]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
bfd/
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58
59 #include <sys/types.h>
60 #include <fcntl.h>
61 #include "gdb_string.h"
62 #include "gdb_stat.h"
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines. */
89
90 static void load_command (char *, int);
91
92 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
93
94 static void add_symbol_file_command (char *, int);
95
96 bfd *symfile_bfd_open (char *);
97
98 int get_section_index (struct objfile *, char *);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void decrement_reading_symtab (void *);
103
104 static void overlay_invalidate_all (void);
105
106 void list_overlays_command (char *, int);
107
108 void map_overlay_command (char *, int);
109
110 void unmap_overlay_command (char *, int);
111
112 static void overlay_auto_command (char *, int);
113
114 static void overlay_manual_command (char *, int);
115
116 static void overlay_off_command (char *, int);
117
118 static void overlay_load_command (char *, int);
119
120 static void overlay_command (char *, int);
121
122 static void simple_free_overlay_table (void);
123
124 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
125 enum bfd_endian);
126
127 static int simple_read_overlay_table (void);
128
129 static int simple_overlay_update_1 (struct obj_section *);
130
131 static void add_filename_language (char *ext, enum language lang);
132
133 static void info_ext_lang_command (char *args, int from_tty);
134
135 static void init_filename_language_table (void);
136
137 static void symfile_find_segment_sections (struct objfile *objfile);
138
139 void _initialize_symfile (void);
140
141 /* List of all available sym_fns. On gdb startup, each object file reader
142 calls add_symtab_fns() to register information on each format it is
143 prepared to read. */
144
145 typedef const struct sym_fns *sym_fns_ptr;
146 DEF_VEC_P (sym_fns_ptr);
147
148 static VEC (sym_fns_ptr) *symtab_fns = NULL;
149
150 /* If non-zero, shared library symbols will be added automatically
151 when the inferior is created, new libraries are loaded, or when
152 attaching to the inferior. This is almost always what users will
153 want to have happen; but for very large programs, the startup time
154 will be excessive, and so if this is a problem, the user can clear
155 this flag and then add the shared library symbols as needed. Note
156 that there is a potential for confusion, since if the shared
157 library symbols are not loaded, commands like "info fun" will *not*
158 report all the functions that are actually present. */
159
160 int auto_solib_add = 1;
161 \f
162
163 /* Make a null terminated copy of the string at PTR with SIZE characters in
164 the obstack pointed to by OBSTACKP . Returns the address of the copy.
165 Note that the string at PTR does not have to be null terminated, I.e. it
166 may be part of a larger string and we are only saving a substring. */
167
168 char *
169 obsavestring (const char *ptr, int size, struct obstack *obstackp)
170 {
171 char *p = (char *) obstack_alloc (obstackp, size + 1);
172 /* Open-coded memcpy--saves function call time. These strings are usually
173 short. FIXME: Is this really still true with a compiler that can
174 inline memcpy? */
175 {
176 const char *p1 = ptr;
177 char *p2 = p;
178 const char *end = ptr + size;
179
180 while (p1 != end)
181 *p2++ = *p1++;
182 }
183 p[size] = 0;
184 return p;
185 }
186
187 /* Concatenate NULL terminated variable argument list of `const char *'
188 strings; return the new string. Space is found in the OBSTACKP.
189 Argument list must be terminated by a sentinel expression `(char *)
190 NULL'. */
191
192 char *
193 obconcat (struct obstack *obstackp, ...)
194 {
195 va_list ap;
196
197 va_start (ap, obstackp);
198 for (;;)
199 {
200 const char *s = va_arg (ap, const char *);
201
202 if (s == NULL)
203 break;
204
205 obstack_grow_str (obstackp, s);
206 }
207 va_end (ap);
208 obstack_1grow (obstackp, 0);
209
210 return obstack_finish (obstackp);
211 }
212
213 /* True if we are reading a symbol table. */
214
215 int currently_reading_symtab = 0;
216
217 static void
218 decrement_reading_symtab (void *dummy)
219 {
220 currently_reading_symtab--;
221 }
222
223 /* Increment currently_reading_symtab and return a cleanup that can be
224 used to decrement it. */
225 struct cleanup *
226 increment_reading_symtab (void)
227 {
228 ++currently_reading_symtab;
229 return make_cleanup (decrement_reading_symtab, NULL);
230 }
231
232 /* Remember the lowest-addressed loadable section we've seen.
233 This function is called via bfd_map_over_sections.
234
235 In case of equal vmas, the section with the largest size becomes the
236 lowest-addressed loadable section.
237
238 If the vmas and sizes are equal, the last section is considered the
239 lowest-addressed loadable section. */
240
241 void
242 find_lowest_section (bfd *abfd, asection *sect, void *obj)
243 {
244 asection **lowest = (asection **) obj;
245
246 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
247 return;
248 if (!*lowest)
249 *lowest = sect; /* First loadable section */
250 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
251 *lowest = sect; /* A lower loadable section */
252 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
253 && (bfd_section_size (abfd, (*lowest))
254 <= bfd_section_size (abfd, sect)))
255 *lowest = sect;
256 }
257
258 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
259
260 struct section_addr_info *
261 alloc_section_addr_info (size_t num_sections)
262 {
263 struct section_addr_info *sap;
264 size_t size;
265
266 size = (sizeof (struct section_addr_info)
267 + sizeof (struct other_sections) * (num_sections - 1));
268 sap = (struct section_addr_info *) xmalloc (size);
269 memset (sap, 0, size);
270 sap->num_sections = num_sections;
271
272 return sap;
273 }
274
275 /* Build (allocate and populate) a section_addr_info struct from
276 an existing section table. */
277
278 extern struct section_addr_info *
279 build_section_addr_info_from_section_table (const struct target_section *start,
280 const struct target_section *end)
281 {
282 struct section_addr_info *sap;
283 const struct target_section *stp;
284 int oidx;
285
286 sap = alloc_section_addr_info (end - start);
287
288 for (stp = start, oidx = 0; stp != end; stp++)
289 {
290 if (bfd_get_section_flags (stp->bfd,
291 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
292 && oidx < end - start)
293 {
294 sap->other[oidx].addr = stp->addr;
295 sap->other[oidx].name
296 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
297 sap->other[oidx].sectindex = stp->the_bfd_section->index;
298 oidx++;
299 }
300 }
301
302 return sap;
303 }
304
305 /* Create a section_addr_info from section offsets in ABFD. */
306
307 static struct section_addr_info *
308 build_section_addr_info_from_bfd (bfd *abfd)
309 {
310 struct section_addr_info *sap;
311 int i;
312 struct bfd_section *sec;
313
314 sap = alloc_section_addr_info (bfd_count_sections (abfd));
315 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
316 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
317 {
318 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
319 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
320 sap->other[i].sectindex = sec->index;
321 i++;
322 }
323 return sap;
324 }
325
326 /* Create a section_addr_info from section offsets in OBJFILE. */
327
328 struct section_addr_info *
329 build_section_addr_info_from_objfile (const struct objfile *objfile)
330 {
331 struct section_addr_info *sap;
332 int i;
333
334 /* Before reread_symbols gets rewritten it is not safe to call:
335 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
336 */
337 sap = build_section_addr_info_from_bfd (objfile->obfd);
338 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
339 {
340 int sectindex = sap->other[i].sectindex;
341
342 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
343 }
344 return sap;
345 }
346
347 /* Free all memory allocated by build_section_addr_info_from_section_table. */
348
349 extern void
350 free_section_addr_info (struct section_addr_info *sap)
351 {
352 int idx;
353
354 for (idx = 0; idx < sap->num_sections; idx++)
355 if (sap->other[idx].name)
356 xfree (sap->other[idx].name);
357 xfree (sap);
358 }
359
360
361 /* Initialize OBJFILE's sect_index_* members. */
362 static void
363 init_objfile_sect_indices (struct objfile *objfile)
364 {
365 asection *sect;
366 int i;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".text");
369 if (sect)
370 objfile->sect_index_text = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".data");
373 if (sect)
374 objfile->sect_index_data = sect->index;
375
376 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
377 if (sect)
378 objfile->sect_index_bss = sect->index;
379
380 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
381 if (sect)
382 objfile->sect_index_rodata = sect->index;
383
384 /* This is where things get really weird... We MUST have valid
385 indices for the various sect_index_* members or gdb will abort.
386 So if for example, there is no ".text" section, we have to
387 accomodate that. First, check for a file with the standard
388 one or two segments. */
389
390 symfile_find_segment_sections (objfile);
391
392 /* Except when explicitly adding symbol files at some address,
393 section_offsets contains nothing but zeros, so it doesn't matter
394 which slot in section_offsets the individual sect_index_* members
395 index into. So if they are all zero, it is safe to just point
396 all the currently uninitialized indices to the first slot. But
397 beware: if this is the main executable, it may be relocated
398 later, e.g. by the remote qOffsets packet, and then this will
399 be wrong! That's why we try segments first. */
400
401 for (i = 0; i < objfile->num_sections; i++)
402 {
403 if (ANOFFSET (objfile->section_offsets, i) != 0)
404 {
405 break;
406 }
407 }
408 if (i == objfile->num_sections)
409 {
410 if (objfile->sect_index_text == -1)
411 objfile->sect_index_text = 0;
412 if (objfile->sect_index_data == -1)
413 objfile->sect_index_data = 0;
414 if (objfile->sect_index_bss == -1)
415 objfile->sect_index_bss = 0;
416 if (objfile->sect_index_rodata == -1)
417 objfile->sect_index_rodata = 0;
418 }
419 }
420
421 /* The arguments to place_section. */
422
423 struct place_section_arg
424 {
425 struct section_offsets *offsets;
426 CORE_ADDR lowest;
427 };
428
429 /* Find a unique offset to use for loadable section SECT if
430 the user did not provide an offset. */
431
432 static void
433 place_section (bfd *abfd, asection *sect, void *obj)
434 {
435 struct place_section_arg *arg = obj;
436 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
437 int done;
438 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
439
440 /* We are only interested in allocated sections. */
441 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
442 return;
443
444 /* If the user specified an offset, honor it. */
445 if (offsets[sect->index] != 0)
446 return;
447
448 /* Otherwise, let's try to find a place for the section. */
449 start_addr = (arg->lowest + align - 1) & -align;
450
451 do {
452 asection *cur_sec;
453
454 done = 1;
455
456 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
457 {
458 int indx = cur_sec->index;
459
460 /* We don't need to compare against ourself. */
461 if (cur_sec == sect)
462 continue;
463
464 /* We can only conflict with allocated sections. */
465 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
466 continue;
467
468 /* If the section offset is 0, either the section has not been placed
469 yet, or it was the lowest section placed (in which case LOWEST
470 will be past its end). */
471 if (offsets[indx] == 0)
472 continue;
473
474 /* If this section would overlap us, then we must move up. */
475 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
476 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
477 {
478 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
479 start_addr = (start_addr + align - 1) & -align;
480 done = 0;
481 break;
482 }
483
484 /* Otherwise, we appear to be OK. So far. */
485 }
486 }
487 while (!done);
488
489 offsets[sect->index] = start_addr;
490 arg->lowest = start_addr + bfd_get_section_size (sect);
491 }
492
493 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
494 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
495 entries. */
496
497 void
498 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
499 int num_sections,
500 struct section_addr_info *addrs)
501 {
502 int i;
503
504 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
505
506 /* Now calculate offsets for section that were specified by the caller. */
507 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
508 {
509 struct other_sections *osp;
510
511 osp = &addrs->other[i];
512 if (osp->sectindex == -1)
513 continue;
514
515 /* Record all sections in offsets. */
516 /* The section_offsets in the objfile are here filled in using
517 the BFD index. */
518 section_offsets->offsets[osp->sectindex] = osp->addr;
519 }
520 }
521
522 /* Transform section name S for a name comparison. prelink can split section
523 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
524 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
525 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
526 (`.sbss') section has invalid (increased) virtual address. */
527
528 static const char *
529 addr_section_name (const char *s)
530 {
531 if (strcmp (s, ".dynbss") == 0)
532 return ".bss";
533 if (strcmp (s, ".sdynbss") == 0)
534 return ".sbss";
535
536 return s;
537 }
538
539 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
540 their (name, sectindex) pair. sectindex makes the sort by name stable. */
541
542 static int
543 addrs_section_compar (const void *ap, const void *bp)
544 {
545 const struct other_sections *a = *((struct other_sections **) ap);
546 const struct other_sections *b = *((struct other_sections **) bp);
547 int retval;
548
549 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
550 if (retval)
551 return retval;
552
553 return a->sectindex - b->sectindex;
554 }
555
556 /* Provide sorted array of pointers to sections of ADDRS. The array is
557 terminated by NULL. Caller is responsible to call xfree for it. */
558
559 static struct other_sections **
560 addrs_section_sort (struct section_addr_info *addrs)
561 {
562 struct other_sections **array;
563 int i;
564
565 /* `+ 1' for the NULL terminator. */
566 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 array[i] = &addrs->other[i];
569 array[i] = NULL;
570
571 qsort (array, i, sizeof (*array), addrs_section_compar);
572
573 return array;
574 }
575
576 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
577 also SECTINDEXes specific to ABFD there. This function can be used to
578 rebase ADDRS to start referencing different BFD than before. */
579
580 void
581 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
582 {
583 asection *lower_sect;
584 CORE_ADDR lower_offset;
585 int i;
586 struct cleanup *my_cleanup;
587 struct section_addr_info *abfd_addrs;
588 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
589 struct other_sections **addrs_to_abfd_addrs;
590
591 /* Find lowest loadable section to be used as starting point for
592 continguous sections. */
593 lower_sect = NULL;
594 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
595 if (lower_sect == NULL)
596 {
597 warning (_("no loadable sections found in added symbol-file %s"),
598 bfd_get_filename (abfd));
599 lower_offset = 0;
600 }
601 else
602 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
603
604 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
605 in ABFD. Section names are not unique - there can be multiple sections of
606 the same name. Also the sections of the same name do not have to be
607 adjacent to each other. Some sections may be present only in one of the
608 files. Even sections present in both files do not have to be in the same
609 order.
