]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
* coffread.c (coff_symfile_read): Make a cleanup for 'debugfile'
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
158 library symbols are not loaded, commands like "info fun" will *not*
159 report all the functions that are actually present. */
160
161 int auto_solib_add = 1;
162 \f
163
164 /* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
166 Note that the string at PTR does not have to be null terminated, I.e. it
167 may be part of a larger string and we are only saving a substring. */
168
169 char *
170 obsavestring (const char *ptr, int size, struct obstack *obstackp)
171 {
172 char *p = (char *) obstack_alloc (obstackp, size + 1);
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
175 inline memcpy? */
176 {
177 const char *p1 = ptr;
178 char *p2 = p;
179 const char *end = ptr + size;
180
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186 }
187
188 /* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
192
193 char *
194 obconcat (struct obstack *obstackp, ...)
195 {
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
212 }
213
214 /* True if we are reading a symbol table. */
215
216 int currently_reading_symtab = 0;
217
218 static void
219 decrement_reading_symtab (void *dummy)
220 {
221 currently_reading_symtab--;
222 }
223
224 /* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226 struct cleanup *
227 increment_reading_symtab (void)
228 {
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
231 }
232
233 /* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242 void
243 find_lowest_section (bfd *abfd, asection *sect, void *obj)
244 {
245 asection **lowest = (asection **) obj;
246
247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257 }
258
259 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261 struct section_addr_info *
262 alloc_section_addr_info (size_t num_sections)
263 {
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274 }
275
276 /* Build (allocate and populate) a section_addr_info struct from
277 an existing section table. */
278
279 extern struct section_addr_info *
280 build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
282 {
283 struct section_addr_info *sap;
284 const struct target_section *stp;
285 int oidx;
286
287 sap = alloc_section_addr_info (end - start);
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
291 if (bfd_get_section_flags (stp->bfd,
292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
293 && oidx < end - start)
294 {
295 sap->other[oidx].addr = stp->addr;
296 sap->other[oidx].name
297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in ABFD. */
307
308 static struct section_addr_info *
309 build_section_addr_info_from_bfd (bfd *abfd)
310 {
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
318 {
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
324 return sap;
325 }
326
327 /* Create a section_addr_info from section offsets in OBJFILE. */
328
329 struct section_addr_info *
330 build_section_addr_info_from_objfile (const struct objfile *objfile)
331 {
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346 }
347
348 /* Free all memory allocated by build_section_addr_info_from_section_table. */
349
350 extern void
351 free_section_addr_info (struct section_addr_info *sap)
352 {
353 int idx;
354
355 for (idx = 0; idx < sap->num_sections; idx++)
356 if (sap->other[idx].name)
357 xfree (sap->other[idx].name);
358 xfree (sap);
359 }
360
361
362 /* Initialize OBJFILE's sect_index_* members. */
363 static void
364 init_objfile_sect_indices (struct objfile *objfile)
365 {
366 asection *sect;
367 int i;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
370 if (sect)
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
374 if (sect)
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
378 if (sect)
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
382 if (sect)
383 objfile->sect_index_rodata = sect->index;
384
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
420 }
421
422 /* The arguments to place_section. */
423
424 struct place_section_arg
425 {
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428 };
429
430 /* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
433 static void
434 place_section (bfd *abfd, asection *sect, void *obj)
435 {
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
440
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
450 start_addr = (arg->lowest + align - 1) & -align;
451
452 do {
453 asection *cur_sec;
454
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
482 break;
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
492 }
493
494 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
497
498 void
499 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
502 {
503 int i;
504
505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
506
507 /* Now calculate offsets for section that were specified by the caller. */
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 {
510 struct other_sections *osp;
511
512 osp = &addrs->other[i];
513 if (osp->sectindex == -1)
514 continue;
515
516 /* Record all sections in offsets. */
517 /* The section_offsets in the objfile are here filled in using
518 the BFD index. */
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521 }
522
523 /* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529 static const char *
530 addr_section_name (const char *s)
531 {
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538 }
539
540 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543 static int
544 addrs_section_compar (const void *ap, const void *bp)
545 {
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval;
549
550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
551 if (retval)
552 return retval;
553
554 return a->sectindex - b->sectindex;
555 }
556
557 /* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560 static struct other_sections **
561 addrs_section_sort (struct section_addr_info *addrs)
562 {
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575 }
576
577 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
580
581 void
582 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583 {
584 asection *lower_sect;
585 CORE_ADDR lower_offset;
586 int i;
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
591
592 /* Find lowest loadable section to be used as starting point for
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
601 }
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
633
634 while (*abfd_addrs_sorted
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
669 struct other_sections *sect = addrs_to_abfd_addrs[i];
670
671 if (sect)
672 {
673 /* This is the index used by BFD. */
674 addrs->other[i].sectindex = sect->sectindex;
675
676 if (addrs->other[i].addr != 0)
677 {
678 addrs->other[i].addr -= sect->addr;
679 lower_offset = addrs->other[i].addr;
680 }
681 else
682 addrs->other[i].addr = lower_offset;
683 }
684 else
685 {
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
704 || strcmp (sect_name, ".gnu.conflict") == 0
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717 addrs->other[i].sectindex = -1;
718 }
719 }
720
721 do_cleanups (my_cleanup);
722 }
723
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730 void
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733 {
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
740
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1013
1014 void
1015 new_symfile_objfile (struct objfile *objfile, int add_flags)
1016 {
1017 /* If this is the main symbol file we have to clean up all users of the
1018 old main symbol file. Otherwise it is sufficient to fixup all the
1019 breakpoints that may have been redefined by this symbol file. */
1020 if (add_flags & SYMFILE_MAINLINE)
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
1025 clear_symtab_users (add_flags);
1026 }
1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1028 {
1029 breakpoint_re_set ();
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1034 }
1035
1036 /* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 A new reference is acquired by this function.
1041
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1048
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
1052 Upon success, returns a pointer to the objfile that was added.
1053 Upon failure, jumps back to command level (never returns). */
1054
1055 static struct objfile *
1056 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
1061 int flags, struct objfile *parent)
1062 {
1063 struct objfile *objfile;
1064 const char *name = bfd_get_filename (abfd);
1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
1066 const int mainline = add_flags & SYMFILE_MAINLINE;
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
1070
1071 if (readnow_symbol_files)
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
1076
1077 /* Give user a chance to burp if we'd be
1078 interactively wiping out any existing symbols. */
1079
1080 if ((have_full_symbols () || have_partial_symbols ())
1081 && mainline
1082 && from_tty
1083 && !query (_("Load new symbol table from \"%s\"? "), name))
1084 error (_("Not confirmed."));
1085
1086 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1087
1088 if (parent)
1089 add_separate_debug_objfile (objfile, parent);
1090
1091 /* We either created a new mapped symbol table, mapped an existing
1092 symbol table file which has not had initial symbol reading
1093 performed, or need to read an unmapped symbol table. */
1094 if (should_print)
1095 {
1096 if (deprecated_pre_add_symbol_hook)
1097 deprecated_pre_add_symbol_hook (name);
1098 else
1099 {
1100 printf_unfiltered (_("Reading symbols from %s..."), name);
1101 wrap_here ("");
1102 gdb_flush (gdb_stdout);
1103 }
1104 }
1105 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1106 add_flags);
1107
1108 /* We now have at least a partial symbol table. Check to see if the
1109 user requested that all symbols be read on initial access via either
1110 the gdb startup command line or on a per symbol file basis. Expand
1111 all partial symbol tables for this objfile if so. */
1112
1113 if ((flags & OBJF_READNOW))
1114 {
1115 if (should_print)
1116 {
1117 printf_unfiltered (_("expanding to full symbols..."));
1118 wrap_here ("");
1119 gdb_flush (gdb_stdout);
1120 }
1121
1122 if (objfile->sf)
1123 objfile->sf->qf->expand_all_symtabs (objfile);
1124 }
1125
1126 if (should_print && !objfile_has_symbols (objfile))
1127 {
1128 wrap_here ("");
1129 printf_unfiltered (_("(no debugging symbols found)..."));
1130 wrap_here ("");
1131 }
1132
1133 if (should_print)
1134 {
1135 if (deprecated_post_add_symbol_hook)
1136 deprecated_post_add_symbol_hook ();
1137 else
1138 printf_unfiltered (_("done.\n"));
1139 }
1140
1141 /* We print some messages regardless of whether 'from_tty ||
1142 info_verbose' is true, so make sure they go out at the right
1143 time. */
1144 gdb_flush (gdb_stdout);
1145
1146 if (objfile->sf == NULL)
1147 {
1148 observer_notify_new_objfile (objfile);
1149 return objfile; /* No symbols. */
1150 }
1151
1152 new_symfile_objfile (objfile, add_flags);
1153
1154 observer_notify_new_objfile (objfile);
1155
1156 bfd_cache_close_all ();
1157 return (objfile);
1158 }
1159
1160 /* Add BFD as a separate debug file for OBJFILE. */
1161
1162 void
1163 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1164 {
1165 struct objfile *new_objfile;
1166 struct section_addr_info *sap;
1167 struct cleanup *my_cleanup;
1168
1169 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1170 because sections of BFD may not match sections of OBJFILE and because
1171 vma may have been modified by tools such as prelink. */
1172 sap = build_section_addr_info_from_objfile (objfile);
1173 my_cleanup = make_cleanup_free_section_addr_info (sap);
1174
1175 new_objfile = symbol_file_add_with_addrs_or_offsets
1176 (bfd, symfile_flags,
1177 sap, NULL, 0,
1178 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1179 | OBJF_USERLOADED),
1180 objfile);
1181
1182 do_cleanups (my_cleanup);
1183 }
1184
1185 /* Process the symbol file ABFD, as either the main file or as a
1186 dynamically loaded file.
1187
1188 See symbol_file_add_with_addrs_or_offsets's comments for
1189 details. */
1190 struct objfile *
1191 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1192 struct section_addr_info *addrs,
1193 int flags, struct objfile *parent)
1194 {
1195 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1196 flags, parent);
1197 }
1198
1199
1200 /* Process a symbol file, as either the main file or as a dynamically
1201 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1202 for details. */
1203 struct objfile *
1204 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1205 int flags)
1206 {
1207 bfd *bfd = symfile_bfd_open (name);
1208 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1209 struct objfile *objf;
1210
1211 objf = symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1212 flags, NULL);
1213 do_cleanups (cleanup);
1214 return objf;
1215 }
1216
1217
1218 /* Call symbol_file_add() with default values and update whatever is
1219 affected by the loading of a new main().
1220 Used when the file is supplied in the gdb command line
1221 and by some targets with special loading requirements.
