #if 0
2867 /* Find and grab a copy of the target _ovly_region_table
2868 (and _novly_regions, which is needed for the table's size) */
2869 static int
2870 simple_read_overlay_region_table ()
2871 {
2872 struct minimal_symbol *msym;
2873
2874 simple_free_overlay_region_table ();
2875 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
2876 if (msym != NULL)
2877 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
2878 else
2879 return 0; /* failure */
2880 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
2881 if (cache_ovly_region_table != NULL)
2882 {
2883 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
2884 if (msym != NULL)
2885 {
2886 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
2887 read_target_long_array (cache_ovly_region_table_base,
2888 (int *) cache_ovly_region_table,
2889 cache_novly_regions * 3);
2890 }
2891 else
2892 return 0; /* failure */
2893 }
2894 else
2895 return 0; /* failure */
2896 return 1; /* SUCCESS */
2897 }
2898 #endif
2899
2900 /* Function: simple_overlay_update_1
2901 A helper function for simple_overlay_update. Assuming a cached copy
2902 of _ovly_table exists, look through it to find an entry whose vma,
2903 lma and size match those of OSECT. Re-read the entry and make sure
2904 it still matches OSECT (else the table may no longer be valid).
2905 Set OSECT's mapped state to match the entry. Return: 1 for
2906 success, 0 for failure. */
2907
2908 static int
2909 simple_overlay_update_1 (osect)
2910 struct obj_section *osect;
2911 {
2912 int i, size;
2913
2914 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2915 for (i = 0; i < cache_novlys; i++)
2916 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2917 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2918 cache_ovly_table[i][SIZE] == size */ )
2919 {
2920 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
2921 (int *) cache_ovly_table[i], 4);
2922 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2923 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2924 cache_ovly_table[i][SIZE] == size */ )
2925 {
2926 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
2927 return 1;
2928 }
2929 else /* Warning! Warning! Target's ovly table has changed! */
2930 return 0;
2931 }
2932 return 0;
2933 }
2934
2935 /* Function: simple_overlay_update
2936 If OSECT is NULL, then update all sections' mapped state
2937 (after re-reading the entire target _ovly_table).
2938 If OSECT is non-NULL, then try to find a matching entry in the
2939 cached ovly_table and update only OSECT's mapped state.
2940 If a cached entry can't be found or the cache isn't valid, then
2941 re-read the entire cache, and go ahead and update all sections. */
2942
2943 static void
2944 simple_overlay_update (osect)
2945 struct obj_section *osect;
2946 {
2947 struct objfile *objfile;
2948
2949 /* Were we given an osect to look up? NULL means do all of them. */
2950 if (osect)
2951 /* Have we got a cached copy of the target's overlay table? */
2952 if (cache_ovly_table != NULL)
2953 /* Does its cached location match what's currently in the symtab? */
2954 if (cache_ovly_table_base ==
2955 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
2956 /* Then go ahead and try to look up this single section in the cache */
2957 if (simple_overlay_update_1 (osect))
2958 /* Found it! We're done. */
2959 return;
2960
2961 /* Cached table no good: need to read the entire table anew.
2962 Or else we want all the sections, in which case it's actually
2963 more efficient to read the whole table in one block anyway. */
2964
2965 if (simple_read_overlay_table () == 0) /* read failed? No table? */
2966 {
2967 warning ("Failed to read the target overlay mapping table.");
2968 return;
2969 }
2970 /* Now may as well update all sections, even if only one was requested. */
2971 ALL_OBJSECTIONS (objfile, osect)
2972 if (section_is_overlay (osect->the_bfd_section))
2973 {
2974 int i, size;
2975
2976 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2977 for (i = 0; i < cache_novlys; i++)
2978 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
2979 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
2980 cache_ovly_table[i][SIZE] == size */ )
2981 { /* obj_section matches i'th entry in ovly_table */
2982 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
2983 break; /* finished with inner for loop: break out */
2984 }
2985 }
2986 }
2987
2988
2989 void
2990 _initialize_symfile ()
2991 {
2992 struct cmd_list_element *c;
2993
2994 c = add_cmd ("symbol-file", class_files, symbol_file_command,
2995 "Load symbol table from executable file FILE.\n\
2996 The `file' command can also load symbol tables, as well as setting the file\n\
2997 to execute.", &cmdlist);
2998 c->completer = filename_completer;
2999
3000 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3001 "Usage: add-symbol-file FILE ADDR\n\
3002 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3003 ADDR is the starting address of the file's text.",
3004 &cmdlist);
3005 c->completer = filename_completer;
3006
3007 c = add_cmd ("add-shared-symbol-files", class_files,
3008 add_shared_symbol_files_command,
3009 "Load the symbols from shared objects in the dynamic linker's link map.",
3010 &cmdlist);
3011 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3012 &cmdlist);
3013
3014 c = add_cmd ("load", class_files, load_command,
3015 "Dynamically load FILE into the running program, and record its symbols\n\
3016 for access from GDB.", &cmdlist);
3017 c->completer = filename_completer;
3018
3019 add_show_from_set
3020 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3021 (char *) &symbol_reloading,
3022 "Set dynamic symbol table reloading multiple times in one run.",
3023 &setlist),
3024 &showlist);
3025
3026 add_prefix_cmd ("overlay", class_support, overlay_command,
3027 "Commands for debugging overlays.", &overlaylist,
3028 "overlay ", 0, &cmdlist);
3029
3030 add_com_alias ("ovly", "overlay", class_alias, 1);
3031 add_com_alias ("ov", "overlay", class_alias, 1);
3032
3033 add_cmd ("map-overlay", class_support, map_overlay_command,
3034 "Assert that an overlay section is mapped.", &overlaylist);
3035
3036 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3037 "Assert that an overlay section is unmapped.", &overlaylist);
3038
3039 add_cmd ("list-overlays", class_support, list_overlays_command,
3040 "List mappings of overlay sections.", &overlaylist);
3041
3042 add_cmd ("manual", class_support, overlay_manual_command,
3043 "Enable overlay debugging.", &overlaylist);
3044 add_cmd ("off", class_support, overlay_off_command,
3045 "Disable overlay debugging.", &overlaylist);
3046 add_cmd ("auto", class_support, overlay_auto_command,
3047 "Enable automatic overlay debugging.", &overlaylist);
3048 add_cmd ("load-target", class_support, overlay_load_command,
3049 "Read the overlay mapping state from the target.", &overlaylist);
3050
3051 /* Filename extension to source language lookup table: */
3052 init_filename_language_table ();
3053 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3054 (char *) &ext_args,
3055 "Set mapping between filename extension and source language.\n\
3056 Usage: set extension-language .foo bar",
3057 &setlist);
3058 c->function.cfunc = set_ext_lang_command;
3059
3060 add_info ("extensions", info_ext_lang_command,
3061 "All filename extensions associated with a source language.");
3062 }