610
611 Use stable sort by name for the sections in both files. Then linearly
612 scan both lists matching as most of the entries as possible. */
613
614 addrs_sorted = addrs_section_sort (addrs);
615 my_cleanup = make_cleanup (xfree, addrs_sorted);
616
617 abfd_addrs = build_section_addr_info_from_bfd (abfd);
618 make_cleanup_free_section_addr_info (abfd_addrs);
619 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
620 make_cleanup (xfree, abfd_addrs_sorted);
621
622 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
623 ABFD_ADDRS_SORTED. */
624
625 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
626 * addrs->num_sections);
627 make_cleanup (xfree, addrs_to_abfd_addrs);
628
629 while (*addrs_sorted)
630 {
631 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
632
633 while (*abfd_addrs_sorted
634 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
635 sect_name) < 0)
636 abfd_addrs_sorted++;
637
638 if (*abfd_addrs_sorted
639 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
640 sect_name) == 0)
641 {
642 int index_in_addrs;
643
644 /* Make the found item directly addressable from ADDRS. */
645 index_in_addrs = *addrs_sorted - addrs->other;
646 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
647 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
648
649 /* Never use the same ABFD entry twice. */
650 abfd_addrs_sorted++;
651 }
652
653 addrs_sorted++;
654 }
655
656 /* Calculate offsets for the loadable sections.
657 FIXME! Sections must be in order of increasing loadable section
658 so that contiguous sections can use the lower-offset!!!
659
660 Adjust offsets if the segments are not contiguous.
661 If the section is contiguous, its offset should be set to
662 the offset of the highest loadable section lower than it
663 (the loadable section directly below it in memory).
664 this_offset = lower_offset = lower_addr - lower_orig_addr */
665
666 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
667 {
668 struct other_sections *sect = addrs_to_abfd_addrs[i];
669
670 if (sect)
671 {
672 /* This is the index used by BFD. */
673 addrs->other[i].sectindex = sect->sectindex;
674
675 if (addrs->other[i].addr != 0)
676 {
677 addrs->other[i].addr -= sect->addr;
678 lower_offset = addrs->other[i].addr;
679 }
680 else
681 addrs->other[i].addr = lower_offset;
682 }
683 else
684 {
685 /* addr_section_name transformation is not used for SECT_NAME. */
686 const char *sect_name = addrs->other[i].name;
687
688 /* This section does not exist in ABFD, which is normally
689 unexpected and we want to issue a warning.
690
691 However, the ELF prelinker does create a few sections which are
692 marked in the main executable as loadable (they are loaded in
693 memory from the DYNAMIC segment) and yet are not present in
694 separate debug info files. This is fine, and should not cause
695 a warning. Shared libraries contain just the section
696 ".gnu.liblist" but it is not marked as loadable there. There is
697 no other way to identify them than by their name as the sections
698 created by prelink have no special flags.
699
700 For the sections `.bss' and `.sbss' see addr_section_name. */
701
702 if (!(strcmp (sect_name, ".gnu.liblist") == 0
703 || strcmp (sect_name, ".gnu.conflict") == 0
704 || (strcmp (sect_name, ".bss") == 0
705 && i > 0
706 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
707 && addrs_to_abfd_addrs[i - 1] != NULL)
708 || (strcmp (sect_name, ".sbss") == 0
709 && i > 0
710 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
711 && addrs_to_abfd_addrs[i - 1] != NULL)))
712 warning (_("section %s not found in %s"), sect_name,
713 bfd_get_filename (abfd));
714
715 addrs->other[i].addr = 0;
716 addrs->other[i].sectindex = -1;
717 }
718 }
719
720 do_cleanups (my_cleanup);
721 }
722
723 /* Parse the user's idea of an offset for dynamic linking, into our idea
724 of how to represent it for fast symbol reading. This is the default
725 version of the sym_fns.sym_offsets function for symbol readers that
726 don't need to do anything special. It allocates a section_offsets table
727 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
728
729 void
730 default_symfile_offsets (struct objfile *objfile,
731 struct section_addr_info *addrs)
732 {
733 objfile->num_sections = bfd_count_sections (objfile->obfd);
734 objfile->section_offsets = (struct section_offsets *)
735 obstack_alloc (&objfile->objfile_obstack,
736 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
737 relative_addr_info_to_section_offsets (objfile->section_offsets,
738 objfile->num_sections, addrs);
739
740 /* For relocatable files, all loadable sections will start at zero.
741 The zero is meaningless, so try to pick arbitrary addresses such
742 that no loadable sections overlap. This algorithm is quadratic,
743 but the number of sections in a single object file is generally
744 small. */
745 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
746 {
747 struct place_section_arg arg;
748 bfd *abfd = objfile->obfd;
749 asection *cur_sec;
750
751 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
752 /* We do not expect this to happen; just skip this step if the
753 relocatable file has a section with an assigned VMA. */
754 if (bfd_section_vma (abfd, cur_sec) != 0)
755 break;
756
757 if (cur_sec == NULL)
758 {
759 CORE_ADDR *offsets = objfile->section_offsets->offsets;
760
761 /* Pick non-overlapping offsets for sections the user did not
762 place explicitly. */
763 arg.offsets = objfile->section_offsets;
764 arg.lowest = 0;
765 bfd_map_over_sections (objfile->obfd, place_section, &arg);
766
767 /* Correctly filling in the section offsets is not quite
768 enough. Relocatable files have two properties that
769 (most) shared objects do not:
770
771 - Their debug information will contain relocations. Some
772 shared libraries do also, but many do not, so this can not
773 be assumed.
774
775 - If there are multiple code sections they will be loaded
776 at different relative addresses in memory than they are
777 in the objfile, since all sections in the file will start
778 at address zero.
779
780 Because GDB has very limited ability to map from an
781 address in debug info to the correct code section,
782 it relies on adding SECT_OFF_TEXT to things which might be
783 code. If we clear all the section offsets, and set the
784 section VMAs instead, then symfile_relocate_debug_section
785 will return meaningful debug information pointing at the
786 correct sections.
787
788 GDB has too many different data structures for section
789 addresses - a bfd, objfile, and so_list all have section
790 tables, as does exec_ops. Some of these could probably
791 be eliminated. */
792
793 for (cur_sec = abfd->sections; cur_sec != NULL;
794 cur_sec = cur_sec->next)
795 {
796 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
797 continue;
798
799 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
800 exec_set_section_address (bfd_get_filename (abfd),
801 cur_sec->index,
802 offsets[cur_sec->index]);
803 offsets[cur_sec->index] = 0;
804 }
805 }
806 }
807
808 /* Remember the bfd indexes for the .text, .data, .bss and
809 .rodata sections. */
810 init_objfile_sect_indices (objfile);
811 }
812
813
814 /* Divide the file into segments, which are individual relocatable units.
815 This is the default version of the sym_fns.sym_segments function for
816 symbol readers that do not have an explicit representation of segments.
817 It assumes that object files do not have segments, and fully linked
818 files have a single segment. */
819
820 struct symfile_segment_data *
821 default_symfile_segments (bfd *abfd)
822 {
823 int num_sections, i;
824 asection *sect;
825 struct symfile_segment_data *data;
826 CORE_ADDR low, high;
827
828 /* Relocatable files contain enough information to position each
829 loadable section independently; they should not be relocated
830 in segments. */
831 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
832 return NULL;
833
834 /* Make sure there is at least one loadable section in the file. */
835 for (sect = abfd->sections; sect != NULL; sect = sect->next)
836 {
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 break;
841 }
842 if (sect == NULL)
843 return NULL;
844
845 low = bfd_get_section_vma (abfd, sect);
846 high = low + bfd_get_section_size (sect);
847
848 data = XZALLOC (struct symfile_segment_data);
849 data->num_segments = 1;
850 data->segment_bases = XCALLOC (1, CORE_ADDR);
851 data->segment_sizes = XCALLOC (1, CORE_ADDR);
852
853 num_sections = bfd_count_sections (abfd);
854 data->segment_info = XCALLOC (num_sections, int);
855
856 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
857 {
858 CORE_ADDR vma;
859
860 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
861 continue;
862
863 vma = bfd_get_section_vma (abfd, sect);
864 if (vma < low)
865 low = vma;
866 if (vma + bfd_get_section_size (sect) > high)
867 high = vma + bfd_get_section_size (sect);
868
869 data->segment_info[i] = 1;
870 }
871
872 data->segment_bases[0] = low;
873 data->segment_sizes[0] = high - low;
874
875 return data;
876 }
877
878 /* Process a symbol file, as either the main file or as a dynamically
879 loaded file.
880
881 OBJFILE is where the symbols are to be read from.
882
883 ADDRS is the list of section load addresses. If the user has given
884 an 'add-symbol-file' command, then this is the list of offsets and
885 addresses he or she provided as arguments to the command; or, if
886 we're handling a shared library, these are the actual addresses the
887 sections are loaded at, according to the inferior's dynamic linker
888 (as gleaned by GDB's shared library code). We convert each address
889 into an offset from the section VMA's as it appears in the object
890 file, and then call the file's sym_offsets function to convert this
891 into a format-specific offset table --- a `struct section_offsets'.
892 If ADDRS is non-zero, OFFSETS must be zero.
893
894 OFFSETS is a table of section offsets already in the right
895 format-specific representation. NUM_OFFSETS is the number of
896 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
897 assume this is the proper table the call to sym_offsets described
898 above would produce. Instead of calling sym_offsets, we just dump
899 it right into objfile->section_offsets. (When we're re-reading
900 symbols from an objfile, we don't have the original load address
901 list any more; all we have is the section offset table.) If
902 OFFSETS is non-zero, ADDRS must be zero.
903
904 ADD_FLAGS encodes verbosity level, whether this is main symbol or
905 an extra symbol file such as dynamically loaded code, and wether
906 breakpoint reset should be deferred. */
907
908 void
909 syms_from_objfile (struct objfile *objfile,
910 struct section_addr_info *addrs,
911 struct section_offsets *offsets,
912 int num_offsets,
913 int add_flags)
914 {
915 struct section_addr_info *local_addr = NULL;
916 struct cleanup *old_chain;
917 const int mainline = add_flags & SYMFILE_MAINLINE;
918
919 gdb_assert (! (addrs && offsets));
920
921 init_entry_point_info (objfile);
922 objfile->sf = find_sym_fns (objfile->obfd);
923
924 if (objfile->sf == NULL)
925 return; /* No symbols. */
926
927 /* Make sure that partially constructed symbol tables will be cleaned up
928 if an error occurs during symbol reading. */
929 old_chain = make_cleanup_free_objfile (objfile);
930
931 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
932 list. We now establish the convention that an addr of zero means
933 no load address was specified. */
934 if (! addrs && ! offsets)
935 {
936 local_addr
937 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
938 make_cleanup (xfree, local_addr);
939 addrs = local_addr;
940 }
941
942 /* Now either addrs or offsets is non-zero. */
943
944 if (mainline)
945 {
946 /* We will modify the main symbol table, make sure that all its users
947 will be cleaned up if an error occurs during symbol reading. */
948 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
949
950 /* Since no error yet, throw away the old symbol table. */
951
952 if (symfile_objfile != NULL)
953 {
954 free_objfile (symfile_objfile);
955 gdb_assert (symfile_objfile == NULL);
956 }
957
958 /* Currently we keep symbols from the add-symbol-file command.
959 If the user wants to get rid of them, they should do "symbol-file"
960 without arguments first. Not sure this is the best behavior
961 (PR 2207). */
962
963 (*objfile->sf->sym_new_init) (objfile);
964 }
965
966 /* Convert addr into an offset rather than an absolute address.
967 We find the lowest address of a loaded segment in the objfile,
968 and assume that <addr> is where that got loaded.
969
970 We no longer warn if the lowest section is not a text segment (as
971 happens for the PA64 port. */
972 if (addrs && addrs->other[0].name)
973 addr_info_make_relative (addrs, objfile->obfd);
974
975 /* Initialize symbol reading routines for this objfile, allow complaints to
976 appear for this new file, and record how verbose to be, then do the
977 initial symbol reading for this file. */
978
979 (*objfile->sf->sym_init) (objfile);
980 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
981
982 if (addrs)
983 (*objfile->sf->sym_offsets) (objfile, addrs);
984 else
985 {
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
987
988 /* Just copy in the offset table directly as given to us. */
989 objfile->num_sections = num_offsets;
990 objfile->section_offsets
991 = ((struct section_offsets *)
992 obstack_alloc (&objfile->objfile_obstack, size));
993 memcpy (objfile->section_offsets, offsets, size);
994
995 init_objfile_sect_indices (objfile);
996 }
997
998 (*objfile->sf->sym_read) (objfile, add_flags);
999
1000 if ((add_flags & SYMFILE_NO_READ) == 0)
1001 require_partial_symbols (objfile, 0);
1002
1003 /* Discard cleanups as symbol reading was successful. */
1004
1005 discard_cleanups (old_chain);
1006 xfree (local_addr);
1007 }
1008
1009 /* Perform required actions after either reading in the initial
1010 symbols for a new objfile, or mapping in the symbols from a reusable
1011 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1012
1013 void
1014 new_symfile_objfile (struct objfile *objfile, int add_flags)
1015 {
1016 /* If this is the main symbol file we have to clean up all users of the
1017 old main symbol file. Otherwise it is sufficient to fixup all the
1018 breakpoints that may have been redefined by this symbol file. */
1019 if (add_flags & SYMFILE_MAINLINE)
1020 {
1021 /* OK, make it the "real" symbol file. */
1022 symfile_objfile = objfile;
1023
1024 clear_symtab_users (add_flags);
1025 }
1026 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1027 {
1028 breakpoint_re_set ();
1029 }
1030
1031 /* We're done reading the symbol file; finish off complaints. */
1032 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1033 }
1034
1035 /* Process a symbol file, as either the main file or as a dynamically
1036 loaded file.
1037
1038 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1039 This BFD will be closed on error, and is always consumed by this function.
1040
1041 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1042 extra, such as dynamically loaded code, and what to do with breakpoins.
1043
1044 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1045 syms_from_objfile, above.
