]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Initial support for Fission. http://gcc.gnu.org/wiki/DebugFission
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines. */
89
90 static void load_command (char *, int);
91
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
94 static void add_symbol_file_command (char *, int);
95
96 bfd *symfile_bfd_open (char *);
97
98 int get_section_index (struct objfile *, char *);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void decrement_reading_symtab (void *);
103
104 static void overlay_invalidate_all (void);
105
106 void list_overlays_command (char *, int);
107
108 void map_overlay_command (char *, int);
109
110 void unmap_overlay_command (char *, int);
111
112 static void overlay_auto_command (char *, int);
113
114 static void overlay_manual_command (char *, int);
115
116 static void overlay_off_command (char *, int);
117
118 static void overlay_load_command (char *, int);
119
120 static void overlay_command (char *, int);
121
122 static void simple_free_overlay_table (void);
123
124 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
126
127 static int simple_read_overlay_table (void);
128
129 static int simple_overlay_update_1 (struct obj_section *);
130
131 static void add_filename_language (char *ext, enum language lang);
132
133 static void info_ext_lang_command (char *args, int from_tty);
134
135 static void init_filename_language_table (void);
136
137 static void symfile_find_segment_sections (struct objfile *objfile);
138
139 void _initialize_symfile (void);
140
141 /* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
143 prepared to read. */
144
145 typedef const struct sym_fns *sym_fns_ptr;
146 DEF_VEC_P (sym_fns_ptr);
147
148 static VEC (sym_fns_ptr) *symtab_fns = NULL;
149
150 /* If non-zero, shared library symbols will be added automatically
151 when the inferior is created, new libraries are loaded, or when
152 attaching to the inferior. This is almost always what users will
153 want to have happen; but for very large programs, the startup time
154 will be excessive, and so if this is a problem, the user can clear
155 this flag and then add the shared library symbols as needed. Note
156 that there is a potential for confusion, since if the shared
157 library symbols are not loaded, commands like "info fun" will *not*
158 report all the functions that are actually present. */
159
160 int auto_solib_add = 1;
161 \f
162
163 /* Make a null terminated copy of the string at PTR with SIZE characters in
164 the obstack pointed to by OBSTACKP . Returns the address of the copy.
165 Note that the string at PTR does not have to be null terminated, I.e. it
166 may be part of a larger string and we are only saving a substring. */
167
168 char *
169 obsavestring (const char *ptr, int size, struct obstack *obstackp)
170 {
171 char *p = (char *) obstack_alloc (obstackp, size + 1);
172 /* Open-coded memcpy--saves function call time. These strings are usually
173 short. FIXME: Is this really still true with a compiler that can
174 inline memcpy? */
175 {
176 const char *p1 = ptr;
177 char *p2 = p;
178 const char *end = ptr + size;
179
180 while (p1 != end)
181 *p2++ = *p1++;
182 }
183 p[size] = 0;
184 return p;
185 }
186
187 /* Concatenate NULL terminated variable argument list of `const char *'
188 strings; return the new string. Space is found in the OBSTACKP.
189 Argument list must be terminated by a sentinel expression `(char *)
190 NULL'. */
191
192 char *
193 obconcat (struct obstack *obstackp, ...)
194 {
195 va_list ap;
196
197 va_start (ap, obstackp);
198 for (;;)
199 {
200 const char *s = va_arg (ap, const char *);
201
202 if (s == NULL)
203 break;
204
205 obstack_grow_str (obstackp, s);
206 }
207 va_end (ap);
208 obstack_1grow (obstackp, 0);
209
210 return obstack_finish (obstackp);
211 }
212
213 /* True if we are reading a symbol table. */
214
215 int currently_reading_symtab = 0;
216
217 static void
218 decrement_reading_symtab (void *dummy)
219 {
220 currently_reading_symtab--;
221 }
222
223 /* Increment currently_reading_symtab and return a cleanup that can be
224 used to decrement it. */
225 struct cleanup *
226 increment_reading_symtab (void)
227 {
228 ++currently_reading_symtab;
229 return make_cleanup (decrement_reading_symtab, NULL);
230 }
231
232 /* Remember the lowest-addressed loadable section we've seen.
233 This function is called via bfd_map_over_sections.
234
235 In case of equal vmas, the section with the largest size becomes the
236 lowest-addressed loadable section.
237
238 If the vmas and sizes are equal, the last section is considered the
239 lowest-addressed loadable section. */
240
241 void
242 find_lowest_section (bfd *abfd, asection *sect, void *obj)
243 {
244 asection **lowest = (asection **) obj;
245
246 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
247 return;
248 if (!*lowest)
249 *lowest = sect; /* First loadable section */
250 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
251 *lowest = sect; /* A lower loadable section */
252 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
253 && (bfd_section_size (abfd, (*lowest))
254 <= bfd_section_size (abfd, sect)))
255 *lowest = sect;
256 }
257
258 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
259
260 struct section_addr_info *
261 alloc_section_addr_info (size_t num_sections)
262 {
263 struct section_addr_info *sap;
264 size_t size;
265
266 size = (sizeof (struct section_addr_info)
267 + sizeof (struct other_sections) * (num_sections - 1));
268 sap = (struct section_addr_info *) xmalloc (size);
269 memset (sap, 0, size);
270 sap->num_sections = num_sections;
271
272 return sap;
273 }
274
275 /* Build (allocate and populate) a section_addr_info struct from
276 an existing section table. */
277
278 extern struct section_addr_info *
279 build_section_addr_info_from_section_table (const struct target_section *start,
280 const struct target_section *end)
281 {
282 struct section_addr_info *sap;
283 const struct target_section *stp;
284 int oidx;
285
286 sap = alloc_section_addr_info (end - start);
287
288 for (stp = start, oidx = 0; stp != end; stp++)
289 {
290 if (bfd_get_section_flags (stp->bfd,
291 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
292 && oidx < end - start)
293 {
294 sap->other[oidx].addr = stp->addr;
295 sap->other[oidx].name
296 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
297 sap->other[oidx].sectindex = stp->the_bfd_section->index;
298 oidx++;
299 }
300 }
301
302 return sap;
303 }
304
305 /* Create a section_addr_info from section offsets in ABFD. */
306
307 static struct section_addr_info *
308 build_section_addr_info_from_bfd (bfd *abfd)
309 {
310 struct section_addr_info *sap;
311 int i;
312 struct bfd_section *sec;
313
314 sap = alloc_section_addr_info (bfd_count_sections (abfd));
315 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
316 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
317 {
318 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
319 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
320 sap->other[i].sectindex = sec->index;
321 i++;
322 }
323 return sap;
324 }
325
326 /* Create a section_addr_info from section offsets in OBJFILE. */
327
328 struct section_addr_info *
329 build_section_addr_info_from_objfile (const struct objfile *objfile)
330 {
331 struct section_addr_info *sap;
332 int i;
333
334 /* Before reread_symbols gets rewritten it is not safe to call:
335 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
336 */
337 sap = build_section_addr_info_from_bfd (objfile->obfd);
338 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
339 {
340 int sectindex = sap->other[i].sectindex;
341
342 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
343 }
344 return sap;
345 }
346
347 /* Free all memory allocated by build_section_addr_info_from_section_table. */
348
349 extern void
350 free_section_addr_info (struct section_addr_info *sap)
351 {
352 int idx;
353
354 for (idx = 0; idx < sap->num_sections; idx++)
355 if (sap->other[idx].name)
356 xfree (sap->other[idx].name);
357 xfree (sap);
358 }
359
360
361 /* Initialize OBJFILE's sect_index_* members. */
362 static void
363 init_objfile_sect_indices (struct objfile *objfile)
364 {
365 asection *sect;
366 int i;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".text");
369 if (sect)
370 objfile->sect_index_text = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".data");
373 if (sect)
374 objfile->sect_index_data = sect->index;
375
376 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
377 if (sect)
378 objfile->sect_index_bss = sect->index;
379
380 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
381 if (sect)
382 objfile->sect_index_rodata = sect->index;
383
384 /* This is where things get really weird... We MUST have valid
385 indices for the various sect_index_* members or gdb will abort.
386 So if for example, there is no ".text" section, we have to
387 accomodate that. First, check for a file with the standard
388 one or two segments. */
389
390 symfile_find_segment_sections (objfile);
391
392 /* Except when explicitly adding symbol files at some address,
393 section_offsets contains nothing but zeros, so it doesn't matter
394 which slot in section_offsets the individual sect_index_* members
395 index into. So if they are all zero, it is safe to just point
396 all the currently uninitialized indices to the first slot. But
397 beware: if this is the main executable, it may be relocated
398 later, e.g. by the remote qOffsets packet, and then this will
399 be wrong! That's why we try segments first. */
400
401 for (i = 0; i < objfile->num_sections; i++)
402 {
403 if (ANOFFSET (objfile->section_offsets, i) != 0)
404 {
405 break;
406 }
407 }
408 if (i == objfile->num_sections)
409 {
410 if (objfile->sect_index_text == -1)
411 objfile->sect_index_text = 0;
412 if (objfile->sect_index_data == -1)
413 objfile->sect_index_data = 0;
414 if (objfile->sect_index_bss == -1)
415 objfile->sect_index_bss = 0;
416 if (objfile->sect_index_rodata == -1)
417 objfile->sect_index_rodata = 0;
418 }
419 }
420
421 /* The arguments to place_section. */
422
423 struct place_section_arg
424 {
425 struct section_offsets *offsets;
426 CORE_ADDR lowest;
427 };
428
429 /* Find a unique offset to use for loadable section SECT if
430 the user did not provide an offset. */
431
432 static void
433 place_section (bfd *abfd, asection *sect, void *obj)
434 {
435 struct place_section_arg *arg = obj;
436 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
437 int done;
438 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
439
440 /* We are only interested in allocated sections. */
441 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
442 return;
443
444 /* If the user specified an offset, honor it. */
445 if (offsets[sect->index] != 0)
446 return;
447
448 /* Otherwise, let's try to find a place for the section. */
449 start_addr = (arg->lowest + align - 1) & -align;
450
451 do {
452 asection *cur_sec;
453
454 done = 1;
455
456 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
457 {
458 int indx = cur_sec->index;
459
460 /* We don't need to compare against ourself. */
461 if (cur_sec == sect)
462 continue;
463
464 /* We can only conflict with allocated sections. */
465 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
466 continue;
467
468 /* If the section offset is 0, either the section has not been placed
469 yet, or it was the lowest section placed (in which case LOWEST
470 will be past its end). */
471 if (offsets[indx] == 0)
472 continue;
473
474 /* If this section would overlap us, then we must move up. */
475 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
476 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
477 {
478 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
479 start_addr = (start_addr + align - 1) & -align;
480 done = 0;
481 break;
482 }
483
484 /* Otherwise, we appear to be OK. So far. */
485 }
486 }
487 while (!done);
488
489 offsets[sect->index] = start_addr;
490 arg->lowest = start_addr + bfd_get_section_size (sect);
491 }
492
493 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
494 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
495 entries. */
496
497 void
498 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
499 int num_sections,
500 struct section_addr_info *addrs)
501 {
502 int i;
503
504 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
505
506 /* Now calculate offsets for section that were specified by the caller. */
507 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
508 {
509 struct other_sections *osp;
510
511 osp = &addrs->other[i];
512 if (osp->sectindex == -1)
513 continue;
514
515 /* Record all sections in offsets. */
516 /* The section_offsets in the objfile are here filled in using
517 the BFD index. */
518 section_offsets->offsets[osp->sectindex] = osp->addr;
519 }
520 }
521
522 /* Transform section name S for a name comparison. prelink can split section
523 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
524 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
525 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
526 (`.sbss') section has invalid (increased) virtual address. */
527
528 static const char *
529 addr_section_name (const char *s)
530 {
531 if (strcmp (s, ".dynbss") == 0)
532 return ".bss";
533 if (strcmp (s, ".sdynbss") == 0)
534 return ".sbss";
535
536 return s;
537 }
538
539 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
540 their (name, sectindex) pair. sectindex makes the sort by name stable. */
541
542 static int
543 addrs_section_compar (const void *ap, const void *bp)
544 {
545 const struct other_sections *a = *((struct other_sections **) ap);
546 const struct other_sections *b = *((struct other_sections **) bp);
547 int retval, a_idx, b_idx;
548
549 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
550 if (retval)
551 return retval;
552
553 return a->sectindex - b->sectindex;
554 }
555
556 /* Provide sorted array of pointers to sections of ADDRS. The array is
557 terminated by NULL. Caller is responsible to call xfree for it. */
558
559 static struct other_sections **
560 addrs_section_sort (struct section_addr_info *addrs)
561 {
562 struct other_sections **array;
563 int i;
564
565 /* `+ 1' for the NULL terminator. */
566 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 array[i] = &addrs->other[i];
569 array[i] = NULL;
570
571 qsort (array, i, sizeof (*array), addrs_section_compar);
572
573 return array;
574 }
575
576 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
577 also SECTINDEXes specific to ABFD there. This function can be used to
578 rebase ADDRS to start referencing different BFD than before. */
579
580 void
581 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
582 {
583 asection *lower_sect;
584 CORE_ADDR lower_offset;
585 int i;
586 struct cleanup *my_cleanup;
587 struct section_addr_info *abfd_addrs;
588 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
589 struct other_sections **addrs_to_abfd_addrs;
590
591 /* Find lowest loadable section to be used as starting point for
592 continguous sections. */
593 lower_sect = NULL;
594 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
595 if (lower_sect == NULL)
596 {
597 warning (_("no loadable sections found in added symbol-file %s"),
598 bfd_get_filename (abfd));
599 lower_offset = 0;
600 }
601 else
602 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
603
604 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
605 in ABFD. Section names are not unique - there can be multiple sections of
606 the same name. Also the sections of the same name do not have to be
607 adjacent to each other. Some sections may be present only in one of the
608 files. Even sections present in both files do not have to be in the same
609 order.
610
611 Use stable sort by name for the sections in both files. Then linearly
612 scan both lists matching as most of the entries as possible. */
613
614 addrs_sorted = addrs_section_sort (addrs);
615 my_cleanup = make_cleanup (xfree, addrs_sorted);
616
617 abfd_addrs = build_section_addr_info_from_bfd (abfd);
618 make_cleanup_free_section_addr_info (abfd_addrs);
619 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
620 make_cleanup (xfree, abfd_addrs_sorted);
621
622 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
623 ABFD_ADDRS_SORTED. */
624
625 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
626 * addrs->num_sections);
627 make_cleanup (xfree, addrs_to_abfd_addrs);
628
629 while (*addrs_sorted)
630 {
631 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
632
633 while (*abfd_addrs_sorted
634 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
635 sect_name) < 0)
636 abfd_addrs_sorted++;
637
638 if (*abfd_addrs_sorted
639 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
640 sect_name) == 0)
641 {
642 int index_in_addrs;
643
644 /* Make the found item directly addressable from ADDRS. */
645 index_in_addrs = *addrs_sorted - addrs->other;
646 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
647 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
648
649 /* Never use the same ABFD entry twice. */
650 abfd_addrs_sorted++;
651 }
652
653 addrs_sorted++;
654 }
655
656 /* Calculate offsets for the loadable sections.
