]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
gdb
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 bfd *symfile_bfd_open (char *);
102
103 int get_section_index (struct objfile *, char *);
104
105 static struct sym_fns *find_sym_fns (bfd *);
106
107 static void decrement_reading_symtab (void *);
108
109 static void overlay_invalidate_all (void);
110
111 void list_overlays_command (char *, int);
112
113 void map_overlay_command (char *, int);
114
115 void unmap_overlay_command (char *, int);
116
117 static void overlay_auto_command (char *, int);
118
119 static void overlay_manual_command (char *, int);
120
121 static void overlay_off_command (char *, int);
122
123 static void overlay_load_command (char *, int);
124
125 static void overlay_command (char *, int);
126
127 static void simple_free_overlay_table (void);
128
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
131
132 static int simple_read_overlay_table (void);
133
134 static int simple_overlay_update_1 (struct obj_section *);
135
136 static void add_filename_language (char *ext, enum language lang);
137
138 static void info_ext_lang_command (char *args, int from_tty);
139
140 static void init_filename_language_table (void);
141
142 static void symfile_find_segment_sections (struct objfile *objfile);
143
144 void _initialize_symfile (void);
145
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150 static struct sym_fns *symtab_fns = NULL;
151
152 /* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155 #ifdef SYMBOL_RELOADING_DEFAULT
156 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157 #else
158 int symbol_reloading = 0;
159 #endif
160 static void
161 show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file, _("\
165 Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167 }
168
169 /* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
176 library symbols are not loaded, commands like "info fun" will *not*
177 report all the functions that are actually present. */
178
179 int auto_solib_add = 1;
180
181 /* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189 int auto_solib_limit;
190 \f
191
192 /* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197 char *
198 obsavestring (const char *ptr, int size, struct obstack *obstackp)
199 {
200 char *p = (char *) obstack_alloc (obstackp, size + 1);
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
205 const char *p1 = ptr;
206 char *p2 = p;
207 const char *end = ptr + size;
208
209 while (p1 != end)
210 *p2++ = *p1++;
211 }
212 p[size] = 0;
213 return p;
214 }
215
216 /* Concatenate NULL terminated variable argument list of `const char *' strings;
217 return the new string. Space is found in the OBSTACKP. Argument list must
218 be terminated by a sentinel expression `(char *) NULL'. */
219
220 char *
221 obconcat (struct obstack *obstackp, ...)
222 {
223 va_list ap;
224
225 va_start (ap, obstackp);
226 for (;;)
227 {
228 const char *s = va_arg (ap, const char *);
229
230 if (s == NULL)
231 break;
232
233 obstack_grow_str (obstackp, s);
234 }
235 va_end (ap);
236 obstack_1grow (obstackp, 0);
237
238 return obstack_finish (obstackp);
239 }
240
241 /* True if we are reading a symbol table. */
242
243 int currently_reading_symtab = 0;
244
245 static void
246 decrement_reading_symtab (void *dummy)
247 {
248 currently_reading_symtab--;
249 }
250
251 /* Increment currently_reading_symtab and return a cleanup that can be
252 used to decrement it. */
253 struct cleanup *
254 increment_reading_symtab (void)
255 {
256 ++currently_reading_symtab;
257 return make_cleanup (decrement_reading_symtab, NULL);
258 }
259
260 /* Remember the lowest-addressed loadable section we've seen.
261 This function is called via bfd_map_over_sections.
262
263 In case of equal vmas, the section with the largest size becomes the
264 lowest-addressed loadable section.