1046 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1047
1048 PARENT is the original objfile if ABFD is a separate debug info file.
1049 Otherwise PARENT is NULL.
1050
1051 Upon success, returns a pointer to the objfile that was added.
1052 Upon failure, jumps back to command level (never returns). */
1053
1054 static struct objfile *
1055 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1056 int add_flags,
1057 struct section_addr_info *addrs,
1058 struct section_offsets *offsets,
1059 int num_offsets,
1060 int flags, struct objfile *parent)
1061 {
1062 struct objfile *objfile;
1063 struct cleanup *my_cleanups;
1064 const char *name = bfd_get_filename (abfd);
1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
1066 const int mainline = add_flags & SYMFILE_MAINLINE;
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
1070
1071 if (readnow_symbol_files)
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
1076
1077 my_cleanups = make_cleanup_bfd_close (abfd);
1078
1079 /* Give user a chance to burp if we'd be
1080 interactively wiping out any existing symbols. */
1081
1082 if ((have_full_symbols () || have_partial_symbols ())
1083 && mainline
1084 && from_tty
1085 && !query (_("Load new symbol table from \"%s\"? "), name))
1086 error (_("Not confirmed."));
1087
1088 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1089 discard_cleanups (my_cleanups);
1090
1091 if (parent)
1092 add_separate_debug_objfile (objfile, parent);
1093
1094 /* We either created a new mapped symbol table, mapped an existing
1095 symbol table file which has not had initial symbol reading
1096 performed, or need to read an unmapped symbol table. */
1097 if (should_print)
1098 {
1099 if (deprecated_pre_add_symbol_hook)
1100 deprecated_pre_add_symbol_hook (name);
1101 else
1102 {
1103 printf_unfiltered (_("Reading symbols from %s..."), name);
1104 wrap_here ("");
1105 gdb_flush (gdb_stdout);
1106 }
1107 }
1108 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1109 add_flags);
1110
1111 /* We now have at least a partial symbol table. Check to see if the
1112 user requested that all symbols be read on initial access via either
1113 the gdb startup command line or on a per symbol file basis. Expand
1114 all partial symbol tables for this objfile if so. */
1115
1116 if ((flags & OBJF_READNOW))
1117 {
1118 if (should_print)
1119 {
1120 printf_unfiltered (_("expanding to full symbols..."));
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124
1125 if (objfile->sf)
1126 objfile->sf->qf->expand_all_symtabs (objfile);
1127 }
1128
1129 if (should_print && !objfile_has_symbols (objfile))
1130 {
1131 wrap_here ("");
1132 printf_unfiltered (_("(no debugging symbols found)..."));
1133 wrap_here ("");
1134 }
1135
1136 if (should_print)
1137 {
1138 if (deprecated_post_add_symbol_hook)
1139 deprecated_post_add_symbol_hook ();
1140 else
1141 printf_unfiltered (_("done.\n"));
1142 }
1143
1144 /* We print some messages regardless of whether 'from_tty ||
1145 info_verbose' is true, so make sure they go out at the right
1146 time. */
1147 gdb_flush (gdb_stdout);
1148
1149 if (objfile->sf == NULL)
1150 {
1151 observer_notify_new_objfile (objfile);
1152 return objfile; /* No symbols. */
1153 }
1154
1155 new_symfile_objfile (objfile, add_flags);
1156
1157 observer_notify_new_objfile (objfile);
1158
1159 bfd_cache_close_all ();
1160 return (objfile);
1161 }
1162
1163 /* Add BFD as a separate debug file for OBJFILE. */
1164
1165 void
1166 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1167 {
1168 struct objfile *new_objfile;
1169 struct section_addr_info *sap;
1170 struct cleanup *my_cleanup;
1171
1172 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1173 because sections of BFD may not match sections of OBJFILE and because
1174 vma may have been modified by tools such as prelink. */
1175 sap = build_section_addr_info_from_objfile (objfile);
1176 my_cleanup = make_cleanup_free_section_addr_info (sap);
1177
1178 new_objfile = symbol_file_add_with_addrs_or_offsets
1179 (bfd, symfile_flags,
1180 sap, NULL, 0,
1181 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1182 | OBJF_USERLOADED),
1183 objfile);
1184
1185 do_cleanups (my_cleanup);
1186 }
1187
1188 /* Process the symbol file ABFD, as either the main file or as a
1189 dynamically loaded file.
1190
1191 See symbol_file_add_with_addrs_or_offsets's comments for
1192 details. */
1193 struct objfile *
1194 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1195 struct section_addr_info *addrs,
1196 int flags, struct objfile *parent)
1197 {
1198 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1199 flags, parent);
1200 }
1201
1202
1203 /* Process a symbol file, as either the main file or as a dynamically
1204 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1205 for details. */
1206 struct objfile *
1207 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1208 int flags)
1209 {
1210 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1211 flags, NULL);
1212 }
1213
1214
1215 /* Call symbol_file_add() with default values and update whatever is
1216 affected by the loading of a new main().
1217 Used when the file is supplied in the gdb command line
1218 and by some targets with special loading requirements.
1219 The auxiliary function, symbol_file_add_main_1(), has the flags
1220 argument for the switches that can only be specified in the symbol_file
1221 command itself. */
1222
1223 void
1224 symbol_file_add_main (char *args, int from_tty)
1225 {
1226 symbol_file_add_main_1 (args, from_tty, 0);
1227 }
1228
1229 static void
1230 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1231 {
1232 const int add_flags = (current_inferior ()->symfile_flags
1233 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1234
1235 symbol_file_add (args, add_flags, NULL, flags);
1236
1237 /* Getting new symbols may change our opinion about
1238 what is frameless. */
1239 reinit_frame_cache ();
1240
1241 if ((flags & SYMFILE_NO_READ) == 0)
1242 set_initial_language ();
1243 }
1244
1245 void
1246 symbol_file_clear (int from_tty)
1247 {
1248 if ((have_full_symbols () || have_partial_symbols ())
1249 && from_tty
1250 && (symfile_objfile
1251 ? !query (_("Discard symbol table from `%s'? "),
1252 symfile_objfile->name)
1253 : !query (_("Discard symbol table? "))))
1254 error (_("Not confirmed."));
1255
1256 /* solib descriptors may have handles to objfiles. Wipe them before their
1257 objfiles get stale by free_all_objfiles. */
1258 no_shared_libraries (NULL, from_tty);
1259
1260 free_all_objfiles ();
1261
1262 gdb_assert (symfile_objfile == NULL);
1263 if (from_tty)
1264 printf_unfiltered (_("No symbol file now.\n"));
1265 }
1266
1267 static char *
1268 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1269 {
1270 asection *sect;
1271 bfd_size_type debuglink_size;
1272 unsigned long crc32;
1273 char *contents;
1274 int crc_offset;
1275
1276 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1277
1278 if (sect == NULL)
1279 return NULL;
1280
1281 debuglink_size = bfd_section_size (objfile->obfd, sect);
1282
1283 contents = xmalloc (debuglink_size);
1284 bfd_get_section_contents (objfile->obfd, sect, contents,
1285 (file_ptr)0, (bfd_size_type)debuglink_size);
1286
1287 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1288 crc_offset = strlen (contents) + 1;
1289 crc_offset = (crc_offset + 3) & ~3;
1290
1291 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1292
1293 *crc32_out = crc32;
1294 return contents;
1295 }
1296
1297 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1298 return 1. Otherwise print a warning and return 0. ABFD seek position is
1299 not preserved. */
1300
1301 static int
1302 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1303 {
1304 unsigned long file_crc = 0;
1305
1306 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1307 {
1308 warning (_("Problem reading \"%s\" for CRC: %s"),
1309 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1310 return 0;
1311 }
1312
1313 for (;;)
1314 {
1315 gdb_byte buffer[8 * 1024];
1316 bfd_size_type count;
1317
1318 count = bfd_bread (buffer, sizeof (buffer), abfd);
1319 if (count == (bfd_size_type) -1)
1320 {
1321 warning (_("Problem reading \"%s\" for CRC: %s"),
1322 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1323 return 0;
1324 }
1325 if (count == 0)
1326 break;
1327 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1328 }
1329
1330 *file_crc_return = file_crc;
1331 return 1;
1332 }
1333
1334 static int
1335 separate_debug_file_exists (const char *name, unsigned long crc,
1336 struct objfile *parent_objfile)
1337 {
1338 unsigned long file_crc;
1339 int file_crc_p;
1340 bfd *abfd;
1341 struct stat parent_stat, abfd_stat;
1342 int verified_as_different;
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1348 the separate debug infos with the same basename can exist. */
1349
1350 if (filename_cmp (name, parent_objfile->name) == 0)
1351 return 0;
1352
1353 abfd = bfd_open_maybe_remote (name);
1354
1355 if (!abfd)
1356 return 0;
1357
1358 /* Verify symlinks were not the cause of filename_cmp name difference above.
1359
1360 Some operating systems, e.g. Windows, do not provide a meaningful
1361 st_ino; they always set it to zero. (Windows does provide a
1362 meaningful st_dev.) Do not indicate a duplicate library in that
1363 case. While there is no guarantee that a system that provides
1364 meaningful inode numbers will never set st_ino to zero, this is
1365 merely an optimization, so we do not need to worry about false
1366 negatives. */
1367
1368 if (bfd_stat (abfd, &abfd_stat) == 0
1369 && abfd_stat.st_ino != 0
1370 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1371 {
1372 if (abfd_stat.st_dev == parent_stat.st_dev
1373 && abfd_stat.st_ino == parent_stat.st_ino)
1374 {
1375 bfd_close (abfd);
1376 return 0;
1377 }
1378 verified_as_different = 1;
1379 }
1380 else
1381 verified_as_different = 0;
1382
1383 file_crc_p = get_file_crc (abfd, &file_crc);
1384
1385 bfd_close (abfd);
1386
1387 if (!file_crc_p)
1388 return 0;
1389
1390 if (crc != file_crc)
1391 {
1392 /* If one (or both) the files are accessed for example the via "remote:"
1393 gdbserver way it does not support the bfd_stat operation. Verify
1394 whether those two files are not the same manually. */
1395
1396 if (!verified_as_different && !parent_objfile->crc32_p)
1397 {
1398 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1399 &parent_objfile->crc32);
1400 if (!parent_objfile->crc32_p)
1401 return 0;
1402 }
1403
1404 if (verified_as_different || parent_objfile->crc32 != file_crc)
1405 warning (_("the debug information found in \"%s\""
1406 " does not match \"%s\" (CRC mismatch).\n"),
1407 name, parent_objfile->name);
1408
1409 return 0;
1410 }
1411
1412 return 1;
1413 }
1414
1415 char *debug_file_directory = NULL;
1416 static void
1417 show_debug_file_directory (struct ui_file *file, int from_tty,
1418 struct cmd_list_element *c, const char *value)
1419 {
1420 fprintf_filtered (file,
1421 _("The directory where separate debug "
1422 "symbols are searched for is \"%s\".\n"),
1423 value);
1424 }
1425
1426 #if ! defined (DEBUG_SUBDIRECTORY)
1427 #define DEBUG_SUBDIRECTORY ".debug"
1428 #endif
1429
1430 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1431 where the original file resides (may not be the same as
1432 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1433 looking for. Returns the name of the debuginfo, of NULL. */
1434
1435 static char *
1436 find_separate_debug_file (const char *dir,
1437 const char *canon_dir,
1438 const char *debuglink,
1439 unsigned long crc32, struct objfile *objfile)
1440 {
1441 char *debugdir;
1442 char *debugfile;
1443 int i;
1444 VEC (char_ptr) *debugdir_vec;
1445 struct cleanup *back_to;
1446 int ix;
1447
1448 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1449 i = strlen (dir);
1450 if (canon_dir != NULL && strlen (canon_dir) > i)
1451 i = strlen (canon_dir);
1452
1453 debugfile = xmalloc (strlen (debug_file_directory) + 1
1454 + i
1455 + strlen (DEBUG_SUBDIRECTORY)
1456 + strlen ("/")
1457 + strlen (debuglink)
1458 + 1);
1459
1460 /* First try in the same directory as the original file. */
1461 strcpy (debugfile, dir);
1462 strcat (debugfile, debuglink);
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 return debugfile;
1466
1467 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1468 strcpy (debugfile, dir);
1469 strcat (debugfile, DEBUG_SUBDIRECTORY);
1470 strcat (debugfile, "/");
1471 strcat (debugfile, debuglink);
1472
1473 if (separate_debug_file_exists (debugfile, crc32, objfile))
1474 return debugfile;
1475
1476 /* Then try in the global debugfile directories.
1477
1478 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1479 cause "/..." lookups. */
1480
1481 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1482 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1483
1484 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1485 {
1486 strcpy (debugfile, debugdir);
1487 strcat (debugfile, "/");
1488 strcat (debugfile, dir);
1489 strcat (debugfile, debuglink);
1490
1491 if (separate_debug_file_exists (debugfile, crc32, objfile))
1492 return debugfile;
1493
1494 /* If the file is in the sysroot, try using its base path in the
1495 global debugfile directory. */
1496 if (canon_dir != NULL
1497 && filename_ncmp (canon_dir, gdb_sysroot,
1498 strlen (gdb_sysroot)) == 0
1499 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1500 {
1501 strcpy (debugfile, debugdir);
1502 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1503 strcat (debugfile, "/");
1504 strcat (debugfile, debuglink);
1505
1506 if (separate_debug_file_exists (debugfile, crc32, objfile))
1507 return debugfile;
1508 }
1509 }
1510
1511 do_cleanups (back_to);
1512 xfree (debugfile);
1513 return NULL;
1514 }
1515
1516 /* Modify PATH to contain only "directory/" part of PATH.
1517 If there were no directory separators in PATH, PATH will be empty
1518 string on return. */
1519
1520 static void
1521 terminate_after_last_dir_separator (char *path)
1522 {
1523 int i;
1524
1525 /* Strip off the final filename part, leaving the directory name,
1526 followed by a slash. The directory can be relative or absolute. */
1527 for (i = strlen(path) - 1; i >= 0; i--)
1528 if (IS_DIR_SEPARATOR (path[i]))
1529 break;
1530
1531 /* If I is -1 then no directory is present there and DIR will be "". */
1532 path[i + 1] = '\0';
1533 }
1534
1535 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1536 Returns pathname, or NULL. */
1537
1538 char *
1539 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1540 {
1541 char *debuglink;
1542 char *dir, *canon_dir;
1543 char *debugfile;
1544 unsigned long crc32;
1545 struct cleanup *cleanups;
1546
1547 debuglink = get_debug_link_info (objfile, &crc32);
1548
1549 if (debuglink == NULL)
1550 {
1551 /* There's no separate debug info, hence there's no way we could
1552 load it => no warning. */
1553 return NULL;
1554 }
1555
1556 dir = xstrdup (objfile->name);
1557 cleanups = make_cleanup (xfree, dir);
1558 terminate_after_last_dir_separator (dir);
1559 canon_dir = lrealpath (dir);
1560
1561 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1562 crc32, objfile);
1563 xfree (canon_dir);
1564
1565 if (debugfile == NULL)
1566 {
1567 #ifdef HAVE_LSTAT
1568 /* For PR gdb/9538, try again with realpath (if different from the
1569 original). */
1570
1571 struct stat st_buf;
1572
1573 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1574 {
1575 char *symlink_dir;
1576
1577 symlink_dir = lrealpath (objfile->name);
1578 if (symlink_dir != NULL)
1579 {
1580 make_cleanup (xfree, symlink_dir);
1581 terminate_after_last_dir_separator (symlink_dir);
1582 if (strcmp (dir, symlink_dir) != 0)
1583 {
1584 /* Different directory, so try using it. */
1585 debugfile = find_separate_debug_file (symlink_dir,
1586 symlink_dir,
1587 debuglink,
1588 crc32,
1589 objfile);
1590 }
1591 }
1592 }
1593 #endif /* HAVE_LSTAT */
1594 }
1595
1596 do_cleanups (cleanups);
1597 return debugfile;
1598 }
1599
1600
1601 /* This is the symbol-file command. Read the file, analyze its
1602 symbols, and add a struct symtab to a symtab list. The syntax of
1603 the command is rather bizarre:
1604
1605 1. The function buildargv implements various quoting conventions
1606 which are undocumented and have little or nothing in common with
1607 the way things are quoted (or not quoted) elsewhere in GDB.
