]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
2011-08-04 Pedro Alves <pedro@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154 #ifdef SYMBOL_RELOADING_DEFAULT
155 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156 #else
157 int symbol_reloading = 0;
158 #endif
159 static void
160 show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Dynamic symbol table reloading "
164 "multiple times in one run is %s.\n"),
165 value);
166 }
167
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
177
178 int auto_solib_add = 1;
179 \f
180
181 /* Make a null terminated copy of the string at PTR with SIZE characters in
182 the obstack pointed to by OBSTACKP . Returns the address of the copy.
183 Note that the string at PTR does not have to be null terminated, I.e. it
184 may be part of a larger string and we are only saving a substring. */
185
186 char *
187 obsavestring (const char *ptr, int size, struct obstack *obstackp)
188 {
189 char *p = (char *) obstack_alloc (obstackp, size + 1);
190 /* Open-coded memcpy--saves function call time. These strings are usually
191 short. FIXME: Is this really still true with a compiler that can
192 inline memcpy? */
193 {
194 const char *p1 = ptr;
195 char *p2 = p;
196 const char *end = ptr + size;
197
198 while (p1 != end)
199 *p2++ = *p1++;
200 }
201 p[size] = 0;
202 return p;
203 }
204
205 /* Concatenate NULL terminated variable argument list of `const char *'
206 strings; return the new string. Space is found in the OBSTACKP.
207 Argument list must be terminated by a sentinel expression `(char *)
208 NULL'. */
209
210 char *
211 obconcat (struct obstack *obstackp, ...)
212 {
213 va_list ap;
214
215 va_start (ap, obstackp);
216 for (;;)
217 {
218 const char *s = va_arg (ap, const char *);
219
220 if (s == NULL)
221 break;
222
223 obstack_grow_str (obstackp, s);
224 }
225 va_end (ap);
226 obstack_1grow (obstackp, 0);
227
228 return obstack_finish (obstackp);
229 }
230
231 /* True if we are reading a symbol table. */
232
233 int currently_reading_symtab = 0;
234
235 static void
236 decrement_reading_symtab (void *dummy)
237 {
238 currently_reading_symtab--;
239 }
240
241 /* Increment currently_reading_symtab and return a cleanup that can be
242 used to decrement it. */
243 struct cleanup *
244 increment_reading_symtab (void)
245 {
246 ++currently_reading_symtab;
247 return make_cleanup (decrement_reading_symtab, NULL);
248 }
249
250 /* Remember the lowest-addressed loadable section we've seen.
251 This function is called via bfd_map_over_sections.
252
253 In case of equal vmas, the section with the largest size becomes the
254 lowest-addressed loadable section.
255
256 If the vmas and sizes are equal, the last section is considered the
257 lowest-addressed loadable section. */
258
259 void
260 find_lowest_section (bfd *abfd, asection *sect, void *obj)
261 {
262 asection **lowest = (asection **) obj;
263
264 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
265 return;
266 if (!*lowest)
267 *lowest = sect; /* First loadable section */
268 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
269 *lowest = sect; /* A lower loadable section */
270 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
271 && (bfd_section_size (abfd, (*lowest))
272 <= bfd_section_size (abfd, sect)))
273 *lowest = sect;
274 }
275
276 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
277
278 struct section_addr_info *
279 alloc_section_addr_info (size_t num_sections)
280 {
281 struct section_addr_info *sap;
282 size_t size;
283
284 size = (sizeof (struct section_addr_info)
285 + sizeof (struct other_sections) * (num_sections - 1));
286 sap = (struct section_addr_info *) xmalloc (size);
287 memset (sap, 0, size);
288 sap->num_sections = num_sections;
289
290 return sap;
291 }
292
293 /* Build (allocate and populate) a section_addr_info struct from
294 an existing section table. */
295
296 extern struct section_addr_info *
297 build_section_addr_info_from_section_table (const struct target_section *start,
298 const struct target_section *end)
299 {
300 struct section_addr_info *sap;
301 const struct target_section *stp;
302 int oidx;
303
304 sap = alloc_section_addr_info (end - start);
305
306 for (stp = start, oidx = 0; stp != end; stp++)
307 {
308 if (bfd_get_section_flags (stp->bfd,
309 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
310 && oidx < end - start)
311 {
312 sap->other[oidx].addr = stp->addr;
313 sap->other[oidx].name
314 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
315 sap->other[oidx].sectindex = stp->the_bfd_section->index;
316 oidx++;
317 }
318 }
319
320 return sap;
321 }
322
323 /* Create a section_addr_info from section offsets in ABFD. */
324
325 static struct section_addr_info *
326 build_section_addr_info_from_bfd (bfd *abfd)
327 {
328 struct section_addr_info *sap;
329 int i;
330 struct bfd_section *sec;
331
332 sap = alloc_section_addr_info (bfd_count_sections (abfd));
333 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
334 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
335 {
336 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
337 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
338 sap->other[i].sectindex = sec->index;
339 i++;
340 }
341 return sap;
342 }
343
344 /* Create a section_addr_info from section offsets in OBJFILE. */
345
346 struct section_addr_info *
347 build_section_addr_info_from_objfile (const struct objfile *objfile)
348 {
349 struct section_addr_info *sap;
350 int i;
351
352 /* Before reread_symbols gets rewritten it is not safe to call:
353 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
354 */
355 sap = build_section_addr_info_from_bfd (objfile->obfd);
356 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
357 {
358 int sectindex = sap->other[i].sectindex;
359
360 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
361 }
362 return sap;
363 }
364
365 /* Free all memory allocated by build_section_addr_info_from_section_table. */
366
367 extern void
368 free_section_addr_info (struct section_addr_info *sap)
369 {
370 int idx;
371
372 for (idx = 0; idx < sap->num_sections; idx++)
373 if (sap->other[idx].name)
374 xfree (sap->other[idx].name);
375 xfree (sap);
376 }
377
378
379 /* Initialize OBJFILE's sect_index_* members. */
380 static void
381 init_objfile_sect_indices (struct objfile *objfile)
382 {
383 asection *sect;
384 int i;
385
386 sect = bfd_get_section_by_name (objfile->obfd, ".text");
387 if (sect)
388 objfile->sect_index_text = sect->index;
389
390 sect = bfd_get_section_by_name (objfile->obfd, ".data");
391 if (sect)
392 objfile->sect_index_data = sect->index;
393
394 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
395 if (sect)
396 objfile->sect_index_bss = sect->index;
397
398 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
399 if (sect)
400 objfile->sect_index_rodata = sect->index;
401
402 /* This is where things get really weird... We MUST have valid
403 indices for the various sect_index_* members or gdb will abort.
404 So if for example, there is no ".text" section, we have to
405 accomodate that. First, check for a file with the standard
406 one or two segments. */
407
408 symfile_find_segment_sections (objfile);
409
410 /* Except when explicitly adding symbol files at some address,
411 section_offsets contains nothing but zeros, so it doesn't matter
412 which slot in section_offsets the individual sect_index_* members
413 index into. So if they are all zero, it is safe to just point
414 all the currently uninitialized indices to the first slot. But
415 beware: if this is the main executable, it may be relocated
416 later, e.g. by the remote qOffsets packet, and then this will
417 be wrong! That's why we try segments first. */
418
419 for (i = 0; i < objfile->num_sections; i++)
420 {
421 if (ANOFFSET (objfile->section_offsets, i) != 0)
422 {
423 break;
424 }
425 }
426 if (i == objfile->num_sections)
427 {
428 if (objfile->sect_index_text == -1)
429 objfile->sect_index_text = 0;
430 if (objfile->sect_index_data == -1)
431 objfile->sect_index_data = 0;
432 if (objfile->sect_index_bss == -1)
433 objfile->sect_index_bss = 0;
434 if (objfile->sect_index_rodata == -1)
435 objfile->sect_index_rodata = 0;
436 }
437 }
438
439 /* The arguments to place_section. */
440
441 struct place_section_arg
442 {
443 struct section_offsets *offsets;
444 CORE_ADDR lowest;
445 };
446
447 /* Find a unique offset to use for loadable section SECT if
448 the user did not provide an offset. */
449
450 static void
451 place_section (bfd *abfd, asection *sect, void *obj)
452 {
453 struct place_section_arg *arg = obj;
454 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
455 int done;
456 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
457
458 /* We are only interested in allocated sections. */
459 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
460 return;
461
462 /* If the user specified an offset, honor it. */
463 if (offsets[sect->index] != 0)
464 return;
465
466 /* Otherwise, let's try to find a place for the section. */
467 start_addr = (arg->lowest + align - 1) & -align;
468
469 do {
470 asection *cur_sec;
471
472 done = 1;
473
474 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
475 {
476 int indx = cur_sec->index;
477
478 /* We don't need to compare against ourself. */
479 if (cur_sec == sect)
480 continue;
481
482 /* We can only conflict with allocated sections. */
483 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
484 continue;
485
486 /* If the section offset is 0, either the section has not been placed
487 yet, or it was the lowest section placed (in which case LOWEST
488 will be past its end). */
489 if (offsets[indx] == 0)
490 continue;
491
492 /* If this section would overlap us, then we must move up. */
493 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
494 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
495 {
496 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
497 start_addr = (start_addr + align - 1) & -align;
498 done = 0;
499 break;
500 }
501
502 /* Otherwise, we appear to be OK. So far. */
503 }
504 }
505 while (!done);
506
507 offsets[sect->index] = start_addr;
508 arg->lowest = start_addr + bfd_get_section_size (sect);
509 }
510
511 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
512 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
513 entries. */
514
515 void
516 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
517 int num_sections,
518 struct section_addr_info *addrs)
519 {
520 int i;
521
522 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
523
524 /* Now calculate offsets for section that were specified by the caller. */
525 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
526 {
527 struct other_sections *osp;
528
529 osp = &addrs->other[i];
530 if (osp->sectindex == -1)
531 continue;
532
533 /* Record all sections in offsets. */
534 /* The section_offsets in the objfile are here filled in using
535 the BFD index. */
536 section_offsets->offsets[osp->sectindex] = osp->addr;
537 }
538 }
539
540 /* Transform section name S for a name comparison. prelink can split section
541 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
542 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
543 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
544 (`.sbss') section has invalid (increased) virtual address. */
545
546 static const char *
547 addr_section_name (const char *s)
548 {
549 if (strcmp (s, ".dynbss") == 0)
550 return ".bss";
551 if (strcmp (s, ".sdynbss") == 0)
552 return ".sbss";
553
554 return s;
555 }
556
557 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
558 their (name, sectindex) pair. sectindex makes the sort by name stable. */
559
560 static int
561 addrs_section_compar (const void *ap, const void *bp)
562 {
563 const struct other_sections *a = *((struct other_sections **) ap);
564 const struct other_sections *b = *((struct other_sections **) bp);
565 int retval, a_idx, b_idx;
566
567 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
568 if (retval)
569 return retval;
570
571 return a->sectindex - b->sectindex;
572 }
573
574 /* Provide sorted array of pointers to sections of ADDRS. The array is
575 terminated by NULL. Caller is responsible to call xfree for it. */
576
577 static struct other_sections **
578 addrs_section_sort (struct section_addr_info *addrs)
579 {
580 struct other_sections **array;
581 int i;
582
583 /* `+ 1' for the NULL terminator. */
584 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
585 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
586 array[i] = &addrs->other[i];
587 array[i] = NULL;
588
589 qsort (array, i, sizeof (*array), addrs_section_compar);
590
591 return array;
592 }
593
594 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
595 also SECTINDEXes specific to ABFD there. This function can be used to
596 rebase ADDRS to start referencing different BFD than before. */
597
598 void
599 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
600 {
601 asection *lower_sect;
602 CORE_ADDR lower_offset;
603 int i;
604 struct cleanup *my_cleanup;
605 struct section_addr_info *abfd_addrs;
606 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
607 struct other_sections **addrs_to_abfd_addrs;
608
609 /* Find lowest loadable section to be used as starting point for
610 continguous sections. */
611 lower_sect = NULL;
612 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
613 if (lower_sect == NULL)
614 {
615 warning (_("no loadable sections found in added symbol-file %s"),
616 bfd_get_filename (abfd));
617 lower_offset = 0;
618 }
619 else
620 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
621
622 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
623 in ABFD. Section names are not unique - there can be multiple sections of
624 the same name. Also the sections of the same name do not have to be
625 adjacent to each other. Some sections may be present only in one of the
626 files. Even sections present in both files do not have to be in the same
627 order.
628
629 Use stable sort by name for the sections in both files. Then linearly
630 scan both lists matching as most of the entries as possible. */
631
632 addrs_sorted = addrs_section_sort (addrs);
633 my_cleanup = make_cleanup (xfree, addrs_sorted);
634
635 abfd_addrs = build_section_addr_info_from_bfd (abfd);
636 make_cleanup_free_section_addr_info (abfd_addrs);
637 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
638 make_cleanup (xfree, abfd_addrs_sorted);
639
640 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
641 ABFD_ADDRS_SORTED. */
642
643 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
644 * addrs->num_sections);
645 make_cleanup (xfree, addrs_to_abfd_addrs);
646
647 while (*addrs_sorted)
648 {
649 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
650
651 while (*abfd_addrs_sorted
652 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
653 sect_name) < 0)
654 abfd_addrs_sorted++;
655
656 if (*abfd_addrs_sorted
657 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
658 sect_name) == 0)
659 {
660 int index_in_addrs;
661
662 /* Make the found item directly addressable from ADDRS. */
663 index_in_addrs = *addrs_sorted - addrs->other;
664 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
665 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
666
667 /* Never use the same ABFD entry twice. */
668 abfd_addrs_sorted++;
669 }
670
671 addrs_sorted++;
672 }
673
674 /* Calculate offsets for the loadable sections.