1222 The auxiliary function, symbol_file_add_main_1(), has the flags
1223 argument for the switches that can only be specified in the symbol_file
1224 command itself. */
1225
1226 void
1227 symbol_file_add_main (char *args, int from_tty)
1228 {
1229 symbol_file_add_main_1 (args, from_tty, 0);
1230 }
1231
1232 static void
1233 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1234 {
1235 const int add_flags = (current_inferior ()->symfile_flags
1236 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1237
1238 symbol_file_add (args, add_flags, NULL, flags);
1239
1240 /* Getting new symbols may change our opinion about
1241 what is frameless. */
1242 reinit_frame_cache ();
1243
1244 if ((flags & SYMFILE_NO_READ) == 0)
1245 set_initial_language ();
1246 }
1247
1248 void
1249 symbol_file_clear (int from_tty)
1250 {
1251 if ((have_full_symbols () || have_partial_symbols ())
1252 && from_tty
1253 && (symfile_objfile
1254 ? !query (_("Discard symbol table from `%s'? "),
1255 symfile_objfile->name)
1256 : !query (_("Discard symbol table? "))))
1257 error (_("Not confirmed."));
1258
1259 /* solib descriptors may have handles to objfiles. Wipe them before their
1260 objfiles get stale by free_all_objfiles. */
1261 no_shared_libraries (NULL, from_tty);
1262
1263 free_all_objfiles ();
1264
1265 gdb_assert (symfile_objfile == NULL);
1266 if (from_tty)
1267 printf_unfiltered (_("No symbol file now.\n"));
1268 }
1269
1270 static char *
1271 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1272 {
1273 asection *sect;
1274 bfd_size_type debuglink_size;
1275 unsigned long crc32;
1276 char *contents;
1277 int crc_offset;
1278
1279 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1280
1281 if (sect == NULL)
1282 return NULL;
1283
1284 debuglink_size = bfd_section_size (objfile->obfd, sect);
1285
1286 contents = xmalloc (debuglink_size);
1287 bfd_get_section_contents (objfile->obfd, sect, contents,
1288 (file_ptr)0, (bfd_size_type)debuglink_size);
1289
1290 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1291 crc_offset = strlen (contents) + 1;
1292 crc_offset = (crc_offset + 3) & ~3;
1293
1294 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1295
1296 *crc32_out = crc32;
1297 return contents;
1298 }
1299
1300 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1301 return 1. Otherwise print a warning and return 0. ABFD seek position is
1302 not preserved. */
1303
1304 static int
1305 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1306 {
1307 unsigned long file_crc = 0;
1308
1309 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1310 {
1311 warning (_("Problem reading \"%s\" for CRC: %s"),
1312 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1313 return 0;
1314 }
1315
1316 for (;;)
1317 {
1318 gdb_byte buffer[8 * 1024];
1319 bfd_size_type count;
1320
1321 count = bfd_bread (buffer, sizeof (buffer), abfd);
1322 if (count == (bfd_size_type) -1)
1323 {
1324 warning (_("Problem reading \"%s\" for CRC: %s"),
1325 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1326 return 0;
1327 }
1328 if (count == 0)
1329 break;
1330 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1331 }
1332
1333 *file_crc_return = file_crc;
1334 return 1;
1335 }
1336
1337 static int
1338 separate_debug_file_exists (const char *name, unsigned long crc,
1339 struct objfile *parent_objfile)
1340 {
1341 unsigned long file_crc;
1342 int file_crc_p;
1343 bfd *abfd;
1344 struct stat parent_stat, abfd_stat;
1345 int verified_as_different;
1346
1347 /* Find a separate debug info file as if symbols would be present in
1348 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1349 section can contain just the basename of PARENT_OBJFILE without any
1350 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1351 the separate debug infos with the same basename can exist. */
1352
1353 if (filename_cmp (name, parent_objfile->name) == 0)
1354 return 0;
1355
1356 abfd = bfd_open_maybe_remote (name);
1357
1358 if (!abfd)
1359 return 0;
1360
1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
1365 meaningful st_dev.) Do not indicate a duplicate library in that
1366 case. While there is no guarantee that a system that provides
1367 meaningful inode numbers will never set st_ino to zero, this is
1368 merely an optimization, so we do not need to worry about false
1369 negatives. */
1370
1371 if (bfd_stat (abfd, &abfd_stat) == 0
1372 && abfd_stat.st_ino != 0
1373 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1374 {
1375 if (abfd_stat.st_dev == parent_stat.st_dev
1376 && abfd_stat.st_ino == parent_stat.st_ino)
1377 {
1378 gdb_bfd_unref (abfd);
1379 return 0;
1380 }
1381 verified_as_different = 1;
1382 }
1383 else
1384 verified_as_different = 0;
1385
1386 file_crc_p = get_file_crc (abfd, &file_crc);
1387
1388 gdb_bfd_unref (abfd);
1389
1390 if (!file_crc_p)
1391 return 0;
1392
1393 if (crc != file_crc)
1394 {
1395 /* If one (or both) the files are accessed for example the via "remote:"
1396 gdbserver way it does not support the bfd_stat operation. Verify
1397 whether those two files are not the same manually. */
1398
1399 if (!verified_as_different && !parent_objfile->crc32_p)
1400 {
1401 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1402 &parent_objfile->crc32);
1403 if (!parent_objfile->crc32_p)
1404 return 0;
1405 }
1406
1407 if (verified_as_different || parent_objfile->crc32 != file_crc)
1408 warning (_("the debug information found in \"%s\""
1409 " does not match \"%s\" (CRC mismatch).\n"),
1410 name, parent_objfile->name);
1411
1412 return 0;
1413 }
1414
1415 return 1;
1416 }
1417
1418 char *debug_file_directory = NULL;
1419 static void
1420 show_debug_file_directory (struct ui_file *file, int from_tty,
1421 struct cmd_list_element *c, const char *value)
1422 {
1423 fprintf_filtered (file,
1424 _("The directory where separate debug "
1425 "symbols are searched for is \"%s\".\n"),
1426 value);
1427 }
1428
1429 #if ! defined (DEBUG_SUBDIRECTORY)
1430 #define DEBUG_SUBDIRECTORY ".debug"
1431 #endif
1432
1433 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1434 where the original file resides (may not be the same as
1435 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1436 looking for. Returns the name of the debuginfo, of NULL. */
1437
1438 static char *
1439 find_separate_debug_file (const char *dir,
1440 const char *canon_dir,
1441 const char *debuglink,
1442 unsigned long crc32, struct objfile *objfile)
1443 {
1444 char *debugdir;
1445 char *debugfile;
1446 int i;
1447 VEC (char_ptr) *debugdir_vec;
1448 struct cleanup *back_to;
1449 int ix;
1450
1451 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1452 i = strlen (dir);
1453 if (canon_dir != NULL && strlen (canon_dir) > i)
1454 i = strlen (canon_dir);
1455
1456 debugfile = xmalloc (strlen (debug_file_directory) + 1
1457 + i
1458 + strlen (DEBUG_SUBDIRECTORY)
1459 + strlen ("/")
1460 + strlen (debuglink)
1461 + 1);
1462
1463 /* First try in the same directory as the original file. */
1464 strcpy (debugfile, dir);
1465 strcat (debugfile, debuglink);
1466
1467 if (separate_debug_file_exists (debugfile, crc32, objfile))
1468 return debugfile;
1469
1470 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1471 strcpy (debugfile, dir);
1472 strcat (debugfile, DEBUG_SUBDIRECTORY);
1473 strcat (debugfile, "/");
1474 strcat (debugfile, debuglink);
1475
1476 if (separate_debug_file_exists (debugfile, crc32, objfile))
1477 return debugfile;
1478
1479 /* Then try in the global debugfile directories.
1480
1481 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1482 cause "/..." lookups. */
1483
1484 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1485 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1486
1487 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1488 {
1489 strcpy (debugfile, debugdir);
1490 strcat (debugfile, "/");
1491 strcat (debugfile, dir);
1492 strcat (debugfile, debuglink);
1493
1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1495 return debugfile;
1496
1497 /* If the file is in the sysroot, try using its base path in the
1498 global debugfile directory. */
1499 if (canon_dir != NULL
1500 && filename_ncmp (canon_dir, gdb_sysroot,
1501 strlen (gdb_sysroot)) == 0
1502 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1503 {
1504 strcpy (debugfile, debugdir);
1505 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1506 strcat (debugfile, "/");
1507 strcat (debugfile, debuglink);
1508
1509 if (separate_debug_file_exists (debugfile, crc32, objfile))
1510 return debugfile;
1511 }
1512 }
1513
1514 do_cleanups (back_to);
1515 xfree (debugfile);
1516 return NULL;
1517 }
1518
1519 /* Modify PATH to contain only "directory/" part of PATH.
1520 If there were no directory separators in PATH, PATH will be empty
1521 string on return. */
1522
1523 static void
1524 terminate_after_last_dir_separator (char *path)
1525 {
1526 int i;
1527
1528 /* Strip off the final filename part, leaving the directory name,
1529 followed by a slash. The directory can be relative or absolute. */
1530 for (i = strlen(path) - 1; i >= 0; i--)
1531 if (IS_DIR_SEPARATOR (path[i]))
1532 break;
1533
1534 /* If I is -1 then no directory is present there and DIR will be "". */
1535 path[i + 1] = '\0';
1536 }
1537
1538 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1539 Returns pathname, or NULL. */
1540
1541 char *
1542 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1543 {
1544 char *debuglink;
1545 char *dir, *canon_dir;
1546 char *debugfile;
1547 unsigned long crc32;
1548 struct cleanup *cleanups;
1549
1550 debuglink = get_debug_link_info (objfile, &crc32);
1551
1552 if (debuglink == NULL)
1553 {
1554 /* There's no separate debug info, hence there's no way we could
1555 load it => no warning. */
1556 return NULL;
1557 }
1558
1559 cleanups = make_cleanup (xfree, debuglink);
1560 dir = xstrdup (objfile->name);
1561 make_cleanup (xfree, dir);
1562 terminate_after_last_dir_separator (dir);
1563 canon_dir = lrealpath (dir);
1564
1565 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1566 crc32, objfile);
1567 xfree (canon_dir);
1568
1569 if (debugfile == NULL)
1570 {
1571 #ifdef HAVE_LSTAT
1572 /* For PR gdb/9538, try again with realpath (if different from the
1573 original). */
1574
1575 struct stat st_buf;
1576
1577 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1578 {
1579 char *symlink_dir;
1580
1581 symlink_dir = lrealpath (objfile->name);
1582 if (symlink_dir != NULL)
1583 {
1584 make_cleanup (xfree, symlink_dir);
1585 terminate_after_last_dir_separator (symlink_dir);
1586 if (strcmp (dir, symlink_dir) != 0)
1587 {
1588 /* Different directory, so try using it. */
1589 debugfile = find_separate_debug_file (symlink_dir,
1590 symlink_dir,
1591 debuglink,
1592 crc32,
1593 objfile);
1594 }
1595 }
1596 }
1597 #endif /* HAVE_LSTAT */
1598 }
1599
1600 do_cleanups (cleanups);
1601 return debugfile;
1602 }
1603
1604
1605 /* This is the symbol-file command. Read the file, analyze its
1606 symbols, and add a struct symtab to a symtab list. The syntax of
1607 the command is rather bizarre:
1608
1609 1. The function buildargv implements various quoting conventions
1610 which are undocumented and have little or nothing in common with
1611 the way things are quoted (or not quoted) elsewhere in GDB.
1612
1613 2. Options are used, which are not generally used in GDB (perhaps
1614 "set mapped on", "set readnow on" would be better)
1615
1616 3. The order of options matters, which is contrary to GNU
1617 conventions (because it is confusing and inconvenient). */
1618
1619 void
1620 symbol_file_command (char *args, int from_tty)
1621 {
1622 dont_repeat ();
1623
1624 if (args == NULL)
1625 {
1626 symbol_file_clear (from_tty);
1627 }
1628 else
1629 {
1630 char **argv = gdb_buildargv (args);
1631 int flags = OBJF_USERLOADED;
1632 struct cleanup *cleanups;
1633 char *name = NULL;
1634
1635 cleanups = make_cleanup_freeargv (argv);
1636 while (*argv != NULL)
1637 {
1638 if (strcmp (*argv, "-readnow") == 0)
1639 flags |= OBJF_READNOW;
1640 else if (**argv == '-')
1641 error (_("unknown option `%s'"), *argv);
1642 else
1643 {
1644 symbol_file_add_main_1 (*argv, from_tty, flags);
1645 name = *argv;
1646 }
1647
1648 argv++;
1649 }
1650
1651 if (name == NULL)
1652 error (_("no symbol file name was specified"));
1653
1654 do_cleanups (cleanups);
1655 }
1656 }
1657
1658 /* Set the initial language.