657 FIXME! Sections must be in order of increasing loadable section
658 so that contiguous sections can use the lower-offset!!!
659
660 Adjust offsets if the segments are not contiguous.
661 If the section is contiguous, its offset should be set to
662 the offset of the highest loadable section lower than it
663 (the loadable section directly below it in memory).
664 this_offset = lower_offset = lower_addr - lower_orig_addr */
665
666 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
667 {
668 struct other_sections *sect = addrs_to_abfd_addrs[i];
669
670 if (sect)
671 {
672 /* This is the index used by BFD. */
673 addrs->other[i].sectindex = sect->sectindex;
674
675 if (addrs->other[i].addr != 0)
676 {
677 addrs->other[i].addr -= sect->addr;
678 lower_offset = addrs->other[i].addr;
679 }
680 else
681 addrs->other[i].addr = lower_offset;
682 }
683 else
684 {
685 /* addr_section_name transformation is not used for SECT_NAME. */
686 const char *sect_name = addrs->other[i].name;
687
688 /* This section does not exist in ABFD, which is normally
689 unexpected and we want to issue a warning.
690
691 However, the ELF prelinker does create a few sections which are
692 marked in the main executable as loadable (they are loaded in
693 memory from the DYNAMIC segment) and yet are not present in
694 separate debug info files. This is fine, and should not cause
695 a warning. Shared libraries contain just the section
696 ".gnu.liblist" but it is not marked as loadable there. There is
697 no other way to identify them than by their name as the sections
698 created by prelink have no special flags.
699
700 For the sections `.bss' and `.sbss' see addr_section_name. */
701
702 if (!(strcmp (sect_name, ".gnu.liblist") == 0
703 || strcmp (sect_name, ".gnu.conflict") == 0
704 || (strcmp (sect_name, ".bss") == 0
705 && i > 0
706 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
707 && addrs_to_abfd_addrs[i - 1] != NULL)
708 || (strcmp (sect_name, ".sbss") == 0
709 && i > 0
710 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
711 && addrs_to_abfd_addrs[i - 1] != NULL)))
712 warning (_("section %s not found in %s"), sect_name,
713 bfd_get_filename (abfd));
714
715 addrs->other[i].addr = 0;
716 addrs->other[i].sectindex = -1;
717 }
718 }
719
720 do_cleanups (my_cleanup);
721 }
722
723 /* Parse the user's idea of an offset for dynamic linking, into our idea
724 of how to represent it for fast symbol reading. This is the default
725 version of the sym_fns.sym_offsets function for symbol readers that
726 don't need to do anything special. It allocates a section_offsets table
727 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
728
729 void
730 default_symfile_offsets (struct objfile *objfile,
731 struct section_addr_info *addrs)
732 {
733 objfile->num_sections = bfd_count_sections (objfile->obfd);
734 objfile->section_offsets = (struct section_offsets *)
735 obstack_alloc (&objfile->objfile_obstack,
736 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
737 relative_addr_info_to_section_offsets (objfile->section_offsets,
738 objfile->num_sections, addrs);
739
740 /* For relocatable files, all loadable sections will start at zero.
741 The zero is meaningless, so try to pick arbitrary addresses such
742 that no loadable sections overlap. This algorithm is quadratic,
743 but the number of sections in a single object file is generally
744 small. */
745 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
746 {
747 struct place_section_arg arg;
748 bfd *abfd = objfile->obfd;
749 asection *cur_sec;
750
751 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
752 /* We do not expect this to happen; just skip this step if the
753 relocatable file has a section with an assigned VMA. */
754 if (bfd_section_vma (abfd, cur_sec) != 0)
755 break;
756
757 if (cur_sec == NULL)
758 {
759 CORE_ADDR *offsets = objfile->section_offsets->offsets;
760
761 /* Pick non-overlapping offsets for sections the user did not
762 place explicitly. */
763 arg.offsets = objfile->section_offsets;
764 arg.lowest = 0;
765 bfd_map_over_sections (objfile->obfd, place_section, &arg);
766
767 /* Correctly filling in the section offsets is not quite
768 enough. Relocatable files have two properties that
769 (most) shared objects do not:
770
771 - Their debug information will contain relocations. Some
772 shared libraries do also, but many do not, so this can not
773 be assumed.
774
775 - If there are multiple code sections they will be loaded
776 at different relative addresses in memory than they are
777 in the objfile, since all sections in the file will start
778 at address zero.
779
780 Because GDB has very limited ability to map from an
781 address in debug info to the correct code section,
782 it relies on adding SECT_OFF_TEXT to things which might be
783 code. If we clear all the section offsets, and set the
784 section VMAs instead, then symfile_relocate_debug_section
785 will return meaningful debug information pointing at the
786 correct sections.
787
788 GDB has too many different data structures for section
789 addresses - a bfd, objfile, and so_list all have section
790 tables, as does exec_ops. Some of these could probably
791 be eliminated. */
792
793 for (cur_sec = abfd->sections; cur_sec != NULL;
794 cur_sec = cur_sec->next)
795 {
796 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
797 continue;
798
799 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
800 exec_set_section_address (bfd_get_filename (abfd),
801 cur_sec->index,
802 offsets[cur_sec->index]);
803 offsets[cur_sec->index] = 0;
804 }
805 }
806 }
807
808 /* Remember the bfd indexes for the .text, .data, .bss and
809 .rodata sections. */
810 init_objfile_sect_indices (objfile);
811 }
812
813
814 /* Divide the file into segments, which are individual relocatable units.
815 This is the default version of the sym_fns.sym_segments function for
816 symbol readers that do not have an explicit representation of segments.
817 It assumes that object files do not have segments, and fully linked
818 files have a single segment. */
819
820 struct symfile_segment_data *
821 default_symfile_segments (bfd *abfd)
822 {
823 int num_sections, i;
824 asection *sect;
825 struct symfile_segment_data *data;
826 CORE_ADDR low, high;
827
828 /* Relocatable files contain enough information to position each
829 loadable section independently; they should not be relocated
830 in segments. */
831 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
832 return NULL;
833
834 /* Make sure there is at least one loadable section in the file. */
835 for (sect = abfd->sections; sect != NULL; sect = sect->next)
836 {
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 break;
841 }
842 if (sect == NULL)
843 return NULL;
844
845 low = bfd_get_section_vma (abfd, sect);
846 high = low + bfd_get_section_size (sect);
847
848 data = XZALLOC (struct symfile_segment_data);
849 data->num_segments = 1;
850 data->segment_bases = XCALLOC (1, CORE_ADDR);
851 data->segment_sizes = XCALLOC (1, CORE_ADDR);
852
853 num_sections = bfd_count_sections (abfd);
854 data->segment_info = XCALLOC (num_sections, int);
855
856 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
857 {
858 CORE_ADDR vma;
859
860 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
861 continue;
862
863 vma = bfd_get_section_vma (abfd, sect);
864 if (vma < low)
865 low = vma;
866 if (vma + bfd_get_section_size (sect) > high)
867 high = vma + bfd_get_section_size (sect);
868
869 data->segment_info[i] = 1;
870 }
871
872 data->segment_bases[0] = low;
873 data->segment_sizes[0] = high - low;
874
875 return data;
876 }
877
878 /* Process a symbol file, as either the main file or as a dynamically
879 loaded file.
880
881 OBJFILE is where the symbols are to be read from.
882
883 ADDRS is the list of section load addresses. If the user has given
884 an 'add-symbol-file' command, then this is the list of offsets and
885 addresses he or she provided as arguments to the command; or, if
886 we're handling a shared library, these are the actual addresses the
887 sections are loaded at, according to the inferior's dynamic linker
888 (as gleaned by GDB's shared library code). We convert each address
889 into an offset from the section VMA's as it appears in the object
890 file, and then call the file's sym_offsets function to convert this
891 into a format-specific offset table --- a `struct section_offsets'.
892 If ADDRS is non-zero, OFFSETS must be zero.
893
894 OFFSETS is a table of section offsets already in the right
895 format-specific representation. NUM_OFFSETS is the number of
896 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
897 assume this is the proper table the call to sym_offsets described
898 above would produce. Instead of calling sym_offsets, we just dump
899 it right into objfile->section_offsets. (When we're re-reading
900 symbols from an objfile, we don't have the original load address
901 list any more; all we have is the section offset table.) If
902 OFFSETS is non-zero, ADDRS must be zero.
903
904 ADD_FLAGS encodes verbosity level, whether this is main symbol or
905 an extra symbol file such as dynamically loaded code, and wether
906 breakpoint reset should be deferred. */
907
908 void
909 syms_from_objfile (struct objfile *objfile,
910 struct section_addr_info *addrs,
911 struct section_offsets *offsets,
912 int num_offsets,
913 int add_flags)
914 {
915 struct section_addr_info *local_addr = NULL;
916 struct cleanup *old_chain;
917 const int mainline = add_flags & SYMFILE_MAINLINE;
918
919 gdb_assert (! (addrs && offsets));
920
921 init_entry_point_info (objfile);
922 objfile->sf = find_sym_fns (objfile->obfd);
923
924 if (objfile->sf == NULL)
925 return; /* No symbols. */
926
927 /* Make sure that partially constructed symbol tables will be cleaned up
928 if an error occurs during symbol reading. */
929 old_chain = make_cleanup_free_objfile (objfile);
930
931 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
932 list. We now establish the convention that an addr of zero means
933 no load address was specified. */
934 if (! addrs && ! offsets)
935 {
936 local_addr
937 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
938 make_cleanup (xfree, local_addr);
939 addrs = local_addr;
940 }
941
942 /* Now either addrs or offsets is non-zero. */
943
944 if (mainline)
945 {
946 /* We will modify the main symbol table, make sure that all its users
947 will be cleaned up if an error occurs during symbol reading. */
948 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
949
950 /* Since no error yet, throw away the old symbol table. */
951
952 if (symfile_objfile != NULL)
953 {
954 free_objfile (symfile_objfile);
955 gdb_assert (symfile_objfile == NULL);
956 }
957
958 /* Currently we keep symbols from the add-symbol-file command.
959 If the user wants to get rid of them, they should do "symbol-file"
960 without arguments first. Not sure this is the best behavior
961 (PR 2207). */
962
963 (*objfile->sf->sym_new_init) (objfile);
964 }
965
966 /* Convert addr into an offset rather than an absolute address.
967 We find the lowest address of a loaded segment in the objfile,
968 and assume that <addr> is where that got loaded.
969
970 We no longer warn if the lowest section is not a text segment (as
971 happens for the PA64 port. */
972 if (addrs && addrs->other[0].name)
973 addr_info_make_relative (addrs, objfile->obfd);
974
975 /* Initialize symbol reading routines for this objfile, allow complaints to
976 appear for this new file, and record how verbose to be, then do the
977 initial symbol reading for this file. */
978
979 (*objfile->sf->sym_init) (objfile);
980 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
981
982 if (addrs)
983 (*objfile->sf->sym_offsets) (objfile, addrs);
984 else
985 {
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
987
988 /* Just copy in the offset table directly as given to us. */
989 objfile->num_sections = num_offsets;
990 objfile->section_offsets
991 = ((struct section_offsets *)
992 obstack_alloc (&objfile->objfile_obstack, size));
993 memcpy (objfile->section_offsets, offsets, size);
994
995 init_objfile_sect_indices (objfile);
996 }
997
998 (*objfile->sf->sym_read) (objfile, add_flags);
999
1000 if ((add_flags & SYMFILE_NO_READ) == 0)
1001 require_partial_symbols (objfile, 0);
1002
1003 /* Discard cleanups as symbol reading was successful. */
1004
1005 discard_cleanups (old_chain);
1006 xfree (local_addr);
1007 }
1008
1009 /* Perform required actions after either reading in the initial
1010 symbols for a new objfile, or mapping in the symbols from a reusable
1011 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1012
1013 void
1014 new_symfile_objfile (struct objfile *objfile, int add_flags)
1015 {
1016 /* If this is the main symbol file we have to clean up all users of the
1017 old main symbol file. Otherwise it is sufficient to fixup all the
1018 breakpoints that may have been redefined by this symbol file. */
1019 if (add_flags & SYMFILE_MAINLINE)
1020 {
1021 /* OK, make it the "real" symbol file. */
1022 symfile_objfile = objfile;
1023
1024 clear_symtab_users (add_flags);
1025 }
1026 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1027 {
1028 breakpoint_re_set ();
1029 }
1030
1031 /* We're done reading the symbol file; finish off complaints. */
1032 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1033 }
1034
1035 /* Process a symbol file, as either the main file or as a dynamically
1036 loaded file.
1037
1038 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1039 This BFD will be closed on error, and is always consumed by this function.
1040
1041 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1042 extra, such as dynamically loaded code, and what to do with breakpoins.
1043
1044 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1045 syms_from_objfile, above.