1608
1609 2. Options are used, which are not generally used in GDB (perhaps
1610 "set mapped on", "set readnow on" would be better)
1611
1612 3. The order of options matters, which is contrary to GNU
1613 conventions (because it is confusing and inconvenient). */
1614
1615 void
1616 symbol_file_command (char *args, int from_tty)
1617 {
1618 dont_repeat ();
1619
1620 if (args == NULL)
1621 {
1622 symbol_file_clear (from_tty);
1623 }
1624 else
1625 {
1626 char **argv = gdb_buildargv (args);
1627 int flags = OBJF_USERLOADED;
1628 struct cleanup *cleanups;
1629 char *name = NULL;
1630
1631 cleanups = make_cleanup_freeargv (argv);
1632 while (*argv != NULL)
1633 {
1634 if (strcmp (*argv, "-readnow") == 0)
1635 flags |= OBJF_READNOW;
1636 else if (**argv == '-')
1637 error (_("unknown option `%s'"), *argv);
1638 else
1639 {
1640 symbol_file_add_main_1 (*argv, from_tty, flags);
1641 name = *argv;
1642 }
1643
1644 argv++;
1645 }
1646
1647 if (name == NULL)
1648 error (_("no symbol file name was specified"));
1649
1650 do_cleanups (cleanups);
1651 }
1652 }
1653
1654 /* Set the initial language.
1655
1656 FIXME: A better solution would be to record the language in the
1657 psymtab when reading partial symbols, and then use it (if known) to
1658 set the language. This would be a win for formats that encode the
1659 language in an easily discoverable place, such as DWARF. For
1660 stabs, we can jump through hoops looking for specially named
1661 symbols or try to intuit the language from the specific type of
1662 stabs we find, but we can't do that until later when we read in
1663 full symbols. */
1664
1665 void
1666 set_initial_language (void)
1667 {
1668 enum language lang = language_unknown;
1669
1670 if (language_of_main != language_unknown)
1671 lang = language_of_main;
1672 else
1673 {
1674 const char *filename;
1675
1676 filename = find_main_filename ();
1677 if (filename != NULL)
1678 lang = deduce_language_from_filename (filename);
1679 }
1680
1681 if (lang == language_unknown)
1682 {
1683 /* Make C the default language */
1684 lang = language_c;
1685 }
1686
1687 set_language (lang);
1688 expected_language = current_language; /* Don't warn the user. */
1689 }
1690
1691 /* If NAME is a remote name open the file using remote protocol, otherwise
1692 open it normally. */
1693
1694 bfd *
1695 bfd_open_maybe_remote (const char *name)
1696 {
1697 if (remote_filename_p (name))
1698 return remote_bfd_open (name, gnutarget);
1699 else
1700 return bfd_openr (name, gnutarget);
1701 }
1702
1703
1704 /* Open the file specified by NAME and hand it off to BFD for
1705 preliminary analysis. Return a newly initialized bfd *, which
1706 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1707 absolute). In case of trouble, error() is called. */
1708
1709 bfd *
1710 symfile_bfd_open (char *name)
1711 {
1712 bfd *sym_bfd;
1713 int desc;
1714 char *absolute_name;
1715
1716 if (remote_filename_p (name))
1717 {
1718 name = xstrdup (name);
1719 sym_bfd = remote_bfd_open (name, gnutarget);
1720 if (!sym_bfd)
1721 {
1722 make_cleanup (xfree, name);
1723 error (_("`%s': can't open to read symbols: %s."), name,
1724 bfd_errmsg (bfd_get_error ()));
1725 }
1726
1727 if (!bfd_check_format (sym_bfd, bfd_object))
1728 {
1729 bfd_close (sym_bfd);
1730 make_cleanup (xfree, name);
1731 error (_("`%s': can't read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733 }
1734
1735 return sym_bfd;
1736 }
1737
1738 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1739
1740 /* Look down path for it, allocate 2nd new malloc'd copy. */
1741 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1742 O_RDONLY | O_BINARY, &absolute_name);
1743 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1744 if (desc < 0)
1745 {
1746 char *exename = alloca (strlen (name) + 5);
1747
1748 strcat (strcpy (exename, name), ".exe");
1749 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1750 O_RDONLY | O_BINARY, &absolute_name);
1751 }
1752 #endif
1753 if (desc < 0)
1754 {
1755 make_cleanup (xfree, name);
1756 perror_with_name (name);
1757 }
1758
1759 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1760 bfd. It'll be freed in free_objfile(). */
1761 xfree (name);
1762 name = absolute_name;
1763
1764 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1765 if (!sym_bfd)
1766 {
1767 make_cleanup (xfree, name);
1768 error (_("`%s': can't open to read symbols: %s."), name,
1769 bfd_errmsg (bfd_get_error ()));
1770 }
1771 bfd_set_cacheable (sym_bfd, 1);
1772
1773 if (!bfd_check_format (sym_bfd, bfd_object))
1774 {
1775 /* FIXME: should be checking for errors from bfd_close (for one
1776 thing, on error it does not free all the storage associated
1777 with the bfd). */
1778 bfd_close (sym_bfd); /* This also closes desc. */
1779 make_cleanup (xfree, name);
1780 error (_("`%s': can't read symbols: %s."), name,
1781 bfd_errmsg (bfd_get_error ()));
1782 }
1783
1784 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1785 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1786
1787 return sym_bfd;
1788 }
1789
1790 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1791 the section was not found. */
1792
1793 int
1794 get_section_index (struct objfile *objfile, char *section_name)
1795 {
1796 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1797
1798 if (sect)
1799 return sect->index;
1800 else
1801 return -1;
1802 }
1803
1804 /* Link SF into the global symtab_fns list. Called on startup by the
1805 _initialize routine in each object file format reader, to register
1806 information about each format the reader is prepared to handle. */
1807
1808 void
1809 add_symtab_fns (const struct sym_fns *sf)
1810 {
1811 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1812 }
1813
1814 /* Initialize OBJFILE to read symbols from its associated BFD. It
1815 either returns or calls error(). The result is an initialized
1816 struct sym_fns in the objfile structure, that contains cached
1817 information about the symbol file. */
1818
1819 static const struct sym_fns *
1820 find_sym_fns (bfd *abfd)
1821 {
1822 const struct sym_fns *sf;
1823 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1824 int i;
1825
1826 if (our_flavour == bfd_target_srec_flavour
1827 || our_flavour == bfd_target_ihex_flavour
1828 || our_flavour == bfd_target_tekhex_flavour)
1829 return NULL; /* No symbols. */
1830
1831 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1832 if (our_flavour == sf->sym_flavour)
1833 return sf;
1834
1835 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1836 bfd_get_target (abfd));
1837 }
1838 \f
1839
1840 /* This function runs the load command of our current target. */
1841
1842 static void
1843 load_command (char *arg, int from_tty)
1844 {
1845 dont_repeat ();
1846
1847 /* The user might be reloading because the binary has changed. Take
1848 this opportunity to check. */
1849 reopen_exec_file ();
1850 reread_symbols ();
1851
1852 if (arg == NULL)
1853 {
1854 char *parg;
1855 int count = 0;
1856
1857 parg = arg = get_exec_file (1);
1858
1859 /* Count how many \ " ' tab space there are in the name. */
1860 while ((parg = strpbrk (parg, "\\\"'\t ")))
1861 {
1862 parg++;
1863 count++;
1864 }
1865
1866 if (count)
1867 {
1868 /* We need to quote this string so buildargv can pull it apart. */
1869 char *temp = xmalloc (strlen (arg) + count + 1 );
1870 char *ptemp = temp;
1871 char *prev;
1872
1873 make_cleanup (xfree, temp);
1874
1875 prev = parg = arg;
1876 while ((parg = strpbrk (parg, "\\\"'\t ")))
1877 {
1878 strncpy (ptemp, prev, parg - prev);
1879 ptemp += parg - prev;
1880 prev = parg++;
1881 *ptemp++ = '\\';
1882 }
1883 strcpy (ptemp, prev);
1884
1885 arg = temp;
1886 }
1887 }
1888
1889 target_load (arg, from_tty);
1890
1891 /* After re-loading the executable, we don't really know which
1892 overlays are mapped any more. */
1893 overlay_cache_invalid = 1;
1894 }
1895
1896 /* This version of "load" should be usable for any target. Currently
1897 it is just used for remote targets, not inftarg.c or core files,
1898 on the theory that only in that case is it useful.
1899
1900 Avoiding xmodem and the like seems like a win (a) because we don't have
1901 to worry about finding it, and (b) On VMS, fork() is very slow and so
1902 we don't want to run a subprocess. On the other hand, I'm not sure how
1903 performance compares. */
1904
1905 static int validate_download = 0;
1906
1907 /* Callback service function for generic_load (bfd_map_over_sections). */
1908
1909 static void
1910 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1911 {
1912 bfd_size_type *sum = data;
1913
1914 *sum += bfd_get_section_size (asec);
1915 }
1916
1917 /* Opaque data for load_section_callback. */
1918 struct load_section_data {
1919 unsigned long load_offset;
1920 struct load_progress_data *progress_data;
1921 VEC(memory_write_request_s) *requests;
1922 };
1923
1924 /* Opaque data for load_progress. */
1925 struct load_progress_data {
1926 /* Cumulative data. */
1927 unsigned long write_count;
1928 unsigned long data_count;
1929 bfd_size_type total_size;
1930 };
1931
1932 /* Opaque data for load_progress for a single section. */
1933 struct load_progress_section_data {
1934 struct load_progress_data *cumulative;
1935
1936 /* Per-section data. */
1937 const char *section_name;
1938 ULONGEST section_sent;
1939 ULONGEST section_size;
1940 CORE_ADDR lma;
1941 gdb_byte *buffer;
1942 };
1943
1944 /* Target write callback routine for progress reporting. */
1945
1946 static void
1947 load_progress (ULONGEST bytes, void *untyped_arg)
1948 {
1949 struct load_progress_section_data *args = untyped_arg;
1950 struct load_progress_data *totals;
1951
1952 if (args == NULL)
1953 /* Writing padding data. No easy way to get at the cumulative
1954 stats, so just ignore this. */
1955 return;
1956
1957 totals = args->cumulative;
1958
1959 if (bytes == 0 && args->section_sent == 0)
1960 {
1961 /* The write is just starting. Let the user know we've started
1962 this section. */
1963 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1964 args->section_name, hex_string (args->section_size),
1965 paddress (target_gdbarch, args->lma));
1966 return;
1967 }
1968
1969 if (validate_download)
1970 {
1971 /* Broken memories and broken monitors manifest themselves here
1972 when bring new computers to life. This doubles already slow
1973 downloads. */
1974 /* NOTE: cagney/1999-10-18: A more efficient implementation
1975 might add a verify_memory() method to the target vector and
1976 then use that. remote.c could implement that method using
1977 the ``qCRC'' packet. */
1978 gdb_byte *check = xmalloc (bytes);
1979 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1980
1981 if (target_read_memory (args->lma, check, bytes) != 0)
1982 error (_("Download verify read failed at %s"),
1983 paddress (target_gdbarch, args->lma));
1984 if (memcmp (args->buffer, check, bytes) != 0)
1985 error (_("Download verify compare failed at %s"),
1986 paddress (target_gdbarch, args->lma));
1987 do_cleanups (verify_cleanups);
1988 }
1989 totals->data_count += bytes;
1990 args->lma += bytes;
1991 args->buffer += bytes;
1992 totals->write_count += 1;
1993 args->section_sent += bytes;
1994 if (quit_flag
1995 || (deprecated_ui_load_progress_hook != NULL
1996 && deprecated_ui_load_progress_hook (args->section_name,
1997 args->section_sent)))
1998 error (_("Canceled the download"));
1999
2000 if (deprecated_show_load_progress != NULL)
2001 deprecated_show_load_progress (args->section_name,
2002 args->section_sent,
2003 args->section_size,
2004 totals->data_count,
2005 totals->total_size);
2006 }
2007
2008 /* Callback service function for generic_load (bfd_map_over_sections). */
2009
2010 static void
2011 load_section_callback (bfd *abfd, asection *asec, void *data)
2012 {
2013 struct memory_write_request *new_request;
2014 struct load_section_data *args = data;
2015 struct load_progress_section_data *section_data;
2016 bfd_size_type size = bfd_get_section_size (asec);
2017 gdb_byte *buffer;
2018 const char *sect_name = bfd_get_section_name (abfd, asec);
2019
2020 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2021 return;
2022
2023 if (size == 0)
2024 return;
2025
2026 new_request = VEC_safe_push (memory_write_request_s,
2027 args->requests, NULL);
2028 memset (new_request, 0, sizeof (struct memory_write_request));
2029 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2030 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2031 new_request->end = new_request->begin + size; /* FIXME Should size
2032 be in instead? */
2033 new_request->data = xmalloc (size);
2034 new_request->baton = section_data;
2035
2036 buffer = new_request->data;
2037
2038 section_data->cumulative = args->progress_data;
2039 section_data->section_name = sect_name;
2040 section_data->section_size = size;
2041 section_data->lma = new_request->begin;
2042 section_data->buffer = buffer;
2043
2044 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2045 }
2046
2047 /* Clean up an entire memory request vector, including load
2048 data and progress records. */
2049
2050 static void
2051 clear_memory_write_data (void *arg)
2052 {
2053 VEC(memory_write_request_s) **vec_p = arg;
2054 VEC(memory_write_request_s) *vec = *vec_p;
2055 int i;
2056 struct memory_write_request *mr;
2057
2058 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2059 {
2060 xfree (mr->data);
2061 xfree (mr->baton);
2062 }
2063 VEC_free (memory_write_request_s, vec);
2064 }
2065
2066 void
2067 generic_load (char *args, int from_tty)
2068 {
2069 bfd *loadfile_bfd;
2070 struct timeval start_time, end_time;
2071 char *filename;
2072 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2073 struct load_section_data cbdata;
2074 struct load_progress_data total_progress;