675 FIXME! Sections must be in order of increasing loadable section
676 so that contiguous sections can use the lower-offset!!!
677
678 Adjust offsets if the segments are not contiguous.
679 If the section is contiguous, its offset should be set to
680 the offset of the highest loadable section lower than it
681 (the loadable section directly below it in memory).
682 this_offset = lower_offset = lower_addr - lower_orig_addr */
683
684 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
685 {
686 struct other_sections *sect = addrs_to_abfd_addrs[i];
687
688 if (sect)
689 {
690 /* This is the index used by BFD. */
691 addrs->other[i].sectindex = sect->sectindex;
692
693 if (addrs->other[i].addr != 0)
694 {
695 addrs->other[i].addr -= sect->addr;
696 lower_offset = addrs->other[i].addr;
697 }
698 else
699 addrs->other[i].addr = lower_offset;
700 }
701 else
702 {
703 /* addr_section_name transformation is not used for SECT_NAME. */
704 const char *sect_name = addrs->other[i].name;
705
706 /* This section does not exist in ABFD, which is normally
707 unexpected and we want to issue a warning.
708
709 However, the ELF prelinker does create a few sections which are
710 marked in the main executable as loadable (they are loaded in
711 memory from the DYNAMIC segment) and yet are not present in
712 separate debug info files. This is fine, and should not cause
713 a warning. Shared libraries contain just the section
714 ".gnu.liblist" but it is not marked as loadable there. There is
715 no other way to identify them than by their name as the sections
716 created by prelink have no special flags.
717
718 For the sections `.bss' and `.sbss' see addr_section_name. */
719
720 if (!(strcmp (sect_name, ".gnu.liblist") == 0
721 || strcmp (sect_name, ".gnu.conflict") == 0
722 || (strcmp (sect_name, ".bss") == 0
723 && i > 0
724 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
725 && addrs_to_abfd_addrs[i - 1] != NULL)
726 || (strcmp (sect_name, ".sbss") == 0
727 && i > 0
728 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
729 && addrs_to_abfd_addrs[i - 1] != NULL)))
730 warning (_("section %s not found in %s"), sect_name,
731 bfd_get_filename (abfd));
732
733 addrs->other[i].addr = 0;
734 addrs->other[i].sectindex = -1;
735 }
736 }
737
738 do_cleanups (my_cleanup);
739 }
740
741 /* Parse the user's idea of an offset for dynamic linking, into our idea
742 of how to represent it for fast symbol reading. This is the default
743 version of the sym_fns.sym_offsets function for symbol readers that
744 don't need to do anything special. It allocates a section_offsets table
745 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
746
747 void
748 default_symfile_offsets (struct objfile *objfile,
749 struct section_addr_info *addrs)
750 {
751 objfile->num_sections = bfd_count_sections (objfile->obfd);
752 objfile->section_offsets = (struct section_offsets *)
753 obstack_alloc (&objfile->objfile_obstack,
754 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
755 relative_addr_info_to_section_offsets (objfile->section_offsets,
756 objfile->num_sections, addrs);
757
758 /* For relocatable files, all loadable sections will start at zero.
759 The zero is meaningless, so try to pick arbitrary addresses such
760 that no loadable sections overlap. This algorithm is quadratic,
761 but the number of sections in a single object file is generally
762 small. */
763 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
764 {
765 struct place_section_arg arg;
766 bfd *abfd = objfile->obfd;
767 asection *cur_sec;
768
769 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
770 /* We do not expect this to happen; just skip this step if the
771 relocatable file has a section with an assigned VMA. */
772 if (bfd_section_vma (abfd, cur_sec) != 0)
773 break;
774
775 if (cur_sec == NULL)
776 {
777 CORE_ADDR *offsets = objfile->section_offsets->offsets;
778
779 /* Pick non-overlapping offsets for sections the user did not
780 place explicitly. */
781 arg.offsets = objfile->section_offsets;
782 arg.lowest = 0;
783 bfd_map_over_sections (objfile->obfd, place_section, &arg);
784
785 /* Correctly filling in the section offsets is not quite
786 enough. Relocatable files have two properties that
787 (most) shared objects do not:
788
789 - Their debug information will contain relocations. Some
790 shared libraries do also, but many do not, so this can not
791 be assumed.
792
793 - If there are multiple code sections they will be loaded
794 at different relative addresses in memory than they are
795 in the objfile, since all sections in the file will start
796 at address zero.
797
798 Because GDB has very limited ability to map from an
799 address in debug info to the correct code section,
800 it relies on adding SECT_OFF_TEXT to things which might be
801 code. If we clear all the section offsets, and set the
802 section VMAs instead, then symfile_relocate_debug_section
803 will return meaningful debug information pointing at the
804 correct sections.
805
806 GDB has too many different data structures for section
807 addresses - a bfd, objfile, and so_list all have section
808 tables, as does exec_ops. Some of these could probably
809 be eliminated. */
810
811 for (cur_sec = abfd->sections; cur_sec != NULL;
812 cur_sec = cur_sec->next)
813 {
814 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
815 continue;
816
817 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
818 exec_set_section_address (bfd_get_filename (abfd),
819 cur_sec->index,
820 offsets[cur_sec->index]);
821 offsets[cur_sec->index] = 0;
822 }
823 }
824 }
825
826 /* Remember the bfd indexes for the .text, .data, .bss and
827 .rodata sections. */
828 init_objfile_sect_indices (objfile);
829 }
830
831
832 /* Divide the file into segments, which are individual relocatable units.
833 This is the default version of the sym_fns.sym_segments function for
834 symbol readers that do not have an explicit representation of segments.
835 It assumes that object files do not have segments, and fully linked
836 files have a single segment. */
837
838 struct symfile_segment_data *
839 default_symfile_segments (bfd *abfd)
840 {
841 int num_sections, i;
842 asection *sect;
843 struct symfile_segment_data *data;
844 CORE_ADDR low, high;
845
846 /* Relocatable files contain enough information to position each
847 loadable section independently; they should not be relocated
848 in segments. */
849 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
850 return NULL;
851
852 /* Make sure there is at least one loadable section in the file. */
853 for (sect = abfd->sections; sect != NULL; sect = sect->next)
854 {
855 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
856 continue;
857
858 break;
859 }
860 if (sect == NULL)
861 return NULL;
862
863 low = bfd_get_section_vma (abfd, sect);
864 high = low + bfd_get_section_size (sect);
865
866 data = XZALLOC (struct symfile_segment_data);
867 data->num_segments = 1;
868 data->segment_bases = XCALLOC (1, CORE_ADDR);
869 data->segment_sizes = XCALLOC (1, CORE_ADDR);
870
871 num_sections = bfd_count_sections (abfd);
872 data->segment_info = XCALLOC (num_sections, int);
873
874 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
875 {
876 CORE_ADDR vma;
877
878 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
879 continue;
880
881 vma = bfd_get_section_vma (abfd, sect);
882 if (vma < low)
883 low = vma;
884 if (vma + bfd_get_section_size (sect) > high)
885 high = vma + bfd_get_section_size (sect);
886
887 data->segment_info[i] = 1;
888 }
889
890 data->segment_bases[0] = low;
891 data->segment_sizes[0] = high - low;
892
893 return data;
894 }
895
896 /* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
899 OBJFILE is where the symbols are to be read from.
900
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
921
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
925
926 void
927 syms_from_objfile (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
931 int add_flags)
932 {
933 struct section_addr_info *local_addr = NULL;
934 struct cleanup *old_chain;
935 const int mainline = add_flags & SYMFILE_MAINLINE;
936
937 gdb_assert (! (addrs && offsets));
938
939 init_entry_point_info (objfile);
940 objfile->sf = find_sym_fns (objfile->obfd);
941
942 if (objfile->sf == NULL)
943 return; /* No symbols. */
944
945 /* Make sure that partially constructed symbol tables will be cleaned up
946 if an error occurs during symbol reading. */
947 old_chain = make_cleanup_free_objfile (objfile);
948
949 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
950 list. We now establish the convention that an addr of zero means
951 no load address was specified. */
952 if (! addrs && ! offsets)
953 {
954 local_addr
955 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
956 make_cleanup (xfree, local_addr);
957 addrs = local_addr;
958 }
959
960 /* Now either addrs or offsets is non-zero. */
961
962 if (mainline)
963 {
964 /* We will modify the main symbol table, make sure that all its users
965 will be cleaned up if an error occurs during symbol reading. */
966 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
967
968 /* Since no error yet, throw away the old symbol table. */
969
970 if (symfile_objfile != NULL)
971 {
972 free_objfile (symfile_objfile);
973 gdb_assert (symfile_objfile == NULL);
974 }
975
976 /* Currently we keep symbols from the add-symbol-file command.
977 If the user wants to get rid of them, they should do "symbol-file"
978 without arguments first. Not sure this is the best behavior
979 (PR 2207). */
980
981 (*objfile->sf->sym_new_init) (objfile);
982 }
983
984 /* Convert addr into an offset rather than an absolute address.
985 We find the lowest address of a loaded segment in the objfile,
986 and assume that <addr> is where that got loaded.
987
988 We no longer warn if the lowest section is not a text segment (as
989 happens for the PA64 port. */
990 if (addrs && addrs->other[0].name)
991 addr_info_make_relative (addrs, objfile->obfd);
992
993 /* Initialize symbol reading routines for this objfile, allow complaints to
994 appear for this new file, and record how verbose to be, then do the
995 initial symbol reading for this file. */
996
997 (*objfile->sf->sym_init) (objfile);
998 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
999
1000 if (addrs)
1001 (*objfile->sf->sym_offsets) (objfile, addrs);
1002 else
1003 {
1004 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1005
1006 /* Just copy in the offset table directly as given to us. */
1007 objfile->num_sections = num_offsets;
1008 objfile->section_offsets
1009 = ((struct section_offsets *)
1010 obstack_alloc (&objfile->objfile_obstack, size));
1011 memcpy (objfile->section_offsets, offsets, size);
1012
1013 init_objfile_sect_indices (objfile);
1014 }
1015
1016 (*objfile->sf->sym_read) (objfile, add_flags);
1017
1018 if ((add_flags & SYMFILE_NO_READ) == 0)
1019 require_partial_symbols (objfile, 0);
1020
1021 /* Discard cleanups as symbol reading was successful. */
1022
1023 discard_cleanups (old_chain);
1024 xfree (local_addr);
1025 }
1026
1027 /* Perform required actions after either reading in the initial
1028 symbols for a new objfile, or mapping in the symbols from a reusable
1029 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1030
1031 void
1032 new_symfile_objfile (struct objfile *objfile, int add_flags)
1033 {
1034 /* If this is the main symbol file we have to clean up all users of the
1035 old main symbol file. Otherwise it is sufficient to fixup all the
1036 breakpoints that may have been redefined by this symbol file. */
1037 if (add_flags & SYMFILE_MAINLINE)
1038 {
1039 /* OK, make it the "real" symbol file. */
1040 symfile_objfile = objfile;
1041
1042 clear_symtab_users (add_flags);
1043 }
1044 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1045 {
1046 breakpoint_re_set ();
1047 }
1048
1049 /* We're done reading the symbol file; finish off complaints. */
1050 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1051 }
1052
1053 /* Process a symbol file, as either the main file or as a dynamically
1054 loaded file.
1055
1056 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1057 This BFD will be closed on error, and is always consumed by this function.
1058
1059 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1060 extra, such as dynamically loaded code, and what to do with breakpoins.
1061
1062 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1063 syms_from_objfile, above.
1064 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1065
1066 PARENT is the original objfile if ABFD is a separate debug info file.
1067 Otherwise PARENT is NULL.
1068
1069 Upon success, returns a pointer to the objfile that was added.
1070 Upon failure, jumps back to command level (never returns). */
1071
1072 static struct objfile *
1073 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1074 int add_flags,
1075 struct section_addr_info *addrs,
1076 struct section_offsets *offsets,
1077 int num_offsets,
1078 int flags, struct objfile *parent)
1079 {
1080 struct objfile *objfile;
1081 struct cleanup *my_cleanups;
1082 const char *name = bfd_get_filename (abfd);
1083 const int from_tty = add_flags & SYMFILE_VERBOSE;
1084 const int should_print = ((from_tty || info_verbose)
1085 && (readnow_symbol_files
1086 || (add_flags & SYMFILE_NO_READ) == 0));
1087
1088 if (readnow_symbol_files)
1089 {
1090 flags |= OBJF_READNOW;
1091 add_flags &= ~SYMFILE_NO_READ;
1092 }
1093
1094 my_cleanups = make_cleanup_bfd_close (abfd);
1095
1096 /* Give user a chance to burp if we'd be
1097 interactively wiping out any existing symbols. */
1098
1099 if ((have_full_symbols () || have_partial_symbols ())
1100 && (add_flags & SYMFILE_MAINLINE)
1101 && from_tty
1102 && !query (_("Load new symbol table from \"%s\"? "), name))
1103 error (_("Not confirmed."));
1104
1105 objfile = allocate_objfile (abfd, flags);
1106 discard_cleanups (my_cleanups);
1107
1108 if (parent)
1109 add_separate_debug_objfile (objfile, parent);
1110
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (should_print)
1115 {
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
1118 else
1119 {
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124 }
1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (should_print)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if (should_print && !objfile_has_symbols (objfile))
1147 {
1148 wrap_here ("");
1149 printf_unfiltered (_("(no debugging symbols found)..."));
1150 wrap_here ("");
1151 }
1152
1153 if (should_print)
1154 {
1155 if (deprecated_post_add_symbol_hook)
1156 deprecated_post_add_symbol_hook ();
1157 else
1158 printf_unfiltered (_("done.\n"));
1159 }
1160
1161 /* We print some messages regardless of whether 'from_tty ||
1162 info_verbose' is true, so make sure they go out at the right
1163 time. */
1164 gdb_flush (gdb_stdout);
1165
1166 do_cleanups (my_cleanups);
1167
1168 if (objfile->sf == NULL)
1169 {
1170 observer_notify_new_objfile (objfile);
1171 return objfile; /* No symbols. */
1172 }
1173
1174 new_symfile_objfile (objfile, add_flags);
1175
1176 observer_notify_new_objfile (objfile);
1177
1178 bfd_cache_close_all ();
1179 return (objfile);
1180 }
1181
1182 /* Add BFD as a separate debug file for OBJFILE. */
1183
1184 void
1185 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1186 {
1187 struct objfile *new_objfile;
1188 struct section_addr_info *sap;
1189 struct cleanup *my_cleanup;
1190
1191 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1192 because sections of BFD may not match sections of OBJFILE and because
1193 vma may have been modified by tools such as prelink. */
1194 sap = build_section_addr_info_from_objfile (objfile);
1195 my_cleanup = make_cleanup_free_section_addr_info (sap);
1196
1197 new_objfile = symbol_file_add_with_addrs_or_offsets
1198 (bfd, symfile_flags,
1199 sap, NULL, 0,
1200 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1201 | OBJF_USERLOADED),
1202 objfile);
1203
1204 do_cleanups (my_cleanup);
1205 }
1206
1207 /* Process the symbol file ABFD, as either the main file or as a
1208 dynamically loaded file.