265
266 If the vmas and sizes are equal, the last section is considered the
267 lowest-addressed loadable section. */
268
269 void
270 find_lowest_section (bfd *abfd, asection *sect, void *obj)
271 {
272 asection **lowest = (asection **) obj;
273
274 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
275 return;
276 if (!*lowest)
277 *lowest = sect; /* First loadable section */
278 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
279 *lowest = sect; /* A lower loadable section */
280 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
281 && (bfd_section_size (abfd, (*lowest))
282 <= bfd_section_size (abfd, sect)))
283 *lowest = sect;
284 }
285
286 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
287
288 struct section_addr_info *
289 alloc_section_addr_info (size_t num_sections)
290 {
291 struct section_addr_info *sap;
292 size_t size;
293
294 size = (sizeof (struct section_addr_info)
295 + sizeof (struct other_sections) * (num_sections - 1));
296 sap = (struct section_addr_info *) xmalloc (size);
297 memset (sap, 0, size);
298 sap->num_sections = num_sections;
299
300 return sap;
301 }
302
303 /* Build (allocate and populate) a section_addr_info struct from
304 an existing section table. */
305
306 extern struct section_addr_info *
307 build_section_addr_info_from_section_table (const struct target_section *start,
308 const struct target_section *end)
309 {
310 struct section_addr_info *sap;
311 const struct target_section *stp;
312 int oidx;
313
314 sap = alloc_section_addr_info (end - start);
315
316 for (stp = start, oidx = 0; stp != end; stp++)
317 {
318 if (bfd_get_section_flags (stp->bfd,
319 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
320 && oidx < end - start)
321 {
322 sap->other[oidx].addr = stp->addr;
323 sap->other[oidx].name
324 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
325 sap->other[oidx].sectindex = stp->the_bfd_section->index;
326 oidx++;
327 }
328 }
329
330 return sap;
331 }
332
333 /* Create a section_addr_info from section offsets in ABFD. */
334
335 static struct section_addr_info *
336 build_section_addr_info_from_bfd (bfd *abfd)
337 {
338 struct section_addr_info *sap;
339 int i;
340 struct bfd_section *sec;
341
342 sap = alloc_section_addr_info (bfd_count_sections (abfd));
343 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
344 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
345 {
346 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
347 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
348 sap->other[i].sectindex = sec->index;
349 i++;
350 }
351 return sap;
352 }
353
354 /* Create a section_addr_info from section offsets in OBJFILE. */
355
356 struct section_addr_info *
357 build_section_addr_info_from_objfile (const struct objfile *objfile)
358 {
359 struct section_addr_info *sap;
360 int i;
361
362 /* Before reread_symbols gets rewritten it is not safe to call:
363 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
364 */
365 sap = build_section_addr_info_from_bfd (objfile->obfd);
366 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
367 {
368 int sectindex = sap->other[i].sectindex;
369
370 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
371 }
372 return sap;
373 }
374
375 /* Free all memory allocated by build_section_addr_info_from_section_table. */
376
377 extern void
378 free_section_addr_info (struct section_addr_info *sap)
379 {
380 int idx;
381
382 for (idx = 0; idx < sap->num_sections; idx++)
383 if (sap->other[idx].name)
384 xfree (sap->other[idx].name);
385 xfree (sap);
386 }
387
388
389 /* Initialize OBJFILE's sect_index_* members. */
390 static void
391 init_objfile_sect_indices (struct objfile *objfile)
392 {
393 asection *sect;
394 int i;
395
396 sect = bfd_get_section_by_name (objfile->obfd, ".text");
397 if (sect)
398 objfile->sect_index_text = sect->index;
399
400 sect = bfd_get_section_by_name (objfile->obfd, ".data");
401 if (sect)
402 objfile->sect_index_data = sect->index;
403
404 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
405 if (sect)
406 objfile->sect_index_bss = sect->index;
407
408 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
409 if (sect)
410 objfile->sect_index_rodata = sect->index;
411
412 /* This is where things get really weird... We MUST have valid
413 indices for the various sect_index_* members or gdb will abort.