1046 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1047
1048 PARENT is the original objfile if ABFD is a separate debug info file.
1049 Otherwise PARENT is NULL.
1050
1051 Upon success, returns a pointer to the objfile that was added.
1052 Upon failure, jumps back to command level (never returns). */
1053
1054 static struct objfile *
1055 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1056 int add_flags,
1057 struct section_addr_info *addrs,
1058 struct section_offsets *offsets,
1059 int num_offsets,
1060 int flags, struct objfile *parent)
1061 {
1062 struct objfile *objfile;
1063 struct cleanup *my_cleanups;
1064 const char *name = bfd_get_filename (abfd);
1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
1066 const int mainline = add_flags & SYMFILE_MAINLINE;
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
1070
1071 if (readnow_symbol_files)
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
1076
1077 my_cleanups = make_cleanup_bfd_close (abfd);
1078
1079 /* Give user a chance to burp if we'd be
1080 interactively wiping out any existing symbols. */
1081
1082 if ((have_full_symbols () || have_partial_symbols ())
1083 && mainline
1084 && from_tty
1085 && !query (_("Load new symbol table from \"%s\"? "), name))
1086 error (_("Not confirmed."));
1087
1088 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1089 discard_cleanups (my_cleanups);
1090
1091 if (parent)
1092 add_separate_debug_objfile (objfile, parent);
1093
1094 /* We either created a new mapped symbol table, mapped an existing
1095 symbol table file which has not had initial symbol reading
1096 performed, or need to read an unmapped symbol table. */
1097 if (should_print)
1098 {
1099 if (deprecated_pre_add_symbol_hook)
1100 deprecated_pre_add_symbol_hook (name);
1101 else
1102 {
1103 printf_unfiltered (_("Reading symbols from %s..."), name);
1104 wrap_here ("");
1105 gdb_flush (gdb_stdout);
1106 }
1107 }
1108 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1109 add_flags);
1110
1111 /* We now have at least a partial symbol table. Check to see if the
1112 user requested that all symbols be read on initial access via either
1113 the gdb startup command line or on a per symbol file basis. Expand
1114 all partial symbol tables for this objfile if so. */
1115
1116 if ((flags & OBJF_READNOW))
1117 {
1118 if (should_print)
1119 {
1120 printf_unfiltered (_("expanding to full symbols..."));
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124
1125 if (objfile->sf)
1126 objfile->sf->qf->expand_all_symtabs (objfile);
1127 }
1128
1129 if (should_print && !objfile_has_symbols (objfile))
1130 {
1131 wrap_here ("");
1132 printf_unfiltered (_("(no debugging symbols found)..."));
1133 wrap_here ("");
1134 }
1135
1136 if (should_print)
1137 {
1138 if (deprecated_post_add_symbol_hook)
1139 deprecated_post_add_symbol_hook ();
1140 else
1141 printf_unfiltered (_("done.\n"));
1142 }
1143
1144 /* We print some messages regardless of whether 'from_tty ||
1145 info_verbose' is true, so make sure they go out at the right
1146 time. */
1147 gdb_flush (gdb_stdout);
1148
1149 if (objfile->sf == NULL)
1150 {
1151 observer_notify_new_objfile (objfile);
1152 return objfile; /* No symbols. */
1153 }
1154
1155 new_symfile_objfile (objfile, add_flags);
1156
1157 observer_notify_new_objfile (objfile);
1158
1159 bfd_cache_close_all ();
1160 return (objfile);
1161 }
1162
1163 /* Add BFD as a separate debug file for OBJFILE. */
1164
1165 void
1166 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1167 {
1168 struct objfile *new_objfile;
1169 struct section_addr_info *sap;
1170 struct cleanup *my_cleanup;
1171
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 sap = build_section_addr_info_from_objfile (objfile);
1176 my_cleanup = make_cleanup_free_section_addr_info (sap);
1177
1178 new_objfile = symbol_file_add_with_addrs_or_offsets
1179 (bfd, symfile_flags,
1180 sap, NULL, 0,
1181 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1182 | OBJF_USERLOADED),
1183 objfile);
1184
1185 do_cleanups (my_cleanup);
1186 }
1187
1188 /* Process the symbol file ABFD, as either the main file or as a
1189 dynamically loaded file.
1190
1191 See symbol_file_add_with_addrs_or_offsets's comments for
1192 details. */
1193 struct objfile *
1194 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1195 struct section_addr_info *addrs,
1196 int flags, struct objfile *parent)
1197 {
1198 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1199 flags, parent);
1200 }
1201
1202
1203 /* Process a symbol file, as either the main file or as a dynamically
1204 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1205 for details. */
1206 struct objfile *
1207 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
1209 {
1210 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1211 flags, NULL);
1212 }
1213
1214
1215 /* Call symbol_file_add() with default values and update whatever is
1216 affected by the loading of a new main().
1217 Used when the file is supplied in the gdb command line
1218 and by some targets with special loading requirements.
1219 The auxiliary function, symbol_file_add_main_1(), has the flags
1220 argument for the switches that can only be specified in the symbol_file
1221 command itself. */
1222
1223 void
1224 symbol_file_add_main (char *args, int from_tty)
1225 {
1226 symbol_file_add_main_1 (args, from_tty, 0);
1227 }
1228
1229 static void
1230 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1231 {
1232 const int add_flags = (current_inferior ()->symfile_flags
1233 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1234
1235 symbol_file_add (args, add_flags, NULL, flags);
1236
1237 /* Getting new symbols may change our opinion about
1238 what is frameless. */
1239 reinit_frame_cache ();
1240
1241 if ((flags & SYMFILE_NO_READ) == 0)
1242 set_initial_language ();
1243 }
1244
1245 void
1246 symbol_file_clear (int from_tty)
1247 {
1248 if ((have_full_symbols () || have_partial_symbols ())
1249 && from_tty
1250 && (symfile_objfile
1251 ? !query (_("Discard symbol table from `%s'? "),
1252 symfile_objfile->name)
1253 : !query (_("Discard symbol table? "))))
1254 error (_("Not confirmed."));
1255
1256 /* solib descriptors may have handles to objfiles. Wipe them before their
1257 objfiles get stale by free_all_objfiles. */
1258 no_shared_libraries (NULL, from_tty);
1259
1260 free_all_objfiles ();
1261
1262 gdb_assert (symfile_objfile == NULL);
1263 if (from_tty)
1264 printf_unfiltered (_("No symbol file now.\n"));
1265 }
1266
1267 static char *
1268 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269 {
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
1275
1276 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1277
1278 if (sect == NULL)
1279 return NULL;
1280
1281 debuglink_size = bfd_section_size (objfile->obfd, sect);
1282
1283 contents = xmalloc (debuglink_size);
1284 bfd_get_section_contents (objfile->obfd, sect, contents,
1285 (file_ptr)0, (bfd_size_type)debuglink_size);
1286
1287 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1288 crc_offset = strlen (contents) + 1;
1289 crc_offset = (crc_offset + 3) & ~3;
1290
1291 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1292
1293 *crc32_out = crc32;
1294 return contents;
1295 }
1296
1297 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1298 return 1. Otherwise print a warning and return 0. ABFD seek position is
1299 not preserved. */
1300
1301 static int
1302 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1303 {
1304 unsigned long file_crc = 0;
1305
1306 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1307 {
1308 warning (_("Problem reading \"%s\" for CRC: %s"),
1309 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1310 return 0;
1311 }
1312
1313 for (;;)
1314 {
1315 gdb_byte buffer[8 * 1024];
1316 bfd_size_type count;
1317
1318 count = bfd_bread (buffer, sizeof (buffer), abfd);
1319 if (count == (bfd_size_type) -1)
1320 {
1321 warning (_("Problem reading \"%s\" for CRC: %s"),
1322 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1323 return 0;
1324 }
1325 if (count == 0)
1326 break;
1327 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1328 }
1329
1330 *file_crc_return = file_crc;
1331 return 1;
1332 }
1333
1334 static int
1335 separate_debug_file_exists (const char *name, unsigned long crc,
1336 struct objfile *parent_objfile)
1337 {
1338 unsigned long file_crc;
1339 int file_crc_p;
1340 bfd *abfd;
1341 struct stat parent_stat, abfd_stat;
1342 int verified_as_different;
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1348 the separate debug infos with the same basename can exist. */
1349
1350 if (filename_cmp (name, parent_objfile->name) == 0)
1351 return 0;
1352
1353 abfd = bfd_open_maybe_remote (name);
1354
1355 if (!abfd)
1356 return 0;
1357
1358 /* Verify symlinks were not the cause of filename_cmp name difference above.
1359
1360 Some operating systems, e.g. Windows, do not provide a meaningful
1361 st_ino; they always set it to zero. (Windows does provide a
1362 meaningful st_dev.) Do not indicate a duplicate library in that
1363 case. While there is no guarantee that a system that provides
1364 meaningful inode numbers will never set st_ino to zero, this is
1365 merely an optimization, so we do not need to worry about false
1366 negatives. */
1367
1368 if (bfd_stat (abfd, &abfd_stat) == 0
1369 && abfd_stat.st_ino != 0
1370 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1371 {
1372 if (abfd_stat.st_dev == parent_stat.st_dev
1373 && abfd_stat.st_ino == parent_stat.st_ino)
1374 {
1375 bfd_close (abfd);
1376 return 0;
1377 }
1378 verified_as_different = 1;
1379 }
1380 else
1381 verified_as_different = 0;
1382
1383 file_crc_p = get_file_crc (abfd, &file_crc);
1384
1385 bfd_close (abfd);
1386
1387 if (!file_crc_p)
1388 return 0;
1389
1390 if (crc != file_crc)
1391 {
1392 /* If one (or both) the files are accessed for example the via "remote:"
1393 gdbserver way it does not support the bfd_stat operation. Verify
1394 whether those two files are not the same manually. */
1395
1396 if (!verified_as_different && !parent_objfile->crc32_p)
1397 {
1398 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1399 &parent_objfile->crc32);
1400 if (!parent_objfile->crc32_p)
1401 return 0;
1402 }
1403
1404 if (verified_as_different || parent_objfile->crc32 != file_crc)
1405 warning (_("the debug information found in \"%s\""
1406 " does not match \"%s\" (CRC mismatch).\n"),
1407 name, parent_objfile->name);
1408
1409 return 0;
1410 }
1411
1412 return 1;
1413 }
1414
1415 char *debug_file_directory = NULL;
1416 static void
1417 show_debug_file_directory (struct ui_file *file, int from_tty,
1418 struct cmd_list_element *c, const char *value)
1419 {
1420 fprintf_filtered (file,
1421 _("The directory where separate debug "
1422 "symbols are searched for is \"%s\".\n"),
1423 value);
1424 }
1425
1426 #if ! defined (DEBUG_SUBDIRECTORY)
1427 #define DEBUG_SUBDIRECTORY ".debug"
1428 #endif
1429
1430 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1431 where the original file resides (may not be the same as
1432 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1433 looking for. Returns the name of the debuginfo, of NULL. */
1434
1435 static char *
1436 find_separate_debug_file (const char *dir,
1437 const char *canon_dir,
1438 const char *debuglink,
1439 unsigned long crc32, struct objfile *objfile)
1440 {
1441 char *debugdir;
1442 char *debugfile;
1443 int i;
1444 VEC (char_ptr) *debugdir_vec;
1445 struct cleanup *back_to;
1446 int ix;
1447
1448 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1449 i = strlen (dir);
1450 if (canon_dir != NULL && strlen (canon_dir) > i)
1451 i = strlen (canon_dir);
1452
1453 debugfile = xmalloc (strlen (debug_file_directory) + 1
1454 + i
1455 + strlen (DEBUG_SUBDIRECTORY)
1456 + strlen ("/")
1457 + strlen (debuglink)
1458 + 1);
1459
1460 /* First try in the same directory as the original file. */
1461 strcpy (debugfile, dir);
1462 strcat (debugfile, debuglink);
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 return debugfile;
1466
1467 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1468 strcpy (debugfile, dir);
1469 strcat (debugfile, DEBUG_SUBDIRECTORY);
1470 strcat (debugfile, "/");
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 return debugfile;
1475
1476 /* Then try in the global debugfile directories.
1477
1478 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1479 cause "/..." lookups. */
1480
1481 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1482 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1483
1484 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1485 {
1486 strcpy (debugfile, debugdir);
1487 strcat (debugfile, "/");
1488 strcat (debugfile, dir);
1489 strcat (debugfile, debuglink);
1490
1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
1492 return debugfile;
1493
1494 /* If the file is in the sysroot, try using its base path in the
1495 global debugfile directory. */
1496 if (canon_dir != NULL
1497 && filename_ncmp (canon_dir, gdb_sysroot,
1498 strlen (gdb_sysroot)) == 0
1499 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1500 {
1501 strcpy (debugfile, debugdir);
1502 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1503 strcat (debugfile, "/");
1504 strcat (debugfile, debuglink);
1505
1506 if (separate_debug_file_exists (debugfile, crc32, objfile))
1507 return debugfile;
1508 }
1509 }
1510
1511 do_cleanups (back_to);
1512 xfree (debugfile);
1513 return NULL;
1514 }
1515
1516 /* Modify PATH to contain only "directory/" part of PATH.
1517 If there were no directory separators in PATH, PATH will be empty
1518 string on return. */
1519
1520 static void
1521 terminate_after_last_dir_separator (char *path)
1522 {
1523 int i;
1524
1525 /* Strip off the final filename part, leaving the directory name,
1526 followed by a slash. The directory can be relative or absolute. */
1527 for (i = strlen(path) - 1; i >= 0; i--)
1528 if (IS_DIR_SEPARATOR (path[i]))
1529 break;
1530
1531 /* If I is -1 then no directory is present there and DIR will be "". */
1532 path[i + 1] = '\0';
1533 }
1534
1535 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1536 Returns pathname, or NULL. */
1537
1538 char *
1539 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1540 {
1541 char *debuglink;
1542 char *dir, *canon_dir;
1543 char *debugfile;
1544 unsigned long crc32;
1545 struct cleanup *cleanups;
1546
1547 debuglink = get_debug_link_info (objfile, &crc32);
1548
1549 if (debuglink == NULL)
1550 {
1551 /* There's no separate debug info, hence there's no way we could
1552 load it => no warning. */
1553 return NULL;
1554 }
1555
1556 dir = xstrdup (objfile->name);
1557 cleanups = make_cleanup (xfree, dir);
1558 terminate_after_last_dir_separator (dir);
1559 canon_dir = lrealpath (dir);
1560
1561 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1562 crc32, objfile);
1563 xfree (canon_dir);
1564
1565 if (debugfile == NULL)
1566 {
1567 #ifdef HAVE_LSTAT
1568 /* For PR gdb/9538, try again with realpath (if different from the
1569 original). */
1570
1571 struct stat st_buf;
1572
1573 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1574 {
1575 char *symlink_dir;
1576
1577 symlink_dir = lrealpath (objfile->name);
1578 if (symlink_dir != NULL)
1579 {
1580 make_cleanup (xfree, symlink_dir);
1581 terminate_after_last_dir_separator (symlink_dir);
1582 if (strcmp (dir, symlink_dir) != 0)
1583 {
1584 /* Different directory, so try using it. */
1585 debugfile = find_separate_debug_file (symlink_dir,
1586 symlink_dir,
1587 debuglink,
1588 crc32,
1589 objfile);
1590 }
1591 }
1592 }
1593 #endif /* HAVE_LSTAT */
1594 }
1595
1596 do_cleanups (cleanups);
1597 return debugfile;
1598 }
1599
1600
1601 /* This is the symbol-file command. Read the file, analyze its
1602 symbols, and add a struct symtab to a symtab list. The syntax of
1603 the command is rather bizarre:
1604
1605 1. The function buildargv implements various quoting conventions
1606 which are undocumented and have little or nothing in common with
1607 the way things are quoted (or not quoted) elsewhere in GDB.