1209
1210 See symbol_file_add_with_addrs_or_offsets's comments for
1211 details. */
1212 struct objfile *
1213 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1214 struct section_addr_info *addrs,
1215 int flags, struct objfile *parent)
1216 {
1217 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1218 flags, parent);
1219 }
1220
1221
1222 /* Process a symbol file, as either the main file or as a dynamically
1223 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1224 for details. */
1225 struct objfile *
1226 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1227 int flags)
1228 {
1229 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1230 flags, NULL);
1231 }
1232
1233
1234 /* Call symbol_file_add() with default values and update whatever is
1235 affected by the loading of a new main().
1236 Used when the file is supplied in the gdb command line
1237 and by some targets with special loading requirements.
1238 The auxiliary function, symbol_file_add_main_1(), has the flags
1239 argument for the switches that can only be specified in the symbol_file
1240 command itself. */
1241
1242 void
1243 symbol_file_add_main (char *args, int from_tty)
1244 {
1245 symbol_file_add_main_1 (args, from_tty, 0);
1246 }
1247
1248 static void
1249 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1250 {
1251 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1252 symbol_file_add (args, add_flags, NULL, flags);
1253
1254 /* Getting new symbols may change our opinion about
1255 what is frameless. */
1256 reinit_frame_cache ();
1257
1258 set_initial_language ();
1259 }
1260
1261 void
1262 symbol_file_clear (int from_tty)
1263 {
1264 if ((have_full_symbols () || have_partial_symbols ())
1265 && from_tty
1266 && (symfile_objfile
1267 ? !query (_("Discard symbol table from `%s'? "),
1268 symfile_objfile->name)
1269 : !query (_("Discard symbol table? "))))
1270 error (_("Not confirmed."));
1271
1272 /* solib descriptors may have handles to objfiles. Wipe them before their
1273 objfiles get stale by free_all_objfiles. */
1274 no_shared_libraries (NULL, from_tty);
1275
1276 free_all_objfiles ();
1277
1278 gdb_assert (symfile_objfile == NULL);
1279 if (from_tty)
1280 printf_unfiltered (_("No symbol file now.\n"));
1281 }
1282
1283 static char *
1284 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1285 {
1286 asection *sect;
1287 bfd_size_type debuglink_size;
1288 unsigned long crc32;
1289 char *contents;
1290 int crc_offset;
1291
1292 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1293
1294 if (sect == NULL)
1295 return NULL;
1296
1297 debuglink_size = bfd_section_size (objfile->obfd, sect);
1298
1299 contents = xmalloc (debuglink_size);
1300 bfd_get_section_contents (objfile->obfd, sect, contents,
1301 (file_ptr)0, (bfd_size_type)debuglink_size);
1302
1303 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1304 crc_offset = strlen (contents) + 1;
1305 crc_offset = (crc_offset + 3) & ~3;
1306
1307 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1308
1309 *crc32_out = crc32;
1310 return contents;
1311 }
1312
1313 static int
1314 separate_debug_file_exists (const char *name, unsigned long crc,
1315 struct objfile *parent_objfile)
1316 {
1317 unsigned long file_crc = 0;
1318 bfd *abfd;
1319 gdb_byte buffer[8*1024];
1320 int count;
1321 struct stat parent_stat, abfd_stat;
1322
1323 /* Find a separate debug info file as if symbols would be present in
1324 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1325 section can contain just the basename of PARENT_OBJFILE without any
1326 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1327 the separate debug infos with the same basename can exist. */
1328
1329 if (filename_cmp (name, parent_objfile->name) == 0)
1330 return 0;
1331
1332 abfd = bfd_open_maybe_remote (name);
1333
1334 if (!abfd)
1335 return 0;
1336
1337 /* Verify symlinks were not the cause of filename_cmp name difference above.
1338
1339 Some operating systems, e.g. Windows, do not provide a meaningful
1340 st_ino; they always set it to zero. (Windows does provide a
1341 meaningful st_dev.) Do not indicate a duplicate library in that
1342 case. While there is no guarantee that a system that provides
1343 meaningful inode numbers will never set st_ino to zero, this is
1344 merely an optimization, so we do not need to worry about false
1345 negatives. */
1346
1347 if (bfd_stat (abfd, &abfd_stat) == 0
1348 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1349 && abfd_stat.st_dev == parent_stat.st_dev
1350 && abfd_stat.st_ino == parent_stat.st_ino
1351 && abfd_stat.st_ino != 0)
1352 {
1353 bfd_close (abfd);
1354 return 0;
1355 }
1356
1357 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1358 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1359
1360 bfd_close (abfd);
1361
1362 if (crc != file_crc)
1363 {
1364 warning (_("the debug information found in \"%s\""
1365 " does not match \"%s\" (CRC mismatch).\n"),
1366 name, parent_objfile->name);
1367 return 0;
1368 }
1369
1370 return 1;
1371 }
1372
1373 char *debug_file_directory = NULL;
1374 static void
1375 show_debug_file_directory (struct ui_file *file, int from_tty,
1376 struct cmd_list_element *c, const char *value)
1377 {
1378 fprintf_filtered (file,
1379 _("The directory where separate debug "
1380 "symbols are searched for is \"%s\".\n"),
1381 value);
1382 }
1383
1384 #if ! defined (DEBUG_SUBDIRECTORY)
1385 #define DEBUG_SUBDIRECTORY ".debug"
1386 #endif
1387
1388 char *
1389 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1390 {
1391 char *basename, *debugdir;
1392 char *dir = NULL;
1393 char *debugfile = NULL;
1394 char *canon_name = NULL;
1395 unsigned long crc32;
1396 int i;
1397
1398 basename = get_debug_link_info (objfile, &crc32);
1399
1400 if (basename == NULL)
1401 /* There's no separate debug info, hence there's no way we could
1402 load it => no warning. */
1403 goto cleanup_return_debugfile;
1404
1405 dir = xstrdup (objfile->name);
1406
1407 /* Strip off the final filename part, leaving the directory name,
1408 followed by a slash. The directory can be relative or absolute. */
1409 for (i = strlen(dir) - 1; i >= 0; i--)
1410 {
1411 if (IS_DIR_SEPARATOR (dir[i]))
1412 break;
1413 }
1414 /* If I is -1 then no directory is present there and DIR will be "". */
1415 dir[i+1] = '\0';
1416
1417 /* Set I to max (strlen (canon_name), strlen (dir)). */
1418 canon_name = lrealpath (dir);
1419 i = strlen (dir);
1420 if (canon_name && strlen (canon_name) > i)
1421 i = strlen (canon_name);
1422
1423 debugfile = xmalloc (strlen (debug_file_directory) + 1
1424 + i
1425 + strlen (DEBUG_SUBDIRECTORY)
1426 + strlen ("/")
1427 + strlen (basename)
1428 + 1);
1429
1430 /* First try in the same directory as the original file. */
1431 strcpy (debugfile, dir);
1432 strcat (debugfile, basename);
1433
1434 if (separate_debug_file_exists (debugfile, crc32, objfile))
1435 goto cleanup_return_debugfile;
1436
1437 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1438 strcpy (debugfile, dir);
1439 strcat (debugfile, DEBUG_SUBDIRECTORY);
1440 strcat (debugfile, "/");
1441 strcat (debugfile, basename);
1442
1443 if (separate_debug_file_exists (debugfile, crc32, objfile))
1444 goto cleanup_return_debugfile;
1445
1446 /* Then try in the global debugfile directories.
1447
1448 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1449 cause "/..." lookups. */
1450
1451 debugdir = debug_file_directory;
1452 do
1453 {
1454 char *debugdir_end;
1455
1456 while (*debugdir == DIRNAME_SEPARATOR)
1457 debugdir++;
1458
1459 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1460 if (debugdir_end == NULL)
1461 debugdir_end = &debugdir[strlen (debugdir)];
1462
1463 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1464 debugfile[debugdir_end - debugdir] = 0;
1465 strcat (debugfile, "/");
1466 strcat (debugfile, dir);
1467 strcat (debugfile, basename);
1468
1469 if (separate_debug_file_exists (debugfile, crc32, objfile))
1470 goto cleanup_return_debugfile;
1471
1472 /* If the file is in the sysroot, try using its base path in the
1473 global debugfile directory. */
1474 if (canon_name
1475 && filename_ncmp (canon_name, gdb_sysroot,
1476 strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1478 {
1479 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1480 debugfile[debugdir_end - debugdir] = 0;
1481 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1482 strcat (debugfile, "/");
1483 strcat (debugfile, basename);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 goto cleanup_return_debugfile;
1487 }
1488
1489 debugdir = debugdir_end;
1490 }
1491 while (*debugdir != 0);
1492
1493 xfree (debugfile);
1494 debugfile = NULL;
1495
1496 cleanup_return_debugfile:
1497 xfree (canon_name);
1498 xfree (basename);
1499 xfree (dir);
1500 return debugfile;
1501 }
1502
1503
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1517
1518 void
1519 symbol_file_command (char *args, int from_tty)
1520 {
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1525 symbol_file_clear (from_tty);
1526 }
1527 else
1528 {
1529 char **argv = gdb_buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 cleanups = make_cleanup_freeargv (argv);
1535 while (*argv != NULL)
1536 {
1537 if (strcmp (*argv, "-readnow") == 0)
1538 flags |= OBJF_READNOW;
1539 else if (**argv == '-')
1540 error (_("unknown option `%s'"), *argv);
1541 else
1542 {
1543 symbol_file_add_main_1 (*argv, from_tty, flags);
1544 name = *argv;
1545 }
1546
1547 argv++;
1548 }
1549
1550 if (name == NULL)
1551 error (_("no symbol file name was specified"));
1552
1553 do_cleanups (cleanups);
1554 }
1555 }
1556
1557 /* Set the initial language.