414 So if for example, there is no ".text" section, we have to
415 accomodate that. First, check for a file with the standard
416 one or two segments. */
417
418 symfile_find_segment_sections (objfile);
419
420 /* Except when explicitly adding symbol files at some address,
421 section_offsets contains nothing but zeros, so it doesn't matter
422 which slot in section_offsets the individual sect_index_* members
423 index into. So if they are all zero, it is safe to just point
424 all the currently uninitialized indices to the first slot. But
425 beware: if this is the main executable, it may be relocated
426 later, e.g. by the remote qOffsets packet, and then this will
427 be wrong! That's why we try segments first. */
428
429 for (i = 0; i < objfile->num_sections; i++)
430 {
431 if (ANOFFSET (objfile->section_offsets, i) != 0)
432 {
433 break;
434 }
435 }
436 if (i == objfile->num_sections)
437 {
438 if (objfile->sect_index_text == -1)
439 objfile->sect_index_text = 0;
440 if (objfile->sect_index_data == -1)
441 objfile->sect_index_data = 0;
442 if (objfile->sect_index_bss == -1)
443 objfile->sect_index_bss = 0;
444 if (objfile->sect_index_rodata == -1)
445 objfile->sect_index_rodata = 0;
446 }
447 }
448
449 /* The arguments to place_section. */
450
451 struct place_section_arg
452 {
453 struct section_offsets *offsets;
454 CORE_ADDR lowest;
455 };
456
457 /* Find a unique offset to use for loadable section SECT if
458 the user did not provide an offset. */
459
460 static void
461 place_section (bfd *abfd, asection *sect, void *obj)
462 {
463 struct place_section_arg *arg = obj;
464 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
465 int done;
466 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
467
468 /* We are only interested in allocated sections. */
469 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
470 return;
471
472 /* If the user specified an offset, honor it. */
473 if (offsets[sect->index] != 0)
474 return;
475
476 /* Otherwise, let's try to find a place for the section. */
477 start_addr = (arg->lowest + align - 1) & -align;
478
479 do {
480 asection *cur_sec;
481
482 done = 1;
483
484 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
485 {
486 int indx = cur_sec->index;
487
488 /* We don't need to compare against ourself. */
489 if (cur_sec == sect)
490 continue;
491
492 /* We can only conflict with allocated sections. */
493 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
494 continue;
495
496 /* If the section offset is 0, either the section has not been placed
497 yet, or it was the lowest section placed (in which case LOWEST
498 will be past its end). */
499 if (offsets[indx] == 0)
500 continue;
501
502 /* If this section would overlap us, then we must move up. */
503 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
504 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
505 {
506 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
507 start_addr = (start_addr + align - 1) & -align;
508 done = 0;
509 break;
510 }
511
512 /* Otherwise, we appear to be OK. So far. */
513 }
514 }
515 while (!done);
516
517 offsets[sect->index] = start_addr;
518 arg->lowest = start_addr + bfd_get_section_size (sect);
519 }
520
521 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
522 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
523 entries. */
524
525 void
526 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
527 int num_sections,
528 struct section_addr_info *addrs)
529 {
530 int i;
531
532 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
533
534 /* Now calculate offsets for section that were specified by the caller. */
535 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
536 {
537 struct other_sections *osp;
538
539 osp = &addrs->other[i];
540 if (osp->addr == 0)
541 continue;
542
543 /* Record all sections in offsets */
544 /* The section_offsets in the objfile are here filled in using
545 the BFD index. */
546 section_offsets->offsets[osp->sectindex] = osp->addr;
547 }
548 }
549
550 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
551 their (name, sectindex) pair. sectindex makes the sort by name stable. */
552
553 static int
554 addrs_section_compar (const void *ap, const void *bp)
555 {
556 const struct other_sections *a = *((struct other_sections **) ap);
557 const struct other_sections *b = *((struct other_sections **) bp);
558 int retval, a_idx, b_idx;
559
560 retval = strcmp (a->name, b->name);
561 if (retval)
562 return retval;
563
564 /* SECTINDEX is undefined iff ADDR is zero. */
565 a_idx = a->addr == 0 ? 0 : a->sectindex;
566 b_idx = b->addr == 0 ? 0 : b->sectindex;
567 return a_idx - b_idx;
568 }
569
570 /* Provide sorted array of pointers to sections of ADDRS. The array is
571 terminated by NULL. Caller is responsible to call xfree for it. */
572
573 static struct other_sections **
574 addrs_section_sort (struct section_addr_info *addrs)
575 {
576 struct other_sections **array;
577 int i;
578
579 /* `+ 1' for the NULL terminator. */
580 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
581 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
582 array[i] = &addrs->other[i];
583 array[i] = NULL;
584
585 qsort (array, i, sizeof (*array), addrs_section_compar);
586
587 return array;
588 }
589
590 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
591 also SECTINDEXes specific to ABFD there. This function can be used to
592 rebase ADDRS to start referencing different BFD than before. */
593
594 void
595 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
596 {
597 asection *lower_sect;
598 CORE_ADDR lower_offset;
599 int i;
600 struct cleanup *my_cleanup;
601 struct section_addr_info *abfd_addrs;
602 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
603 struct other_sections **addrs_to_abfd_addrs;
604
605 /* Find lowest loadable section to be used as starting point for
606 continguous sections. */
607 lower_sect = NULL;
608 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
609 if (lower_sect == NULL)
610 {
611 warning (_("no loadable sections found in added symbol-file %s"),
612 bfd_get_filename (abfd));
613 lower_offset = 0;
614 }
615 else
616 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
617
618 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
619 in ABFD. Section names are not unique - there can be multiple sections of
620 the same name. Also the sections of the same name do not have to be
621 adjacent to each other. Some sections may be present only in one of the
622 files. Even sections present in both files do not have to be in the same
623 order.