1659
1660 FIXME: A better solution would be to record the language in the
1661 psymtab when reading partial symbols, and then use it (if known) to
1662 set the language. This would be a win for formats that encode the
1663 language in an easily discoverable place, such as DWARF. For
1664 stabs, we can jump through hoops looking for specially named
1665 symbols or try to intuit the language from the specific type of
1666 stabs we find, but we can't do that until later when we read in
1667 full symbols. */
1668
1669 void
1670 set_initial_language (void)
1671 {
1672 enum language lang = language_unknown;
1673
1674 if (language_of_main != language_unknown)
1675 lang = language_of_main;
1676 else
1677 {
1678 const char *filename;
1679
1680 filename = find_main_filename ();
1681 if (filename != NULL)
1682 lang = deduce_language_from_filename (filename);
1683 }
1684
1685 if (lang == language_unknown)
1686 {
1687 /* Make C the default language */
1688 lang = language_c;
1689 }
1690
1691 set_language (lang);
1692 expected_language = current_language; /* Don't warn the user. */
1693 }
1694
1695 /* If NAME is a remote name open the file using remote protocol, otherwise
1696 open it normally. Returns a new reference to the BFD. On error,
1697 returns NULL with the BFD error set. */
1698
1699 bfd *
1700 bfd_open_maybe_remote (const char *name)
1701 {
1702 bfd *result;
1703
1704 if (remote_filename_p (name))
1705 result = remote_bfd_open (name, gnutarget);
1706 else
1707 result = gdb_bfd_openr (name, gnutarget);
1708
1709 return result;
1710 }
1711
1712
1713 /* Open the file specified by NAME and hand it off to BFD for
1714 preliminary analysis. Return a newly initialized bfd *, which
1715 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1716 absolute). In case of trouble, error() is called. */
1717
1718 bfd *
1719 symfile_bfd_open (char *name)
1720 {
1721 bfd *sym_bfd;
1722 int desc;
1723 char *absolute_name;
1724
1725 if (remote_filename_p (name))
1726 {
1727 sym_bfd = remote_bfd_open (name, gnutarget);
1728 if (!sym_bfd)
1729 error (_("`%s': can't open to read symbols: %s."), name,
1730 bfd_errmsg (bfd_get_error ()));
1731
1732 if (!bfd_check_format (sym_bfd, bfd_object))
1733 {
1734 make_cleanup_bfd_unref (sym_bfd);
1735 error (_("`%s': can't read symbols: %s."), name,
1736 bfd_errmsg (bfd_get_error ()));
1737 }
1738
1739 return sym_bfd;
1740 }
1741
1742 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1743
1744 /* Look down path for it, allocate 2nd new malloc'd copy. */
1745 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1746 O_RDONLY | O_BINARY, &absolute_name);
1747 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1748 if (desc < 0)
1749 {
1750 char *exename = alloca (strlen (name) + 5);
1751
1752 strcat (strcpy (exename, name), ".exe");
1753 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1754 O_RDONLY | O_BINARY, &absolute_name);
1755 }
1756 #endif
1757 if (desc < 0)
1758 {
1759 make_cleanup (xfree, name);
1760 perror_with_name (name);
1761 }
1762
1763 xfree (name);
1764 name = absolute_name;
1765 make_cleanup (xfree, name);
1766
1767 sym_bfd = gdb_bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1768 if (!sym_bfd)
1769 {
1770 make_cleanup (xfree, name);
1771 error (_("`%s': can't open to read symbols: %s."), name,
1772 bfd_errmsg (bfd_get_error ()));
1773 }
1774 bfd_set_cacheable (sym_bfd, 1);
1775
1776 if (!bfd_check_format (sym_bfd, bfd_object))
1777 {
1778 make_cleanup_bfd_unref (sym_bfd);
1779 error (_("`%s': can't read symbols: %s."), name,
1780 bfd_errmsg (bfd_get_error ()));
1781 }
1782
1783 return sym_bfd;
1784 }
1785
1786 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1787 the section was not found. */
1788
1789 int
1790 get_section_index (struct objfile *objfile, char *section_name)
1791 {
1792 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1793
1794 if (sect)
1795 return sect->index;
1796 else
1797 return -1;
1798 }
1799
1800 /* Link SF into the global symtab_fns list. Called on startup by the
1801 _initialize routine in each object file format reader, to register
1802 information about each format the reader is prepared to handle. */
1803
1804 void
1805 add_symtab_fns (const struct sym_fns *sf)
1806 {
1807 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1808 }
1809
1810 /* Initialize OBJFILE to read symbols from its associated BFD. It
1811 either returns or calls error(). The result is an initialized
1812 struct sym_fns in the objfile structure, that contains cached
1813 information about the symbol file. */
1814
1815 static const struct sym_fns *
1816 find_sym_fns (bfd *abfd)
1817 {
1818 const struct sym_fns *sf;
1819 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1820 int i;
1821
1822 if (our_flavour == bfd_target_srec_flavour
1823 || our_flavour == bfd_target_ihex_flavour
1824 || our_flavour == bfd_target_tekhex_flavour)
1825 return NULL; /* No symbols. */
1826
1827 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1828 if (our_flavour == sf->sym_flavour)
1829 return sf;
1830
1831 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1832 bfd_get_target (abfd));
1833 }
1834 \f
1835
1836 /* This function runs the load command of our current target. */
1837
1838 static void
1839 load_command (char *arg, int from_tty)
1840 {
1841 dont_repeat ();
1842
1843 /* The user might be reloading because the binary has changed. Take
1844 this opportunity to check. */
1845 reopen_exec_file ();
1846 reread_symbols ();
1847
1848 if (arg == NULL)
1849 {
1850 char *parg;
1851 int count = 0;
1852
1853 parg = arg = get_exec_file (1);
1854
1855 /* Count how many \ " ' tab space there are in the name. */
1856 while ((parg = strpbrk (parg, "\\\"'\t ")))
1857 {
1858 parg++;
1859 count++;
1860 }
1861
1862 if (count)
1863 {
1864 /* We need to quote this string so buildargv can pull it apart. */
1865 char *temp = xmalloc (strlen (arg) + count + 1 );
1866 char *ptemp = temp;
1867 char *prev;
1868
1869 make_cleanup (xfree, temp);
1870
1871 prev = parg = arg;
1872 while ((parg = strpbrk (parg, "\\\"'\t ")))
1873 {
1874 strncpy (ptemp, prev, parg - prev);
1875 ptemp += parg - prev;
1876 prev = parg++;
1877 *ptemp++ = '\\';
1878 }
1879 strcpy (ptemp, prev);
1880
1881 arg = temp;
1882 }
1883 }
1884
1885 target_load (arg, from_tty);
1886
1887 /* After re-loading the executable, we don't really know which
1888 overlays are mapped any more. */
1889 overlay_cache_invalid = 1;
1890 }
1891
1892 /* This version of "load" should be usable for any target. Currently
1893 it is just used for remote targets, not inftarg.c or core files,
1894 on the theory that only in that case is it useful.
1895
1896 Avoiding xmodem and the like seems like a win (a) because we don't have
1897 to worry about finding it, and (b) On VMS, fork() is very slow and so
1898 we don't want to run a subprocess. On the other hand, I'm not sure how
1899 performance compares. */
1900
1901 static int validate_download = 0;
1902
1903 /* Callback service function for generic_load (bfd_map_over_sections). */
1904
1905 static void
1906 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1907 {
1908 bfd_size_type *sum = data;
1909
1910 *sum += bfd_get_section_size (asec);
1911 }
1912
1913 /* Opaque data for load_section_callback. */
1914 struct load_section_data {
1915 unsigned long load_offset;
1916 struct load_progress_data *progress_data;
1917 VEC(memory_write_request_s) *requests;
1918 };
1919
1920 /* Opaque data for load_progress. */
1921 struct load_progress_data {
1922 /* Cumulative data. */
1923 unsigned long write_count;
1924 unsigned long data_count;
1925 bfd_size_type total_size;
1926 };
1927
1928 /* Opaque data for load_progress for a single section. */
1929 struct load_progress_section_data {
1930 struct load_progress_data *cumulative;
1931
1932 /* Per-section data. */
1933 const char *section_name;
1934 ULONGEST section_sent;
1935 ULONGEST section_size;
1936 CORE_ADDR lma;
1937 gdb_byte *buffer;
1938 };
1939
1940 /* Target write callback routine for progress reporting. */
1941
1942 static void
1943 load_progress (ULONGEST bytes, void *untyped_arg)
1944 {
1945 struct load_progress_section_data *args = untyped_arg;
1946 struct load_progress_data *totals;
1947
1948 if (args == NULL)
1949 /* Writing padding data. No easy way to get at the cumulative
1950 stats, so just ignore this. */
1951 return;
1952
1953 totals = args->cumulative;
1954
1955 if (bytes == 0 && args->section_sent == 0)
1956 {
1957 /* The write is just starting. Let the user know we've started
1958 this section. */
1959 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1960 args->section_name, hex_string (args->section_size),
1961 paddress (target_gdbarch, args->lma));
1962 return;
1963 }
1964
1965 if (validate_download)
1966 {
1967 /* Broken memories and broken monitors manifest themselves here
1968 when bring new computers to life. This doubles already slow
1969 downloads. */
1970 /* NOTE: cagney/1999-10-18: A more efficient implementation
1971 might add a verify_memory() method to the target vector and
1972 then use that. remote.c could implement that method using
1973 the ``qCRC'' packet. */
1974 gdb_byte *check = xmalloc (bytes);
1975 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1976
1977 if (target_read_memory (args->lma, check, bytes) != 0)
1978 error (_("Download verify read failed at %s"),
1979 paddress (target_gdbarch, args->lma));
1980 if (memcmp (args->buffer, check, bytes) != 0)
1981 error (_("Download verify compare failed at %s"),
1982 paddress (target_gdbarch, args->lma));
1983 do_cleanups (verify_cleanups);
1984 }
1985 totals->data_count += bytes;
1986 args->lma += bytes;
1987 args->buffer += bytes;
1988 totals->write_count += 1;
1989 args->section_sent += bytes;
1990 if (quit_flag
1991 || (deprecated_ui_load_progress_hook != NULL
1992 && deprecated_ui_load_progress_hook (args->section_name,
1993 args->section_sent)))
1994 error (_("Canceled the download"));
1995
1996 if (deprecated_show_load_progress != NULL)
1997 deprecated_show_load_progress (args->section_name,
1998 args->section_sent,
1999 args->section_size,
2000 totals->data_count,
2001 totals->total_size);
2002 }
2003
2004 /* Callback service function for generic_load (bfd_map_over_sections). */
2005
2006 static void
2007 load_section_callback (bfd *abfd, asection *asec, void *data)
2008 {
2009 struct memory_write_request *new_request;
2010 struct load_section_data *args = data;
2011 struct load_progress_section_data *section_data;
2012 bfd_size_type size = bfd_get_section_size (asec);
2013 gdb_byte *buffer;
2014 const char *sect_name = bfd_get_section_name (abfd, asec);
2015
2016 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2017 return;
2018
2019 if (size == 0)
2020 return;
2021
2022 new_request = VEC_safe_push (memory_write_request_s,
2023 args->requests, NULL);
2024 memset (new_request, 0, sizeof (struct memory_write_request));
2025 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2026 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2027 new_request->end = new_request->begin + size; /* FIXME Should size
2028 be in instead? */
2029 new_request->data = xmalloc (size);
2030 new_request->baton = section_data;
2031
2032 buffer = new_request->data;
2033
2034 section_data->cumulative = args->progress_data;
2035 section_data->section_name = sect_name;
2036 section_data->section_size = size;
2037 section_data->lma = new_request->begin;
2038 section_data->buffer = buffer;
2039
2040 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2041 }
2042