1558
1559 FIXME: A better solution would be to record the language in the
1560 psymtab when reading partial symbols, and then use it (if known) to
1561 set the language. This would be a win for formats that encode the
1562 language in an easily discoverable place, such as DWARF. For
1563 stabs, we can jump through hoops looking for specially named
1564 symbols or try to intuit the language from the specific type of
1565 stabs we find, but we can't do that until later when we read in
1566 full symbols. */
1567
1568 void
1569 set_initial_language (void)
1570 {
1571 enum language lang = language_unknown;
1572
1573 if (language_of_main != language_unknown)
1574 lang = language_of_main;
1575 else
1576 {
1577 const char *filename;
1578
1579 filename = find_main_filename ();
1580 if (filename != NULL)
1581 lang = deduce_language_from_filename (filename);
1582 }
1583
1584 if (lang == language_unknown)
1585 {
1586 /* Make C the default language */
1587 lang = language_c;
1588 }
1589
1590 set_language (lang);
1591 expected_language = current_language; /* Don't warn the user. */
1592 }
1593
1594 /* If NAME is a remote name open the file using remote protocol, otherwise
1595 open it normally. */
1596
1597 bfd *
1598 bfd_open_maybe_remote (const char *name)
1599 {
1600 if (remote_filename_p (name))
1601 return remote_bfd_open (name, gnutarget);
1602 else
1603 return bfd_openr (name, gnutarget);
1604 }
1605
1606
1607 /* Open the file specified by NAME and hand it off to BFD for
1608 preliminary analysis. Return a newly initialized bfd *, which
1609 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1610 absolute). In case of trouble, error() is called. */
1611
1612 bfd *
1613 symfile_bfd_open (char *name)
1614 {
1615 bfd *sym_bfd;
1616 int desc;
1617 char *absolute_name;
1618
1619 if (remote_filename_p (name))
1620 {
1621 name = xstrdup (name);
1622 sym_bfd = remote_bfd_open (name, gnutarget);
1623 if (!sym_bfd)
1624 {
1625 make_cleanup (xfree, name);
1626 error (_("`%s': can't open to read symbols: %s."), name,
1627 bfd_errmsg (bfd_get_error ()));
1628 }
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
1632 bfd_close (sym_bfd);
1633 make_cleanup (xfree, name);
1634 error (_("`%s': can't read symbols: %s."), name,
1635 bfd_errmsg (bfd_get_error ()));
1636 }
1637
1638 return sym_bfd;
1639 }
1640
1641 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1642
1643 /* Look down path for it, allocate 2nd new malloc'd copy. */
1644 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1645 O_RDONLY | O_BINARY, &absolute_name);
1646 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1647 if (desc < 0)
1648 {
1649 char *exename = alloca (strlen (name) + 5);
1650
1651 strcat (strcpy (exename, name), ".exe");
1652 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1653 O_RDONLY | O_BINARY, &absolute_name);
1654 }
1655 #endif
1656 if (desc < 0)
1657 {
1658 make_cleanup (xfree, name);
1659 perror_with_name (name);
1660 }
1661
1662 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1663 bfd. It'll be freed in free_objfile(). */
1664 xfree (name);
1665 name = absolute_name;
1666
1667 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1668 if (!sym_bfd)
1669 {
1670 close (desc);
1671 make_cleanup (xfree, name);
1672 error (_("`%s': can't open to read symbols: %s."), name,
1673 bfd_errmsg (bfd_get_error ()));
1674 }
1675 bfd_set_cacheable (sym_bfd, 1);
1676
1677 if (!bfd_check_format (sym_bfd, bfd_object))
1678 {
1679 /* FIXME: should be checking for errors from bfd_close (for one
1680 thing, on error it does not free all the storage associated
1681 with the bfd). */
1682 bfd_close (sym_bfd); /* This also closes desc. */
1683 make_cleanup (xfree, name);
1684 error (_("`%s': can't read symbols: %s."), name,
1685 bfd_errmsg (bfd_get_error ()));
1686 }
1687
1688 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1689 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1690
1691 return sym_bfd;
1692 }
1693
1694 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1695 the section was not found. */
1696
1697 int
1698 get_section_index (struct objfile *objfile, char *section_name)
1699 {
1700 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1701
1702 if (sect)
1703 return sect->index;
1704 else
1705 return -1;
1706 }
1707
1708 /* Link SF into the global symtab_fns list. Called on startup by the
1709 _initialize routine in each object file format reader, to register
1710 information about each format the reader is prepared to handle. */
1711
1712 void
1713 add_symtab_fns (const struct sym_fns *sf)
1714 {
1715 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1716 }
1717
1718 /* Initialize OBJFILE to read symbols from its associated BFD. It
1719 either returns or calls error(). The result is an initialized
1720 struct sym_fns in the objfile structure, that contains cached
1721 information about the symbol file. */
1722
1723 static const struct sym_fns *
1724 find_sym_fns (bfd *abfd)
1725 {
1726 const struct sym_fns *sf;
1727 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1728 int i;
1729
1730 if (our_flavour == bfd_target_srec_flavour
1731 || our_flavour == bfd_target_ihex_flavour
1732 || our_flavour == bfd_target_tekhex_flavour)
1733 return NULL; /* No symbols. */
1734
1735 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1736 if (our_flavour == sf->sym_flavour)
1737 return sf;
1738
1739 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1740 bfd_get_target (abfd));
1741 }
1742 \f
1743
1744 /* This function runs the load command of our current target. */
1745
1746 static void
1747 load_command (char *arg, int from_tty)
1748 {
1749 dont_repeat ();
1750
1751 /* The user might be reloading because the binary has changed. Take
1752 this opportunity to check. */
1753 reopen_exec_file ();
1754 reread_symbols ();
1755
1756 if (arg == NULL)
1757 {
1758 char *parg;
1759 int count = 0;
1760
1761 parg = arg = get_exec_file (1);
1762
1763 /* Count how many \ " ' tab space there are in the name. */
1764 while ((parg = strpbrk (parg, "\\\"'\t ")))
1765 {
1766 parg++;
1767 count++;
1768 }
1769
1770 if (count)
1771 {
1772 /* We need to quote this string so buildargv can pull it apart. */
1773 char *temp = xmalloc (strlen (arg) + count + 1 );
1774 char *ptemp = temp;
1775 char *prev;
1776
1777 make_cleanup (xfree, temp);
1778
1779 prev = parg = arg;
1780 while ((parg = strpbrk (parg, "\\\"'\t ")))
1781 {
1782 strncpy (ptemp, prev, parg - prev);
1783 ptemp += parg - prev;
1784 prev = parg++;
1785 *ptemp++ = '\\';
1786 }
1787 strcpy (ptemp, prev);
1788
1789 arg = temp;
1790 }
1791 }
1792
1793 target_load (arg, from_tty);
1794
1795 /* After re-loading the executable, we don't really know which
1796 overlays are mapped any more. */
1797 overlay_cache_invalid = 1;
1798 }
1799
1800 /* This version of "load" should be usable for any target. Currently
1801 it is just used for remote targets, not inftarg.c or core files,
1802 on the theory that only in that case is it useful.
1803
1804 Avoiding xmodem and the like seems like a win (a) because we don't have
1805 to worry about finding it, and (b) On VMS, fork() is very slow and so
1806 we don't want to run a subprocess. On the other hand, I'm not sure how
1807 performance compares. */
1808
1809 static int validate_download = 0;
1810
1811 /* Callback service function for generic_load (bfd_map_over_sections). */
1812
1813 static void
1814 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1815 {
1816 bfd_size_type *sum = data;
1817
1818 *sum += bfd_get_section_size (asec);
1819 }
1820
1821 /* Opaque data for load_section_callback. */
1822 struct load_section_data {
1823 unsigned long load_offset;
1824 struct load_progress_data *progress_data;
1825 VEC(memory_write_request_s) *requests;
1826 };
1827
1828 /* Opaque data for load_progress. */
1829 struct load_progress_data {
1830 /* Cumulative data. */
1831 unsigned long write_count;
1832 unsigned long data_count;
1833 bfd_size_type total_size;
1834 };
1835
1836 /* Opaque data for load_progress for a single section. */
1837 struct load_progress_section_data {
1838 struct load_progress_data *cumulative;
1839
1840 /* Per-section data. */
1841 const char *section_name;
1842 ULONGEST section_sent;
1843 ULONGEST section_size;
1844 CORE_ADDR lma;
1845 gdb_byte *buffer;
1846 };
1847
1848 /* Target write callback routine for progress reporting. */
1849
1850 static void
1851 load_progress (ULONGEST bytes, void *untyped_arg)
1852 {
1853 struct load_progress_section_data *args = untyped_arg;
1854 struct load_progress_data *totals;
1855
1856 if (args == NULL)
1857 /* Writing padding data. No easy way to get at the cumulative
1858 stats, so just ignore this. */
1859 return;
1860
1861 totals = args->cumulative;
1862
1863 if (bytes == 0 && args->section_sent == 0)
1864 {
1865 /* The write is just starting. Let the user know we've started
1866 this section. */
1867 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1868 args->section_name, hex_string (args->section_size),
1869 paddress (target_gdbarch, args->lma));
1870 return;
1871 }
1872
1873 if (validate_download)
1874 {
1875 /* Broken memories and broken monitors manifest themselves here
1876 when bring new computers to life. This doubles already slow
1877 downloads. */
1878 /* NOTE: cagney/1999-10-18: A more efficient implementation
1879 might add a verify_memory() method to the target vector and
1880 then use that. remote.c could implement that method using
1881 the ``qCRC'' packet. */
1882 gdb_byte *check = xmalloc (bytes);
1883 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1884
1885 if (target_read_memory (args->lma, check, bytes) != 0)
1886 error (_("Download verify read failed at %s"),
1887 paddress (target_gdbarch, args->lma));
1888 if (memcmp (args->buffer, check, bytes) != 0)
1889 error (_("Download verify compare failed at %s"),
1890 paddress (target_gdbarch, args->lma));
1891 do_cleanups (verify_cleanups);
1892 }
1893 totals->data_count += bytes;
1894 args->lma += bytes;
1895 args->buffer += bytes;
1896 totals->write_count += 1;
1897 args->section_sent += bytes;
1898 if (quit_flag
1899 || (deprecated_ui_load_progress_hook != NULL
1900 && deprecated_ui_load_progress_hook (args->section_name,
1901 args->section_sent)))
1902 error (_("Canceled the download"));
1903
1904 if (deprecated_show_load_progress != NULL)
1905 deprecated_show_load_progress (args->section_name,
1906 args->section_sent,
1907 args->section_size,
1908 totals->data_count,
1909 totals->total_size);
1910 }
1911
1912 /* Callback service function for generic_load (bfd_map_over_sections). */
1913
1914 static void
1915 load_section_callback (bfd *abfd, asection *asec, void *data)
1916 {
1917 struct memory_write_request *new_request;
1918 struct load_section_data *args = data;
1919 struct load_progress_section_data *section_data;
1920 bfd_size_type size = bfd_get_section_size (asec);
1921 gdb_byte *buffer;
1922 const char *sect_name = bfd_get_section_name (abfd, asec);
1923
1924 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1925 return;
1926
1927 if (size == 0)
1928 return;
1929
1930 new_request = VEC_safe_push (memory_write_request_s,
1931 args->requests, NULL);
1932 memset (new_request, 0, sizeof (struct memory_write_request));
1933 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1934 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1935 new_request->end = new_request->begin + size; /* FIXME Should size
1936 be in instead? */
1937 new_request->data = xmalloc (size);
1938 new_request->baton = section_data;
1939
1940 buffer = new_request->data;
1941
1942 section_data->cumulative = args->progress_data;
1943 section_data->section_name = sect_name;
1944 section_data->section_size = size;
1945 section_data->lma = new_request->begin;
1946 section_data->buffer = buffer;
1947
1948 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1949 }
1950
1951 /* Clean up an entire memory request vector, including load
1952 data and progress records. */
1953
1954 static void
1955 clear_memory_write_data (void *arg)
1956 {
1957 VEC(memory_write_request_s) **vec_p = arg;
1958 VEC(memory_write_request_s) *vec = *vec_p;
1959 int i;
1960 struct memory_write_request *mr;
1961
1962 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1963 {
1964 xfree (mr->data);
1965 xfree (mr->baton);
1966 }
1967 VEC_free (memory_write_request_s, vec);
1968 }
1969
1970 void
1971 generic_load (char *args, int from_tty)
1972 {
1973 bfd *loadfile_bfd;
1974 struct timeval start_time, end_time;
1975 char *filename;
1976 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1977 struct load_section_data cbdata;
1978 struct load_progress_data total_progress;
1979 struct ui_out *uiout = current_uiout;
1980
1981 CORE_ADDR entry;
1982 char **argv;
1983
1984 memset (&cbdata, 0, sizeof (cbdata));
1985 memset (&total_progress, 0, sizeof (total_progress));
1986 cbdata.progress_data = &total_progress;
1987
1988 make_cleanup (clear_memory_write_data, &cbdata.requests);
1989
1990 if (args == NULL)
1991 error_no_arg (_("file to load"));
1992
1993 argv = gdb_buildargv (args);
1994 make_cleanup_freeargv (argv);
1995
1996 filename = tilde_expand (argv[0]);
1997 make_cleanup (xfree, filename);
1998
1999 if (argv[1] != NULL)
2000 {
2001 char *endptr;
2002
2003 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2004
2005 /* If the last word was not a valid number then
2006 treat it as a file name with spaces in. */
2007 if (argv[1] == endptr)
2008 error (_("Invalid download offset:%s."), argv[1]);
2009
2010 if (argv[2] != NULL)
2011 error (_("Too many parameters."));
2012 }
2013
2014 /* Open the file for loading. */
2015 loadfile_bfd = bfd_openr (filename, gnutarget);
2016 if (loadfile_bfd == NULL)
2017 {
2018 perror_with_name (filename);
2019 return;
2020 }
2021
2022 /* FIXME: should be checking for errors from bfd_close (for one thing,
2023 on error it does not free all the storage associated with the
2024 bfd). */
2025 make_cleanup_bfd_close (loadfile_bfd);
2026
2027 if (!bfd_check_format (loadfile_bfd, bfd_object))
2028 {
2029 error (_("\"%s\" is not an object file: %s"), filename,
2030 bfd_errmsg (bfd_get_error ()));
2031 }
2032
2033 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2034 (void *) &total_progress.total_size);
2035
2036 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2037
2038 gettimeofday (&start_time, NULL);
2039
2040 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2041 load_progress) != 0)
2042 error (_("Load failed"));
2043
2044 gettimeofday (&end_time, NULL);
2045
2046 entry = bfd_get_start_address (loadfile_bfd);
2047 ui_out_text (uiout, "Start address ");
2048 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2049 ui_out_text (uiout, ", load size ");
2050 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2051 ui_out_text (uiout, "\n");
2052 /* We were doing this in remote-mips.c, I suspect it is right
2053 for other targets too. */
2054 regcache_write_pc (get_current_regcache (), entry);
2055
2056 /* Reset breakpoints, now that we have changed the load image. For
2057 instance, breakpoints may have been set (or reset, by
2058 post_create_inferior) while connected to the target but before we
2059 loaded the program. In that case, the prologue analyzer could
2060 have read instructions from the target to find the right
2061 breakpoint locations. Loading has changed the contents of that
2062 memory. */
2063
2064 breakpoint_re_set ();
2065
2066 /* FIXME: are we supposed to call symbol_file_add or not? According
2067 to a comment from remote-mips.c (where a call to symbol_file_add
2068 was commented out), making the call confuses GDB if more than one
2069 file is loaded in. Some targets do (e.g., remote-vx.c) but
2070 others don't (or didn't - perhaps they have all been deleted). */
2071
2072 print_transfer_performance (gdb_stdout, total_progress.data_count,
2073 total_progress.write_count,
2074 &start_time, &end_time);
2075
2076 do_cleanups (old_cleanups);
2077 }
2078
2079 /* Report how fast the transfer went. */
2080
2081 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2082 replaced by print_transfer_performance (with a very different
2083 function signature). */
2084
2085 void
2086 report_transfer_performance (unsigned long data_count, time_t start_time,
2087 time_t end_time)
2088 {
2089 struct timeval start, end;
2090
2091 start.tv_sec = start_time;
2092 start.tv_usec = 0;
2093 end.tv_sec = end_time;
2094 end.tv_usec = 0;
2095
2096 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2097 }
2098
2099 void
2100 print_transfer_performance (struct ui_file *stream,
2101 unsigned long data_count,
2102 unsigned long write_count,
2103 const struct timeval *start_time,
2104 const struct timeval *end_time)
2105 {
2106 ULONGEST time_count;
2107 struct ui_out *uiout = current_uiout;
2108
2109 /* Compute the elapsed time in milliseconds, as a tradeoff between
2110 accuracy and overflow. */
2111 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2112 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2113
2114 ui_out_text (uiout, "Transfer rate: ");
2115 if (time_count > 0)
2116 {
2117 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2118
2119 if (ui_out_is_mi_like_p (uiout))
2120 {
2121 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2122 ui_out_text (uiout, " bits/sec");
2123 }
2124 else if (rate < 1024)
2125 {
2126 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2127 ui_out_text (uiout, " bytes/sec");
2128 }
2129 else
2130 {
2131 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2132 ui_out_text (uiout, " KB/sec");
2133 }
2134 }
2135 else
2136 {
2137 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2138 ui_out_text (uiout, " bits in <1 sec");
2139 }
2140 if (write_count > 0)
2141 {
2142 ui_out_text (uiout, ", ");
2143 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2144 ui_out_text (uiout, " bytes/write");
2145 }
2146 ui_out_text (uiout, ".\n");
2147 }
2148
2149 /* This function allows the addition of incrementally linked object files.