624
625 Use stable sort by name for the sections in both files. Then linearly
626 scan both lists matching as most of the entries as possible. */
627
628 addrs_sorted = addrs_section_sort (addrs);
629 my_cleanup = make_cleanup (xfree, addrs_sorted);
630
631 abfd_addrs = build_section_addr_info_from_bfd (abfd);
632 make_cleanup_free_section_addr_info (abfd_addrs);
633 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
634 make_cleanup (xfree, abfd_addrs_sorted);
635
636 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
637
638 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
639 * addrs->num_sections);
640 make_cleanup (xfree, addrs_to_abfd_addrs);
641
642 while (*addrs_sorted)
643 {
644 const char *sect_name = (*addrs_sorted)->name;
645
646 while (*abfd_addrs_sorted
647 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
648 abfd_addrs_sorted++;
649
650 if (*abfd_addrs_sorted
651 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
652 {
653 int index_in_addrs;
654
655 /* Make the found item directly addressable from ADDRS. */
656 index_in_addrs = *addrs_sorted - addrs->other;
657 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
658 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
659
660 /* Never use the same ABFD entry twice. */
661 abfd_addrs_sorted++;
662 }
663
664 addrs_sorted++;
665 }
666
667 /* Calculate offsets for the loadable sections.
668 FIXME! Sections must be in order of increasing loadable section
669 so that contiguous sections can use the lower-offset!!!
670
671 Adjust offsets if the segments are not contiguous.
672 If the section is contiguous, its offset should be set to
673 the offset of the highest loadable section lower than it
674 (the loadable section directly below it in memory).
675 this_offset = lower_offset = lower_addr - lower_orig_addr */
676
677 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
678 {
679 const char *sect_name = addrs->other[i].name;
680 struct other_sections *sect = addrs_to_abfd_addrs[i];
681
682 if (sect)
683 {
684 /* This is the index used by BFD. */
685 addrs->other[i].sectindex = sect->sectindex;
686
687 if (addrs->other[i].addr != 0)
688 {
689 addrs->other[i].addr -= sect->addr;
690 lower_offset = addrs->other[i].addr;
691 }
692 else
693 addrs->other[i].addr = lower_offset;
694 }
695 else
696 {
697 /* This section does not exist in ABFD, which is normally
698 unexpected and we want to issue a warning.