1608
1609 2. Options are used, which are not generally used in GDB (perhaps
1610 "set mapped on", "set readnow on" would be better)
1611
1612 3. The order of options matters, which is contrary to GNU
1613 conventions (because it is confusing and inconvenient). */
1614
1615 void
1616 symbol_file_command (char *args, int from_tty)
1617 {
1618 dont_repeat ();
1619
1620 if (args == NULL)
1621 {
1622 symbol_file_clear (from_tty);
1623 }
1624 else
1625 {
1626 char **argv = gdb_buildargv (args);
1627 int flags = OBJF_USERLOADED;
1628 struct cleanup *cleanups;
1629 char *name = NULL;
1630
1631 cleanups = make_cleanup_freeargv (argv);
1632 while (*argv != NULL)
1633 {
1634 if (strcmp (*argv, "-readnow") == 0)
1635 flags |= OBJF_READNOW;
1636 else if (**argv == '-')
1637 error (_("unknown option `%s'"), *argv);
1638 else
1639 {
1640 symbol_file_add_main_1 (*argv, from_tty, flags);
1641 name = *argv;
1642 }
1643
1644 argv++;
1645 }
1646
1647 if (name == NULL)
1648 error (_("no symbol file name was specified"));
1649
1650 do_cleanups (cleanups);
1651 }
1652 }
1653
1654 /* Set the initial language.
1655
1656 FIXME: A better solution would be to record the language in the
1657 psymtab when reading partial symbols, and then use it (if known) to
1658 set the language. This would be a win for formats that encode the
1659 language in an easily discoverable place, such as DWARF. For
1660 stabs, we can jump through hoops looking for specially named
1661 symbols or try to intuit the language from the specific type of
1662 stabs we find, but we can't do that until later when we read in
1663 full symbols. */
1664
1665 void
1666 set_initial_language (void)
1667 {
1668 enum language lang = language_unknown;
1669
1670 if (language_of_main != language_unknown)
1671 lang = language_of_main;
1672 else
1673 {
1674 const char *filename;
1675
1676 filename = find_main_filename ();
1677 if (filename != NULL)
1678 lang = deduce_language_from_filename (filename);
1679 }
1680
1681 if (lang == language_unknown)
1682 {
1683 /* Make C the default language */
1684 lang = language_c;
1685 }
1686
1687 set_language (lang);
1688 expected_language = current_language; /* Don't warn the user. */
1689 }
1690
1691 /* If NAME is a remote name open the file using remote protocol, otherwise
1692 open it normally. */
1693
1694 bfd *
1695 bfd_open_maybe_remote (const char *name)
1696 {
1697 if (remote_filename_p (name))
1698 return remote_bfd_open (name, gnutarget);
1699 else
1700 return bfd_openr (name, gnutarget);
1701 }
1702
1703
1704 /* Open the file specified by NAME and hand it off to BFD for
1705 preliminary analysis. Return a newly initialized bfd *, which
1706 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1707 absolute). In case of trouble, error() is called. */
1708
1709 bfd *
1710 symfile_bfd_open (char *name)
1711 {
1712 bfd *sym_bfd;
1713 int desc;
1714 char *absolute_name;
1715
1716 if (remote_filename_p (name))
1717 {
1718 name = xstrdup (name);
1719 sym_bfd = remote_bfd_open (name, gnutarget);
1720 if (!sym_bfd)
1721 {
1722 make_cleanup (xfree, name);
1723 error (_("`%s': can't open to read symbols: %s."), name,
1724 bfd_errmsg (bfd_get_error ()));
1725 }
1726
1727 if (!bfd_check_format (sym_bfd, bfd_object))
1728 {
1729 bfd_close (sym_bfd);
1730 make_cleanup (xfree, name);
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733 }
1734
1735 return sym_bfd;
1736 }
1737
1738 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1739
1740 /* Look down path for it, allocate 2nd new malloc'd copy. */
1741 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1742 O_RDONLY | O_BINARY, &absolute_name);
1743 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1744 if (desc < 0)
1745 {
1746 char *exename = alloca (strlen (name) + 5);
1747
1748 strcat (strcpy (exename, name), ".exe");
1749 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1750 O_RDONLY | O_BINARY, &absolute_name);
1751 }
1752 #endif
1753 if (desc < 0)
1754 {
1755 make_cleanup (xfree, name);
1756 perror_with_name (name);
1757 }
1758
1759 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1760 bfd. It'll be freed in free_objfile(). */
1761 xfree (name);
1762 name = absolute_name;
1763
1764 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1765 if (!sym_bfd)
1766 {
1767 close (desc);
1768 make_cleanup (xfree, name);
1769 error (_("`%s': can't open to read symbols: %s."), name,
1770 bfd_errmsg (bfd_get_error ()));
1771 }
1772 bfd_set_cacheable (sym_bfd, 1);
1773
1774 if (!bfd_check_format (sym_bfd, bfd_object))
1775 {
1776 /* FIXME: should be checking for errors from bfd_close (for one
1777 thing, on error it does not free all the storage associated
1778 with the bfd). */
1779 bfd_close (sym_bfd); /* This also closes desc. */
1780 make_cleanup (xfree, name);
1781 error (_("`%s': can't read symbols: %s."), name,
1782 bfd_errmsg (bfd_get_error ()));
1783 }
1784
1785 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1786 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1787
1788 return sym_bfd;
1789 }
1790
1791 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1792 the section was not found. */
1793
1794 int
1795 get_section_index (struct objfile *objfile, char *section_name)
1796 {
1797 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1798
1799 if (sect)
1800 return sect->index;
1801 else
1802 return -1;
1803 }
1804
1805 /* Link SF into the global symtab_fns list. Called on startup by the
1806 _initialize routine in each object file format reader, to register
1807 information about each format the reader is prepared to handle. */
1808
1809 void
1810 add_symtab_fns (const struct sym_fns *sf)
1811 {
1812 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1813 }
1814
1815 /* Initialize OBJFILE to read symbols from its associated BFD. It
1816 either returns or calls error(). The result is an initialized
1817 struct sym_fns in the objfile structure, that contains cached
1818 information about the symbol file. */
1819
1820 static const struct sym_fns *
1821 find_sym_fns (bfd *abfd)
1822 {
1823 const struct sym_fns *sf;
1824 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1825 int i;
1826
1827 if (our_flavour == bfd_target_srec_flavour
1828 || our_flavour == bfd_target_ihex_flavour
1829 || our_flavour == bfd_target_tekhex_flavour)
1830 return NULL; /* No symbols. */
1831
1832 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1833 if (our_flavour == sf->sym_flavour)
1834 return sf;
1835
1836 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1837 bfd_get_target (abfd));
1838 }
1839 \f
1840
1841 /* This function runs the load command of our current target. */
1842
1843 static void
1844 load_command (char *arg, int from_tty)
1845 {
1846 dont_repeat ();
1847
1848 /* The user might be reloading because the binary has changed. Take
1849 this opportunity to check. */
1850 reopen_exec_file ();
1851 reread_symbols ();
1852
1853 if (arg == NULL)
1854 {
1855 char *parg;
1856 int count = 0;
1857
1858 parg = arg = get_exec_file (1);
1859
1860 /* Count how many \ " ' tab space there are in the name. */
1861 while ((parg = strpbrk (parg, "\\\"'\t ")))
1862 {
1863 parg++;
1864 count++;
1865 }
1866
1867 if (count)
1868 {
1869 /* We need to quote this string so buildargv can pull it apart. */
1870 char *temp = xmalloc (strlen (arg) + count + 1 );
1871 char *ptemp = temp;
1872 char *prev;
1873
1874 make_cleanup (xfree, temp);
1875
1876 prev = parg = arg;
1877 while ((parg = strpbrk (parg, "\\\"'\t ")))
1878 {
1879 strncpy (ptemp, prev, parg - prev);
1880 ptemp += parg - prev;
1881 prev = parg++;
1882 *ptemp++ = '\\';
1883 }
1884 strcpy (ptemp, prev);
1885
1886 arg = temp;
1887 }
1888 }
1889
1890 target_load (arg, from_tty);
1891
1892 /* After re-loading the executable, we don't really know which
1893 overlays are mapped any more. */
1894 overlay_cache_invalid = 1;
1895 }
1896
1897 /* This version of "load" should be usable for any target. Currently
1898 it is just used for remote targets, not inftarg.c or core files,
1899 on the theory that only in that case is it useful.
1900
1901 Avoiding xmodem and the like seems like a win (a) because we don't have
1902 to worry about finding it, and (b) On VMS, fork() is very slow and so
1903 we don't want to run a subprocess. On the other hand, I'm not sure how
1904 performance compares. */
1905
1906 static int validate_download = 0;
1907
1908 /* Callback service function for generic_load (bfd_map_over_sections). */
1909
1910 static void
1911 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1912 {
1913 bfd_size_type *sum = data;
1914
1915 *sum += bfd_get_section_size (asec);
1916 }
1917
1918 /* Opaque data for load_section_callback. */
1919 struct load_section_data {
1920 unsigned long load_offset;
1921 struct load_progress_data *progress_data;
1922 VEC(memory_write_request_s) *requests;
1923 };
1924
1925 /* Opaque data for load_progress. */
1926 struct load_progress_data {
1927 /* Cumulative data. */
1928 unsigned long write_count;
1929 unsigned long data_count;
1930 bfd_size_type total_size;
1931 };
1932
1933 /* Opaque data for load_progress for a single section. */
1934 struct load_progress_section_data {
1935 struct load_progress_data *cumulative;
1936
1937 /* Per-section data. */
1938 const char *section_name;
1939 ULONGEST section_sent;
1940 ULONGEST section_size;
1941 CORE_ADDR lma;
1942 gdb_byte *buffer;
1943 };
1944
1945 /* Target write callback routine for progress reporting. */
1946
1947 static void
1948 load_progress (ULONGEST bytes, void *untyped_arg)
1949 {
1950 struct load_progress_section_data *args = untyped_arg;
1951 struct load_progress_data *totals;
1952
1953 if (args == NULL)
1954 /* Writing padding data. No easy way to get at the cumulative
1955 stats, so just ignore this. */
1956 return;
1957
1958 totals = args->cumulative;
1959
1960 if (bytes == 0 && args->section_sent == 0)
1961 {
1962 /* The write is just starting. Let the user know we've started
1963 this section. */
1964 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1965 args->section_name, hex_string (args->section_size),
1966 paddress (target_gdbarch, args->lma));
1967 return;
1968 }
1969
1970 if (validate_download)
1971 {
1972 /* Broken memories and broken monitors manifest themselves here
1973 when bring new computers to life. This doubles already slow
1974 downloads. */
1975 /* NOTE: cagney/1999-10-18: A more efficient implementation
1976 might add a verify_memory() method to the target vector and
1977 then use that. remote.c could implement that method using
1978 the ``qCRC'' packet. */
1979 gdb_byte *check = xmalloc (bytes);
1980 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1981
1982 if (target_read_memory (args->lma, check, bytes) != 0)
1983 error (_("Download verify read failed at %s"),
1984 paddress (target_gdbarch, args->lma));
1985 if (memcmp (args->buffer, check, bytes) != 0)
1986 error (_("Download verify compare failed at %s"),
1987 paddress (target_gdbarch, args->lma));
1988 do_cleanups (verify_cleanups);
1989 }
1990 totals->data_count += bytes;
1991 args->lma += bytes;
1992 args->buffer += bytes;
1993 totals->write_count += 1;
1994 args->section_sent += bytes;
1995 if (quit_flag
1996 || (deprecated_ui_load_progress_hook != NULL
1997 && deprecated_ui_load_progress_hook (args->section_name,
1998 args->section_sent)))
1999 error (_("Canceled the download"));
2000
2001 if (deprecated_show_load_progress != NULL)
2002 deprecated_show_load_progress (args->section_name,
2003 args->section_sent,
2004 args->section_size,
2005 totals->data_count,
2006 totals->total_size);
2007 }
2008
2009 /* Callback service function for generic_load (bfd_map_over_sections). */
2010
2011 static void
2012 load_section_callback (bfd *abfd, asection *asec, void *data)
2013 {
2014 struct memory_write_request *new_request;
2015 struct load_section_data *args = data;
2016 struct load_progress_section_data *section_data;
2017 bfd_size_type size = bfd_get_section_size (asec);
2018 gdb_byte *buffer;
2019 const char *sect_name = bfd_get_section_name (abfd, asec);
2020
2021 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2022 return;
2023
2024 if (size == 0)
2025 return;
2026
2027 new_request = VEC_safe_push (memory_write_request_s,
2028 args->requests, NULL);
2029 memset (new_request, 0, sizeof (struct memory_write_request));
2030 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2031 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2032 new_request->end = new_request->begin + size; /* FIXME Should size
2033 be in instead? */
2034 new_request->data = xmalloc (size);
2035 new_request->baton = section_data;
2036
2037 buffer = new_request->data;
2038
2039 section_data->cumulative = args->progress_data;
2040 section_data->section_name = sect_name;
2041 section_data->section_size = size;
2042 section_data->lma = new_request->begin;
2043 section_data->buffer = buffer;
2044
2045 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2046 }
2047
2048 /* Clean up an entire memory request vector, including load
2049 data and progress records. */
2050
2051 static void
2052 clear_memory_write_data (void *arg)
2053 {
2054 VEC(memory_write_request_s) **vec_p = arg;
2055 VEC(memory_write_request_s) *vec = *vec_p;
2056 int i;
2057 struct memory_write_request *mr;
2058
2059 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2060 {
2061 xfree (mr->data);
2062 xfree (mr->baton);
2063 }
2064 VEC_free (memory_write_request_s, vec);
2065 }
2066
2067 void
2068 generic_load (char *args, int from_tty)
2069 {
2070 bfd *loadfile_bfd;
2071 struct timeval start_time, end_time;
2072 char *filename;
2073 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2074 struct load_section_data cbdata;
2075 struct load_progress_data total_progress;