2043 /* Clean up an entire memory request vector, including load
2044 data and progress records. */
2045
2046 static void
2047 clear_memory_write_data (void *arg)
2048 {
2049 VEC(memory_write_request_s) **vec_p = arg;
2050 VEC(memory_write_request_s) *vec = *vec_p;
2051 int i;
2052 struct memory_write_request *mr;
2053
2054 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2055 {
2056 xfree (mr->data);
2057 xfree (mr->baton);
2058 }
2059 VEC_free (memory_write_request_s, vec);
2060 }
2061
2062 void
2063 generic_load (char *args, int from_tty)
2064 {
2065 bfd *loadfile_bfd;
2066 struct timeval start_time, end_time;
2067 char *filename;
2068 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2069 struct load_section_data cbdata;
2070 struct load_progress_data total_progress;
2071 struct ui_out *uiout = current_uiout;
2072
2073 CORE_ADDR entry;
2074 char **argv;
2075
2076 memset (&cbdata, 0, sizeof (cbdata));
2077 memset (&total_progress, 0, sizeof (total_progress));
2078 cbdata.progress_data = &total_progress;
2079
2080 make_cleanup (clear_memory_write_data, &cbdata.requests);
2081
2082 if (args == NULL)
2083 error_no_arg (_("file to load"));
2084
2085 argv = gdb_buildargv (args);
2086 make_cleanup_freeargv (argv);
2087
2088 filename = tilde_expand (argv[0]);
2089 make_cleanup (xfree, filename);
2090
2091 if (argv[1] != NULL)
2092 {
2093 char *endptr;
2094
2095 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2096
2097 /* If the last word was not a valid number then
2098 treat it as a file name with spaces in. */
2099 if (argv[1] == endptr)
2100 error (_("Invalid download offset:%s."), argv[1]);
2101
2102 if (argv[2] != NULL)
2103 error (_("Too many parameters."));
2104 }
2105
2106 /* Open the file for loading. */
2107 loadfile_bfd = gdb_bfd_openr (filename, gnutarget);
2108 if (loadfile_bfd == NULL)
2109 {
2110 perror_with_name (filename);
2111 return;
2112 }
2113
2114 make_cleanup_bfd_unref (loadfile_bfd);
2115
2116 if (!bfd_check_format (loadfile_bfd, bfd_object))
2117 {
2118 error (_("\"%s\" is not an object file: %s"), filename,
2119 bfd_errmsg (bfd_get_error ()));
2120 }
2121
2122 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2123 (void *) &total_progress.total_size);
2124
2125 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2126
2127 gettimeofday (&start_time, NULL);
2128
2129 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2130 load_progress) != 0)
2131 error (_("Load failed"));
2132
2133 gettimeofday (&end_time, NULL);
2134
2135 entry = bfd_get_start_address (loadfile_bfd);
2136 ui_out_text (uiout, "Start address ");
2137 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2138 ui_out_text (uiout, ", load size ");
2139 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2140 ui_out_text (uiout, "\n");
2141 /* We were doing this in remote-mips.c, I suspect it is right
2142 for other targets too. */
2143 regcache_write_pc (get_current_regcache (), entry);
2144
2145 /* Reset breakpoints, now that we have changed the load image. For
2146 instance, breakpoints may have been set (or reset, by
2147 post_create_inferior) while connected to the target but before we
2148 loaded the program. In that case, the prologue analyzer could
2149 have read instructions from the target to find the right
2150 breakpoint locations. Loading has changed the contents of that
2151 memory. */
2152
2153 breakpoint_re_set ();
2154
2155 /* FIXME: are we supposed to call symbol_file_add or not? According
2156 to a comment from remote-mips.c (where a call to symbol_file_add
2157 was commented out), making the call confuses GDB if more than one
2158 file is loaded in. Some targets do (e.g., remote-vx.c) but
2159 others don't (or didn't - perhaps they have all been deleted). */
2160
2161 print_transfer_performance (gdb_stdout, total_progress.data_count,
2162 total_progress.write_count,
2163 &start_time, &end_time);
2164
2165 do_cleanups (old_cleanups);
2166 }
2167
2168 /* Report how fast the transfer went. */
2169
2170 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2171 replaced by print_transfer_performance (with a very different
2172 function signature). */
2173
2174 void
2175 report_transfer_performance (unsigned long data_count, time_t start_time,
2176 time_t end_time)
2177 {
2178 struct timeval start, end;
2179
2180 start.tv_sec = start_time;
2181 start.tv_usec = 0;
2182 end.tv_sec = end_time;
2183 end.tv_usec = 0;
2184
2185 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2186 }
2187
2188 void
2189 print_transfer_performance (struct ui_file *stream,
2190 unsigned long data_count,
2191 unsigned long write_count,
2192 const struct timeval *start_time,
2193 const struct timeval *end_time)
2194 {
2195 ULONGEST time_count;
2196 struct ui_out *uiout = current_uiout;
2197
2198 /* Compute the elapsed time in milliseconds, as a tradeoff between
2199 accuracy and overflow. */
2200 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2201 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2202
2203 ui_out_text (uiout, "Transfer rate: ");
2204 if (time_count > 0)
2205 {
2206 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2207
2208 if (ui_out_is_mi_like_p (uiout))
2209 {
2210 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2211 ui_out_text (uiout, " bits/sec");
2212 }
2213 else if (rate < 1024)
2214 {
2215 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2216 ui_out_text (uiout, " bytes/sec");
2217 }
2218 else
2219 {
2220 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2221 ui_out_text (uiout, " KB/sec");
2222 }
2223 }
2224 else
2225 {
2226 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2227 ui_out_text (uiout, " bits in <1 sec");
2228 }
2229 if (write_count > 0)
2230 {
2231 ui_out_text (uiout, ", ");
2232 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2233 ui_out_text (uiout, " bytes/write");
2234 }
2235 ui_out_text (uiout, ".\n");
2236 }
2237
2238 /* This function allows the addition of incrementally linked object files.
2239 It does not modify any state in the target, only in the debugger. */
2240 /* Note: ezannoni 2000-04-13 This function/command used to have a
2241 special case syntax for the rombug target (Rombug is the boot
2242 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2243 rombug case, the user doesn't need to supply a text address,
2244 instead a call to target_link() (in target.c) would supply the
2245 value to use. We are now discontinuing this type of ad hoc syntax. */
2246
2247 static void
2248 add_symbol_file_command (char *args, int from_tty)
2249 {
2250 struct gdbarch *gdbarch = get_current_arch ();
2251 char *filename = NULL;
2252 int flags = OBJF_USERLOADED;
2253 char *arg;
2254 int section_index = 0;
2255 int argcnt = 0;
2256 int sec_num = 0;
2257 int i;
2258 int expecting_sec_name = 0;
2259 int expecting_sec_addr = 0;
2260 char **argv;
2261
2262 struct sect_opt
2263 {
2264 char *name;
2265 char *value;
2266 };
2267
2268 struct section_addr_info *section_addrs;
2269 struct sect_opt *sect_opts = NULL;
2270 size_t num_sect_opts = 0;
2271 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2272
2273 num_sect_opts = 16;
2274 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2275 * sizeof (struct sect_opt));
2276
2277 dont_repeat ();
2278
2279 if (args == NULL)
2280 error (_("add-symbol-file takes a file name and an address"));
2281
2282 argv = gdb_buildargv (args);
2283 make_cleanup_freeargv (argv);
2284
2285 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2286 {
2287 /* Process the argument. */
2288 if (argcnt == 0)
2289 {
2290 /* The first argument is the file name. */
2291 filename = tilde_expand (arg);
2292 make_cleanup (xfree, filename);
2293 }
2294 else
2295 if (argcnt == 1)
2296 {
2297 /* The second argument is always the text address at which
2298 to load the program. */
2299 sect_opts[section_index].name = ".text";
2300 sect_opts[section_index].value = arg;
2301 if (++section_index >= num_sect_opts)
2302 {
2303 num_sect_opts *= 2;
2304 sect_opts = ((struct sect_opt *)
2305 xrealloc (sect_opts,
2306 num_sect_opts
2307 * sizeof (struct sect_opt)));
2308 }
2309 }
2310 else
2311 {
2312 /* It's an option (starting with '-') or it's an argument
2313 to an option. */
2314
2315 if (*arg == '-')
2316 {
2317 if (strcmp (arg, "-readnow") == 0)
2318 flags |= OBJF_READNOW;
2319 else if (strcmp (arg, "-s") == 0)
2320 {
2321 expecting_sec_name = 1;
2322 expecting_sec_addr = 1;
2323 }
2324 }
2325 else
2326 {
2327 if (expecting_sec_name)
2328 {
2329 sect_opts[section_index].name = arg;
2330 expecting_sec_name = 0;
2331 }
2332 else
2333 if (expecting_sec_addr)
2334 {
2335 sect_opts[section_index].value = arg;
2336 expecting_sec_addr = 0;
2337 if (++section_index >= num_sect_opts)
2338 {
2339 num_sect_opts *= 2;
2340 sect_opts = ((struct sect_opt *)
2341 xrealloc (sect_opts,
2342 num_sect_opts
2343 * sizeof (struct sect_opt)));
2344 }
2345 }
2346 else
2347 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2348 " [-readnow] [-s <secname> <addr>]*"));
2349 }
2350 }
2351 }
2352
2353 /* This command takes at least two arguments. The first one is a
2354 filename, and the second is the address where this file has been
2355 loaded. Abort now if this address hasn't been provided by the
2356 user. */
2357 if (section_index < 1)
2358 error (_("The address where %s has been loaded is missing"), filename);
2359
2360 /* Print the prompt for the query below. And save the arguments into
2361 a sect_addr_info structure to be passed around to other
2362 functions. We have to split this up into separate print
2363 statements because hex_string returns a local static
2364 string. */
2365
2366 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2367 section_addrs = alloc_section_addr_info (section_index);
2368 make_cleanup (xfree, section_addrs);
2369 for (i = 0; i < section_index; i++)
2370 {
2371 CORE_ADDR addr;
2372 char *val = sect_opts[i].value;
2373 char *sec = sect_opts[i].name;
2374
2375 addr = parse_and_eval_address (val);
2376
2377 /* Here we store the section offsets in the order they were
2378 entered on the command line. */
2379 section_addrs->other[sec_num].name = sec;
2380 section_addrs->other[sec_num].addr = addr;
2381 printf_unfiltered ("\t%s_addr = %s\n", sec,
2382 paddress (gdbarch, addr));
2383 sec_num++;
2384
2385 /* The object's sections are initialized when a
2386 call is made to build_objfile_section_table (objfile).
2387 This happens in reread_symbols.
2388 At this point, we don't know what file type this is,
2389 so we can't determine what section names are valid. */
2390 }
2391
2392 if (from_tty && (!query ("%s", "")))
2393 error (_("Not confirmed."));
2394
2395 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2396 section_addrs, flags);
2397
2398 /* Getting new symbols may change our opinion about what is
2399 frameless. */
2400 reinit_frame_cache ();
2401 do_cleanups (my_cleanups);
2402 }
2403 \f
2404
2405 typedef struct objfile *objfilep;
2406
2407 DEF_VEC_P (objfilep);
2408
2409 /* Re-read symbols if a symbol-file has changed. */
2410 void
2411 reread_symbols (void)
2412 {
2413 struct objfile *objfile;
2414 long new_modtime;
2415 struct stat new_statbuf;
2416 int res;
2417 VEC (objfilep) *new_objfiles = NULL;
2418 struct cleanup *all_cleanups;
2419
2420 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2421
2422 /* With the addition of shared libraries, this should be modified,
2423 the load time should be saved in the partial symbol tables, since
2424 different tables may come from different source files. FIXME.