699
700 However, the ELF prelinker does create a few sections which are
701 marked in the main executable as loadable (they are loaded in
702 memory from the DYNAMIC segment) and yet are not present in
703 separate debug info files. This is fine, and should not cause
704 a warning. Shared libraries contain just the section
705 ".gnu.liblist" but it is not marked as loadable there. There is
706 no other way to identify them than by their name as the sections
707 created by prelink have no special flags. */
708
709 if (!(strcmp (sect_name, ".gnu.liblist") == 0
710 || strcmp (sect_name, ".gnu.conflict") == 0
711 || strcmp (sect_name, ".dynbss") == 0
712 || strcmp (sect_name, ".sdynbss") == 0))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717
718 /* SECTINDEX is invalid if ADDR is zero. */
719 }
720 }
721
722 do_cleanups (my_cleanup);
723 }
724
725 /* Parse the user's idea of an offset for dynamic linking, into our idea
726 of how to represent it for fast symbol reading. This is the default
727 version of the sym_fns.sym_offsets function for symbol readers that
728 don't need to do anything special. It allocates a section_offsets table
729 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
730
731 void
732 default_symfile_offsets (struct objfile *objfile,
733 struct section_addr_info *addrs)
734 {
735 objfile->num_sections = bfd_count_sections (objfile->obfd);
736 objfile->section_offsets = (struct section_offsets *)
737 obstack_alloc (&objfile->objfile_obstack,
738 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
739 relative_addr_info_to_section_offsets (objfile->section_offsets,
740 objfile->num_sections, addrs);
741
742 /* For relocatable files, all loadable sections will start at zero.
743 The zero is meaningless, so try to pick arbitrary addresses such
744 that no loadable sections overlap. This algorithm is quadratic,
745 but the number of sections in a single object file is generally
746 small. */
747 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
748 {
749 struct place_section_arg arg;
750 bfd *abfd = objfile->obfd;
751 asection *cur_sec;
752
753 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
754 /* We do not expect this to happen; just skip this step if the
755 relocatable file has a section with an assigned VMA. */
756 if (bfd_section_vma (abfd, cur_sec) != 0)
757 break;
758
759 if (cur_sec == NULL)
760 {
761 CORE_ADDR *offsets = objfile->section_offsets->offsets;
762
763 /* Pick non-overlapping offsets for sections the user did not
764 place explicitly. */
765 arg.offsets = objfile->section_offsets;
766 arg.lowest = 0;
767 bfd_map_over_sections (objfile->obfd, place_section, &arg);
768
769 /* Correctly filling in the section offsets is not quite
770 enough. Relocatable files have two properties that
771 (most) shared objects do not:
772
773 - Their debug information will contain relocations. Some
774 shared libraries do also, but many do not, so this can not
775 be assumed.
776
777 - If there are multiple code sections they will be loaded
778 at different relative addresses in memory than they are
779 in the objfile, since all sections in the file will start
780 at address zero.
781
782 Because GDB has very limited ability to map from an
783 address in debug info to the correct code section,
784 it relies on adding SECT_OFF_TEXT to things which might be
785 code. If we clear all the section offsets, and set the
786 section VMAs instead, then symfile_relocate_debug_section
787 will return meaningful debug information pointing at the
788 correct sections.
789
790 GDB has too many different data structures for section
791 addresses - a bfd, objfile, and so_list all have section
792 tables, as does exec_ops. Some of these could probably
793 be eliminated. */
794
795 for (cur_sec = abfd->sections; cur_sec != NULL;
796 cur_sec = cur_sec->next)
797 {
798 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
799 continue;
800
801 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
802 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 /* Discard cleanups as symbol reading was successful. */
1002
1003 discard_cleanups (old_chain);
1004 xfree (local_addr);
1005 }
1006
1007 /* Perform required actions after either reading in the initial
1008 symbols for a new objfile, or mapping in the symbols from a reusable
1009 objfile. */
1010
1011 void
1012 new_symfile_objfile (struct objfile *objfile, int add_flags)
1013 {
1014 /* If this is the main symbol file we have to clean up all users of the
1015 old main symbol file. Otherwise it is sufficient to fixup all the
1016 breakpoints that may have been redefined by this symbol file. */
1017 if (add_flags & SYMFILE_MAINLINE)
1018 {
1019 /* OK, make it the "real" symbol file. */
1020 symfile_objfile = objfile;
1021
1022 clear_symtab_users ();
1023 }
1024 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1025 {
1026 breakpoint_re_set ();
1027 }
1028
1029 /* We're done reading the symbol file; finish off complaints. */
1030 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1031 }
1032
1033 /* Process a symbol file, as either the main file or as a dynamically
1034 loaded file.