2150 It does not modify any state in the target, only in the debugger. */
2151 /* Note: ezannoni 2000-04-13 This function/command used to have a
2152 special case syntax for the rombug target (Rombug is the boot
2153 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2154 rombug case, the user doesn't need to supply a text address,
2155 instead a call to target_link() (in target.c) would supply the
2156 value to use. We are now discontinuing this type of ad hoc syntax. */
2157
2158 static void
2159 add_symbol_file_command (char *args, int from_tty)
2160 {
2161 struct gdbarch *gdbarch = get_current_arch ();
2162 char *filename = NULL;
2163 int flags = OBJF_USERLOADED;
2164 char *arg;
2165 int section_index = 0;
2166 int argcnt = 0;
2167 int sec_num = 0;
2168 int i;
2169 int expecting_sec_name = 0;
2170 int expecting_sec_addr = 0;
2171 char **argv;
2172
2173 struct sect_opt
2174 {
2175 char *name;
2176 char *value;
2177 };
2178
2179 struct section_addr_info *section_addrs;
2180 struct sect_opt *sect_opts = NULL;
2181 size_t num_sect_opts = 0;
2182 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2183
2184 num_sect_opts = 16;
2185 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2186 * sizeof (struct sect_opt));
2187
2188 dont_repeat ();
2189
2190 if (args == NULL)
2191 error (_("add-symbol-file takes a file name and an address"));
2192
2193 argv = gdb_buildargv (args);
2194 make_cleanup_freeargv (argv);
2195
2196 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2197 {
2198 /* Process the argument. */
2199 if (argcnt == 0)
2200 {
2201 /* The first argument is the file name. */
2202 filename = tilde_expand (arg);
2203 make_cleanup (xfree, filename);
2204 }
2205 else
2206 if (argcnt == 1)
2207 {
2208 /* The second argument is always the text address at which
2209 to load the program. */
2210 sect_opts[section_index].name = ".text";
2211 sect_opts[section_index].value = arg;
2212 if (++section_index >= num_sect_opts)
2213 {
2214 num_sect_opts *= 2;
2215 sect_opts = ((struct sect_opt *)
2216 xrealloc (sect_opts,
2217 num_sect_opts
2218 * sizeof (struct sect_opt)));
2219 }
2220 }
2221 else
2222 {
2223 /* It's an option (starting with '-') or it's an argument
2224 to an option. */
2225
2226 if (*arg == '-')
2227 {
2228 if (strcmp (arg, "-readnow") == 0)
2229 flags |= OBJF_READNOW;
2230 else if (strcmp (arg, "-s") == 0)
2231 {
2232 expecting_sec_name = 1;
2233 expecting_sec_addr = 1;
2234 }
2235 }
2236 else
2237 {
2238 if (expecting_sec_name)
2239 {
2240 sect_opts[section_index].name = arg;
2241 expecting_sec_name = 0;
2242 }
2243 else
2244 if (expecting_sec_addr)
2245 {
2246 sect_opts[section_index].value = arg;
2247 expecting_sec_addr = 0;
2248 if (++section_index >= num_sect_opts)
2249 {
2250 num_sect_opts *= 2;
2251 sect_opts = ((struct sect_opt *)
2252 xrealloc (sect_opts,
2253 num_sect_opts
2254 * sizeof (struct sect_opt)));
2255 }
2256 }
2257 else
2258 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2259 " [-mapped] [-readnow] [-s <secname> <addr>]*"));
2260 }
2261 }
2262 }
2263
2264 /* This command takes at least two arguments. The first one is a
2265 filename, and the second is the address where this file has been
2266 loaded. Abort now if this address hasn't been provided by the
2267 user. */
2268 if (section_index < 1)
2269 error (_("The address where %s has been loaded is missing"), filename);
2270
2271 /* Print the prompt for the query below. And save the arguments into
2272 a sect_addr_info structure to be passed around to other
2273 functions. We have to split this up into separate print
2274 statements because hex_string returns a local static
2275 string. */
2276
2277 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2278 section_addrs = alloc_section_addr_info (section_index);
2279 make_cleanup (xfree, section_addrs);
2280 for (i = 0; i < section_index; i++)
2281 {
2282 CORE_ADDR addr;
2283 char *val = sect_opts[i].value;
2284 char *sec = sect_opts[i].name;
2285
2286 addr = parse_and_eval_address (val);
2287
2288 /* Here we store the section offsets in the order they were
2289 entered on the command line. */
2290 section_addrs->other[sec_num].name = sec;
2291 section_addrs->other[sec_num].addr = addr;
2292 printf_unfiltered ("\t%s_addr = %s\n", sec,
2293 paddress (gdbarch, addr));
2294 sec_num++;
2295
2296 /* The object's sections are initialized when a
2297 call is made to build_objfile_section_table (objfile).
2298 This happens in reread_symbols.
2299 At this point, we don't know what file type this is,
2300 so we can't determine what section names are valid. */
2301 }
2302
2303 if (from_tty && (!query ("%s", "")))
2304 error (_("Not confirmed."));
2305
2306 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2307 section_addrs, flags);
2308
2309 /* Getting new symbols may change our opinion about what is
2310 frameless. */
2311 reinit_frame_cache ();
2312 do_cleanups (my_cleanups);
2313 }
2314 \f
2315
2316 /* Re-read symbols if a symbol-file has changed. */
2317 void
2318 reread_symbols (void)
2319 {
2320 struct objfile *objfile;
2321 long new_modtime;
2322 int reread_one = 0;
2323 struct stat new_statbuf;
2324 int res;
2325
2326 /* With the addition of shared libraries, this should be modified,
2327 the load time should be saved in the partial symbol tables, since
2328 different tables may come from different source files. FIXME.
2329 This routine should then walk down each partial symbol table
2330 and see if the symbol table that it originates from has been changed. */
2331
2332 for (objfile = object_files; objfile; objfile = objfile->next)
2333 {
2334 /* solib-sunos.c creates one objfile with obfd. */
2335 if (objfile->obfd == NULL)
2336 continue;
2337
2338 /* Separate debug objfiles are handled in the main objfile. */
2339 if (objfile->separate_debug_objfile_backlink)
2340 continue;
2341
2342 /* If this object is from an archive (what you usually create with
2343 `ar', often called a `static library' on most systems, though
2344 a `shared library' on AIX is also an archive), then you should
2345 stat on the archive name, not member name. */
2346 if (objfile->obfd->my_archive)
2347 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2348 else
2349 res = stat (objfile->name, &new_statbuf);
2350 if (res != 0)
2351 {
2352 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2353 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2354 objfile->name);
2355 continue;
2356 }
2357 new_modtime = new_statbuf.st_mtime;
2358 if (new_modtime != objfile->mtime)
2359 {
2360 struct cleanup *old_cleanups;
2361 struct section_offsets *offsets;
2362 int num_offsets;
2363 char *obfd_filename;
2364
2365 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2366 objfile->name);
2367
2368 /* There are various functions like symbol_file_add,
2369 symfile_bfd_open, syms_from_objfile, etc., which might
2370 appear to do what we want. But they have various other
2371 effects which we *don't* want. So we just do stuff
2372 ourselves. We don't worry about mapped files (for one thing,
2373 any mapped file will be out of date). */
2374
2375 /* If we get an error, blow away this objfile (not sure if
2376 that is the correct response for things like shared
2377 libraries). */
2378 old_cleanups = make_cleanup_free_objfile (objfile);
2379 /* We need to do this whenever any symbols go away. */
2380 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2381
2382 if (exec_bfd != NULL
2383 && filename_cmp (bfd_get_filename (objfile->obfd),
2384 bfd_get_filename (exec_bfd)) == 0)
2385 {
2386 /* Reload EXEC_BFD without asking anything. */
2387
2388 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2389 }
2390
2391 /* Clean up any state BFD has sitting around. We don't need
2392 to close the descriptor but BFD lacks a way of closing the
2393 BFD without closing the descriptor. */
2394 obfd_filename = bfd_get_filename (objfile->obfd);
2395 if (!bfd_close (objfile->obfd))
2396 error (_("Can't close BFD for %s: %s"), objfile->name,
2397 bfd_errmsg (bfd_get_error ()));
2398 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2399 if (objfile->obfd == NULL)
2400 error (_("Can't open %s to read symbols."), objfile->name);
2401 else
2402 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2403 /* bfd_openr sets cacheable to true, which is what we want. */
2404 if (!bfd_check_format (objfile->obfd, bfd_object))
2405 error (_("Can't read symbols from %s: %s."), objfile->name,
2406 bfd_errmsg (bfd_get_error ()));
2407
2408 /* Save the offsets, we will nuke them with the rest of the
2409 objfile_obstack. */
2410 num_offsets = objfile->num_sections;
2411 offsets = ((struct section_offsets *)
2412 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2413 memcpy (offsets, objfile->section_offsets,
2414 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2415
2416 /* Remove any references to this objfile in the global
2417 value lists. */
2418 preserve_values (objfile);
2419
2420 /* Nuke all the state that we will re-read. Much of the following
2421 code which sets things to NULL really is necessary to tell
2422 other parts of GDB that there is nothing currently there.
2423
2424 Try to keep the freeing order compatible with free_objfile. */
2425
2426 if (objfile->sf != NULL)
2427 {
2428 (*objfile->sf->sym_finish) (objfile);
2429 }
2430
2431 clear_objfile_data (objfile);
2432
2433 /* Free the separate debug objfiles. It will be
2434 automatically recreated by sym_read. */
2435 free_objfile_separate_debug (objfile);
2436
2437 /* FIXME: Do we have to free a whole linked list, or is this
2438 enough? */
2439 if (objfile->global_psymbols.list)
2440 xfree (objfile->global_psymbols.list);
2441 memset (&objfile->global_psymbols, 0,
2442 sizeof (objfile->global_psymbols));
2443 if (objfile->static_psymbols.list)
2444 xfree (objfile->static_psymbols.list);
2445 memset (&objfile->static_psymbols, 0,
2446 sizeof (objfile->static_psymbols));
2447
2448 /* Free the obstacks for non-reusable objfiles. */
2449 psymbol_bcache_free (objfile->psymbol_cache);
2450 objfile->psymbol_cache = psymbol_bcache_init ();
2451 bcache_xfree (objfile->macro_cache);
2452 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2453 bcache_xfree (objfile->filename_cache);
2454 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2455 if (objfile->demangled_names_hash != NULL)
2456 {
2457 htab_delete (objfile->demangled_names_hash);
2458 objfile->demangled_names_hash = NULL;
2459 }
2460 obstack_free (&objfile->objfile_obstack, 0);
2461 objfile->sections = NULL;
2462 objfile->symtabs = NULL;
2463 objfile->psymtabs = NULL;
2464 objfile->psymtabs_addrmap = NULL;
2465 objfile->free_psymtabs = NULL;
2466 objfile->template_symbols = NULL;
2467 objfile->msymbols = NULL;
2468 objfile->deprecated_sym_private = NULL;
2469 objfile->minimal_symbol_count = 0;
2470 memset (&objfile->msymbol_hash, 0,
2471 sizeof (objfile->msymbol_hash));
2472 memset (&objfile->msymbol_demangled_hash, 0,
2473 sizeof (objfile->msymbol_demangled_hash));
2474
2475 objfile->psymbol_cache = psymbol_bcache_init ();
2476 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2477 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2478 /* obstack_init also initializes the obstack so it is
2479 empty. We could use obstack_specify_allocation but
2480 gdb_obstack.h specifies the alloc/dealloc
2481 functions. */
2482 obstack_init (&objfile->objfile_obstack);
2483 if (build_objfile_section_table (objfile))
2484 {
2485 error (_("Can't find the file sections in `%s': %s"),
2486 objfile->name, bfd_errmsg (bfd_get_error ()));
2487 }
2488 terminate_minimal_symbol_table (objfile);
2489
2490 /* We use the same section offsets as from last time. I'm not
2491 sure whether that is always correct for shared libraries. */
2492 objfile->section_offsets = (struct section_offsets *)
2493 obstack_alloc (&objfile->objfile_obstack,
2494 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2495 memcpy (objfile->section_offsets, offsets,
2496 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2497 objfile->num_sections = num_offsets;
2498
2499 /* What the hell is sym_new_init for, anyway? The concept of
2500 distinguishing between the main file and additional files
2501 in this way seems rather dubious. */
2502 if (objfile == symfile_objfile)
2503 {
2504 (*objfile->sf->sym_new_init) (objfile);
2505 }
2506
2507 (*objfile->sf->sym_init) (objfile);
2508 clear_complaints (&symfile_complaints, 1, 1);
2509 /* Do not set flags as this is safe and we don't want to be
2510 verbose. */
2511 (*objfile->sf->sym_read) (objfile, 0);
2512 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2513 {
2514 objfile->flags &= ~OBJF_PSYMTABS_READ;
2515 require_partial_symbols (objfile, 0);
2516 }
2517
2518 if (!objfile_has_symbols (objfile))
2519 {
2520 wrap_here ("");
2521 printf_unfiltered (_("(no debugging symbols found)\n"));
2522 wrap_here ("");
2523 }
2524
2525 /* We're done reading the symbol file; finish off complaints. */
2526 clear_complaints (&symfile_complaints, 0, 1);
2527
2528 /* Getting new symbols may change our opinion about what is
2529 frameless. */
2530
2531 reinit_frame_cache ();
2532
2533 /* Discard cleanups as symbol reading was successful. */
2534 discard_cleanups (old_cleanups);
2535
2536 /* If the mtime has changed between the time we set new_modtime
2537 and now, we *want* this to be out of date, so don't call stat
2538 again now. */
2539 objfile->mtime = new_modtime;
2540 reread_one = 1;
2541 init_entry_point_info (objfile);
2542 }
2543 }
2544
2545 if (reread_one)
2546 {
2547 /* Notify objfiles that we've modified objfile sections. */
2548 objfiles_changed ();
2549
2550 clear_symtab_users (0);
2551 /* At least one objfile has changed, so we can consider that
2552 the executable we're debugging has changed too. */
2553 observer_notify_executable_changed ();
2554 }
2555 }
2556 \f
2557
2558
2559 typedef struct
2560 {
2561 char *ext;
2562 enum language lang;
2563 }
2564 filename_language;
2565
2566 static filename_language *filename_language_table;
2567 static int fl_table_size, fl_table_next;
2568
2569 static void
2570 add_filename_language (char *ext, enum language lang)
2571 {
2572 if (fl_table_next >= fl_table_size)
2573 {
2574 fl_table_size += 10;
2575 filename_language_table =
2576 xrealloc (filename_language_table,
2577 fl_table_size * sizeof (*filename_language_table));
2578 }
2579
2580 filename_language_table[fl_table_next].ext = xstrdup (ext);
2581 filename_language_table[fl_table_next].lang = lang;
2582 fl_table_next++;
2583 }
2584
2585 static char *ext_args;
2586 static void
2587 show_ext_args (struct ui_file *file, int from_tty,
2588 struct cmd_list_element *c, const char *value)
2589 {
2590 fprintf_filtered (file,
2591 _("Mapping between filename extension "
2592 "and source language is \"%s\".\n"),
2593 value);
2594 }
2595
2596 static void
2597 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2598 {
2599 int i;
2600 char *cp = ext_args;
2601 enum language lang;
2602
2603 /* First arg is filename extension, starting with '.' */
2604 if (*cp != '.')