2076 struct ui_out *uiout = current_uiout;
2077
2078 CORE_ADDR entry;
2079 char **argv;
2080
2081 memset (&cbdata, 0, sizeof (cbdata));
2082 memset (&total_progress, 0, sizeof (total_progress));
2083 cbdata.progress_data = &total_progress;
2084
2085 make_cleanup (clear_memory_write_data, &cbdata.requests);
2086
2087 if (args == NULL)
2088 error_no_arg (_("file to load"));
2089
2090 argv = gdb_buildargv (args);
2091 make_cleanup_freeargv (argv);
2092
2093 filename = tilde_expand (argv[0]);
2094 make_cleanup (xfree, filename);
2095
2096 if (argv[1] != NULL)
2097 {
2098 char *endptr;
2099
2100 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2101
2102 /* If the last word was not a valid number then
2103 treat it as a file name with spaces in. */
2104 if (argv[1] == endptr)
2105 error (_("Invalid download offset:%s."), argv[1]);
2106
2107 if (argv[2] != NULL)
2108 error (_("Too many parameters."));
2109 }
2110
2111 /* Open the file for loading. */
2112 loadfile_bfd = bfd_openr (filename, gnutarget);
2113 if (loadfile_bfd == NULL)
2114 {
2115 perror_with_name (filename);
2116 return;
2117 }
2118
2119 /* FIXME: should be checking for errors from bfd_close (for one thing,
2120 on error it does not free all the storage associated with the
2121 bfd). */
2122 make_cleanup_bfd_close (loadfile_bfd);
2123
2124 if (!bfd_check_format (loadfile_bfd, bfd_object))
2125 {
2126 error (_("\"%s\" is not an object file: %s"), filename,
2127 bfd_errmsg (bfd_get_error ()));
2128 }
2129
2130 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2131 (void *) &total_progress.total_size);
2132
2133 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2134
2135 gettimeofday (&start_time, NULL);
2136
2137 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2138 load_progress) != 0)
2139 error (_("Load failed"));
2140
2141 gettimeofday (&end_time, NULL);
2142
2143 entry = bfd_get_start_address (loadfile_bfd);
2144 ui_out_text (uiout, "Start address ");
2145 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2146 ui_out_text (uiout, ", load size ");
2147 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2148 ui_out_text (uiout, "\n");
2149 /* We were doing this in remote-mips.c, I suspect it is right
2150 for other targets too. */
2151 regcache_write_pc (get_current_regcache (), entry);
2152
2153 /* Reset breakpoints, now that we have changed the load image. For
2154 instance, breakpoints may have been set (or reset, by
2155 post_create_inferior) while connected to the target but before we
2156 loaded the program. In that case, the prologue analyzer could
2157 have read instructions from the target to find the right
2158 breakpoint locations. Loading has changed the contents of that
2159 memory. */
2160
2161 breakpoint_re_set ();
2162
2163 /* FIXME: are we supposed to call symbol_file_add or not? According
2164 to a comment from remote-mips.c (where a call to symbol_file_add
2165 was commented out), making the call confuses GDB if more than one
2166 file is loaded in. Some targets do (e.g., remote-vx.c) but
2167 others don't (or didn't - perhaps they have all been deleted). */
2168
2169 print_transfer_performance (gdb_stdout, total_progress.data_count,
2170 total_progress.write_count,
2171 &start_time, &end_time);
2172
2173 do_cleanups (old_cleanups);
2174 }
2175
2176 /* Report how fast the transfer went. */
2177
2178 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2179 replaced by print_transfer_performance (with a very different
2180 function signature). */
2181
2182 void
2183 report_transfer_performance (unsigned long data_count, time_t start_time,
2184 time_t end_time)
2185 {
2186 struct timeval start, end;
2187
2188 start.tv_sec = start_time;
2189 start.tv_usec = 0;
2190 end.tv_sec = end_time;
2191 end.tv_usec = 0;
2192
2193 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2194 }
2195
2196 void
2197 print_transfer_performance (struct ui_file *stream,
2198 unsigned long data_count,
2199 unsigned long write_count,
2200 const struct timeval *start_time,
2201 const struct timeval *end_time)
2202 {
2203 ULONGEST time_count;
2204 struct ui_out *uiout = current_uiout;
2205
2206 /* Compute the elapsed time in milliseconds, as a tradeoff between
2207 accuracy and overflow. */
2208 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2209 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2210
2211 ui_out_text (uiout, "Transfer rate: ");
2212 if (time_count > 0)
2213 {
2214 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2215
2216 if (ui_out_is_mi_like_p (uiout))
2217 {
2218 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2219 ui_out_text (uiout, " bits/sec");
2220 }
2221 else if (rate < 1024)
2222 {
2223 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2224 ui_out_text (uiout, " bytes/sec");
2225 }
2226 else
2227 {
2228 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2229 ui_out_text (uiout, " KB/sec");
2230 }
2231 }
2232 else
2233 {
2234 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2235 ui_out_text (uiout, " bits in <1 sec");
2236 }
2237 if (write_count > 0)
2238 {
2239 ui_out_text (uiout, ", ");
2240 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2241 ui_out_text (uiout, " bytes/write");
2242 }
2243 ui_out_text (uiout, ".\n");
2244 }
2245
2246 /* This function allows the addition of incrementally linked object files.
2247 It does not modify any state in the target, only in the debugger. */
2248 /* Note: ezannoni 2000-04-13 This function/command used to have a
2249 special case syntax for the rombug target (Rombug is the boot
2250 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2251 rombug case, the user doesn't need to supply a text address,
2252 instead a call to target_link() (in target.c) would supply the
2253 value to use. We are now discontinuing this type of ad hoc syntax. */
2254
2255 static void
2256 add_symbol_file_command (char *args, int from_tty)
2257 {
2258 struct gdbarch *gdbarch = get_current_arch ();
2259 char *filename = NULL;
2260 int flags = OBJF_USERLOADED;
2261 char *arg;
2262 int section_index = 0;
2263 int argcnt = 0;
2264 int sec_num = 0;
2265 int i;
2266 int expecting_sec_name = 0;
2267 int expecting_sec_addr = 0;
2268 char **argv;
2269
2270 struct sect_opt
2271 {
2272 char *name;
2273 char *value;
2274 };
2275
2276 struct section_addr_info *section_addrs;
2277 struct sect_opt *sect_opts = NULL;
2278 size_t num_sect_opts = 0;
2279 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2280
2281 num_sect_opts = 16;
2282 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2283 * sizeof (struct sect_opt));
2284
2285 dont_repeat ();
2286
2287 if (args == NULL)
2288 error (_("add-symbol-file takes a file name and an address"));
2289
2290 argv = gdb_buildargv (args);
2291 make_cleanup_freeargv (argv);
2292
2293 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2294 {
2295 /* Process the argument. */
2296 if (argcnt == 0)
2297 {
2298 /* The first argument is the file name. */
2299 filename = tilde_expand (arg);
2300 make_cleanup (xfree, filename);
2301 }
2302 else
2303 if (argcnt == 1)
2304 {
2305 /* The second argument is always the text address at which
2306 to load the program. */
2307 sect_opts[section_index].name = ".text";
2308 sect_opts[section_index].value = arg;
2309 if (++section_index >= num_sect_opts)
2310 {
2311 num_sect_opts *= 2;
2312 sect_opts = ((struct sect_opt *)
2313 xrealloc (sect_opts,
2314 num_sect_opts
2315 * sizeof (struct sect_opt)));
2316 }
2317 }
2318 else
2319 {
2320 /* It's an option (starting with '-') or it's an argument
2321 to an option. */
2322
2323 if (*arg == '-')
2324 {
2325 if (strcmp (arg, "-readnow") == 0)
2326 flags |= OBJF_READNOW;
2327 else if (strcmp (arg, "-s") == 0)
2328 {
2329 expecting_sec_name = 1;
2330 expecting_sec_addr = 1;
2331 }
2332 }
2333 else
2334 {
2335 if (expecting_sec_name)
2336 {
2337 sect_opts[section_index].name = arg;
2338 expecting_sec_name = 0;
2339 }
2340 else
2341 if (expecting_sec_addr)
2342 {
2343 sect_opts[section_index].value = arg;
2344 expecting_sec_addr = 0;
2345 if (++section_index >= num_sect_opts)
2346 {
2347 num_sect_opts *= 2;
2348 sect_opts = ((struct sect_opt *)
2349 xrealloc (sect_opts,
2350 num_sect_opts
2351 * sizeof (struct sect_opt)));
2352 }
2353 }
2354 else
2355 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2356 " [-readnow] [-s <secname> <addr>]*"));
2357 }
2358 }
2359 }
2360
2361 /* This command takes at least two arguments. The first one is a
2362 filename, and the second is the address where this file has been
2363 loaded. Abort now if this address hasn't been provided by the
2364 user. */
2365 if (section_index < 1)
2366 error (_("The address where %s has been loaded is missing"), filename);
2367
2368 /* Print the prompt for the query below. And save the arguments into
2369 a sect_addr_info structure to be passed around to other
2370 functions. We have to split this up into separate print
2371 statements because hex_string returns a local static
2372 string. */
2373
2374 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2375 section_addrs = alloc_section_addr_info (section_index);
2376 make_cleanup (xfree, section_addrs);
2377 for (i = 0; i < section_index; i++)
2378 {
2379 CORE_ADDR addr;
2380 char *val = sect_opts[i].value;
2381 char *sec = sect_opts[i].name;
2382
2383 addr = parse_and_eval_address (val);
2384
2385 /* Here we store the section offsets in the order they were
2386 entered on the command line. */
2387 section_addrs->other[sec_num].name = sec;
2388 section_addrs->other[sec_num].addr = addr;
2389 printf_unfiltered ("\t%s_addr = %s\n", sec,
2390 paddress (gdbarch, addr));
2391 sec_num++;
2392
2393 /* The object's sections are initialized when a
2394 call is made to build_objfile_section_table (objfile).
2395 This happens in reread_symbols.
2396 At this point, we don't know what file type this is,
2397 so we can't determine what section names are valid. */
2398 }
2399
2400 if (from_tty && (!query ("%s", "")))
2401 error (_("Not confirmed."));
2402
2403 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2404 section_addrs, flags);
2405
2406 /* Getting new symbols may change our opinion about what is
2407 frameless. */
2408 reinit_frame_cache ();
2409 do_cleanups (my_cleanups);
2410 }
2411 \f
2412
2413 typedef struct objfile *objfilep;
2414
2415 DEF_VEC_P (objfilep);
2416
2417 /* Re-read symbols if a symbol-file has changed. */
2418 void
2419 reread_symbols (void)
2420 {
2421 struct objfile *objfile;
2422 long new_modtime;
2423 struct stat new_statbuf;
2424 int res;
2425 VEC (objfilep) *new_objfiles = NULL;
2426 struct cleanup *all_cleanups;
2427
2428 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2429
2430 /* With the addition of shared libraries, this should be modified,
2431 the load time should be saved in the partial symbol tables, since
2432 different tables may come from different source files. FIXME.
2433 This routine should then walk down each partial symbol table
2434 and see if the symbol table that it originates from has been changed. */
2435
2436 for (objfile = object_files; objfile; objfile = objfile->next)
2437 {
2438 /* solib-sunos.c creates one objfile with obfd. */
2439 if (objfile->obfd == NULL)
2440 continue;
2441
2442 /* Separate debug objfiles are handled in the main objfile. */
2443 if (objfile->separate_debug_objfile_backlink)
2444 continue;
2445
2446 /* If this object is from an archive (what you usually create with
2447 `ar', often called a `static library' on most systems, though
2448 a `shared library' on AIX is also an archive), then you should
2449 stat on the archive name, not member name. */
2450 if (objfile->obfd->my_archive)
2451 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2452 else
2453 res = stat (objfile->name, &new_statbuf);
2454 if (res != 0)
2455 {
2456 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2457 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2458 objfile->name);
2459 continue;
2460 }
2461 new_modtime = new_statbuf.st_mtime;
2462 if (new_modtime != objfile->mtime)
2463 {
2464 struct cleanup *old_cleanups;
2465 struct section_offsets *offsets;
2466 int num_offsets;
2467 char *obfd_filename;
2468
2469 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2470 objfile->name);
2471
2472 /* There are various functions like symbol_file_add,
2473 symfile_bfd_open, syms_from_objfile, etc., which might
2474 appear to do what we want. But they have various other
2475 effects which we *don't* want. So we just do stuff
2476 ourselves. We don't worry about mapped files (for one thing,
2477 any mapped file will be out of date). */
2478
2479 /* If we get an error, blow away this objfile (not sure if
2480 that is the correct response for things like shared
2481 libraries). */
2482 old_cleanups = make_cleanup_free_objfile (objfile);
2483 /* We need to do this whenever any symbols go away. */
2484 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2485
2486 if (exec_bfd != NULL
2487 && filename_cmp (bfd_get_filename (objfile->obfd),
2488 bfd_get_filename (exec_bfd)) == 0)
2489 {
2490 /* Reload EXEC_BFD without asking anything. */
2491
2492 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2493 }
2494
2495 /* Keep the calls order approx. the same as in free_objfile. */
2496
2497 /* Free the separate debug objfiles. It will be
2498 automatically recreated by sym_read. */
2499 free_objfile_separate_debug (objfile);
2500
2501 /* Remove any references to this objfile in the global
2502 value lists. */
2503 preserve_values (objfile);
2504
2505 /* Nuke all the state that we will re-read. Much of the following
2506 code which sets things to NULL really is necessary to tell
2507 other parts of GDB that there is nothing currently there.