1035
1036 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1037 This BFD will be closed on error, and is always consumed by this function.
1038
1039 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1040 extra, such as dynamically loaded code, and what to do with breakpoins.
1041
1042 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1043 syms_from_objfile, above.
1044 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1045
1046 Upon success, returns a pointer to the objfile that was added.
1047 Upon failure, jumps back to command level (never returns). */
1048
1049 static struct objfile *
1050 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1051 int add_flags,
1052 struct section_addr_info *addrs,
1053 struct section_offsets *offsets,
1054 int num_offsets,
1055 int flags)
1056 {
1057 struct objfile *objfile;
1058 struct cleanup *my_cleanups;
1059 const char *name = bfd_get_filename (abfd);
1060 const int from_tty = add_flags & SYMFILE_VERBOSE;
1061
1062 if (readnow_symbol_files)
1063 flags |= OBJF_READNOW;
1064
1065 my_cleanups = make_cleanup_bfd_close (abfd);
1066
1067 /* Give user a chance to burp if we'd be
1068 interactively wiping out any existing symbols. */
1069
1070 if ((have_full_symbols () || have_partial_symbols ())
1071 && (add_flags & SYMFILE_MAINLINE)
1072 && from_tty
1073 && !query (_("Load new symbol table from \"%s\"? "), name))
1074 error (_("Not confirmed."));
1075
1076 objfile = allocate_objfile (abfd, flags);
1077 discard_cleanups (my_cleanups);
1078
1079 /* We either created a new mapped symbol table, mapped an existing
1080 symbol table file which has not had initial symbol reading
1081 performed, or need to read an unmapped symbol table. */
1082 if (from_tty || info_verbose)
1083 {
1084 if (deprecated_pre_add_symbol_hook)
1085 deprecated_pre_add_symbol_hook (name);
1086 else
1087 {
1088 printf_unfiltered (_("Reading symbols from %s..."), name);
1089 wrap_here ("");
1090 gdb_flush (gdb_stdout);
1091 }
1092 }
1093 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1094 add_flags);
1095
1096 /* We now have at least a partial symbol table. Check to see if the
1097 user requested that all symbols be read on initial access via either
1098 the gdb startup command line or on a per symbol file basis. Expand
1099 all partial symbol tables for this objfile if so. */
1100
1101 if ((flags & OBJF_READNOW))
1102 {
1103 if (from_tty || info_verbose)
1104 {
1105 printf_unfiltered (_("expanding to full symbols..."));
1106 wrap_here ("");
1107 gdb_flush (gdb_stdout);
1108 }
1109
1110 if (objfile->sf)
1111 objfile->sf->qf->expand_all_symtabs (objfile);
1112 }
1113
1114 if ((from_tty || info_verbose)
1115 && !objfile_has_symbols (objfile))
1116 {
1117 wrap_here ("");
1118 printf_unfiltered (_("(no debugging symbols found)..."));
1119 wrap_here ("");
1120 }
1121
1122 if (from_tty || info_verbose)
1123 {
1124 if (deprecated_post_add_symbol_hook)
1125 deprecated_post_add_symbol_hook ();
1126 else
1127 printf_unfiltered (_("done.\n"));
1128 }
1129
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
1135 do_cleanups (my_cleanups);
1136
1137 if (objfile->sf == NULL)
1138 {
1139 observer_notify_new_objfile (objfile);
1140 return objfile; /* No symbols. */
1141 }
1142
1143 new_symfile_objfile (objfile, add_flags);
1144
1145 observer_notify_new_objfile (objfile);
1146
1147 bfd_cache_close_all ();
1148 return (objfile);
1149 }
1150
1151 /* Add BFD as a separate debug file for OBJFILE. */
1152
1153 void
1154 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1155 {
1156 struct objfile *new_objfile;
1157 struct section_addr_info *sap;
1158 struct cleanup *my_cleanup;
1159
1160 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1161 because sections of BFD may not match sections of OBJFILE and because
1162 vma may have been modified by tools such as prelink. */
1163 sap = build_section_addr_info_from_objfile (objfile);
1164 my_cleanup = make_cleanup_free_section_addr_info (sap);
1165
1166 new_objfile = symbol_file_add_with_addrs_or_offsets
1167 (bfd, symfile_flags,
1168 sap, NULL, 0,
1169 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1170 | OBJF_USERLOADED));
1171
1172 do_cleanups (my_cleanup);
1173
1174 add_separate_debug_objfile (new_objfile, objfile);
1175 }
1176
1177 /* Process the symbol file ABFD, as either the main file or as a
1178 dynamically loaded file.