2425 This routine should then walk down each partial symbol table
2426 and see if the symbol table that it originates from has been changed. */
2427
2428 for (objfile = object_files; objfile; objfile = objfile->next)
2429 {
2430 /* solib-sunos.c creates one objfile with obfd. */
2431 if (objfile->obfd == NULL)
2432 continue;
2433
2434 /* Separate debug objfiles are handled in the main objfile. */
2435 if (objfile->separate_debug_objfile_backlink)
2436 continue;
2437
2438 /* If this object is from an archive (what you usually create with
2439 `ar', often called a `static library' on most systems, though
2440 a `shared library' on AIX is also an archive), then you should
2441 stat on the archive name, not member name. */
2442 if (objfile->obfd->my_archive)
2443 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2444 else
2445 res = stat (objfile->name, &new_statbuf);
2446 if (res != 0)
2447 {
2448 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2449 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2450 objfile->name);
2451 continue;
2452 }
2453 new_modtime = new_statbuf.st_mtime;
2454 if (new_modtime != objfile->mtime)
2455 {
2456 struct cleanup *old_cleanups;
2457 struct section_offsets *offsets;
2458 int num_offsets;
2459 char *obfd_filename;
2460
2461 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2462 objfile->name);
2463
2464 /* There are various functions like symbol_file_add,
2465 symfile_bfd_open, syms_from_objfile, etc., which might
2466 appear to do what we want. But they have various other
2467 effects which we *don't* want. So we just do stuff
2468 ourselves. We don't worry about mapped files (for one thing,
2469 any mapped file will be out of date). */
2470
2471 /* If we get an error, blow away this objfile (not sure if
2472 that is the correct response for things like shared
2473 libraries). */
2474 old_cleanups = make_cleanup_free_objfile (objfile);
2475 /* We need to do this whenever any symbols go away. */
2476 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2477
2478 if (exec_bfd != NULL
2479 && filename_cmp (bfd_get_filename (objfile->obfd),
2480 bfd_get_filename (exec_bfd)) == 0)
2481 {
2482 /* Reload EXEC_BFD without asking anything. */
2483
2484 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2485 }
2486
2487 /* Keep the calls order approx. the same as in free_objfile. */
2488
2489 /* Free the separate debug objfiles. It will be
2490 automatically recreated by sym_read. */
2491 free_objfile_separate_debug (objfile);
2492
2493 /* Remove any references to this objfile in the global
2494 value lists. */
2495 preserve_values (objfile);
2496
2497 /* Nuke all the state that we will re-read. Much of the following
2498 code which sets things to NULL really is necessary to tell
2499 other parts of GDB that there is nothing currently there.
2500
2501 Try to keep the freeing order compatible with free_objfile. */
2502
2503 if (objfile->sf != NULL)
2504 {
2505 (*objfile->sf->sym_finish) (objfile);
2506 }
2507
2508 clear_objfile_data (objfile);
2509
2510 /* Clean up any state BFD has sitting around. We don't need
2511 to close the descriptor but BFD lacks a way of closing the
2512 BFD without closing the descriptor. */
2513 {
2514 struct bfd *obfd = objfile->obfd;
2515
2516 obfd_filename = bfd_get_filename (objfile->obfd);
2517 /* Open the new BFD before freeing the old one, so that
2518 the filename remains live. */
2519 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2520 gdb_bfd_unref (obfd);
2521 }
2522
2523 if (objfile->obfd == NULL)
2524 error (_("Can't open %s to read symbols."), objfile->name);
2525 /* bfd_openr sets cacheable to true, which is what we want. */
2526 if (!bfd_check_format (objfile->obfd, bfd_object))
2527 error (_("Can't read symbols from %s: %s."), objfile->name,
2528 bfd_errmsg (bfd_get_error ()));
2529
2530 /* Save the offsets, we will nuke them with the rest of the
2531 objfile_obstack. */
2532 num_offsets = objfile->num_sections;
2533 offsets = ((struct section_offsets *)
2534 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2535 memcpy (offsets, objfile->section_offsets,
2536 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2537
2538 /* FIXME: Do we have to free a whole linked list, or is this
2539 enough? */
2540 if (objfile->global_psymbols.list)
2541 xfree (objfile->global_psymbols.list);
2542 memset (&objfile->global_psymbols, 0,
2543 sizeof (objfile->global_psymbols));
2544 if (objfile->static_psymbols.list)
2545 xfree (objfile->static_psymbols.list);
2546 memset (&objfile->static_psymbols, 0,
2547 sizeof (objfile->static_psymbols));
2548
2549 /* Free the obstacks for non-reusable objfiles. */
2550 psymbol_bcache_free (objfile->psymbol_cache);
2551 objfile->psymbol_cache = psymbol_bcache_init ();
2552 bcache_xfree (objfile->macro_cache);
2553 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2554 bcache_xfree (objfile->filename_cache);
2555 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2556 if (objfile->demangled_names_hash != NULL)
2557 {
2558 htab_delete (objfile->demangled_names_hash);
2559 objfile->demangled_names_hash = NULL;
2560 }
2561 obstack_free (&objfile->objfile_obstack, 0);
2562 objfile->sections = NULL;
2563 objfile->symtabs = NULL;
2564 objfile->psymtabs = NULL;
2565 objfile->psymtabs_addrmap = NULL;
2566 objfile->free_psymtabs = NULL;
2567 objfile->template_symbols = NULL;
2568 objfile->msymbols = NULL;
2569 objfile->deprecated_sym_private = NULL;
2570 objfile->minimal_symbol_count = 0;
2571 memset (&objfile->msymbol_hash, 0,
2572 sizeof (objfile->msymbol_hash));
2573 memset (&objfile->msymbol_demangled_hash, 0,
2574 sizeof (objfile->msymbol_demangled_hash));
2575
2576 /* obstack_init also initializes the obstack so it is
2577 empty. We could use obstack_specify_allocation but
2578 gdb_obstack.h specifies the alloc/dealloc functions. */
2579 obstack_init (&objfile->objfile_obstack);
2580 build_objfile_section_table (objfile);
2581 terminate_minimal_symbol_table (objfile);
2582
2583 /* We use the same section offsets as from last time. I'm not
2584 sure whether that is always correct for shared libraries. */
2585 objfile->section_offsets = (struct section_offsets *)
2586 obstack_alloc (&objfile->objfile_obstack,
2587 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2588 memcpy (objfile->section_offsets, offsets,
2589 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2590 objfile->num_sections = num_offsets;
2591
2592 /* What the hell is sym_new_init for, anyway? The concept of
2593 distinguishing between the main file and additional files
2594 in this way seems rather dubious. */
2595 if (objfile == symfile_objfile)
2596 {
2597 (*objfile->sf->sym_new_init) (objfile);
2598 }
2599
2600 (*objfile->sf->sym_init) (objfile);
2601 clear_complaints (&symfile_complaints, 1, 1);
2602 /* Do not set flags as this is safe and we don't want to be
2603 verbose. */
2604 (*objfile->sf->sym_read) (objfile, 0);
2605 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2606 {
2607 objfile->flags &= ~OBJF_PSYMTABS_READ;
2608 require_partial_symbols (objfile, 0);
2609 }
2610
2611 if (!objfile_has_symbols (objfile))
2612 {
2613 wrap_here ("");
2614 printf_unfiltered (_("(no debugging symbols found)\n"));
2615 wrap_here ("");
2616 }
2617
2618 /* We're done reading the symbol file; finish off complaints. */
2619 clear_complaints (&symfile_complaints, 0, 1);
2620
2621 /* Getting new symbols may change our opinion about what is
2622 frameless. */
2623
2624 reinit_frame_cache ();
2625
2626 /* Discard cleanups as symbol reading was successful. */
2627 discard_cleanups (old_cleanups);
2628
2629 /* If the mtime has changed between the time we set new_modtime
2630 and now, we *want* this to be out of date, so don't call stat
2631 again now. */
2632 objfile->mtime = new_modtime;
2633 init_entry_point_info (objfile);
2634
2635 VEC_safe_push (objfilep, new_objfiles, objfile);
2636 }
2637 }
2638
2639 if (new_objfiles)
2640 {
2641 int ix;
2642
2643 /* Notify objfiles that we've modified objfile sections. */
2644 objfiles_changed ();
2645
2646 clear_symtab_users (0);
2647
2648 /* clear_objfile_data for each objfile was called before freeing it and
2649 observer_notify_new_objfile (NULL) has been called by
2650 clear_symtab_users above. Notify the new files now. */
2651 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2652 observer_notify_new_objfile (objfile);
2653
2654 /* At least one objfile has changed, so we can consider that
2655 the executable we're debugging has changed too. */
2656 observer_notify_executable_changed ();
2657 }
2658
2659 do_cleanups (all_cleanups);
2660 }
2661 \f
2662
2663
2664 typedef struct
2665 {
2666 char *ext;
2667 enum language lang;
2668 }
2669 filename_language;
2670
2671 static filename_language *filename_language_table;
2672 static int fl_table_size, fl_table_next;
2673
2674 static void
2675 add_filename_language (char *ext, enum language lang)
2676 {
2677 if (fl_table_next >= fl_table_size)
2678 {
2679 fl_table_size += 10;
2680 filename_language_table =
2681 xrealloc (filename_language_table,
2682 fl_table_size * sizeof (*filename_language_table));
2683 }
2684
2685 filename_language_table[fl_table_next].ext = xstrdup (ext);
2686 filename_language_table[fl_table_next].lang = lang;
2687 fl_table_next++;
2688 }
2689
2690 static char *ext_args;
2691 static void
2692 show_ext_args (struct ui_file *file, int from_tty,
2693 struct cmd_list_element *c, const char *value)
2694 {
2695 fprintf_filtered (file,
2696 _("Mapping between filename extension "
2697 "and source language is \"%s\".\n"),
2698 value);
2699 }
2700
2701 static void
2702 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2703 {
2704 int i;
2705 char *cp = ext_args;
2706 enum language lang;
2707
2708 /* First arg is filename extension, starting with '.' */
2709 if (*cp != '.')
2710 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2711
2712 /* Find end of first arg. */
2713 while (*cp && !isspace (*cp))
2714 cp++;
2715
2716 if (*cp == '\0')
2717 error (_("'%s': two arguments required -- "
2718 "filename extension and language"),
2719 ext_args);
2720
2721 /* Null-terminate first arg. */
2722 *cp++ = '\0';
2723
2724 /* Find beginning of second arg, which should be a source language. */
2725 while (*cp && isspace (*cp))
2726 cp++;
2727
2728 if (*cp == '\0')
2729 error (_("'%s': two arguments required -- "
2730 "filename extension and language"),
2731 ext_args);
2732
2733 /* Lookup the language from among those we know. */
2734 lang = language_enum (cp);
2735
2736 /* Now lookup the filename extension: do we already know it? */
2737 for (i = 0; i < fl_table_next; i++)
2738 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2739 break;
2740
2741 if (i >= fl_table_next)
2742 {
2743 /* New file extension. */
2744 add_filename_language (ext_args, lang);
2745 }
2746 else
2747 {
2748 /* Redefining a previously known filename extension. */
2749
2750 /* if (from_tty) */
2751 /* query ("Really make files of type %s '%s'?", */
2752 /* ext_args, language_str (lang)); */
2753
2754 xfree (filename_language_table[i].ext);
2755 filename_language_table[i].ext = xstrdup (ext_args);
2756 filename_language_table[i].lang = lang;
2757 }
2758 }
2759
2760 static void
2761 info_ext_lang_command (char *args, int from_tty)
2762 {
2763 int i;
2764
2765 printf_filtered (_("Filename extensions and the languages they represent:"));
2766 printf_filtered ("\n\n");
2767 for (i = 0; i < fl_table_next; i++)
2768 printf_filtered ("\t%s\t- %s\n",
2769 filename_language_table[i].ext,
2770 language_str (filename_language_table[i].lang));
2771 }
2772
2773 static void
2774 init_filename_language_table (void)
2775 {
2776 if (fl_table_size == 0) /* Protect against repetition. */
2777 {
2778 fl_table_size = 20;
2779 fl_table_next = 0;
2780 filename_language_table =
2781 xmalloc (fl_table_size * sizeof (*filename_language_table));
2782 add_filename_language (".c", language_c);
2783 add_filename_language (".d", language_d);
2784 add_filename_language (".C", language_cplus);
2785 add_filename_language (".cc", language_cplus);
2786 add_filename_language (".cp", language_cplus);
2787 add_filename_language (".cpp", language_cplus);
2788 add_filename_language (".cxx", language_cplus);
2789 add_filename_language (".c++", language_cplus);
2790 add_filename_language (".java", language_java);
2791 add_filename_language (".class", language_java);
2792 add_filename_language (".m", language_objc);
2793 add_filename_language (".f", language_fortran);
2794 add_filename_language (".F", language_fortran);
2795 add_filename_language (".for", language_fortran);
2796 add_filename_language (".FOR", language_fortran);
2797 add_filename_language (".ftn", language_fortran);
2798 add_filename_language (".FTN", language_fortran);
2799 add_filename_language (".fpp", language_fortran);
2800 add_filename_language (".FPP", language_fortran);
2801 add_filename_language (".f90", language_fortran);
2802 add_filename_language (".F90", language_fortran);
2803 add_filename_language (".f95", language_fortran);
2804 add_filename_language (".F95", language_fortran);
2805 add_filename_language (".f03", language_fortran);
2806 add_filename_language (".F03", language_fortran);
2807 add_filename_language (".f08", language_fortran);
2808 add_filename_language (".F08", language_fortran);
2809 add_filename_language (".s", language_asm);
2810 add_filename_language (".sx", language_asm);
2811 add_filename_language (".S", language_asm);
2812 add_filename_language (".pas", language_pascal);
2813 add_filename_language (".p", language_pascal);
2814 add_filename_language (".pp", language_pascal);
2815 add_filename_language (".adb", language_ada);
2816 add_filename_language (".ads", language_ada);
2817 add_filename_language (".a", language_ada);
2818 add_filename_language (".ada", language_ada);
2819 add_filename_language (".dg", language_ada);
2820 }
2821 }
2822
2823 enum language
2824 deduce_language_from_filename (const char *filename)
2825 {
2826 int i;
2827 char *cp;
2828
2829 if (filename != NULL)
2830 if ((cp = strrchr (filename, '.')) != NULL)
2831 for (i = 0; i < fl_table_next; i++)
2832 if (strcmp (cp, filename_language_table[i].ext) == 0)
2833 return filename_language_table[i].lang;
2834
2835 return language_unknown;
2836 }
2837 \f
2838 /* allocate_symtab:
2839
2840 Allocate and partly initialize a new symbol table. Return a pointer
2841 to it. error() if no space.