2605 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2606
2607 /* Find end of first arg. */
2608 while (*cp && !isspace (*cp))
2609 cp++;
2610
2611 if (*cp == '\0')
2612 error (_("'%s': two arguments required -- "
2613 "filename extension and language"),
2614 ext_args);
2615
2616 /* Null-terminate first arg. */
2617 *cp++ = '\0';
2618
2619 /* Find beginning of second arg, which should be a source language. */
2620 while (*cp && isspace (*cp))
2621 cp++;
2622
2623 if (*cp == '\0')
2624 error (_("'%s': two arguments required -- "
2625 "filename extension and language"),
2626 ext_args);
2627
2628 /* Lookup the language from among those we know. */
2629 lang = language_enum (cp);
2630
2631 /* Now lookup the filename extension: do we already know it? */
2632 for (i = 0; i < fl_table_next; i++)
2633 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2634 break;
2635
2636 if (i >= fl_table_next)
2637 {
2638 /* New file extension. */
2639 add_filename_language (ext_args, lang);
2640 }
2641 else
2642 {
2643 /* Redefining a previously known filename extension. */
2644
2645 /* if (from_tty) */
2646 /* query ("Really make files of type %s '%s'?", */
2647 /* ext_args, language_str (lang)); */
2648
2649 xfree (filename_language_table[i].ext);
2650 filename_language_table[i].ext = xstrdup (ext_args);
2651 filename_language_table[i].lang = lang;
2652 }
2653 }
2654
2655 static void
2656 info_ext_lang_command (char *args, int from_tty)
2657 {
2658 int i;
2659
2660 printf_filtered (_("Filename extensions and the languages they represent:"));
2661 printf_filtered ("\n\n");
2662 for (i = 0; i < fl_table_next; i++)
2663 printf_filtered ("\t%s\t- %s\n",
2664 filename_language_table[i].ext,
2665 language_str (filename_language_table[i].lang));
2666 }
2667
2668 static void
2669 init_filename_language_table (void)
2670 {
2671 if (fl_table_size == 0) /* Protect against repetition. */
2672 {
2673 fl_table_size = 20;
2674 fl_table_next = 0;
2675 filename_language_table =
2676 xmalloc (fl_table_size * sizeof (*filename_language_table));
2677 add_filename_language (".c", language_c);
2678 add_filename_language (".d", language_d);
2679 add_filename_language (".C", language_cplus);
2680 add_filename_language (".cc", language_cplus);
2681 add_filename_language (".cp", language_cplus);
2682 add_filename_language (".cpp", language_cplus);
2683 add_filename_language (".cxx", language_cplus);
2684 add_filename_language (".c++", language_cplus);
2685 add_filename_language (".java", language_java);
2686 add_filename_language (".class", language_java);
2687 add_filename_language (".m", language_objc);
2688 add_filename_language (".f", language_fortran);
2689 add_filename_language (".F", language_fortran);
2690 add_filename_language (".for", language_fortran);
2691 add_filename_language (".FOR", language_fortran);
2692 add_filename_language (".ftn", language_fortran);
2693 add_filename_language (".FTN", language_fortran);
2694 add_filename_language (".fpp", language_fortran);
2695 add_filename_language (".FPP", language_fortran);
2696 add_filename_language (".f90", language_fortran);
2697 add_filename_language (".F90", language_fortran);
2698 add_filename_language (".f95", language_fortran);
2699 add_filename_language (".F95", language_fortran);
2700 add_filename_language (".f03", language_fortran);
2701 add_filename_language (".F03", language_fortran);
2702 add_filename_language (".f08", language_fortran);
2703 add_filename_language (".F08", language_fortran);
2704 add_filename_language (".s", language_asm);
2705 add_filename_language (".sx", language_asm);
2706 add_filename_language (".S", language_asm);
2707 add_filename_language (".pas", language_pascal);
2708 add_filename_language (".p", language_pascal);
2709 add_filename_language (".pp", language_pascal);
2710 add_filename_language (".adb", language_ada);
2711 add_filename_language (".ads", language_ada);
2712 add_filename_language (".a", language_ada);
2713 add_filename_language (".ada", language_ada);
2714 add_filename_language (".dg", language_ada);
2715 }
2716 }
2717
2718 enum language
2719 deduce_language_from_filename (const char *filename)
2720 {
2721 int i;
2722 char *cp;
2723
2724 if (filename != NULL)
2725 if ((cp = strrchr (filename, '.')) != NULL)
2726 for (i = 0; i < fl_table_next; i++)
2727 if (strcmp (cp, filename_language_table[i].ext) == 0)
2728 return filename_language_table[i].lang;
2729
2730 return language_unknown;
2731 }
2732 \f
2733 /* allocate_symtab:
2734
2735 Allocate and partly initialize a new symbol table. Return a pointer
2736 to it. error() if no space.
2737
2738 Caller must set these fields:
2739 LINETABLE(symtab)
2740 symtab->blockvector
2741 symtab->dirname
2742 symtab->free_code
2743 symtab->free_ptr
2744 */
2745
2746 struct symtab *
2747 allocate_symtab (const char *filename, struct objfile *objfile)
2748 {
2749 struct symtab *symtab;
2750
2751 symtab = (struct symtab *)
2752 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2753 memset (symtab, 0, sizeof (*symtab));
2754 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2755 objfile->filename_cache);
2756 symtab->fullname = NULL;
2757 symtab->language = deduce_language_from_filename (filename);
2758 symtab->debugformat = "unknown";
2759
2760 /* Hook it to the objfile it comes from. */
2761
2762 symtab->objfile = objfile;
2763 symtab->next = objfile->symtabs;
2764 objfile->symtabs = symtab;
2765
2766 return (symtab);
2767 }
2768 \f
2769
2770 /* Reset all data structures in gdb which may contain references to symbol
2771 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2772
2773 void
2774 clear_symtab_users (int add_flags)
2775 {
2776 /* Someday, we should do better than this, by only blowing away
2777 the things that really need to be blown. */
2778
2779 /* Clear the "current" symtab first, because it is no longer valid.
2780 breakpoint_re_set may try to access the current symtab. */
2781 clear_current_source_symtab_and_line ();
2782
2783 clear_displays ();
2784 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2785 breakpoint_re_set ();
2786 set_default_breakpoint (0, NULL, 0, 0, 0);
2787 clear_pc_function_cache ();
2788 observer_notify_new_objfile (NULL);
2789
2790 /* Clear globals which might have pointed into a removed objfile.
2791 FIXME: It's not clear which of these are supposed to persist
2792 between expressions and which ought to be reset each time. */
2793 expression_context_block = NULL;
2794 innermost_block = NULL;
2795
2796 /* Varobj may refer to old symbols, perform a cleanup. */
2797 varobj_invalidate ();
2798
2799 }
2800
2801 static void
2802 clear_symtab_users_cleanup (void *ignore)
2803 {
2804 clear_symtab_users (0);
2805 }
2806 \f
2807 /* OVERLAYS:
2808 The following code implements an abstraction for debugging overlay sections.
2809
2810 The target model is as follows:
2811 1) The gnu linker will permit multiple sections to be mapped into the
2812 same VMA, each with its own unique LMA (or load address).
2813 2) It is assumed that some runtime mechanism exists for mapping the
2814 sections, one by one, from the load address into the VMA address.
2815 3) This code provides a mechanism for gdb to keep track of which
2816 sections should be considered to be mapped from the VMA to the LMA.
2817 This information is used for symbol lookup, and memory read/write.
2818 For instance, if a section has been mapped then its contents
2819 should be read from the VMA, otherwise from the LMA.
2820
2821 Two levels of debugger support for overlays are available. One is
2822 "manual", in which the debugger relies on the user to tell it which
2823 overlays are currently mapped. This level of support is
2824 implemented entirely in the core debugger, and the information about
2825 whether a section is mapped is kept in the objfile->obj_section table.
2826
2827 The second level of support is "automatic", and is only available if
2828 the target-specific code provides functionality to read the target's
2829 overlay mapping table, and translate its contents for the debugger
2830 (by updating the mapped state information in the obj_section tables).
2831
2832 The interface is as follows:
2833 User commands:
2834 overlay map <name> -- tell gdb to consider this section mapped
2835 overlay unmap <name> -- tell gdb to consider this section unmapped
2836 overlay list -- list the sections that GDB thinks are mapped
2837 overlay read-target -- get the target's state of what's mapped
2838 overlay off/manual/auto -- set overlay debugging state
2839 Functional interface:
2840 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2841 section, return that section.
2842 find_pc_overlay(pc): find any overlay section that contains
2843 the pc, either in its VMA or its LMA
2844 section_is_mapped(sect): true if overlay is marked as mapped
2845 section_is_overlay(sect): true if section's VMA != LMA
2846 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2847 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2848 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2849 overlay_mapped_address(...): map an address from section's LMA to VMA
2850 overlay_unmapped_address(...): map an address from section's VMA to LMA
2851 symbol_overlayed_address(...): Return a "current" address for symbol:
2852 either in VMA or LMA depending on whether
2853 the symbol's section is currently mapped. */
2854
2855 /* Overlay debugging state: */
2856
2857 enum overlay_debugging_state overlay_debugging = ovly_off;
2858 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2859
2860 /* Function: section_is_overlay (SECTION)
2861 Returns true if SECTION has VMA not equal to LMA, ie.
2862 SECTION is loaded at an address different from where it will "run". */
2863
2864 int
2865 section_is_overlay (struct obj_section *section)
2866 {
2867 if (overlay_debugging && section)
2868 {
2869 bfd *abfd = section->objfile->obfd;
2870 asection *bfd_section = section->the_bfd_section;
2871
2872 if (bfd_section_lma (abfd, bfd_section) != 0
2873 && bfd_section_lma (abfd, bfd_section)
2874 != bfd_section_vma (abfd, bfd_section))
2875 return 1;
2876 }
2877
2878 return 0;
2879 }
2880
2881 /* Function: overlay_invalidate_all (void)
2882 Invalidate the mapped state of all overlay sections (mark it as stale). */
2883
2884 static void
2885 overlay_invalidate_all (void)
2886 {
2887 struct objfile *objfile;
2888 struct obj_section *sect;
2889
2890 ALL_OBJSECTIONS (objfile, sect)
2891 if (section_is_overlay (sect))
2892 sect->ovly_mapped = -1;
2893 }
2894
2895 /* Function: section_is_mapped (SECTION)