2508
2509 Try to keep the freeing order compatible with free_objfile. */
2510
2511 if (objfile->sf != NULL)
2512 {
2513 (*objfile->sf->sym_finish) (objfile);
2514 }
2515
2516 clear_objfile_data (objfile);
2517
2518 /* Clean up any state BFD has sitting around. We don't need
2519 to close the descriptor but BFD lacks a way of closing the
2520 BFD without closing the descriptor. */
2521 obfd_filename = bfd_get_filename (objfile->obfd);
2522 if (!bfd_close (objfile->obfd))
2523 error (_("Can't close BFD for %s: %s"), objfile->name,
2524 bfd_errmsg (bfd_get_error ()));
2525 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2526 if (objfile->obfd == NULL)
2527 error (_("Can't open %s to read symbols."), objfile->name);
2528 else
2529 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2530 /* bfd_openr sets cacheable to true, which is what we want. */
2531 if (!bfd_check_format (objfile->obfd, bfd_object))
2532 error (_("Can't read symbols from %s: %s."), objfile->name,
2533 bfd_errmsg (bfd_get_error ()));
2534
2535 /* Save the offsets, we will nuke them with the rest of the
2536 objfile_obstack. */
2537 num_offsets = objfile->num_sections;
2538 offsets = ((struct section_offsets *)
2539 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2540 memcpy (offsets, objfile->section_offsets,
2541 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2542
2543 /* FIXME: Do we have to free a whole linked list, or is this
2544 enough? */
2545 if (objfile->global_psymbols.list)
2546 xfree (objfile->global_psymbols.list);
2547 memset (&objfile->global_psymbols, 0,
2548 sizeof (objfile->global_psymbols));
2549 if (objfile->static_psymbols.list)
2550 xfree (objfile->static_psymbols.list);
2551 memset (&objfile->static_psymbols, 0,
2552 sizeof (objfile->static_psymbols));
2553
2554 /* Free the obstacks for non-reusable objfiles. */
2555 psymbol_bcache_free (objfile->psymbol_cache);
2556 objfile->psymbol_cache = psymbol_bcache_init ();
2557 bcache_xfree (objfile->macro_cache);
2558 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2559 bcache_xfree (objfile->filename_cache);
2560 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2561 if (objfile->demangled_names_hash != NULL)
2562 {
2563 htab_delete (objfile->demangled_names_hash);
2564 objfile->demangled_names_hash = NULL;
2565 }
2566 obstack_free (&objfile->objfile_obstack, 0);
2567 objfile->sections = NULL;
2568 objfile->symtabs = NULL;
2569 objfile->psymtabs = NULL;
2570 objfile->psymtabs_addrmap = NULL;
2571 objfile->free_psymtabs = NULL;
2572 objfile->template_symbols = NULL;
2573 objfile->msymbols = NULL;
2574 objfile->deprecated_sym_private = NULL;
2575 objfile->minimal_symbol_count = 0;
2576 memset (&objfile->msymbol_hash, 0,
2577 sizeof (objfile->msymbol_hash));
2578 memset (&objfile->msymbol_demangled_hash, 0,
2579 sizeof (objfile->msymbol_demangled_hash));
2580
2581 /* obstack_init also initializes the obstack so it is
2582 empty. We could use obstack_specify_allocation but
2583 gdb_obstack.h specifies the alloc/dealloc functions. */
2584 obstack_init (&objfile->objfile_obstack);
2585 build_objfile_section_table (objfile);
2586 terminate_minimal_symbol_table (objfile);
2587
2588 /* We use the same section offsets as from last time. I'm not
2589 sure whether that is always correct for shared libraries. */
2590 objfile->section_offsets = (struct section_offsets *)
2591 obstack_alloc (&objfile->objfile_obstack,
2592 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2593 memcpy (objfile->section_offsets, offsets,
2594 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2595 objfile->num_sections = num_offsets;
2596
2597 /* What the hell is sym_new_init for, anyway? The concept of
2598 distinguishing between the main file and additional files
2599 in this way seems rather dubious. */
2600 if (objfile == symfile_objfile)
2601 {
2602 (*objfile->sf->sym_new_init) (objfile);
2603 }
2604
2605 (*objfile->sf->sym_init) (objfile);
2606 clear_complaints (&symfile_complaints, 1, 1);
2607 /* Do not set flags as this is safe and we don't want to be
2608 verbose. */
2609 (*objfile->sf->sym_read) (objfile, 0);
2610 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2611 {
2612 objfile->flags &= ~OBJF_PSYMTABS_READ;
2613 require_partial_symbols (objfile, 0);
2614 }
2615
2616 if (!objfile_has_symbols (objfile))
2617 {
2618 wrap_here ("");
2619 printf_unfiltered (_("(no debugging symbols found)\n"));
2620 wrap_here ("");
2621 }
2622
2623 /* We're done reading the symbol file; finish off complaints. */
2624 clear_complaints (&symfile_complaints, 0, 1);
2625
2626 /* Getting new symbols may change our opinion about what is
2627 frameless. */
2628
2629 reinit_frame_cache ();
2630
2631 /* Discard cleanups as symbol reading was successful. */
2632 discard_cleanups (old_cleanups);
2633
2634 /* If the mtime has changed between the time we set new_modtime
2635 and now, we *want* this to be out of date, so don't call stat
2636 again now. */
2637 objfile->mtime = new_modtime;
2638 init_entry_point_info (objfile);
2639
2640 VEC_safe_push (objfilep, new_objfiles, objfile);
2641 }
2642 }
2643
2644 if (new_objfiles)
2645 {
2646 int ix;
2647
2648 /* Notify objfiles that we've modified objfile sections. */
2649 objfiles_changed ();
2650
2651 clear_symtab_users (0);
2652
2653 /* clear_objfile_data for each objfile was called before freeing it and
2654 observer_notify_new_objfile (NULL) has been called by
2655 clear_symtab_users above. Notify the new files now. */
2656 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2657 observer_notify_new_objfile (objfile);
2658
2659 /* At least one objfile has changed, so we can consider that
2660 the executable we're debugging has changed too. */
2661 observer_notify_executable_changed ();
2662 }
2663
2664 do_cleanups (all_cleanups);
2665 }
2666 \f
2667
2668
2669 typedef struct
2670 {
2671 char *ext;
2672 enum language lang;
2673 }
2674 filename_language;
2675
2676 static filename_language *filename_language_table;
2677 static int fl_table_size, fl_table_next;
2678
2679 static void
2680 add_filename_language (char *ext, enum language lang)
2681 {
2682 if (fl_table_next >= fl_table_size)
2683 {
2684 fl_table_size += 10;
2685 filename_language_table =
2686 xrealloc (filename_language_table,
2687 fl_table_size * sizeof (*filename_language_table));
2688 }
2689
2690 filename_language_table[fl_table_next].ext = xstrdup (ext);
2691 filename_language_table[fl_table_next].lang = lang;
2692 fl_table_next++;
2693 }
2694
2695 static char *ext_args;
2696 static void
2697 show_ext_args (struct ui_file *file, int from_tty,
2698 struct cmd_list_element *c, const char *value)
2699 {
2700 fprintf_filtered (file,
2701 _("Mapping between filename extension "
2702 "and source language is \"%s\".\n"),
2703 value);
2704 }
2705
2706 static void
2707 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2708 {
2709 int i;
2710 char *cp = ext_args;
2711 enum language lang;
2712
2713 /* First arg is filename extension, starting with '.' */
2714 if (*cp != '.')
2715 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2716
2717 /* Find end of first arg. */
2718 while (*cp && !isspace (*cp))
2719 cp++;
2720
2721 if (*cp == '\0')
2722 error (_("'%s': two arguments required -- "
2723 "filename extension and language"),
2724 ext_args);
2725
2726 /* Null-terminate first arg. */
2727 *cp++ = '\0';
2728
2729 /* Find beginning of second arg, which should be a source language. */
2730 while (*cp && isspace (*cp))
2731 cp++;
2732
2733 if (*cp == '\0')
2734 error (_("'%s': two arguments required -- "
2735 "filename extension and language"),
2736 ext_args);
2737
2738 /* Lookup the language from among those we know. */
2739 lang = language_enum (cp);
2740
2741 /* Now lookup the filename extension: do we already know it? */
2742 for (i = 0; i < fl_table_next; i++)
2743 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2744 break;
2745
2746 if (i >= fl_table_next)
2747 {
2748 /* New file extension. */
2749 add_filename_language (ext_args, lang);
2750 }
2751 else
2752 {
2753 /* Redefining a previously known filename extension. */
2754
2755 /* if (from_tty) */
2756 /* query ("Really make files of type %s '%s'?", */
2757 /* ext_args, language_str (lang)); */
2758
2759 xfree (filename_language_table[i].ext);
2760 filename_language_table[i].ext = xstrdup (ext_args);
2761 filename_language_table[i].lang = lang;
2762 }
2763 }
2764
2765 static void
2766 info_ext_lang_command (char *args, int from_tty)
2767 {
2768 int i;
2769
2770 printf_filtered (_("Filename extensions and the languages they represent:"));
2771 printf_filtered ("\n\n");
2772 for (i = 0; i < fl_table_next; i++)
2773 printf_filtered ("\t%s\t- %s\n",
2774 filename_language_table[i].ext,
2775 language_str (filename_language_table[i].lang));
2776 }
2777
2778 static void
2779 init_filename_language_table (void)
2780 {
2781 if (fl_table_size == 0) /* Protect against repetition. */
2782 {
2783 fl_table_size = 20;
2784 fl_table_next = 0;
2785 filename_language_table =
2786 xmalloc (fl_table_size * sizeof (*filename_language_table));
2787 add_filename_language (".c", language_c);
2788 add_filename_language (".d", language_d);
2789 add_filename_language (".C", language_cplus);
2790 add_filename_language (".cc", language_cplus);
2791 add_filename_language (".cp", language_cplus);
2792 add_filename_language (".cpp", language_cplus);
2793 add_filename_language (".cxx", language_cplus);
2794 add_filename_language (".c++", language_cplus);
2795 add_filename_language (".java", language_java);
2796 add_filename_language (".class", language_java);
2797 add_filename_language (".m", language_objc);
2798 add_filename_language (".f", language_fortran);
2799 add_filename_language (".F", language_fortran);
2800 add_filename_language (".for", language_fortran);
2801 add_filename_language (".FOR", language_fortran);
2802 add_filename_language (".ftn", language_fortran);
2803 add_filename_language (".FTN", language_fortran);
2804 add_filename_language (".fpp", language_fortran);
2805 add_filename_language (".FPP", language_fortran);
2806 add_filename_language (".f90", language_fortran);
2807 add_filename_language (".F90", language_fortran);
2808 add_filename_language (".f95", language_fortran);
2809 add_filename_language (".F95", language_fortran);
2810 add_filename_language (".f03", language_fortran);
2811 add_filename_language (".F03", language_fortran);
2812 add_filename_language (".f08", language_fortran);
2813 add_filename_language (".F08", language_fortran);
2814 add_filename_language (".s", language_asm);
2815 add_filename_language (".sx", language_asm);
2816 add_filename_language (".S", language_asm);
2817 add_filename_language (".pas", language_pascal);
2818 add_filename_language (".p", language_pascal);
2819 add_filename_language (".pp", language_pascal);
2820 add_filename_language (".adb", language_ada);
2821 add_filename_language (".ads", language_ada);
2822 add_filename_language (".a", language_ada);
2823 add_filename_language (".ada", language_ada);
2824 add_filename_language (".dg", language_ada);
2825 }
2826 }
2827
2828 enum language
2829 deduce_language_from_filename (const char *filename)
2830 {
2831 int i;
2832 char *cp;
2833
2834 if (filename != NULL)
2835 if ((cp = strrchr (filename, '.')) != NULL)
2836 for (i = 0; i < fl_table_next; i++)
2837 if (strcmp (cp, filename_language_table[i].ext) == 0)
2838 return filename_language_table[i].lang;
2839
2840 return language_unknown;
2841 }
2842 \f
2843 /* allocate_symtab:
2844
2845 Allocate and partly initialize a new symbol table. Return a pointer
2846 to it. error() if no space.
2847
2848 Caller must set these fields:
2849 LINETABLE(symtab)
2850 symtab->blockvector
2851 symtab->dirname
2852 symtab->free_code
2853 symtab->free_ptr
2854 */
2855
2856 struct symtab *
2857 allocate_symtab (const char *filename, struct objfile *objfile)
2858 {
2859 struct symtab *symtab;
2860
2861 symtab = (struct symtab *)
2862 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2863 memset (symtab, 0, sizeof (*symtab));
2864 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2865 objfile->filename_cache);
2866 symtab->fullname = NULL;
2867 symtab->language = deduce_language_from_filename (filename);
2868 symtab->debugformat = "unknown";
2869
2870 /* Hook it to the objfile it comes from. */
2871
2872 symtab->objfile = objfile;
2873 symtab->next = objfile->symtabs;
2874 objfile->symtabs = symtab;
2875
2876 return (symtab);
2877 }
2878 \f
2879
2880 /* Reset all data structures in gdb which may contain references to symbol
2881 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2882
2883 void
2884 clear_symtab_users (int add_flags)
2885 {
2886 /* Someday, we should do better than this, by only blowing away
2887 the things that really need to be blown. */
2888
2889 /* Clear the "current" symtab first, because it is no longer valid.
2890 breakpoint_re_set may try to access the current symtab. */
2891 clear_current_source_symtab_and_line ();
2892
2893 clear_displays ();
2894 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2895 breakpoint_re_set ();
2896 clear_last_displayed_sal ();
2897 clear_pc_function_cache ();
2898 observer_notify_new_objfile (NULL);
2899
2900 /* Clear globals which might have pointed into a removed objfile.
2901 FIXME: It's not clear which of these are supposed to persist
2902 between expressions and which ought to be reset each time. */
2903 expression_context_block = NULL;
2904 innermost_block = NULL;
2905
2906 /* Varobj may refer to old symbols, perform a cleanup. */
2907 varobj_invalidate ();
2908
2909 }
2910
2911 static void
2912 clear_symtab_users_cleanup (void *ignore)
2913 {
2914 clear_symtab_users (0);
2915 }
2916 \f
2917 /* OVERLAYS:
2918 The following code implements an abstraction for debugging overlay sections.
2919
2920 The target model is as follows:
2921 1) The gnu linker will permit multiple sections to be mapped into the
2922 same VMA, each with its own unique LMA (or load address).
2923 2) It is assumed that some runtime mechanism exists for mapping the
2924 sections, one by one, from the load address into the VMA address.
2925 3) This code provides a mechanism for gdb to keep track of which
2926 sections should be considered to be mapped from the VMA to the LMA.
2927 This information is used for symbol lookup, and memory read/write.
2928 For instance, if a section has been mapped then its contents
2929 should be read from the VMA, otherwise from the LMA.
2930
2931 Two levels of debugger support for overlays are available. One is
2932 "manual", in which the debugger relies on the user to tell it which
2933 overlays are currently mapped. This level of support is
2934 implemented entirely in the core debugger, and the information about
2935 whether a section is mapped is kept in the objfile->obj_section table.
2936
2937 The second level of support is "automatic", and is only available if
2938 the target-specific code provides functionality to read the target's
2939 overlay mapping table, and translate its contents for the debugger
2940 (by updating the mapped state information in the obj_section tables).
2941
2942 The interface is as follows:
2943 User commands:
2944 overlay map <name> -- tell gdb to consider this section mapped
2945 overlay unmap <name> -- tell gdb to consider this section unmapped
2946 overlay list -- list the sections that GDB thinks are mapped
2947 overlay read-target -- get the target's state of what's mapped
2948 overlay off/manual/auto -- set overlay debugging state
2949 Functional interface:
2950 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2951 section, return that section.