2075 struct ui_out *uiout = current_uiout;
2076
2077 CORE_ADDR entry;
2078 char **argv;
2079
2080 memset (&cbdata, 0, sizeof (cbdata));
2081 memset (&total_progress, 0, sizeof (total_progress));
2082 cbdata.progress_data = &total_progress;
2083
2084 make_cleanup (clear_memory_write_data, &cbdata.requests);
2085
2086 if (args == NULL)
2087 error_no_arg (_("file to load"));
2088
2089 argv = gdb_buildargv (args);
2090 make_cleanup_freeargv (argv);
2091
2092 filename = tilde_expand (argv[0]);
2093 make_cleanup (xfree, filename);
2094
2095 if (argv[1] != NULL)
2096 {
2097 char *endptr;
2098
2099 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2100
2101 /* If the last word was not a valid number then
2102 treat it as a file name with spaces in. */
2103 if (argv[1] == endptr)
2104 error (_("Invalid download offset:%s."), argv[1]);
2105
2106 if (argv[2] != NULL)
2107 error (_("Too many parameters."));
2108 }
2109
2110 /* Open the file for loading. */
2111 loadfile_bfd = bfd_openr (filename, gnutarget);
2112 if (loadfile_bfd == NULL)
2113 {
2114 perror_with_name (filename);
2115 return;
2116 }
2117
2118 /* FIXME: should be checking for errors from bfd_close (for one thing,
2119 on error it does not free all the storage associated with the
2120 bfd). */
2121 make_cleanup_bfd_close (loadfile_bfd);
2122
2123 if (!bfd_check_format (loadfile_bfd, bfd_object))
2124 {
2125 error (_("\"%s\" is not an object file: %s"), filename,
2126 bfd_errmsg (bfd_get_error ()));
2127 }
2128
2129 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2130 (void *) &total_progress.total_size);
2131
2132 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2133
2134 gettimeofday (&start_time, NULL);
2135
2136 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2137 load_progress) != 0)
2138 error (_("Load failed"));
2139
2140 gettimeofday (&end_time, NULL);
2141
2142 entry = bfd_get_start_address (loadfile_bfd);
2143 ui_out_text (uiout, "Start address ");
2144 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2145 ui_out_text (uiout, ", load size ");
2146 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2147 ui_out_text (uiout, "\n");
2148 /* We were doing this in remote-mips.c, I suspect it is right
2149 for other targets too. */
2150 regcache_write_pc (get_current_regcache (), entry);
2151
2152 /* Reset breakpoints, now that we have changed the load image. For
2153 instance, breakpoints may have been set (or reset, by
2154 post_create_inferior) while connected to the target but before we
2155 loaded the program. In that case, the prologue analyzer could
2156 have read instructions from the target to find the right
2157 breakpoint locations. Loading has changed the contents of that
2158 memory. */
2159
2160 breakpoint_re_set ();
2161
2162 /* FIXME: are we supposed to call symbol_file_add or not? According
2163 to a comment from remote-mips.c (where a call to symbol_file_add
2164 was commented out), making the call confuses GDB if more than one
2165 file is loaded in. Some targets do (e.g., remote-vx.c) but
2166 others don't (or didn't - perhaps they have all been deleted). */
2167
2168 print_transfer_performance (gdb_stdout, total_progress.data_count,
2169 total_progress.write_count,
2170 &start_time, &end_time);
2171
2172 do_cleanups (old_cleanups);
2173 }
2174
2175 /* Report how fast the transfer went. */
2176
2177 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2178 replaced by print_transfer_performance (with a very different
2179 function signature). */
2180
2181 void
2182 report_transfer_performance (unsigned long data_count, time_t start_time,
2183 time_t end_time)
2184 {
2185 struct timeval start, end;
2186
2187 start.tv_sec = start_time;
2188 start.tv_usec = 0;
2189 end.tv_sec = end_time;
2190 end.tv_usec = 0;
2191
2192 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2193 }
2194
2195 void
2196 print_transfer_performance (struct ui_file *stream,
2197 unsigned long data_count,
2198 unsigned long write_count,
2199 const struct timeval *start_time,
2200 const struct timeval *end_time)
2201 {
2202 ULONGEST time_count;
2203 struct ui_out *uiout = current_uiout;
2204
2205 /* Compute the elapsed time in milliseconds, as a tradeoff between
2206 accuracy and overflow. */
2207 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2208 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2209
2210 ui_out_text (uiout, "Transfer rate: ");
2211 if (time_count > 0)
2212 {
2213 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2214
2215 if (ui_out_is_mi_like_p (uiout))
2216 {
2217 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2218 ui_out_text (uiout, " bits/sec");
2219 }
2220 else if (rate < 1024)
2221 {
2222 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2223 ui_out_text (uiout, " bytes/sec");
2224 }
2225 else
2226 {
2227 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2228 ui_out_text (uiout, " KB/sec");
2229 }
2230 }
2231 else
2232 {
2233 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2234 ui_out_text (uiout, " bits in <1 sec");
2235 }
2236 if (write_count > 0)
2237 {
2238 ui_out_text (uiout, ", ");
2239 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2240 ui_out_text (uiout, " bytes/write");
2241 }
2242 ui_out_text (uiout, ".\n");
2243 }
2244
2245 /* This function allows the addition of incrementally linked object files.
2246 It does not modify any state in the target, only in the debugger. */
2247 /* Note: ezannoni 2000-04-13 This function/command used to have a
2248 special case syntax for the rombug target (Rombug is the boot
2249 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2250 rombug case, the user doesn't need to supply a text address,
2251 instead a call to target_link() (in target.c) would supply the
2252 value to use. We are now discontinuing this type of ad hoc syntax. */
2253
2254 static void
2255 add_symbol_file_command (char *args, int from_tty)
2256 {
2257 struct gdbarch *gdbarch = get_current_arch ();
2258 char *filename = NULL;
2259 int flags = OBJF_USERLOADED;
2260 char *arg;
2261 int section_index = 0;
2262 int argcnt = 0;
2263 int sec_num = 0;
2264 int i;
2265 int expecting_sec_name = 0;
2266 int expecting_sec_addr = 0;
2267 char **argv;
2268
2269 struct sect_opt
2270 {
2271 char *name;
2272 char *value;
2273 };
2274
2275 struct section_addr_info *section_addrs;
2276 struct sect_opt *sect_opts = NULL;
2277 size_t num_sect_opts = 0;
2278 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2279
2280 num_sect_opts = 16;
2281 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2282 * sizeof (struct sect_opt));
2283
2284 dont_repeat ();
2285
2286 if (args == NULL)
2287 error (_("add-symbol-file takes a file name and an address"));
2288
2289 argv = gdb_buildargv (args);
2290 make_cleanup_freeargv (argv);
2291
2292 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2293 {
2294 /* Process the argument. */
2295 if (argcnt == 0)
2296 {
2297 /* The first argument is the file name. */
2298 filename = tilde_expand (arg);
2299 make_cleanup (xfree, filename);
2300 }
2301 else
2302 if (argcnt == 1)
2303 {
2304 /* The second argument is always the text address at which
2305 to load the program. */
2306 sect_opts[section_index].name = ".text";
2307 sect_opts[section_index].value = arg;
2308 if (++section_index >= num_sect_opts)
2309 {
2310 num_sect_opts *= 2;
2311 sect_opts = ((struct sect_opt *)
2312 xrealloc (sect_opts,
2313 num_sect_opts
2314 * sizeof (struct sect_opt)));
2315 }
2316 }
2317 else
2318 {
2319 /* It's an option (starting with '-') or it's an argument
2320 to an option. */
2321
2322 if (*arg == '-')
2323 {
2324 if (strcmp (arg, "-readnow") == 0)
2325 flags |= OBJF_READNOW;
2326 else if (strcmp (arg, "-s") == 0)
2327 {
2328 expecting_sec_name = 1;
2329 expecting_sec_addr = 1;
2330 }
2331 }
2332 else
2333 {
2334 if (expecting_sec_name)
2335 {
2336 sect_opts[section_index].name = arg;
2337 expecting_sec_name = 0;
2338 }
2339 else
2340 if (expecting_sec_addr)
2341 {
2342 sect_opts[section_index].value = arg;
2343 expecting_sec_addr = 0;
2344 if (++section_index >= num_sect_opts)
2345 {
2346 num_sect_opts *= 2;
2347 sect_opts = ((struct sect_opt *)
2348 xrealloc (sect_opts,
2349 num_sect_opts
2350 * sizeof (struct sect_opt)));
2351 }
2352 }
2353 else
2354 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2355 " [-readnow] [-s <secname> <addr>]*"));
2356 }
2357 }
2358 }
2359
2360 /* This command takes at least two arguments. The first one is a
2361 filename, and the second is the address where this file has been
2362 loaded. Abort now if this address hasn't been provided by the
2363 user. */
2364 if (section_index < 1)
2365 error (_("The address where %s has been loaded is missing"), filename);
2366
2367 /* Print the prompt for the query below. And save the arguments into
2368 a sect_addr_info structure to be passed around to other
2369 functions. We have to split this up into separate print
2370 statements because hex_string returns a local static
2371 string. */
2372
2373 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2374 section_addrs = alloc_section_addr_info (section_index);
2375 make_cleanup (xfree, section_addrs);
2376 for (i = 0; i < section_index; i++)
2377 {
2378 CORE_ADDR addr;
2379 char *val = sect_opts[i].value;
2380 char *sec = sect_opts[i].name;
2381
2382 addr = parse_and_eval_address (val);
2383
2384 /* Here we store the section offsets in the order they were
2385 entered on the command line. */
2386 section_addrs->other[sec_num].name = sec;
2387 section_addrs->other[sec_num].addr = addr;
2388 printf_unfiltered ("\t%s_addr = %s\n", sec,
2389 paddress (gdbarch, addr));
2390 sec_num++;
2391
2392 /* The object's sections are initialized when a
2393 call is made to build_objfile_section_table (objfile).
2394 This happens in reread_symbols.
2395 At this point, we don't know what file type this is,
2396 so we can't determine what section names are valid. */
2397 }
2398
2399 if (from_tty && (!query ("%s", "")))
2400 error (_("Not confirmed."));
2401
2402 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2403 section_addrs, flags);
2404
2405 /* Getting new symbols may change our opinion about what is
2406 frameless. */
2407 reinit_frame_cache ();
2408 do_cleanups (my_cleanups);
2409 }
2410 \f
2411
2412 typedef struct objfile *objfilep;
2413
2414 DEF_VEC_P (objfilep);
2415
2416 /* Re-read symbols if a symbol-file has changed. */
2417 void
2418 reread_symbols (void)
2419 {
2420 struct objfile *objfile;
2421 long new_modtime;
2422 struct stat new_statbuf;
2423 int res;
2424 VEC (objfilep) *new_objfiles = NULL;
2425 struct cleanup *all_cleanups;
2426
2427 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2428
2429 /* With the addition of shared libraries, this should be modified,
2430 the load time should be saved in the partial symbol tables, since
2431 different tables may come from different source files. FIXME.
2432 This routine should then walk down each partial symbol table
2433 and see if the symbol table that it originates from has been changed. */
2434
2435 for (objfile = object_files; objfile; objfile = objfile->next)
2436 {
2437 /* solib-sunos.c creates one objfile with obfd. */
2438 if (objfile->obfd == NULL)
2439 continue;
2440
2441 /* Separate debug objfiles are handled in the main objfile. */
2442 if (objfile->separate_debug_objfile_backlink)
2443 continue;
2444
2445 /* If this object is from an archive (what you usually create with
2446 `ar', often called a `static library' on most systems, though
2447 a `shared library' on AIX is also an archive), then you should
2448 stat on the archive name, not member name. */
2449 if (objfile->obfd->my_archive)
2450 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2451 else
2452 res = stat (objfile->name, &new_statbuf);
2453 if (res != 0)
2454 {
2455 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2456 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2457 objfile->name);
2458 continue;
2459 }
2460 new_modtime = new_statbuf.st_mtime;
2461 if (new_modtime != objfile->mtime)
2462 {
2463 struct cleanup *old_cleanups;
2464 struct section_offsets *offsets;
2465 int num_offsets;
2466 char *obfd_filename;
2467
2468 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2469 objfile->name);
2470
2471 /* There are various functions like symbol_file_add,
2472 symfile_bfd_open, syms_from_objfile, etc., which might
2473 appear to do what we want. But they have various other
2474 effects which we *don't* want. So we just do stuff
2475 ourselves. We don't worry about mapped files (for one thing,
2476 any mapped file will be out of date). */
2477
2478 /* If we get an error, blow away this objfile (not sure if
2479 that is the correct response for things like shared
2480 libraries). */
2481 old_cleanups = make_cleanup_free_objfile (objfile);
2482 /* We need to do this whenever any symbols go away. */
2483 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2484
2485 if (exec_bfd != NULL
2486 && filename_cmp (bfd_get_filename (objfile->obfd),
2487 bfd_get_filename (exec_bfd)) == 0)
2488 {
2489 /* Reload EXEC_BFD without asking anything. */
2490
2491 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2492 }
2493
2494 /* Keep the calls order approx. the same as in free_objfile. */
2495
2496 /* Free the separate debug objfiles. It will be
2497 automatically recreated by sym_read. */
2498 free_objfile_separate_debug (objfile);
2499
2500 /* Remove any references to this objfile in the global
2501 value lists. */
2502 preserve_values (objfile);
2503
2504 /* Nuke all the state that we will re-read. Much of the following
2505 code which sets things to NULL really is necessary to tell
2506 other parts of GDB that there is nothing currently there.