2842
2843 Caller must set these fields:
2844 LINETABLE(symtab)
2845 symtab->blockvector
2846 symtab->dirname
2847 symtab->free_code
2848 symtab->free_ptr
2849 */
2850
2851 struct symtab *
2852 allocate_symtab (const char *filename, struct objfile *objfile)
2853 {
2854 struct symtab *symtab;
2855
2856 symtab = (struct symtab *)
2857 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2858 memset (symtab, 0, sizeof (*symtab));
2859 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2860 objfile->filename_cache);
2861 symtab->fullname = NULL;
2862 symtab->language = deduce_language_from_filename (filename);
2863 symtab->debugformat = "unknown";
2864
2865 /* Hook it to the objfile it comes from. */
2866
2867 symtab->objfile = objfile;
2868 symtab->next = objfile->symtabs;
2869 objfile->symtabs = symtab;
2870
2871 if (symtab_create_debug)
2872 {
2873 /* Be a bit clever with debugging messages, and don't print objfile
2874 every time, only when it changes. */
2875 static char *last_objfile_name = NULL;
2876
2877 if (last_objfile_name == NULL
2878 || strcmp (last_objfile_name, objfile->name) != 0)
2879 {
2880 xfree (last_objfile_name);
2881 last_objfile_name = xstrdup (objfile->name);
2882 fprintf_unfiltered (gdb_stdlog,
2883 "Creating one or more symtabs for objfile %s ...\n",
2884 last_objfile_name);
2885 }
2886 fprintf_unfiltered (gdb_stdlog,
2887 "Created symtab 0x%lx for module %s.\n",
2888 (long) symtab, filename);
2889 }
2890
2891 return (symtab);
2892 }
2893 \f
2894
2895 /* Reset all data structures in gdb which may contain references to symbol
2896 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2897
2898 void
2899 clear_symtab_users (int add_flags)
2900 {
2901 /* Someday, we should do better than this, by only blowing away
2902 the things that really need to be blown. */
2903
2904 /* Clear the "current" symtab first, because it is no longer valid.
2905 breakpoint_re_set may try to access the current symtab. */
2906 clear_current_source_symtab_and_line ();
2907
2908 clear_displays ();
2909 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2910 breakpoint_re_set ();
2911 clear_last_displayed_sal ();
2912 clear_pc_function_cache ();
2913 observer_notify_new_objfile (NULL);
2914
2915 /* Clear globals which might have pointed into a removed objfile.
2916 FIXME: It's not clear which of these are supposed to persist
2917 between expressions and which ought to be reset each time. */
2918 expression_context_block = NULL;
2919 innermost_block = NULL;
2920
2921 /* Varobj may refer to old symbols, perform a cleanup. */
2922 varobj_invalidate ();
2923
2924 }
2925
2926 static void
2927 clear_symtab_users_cleanup (void *ignore)
2928 {
2929 clear_symtab_users (0);
2930 }
2931 \f
2932 /* OVERLAYS:
2933 The following code implements an abstraction for debugging overlay sections.
2934
2935 The target model is as follows:
2936 1) The gnu linker will permit multiple sections to be mapped into the
2937 same VMA, each with its own unique LMA (or load address).
2938 2) It is assumed that some runtime mechanism exists for mapping the
2939 sections, one by one, from the load address into the VMA address.
2940 3) This code provides a mechanism for gdb to keep track of which
2941 sections should be considered to be mapped from the VMA to the LMA.
2942 This information is used for symbol lookup, and memory read/write.
2943 For instance, if a section has been mapped then its contents
2944 should be read from the VMA, otherwise from the LMA.
2945
2946 Two levels of debugger support for overlays are available. One is
2947 "manual", in which the debugger relies on the user to tell it which
2948 overlays are currently mapped. This level of support is
2949 implemented entirely in the core debugger, and the information about
2950 whether a section is mapped is kept in the objfile->obj_section table.
2951
2952 The second level of support is "automatic", and is only available if
2953 the target-specific code provides functionality to read the target's
2954 overlay mapping table, and translate its contents for the debugger
2955 (by updating the mapped state information in the obj_section tables).
2956
2957 The interface is as follows:
2958 User commands:
2959 overlay map <name> -- tell gdb to consider this section mapped
2960 overlay unmap <name> -- tell gdb to consider this section unmapped
2961 overlay list -- list the sections that GDB thinks are mapped
2962 overlay read-target -- get the target's state of what's mapped
2963 overlay off/manual/auto -- set overlay debugging state
2964 Functional interface:
2965 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2966 section, return that section.
2967 find_pc_overlay(pc): find any overlay section that contains
2968 the pc, either in its VMA or its LMA
2969 section_is_mapped(sect): true if overlay is marked as mapped
2970 section_is_overlay(sect): true if section's VMA != LMA
2971 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2972 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2973 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2974 overlay_mapped_address(...): map an address from section's LMA to VMA
2975 overlay_unmapped_address(...): map an address from section's VMA to LMA
2976 symbol_overlayed_address(...): Return a "current" address for symbol:
2977 either in VMA or LMA depending on whether
2978 the symbol's section is currently mapped. */
2979
2980 /* Overlay debugging state: */
2981
2982 enum overlay_debugging_state overlay_debugging = ovly_off;
2983 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2984
2985 /* Function: section_is_overlay (SECTION)
2986 Returns true if SECTION has VMA not equal to LMA, ie.
2987 SECTION is loaded at an address different from where it will "run". */
2988
2989 int
2990 section_is_overlay (struct obj_section *section)
2991 {
2992 if (overlay_debugging && section)
2993 {
2994 bfd *abfd = section->objfile->obfd;
2995 asection *bfd_section = section->the_bfd_section;
2996
2997 if (bfd_section_lma (abfd, bfd_section) != 0
2998 && bfd_section_lma (abfd, bfd_section)
2999 != bfd_section_vma (abfd, bfd_section))
3000 return 1;
3001 }
3002
3003 return 0;
3004 }
3005
3006 /* Function: overlay_invalidate_all (void)
3007 Invalidate the mapped state of all overlay sections (mark it as stale). */
3008
3009 static void
3010 overlay_invalidate_all (void)
3011 {
3012 struct objfile *objfile;
3013 struct obj_section *sect;
3014
3015 ALL_OBJSECTIONS (objfile, sect)
3016 if (section_is_overlay (sect))
3017 sect->ovly_mapped = -1;
3018 }
3019
3020 /* Function: section_is_mapped (SECTION)
3021 Returns true if section is an overlay, and is currently mapped.
3022
3023 Access to the ovly_mapped flag is restricted to this function, so
3024 that we can do automatic update. If the global flag
3025 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3026 overlay_invalidate_all. If the mapped state of the particular
3027 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3028
3029 int
3030 section_is_mapped (struct obj_section *osect)
3031 {
3032 struct gdbarch *gdbarch;
3033
3034 if (osect == 0 || !section_is_overlay (osect))
3035 return 0;
3036
3037 switch (overlay_debugging)
3038 {
3039 default:
3040 case ovly_off:
3041 return 0; /* overlay debugging off */
3042 case ovly_auto: /* overlay debugging automatic */
3043 /* Unles there is a gdbarch_overlay_update function,
3044 there's really nothing useful to do here (can't really go auto). */
3045 gdbarch = get_objfile_arch (osect->objfile);
3046 if (gdbarch_overlay_update_p (gdbarch))
3047 {
3048 if (overlay_cache_invalid)
3049 {
3050 overlay_invalidate_all ();
3051 overlay_cache_invalid = 0;
3052 }
3053 if (osect->ovly_mapped == -1)
3054 gdbarch_overlay_update (gdbarch, osect);
3055 }
3056 /* fall thru to manual case */
3057 case ovly_on: /* overlay debugging manual */
3058 return osect->ovly_mapped == 1;
3059 }
3060 }
3061
3062 /* Function: pc_in_unmapped_range
3063 If PC falls into the lma range of SECTION, return true, else false. */
3064
3065 CORE_ADDR
3066 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3067 {
3068 if (section_is_overlay (section))
3069 {
3070 bfd *abfd = section->objfile->obfd;
3071 asection *bfd_section = section->the_bfd_section;
3072
3073 /* We assume the LMA is relocated by the same offset as the VMA. */
3074 bfd_vma size = bfd_get_section_size (bfd_section);
3075 CORE_ADDR offset = obj_section_offset (section);
3076
3077 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3078 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3079 return 1;
3080 }
3081
3082 return 0;
3083 }
3084
3085 /* Function: pc_in_mapped_range
3086 If PC falls into the vma range of SECTION, return true, else false. */
3087
3088 CORE_ADDR
3089 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3090 {
3091 if (section_is_overlay (section))
3092 {
3093 if (obj_section_addr (section) <= pc
3094 && pc < obj_section_endaddr (section))
3095 return 1;
3096 }
3097
3098 return 0;
3099 }
3100
3101
3102 /* Return true if the mapped ranges of sections A and B overlap, false
3103 otherwise. */
3104 static int
3105 sections_overlap (struct obj_section *a, struct obj_section *b)
3106 {
3107 CORE_ADDR a_start = obj_section_addr (a);
3108 CORE_ADDR a_end = obj_section_endaddr (a);
3109 CORE_ADDR b_start = obj_section_addr (b);
3110 CORE_ADDR b_end = obj_section_endaddr (b);
3111
3112 return (a_start < b_end && b_start < a_end);
3113 }
3114
3115 /* Function: overlay_unmapped_address (PC, SECTION)
3116 Returns the address corresponding to PC in the unmapped (load) range.
3117 May be the same as PC. */
3118
3119 CORE_ADDR
3120 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3121 {
3122 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3123 {
3124 bfd *abfd = section->objfile->obfd;
3125 asection *bfd_section = section->the_bfd_section;
3126
3127 return pc + bfd_section_lma (abfd, bfd_section)
3128 - bfd_section_vma (abfd, bfd_section);
3129 }
3130
3131 return pc;
3132 }
3133
3134 /* Function: overlay_mapped_address (PC, SECTION)
3135 Returns the address corresponding to PC in the mapped (runtime) range.
3136 May be the same as PC. */
3137
3138 CORE_ADDR
3139 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3140 {
3141 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3142 {
3143 bfd *abfd = section->objfile->obfd;
3144 asection *bfd_section = section->the_bfd_section;
3145
3146 return pc + bfd_section_vma (abfd, bfd_section)
3147 - bfd_section_lma (abfd, bfd_section);
3148 }
3149
3150 return pc;
3151 }
3152
3153
3154 /* Function: symbol_overlayed_address
3155 Return one of two addresses (relative to the VMA or to the LMA),
3156 depending on whether the section is mapped or not. */
3157
3158 CORE_ADDR
3159 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3160 {
3161 if (overlay_debugging)
3162 {
3163 /* If the symbol has no section, just return its regular address. */
3164 if (section == 0)
3165 return address;
3166 /* If the symbol's section is not an overlay, just return its
3167 address. */
3168 if (!section_is_overlay (section))
3169 return address;
3170 /* If the symbol's section is mapped, just return its address. */
3171 if (section_is_mapped (section))
3172 return address;
3173 /*
3174 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3175 * then return its LOADED address rather than its vma address!!