2952 find_pc_overlay(pc): find any overlay section that contains
2953 the pc, either in its VMA or its LMA
2954 section_is_mapped(sect): true if overlay is marked as mapped
2955 section_is_overlay(sect): true if section's VMA != LMA
2956 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2957 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2958 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2959 overlay_mapped_address(...): map an address from section's LMA to VMA
2960 overlay_unmapped_address(...): map an address from section's VMA to LMA
2961 symbol_overlayed_address(...): Return a "current" address for symbol:
2962 either in VMA or LMA depending on whether
2963 the symbol's section is currently mapped. */
2964
2965 /* Overlay debugging state: */
2966
2967 enum overlay_debugging_state overlay_debugging = ovly_off;
2968 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2969
2970 /* Function: section_is_overlay (SECTION)
2971 Returns true if SECTION has VMA not equal to LMA, ie.
2972 SECTION is loaded at an address different from where it will "run". */
2973
2974 int
2975 section_is_overlay (struct obj_section *section)
2976 {
2977 if (overlay_debugging && section)
2978 {
2979 bfd *abfd = section->objfile->obfd;
2980 asection *bfd_section = section->the_bfd_section;
2981
2982 if (bfd_section_lma (abfd, bfd_section) != 0
2983 && bfd_section_lma (abfd, bfd_section)
2984 != bfd_section_vma (abfd, bfd_section))
2985 return 1;
2986 }
2987
2988 return 0;
2989 }
2990
2991 /* Function: overlay_invalidate_all (void)
2992 Invalidate the mapped state of all overlay sections (mark it as stale). */
2993
2994 static void
2995 overlay_invalidate_all (void)
2996 {
2997 struct objfile *objfile;
2998 struct obj_section *sect;
2999
3000 ALL_OBJSECTIONS (objfile, sect)
3001 if (section_is_overlay (sect))
3002 sect->ovly_mapped = -1;
3003 }
3004
3005 /* Function: section_is_mapped (SECTION)
3006 Returns true if section is an overlay, and is currently mapped.
3007
3008 Access to the ovly_mapped flag is restricted to this function, so
3009 that we can do automatic update. If the global flag
3010 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3011 overlay_invalidate_all. If the mapped state of the particular
3012 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3013
3014 int
3015 section_is_mapped (struct obj_section *osect)
3016 {
3017 struct gdbarch *gdbarch;
3018
3019 if (osect == 0 || !section_is_overlay (osect))
3020 return 0;
3021
3022 switch (overlay_debugging)
3023 {
3024 default:
3025 case ovly_off:
3026 return 0; /* overlay debugging off */
3027 case ovly_auto: /* overlay debugging automatic */
3028 /* Unles there is a gdbarch_overlay_update function,
3029 there's really nothing useful to do here (can't really go auto). */
3030 gdbarch = get_objfile_arch (osect->objfile);
3031 if (gdbarch_overlay_update_p (gdbarch))
3032 {
3033 if (overlay_cache_invalid)
3034 {
3035 overlay_invalidate_all ();
3036 overlay_cache_invalid = 0;
3037 }
3038 if (osect->ovly_mapped == -1)
3039 gdbarch_overlay_update (gdbarch, osect);
3040 }
3041 /* fall thru to manual case */
3042 case ovly_on: /* overlay debugging manual */
3043 return osect->ovly_mapped == 1;
3044 }
3045 }
3046
3047 /* Function: pc_in_unmapped_range
3048 If PC falls into the lma range of SECTION, return true, else false. */
3049
3050 CORE_ADDR
3051 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3052 {
3053 if (section_is_overlay (section))
3054 {
3055 bfd *abfd = section->objfile->obfd;
3056 asection *bfd_section = section->the_bfd_section;
3057
3058 /* We assume the LMA is relocated by the same offset as the VMA. */
3059 bfd_vma size = bfd_get_section_size (bfd_section);
3060 CORE_ADDR offset = obj_section_offset (section);
3061
3062 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3063 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3064 return 1;
3065 }
3066
3067 return 0;
3068 }
3069
3070 /* Function: pc_in_mapped_range
3071 If PC falls into the vma range of SECTION, return true, else false. */
3072
3073 CORE_ADDR
3074 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3075 {
3076 if (section_is_overlay (section))
3077 {
3078 if (obj_section_addr (section) <= pc
3079 && pc < obj_section_endaddr (section))
3080 return 1;
3081 }
3082
3083 return 0;
3084 }
3085
3086
3087 /* Return true if the mapped ranges of sections A and B overlap, false
3088 otherwise. */
3089 static int
3090 sections_overlap (struct obj_section *a, struct obj_section *b)
3091 {
3092 CORE_ADDR a_start = obj_section_addr (a);
3093 CORE_ADDR a_end = obj_section_endaddr (a);
3094 CORE_ADDR b_start = obj_section_addr (b);
3095 CORE_ADDR b_end = obj_section_endaddr (b);
3096
3097 return (a_start < b_end && b_start < a_end);
3098 }
3099
3100 /* Function: overlay_unmapped_address (PC, SECTION)
3101 Returns the address corresponding to PC in the unmapped (load) range.
3102 May be the same as PC. */
3103
3104 CORE_ADDR
3105 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3106 {
3107 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3108 {
3109 bfd *abfd = section->objfile->obfd;
3110 asection *bfd_section = section->the_bfd_section;
3111
3112 return pc + bfd_section_lma (abfd, bfd_section)
3113 - bfd_section_vma (abfd, bfd_section);
3114 }
3115
3116 return pc;
3117 }
3118
3119 /* Function: overlay_mapped_address (PC, SECTION)
3120 Returns the address corresponding to PC in the mapped (runtime) range.
3121 May be the same as PC. */
3122
3123 CORE_ADDR
3124 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3125 {
3126 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3127 {
3128 bfd *abfd = section->objfile->obfd;
3129 asection *bfd_section = section->the_bfd_section;
3130
3131 return pc + bfd_section_vma (abfd, bfd_section)
3132 - bfd_section_lma (abfd, bfd_section);
3133 }
3134
3135 return pc;
3136 }
3137
3138
3139 /* Function: symbol_overlayed_address
3140 Return one of two addresses (relative to the VMA or to the LMA),
3141 depending on whether the section is mapped or not. */
3142
3143 CORE_ADDR
3144 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3145 {
3146 if (overlay_debugging)
3147 {
3148 /* If the symbol has no section, just return its regular address. */
3149 if (section == 0)
3150 return address;
3151 /* If the symbol's section is not an overlay, just return its
3152 address. */
3153 if (!section_is_overlay (section))
3154 return address;
3155 /* If the symbol's section is mapped, just return its address. */
3156 if (section_is_mapped (section))
3157 return address;
3158 /*
3159 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3160 * then return its LOADED address rather than its vma address!!
3161 */
3162 return overlay_unmapped_address (address, section);
3163 }
3164 return address;
3165 }
3166
3167 /* Function: find_pc_overlay (PC)
3168 Return the best-match overlay section for PC:
3169 If PC matches a mapped overlay section's VMA, return that section.
3170 Else if PC matches an unmapped section's VMA, return that section.
3171 Else if PC matches an unmapped section's LMA, return that section. */
3172
3173 struct obj_section *
3174 find_pc_overlay (CORE_ADDR pc)
3175 {
3176 struct objfile *objfile;
3177 struct obj_section *osect, *best_match = NULL;
3178
3179 if (overlay_debugging)
3180 ALL_OBJSECTIONS (objfile, osect)
3181 if (section_is_overlay (osect))
3182 {
3183 if (pc_in_mapped_range (pc, osect))
3184 {
3185 if (section_is_mapped (osect))
3186 return osect;
3187 else
3188 best_match = osect;
3189 }
3190 else if (pc_in_unmapped_range (pc, osect))
3191 best_match = osect;
3192 }
3193 return best_match;
3194 }
3195
3196 /* Function: find_pc_mapped_section (PC)
3197 If PC falls into the VMA address range of an overlay section that is
3198 currently marked as MAPPED, return that section. Else return NULL. */
3199
3200 struct obj_section *
3201 find_pc_mapped_section (CORE_ADDR pc)
3202 {
3203 struct objfile *objfile;
3204 struct obj_section *osect;
3205
3206 if (overlay_debugging)
3207 ALL_OBJSECTIONS (objfile, osect)
3208 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3209 return osect;
3210
3211 return NULL;
3212 }
3213
3214 /* Function: list_overlays_command
3215 Print a list of mapped sections and their PC ranges. */
3216
3217 void
3218 list_overlays_command (char *args, int from_tty)
3219 {
3220 int nmapped = 0;
3221 struct objfile *objfile;
3222 struct obj_section *osect;
3223
3224 if (overlay_debugging)
3225 ALL_OBJSECTIONS (objfile, osect)
3226 if (section_is_mapped (osect))
3227 {
3228 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3229 const char *name;
3230 bfd_vma lma, vma;
3231 int size;
3232
3233 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3234 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3235 size = bfd_get_section_size (osect->the_bfd_section);
3236 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3237
3238 printf_filtered ("Section %s, loaded at ", name);
3239 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3240 puts_filtered (" - ");
3241 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3242 printf_filtered (", mapped at ");
3243 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3244 puts_filtered (" - ");
3245 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3246 puts_filtered ("\n");
3247
3248 nmapped++;
3249 }
3250 if (nmapped == 0)
3251 printf_filtered (_("No sections are mapped.\n"));
3252 }
3253
3254 /* Function: map_overlay_command
3255 Mark the named section as mapped (ie. residing at its VMA address). */
3256
3257 void
3258 map_overlay_command (char *args, int from_tty)
3259 {
3260 struct objfile *objfile, *objfile2;
3261 struct obj_section *sec, *sec2;
3262
3263 if (!overlay_debugging)
3264 error (_("Overlay debugging not enabled. Use "
3265 "either the 'overlay auto' or\n"
3266 "the 'overlay manual' command."));
3267
3268 if (args == 0 || *args == 0)
3269 error (_("Argument required: name of an overlay section"));
3270
3271 /* First, find a section matching the user supplied argument. */
3272 ALL_OBJSECTIONS (objfile, sec)
3273 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3274 {
3275 /* Now, check to see if the section is an overlay. */
3276 if (!section_is_overlay (sec))
3277 continue; /* not an overlay section */
3278
3279 /* Mark the overlay as "mapped". */
3280 sec->ovly_mapped = 1;
3281
3282 /* Next, make a pass and unmap any sections that are
3283 overlapped by this new section: */
3284 ALL_OBJSECTIONS (objfile2, sec2)
3285 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3286 {
3287 if (info_verbose)
3288 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3289 bfd_section_name (objfile->obfd,
3290 sec2->the_bfd_section));
3291 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3292 }
3293 return;
3294 }
3295 error (_("No overlay section called %s"), args);
3296 }
3297
3298 /* Function: unmap_overlay_command
3299 Mark the overlay section as unmapped
3300 (ie. resident in its LMA address range, rather than the VMA range). */
3301
3302 void
3303 unmap_overlay_command (char *args, int from_tty)
3304 {
3305 struct objfile *objfile;
3306 struct obj_section *sec;
3307
3308 if (!overlay_debugging)
3309 error (_("Overlay debugging not enabled. "
3310 "Use either the 'overlay auto' or\n"
3311 "the 'overlay manual' command."));
3312
3313 if (args == 0 || *args == 0)
3314 error (_("Argument required: name of an overlay section"));
3315
3316 /* First, find a section matching the user supplied argument. */
3317 ALL_OBJSECTIONS (objfile, sec)
3318 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3319 {
3320 if (!sec->ovly_mapped)
3321 error (_("Section %s is not mapped"), args);
3322 sec->ovly_mapped = 0;
3323 return;
3324 }
3325 error (_("No overlay section called %s"), args);
3326 }
3327
3328 /* Function: overlay_auto_command
3329 A utility command to turn on overlay debugging.
3330 Possibly this should be done via a set/show command. */
3331
3332 static void
3333 overlay_auto_command (char *args, int from_tty)
3334 {
3335 overlay_debugging = ovly_auto;
3336 enable_overlay_breakpoints ();
3337 if (info_verbose)
3338 printf_unfiltered (_("Automatic overlay debugging enabled."));
3339 }
3340
3341 /* Function: overlay_manual_command
3342 A utility command to turn on overlay debugging.
3343 Possibly this should be done via a set/show command. */
3344
3345 static void
3346 overlay_manual_command (char *args, int from_tty)
3347 {
3348 overlay_debugging = ovly_on;
3349 disable_overlay_breakpoints ();
3350 if (info_verbose)
3351 printf_unfiltered (_("Overlay debugging enabled."));
3352 }
3353
3354 /* Function: overlay_off_command
3355 A utility command to turn on overlay debugging.
3356 Possibly this should be done via a set/show command. */
3357
3358 static void
3359 overlay_off_command (char *args, int from_tty)
3360 {
3361 overlay_debugging = ovly_off;
3362 disable_overlay_breakpoints ();
3363 if (info_verbose)
3364 printf_unfiltered (_("Overlay debugging disabled."));
3365 }
3366
3367 static void
3368 overlay_load_command (char *args, int from_tty)
3369 {
3370 struct gdbarch *gdbarch = get_current_arch ();
3371
3372 if (gdbarch_overlay_update_p (gdbarch))
3373 gdbarch_overlay_update (gdbarch, NULL);
3374 else
3375 error (_("This target does not know how to read its overlay state."));
3376 }
3377
3378 /* Function: overlay_command
3379 A place-holder for a mis-typed command. */
3380
3381 /* Command list chain containing all defined "overlay" subcommands. */
3382 struct cmd_list_element *overlaylist;
3383
3384 static void
3385 overlay_command (char *args, int from_tty)
3386 {
3387 printf_unfiltered
3388 ("\"overlay\" must be followed by the name of an overlay command.\n");
3389 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3390 }
3391
3392
3393 /* Target Overlays for the "Simplest" overlay manager:
3394
3395 This is GDB's default target overlay layer. It works with the
3396 minimal overlay manager supplied as an example by Cygnus. The
3397 entry point is via a function pointer "gdbarch_overlay_update",
3398 so targets that use a different runtime overlay manager can
3399 substitute their own overlay_update function and take over the
3400 function pointer.
3401
3402 The overlay_update function pokes around in the target's data structures
3403 to see what overlays are mapped, and updates GDB's overlay mapping with
3404 this information.
3405
3406 In this simple implementation, the target data structures are as follows:
3407 unsigned _novlys; /# number of overlay sections #/
3408 unsigned _ovly_table[_novlys][4] = {
3409 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3410 {..., ..., ..., ...},
3411 }
3412 unsigned _novly_regions; /# number of overlay regions #/
3413 unsigned _ovly_region_table[_novly_regions][3] = {
3414 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3415 {..., ..., ...},
3416 }
3417 These functions will attempt to update GDB's mappedness state in the
3418 symbol section table, based on the target's mappedness state.