2507
2508 Try to keep the freeing order compatible with free_objfile. */
2509
2510 if (objfile->sf != NULL)
2511 {
2512 (*objfile->sf->sym_finish) (objfile);
2513 }
2514
2515 clear_objfile_data (objfile);
2516
2517 /* Clean up any state BFD has sitting around. We don't need
2518 to close the descriptor but BFD lacks a way of closing the
2519 BFD without closing the descriptor. */
2520 obfd_filename = bfd_get_filename (objfile->obfd);
2521 if (!bfd_close (objfile->obfd))
2522 error (_("Can't close BFD for %s: %s"), objfile->name,
2523 bfd_errmsg (bfd_get_error ()));
2524 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2525 if (objfile->obfd == NULL)
2526 error (_("Can't open %s to read symbols."), objfile->name);
2527 else
2528 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2529 /* bfd_openr sets cacheable to true, which is what we want. */
2530 if (!bfd_check_format (objfile->obfd, bfd_object))
2531 error (_("Can't read symbols from %s: %s."), objfile->name,
2532 bfd_errmsg (bfd_get_error ()));
2533
2534 /* Save the offsets, we will nuke them with the rest of the
2535 objfile_obstack. */
2536 num_offsets = objfile->num_sections;
2537 offsets = ((struct section_offsets *)
2538 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2539 memcpy (offsets, objfile->section_offsets,
2540 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2541
2542 /* FIXME: Do we have to free a whole linked list, or is this
2543 enough? */
2544 if (objfile->global_psymbols.list)
2545 xfree (objfile->global_psymbols.list);
2546 memset (&objfile->global_psymbols, 0,
2547 sizeof (objfile->global_psymbols));
2548 if (objfile->static_psymbols.list)
2549 xfree (objfile->static_psymbols.list);
2550 memset (&objfile->static_psymbols, 0,
2551 sizeof (objfile->static_psymbols));
2552
2553 /* Free the obstacks for non-reusable objfiles. */
2554 psymbol_bcache_free (objfile->psymbol_cache);
2555 objfile->psymbol_cache = psymbol_bcache_init ();
2556 bcache_xfree (objfile->macro_cache);
2557 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2558 bcache_xfree (objfile->filename_cache);
2559 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2560 if (objfile->demangled_names_hash != NULL)
2561 {
2562 htab_delete (objfile->demangled_names_hash);
2563 objfile->demangled_names_hash = NULL;
2564 }
2565 obstack_free (&objfile->objfile_obstack, 0);
2566 objfile->sections = NULL;
2567 objfile->symtabs = NULL;
2568 objfile->psymtabs = NULL;
2569 objfile->psymtabs_addrmap = NULL;
2570 objfile->free_psymtabs = NULL;
2571 objfile->template_symbols = NULL;
2572 objfile->msymbols = NULL;
2573 objfile->deprecated_sym_private = NULL;
2574 objfile->minimal_symbol_count = 0;
2575 memset (&objfile->msymbol_hash, 0,
2576 sizeof (objfile->msymbol_hash));
2577 memset (&objfile->msymbol_demangled_hash, 0,
2578 sizeof (objfile->msymbol_demangled_hash));
2579
2580 /* obstack_init also initializes the obstack so it is
2581 empty. We could use obstack_specify_allocation but
2582 gdb_obstack.h specifies the alloc/dealloc functions. */
2583 obstack_init (&objfile->objfile_obstack);
2584 build_objfile_section_table (objfile);
2585 terminate_minimal_symbol_table (objfile);
2586
2587 /* We use the same section offsets as from last time. I'm not
2588 sure whether that is always correct for shared libraries. */
2589 objfile->section_offsets = (struct section_offsets *)
2590 obstack_alloc (&objfile->objfile_obstack,
2591 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2592 memcpy (objfile->section_offsets, offsets,
2593 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2594 objfile->num_sections = num_offsets;
2595
2596 /* What the hell is sym_new_init for, anyway? The concept of
2597 distinguishing between the main file and additional files
2598 in this way seems rather dubious. */
2599 if (objfile == symfile_objfile)
2600 {
2601 (*objfile->sf->sym_new_init) (objfile);
2602 }
2603
2604 (*objfile->sf->sym_init) (objfile);
2605 clear_complaints (&symfile_complaints, 1, 1);
2606 /* Do not set flags as this is safe and we don't want to be
2607 verbose. */
2608 (*objfile->sf->sym_read) (objfile, 0);
2609 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2610 {
2611 objfile->flags &= ~OBJF_PSYMTABS_READ;
2612 require_partial_symbols (objfile, 0);
2613 }
2614
2615 if (!objfile_has_symbols (objfile))
2616 {
2617 wrap_here ("");
2618 printf_unfiltered (_("(no debugging symbols found)\n"));
2619 wrap_here ("");
2620 }
2621
2622 /* We're done reading the symbol file; finish off complaints. */
2623 clear_complaints (&symfile_complaints, 0, 1);
2624
2625 /* Getting new symbols may change our opinion about what is
2626 frameless. */
2627
2628 reinit_frame_cache ();
2629
2630 /* Discard cleanups as symbol reading was successful. */
2631 discard_cleanups (old_cleanups);
2632
2633 /* If the mtime has changed between the time we set new_modtime
2634 and now, we *want* this to be out of date, so don't call stat
2635 again now. */
2636 objfile->mtime = new_modtime;
2637 init_entry_point_info (objfile);
2638
2639 VEC_safe_push (objfilep, new_objfiles, objfile);
2640 }
2641 }
2642
2643 if (new_objfiles)
2644 {
2645 int ix;
2646
2647 /* Notify objfiles that we've modified objfile sections. */
2648 objfiles_changed ();
2649
2650 clear_symtab_users (0);
2651
2652 /* clear_objfile_data for each objfile was called before freeing it and
2653 observer_notify_new_objfile (NULL) has been called by
2654 clear_symtab_users above. Notify the new files now. */
2655 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2656 observer_notify_new_objfile (objfile);
2657
2658 /* At least one objfile has changed, so we can consider that
2659 the executable we're debugging has changed too. */
2660 observer_notify_executable_changed ();
2661 }
2662
2663 do_cleanups (all_cleanups);
2664 }
2665 \f
2666
2667
2668 typedef struct
2669 {
2670 char *ext;
2671 enum language lang;
2672 }
2673 filename_language;
2674
2675 static filename_language *filename_language_table;
2676 static int fl_table_size, fl_table_next;
2677
2678 static void
2679 add_filename_language (char *ext, enum language lang)
2680 {
2681 if (fl_table_next >= fl_table_size)
2682 {
2683 fl_table_size += 10;
2684 filename_language_table =
2685 xrealloc (filename_language_table,
2686 fl_table_size * sizeof (*filename_language_table));
2687 }
2688
2689 filename_language_table[fl_table_next].ext = xstrdup (ext);
2690 filename_language_table[fl_table_next].lang = lang;
2691 fl_table_next++;
2692 }
2693
2694 static char *ext_args;
2695 static void
2696 show_ext_args (struct ui_file *file, int from_tty,
2697 struct cmd_list_element *c, const char *value)
2698 {
2699 fprintf_filtered (file,
2700 _("Mapping between filename extension "
2701 "and source language is \"%s\".\n"),
2702 value);
2703 }
2704
2705 static void
2706 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2707 {
2708 int i;
2709 char *cp = ext_args;
2710 enum language lang;
2711
2712 /* First arg is filename extension, starting with '.' */
2713 if (*cp != '.')
2714 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2715
2716 /* Find end of first arg. */
2717 while (*cp && !isspace (*cp))
2718 cp++;
2719
2720 if (*cp == '\0')
2721 error (_("'%s': two arguments required -- "
2722 "filename extension and language"),
2723 ext_args);
2724
2725 /* Null-terminate first arg. */
2726 *cp++ = '\0';
2727
2728 /* Find beginning of second arg, which should be a source language. */
2729 while (*cp && isspace (*cp))
2730 cp++;
2731
2732 if (*cp == '\0')
2733 error (_("'%s': two arguments required -- "
2734 "filename extension and language"),
2735 ext_args);
2736
2737 /* Lookup the language from among those we know. */
2738 lang = language_enum (cp);
2739
2740 /* Now lookup the filename extension: do we already know it? */
2741 for (i = 0; i < fl_table_next; i++)
2742 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2743 break;
2744
2745 if (i >= fl_table_next)
2746 {
2747 /* New file extension. */
2748 add_filename_language (ext_args, lang);
2749 }
2750 else
2751 {
2752 /* Redefining a previously known filename extension. */
2753
2754 /* if (from_tty) */
2755 /* query ("Really make files of type %s '%s'?", */
2756 /* ext_args, language_str (lang)); */
2757
2758 xfree (filename_language_table[i].ext);
2759 filename_language_table[i].ext = xstrdup (ext_args);
2760 filename_language_table[i].lang = lang;
2761 }
2762 }
2763
2764 static void
2765 info_ext_lang_command (char *args, int from_tty)
2766 {
2767 int i;
2768
2769 printf_filtered (_("Filename extensions and the languages they represent:"));
2770 printf_filtered ("\n\n");
2771 for (i = 0; i < fl_table_next; i++)
2772 printf_filtered ("\t%s\t- %s\n",
2773 filename_language_table[i].ext,
2774 language_str (filename_language_table[i].lang));
2775 }
2776
2777 static void
2778 init_filename_language_table (void)
2779 {
2780 if (fl_table_size == 0) /* Protect against repetition. */
2781 {
2782 fl_table_size = 20;
2783 fl_table_next = 0;
2784 filename_language_table =
2785 xmalloc (fl_table_size * sizeof (*filename_language_table));
2786 add_filename_language (".c", language_c);
2787 add_filename_language (".d", language_d);
2788 add_filename_language (".C", language_cplus);
2789 add_filename_language (".cc", language_cplus);
2790 add_filename_language (".cp", language_cplus);
2791 add_filename_language (".cpp", language_cplus);
2792 add_filename_language (".cxx", language_cplus);
2793 add_filename_language (".c++", language_cplus);
2794 add_filename_language (".java", language_java);
2795 add_filename_language (".class", language_java);
2796 add_filename_language (".m", language_objc);
2797 add_filename_language (".f", language_fortran);
2798 add_filename_language (".F", language_fortran);
2799 add_filename_language (".for", language_fortran);
2800 add_filename_language (".FOR", language_fortran);
2801 add_filename_language (".ftn", language_fortran);
2802 add_filename_language (".FTN", language_fortran);
2803 add_filename_language (".fpp", language_fortran);
2804 add_filename_language (".FPP", language_fortran);
2805 add_filename_language (".f90", language_fortran);
2806 add_filename_language (".F90", language_fortran);
2807 add_filename_language (".f95", language_fortran);
2808 add_filename_language (".F95", language_fortran);
2809 add_filename_language (".f03", language_fortran);
2810 add_filename_language (".F03", language_fortran);
2811 add_filename_language (".f08", language_fortran);
2812 add_filename_language (".F08", language_fortran);
2813 add_filename_language (".s", language_asm);
2814 add_filename_language (".sx", language_asm);
2815 add_filename_language (".S", language_asm);
2816 add_filename_language (".pas", language_pascal);
2817 add_filename_language (".p", language_pascal);
2818 add_filename_language (".pp", language_pascal);
2819 add_filename_language (".adb", language_ada);
2820 add_filename_language (".ads", language_ada);
2821 add_filename_language (".a", language_ada);
2822 add_filename_language (".ada", language_ada);
2823 add_filename_language (".dg", language_ada);
2824 }
2825 }
2826
2827 enum language
2828 deduce_language_from_filename (const char *filename)
2829 {
2830 int i;
2831 char *cp;
2832
2833 if (filename != NULL)
2834 if ((cp = strrchr (filename, '.')) != NULL)
2835 for (i = 0; i < fl_table_next; i++)
2836 if (strcmp (cp, filename_language_table[i].ext) == 0)
2837 return filename_language_table[i].lang;
2838
2839 return language_unknown;
2840 }
2841 \f
2842 /* allocate_symtab:
2843
2844 Allocate and partly initialize a new symbol table. Return a pointer
2845 to it. error() if no space.
2846
2847 Caller must set these fields:
2848 LINETABLE(symtab)
2849 symtab->blockvector
2850 symtab->dirname
2851 symtab->free_code
2852 symtab->free_ptr
2853 */
2854
2855 struct symtab *
2856 allocate_symtab (const char *filename, struct objfile *objfile)
2857 {
2858 struct symtab *symtab;
2859
2860 symtab = (struct symtab *)
2861 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2862 memset (symtab, 0, sizeof (*symtab));
2863 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2864 objfile->filename_cache);
2865 symtab->fullname = NULL;
2866 symtab->language = deduce_language_from_filename (filename);
2867 symtab->debugformat = "unknown";
2868
2869 /* Hook it to the objfile it comes from. */
2870
2871 symtab->objfile = objfile;
2872 symtab->next = objfile->symtabs;
2873 objfile->symtabs = symtab;
2874
2875 return (symtab);
2876 }
2877 \f
2878
2879 /* Reset all data structures in gdb which may contain references to symbol
2880 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2881
2882 void
2883 clear_symtab_users (int add_flags)
2884 {
2885 /* Someday, we should do better than this, by only blowing away
2886 the things that really need to be blown. */
2887
2888 /* Clear the "current" symtab first, because it is no longer valid.
2889 breakpoint_re_set may try to access the current symtab. */
2890 clear_current_source_symtab_and_line ();
2891
2892 clear_displays ();
2893 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2894 breakpoint_re_set ();
2895 clear_last_displayed_sal ();
2896 clear_pc_function_cache ();
2897 observer_notify_new_objfile (NULL);
2898
2899 /* Clear globals which might have pointed into a removed objfile.
2900 FIXME: It's not clear which of these are supposed to persist
2901 between expressions and which ought to be reset each time. */
2902 expression_context_block = NULL;
2903 innermost_block = NULL;
2904
2905 /* Varobj may refer to old symbols, perform a cleanup. */
2906 varobj_invalidate ();
2907
2908 }
2909
2910 static void
2911 clear_symtab_users_cleanup (void *ignore)
2912 {
2913 clear_symtab_users (0);
2914 }
2915 \f
2916 /* OVERLAYS:
2917 The following code implements an abstraction for debugging overlay sections.
2918
2919 The target model is as follows:
2920 1) The gnu linker will permit multiple sections to be mapped into the
2921 same VMA, each with its own unique LMA (or load address).
2922 2) It is assumed that some runtime mechanism exists for mapping the
2923 sections, one by one, from the load address into the VMA address.
2924 3) This code provides a mechanism for gdb to keep track of which
2925 sections should be considered to be mapped from the VMA to the LMA.
2926 This information is used for symbol lookup, and memory read/write.
2927 For instance, if a section has been mapped then its contents
2928 should be read from the VMA, otherwise from the LMA.
2929
2930 Two levels of debugger support for overlays are available. One is
2931 "manual", in which the debugger relies on the user to tell it which
2932 overlays are currently mapped. This level of support is
2933 implemented entirely in the core debugger, and the information about
2934 whether a section is mapped is kept in the objfile->obj_section table.
2935
2936 The second level of support is "automatic", and is only available if
2937 the target-specific code provides functionality to read the target's
2938 overlay mapping table, and translate its contents for the debugger
2939 (by updating the mapped state information in the obj_section tables).
2940
2941 The interface is as follows:
2942 User commands:
2943 overlay map <name> -- tell gdb to consider this section mapped
2944 overlay unmap <name> -- tell gdb to consider this section unmapped
2945 overlay list -- list the sections that GDB thinks are mapped
2946 overlay read-target -- get the target's state of what's mapped
2947 overlay off/manual/auto -- set overlay debugging state
2948 Functional interface:
2949 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2950 section, return that section.