3176 */
3177 return overlay_unmapped_address (address, section);
3178 }
3179 return address;
3180 }
3181
3182 /* Function: find_pc_overlay (PC)
3183 Return the best-match overlay section for PC:
3184 If PC matches a mapped overlay section's VMA, return that section.
3185 Else if PC matches an unmapped section's VMA, return that section.
3186 Else if PC matches an unmapped section's LMA, return that section. */
3187
3188 struct obj_section *
3189 find_pc_overlay (CORE_ADDR pc)
3190 {
3191 struct objfile *objfile;
3192 struct obj_section *osect, *best_match = NULL;
3193
3194 if (overlay_debugging)
3195 ALL_OBJSECTIONS (objfile, osect)
3196 if (section_is_overlay (osect))
3197 {
3198 if (pc_in_mapped_range (pc, osect))
3199 {
3200 if (section_is_mapped (osect))
3201 return osect;
3202 else
3203 best_match = osect;
3204 }
3205 else if (pc_in_unmapped_range (pc, osect))
3206 best_match = osect;
3207 }
3208 return best_match;
3209 }
3210
3211 /* Function: find_pc_mapped_section (PC)
3212 If PC falls into the VMA address range of an overlay section that is
3213 currently marked as MAPPED, return that section. Else return NULL. */
3214
3215 struct obj_section *
3216 find_pc_mapped_section (CORE_ADDR pc)
3217 {
3218 struct objfile *objfile;
3219 struct obj_section *osect;
3220
3221 if (overlay_debugging)
3222 ALL_OBJSECTIONS (objfile, osect)
3223 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3224 return osect;
3225
3226 return NULL;
3227 }
3228
3229 /* Function: list_overlays_command
3230 Print a list of mapped sections and their PC ranges. */
3231
3232 void
3233 list_overlays_command (char *args, int from_tty)
3234 {
3235 int nmapped = 0;
3236 struct objfile *objfile;
3237 struct obj_section *osect;
3238
3239 if (overlay_debugging)
3240 ALL_OBJSECTIONS (objfile, osect)
3241 if (section_is_mapped (osect))
3242 {
3243 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3244 const char *name;
3245 bfd_vma lma, vma;
3246 int size;
3247
3248 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3249 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3250 size = bfd_get_section_size (osect->the_bfd_section);
3251 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3252
3253 printf_filtered ("Section %s, loaded at ", name);
3254 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3255 puts_filtered (" - ");
3256 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3257 printf_filtered (", mapped at ");
3258 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3259 puts_filtered (" - ");
3260 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3261 puts_filtered ("\n");
3262
3263 nmapped++;
3264 }
3265 if (nmapped == 0)
3266 printf_filtered (_("No sections are mapped.\n"));
3267 }
3268
3269 /* Function: map_overlay_command
3270 Mark the named section as mapped (ie. residing at its VMA address). */
3271
3272 void
3273 map_overlay_command (char *args, int from_tty)
3274 {
3275 struct objfile *objfile, *objfile2;
3276 struct obj_section *sec, *sec2;
3277
3278 if (!overlay_debugging)
3279 error (_("Overlay debugging not enabled. Use "
3280 "either the 'overlay auto' or\n"
3281 "the 'overlay manual' command."));
3282
3283 if (args == 0 || *args == 0)
3284 error (_("Argument required: name of an overlay section"));
3285
3286 /* First, find a section matching the user supplied argument. */
3287 ALL_OBJSECTIONS (objfile, sec)
3288 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3289 {
3290 /* Now, check to see if the section is an overlay. */
3291 if (!section_is_overlay (sec))
3292 continue; /* not an overlay section */
3293
3294 /* Mark the overlay as "mapped". */
3295 sec->ovly_mapped = 1;
3296
3297 /* Next, make a pass and unmap any sections that are
3298 overlapped by this new section: */
3299 ALL_OBJSECTIONS (objfile2, sec2)
3300 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3301 {
3302 if (info_verbose)
3303 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3304 bfd_section_name (objfile->obfd,
3305 sec2->the_bfd_section));
3306 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3307 }
3308 return;
3309 }
3310 error (_("No overlay section called %s"), args);
3311 }
3312
3313 /* Function: unmap_overlay_command
3314 Mark the overlay section as unmapped
3315 (ie. resident in its LMA address range, rather than the VMA range). */
3316
3317 void
3318 unmap_overlay_command (char *args, int from_tty)
3319 {
3320 struct objfile *objfile;
3321 struct obj_section *sec;
3322
3323 if (!overlay_debugging)
3324 error (_("Overlay debugging not enabled. "
3325 "Use either the 'overlay auto' or\n"
3326 "the 'overlay manual' command."));
3327
3328 if (args == 0 || *args == 0)
3329 error (_("Argument required: name of an overlay section"));
3330
3331 /* First, find a section matching the user supplied argument. */
3332 ALL_OBJSECTIONS (objfile, sec)
3333 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3334 {
3335 if (!sec->ovly_mapped)
3336 error (_("Section %s is not mapped"), args);
3337 sec->ovly_mapped = 0;
3338 return;
3339 }
3340 error (_("No overlay section called %s"), args);
3341 }
3342
3343 /* Function: overlay_auto_command
3344 A utility command to turn on overlay debugging.
3345 Possibly this should be done via a set/show command. */
3346
3347 static void
3348 overlay_auto_command (char *args, int from_tty)
3349 {
3350 overlay_debugging = ovly_auto;
3351 enable_overlay_breakpoints ();
3352 if (info_verbose)
3353 printf_unfiltered (_("Automatic overlay debugging enabled."));
3354 }
3355
3356 /* Function: overlay_manual_command
3357 A utility command to turn on overlay debugging.
3358 Possibly this should be done via a set/show command. */
3359
3360 static void
3361 overlay_manual_command (char *args, int from_tty)
3362 {
3363 overlay_debugging = ovly_on;
3364 disable_overlay_breakpoints ();
3365 if (info_verbose)
3366 printf_unfiltered (_("Overlay debugging enabled."));
3367 }
3368
3369 /* Function: overlay_off_command
3370 A utility command to turn on overlay debugging.
3371 Possibly this should be done via a set/show command. */
3372
3373 static void
3374 overlay_off_command (char *args, int from_tty)
3375 {
3376 overlay_debugging = ovly_off;
3377 disable_overlay_breakpoints ();
3378 if (info_verbose)
3379 printf_unfiltered (_("Overlay debugging disabled."));
3380 }
3381
3382 static void
3383 overlay_load_command (char *args, int from_tty)
3384 {
3385 struct gdbarch *gdbarch = get_current_arch ();
3386
3387 if (gdbarch_overlay_update_p (gdbarch))
3388 gdbarch_overlay_update (gdbarch, NULL);
3389 else
3390 error (_("This target does not know how to read its overlay state."));
3391 }
3392
3393 /* Function: overlay_command
3394 A place-holder for a mis-typed command. */
3395
3396 /* Command list chain containing all defined "overlay" subcommands. */
3397 struct cmd_list_element *overlaylist;
3398
3399 static void
3400 overlay_command (char *args, int from_tty)
3401 {
3402 printf_unfiltered
3403 ("\"overlay\" must be followed by the name of an overlay command.\n");
3404 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3405 }
3406
3407
3408 /* Target Overlays for the "Simplest" overlay manager:
3409
3410 This is GDB's default target overlay layer. It works with the
3411 minimal overlay manager supplied as an example by Cygnus. The
3412 entry point is via a function pointer "gdbarch_overlay_update",
3413 so targets that use a different runtime overlay manager can
3414 substitute their own overlay_update function and take over the
3415 function pointer.
3416
3417 The overlay_update function pokes around in the target's data structures
3418 to see what overlays are mapped, and updates GDB's overlay mapping with
3419 this information.
3420
3421 In this simple implementation, the target data structures are as follows:
3422 unsigned _novlys; /# number of overlay sections #/
3423 unsigned _ovly_table[_novlys][4] = {
3424 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3425 {..., ..., ..., ...},
3426 }
3427 unsigned _novly_regions; /# number of overlay regions #/
3428 unsigned _ovly_region_table[_novly_regions][3] = {
3429 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3430 {..., ..., ...},
3431 }
3432 These functions will attempt to update GDB's mappedness state in the
3433 symbol section table, based on the target's mappedness state.
3434
3435 To do this, we keep a cached copy of the target's _ovly_table, and
3436 attempt to detect when the cached copy is invalidated. The main
3437 entry point is "simple_overlay_update(SECT), which looks up SECT in
3438 the cached table and re-reads only the entry for that section from
3439 the target (whenever possible). */
3440
3441 /* Cached, dynamically allocated copies of the target data structures: */
3442 static unsigned (*cache_ovly_table)[4] = 0;
3443 static unsigned cache_novlys = 0;
3444 static CORE_ADDR cache_ovly_table_base = 0;
3445 enum ovly_index
3446 {
3447 VMA, SIZE, LMA, MAPPED
3448 };
3449
3450 /* Throw away the cached copy of _ovly_table. */
3451 static void
3452 simple_free_overlay_table (void)
3453 {
3454 if (cache_ovly_table)
3455 xfree (cache_ovly_table);
3456 cache_novlys = 0;
3457 cache_ovly_table = NULL;
3458 cache_ovly_table_base = 0;
3459 }
3460
3461 /* Read an array of ints of size SIZE from the target into a local buffer.
3462 Convert to host order. int LEN is number of ints. */
3463 static void
3464 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3465 int len, int size, enum bfd_endian byte_order)
3466 {
3467 /* FIXME (alloca): Not safe if array is very large. */
3468 gdb_byte *buf = alloca (len * size);
3469 int i;
3470
3471 read_memory (memaddr, buf, len * size);
3472 for (i = 0; i < len; i++)
3473 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3474 }
3475
3476 /* Find and grab a copy of the target _ovly_table
3477 (and _novlys, which is needed for the table's size). */
3478 static int
3479 simple_read_overlay_table (void)
3480 {
3481 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3482 struct gdbarch *gdbarch;
3483 int word_size;
3484 enum bfd_endian byte_order;
3485
3486 simple_free_overlay_table ();
3487 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3488 if (! novlys_msym)
3489 {
3490 error (_("Error reading inferior's overlay table: "
3491 "couldn't find `_novlys' variable\n"
3492 "in inferior. Use `overlay manual' mode."));
3493 return 0;
3494 }
3495
3496 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3497 if (! ovly_table_msym)
3498 {
3499 error (_("Error reading inferior's overlay table: couldn't find "
3500 "`_ovly_table' array\n"
3501 "in inferior. Use `overlay manual' mode."));
3502 return 0;
3503 }
3504
3505 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3506 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3507 byte_order = gdbarch_byte_order (gdbarch);
3508
3509 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3510 4, byte_order);
3511 cache_ovly_table
3512 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3513 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3514 read_target_long_array (cache_ovly_table_base,
3515 (unsigned int *) cache_ovly_table,
3516 cache_novlys * 4, word_size, byte_order);
3517
3518 return 1; /* SUCCESS */
3519 }
3520
3521 /* Function: simple_overlay_update_1
3522 A helper function for simple_overlay_update. Assuming a cached copy
3523 of _ovly_table exists, look through it to find an entry whose vma,
3524 lma and size match those of OSECT. Re-read the entry and make sure
3525 it still matches OSECT (else the table may no longer be valid).