2896 Returns true if section is an overlay, and is currently mapped.
2897
2898 Access to the ovly_mapped flag is restricted to this function, so
2899 that we can do automatic update. If the global flag
2900 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2901 overlay_invalidate_all. If the mapped state of the particular
2902 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2903
2904 int
2905 section_is_mapped (struct obj_section *osect)
2906 {
2907 struct gdbarch *gdbarch;
2908
2909 if (osect == 0 || !section_is_overlay (osect))
2910 return 0;
2911
2912 switch (overlay_debugging)
2913 {
2914 default:
2915 case ovly_off:
2916 return 0; /* overlay debugging off */
2917 case ovly_auto: /* overlay debugging automatic */
2918 /* Unles there is a gdbarch_overlay_update function,
2919 there's really nothing useful to do here (can't really go auto). */
2920 gdbarch = get_objfile_arch (osect->objfile);
2921 if (gdbarch_overlay_update_p (gdbarch))
2922 {
2923 if (overlay_cache_invalid)
2924 {
2925 overlay_invalidate_all ();
2926 overlay_cache_invalid = 0;
2927 }
2928 if (osect->ovly_mapped == -1)
2929 gdbarch_overlay_update (gdbarch, osect);
2930 }
2931 /* fall thru to manual case */
2932 case ovly_on: /* overlay debugging manual */
2933 return osect->ovly_mapped == 1;
2934 }
2935 }
2936
2937 /* Function: pc_in_unmapped_range
2938 If PC falls into the lma range of SECTION, return true, else false. */
2939
2940 CORE_ADDR
2941 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2942 {
2943 if (section_is_overlay (section))
2944 {
2945 bfd *abfd = section->objfile->obfd;
2946 asection *bfd_section = section->the_bfd_section;
2947
2948 /* We assume the LMA is relocated by the same offset as the VMA. */
2949 bfd_vma size = bfd_get_section_size (bfd_section);
2950 CORE_ADDR offset = obj_section_offset (section);
2951
2952 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2953 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2954 return 1;
2955 }
2956
2957 return 0;
2958 }
2959
2960 /* Function: pc_in_mapped_range
2961 If PC falls into the vma range of SECTION, return true, else false. */
2962
2963 CORE_ADDR
2964 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2965 {
2966 if (section_is_overlay (section))
2967 {
2968 if (obj_section_addr (section) <= pc
2969 && pc < obj_section_endaddr (section))
2970 return 1;
2971 }
2972
2973 return 0;
2974 }
2975
2976
2977 /* Return true if the mapped ranges of sections A and B overlap, false
2978 otherwise. */
2979 static int
2980 sections_overlap (struct obj_section *a, struct obj_section *b)
2981 {
2982 CORE_ADDR a_start = obj_section_addr (a);
2983 CORE_ADDR a_end = obj_section_endaddr (a);
2984 CORE_ADDR b_start = obj_section_addr (b);
2985 CORE_ADDR b_end = obj_section_endaddr (b);
2986
2987 return (a_start < b_end && b_start < a_end);
2988 }
2989
2990 /* Function: overlay_unmapped_address (PC, SECTION)
2991 Returns the address corresponding to PC in the unmapped (load) range.
2992 May be the same as PC. */
2993
2994 CORE_ADDR
2995 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2996 {
2997 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2998 {
2999 bfd *abfd = section->objfile->obfd;
3000 asection *bfd_section = section->the_bfd_section;
3001
3002 return pc + bfd_section_lma (abfd, bfd_section)
3003 - bfd_section_vma (abfd, bfd_section);
3004 }
3005
3006 return pc;
3007 }
3008
3009 /* Function: overlay_mapped_address (PC, SECTION)
3010 Returns the address corresponding to PC in the mapped (runtime) range.
3011 May be the same as PC. */
3012
3013 CORE_ADDR
3014 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3015 {
3016 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3017 {
3018 bfd *abfd = section->objfile->obfd;
3019 asection *bfd_section = section->the_bfd_section;
3020
3021 return pc + bfd_section_vma (abfd, bfd_section)
3022 - bfd_section_lma (abfd, bfd_section);
3023 }
3024
3025 return pc;
3026 }
3027
3028
3029 /* Function: symbol_overlayed_address
3030 Return one of two addresses (relative to the VMA or to the LMA),
3031 depending on whether the section is mapped or not. */
3032
3033 CORE_ADDR
3034 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3035 {
3036 if (overlay_debugging)
3037 {
3038 /* If the symbol has no section, just return its regular address. */
3039 if (section == 0)
3040 return address;
3041 /* If the symbol's section is not an overlay, just return its
3042 address. */
3043 if (!section_is_overlay (section))
3044 return address;
3045 /* If the symbol's section is mapped, just return its address. */
3046 if (section_is_mapped (section))
3047 return address;
3048 /*
3049 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3050 * then return its LOADED address rather than its vma address!!
3051 */
3052 return overlay_unmapped_address (address, section);
3053 }
3054 return address;
3055 }
3056
3057 /* Function: find_pc_overlay (PC)
3058 Return the best-match overlay section for PC:
3059 If PC matches a mapped overlay section's VMA, return that section.
3060 Else if PC matches an unmapped section's VMA, return that section.
3061 Else if PC matches an unmapped section's LMA, return that section. */
3062
3063 struct obj_section *
3064 find_pc_overlay (CORE_ADDR pc)
3065 {
3066 struct objfile *objfile;
3067 struct obj_section *osect, *best_match = NULL;
3068
3069 if (overlay_debugging)
3070 ALL_OBJSECTIONS (objfile, osect)
3071 if (section_is_overlay (osect))
3072 {
3073 if (pc_in_mapped_range (pc, osect))
3074 {
3075 if (section_is_mapped (osect))
3076 return osect;
3077 else
3078 best_match = osect;
3079 }
3080 else if (pc_in_unmapped_range (pc, osect))
3081 best_match = osect;
3082 }
3083 return best_match;
3084 }
3085
3086 /* Function: find_pc_mapped_section (PC)
3087 If PC falls into the VMA address range of an overlay section that is
3088 currently marked as MAPPED, return that section. Else return NULL. */
3089
3090 struct obj_section *
3091 find_pc_mapped_section (CORE_ADDR pc)
3092 {
3093 struct objfile *objfile;
3094 struct obj_section *osect;
3095
3096 if (overlay_debugging)
3097 ALL_OBJSECTIONS (objfile, osect)
3098 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3099 return osect;
3100
3101 return NULL;
3102 }
3103
3104 /* Function: list_overlays_command
3105 Print a list of mapped sections and their PC ranges. */
3106
3107 void
3108 list_overlays_command (char *args, int from_tty)
3109 {
3110 int nmapped = 0;
3111 struct objfile *objfile;
3112 struct obj_section *osect;
3113
3114 if (overlay_debugging)
3115 ALL_OBJSECTIONS (objfile, osect)
3116 if (section_is_mapped (osect))
3117 {
3118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3119 const char *name;
3120 bfd_vma lma, vma;
3121 int size;
3122
3123 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3124 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3125 size = bfd_get_section_size (osect->the_bfd_section);
3126 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3127
3128 printf_filtered ("Section %s, loaded at ", name);
3129 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3130 puts_filtered (" - ");
3131 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3132 printf_filtered (", mapped at ");
3133 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3134 puts_filtered (" - ");
3135 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3136 puts_filtered ("\n");
3137
3138 nmapped++;
3139 }
3140 if (nmapped == 0)
3141 printf_filtered (_("No sections are mapped.\n"));
3142 }
3143
3144 /* Function: map_overlay_command
3145 Mark the named section as mapped (ie. residing at its VMA address). */
3146
3147 void
3148 map_overlay_command (char *args, int from_tty)
3149 {
3150 struct objfile *objfile, *objfile2;
3151 struct obj_section *sec, *sec2;
3152
3153 if (!overlay_debugging)
3154 error (_("Overlay debugging not enabled. Use "
3155 "either the 'overlay auto' or\n"
3156 "the 'overlay manual' command."));
3157
3158 if (args == 0 || *args == 0)
3159 error (_("Argument required: name of an overlay section"));
3160
3161 /* First, find a section matching the user supplied argument. */
3162 ALL_OBJSECTIONS (objfile, sec)
3163 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3164 {
3165 /* Now, check to see if the section is an overlay. */
3166 if (!section_is_overlay (sec))
3167 continue; /* not an overlay section */
3168
3169 /* Mark the overlay as "mapped". */
3170 sec->ovly_mapped = 1;
3171
3172 /* Next, make a pass and unmap any sections that are
3173 overlapped by this new section: */
3174 ALL_OBJSECTIONS (objfile2, sec2)
3175 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3176 {
3177 if (info_verbose)
3178 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3179 bfd_section_name (objfile->obfd,
3180 sec2->the_bfd_section));
3181 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3182 }
3183 return;
3184 }
3185 error (_("No overlay section called %s"), args);
3186 }
3187
3188 /* Function: unmap_overlay_command
3189 Mark the overlay section as unmapped
3190 (ie. resident in its LMA address range, rather than the VMA range). */
3191
3192 void
3193 unmap_overlay_command (char *args, int from_tty)
3194 {
3195 struct objfile *objfile;
3196 struct obj_section *sec;
3197
3198 if (!overlay_debugging)
3199 error (_("Overlay debugging not enabled. "
3200 "Use either the 'overlay auto' or\n"
3201 "the 'overlay manual' command."));
3202
3203 if (args == 0 || *args == 0)
3204 error (_("Argument required: name of an overlay section"));
3205
3206 /* First, find a section matching the user supplied argument. */
3207 ALL_OBJSECTIONS (objfile, sec)
3208 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3209 {
3210 if (!sec->ovly_mapped)
3211 error (_("Section %s is not mapped"), args);
3212 sec->ovly_mapped = 0;
3213 return;
3214 }
3215 error (_("No overlay section called %s"), args);
3216 }
3217
3218 /* Function: overlay_auto_command
3219 A utility command to turn on overlay debugging.
3220 Possibly this should be done via a set/show command. */
3221
3222 static void
3223 overlay_auto_command (char *args, int from_tty)
3224 {
3225 overlay_debugging = ovly_auto;
3226 enable_overlay_breakpoints ();
3227 if (info_verbose)
3228 printf_unfiltered (_("Automatic overlay debugging enabled."));
3229 }
3230
3231 /* Function: overlay_manual_command
3232 A utility command to turn on overlay debugging.
3233 Possibly this should be done via a set/show command. */
3234
3235 static void
3236 overlay_manual_command (char *args, int from_tty)
3237 {
3238 overlay_debugging = ovly_on;
3239 disable_overlay_breakpoints ();
3240 if (info_verbose)
3241 printf_unfiltered (_("Overlay debugging enabled."));
3242 }
3243
3244 /* Function: overlay_off_command
3245 A utility command to turn on overlay debugging.
3246 Possibly this should be done via a set/show command. */
3247
3248 static void
3249 overlay_off_command (char *args, int from_tty)
3250 {
3251 overlay_debugging = ovly_off;
3252 disable_overlay_breakpoints ();
3253 if (info_verbose)
3254 printf_unfiltered (_("Overlay debugging disabled."));
3255 }
3256
3257 static void
3258 overlay_load_command (char *args, int from_tty)
3259 {
3260 struct gdbarch *gdbarch = get_current_arch ();
3261
3262 if (gdbarch_overlay_update_p (gdbarch))
3263 gdbarch_overlay_update (gdbarch, NULL);
3264 else
3265 error (_("This target does not know how to read its overlay state."));
3266 }
3267
3268 /* Function: overlay_command
3269 A place-holder for a mis-typed command. */
3270
3271 /* Command list chain containing all defined "overlay" subcommands. */
3272 struct cmd_list_element *overlaylist;
3273
3274 static void
3275 overlay_command (char *args, int from_tty)
3276 {
3277 printf_unfiltered
3278 ("\"overlay\" must be followed by the name of an overlay command.\n");
3279 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3280 }
3281
3282
3283 /* Target Overlays for the "Simplest" overlay manager:
3284
3285 This is GDB's default target overlay layer. It works with the
3286 minimal overlay manager supplied as an example by Cygnus. The
3287 entry point is via a function pointer "gdbarch_overlay_update",
3288 so targets that use a different runtime overlay manager can
3289 substitute their own overlay_update function and take over the
3290 function pointer.
3291
3292 The overlay_update function pokes around in the target's data structures
3293 to see what overlays are mapped, and updates GDB's overlay mapping with
3294 this information.
3295
3296 In this simple implementation, the target data structures are as follows:
3297 unsigned _novlys; /# number of overlay sections #/
3298 unsigned _ovly_table[_novlys][4] = {
3299 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3300 {..., ..., ..., ...},
3301 }
3302 unsigned _novly_regions; /# number of overlay regions #/
3303 unsigned _ovly_region_table[_novly_regions][3] = {
3304 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3305 {..., ..., ...},
3306 }
3307 These functions will attempt to update GDB's mappedness state in the
3308 symbol section table, based on the target's mappedness state.
3309
3310 To do this, we keep a cached copy of the target's _ovly_table, and
3311 attempt to detect when the cached copy is invalidated. The main
3312 entry point is "simple_overlay_update(SECT), which looks up SECT in
3313 the cached table and re-reads only the entry for that section from
3314 the target (whenever possible). */
3315
3316 /* Cached, dynamically allocated copies of the target data structures: */
3317 static unsigned (*cache_ovly_table)[4] = 0;
3318 static unsigned cache_novlys = 0;
3319 static CORE_ADDR cache_ovly_table_base = 0;
3320 enum ovly_index
3321 {
3322 VMA, SIZE, LMA, MAPPED
3323 };
3324
3325 /* Throw away the cached copy of _ovly_table. */
3326 static void
3327 simple_free_overlay_table (void)
3328 {
3329 if (cache_ovly_table)
3330 xfree (cache_ovly_table);
3331 cache_novlys = 0;
3332 cache_ovly_table = NULL;
3333 cache_ovly_table_base = 0;
3334 }
3335
3336 /* Read an array of ints of size SIZE from the target into a local buffer.