2951 find_pc_overlay(pc): find any overlay section that contains
2952 the pc, either in its VMA or its LMA
2953 section_is_mapped(sect): true if overlay is marked as mapped
2954 section_is_overlay(sect): true if section's VMA != LMA
2955 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2956 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2957 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2958 overlay_mapped_address(...): map an address from section's LMA to VMA
2959 overlay_unmapped_address(...): map an address from section's VMA to LMA
2960 symbol_overlayed_address(...): Return a "current" address for symbol:
2961 either in VMA or LMA depending on whether
2962 the symbol's section is currently mapped. */
2963
2964 /* Overlay debugging state: */
2965
2966 enum overlay_debugging_state overlay_debugging = ovly_off;
2967 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2968
2969 /* Function: section_is_overlay (SECTION)
2970 Returns true if SECTION has VMA not equal to LMA, ie.
2971 SECTION is loaded at an address different from where it will "run". */
2972
2973 int
2974 section_is_overlay (struct obj_section *section)
2975 {
2976 if (overlay_debugging && section)
2977 {
2978 bfd *abfd = section->objfile->obfd;
2979 asection *bfd_section = section->the_bfd_section;
2980
2981 if (bfd_section_lma (abfd, bfd_section) != 0
2982 && bfd_section_lma (abfd, bfd_section)
2983 != bfd_section_vma (abfd, bfd_section))
2984 return 1;
2985 }
2986
2987 return 0;
2988 }
2989
2990 /* Function: overlay_invalidate_all (void)
2991 Invalidate the mapped state of all overlay sections (mark it as stale). */
2992
2993 static void
2994 overlay_invalidate_all (void)
2995 {
2996 struct objfile *objfile;
2997 struct obj_section *sect;
2998
2999 ALL_OBJSECTIONS (objfile, sect)
3000 if (section_is_overlay (sect))
3001 sect->ovly_mapped = -1;
3002 }
3003
3004 /* Function: section_is_mapped (SECTION)
3005 Returns true if section is an overlay, and is currently mapped.
3006
3007 Access to the ovly_mapped flag is restricted to this function, so
3008 that we can do automatic update. If the global flag
3009 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3010 overlay_invalidate_all. If the mapped state of the particular
3011 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3012
3013 int
3014 section_is_mapped (struct obj_section *osect)
3015 {
3016 struct gdbarch *gdbarch;
3017
3018 if (osect == 0 || !section_is_overlay (osect))
3019 return 0;
3020
3021 switch (overlay_debugging)
3022 {
3023 default:
3024 case ovly_off:
3025 return 0; /* overlay debugging off */
3026 case ovly_auto: /* overlay debugging automatic */
3027 /* Unles there is a gdbarch_overlay_update function,
3028 there's really nothing useful to do here (can't really go auto). */
3029 gdbarch = get_objfile_arch (osect->objfile);
3030 if (gdbarch_overlay_update_p (gdbarch))
3031 {
3032 if (overlay_cache_invalid)
3033 {
3034 overlay_invalidate_all ();
3035 overlay_cache_invalid = 0;
3036 }
3037 if (osect->ovly_mapped == -1)
3038 gdbarch_overlay_update (gdbarch, osect);
3039 }
3040 /* fall thru to manual case */
3041 case ovly_on: /* overlay debugging manual */
3042 return osect->ovly_mapped == 1;
3043 }
3044 }
3045
3046 /* Function: pc_in_unmapped_range
3047 If PC falls into the lma range of SECTION, return true, else false. */
3048
3049 CORE_ADDR
3050 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3051 {
3052 if (section_is_overlay (section))
3053 {
3054 bfd *abfd = section->objfile->obfd;
3055 asection *bfd_section = section->the_bfd_section;
3056
3057 /* We assume the LMA is relocated by the same offset as the VMA. */
3058 bfd_vma size = bfd_get_section_size (bfd_section);
3059 CORE_ADDR offset = obj_section_offset (section);
3060
3061 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3062 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3063 return 1;
3064 }
3065
3066 return 0;
3067 }
3068
3069 /* Function: pc_in_mapped_range
3070 If PC falls into the vma range of SECTION, return true, else false. */
3071
3072 CORE_ADDR
3073 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3074 {
3075 if (section_is_overlay (section))
3076 {
3077 if (obj_section_addr (section) <= pc
3078 && pc < obj_section_endaddr (section))
3079 return 1;
3080 }
3081
3082 return 0;
3083 }
3084
3085
3086 /* Return true if the mapped ranges of sections A and B overlap, false
3087 otherwise. */
3088 static int
3089 sections_overlap (struct obj_section *a, struct obj_section *b)
3090 {
3091 CORE_ADDR a_start = obj_section_addr (a);
3092 CORE_ADDR a_end = obj_section_endaddr (a);
3093 CORE_ADDR b_start = obj_section_addr (b);
3094 CORE_ADDR b_end = obj_section_endaddr (b);
3095
3096 return (a_start < b_end && b_start < a_end);
3097 }
3098
3099 /* Function: overlay_unmapped_address (PC, SECTION)
3100 Returns the address corresponding to PC in the unmapped (load) range.
3101 May be the same as PC. */
3102
3103 CORE_ADDR
3104 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3105 {
3106 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3107 {
3108 bfd *abfd = section->objfile->obfd;
3109 asection *bfd_section = section->the_bfd_section;
3110
3111 return pc + bfd_section_lma (abfd, bfd_section)
3112 - bfd_section_vma (abfd, bfd_section);
3113 }
3114
3115 return pc;
3116 }
3117
3118 /* Function: overlay_mapped_address (PC, SECTION)
3119 Returns the address corresponding to PC in the mapped (runtime) range.
3120 May be the same as PC. */
3121
3122 CORE_ADDR
3123 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3124 {
3125 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3126 {
3127 bfd *abfd = section->objfile->obfd;
3128 asection *bfd_section = section->the_bfd_section;
3129
3130 return pc + bfd_section_vma (abfd, bfd_section)
3131 - bfd_section_lma (abfd, bfd_section);
3132 }
3133
3134 return pc;
3135 }
3136
3137
3138 /* Function: symbol_overlayed_address
3139 Return one of two addresses (relative to the VMA or to the LMA),
3140 depending on whether the section is mapped or not. */
3141
3142 CORE_ADDR
3143 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3144 {
3145 if (overlay_debugging)
3146 {
3147 /* If the symbol has no section, just return its regular address. */
3148 if (section == 0)
3149 return address;
3150 /* If the symbol's section is not an overlay, just return its
3151 address. */
3152 if (!section_is_overlay (section))
3153 return address;
3154 /* If the symbol's section is mapped, just return its address. */
3155 if (section_is_mapped (section))
3156 return address;
3157 /*
3158 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3159 * then return its LOADED address rather than its vma address!!
3160 */
3161 return overlay_unmapped_address (address, section);
3162 }
3163 return address;
3164 }
3165
3166 /* Function: find_pc_overlay (PC)
3167 Return the best-match overlay section for PC:
3168 If PC matches a mapped overlay section's VMA, return that section.
3169 Else if PC matches an unmapped section's VMA, return that section.
3170 Else if PC matches an unmapped section's LMA, return that section. */
3171
3172 struct obj_section *
3173 find_pc_overlay (CORE_ADDR pc)
3174 {
3175 struct objfile *objfile;
3176 struct obj_section *osect, *best_match = NULL;
3177
3178 if (overlay_debugging)
3179 ALL_OBJSECTIONS (objfile, osect)
3180 if (section_is_overlay (osect))
3181 {
3182 if (pc_in_mapped_range (pc, osect))
3183 {
3184 if (section_is_mapped (osect))
3185 return osect;
3186 else
3187 best_match = osect;
3188 }
3189 else if (pc_in_unmapped_range (pc, osect))
3190 best_match = osect;
3191 }
3192 return best_match;
3193 }
3194
3195 /* Function: find_pc_mapped_section (PC)
3196 If PC falls into the VMA address range of an overlay section that is
3197 currently marked as MAPPED, return that section. Else return NULL. */
3198
3199 struct obj_section *
3200 find_pc_mapped_section (CORE_ADDR pc)
3201 {
3202 struct objfile *objfile;
3203 struct obj_section *osect;
3204
3205 if (overlay_debugging)
3206 ALL_OBJSECTIONS (objfile, osect)
3207 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3208 return osect;
3209
3210 return NULL;
3211 }
3212
3213 /* Function: list_overlays_command
3214 Print a list of mapped sections and their PC ranges. */
3215
3216 void
3217 list_overlays_command (char *args, int from_tty)
3218 {
3219 int nmapped = 0;
3220 struct objfile *objfile;
3221 struct obj_section *osect;
3222
3223 if (overlay_debugging)
3224 ALL_OBJSECTIONS (objfile, osect)
3225 if (section_is_mapped (osect))
3226 {
3227 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3228 const char *name;
3229 bfd_vma lma, vma;
3230 int size;
3231
3232 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3233 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3234 size = bfd_get_section_size (osect->the_bfd_section);
3235 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3236
3237 printf_filtered ("Section %s, loaded at ", name);
3238 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3239 puts_filtered (" - ");
3240 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3241 printf_filtered (", mapped at ");
3242 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3243 puts_filtered (" - ");
3244 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3245 puts_filtered ("\n");
3246
3247 nmapped++;
3248 }
3249 if (nmapped == 0)
3250 printf_filtered (_("No sections are mapped.\n"));
3251 }
3252
3253 /* Function: map_overlay_command
3254 Mark the named section as mapped (ie. residing at its VMA address). */
3255
3256 void
3257 map_overlay_command (char *args, int from_tty)
3258 {
3259 struct objfile *objfile, *objfile2;
3260 struct obj_section *sec, *sec2;
3261
3262 if (!overlay_debugging)
3263 error (_("Overlay debugging not enabled. Use "
3264 "either the 'overlay auto' or\n"
3265 "the 'overlay manual' command."));
3266
3267 if (args == 0 || *args == 0)
3268 error (_("Argument required: name of an overlay section"));
3269
3270 /* First, find a section matching the user supplied argument. */
3271 ALL_OBJSECTIONS (objfile, sec)
3272 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3273 {
3274 /* Now, check to see if the section is an overlay. */
3275 if (!section_is_overlay (sec))
3276 continue; /* not an overlay section */
3277
3278 /* Mark the overlay as "mapped". */
3279 sec->ovly_mapped = 1;
3280
3281 /* Next, make a pass and unmap any sections that are
3282 overlapped by this new section: */
3283 ALL_OBJSECTIONS (objfile2, sec2)
3284 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3285 {
3286 if (info_verbose)
3287 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3288 bfd_section_name (objfile->obfd,
3289 sec2->the_bfd_section));
3290 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3291 }
3292 return;
3293 }
3294 error (_("No overlay section called %s"), args);
3295 }
3296
3297 /* Function: unmap_overlay_command
3298 Mark the overlay section as unmapped
3299 (ie. resident in its LMA address range, rather than the VMA range). */
3300
3301 void
3302 unmap_overlay_command (char *args, int from_tty)
3303 {
3304 struct objfile *objfile;
3305 struct obj_section *sec;
3306
3307 if (!overlay_debugging)
3308 error (_("Overlay debugging not enabled. "
3309 "Use either the 'overlay auto' or\n"
3310 "the 'overlay manual' command."));
3311
3312 if (args == 0 || *args == 0)
3313 error (_("Argument required: name of an overlay section"));
3314
3315 /* First, find a section matching the user supplied argument. */
3316 ALL_OBJSECTIONS (objfile, sec)
3317 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3318 {
3319 if (!sec->ovly_mapped)
3320 error (_("Section %s is not mapped"), args);
3321 sec->ovly_mapped = 0;
3322 return;
3323 }
3324 error (_("No overlay section called %s"), args);
3325 }
3326
3327 /* Function: overlay_auto_command
3328 A utility command to turn on overlay debugging.
3329 Possibly this should be done via a set/show command. */
3330
3331 static void
3332 overlay_auto_command (char *args, int from_tty)
3333 {
3334 overlay_debugging = ovly_auto;
3335 enable_overlay_breakpoints ();
3336 if (info_verbose)
3337 printf_unfiltered (_("Automatic overlay debugging enabled."));
3338 }
3339
3340 /* Function: overlay_manual_command
3341 A utility command to turn on overlay debugging.
3342 Possibly this should be done via a set/show command. */
3343
3344 static void
3345 overlay_manual_command (char *args, int from_tty)
3346 {
3347 overlay_debugging = ovly_on;
3348 disable_overlay_breakpoints ();
3349 if (info_verbose)
3350 printf_unfiltered (_("Overlay debugging enabled."));
3351 }
3352
3353 /* Function: overlay_off_command
3354 A utility command to turn on overlay debugging.
3355 Possibly this should be done via a set/show command. */
3356
3357 static void
3358 overlay_off_command (char *args, int from_tty)
3359 {
3360 overlay_debugging = ovly_off;
3361 disable_overlay_breakpoints ();
3362 if (info_verbose)
3363 printf_unfiltered (_("Overlay debugging disabled."));
3364 }
3365
3366 static void
3367 overlay_load_command (char *args, int from_tty)
3368 {
3369 struct gdbarch *gdbarch = get_current_arch ();
3370
3371 if (gdbarch_overlay_update_p (gdbarch))
3372 gdbarch_overlay_update (gdbarch, NULL);
3373 else
3374 error (_("This target does not know how to read its overlay state."));
3375 }
3376
3377 /* Function: overlay_command
3378 A place-holder for a mis-typed command. */
3379
3380 /* Command list chain containing all defined "overlay" subcommands. */
3381 struct cmd_list_element *overlaylist;
3382
3383 static void
3384 overlay_command (char *args, int from_tty)
3385 {
3386 printf_unfiltered
3387 ("\"overlay\" must be followed by the name of an overlay command.\n");
3388 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3389 }
3390
3391
3392 /* Target Overlays for the "Simplest" overlay manager:
3393
3394 This is GDB's default target overlay layer. It works with the
3395 minimal overlay manager supplied as an example by Cygnus. The
3396 entry point is via a function pointer "gdbarch_overlay_update",
3397 so targets that use a different runtime overlay manager can
3398 substitute their own overlay_update function and take over the
3399 function pointer.
3400
3401 The overlay_update function pokes around in the target's data structures
3402 to see what overlays are mapped, and updates GDB's overlay mapping with
3403 this information.
3404
3405 In this simple implementation, the target data structures are as follows:
3406 unsigned _novlys; /# number of overlay sections #/
3407 unsigned _ovly_table[_novlys][4] = {
3408 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3409 {..., ..., ..., ...},
3410 }
3411 unsigned _novly_regions; /# number of overlay regions #/
3412 unsigned _ovly_region_table[_novly_regions][3] = {
3413 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3414 {..., ..., ...},
3415 }
3416 These functions will attempt to update GDB's mappedness state in the
3417 symbol section table, based on the target's mappedness state.