3526 Set OSECT's mapped state to match the entry. Return: 1 for
3527 success, 0 for failure. */
3528
3529 static int
3530 simple_overlay_update_1 (struct obj_section *osect)
3531 {
3532 int i, size;
3533 bfd *obfd = osect->objfile->obfd;
3534 asection *bsect = osect->the_bfd_section;
3535 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3536 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3537 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3538
3539 size = bfd_get_section_size (osect->the_bfd_section);
3540 for (i = 0; i < cache_novlys; i++)
3541 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3542 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3543 /* && cache_ovly_table[i][SIZE] == size */ )
3544 {
3545 read_target_long_array (cache_ovly_table_base + i * word_size,
3546 (unsigned int *) cache_ovly_table[i],
3547 4, word_size, byte_order);
3548 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3549 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3550 /* && cache_ovly_table[i][SIZE] == size */ )
3551 {
3552 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3553 return 1;
3554 }
3555 else /* Warning! Warning! Target's ovly table has changed! */
3556 return 0;
3557 }
3558 return 0;
3559 }
3560
3561 /* Function: simple_overlay_update
3562 If OSECT is NULL, then update all sections' mapped state
3563 (after re-reading the entire target _ovly_table).
3564 If OSECT is non-NULL, then try to find a matching entry in the
3565 cached ovly_table and update only OSECT's mapped state.
3566 If a cached entry can't be found or the cache isn't valid, then
3567 re-read the entire cache, and go ahead and update all sections. */
3568
3569 void
3570 simple_overlay_update (struct obj_section *osect)
3571 {
3572 struct objfile *objfile;
3573
3574 /* Were we given an osect to look up? NULL means do all of them. */
3575 if (osect)
3576 /* Have we got a cached copy of the target's overlay table? */
3577 if (cache_ovly_table != NULL)
3578 {
3579 /* Does its cached location match what's currently in the
3580 symtab? */
3581 struct minimal_symbol *minsym
3582 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3583
3584 if (minsym == NULL)
3585 error (_("Error reading inferior's overlay table: couldn't "
3586 "find `_ovly_table' array\n"
3587 "in inferior. Use `overlay manual' mode."));
3588
3589 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3590 /* Then go ahead and try to look up this single section in
3591 the cache. */
3592 if (simple_overlay_update_1 (osect))
3593 /* Found it! We're done. */
3594 return;
3595 }
3596
3597 /* Cached table no good: need to read the entire table anew.
3598 Or else we want all the sections, in which case it's actually
3599 more efficient to read the whole table in one block anyway. */
3600
3601 if (! simple_read_overlay_table ())
3602 return;
3603
3604 /* Now may as well update all sections, even if only one was requested. */
3605 ALL_OBJSECTIONS (objfile, osect)
3606 if (section_is_overlay (osect))
3607 {
3608 int i, size;
3609 bfd *obfd = osect->objfile->obfd;
3610 asection *bsect = osect->the_bfd_section;
3611
3612 size = bfd_get_section_size (bsect);
3613 for (i = 0; i < cache_novlys; i++)
3614 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3615 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3616 /* && cache_ovly_table[i][SIZE] == size */ )
3617 { /* obj_section matches i'th entry in ovly_table. */
3618 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3619 break; /* finished with inner for loop: break out. */
3620 }
3621 }
3622 }
3623
3624 /* Set the output sections and output offsets for section SECTP in
3625 ABFD. The relocation code in BFD will read these offsets, so we
3626 need to be sure they're initialized. We map each section to itself,
3627 with no offset; this means that SECTP->vma will be honored. */
3628
3629 static void
3630 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3631 {
3632 sectp->output_section = sectp;
3633 sectp->output_offset = 0;
3634 }
3635
3636 /* Default implementation for sym_relocate. */
3637
3638
3639 bfd_byte *
3640 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3641 bfd_byte *buf)
3642 {
3643 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3644 DWO file. */
3645 bfd *abfd = sectp->owner;
3646
3647 /* We're only interested in sections with relocation
3648 information. */
3649 if ((sectp->flags & SEC_RELOC) == 0)
3650 return NULL;
3651
3652 /* We will handle section offsets properly elsewhere, so relocate as if
3653 all sections begin at 0. */
3654 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3655
3656 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3657 }
3658
3659 /* Relocate the contents of a debug section SECTP in ABFD. The
3660 contents are stored in BUF if it is non-NULL, or returned in a
3661 malloc'd buffer otherwise.
3662
3663 For some platforms and debug info formats, shared libraries contain
3664 relocations against the debug sections (particularly for DWARF-2;
3665 one affected platform is PowerPC GNU/Linux, although it depends on
3666 the version of the linker in use). Also, ELF object files naturally
3667 have unresolved relocations for their debug sections. We need to apply
3668 the relocations in order to get the locations of symbols correct.
3669 Another example that may require relocation processing, is the
3670 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3671 debug section. */
3672
3673 bfd_byte *
3674 symfile_relocate_debug_section (struct objfile *objfile,
3675 asection *sectp, bfd_byte *buf)
3676 {
3677 gdb_assert (objfile->sf->sym_relocate);
3678
3679 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3680 }
3681
3682 struct symfile_segment_data *
3683 get_symfile_segment_data (bfd *abfd)
3684 {
3685 const struct sym_fns *sf = find_sym_fns (abfd);
3686
3687 if (sf == NULL)
3688 return NULL;
3689
3690 return sf->sym_segments (abfd);
3691 }
3692
3693 void
3694 free_symfile_segment_data (struct symfile_segment_data *data)
3695 {
3696 xfree (data->segment_bases);
3697 xfree (data->segment_sizes);
3698 xfree (data->segment_info);
3699 xfree (data);
3700 }
3701
3702
3703 /* Given:
3704 - DATA, containing segment addresses from the object file ABFD, and
3705 the mapping from ABFD's sections onto the segments that own them,
3706 and
3707 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3708 segment addresses reported by the target,
3709 store the appropriate offsets for each section in OFFSETS.
3710
3711 If there are fewer entries in SEGMENT_BASES than there are segments
3712 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3713
3714 If there are more entries, then ignore the extra. The target may
3715 not be able to distinguish between an empty data segment and a
3716 missing data segment; a missing text segment is less plausible. */
3717 int
3718 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3719 struct section_offsets *offsets,
3720 int num_segment_bases,
3721 const CORE_ADDR *segment_bases)
3722 {
3723 int i;
3724 asection *sect;
3725
3726 /* It doesn't make sense to call this function unless you have some
3727 segment base addresses. */
3728 gdb_assert (num_segment_bases > 0);
3729
3730 /* If we do not have segment mappings for the object file, we
3731 can not relocate it by segments. */
3732 gdb_assert (data != NULL);
3733 gdb_assert (data->num_segments > 0);
3734
3735 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3736 {
3737 int which = data->segment_info[i];
3738
3739 gdb_assert (0 <= which && which <= data->num_segments);
3740
3741 /* Don't bother computing offsets for sections that aren't
3742 loaded as part of any segment. */
3743 if (! which)
3744 continue;
3745
3746 /* Use the last SEGMENT_BASES entry as the address of any extra
3747 segments mentioned in DATA->segment_info. */
3748 if (which > num_segment_bases)
3749 which = num_segment_bases;
3750
3751 offsets->offsets[i] = (segment_bases[which - 1]
3752 - data->segment_bases[which - 1]);
3753 }
3754
3755 return 1;
3756 }
3757
3758 static void
3759 symfile_find_segment_sections (struct objfile *objfile)
3760 {
3761 bfd *abfd = objfile->obfd;
3762 int i;
3763 asection *sect;
3764 struct symfile_segment_data *data;
3765
3766 data = get_symfile_segment_data (objfile->obfd);
3767 if (data == NULL)
3768 return;
3769
3770 if (data->num_segments != 1 && data->num_segments != 2)
3771 {
3772 free_symfile_segment_data (data);
3773 return;
3774 }
3775
3776 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3777 {
3778 int which = data->segment_info[i];
3779
3780 if (which == 1)
3781 {
3782 if (objfile->sect_index_text == -1)
3783 objfile->sect_index_text = sect->index;
3784
3785 if (objfile->sect_index_rodata == -1)
3786 objfile->sect_index_rodata = sect->index;
3787 }
3788 else if (which == 2)
3789 {
3790 if (objfile->sect_index_data == -1)
3791 objfile->sect_index_data = sect->index;
3792
3793 if (objfile->sect_index_bss == -1)
3794 objfile->sect_index_bss = sect->index;
3795 }
3796 }
3797
3798 free_symfile_segment_data (data);
3799 }
3800
3801 void
3802 _initialize_symfile (void)
3803 {
3804 struct cmd_list_element *c;
3805
3806 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3807 Load symbol table from executable file FILE.\n\
3808 The `file' command can also load symbol tables, as well as setting the file\n\
3809 to execute."), &cmdlist);
3810 set_cmd_completer (c, filename_completer);
3811
3812 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3813 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3814 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3815 ...]\nADDR is the starting address of the file's text.\n\
3816 The optional arguments are section-name section-address pairs and\n\
3817 should be specified if the data and bss segments are not contiguous\n\
3818 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3819 &cmdlist);
3820 set_cmd_completer (c, filename_completer);
3821
3822 c = add_cmd ("load", class_files, load_command, _("\
3823 Dynamically load FILE into the running program, and record its symbols\n\
3824 for access from GDB.\n\
3825 A load OFFSET may also be given."), &cmdlist);
3826 set_cmd_completer (c, filename_completer);
3827
3828 add_prefix_cmd ("overlay", class_support, overlay_command,
3829 _("Commands for debugging overlays."), &overlaylist,
3830 "overlay ", 0, &cmdlist);
3831
3832 add_com_alias ("ovly", "overlay", class_alias, 1);
3833 add_com_alias ("ov", "overlay", class_alias, 1);
3834
3835 add_cmd ("map-overlay", class_support, map_overlay_command,
3836 _("Assert that an overlay section is mapped."), &overlaylist);
3837
3838 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3839 _("Assert that an overlay section is unmapped."), &overlaylist);
3840
3841 add_cmd ("list-overlays", class_support, list_overlays_command,
3842 _("List mappings of overlay sections."), &overlaylist);
3843
3844 add_cmd ("manual", class_support, overlay_manual_command,
3845 _("Enable overlay debugging."), &overlaylist);
3846 add_cmd ("off", class_support, overlay_off_command,
3847 _("Disable overlay debugging."), &overlaylist);
3848 add_cmd ("auto", class_support, overlay_auto_command,
3849 _("Enable automatic overlay debugging."), &overlaylist);
3850 add_cmd ("load-target", class_support, overlay_load_command,
3851 _("Read the overlay mapping state from the target."), &overlaylist);
3852
3853 /* Filename extension to source language lookup table: */
3854 init_filename_language_table ();
3855 add_setshow_string_noescape_cmd ("extension-language", class_files,
3856 &ext_args, _("\
3857 Set mapping between filename extension and source language."), _("\
3858 Show mapping between filename extension and source language."), _("\
3859 Usage: set extension-language .foo bar"),
3860 set_ext_lang_command,
3861 show_ext_args,
3862 &setlist, &showlist);
3863
3864 add_info ("extensions", info_ext_lang_command,
3865 _("All filename extensions associated with a source language."));
3866
3867 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3868 &debug_file_directory, _("\
3869 Set the directories where separate debug symbols are searched for."), _("\
3870 Show the directories where separate debug symbols are searched for."), _("\
3871 Separate debug symbols are first searched for in the same\n\
3872 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3873 and lastly at the path of the directory of the binary with\n\
3874 each global debug-file-directory component prepended."),
3875 NULL,
3876 show_debug_file_directory,
3877 &setlist, &showlist);
3878 }