3337 Convert to host order. int LEN is number of ints. */
3338 static void
3339 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3340 int len, int size, enum bfd_endian byte_order)
3341 {
3342 /* FIXME (alloca): Not safe if array is very large. */
3343 gdb_byte *buf = alloca (len * size);
3344 int i;
3345
3346 read_memory (memaddr, buf, len * size);
3347 for (i = 0; i < len; i++)
3348 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3349 }
3350
3351 /* Find and grab a copy of the target _ovly_table
3352 (and _novlys, which is needed for the table's size). */
3353 static int
3354 simple_read_overlay_table (void)
3355 {
3356 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3357 struct gdbarch *gdbarch;
3358 int word_size;
3359 enum bfd_endian byte_order;
3360
3361 simple_free_overlay_table ();
3362 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3363 if (! novlys_msym)
3364 {
3365 error (_("Error reading inferior's overlay table: "
3366 "couldn't find `_novlys' variable\n"
3367 "in inferior. Use `overlay manual' mode."));
3368 return 0;
3369 }
3370
3371 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3372 if (! ovly_table_msym)
3373 {
3374 error (_("Error reading inferior's overlay table: couldn't find "
3375 "`_ovly_table' array\n"
3376 "in inferior. Use `overlay manual' mode."));
3377 return 0;
3378 }
3379
3380 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3381 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3382 byte_order = gdbarch_byte_order (gdbarch);
3383
3384 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3385 4, byte_order);
3386 cache_ovly_table
3387 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3388 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3389 read_target_long_array (cache_ovly_table_base,
3390 (unsigned int *) cache_ovly_table,
3391 cache_novlys * 4, word_size, byte_order);
3392
3393 return 1; /* SUCCESS */
3394 }
3395
3396 /* Function: simple_overlay_update_1
3397 A helper function for simple_overlay_update. Assuming a cached copy
3398 of _ovly_table exists, look through it to find an entry whose vma,
3399 lma and size match those of OSECT. Re-read the entry and make sure
3400 it still matches OSECT (else the table may no longer be valid).
3401 Set OSECT's mapped state to match the entry. Return: 1 for
3402 success, 0 for failure. */
3403
3404 static int
3405 simple_overlay_update_1 (struct obj_section *osect)
3406 {
3407 int i, size;
3408 bfd *obfd = osect->objfile->obfd;
3409 asection *bsect = osect->the_bfd_section;
3410 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3411 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3412 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3413
3414 size = bfd_get_section_size (osect->the_bfd_section);
3415 for (i = 0; i < cache_novlys; i++)
3416 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3417 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3418 /* && cache_ovly_table[i][SIZE] == size */ )
3419 {
3420 read_target_long_array (cache_ovly_table_base + i * word_size,
3421 (unsigned int *) cache_ovly_table[i],
3422 4, word_size, byte_order);
3423 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3424 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3425 /* && cache_ovly_table[i][SIZE] == size */ )
3426 {
3427 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3428 return 1;
3429 }
3430 else /* Warning! Warning! Target's ovly table has changed! */
3431 return 0;
3432 }
3433 return 0;
3434 }
3435
3436 /* Function: simple_overlay_update
3437 If OSECT is NULL, then update all sections' mapped state
3438 (after re-reading the entire target _ovly_table).
3439 If OSECT is non-NULL, then try to find a matching entry in the
3440 cached ovly_table and update only OSECT's mapped state.
3441 If a cached entry can't be found or the cache isn't valid, then
3442 re-read the entire cache, and go ahead and update all sections. */
3443
3444 void
3445 simple_overlay_update (struct obj_section *osect)
3446 {
3447 struct objfile *objfile;
3448
3449 /* Were we given an osect to look up? NULL means do all of them. */
3450 if (osect)
3451 /* Have we got a cached copy of the target's overlay table? */
3452 if (cache_ovly_table != NULL)
3453 {
3454 /* Does its cached location match what's currently in the
3455 symtab? */
3456 struct minimal_symbol *minsym
3457 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3458
3459 if (minsym == NULL)
3460 error (_("Error reading inferior's overlay table: couldn't "
3461 "find `_ovly_table' array\n"
3462 "in inferior. Use `overlay manual' mode."));
3463
3464 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3465 /* Then go ahead and try to look up this single section in
3466 the cache. */
3467 if (simple_overlay_update_1 (osect))
3468 /* Found it! We're done. */
3469 return;
3470 }
3471
3472 /* Cached table no good: need to read the entire table anew.
3473 Or else we want all the sections, in which case it's actually
3474 more efficient to read the whole table in one block anyway. */
3475
3476 if (! simple_read_overlay_table ())
3477 return;
3478
3479 /* Now may as well update all sections, even if only one was requested. */
3480 ALL_OBJSECTIONS (objfile, osect)
3481 if (section_is_overlay (osect))
3482 {
3483 int i, size;
3484 bfd *obfd = osect->objfile->obfd;
3485 asection *bsect = osect->the_bfd_section;
3486
3487 size = bfd_get_section_size (bsect);
3488 for (i = 0; i < cache_novlys; i++)
3489 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3490 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3491 /* && cache_ovly_table[i][SIZE] == size */ )
3492 { /* obj_section matches i'th entry in ovly_table. */
3493 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3494 break; /* finished with inner for loop: break out. */
3495 }
3496 }
3497 }
3498
3499 /* Set the output sections and output offsets for section SECTP in
3500 ABFD. The relocation code in BFD will read these offsets, so we
3501 need to be sure they're initialized. We map each section to itself,
3502 with no offset; this means that SECTP->vma will be honored. */
3503
3504 static void
3505 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3506 {
3507 sectp->output_section = sectp;
3508 sectp->output_offset = 0;
3509 }
3510
3511 /* Default implementation for sym_relocate. */
3512
3513
3514 bfd_byte *
3515 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3516 bfd_byte *buf)
3517 {
3518 bfd *abfd = objfile->obfd;
3519
3520 /* We're only interested in sections with relocation
3521 information. */
3522 if ((sectp->flags & SEC_RELOC) == 0)
3523 return NULL;
3524
3525 /* We will handle section offsets properly elsewhere, so relocate as if
3526 all sections begin at 0. */
3527 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3528
3529 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3530 }
3531
3532 /* Relocate the contents of a debug section SECTP in ABFD. The
3533 contents are stored in BUF if it is non-NULL, or returned in a
3534 malloc'd buffer otherwise.
3535
3536 For some platforms and debug info formats, shared libraries contain
3537 relocations against the debug sections (particularly for DWARF-2;
3538 one affected platform is PowerPC GNU/Linux, although it depends on
3539 the version of the linker in use). Also, ELF object files naturally
3540 have unresolved relocations for their debug sections. We need to apply
3541 the relocations in order to get the locations of symbols correct.
3542 Another example that may require relocation processing, is the
3543 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3544 debug section. */
3545
3546 bfd_byte *
3547 symfile_relocate_debug_section (struct objfile *objfile,
3548 asection *sectp, bfd_byte *buf)
3549 {
3550 gdb_assert (objfile->sf->sym_relocate);
3551
3552 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3553 }
3554
3555 struct symfile_segment_data *
3556 get_symfile_segment_data (bfd *abfd)
3557 {
3558 const struct sym_fns *sf = find_sym_fns (abfd);
3559
3560 if (sf == NULL)
3561 return NULL;
3562
3563 return sf->sym_segments (abfd);
3564 }
3565
3566 void
3567 free_symfile_segment_data (struct symfile_segment_data *data)
3568 {
3569 xfree (data->segment_bases);
3570 xfree (data->segment_sizes);
3571 xfree (data->segment_info);
3572 xfree (data);
3573 }
3574
3575
3576 /* Given:
3577 - DATA, containing segment addresses from the object file ABFD, and
3578 the mapping from ABFD's sections onto the segments that own them,
3579 and
3580 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3581 segment addresses reported by the target,
3582 store the appropriate offsets for each section in OFFSETS.
3583
3584 If there are fewer entries in SEGMENT_BASES than there are segments
3585 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3586
3587 If there are more entries, then ignore the extra. The target may
3588 not be able to distinguish between an empty data segment and a
3589 missing data segment; a missing text segment is less plausible. */
3590 int
3591 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3592 struct section_offsets *offsets,
3593 int num_segment_bases,
3594 const CORE_ADDR *segment_bases)
3595 {
3596 int i;
3597 asection *sect;
3598
3599 /* It doesn't make sense to call this function unless you have some
3600 segment base addresses. */
3601 gdb_assert (num_segment_bases > 0);
3602
3603 /* If we do not have segment mappings for the object file, we
3604 can not relocate it by segments. */
3605 gdb_assert (data != NULL);
3606 gdb_assert (data->num_segments > 0);
3607
3608 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3609 {
3610 int which = data->segment_info[i];
3611
3612 gdb_assert (0 <= which && which <= data->num_segments);
3613
3614 /* Don't bother computing offsets for sections that aren't
3615 loaded as part of any segment. */
3616 if (! which)
3617 continue;
3618
3619 /* Use the last SEGMENT_BASES entry as the address of any extra
3620 segments mentioned in DATA->segment_info. */
3621 if (which > num_segment_bases)
3622 which = num_segment_bases;
3623
3624 offsets->offsets[i] = (segment_bases[which - 1]
3625 - data->segment_bases[which - 1]);
3626 }
3627
3628 return 1;
3629 }
3630
3631 static void
3632 symfile_find_segment_sections (struct objfile *objfile)
3633 {
3634 bfd *abfd = objfile->obfd;
3635 int i;
3636 asection *sect;
3637 struct symfile_segment_data *data;
3638
3639 data = get_symfile_segment_data (objfile->obfd);
3640 if (data == NULL)
3641 return;
3642
3643 if (data->num_segments != 1 && data->num_segments != 2)
3644 {
3645 free_symfile_segment_data (data);
3646 return;
3647 }
3648
3649 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3650 {
3651 int which = data->segment_info[i];
3652
3653 if (which == 1)
3654 {
3655 if (objfile->sect_index_text == -1)
3656 objfile->sect_index_text = sect->index;
3657
3658 if (objfile->sect_index_rodata == -1)
3659 objfile->sect_index_rodata = sect->index;
3660 }
3661 else if (which == 2)
3662 {
3663 if (objfile->sect_index_data == -1)
3664 objfile->sect_index_data = sect->index;
3665
3666 if (objfile->sect_index_bss == -1)
3667 objfile->sect_index_bss = sect->index;
3668 }
3669 }
3670
3671 free_symfile_segment_data (data);
3672 }
3673
3674 void
3675 _initialize_symfile (void)
3676 {
3677 struct cmd_list_element *c;
3678
3679 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3680 Load symbol table from executable file FILE.\n\
3681 The `file' command can also load symbol tables, as well as setting the file\n\
3682 to execute."), &cmdlist);
3683 set_cmd_completer (c, filename_completer);
3684
3685 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3686 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3687 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3688 ...]\nADDR is the starting address of the file's text.\n\
3689 The optional arguments are section-name section-address pairs and\n\
3690 should be specified if the data and bss segments are not contiguous\n\
3691 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3692 &cmdlist);
3693 set_cmd_completer (c, filename_completer);
3694
3695 c = add_cmd ("load", class_files, load_command, _("\
3696 Dynamically load FILE into the running program, and record its symbols\n\
3697 for access from GDB.\n\
3698 A load OFFSET may also be given."), &cmdlist);
3699 set_cmd_completer (c, filename_completer);
3700
3701 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3702 &symbol_reloading, _("\
3703 Set dynamic symbol table reloading multiple times in one run."), _("\
3704 Show dynamic symbol table reloading multiple times in one run."), NULL,
3705 NULL,
3706 show_symbol_reloading,
3707 &setlist, &showlist);
3708
3709 add_prefix_cmd ("overlay", class_support, overlay_command,
3710 _("Commands for debugging overlays."), &overlaylist,
3711 "overlay ", 0, &cmdlist);
3712
3713 add_com_alias ("ovly", "overlay", class_alias, 1);
3714 add_com_alias ("ov", "overlay", class_alias, 1);
3715
3716 add_cmd ("map-overlay", class_support, map_overlay_command,
3717 _("Assert that an overlay section is mapped."), &overlaylist);
3718
3719 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3720 _("Assert that an overlay section is unmapped."), &overlaylist);
3721
3722 add_cmd ("list-overlays", class_support, list_overlays_command,
3723 _("List mappings of overlay sections."), &overlaylist);
3724
3725 add_cmd ("manual", class_support, overlay_manual_command,
3726 _("Enable overlay debugging."), &overlaylist);
3727 add_cmd ("off", class_support, overlay_off_command,
3728 _("Disable overlay debugging."), &overlaylist);
3729 add_cmd ("auto", class_support, overlay_auto_command,
3730 _("Enable automatic overlay debugging."), &overlaylist);
3731 add_cmd ("load-target", class_support, overlay_load_command,
3732 _("Read the overlay mapping state from the target."), &overlaylist);
3733
3734 /* Filename extension to source language lookup table: */
3735 init_filename_language_table ();
3736 add_setshow_string_noescape_cmd ("extension-language", class_files,
3737 &ext_args, _("\
3738 Set mapping between filename extension and source language."), _("\
3739 Show mapping between filename extension and source language."), _("\
3740 Usage: set extension-language .foo bar"),
3741 set_ext_lang_command,
3742 show_ext_args,
3743 &setlist, &showlist);
3744
3745 add_info ("extensions", info_ext_lang_command,
3746 _("All filename extensions associated with a source language."));
3747
3748 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3749 &debug_file_directory, _("\
3750 Set the directories where separate debug symbols are searched for."), _("\
3751 Show the directories where separate debug symbols are searched for."), _("\
3752 Separate debug symbols are first searched for in the same\n\
3753 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3754 and lastly at the path of the directory of the binary with\n\
3755 each global debug-file-directory component prepended."),
3756 NULL,
3757 show_debug_file_directory,
3758 &setlist, &showlist);
3759 }