3418
3419 To do this, we keep a cached copy of the target's _ovly_table, and
3420 attempt to detect when the cached copy is invalidated. The main
3421 entry point is "simple_overlay_update(SECT), which looks up SECT in
3422 the cached table and re-reads only the entry for that section from
3423 the target (whenever possible). */
3424
3425 /* Cached, dynamically allocated copies of the target data structures: */
3426 static unsigned (*cache_ovly_table)[4] = 0;
3427 static unsigned cache_novlys = 0;
3428 static CORE_ADDR cache_ovly_table_base = 0;
3429 enum ovly_index
3430 {
3431 VMA, SIZE, LMA, MAPPED
3432 };
3433
3434 /* Throw away the cached copy of _ovly_table. */
3435 static void
3436 simple_free_overlay_table (void)
3437 {
3438 if (cache_ovly_table)
3439 xfree (cache_ovly_table);
3440 cache_novlys = 0;
3441 cache_ovly_table = NULL;
3442 cache_ovly_table_base = 0;
3443 }
3444
3445 /* Read an array of ints of size SIZE from the target into a local buffer.
3446 Convert to host order. int LEN is number of ints. */
3447 static void
3448 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3449 int len, int size, enum bfd_endian byte_order)
3450 {
3451 /* FIXME (alloca): Not safe if array is very large. */
3452 gdb_byte *buf = alloca (len * size);
3453 int i;
3454
3455 read_memory (memaddr, buf, len * size);
3456 for (i = 0; i < len; i++)
3457 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3458 }
3459
3460 /* Find and grab a copy of the target _ovly_table
3461 (and _novlys, which is needed for the table's size). */
3462 static int
3463 simple_read_overlay_table (void)
3464 {
3465 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3466 struct gdbarch *gdbarch;
3467 int word_size;
3468 enum bfd_endian byte_order;
3469
3470 simple_free_overlay_table ();
3471 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3472 if (! novlys_msym)
3473 {
3474 error (_("Error reading inferior's overlay table: "
3475 "couldn't find `_novlys' variable\n"
3476 "in inferior. Use `overlay manual' mode."));
3477 return 0;
3478 }
3479
3480 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3481 if (! ovly_table_msym)
3482 {
3483 error (_("Error reading inferior's overlay table: couldn't find "
3484 "`_ovly_table' array\n"
3485 "in inferior. Use `overlay manual' mode."));
3486 return 0;
3487 }
3488
3489 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3490 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3491 byte_order = gdbarch_byte_order (gdbarch);
3492
3493 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3494 4, byte_order);
3495 cache_ovly_table
3496 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3497 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3498 read_target_long_array (cache_ovly_table_base,
3499 (unsigned int *) cache_ovly_table,
3500 cache_novlys * 4, word_size, byte_order);
3501
3502 return 1; /* SUCCESS */
3503 }
3504
3505 /* Function: simple_overlay_update_1
3506 A helper function for simple_overlay_update. Assuming a cached copy
3507 of _ovly_table exists, look through it to find an entry whose vma,
3508 lma and size match those of OSECT. Re-read the entry and make sure
3509 it still matches OSECT (else the table may no longer be valid).
3510 Set OSECT's mapped state to match the entry. Return: 1 for
3511 success, 0 for failure. */
3512
3513 static int
3514 simple_overlay_update_1 (struct obj_section *osect)
3515 {
3516 int i, size;
3517 bfd *obfd = osect->objfile->obfd;
3518 asection *bsect = osect->the_bfd_section;
3519 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3520 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3522
3523 size = bfd_get_section_size (osect->the_bfd_section);
3524 for (i = 0; i < cache_novlys; i++)
3525 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3526 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3527 /* && cache_ovly_table[i][SIZE] == size */ )
3528 {
3529 read_target_long_array (cache_ovly_table_base + i * word_size,
3530 (unsigned int *) cache_ovly_table[i],
3531 4, word_size, byte_order);
3532 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3533 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3534 /* && cache_ovly_table[i][SIZE] == size */ )
3535 {
3536 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3537 return 1;
3538 }
3539 else /* Warning! Warning! Target's ovly table has changed! */
3540 return 0;
3541 }
3542 return 0;
3543 }
3544
3545 /* Function: simple_overlay_update
3546 If OSECT is NULL, then update all sections' mapped state
3547 (after re-reading the entire target _ovly_table).
3548 If OSECT is non-NULL, then try to find a matching entry in the
3549 cached ovly_table and update only OSECT's mapped state.
3550 If a cached entry can't be found or the cache isn't valid, then
3551 re-read the entire cache, and go ahead and update all sections. */
3552
3553 void
3554 simple_overlay_update (struct obj_section *osect)
3555 {
3556 struct objfile *objfile;
3557
3558 /* Were we given an osect to look up? NULL means do all of them. */
3559 if (osect)
3560 /* Have we got a cached copy of the target's overlay table? */
3561 if (cache_ovly_table != NULL)
3562 {
3563 /* Does its cached location match what's currently in the
3564 symtab? */
3565 struct minimal_symbol *minsym
3566 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3567
3568 if (minsym == NULL)
3569 error (_("Error reading inferior's overlay table: couldn't "
3570 "find `_ovly_table' array\n"
3571 "in inferior. Use `overlay manual' mode."));
3572
3573 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3574 /* Then go ahead and try to look up this single section in
3575 the cache. */
3576 if (simple_overlay_update_1 (osect))
3577 /* Found it! We're done. */
3578 return;
3579 }
3580
3581 /* Cached table no good: need to read the entire table anew.
3582 Or else we want all the sections, in which case it's actually
3583 more efficient to read the whole table in one block anyway. */
3584
3585 if (! simple_read_overlay_table ())
3586 return;
3587
3588 /* Now may as well update all sections, even if only one was requested. */
3589 ALL_OBJSECTIONS (objfile, osect)
3590 if (section_is_overlay (osect))
3591 {
3592 int i, size;
3593 bfd *obfd = osect->objfile->obfd;
3594 asection *bsect = osect->the_bfd_section;
3595
3596 size = bfd_get_section_size (bsect);
3597 for (i = 0; i < cache_novlys; i++)
3598 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3599 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3600 /* && cache_ovly_table[i][SIZE] == size */ )
3601 { /* obj_section matches i'th entry in ovly_table. */
3602 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3603 break; /* finished with inner for loop: break out. */
3604 }
3605 }
3606 }
3607
3608 /* Set the output sections and output offsets for section SECTP in
3609 ABFD. The relocation code in BFD will read these offsets, so we
3610 need to be sure they're initialized. We map each section to itself,
3611 with no offset; this means that SECTP->vma will be honored. */
3612
3613 static void
3614 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3615 {
3616 sectp->output_section = sectp;
3617 sectp->output_offset = 0;
3618 }
3619
3620 /* Default implementation for sym_relocate. */
3621
3622
3623 bfd_byte *
3624 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3625 bfd_byte *buf)
3626 {
3627 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3628 DWO file. */
3629 bfd *abfd = sectp->owner;
3630
3631 /* We're only interested in sections with relocation
3632 information. */
3633 if ((sectp->flags & SEC_RELOC) == 0)
3634 return NULL;
3635
3636 /* We will handle section offsets properly elsewhere, so relocate as if
3637 all sections begin at 0. */
3638 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3639
3640 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3641 }
3642
3643 /* Relocate the contents of a debug section SECTP in ABFD. The
3644 contents are stored in BUF if it is non-NULL, or returned in a
3645 malloc'd buffer otherwise.
3646
3647 For some platforms and debug info formats, shared libraries contain
3648 relocations against the debug sections (particularly for DWARF-2;
3649 one affected platform is PowerPC GNU/Linux, although it depends on
3650 the version of the linker in use). Also, ELF object files naturally
3651 have unresolved relocations for their debug sections. We need to apply
3652 the relocations in order to get the locations of symbols correct.
3653 Another example that may require relocation processing, is the
3654 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3655 debug section. */
3656
3657 bfd_byte *
3658 symfile_relocate_debug_section (struct objfile *objfile,
3659 asection *sectp, bfd_byte *buf)
3660 {
3661 gdb_assert (objfile->sf->sym_relocate);
3662
3663 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3664 }
3665
3666 struct symfile_segment_data *
3667 get_symfile_segment_data (bfd *abfd)
3668 {
3669 const struct sym_fns *sf = find_sym_fns (abfd);
3670
3671 if (sf == NULL)
3672 return NULL;
3673
3674 return sf->sym_segments (abfd);
3675 }
3676
3677 void
3678 free_symfile_segment_data (struct symfile_segment_data *data)
3679 {
3680 xfree (data->segment_bases);
3681 xfree (data->segment_sizes);
3682 xfree (data->segment_info);
3683 xfree (data);
3684 }
3685
3686
3687 /* Given:
3688 - DATA, containing segment addresses from the object file ABFD, and
3689 the mapping from ABFD's sections onto the segments that own them,
3690 and
3691 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3692 segment addresses reported by the target,
3693 store the appropriate offsets for each section in OFFSETS.
3694
3695 If there are fewer entries in SEGMENT_BASES than there are segments
3696 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3697
3698 If there are more entries, then ignore the extra. The target may
3699 not be able to distinguish between an empty data segment and a
3700 missing data segment; a missing text segment is less plausible. */
3701 int
3702 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3703 struct section_offsets *offsets,
3704 int num_segment_bases,
3705 const CORE_ADDR *segment_bases)
3706 {
3707 int i;
3708 asection *sect;
3709
3710 /* It doesn't make sense to call this function unless you have some
3711 segment base addresses. */
3712 gdb_assert (num_segment_bases > 0);
3713
3714 /* If we do not have segment mappings for the object file, we
3715 can not relocate it by segments. */
3716 gdb_assert (data != NULL);
3717 gdb_assert (data->num_segments > 0);
3718
3719 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3720 {
3721 int which = data->segment_info[i];
3722
3723 gdb_assert (0 <= which && which <= data->num_segments);
3724
3725 /* Don't bother computing offsets for sections that aren't
3726 loaded as part of any segment. */
3727 if (! which)
3728 continue;
3729
3730 /* Use the last SEGMENT_BASES entry as the address of any extra
3731 segments mentioned in DATA->segment_info. */
3732 if (which > num_segment_bases)
3733 which = num_segment_bases;
3734
3735 offsets->offsets[i] = (segment_bases[which - 1]
3736 - data->segment_bases[which - 1]);
3737 }
3738
3739 return 1;
3740 }
3741
3742 static void
3743 symfile_find_segment_sections (struct objfile *objfile)
3744 {
3745 bfd *abfd = objfile->obfd;
3746 int i;
3747 asection *sect;
3748 struct symfile_segment_data *data;
3749
3750 data = get_symfile_segment_data (objfile->obfd);
3751 if (data == NULL)
3752 return;
3753
3754 if (data->num_segments != 1 && data->num_segments != 2)
3755 {
3756 free_symfile_segment_data (data);
3757 return;
3758 }
3759
3760 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3761 {
3762 int which = data->segment_info[i];
3763
3764 if (which == 1)
3765 {
3766 if (objfile->sect_index_text == -1)
3767 objfile->sect_index_text = sect->index;
3768
3769 if (objfile->sect_index_rodata == -1)
3770 objfile->sect_index_rodata = sect->index;
3771 }
3772 else if (which == 2)
3773 {
3774 if (objfile->sect_index_data == -1)
3775 objfile->sect_index_data = sect->index;
3776
3777 if (objfile->sect_index_bss == -1)
3778 objfile->sect_index_bss = sect->index;
3779 }
3780 }
3781
3782 free_symfile_segment_data (data);
3783 }
3784
3785 void
3786 _initialize_symfile (void)
3787 {
3788 struct cmd_list_element *c;
3789
3790 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3791 Load symbol table from executable file FILE.\n\
3792 The `file' command can also load symbol tables, as well as setting the file\n\
3793 to execute."), &cmdlist);
3794 set_cmd_completer (c, filename_completer);
3795
3796 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3797 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3798 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3799 ...]\nADDR is the starting address of the file's text.\n\
3800 The optional arguments are section-name section-address pairs and\n\
3801 should be specified if the data and bss segments are not contiguous\n\
3802 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3803 &cmdlist);
3804 set_cmd_completer (c, filename_completer);
3805
3806 c = add_cmd ("load", class_files, load_command, _("\
3807 Dynamically load FILE into the running program, and record its symbols\n\
3808 for access from GDB.\n\
3809 A load OFFSET may also be given."), &cmdlist);
3810 set_cmd_completer (c, filename_completer);
3811
3812 add_prefix_cmd ("overlay", class_support, overlay_command,
3813 _("Commands for debugging overlays."), &overlaylist,
3814 "overlay ", 0, &cmdlist);
3815
3816 add_com_alias ("ovly", "overlay", class_alias, 1);
3817 add_com_alias ("ov", "overlay", class_alias, 1);
3818
3819 add_cmd ("map-overlay", class_support, map_overlay_command,
3820 _("Assert that an overlay section is mapped."), &overlaylist);
3821
3822 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3823 _("Assert that an overlay section is unmapped."), &overlaylist);
3824
3825 add_cmd ("list-overlays", class_support, list_overlays_command,
3826 _("List mappings of overlay sections."), &overlaylist);
3827
3828 add_cmd ("manual", class_support, overlay_manual_command,
3829 _("Enable overlay debugging."), &overlaylist);
3830 add_cmd ("off", class_support, overlay_off_command,
3831 _("Disable overlay debugging."), &overlaylist);
3832 add_cmd ("auto", class_support, overlay_auto_command,
3833 _("Enable automatic overlay debugging."), &overlaylist);
3834 add_cmd ("load-target", class_support, overlay_load_command,
3835 _("Read the overlay mapping state from the target."), &overlaylist);
3836
3837 /* Filename extension to source language lookup table: */
3838 init_filename_language_table ();
3839 add_setshow_string_noescape_cmd ("extension-language", class_files,
3840 &ext_args, _("\
3841 Set mapping between filename extension and source language."), _("\
3842 Show mapping between filename extension and source language."), _("\
3843 Usage: set extension-language .foo bar"),
3844 set_ext_lang_command,
3845 show_ext_args,
3846 &setlist, &showlist);
3847
3848 add_info ("extensions", info_ext_lang_command,
3849 _("All filename extensions associated with a source language."));
3850
3851 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3852 &debug_file_directory, _("\
3853 Set the directories where separate debug symbols are searched for."), _("\
3854 Show the directories where separate debug symbols are searched for."), _("\
3855 Separate debug symbols are first searched for in the same\n\
3856 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3857 and lastly at the path of the directory of the binary with\n\
3858 each global debug-file-directory component prepended."),
3859 NULL,
3860 show_debug_file_directory,
3861 &setlist, &showlist);
3862 }