3419
3420 To do this, we keep a cached copy of the target's _ovly_table, and
3421 attempt to detect when the cached copy is invalidated. The main
3422 entry point is "simple_overlay_update(SECT), which looks up SECT in
3423 the cached table and re-reads only the entry for that section from
3424 the target (whenever possible). */
3425
3426 /* Cached, dynamically allocated copies of the target data structures: */
3427 static unsigned (*cache_ovly_table)[4] = 0;
3428 static unsigned cache_novlys = 0;
3429 static CORE_ADDR cache_ovly_table_base = 0;
3430 enum ovly_index
3431 {
3432 VMA, SIZE, LMA, MAPPED
3433 };
3434
3435 /* Throw away the cached copy of _ovly_table. */
3436 static void
3437 simple_free_overlay_table (void)
3438 {
3439 if (cache_ovly_table)
3440 xfree (cache_ovly_table);
3441 cache_novlys = 0;
3442 cache_ovly_table = NULL;
3443 cache_ovly_table_base = 0;
3444 }
3445
3446 /* Read an array of ints of size SIZE from the target into a local buffer.
3447 Convert to host order. int LEN is number of ints. */
3448 static void
3449 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3450 int len, int size, enum bfd_endian byte_order)
3451 {
3452 /* FIXME (alloca): Not safe if array is very large. */
3453 gdb_byte *buf = alloca (len * size);
3454 int i;
3455
3456 read_memory (memaddr, buf, len * size);
3457 for (i = 0; i < len; i++)
3458 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3459 }
3460
3461 /* Find and grab a copy of the target _ovly_table
3462 (and _novlys, which is needed for the table's size). */
3463 static int
3464 simple_read_overlay_table (void)
3465 {
3466 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3467 struct gdbarch *gdbarch;
3468 int word_size;
3469 enum bfd_endian byte_order;
3470
3471 simple_free_overlay_table ();
3472 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3473 if (! novlys_msym)
3474 {
3475 error (_("Error reading inferior's overlay table: "
3476 "couldn't find `_novlys' variable\n"
3477 "in inferior. Use `overlay manual' mode."));
3478 return 0;
3479 }
3480
3481 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3482 if (! ovly_table_msym)
3483 {
3484 error (_("Error reading inferior's overlay table: couldn't find "
3485 "`_ovly_table' array\n"
3486 "in inferior. Use `overlay manual' mode."));
3487 return 0;
3488 }
3489
3490 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3491 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3492 byte_order = gdbarch_byte_order (gdbarch);
3493
3494 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3495 4, byte_order);
3496 cache_ovly_table
3497 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3498 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3499 read_target_long_array (cache_ovly_table_base,
3500 (unsigned int *) cache_ovly_table,
3501 cache_novlys * 4, word_size, byte_order);
3502
3503 return 1; /* SUCCESS */
3504 }
3505
3506 /* Function: simple_overlay_update_1
3507 A helper function for simple_overlay_update. Assuming a cached copy
3508 of _ovly_table exists, look through it to find an entry whose vma,
3509 lma and size match those of OSECT. Re-read the entry and make sure
3510 it still matches OSECT (else the table may no longer be valid).
3511 Set OSECT's mapped state to match the entry. Return: 1 for
3512 success, 0 for failure. */
3513
3514 static int
3515 simple_overlay_update_1 (struct obj_section *osect)
3516 {
3517 int i, size;
3518 bfd *obfd = osect->objfile->obfd;
3519 asection *bsect = osect->the_bfd_section;
3520 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3521 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3522 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3523
3524 size = bfd_get_section_size (osect->the_bfd_section);
3525 for (i = 0; i < cache_novlys; i++)
3526 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3527 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3528 /* && cache_ovly_table[i][SIZE] == size */ )
3529 {
3530 read_target_long_array (cache_ovly_table_base + i * word_size,
3531 (unsigned int *) cache_ovly_table[i],
3532 4, word_size, byte_order);
3533 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3534 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3535 /* && cache_ovly_table[i][SIZE] == size */ )
3536 {
3537 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3538 return 1;
3539 }
3540 else /* Warning! Warning! Target's ovly table has changed! */
3541 return 0;
3542 }
3543 return 0;
3544 }
3545
3546 /* Function: simple_overlay_update
3547 If OSECT is NULL, then update all sections' mapped state
3548 (after re-reading the entire target _ovly_table).
3549 If OSECT is non-NULL, then try to find a matching entry in the
3550 cached ovly_table and update only OSECT's mapped state.
3551 If a cached entry can't be found or the cache isn't valid, then
3552 re-read the entire cache, and go ahead and update all sections. */
3553
3554 void
3555 simple_overlay_update (struct obj_section *osect)
3556 {
3557 struct objfile *objfile;
3558
3559 /* Were we given an osect to look up? NULL means do all of them. */
3560 if (osect)
3561 /* Have we got a cached copy of the target's overlay table? */
3562 if (cache_ovly_table != NULL)
3563 {
3564 /* Does its cached location match what's currently in the
3565 symtab? */
3566 struct minimal_symbol *minsym
3567 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3568
3569 if (minsym == NULL)
3570 error (_("Error reading inferior's overlay table: couldn't "
3571 "find `_ovly_table' array\n"
3572 "in inferior. Use `overlay manual' mode."));
3573
3574 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3575 /* Then go ahead and try to look up this single section in
3576 the cache. */
3577 if (simple_overlay_update_1 (osect))
3578 /* Found it! We're done. */
3579 return;
3580 }
3581
3582 /* Cached table no good: need to read the entire table anew.
3583 Or else we want all the sections, in which case it's actually
3584 more efficient to read the whole table in one block anyway. */
3585
3586 if (! simple_read_overlay_table ())
3587 return;
3588
3589 /* Now may as well update all sections, even if only one was requested. */
3590 ALL_OBJSECTIONS (objfile, osect)
3591 if (section_is_overlay (osect))
3592 {
3593 int i, size;
3594 bfd *obfd = osect->objfile->obfd;
3595 asection *bsect = osect->the_bfd_section;
3596
3597 size = bfd_get_section_size (bsect);
3598 for (i = 0; i < cache_novlys; i++)
3599 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3600 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3601 /* && cache_ovly_table[i][SIZE] == size */ )
3602 { /* obj_section matches i'th entry in ovly_table. */
3603 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3604 break; /* finished with inner for loop: break out. */
3605 }
3606 }
3607 }
3608
3609 /* Set the output sections and output offsets for section SECTP in
3610 ABFD. The relocation code in BFD will read these offsets, so we
3611 need to be sure they're initialized. We map each section to itself,
3612 with no offset; this means that SECTP->vma will be honored. */
3613
3614 static void
3615 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3616 {
3617 sectp->output_section = sectp;
3618 sectp->output_offset = 0;
3619 }
3620
3621 /* Default implementation for sym_relocate. */
3622
3623
3624 bfd_byte *
3625 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3626 bfd_byte *buf)
3627 {
3628 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3629 DWO file. */
3630 bfd *abfd = sectp->owner;
3631
3632 /* We're only interested in sections with relocation
3633 information. */
3634 if ((sectp->flags & SEC_RELOC) == 0)
3635 return NULL;
3636
3637 /* We will handle section offsets properly elsewhere, so relocate as if
3638 all sections begin at 0. */
3639 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3640
3641 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3642 }
3643
3644 /* Relocate the contents of a debug section SECTP in ABFD. The
3645 contents are stored in BUF if it is non-NULL, or returned in a
3646 malloc'd buffer otherwise.
3647
3648 For some platforms and debug info formats, shared libraries contain
3649 relocations against the debug sections (particularly for DWARF-2;
3650 one affected platform is PowerPC GNU/Linux, although it depends on
3651 the version of the linker in use). Also, ELF object files naturally
3652 have unresolved relocations for their debug sections. We need to apply
3653 the relocations in order to get the locations of symbols correct.
3654 Another example that may require relocation processing, is the
3655 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3656 debug section. */
3657
3658 bfd_byte *
3659 symfile_relocate_debug_section (struct objfile *objfile,
3660 asection *sectp, bfd_byte *buf)
3661 {
3662 gdb_assert (objfile->sf->sym_relocate);
3663
3664 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3665 }
3666
3667 struct symfile_segment_data *
3668 get_symfile_segment_data (bfd *abfd)
3669 {
3670 const struct sym_fns *sf = find_sym_fns (abfd);
3671
3672 if (sf == NULL)
3673 return NULL;
3674
3675 return sf->sym_segments (abfd);
3676 }
3677
3678 void
3679 free_symfile_segment_data (struct symfile_segment_data *data)
3680 {
3681 xfree (data->segment_bases);
3682 xfree (data->segment_sizes);
3683 xfree (data->segment_info);
3684 xfree (data);
3685 }
3686
3687
3688 /* Given:
3689 - DATA, containing segment addresses from the object file ABFD, and
3690 the mapping from ABFD's sections onto the segments that own them,
3691 and
3692 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3693 segment addresses reported by the target,
3694 store the appropriate offsets for each section in OFFSETS.
3695
3696 If there are fewer entries in SEGMENT_BASES than there are segments
3697 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3698
3699 If there are more entries, then ignore the extra. The target may
3700 not be able to distinguish between an empty data segment and a
3701 missing data segment; a missing text segment is less plausible. */
3702 int
3703 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3704 struct section_offsets *offsets,
3705 int num_segment_bases,
3706 const CORE_ADDR *segment_bases)
3707 {
3708 int i;
3709 asection *sect;
3710
3711 /* It doesn't make sense to call this function unless you have some
3712 segment base addresses. */
3713 gdb_assert (num_segment_bases > 0);
3714
3715 /* If we do not have segment mappings for the object file, we
3716 can not relocate it by segments. */
3717 gdb_assert (data != NULL);
3718 gdb_assert (data->num_segments > 0);
3719
3720 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3721 {
3722 int which = data->segment_info[i];
3723
3724 gdb_assert (0 <= which && which <= data->num_segments);
3725
3726 /* Don't bother computing offsets for sections that aren't
3727 loaded as part of any segment. */
3728 if (! which)
3729 continue;
3730
3731 /* Use the last SEGMENT_BASES entry as the address of any extra
3732 segments mentioned in DATA->segment_info. */
3733 if (which > num_segment_bases)
3734 which = num_segment_bases;
3735
3736 offsets->offsets[i] = (segment_bases[which - 1]
3737 - data->segment_bases[which - 1]);
3738 }
3739
3740 return 1;
3741 }
3742
3743 static void
3744 symfile_find_segment_sections (struct objfile *objfile)
3745 {
3746 bfd *abfd = objfile->obfd;
3747 int i;
3748 asection *sect;
3749 struct symfile_segment_data *data;
3750
3751 data = get_symfile_segment_data (objfile->obfd);
3752 if (data == NULL)
3753 return;
3754
3755 if (data->num_segments != 1 && data->num_segments != 2)
3756 {
3757 free_symfile_segment_data (data);
3758 return;
3759 }
3760
3761 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3762 {
3763 int which = data->segment_info[i];
3764
3765 if (which == 1)
3766 {
3767 if (objfile->sect_index_text == -1)
3768 objfile->sect_index_text = sect->index;
3769
3770 if (objfile->sect_index_rodata == -1)
3771 objfile->sect_index_rodata = sect->index;
3772 }
3773 else if (which == 2)
3774 {
3775 if (objfile->sect_index_data == -1)
3776 objfile->sect_index_data = sect->index;
3777
3778 if (objfile->sect_index_bss == -1)
3779 objfile->sect_index_bss = sect->index;
3780 }
3781 }
3782
3783 free_symfile_segment_data (data);
3784 }
3785
3786 void
3787 _initialize_symfile (void)
3788 {
3789 struct cmd_list_element *c;
3790
3791 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3792 Load symbol table from executable file FILE.\n\
3793 The `file' command can also load symbol tables, as well as setting the file\n\
3794 to execute."), &cmdlist);
3795 set_cmd_completer (c, filename_completer);
3796
3797 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3798 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3799 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3800 ...]\nADDR is the starting address of the file's text.\n\
3801 The optional arguments are section-name section-address pairs and\n\
3802 should be specified if the data and bss segments are not contiguous\n\
3803 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3804 &cmdlist);
3805 set_cmd_completer (c, filename_completer);
3806
3807 c = add_cmd ("load", class_files, load_command, _("\
3808 Dynamically load FILE into the running program, and record its symbols\n\
3809 for access from GDB.\n\
3810 A load OFFSET may also be given."), &cmdlist);
3811 set_cmd_completer (c, filename_completer);
3812
3813 add_prefix_cmd ("overlay", class_support, overlay_command,
3814 _("Commands for debugging overlays."), &overlaylist,
3815 "overlay ", 0, &cmdlist);
3816
3817 add_com_alias ("ovly", "overlay", class_alias, 1);
3818 add_com_alias ("ov", "overlay", class_alias, 1);
3819
3820 add_cmd ("map-overlay", class_support, map_overlay_command,
3821 _("Assert that an overlay section is mapped."), &overlaylist);
3822
3823 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3824 _("Assert that an overlay section is unmapped."), &overlaylist);
3825
3826 add_cmd ("list-overlays", class_support, list_overlays_command,
3827 _("List mappings of overlay sections."), &overlaylist);
3828
3829 add_cmd ("manual", class_support, overlay_manual_command,
3830 _("Enable overlay debugging."), &overlaylist);
3831 add_cmd ("off", class_support, overlay_off_command,
3832 _("Disable overlay debugging."), &overlaylist);
3833 add_cmd ("auto", class_support, overlay_auto_command,
3834 _("Enable automatic overlay debugging."), &overlaylist);
3835 add_cmd ("load-target", class_support, overlay_load_command,
3836 _("Read the overlay mapping state from the target."), &overlaylist);
3837
3838 /* Filename extension to source language lookup table: */
3839 init_filename_language_table ();
3840 add_setshow_string_noescape_cmd ("extension-language", class_files,
3841 &ext_args, _("\
3842 Set mapping between filename extension and source language."), _("\
3843 Show mapping between filename extension and source language."), _("\
3844 Usage: set extension-language .foo bar"),
3845 set_ext_lang_command,
3846 show_ext_args,
3847 &setlist, &showlist);
3848
3849 add_info ("extensions", info_ext_lang_command,
3850 _("All filename extensions associated with a source language."));
3851
3852 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3853 &debug_file_directory, _("\
3854 Set the directories where separate debug symbols are searched for."), _("\
3855 Show the directories where separate debug symbols are searched for."), _("\
3856 Separate debug symbols are first searched for in the same\n\
3857 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3858 and lastly at the path of the directory of the binary with\n\
3859 each global debug-file-directory component prepended."),
3860 NULL,
3861 show_debug_file_directory,
3862 &setlist, &showlist);
3863 }