1179
1180 See symbol_file_add_with_addrs_or_offsets's comments for
1181 details. */
1182 struct objfile *
1183 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1184 struct section_addr_info *addrs,
1185 int flags)
1186 {
1187 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1188 flags);
1189 }
1190
1191
1192 /* Process a symbol file, as either the main file or as a dynamically
1193 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1194 for details. */
1195 struct objfile *
1196 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1197 int flags)
1198 {
1199 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1200 flags);
1201 }
1202
1203
1204 /* Call symbol_file_add() with default values and update whatever is
1205 affected by the loading of a new main().
1206 Used when the file is supplied in the gdb command line
1207 and by some targets with special loading requirements.
1208 The auxiliary function, symbol_file_add_main_1(), has the flags
1209 argument for the switches that can only be specified in the symbol_file
1210 command itself. */
1211
1212 void
1213 symbol_file_add_main (char *args, int from_tty)
1214 {
1215 symbol_file_add_main_1 (args, from_tty, 0);
1216 }
1217
1218 static void
1219 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1220 {
1221 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1222 symbol_file_add (args, add_flags, NULL, flags);
1223
1224 /* Getting new symbols may change our opinion about
1225 what is frameless. */
1226 reinit_frame_cache ();
1227
1228 set_initial_language ();
1229 }
1230
1231 void
1232 symbol_file_clear (int from_tty)
1233 {
1234 if ((have_full_symbols () || have_partial_symbols ())
1235 && from_tty
1236 && (symfile_objfile
1237 ? !query (_("Discard symbol table from `%s'? "),
1238 symfile_objfile->name)
1239 : !query (_("Discard symbol table? "))))
1240 error (_("Not confirmed."));
1241
1242 /* solib descriptors may have handles to objfiles. Wipe them before their
1243 objfiles get stale by free_all_objfiles. */
1244 no_shared_libraries (NULL, from_tty);
1245
1246 free_all_objfiles ();
1247
1248 gdb_assert (symfile_objfile == NULL);
1249 if (from_tty)
1250 printf_unfiltered (_("No symbol file now.\n"));
1251 }
1252
1253 static char *
1254 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1255 {
1256 asection *sect;
1257 bfd_size_type debuglink_size;
1258 unsigned long crc32;
1259 char *contents;
1260 int crc_offset;
1261
1262 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1263
1264 if (sect == NULL)
1265 return NULL;
1266
1267 debuglink_size = bfd_section_size (objfile->obfd, sect);
1268
1269 contents = xmalloc (debuglink_size);
1270 bfd_get_section_contents (objfile->obfd, sect, contents,
1271 (file_ptr)0, (bfd_size_type)debuglink_size);
1272
1273 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1274 crc_offset = strlen (contents) + 1;
1275 crc_offset = (crc_offset + 3) & ~3;
1276
1277 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1278
1279 *crc32_out = crc32;
1280 return contents;
1281 }
1282
1283 static int
1284 separate_debug_file_exists (const char *name, unsigned long crc,
1285 struct objfile *parent_objfile)
1286 {
1287 unsigned long file_crc = 0;
1288 bfd *abfd;
1289 gdb_byte buffer[8*1024];
1290 int count;
1291 struct stat parent_stat, abfd_stat;
1292
1293 /* Find a separate debug info file as if symbols would be present in
1294 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1295 section can contain just the basename of PARENT_OBJFILE without any
1296 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1297 the separate debug infos with the same basename can exist. */
1298
1299 if (strcmp (name, parent_objfile->name) == 0)
1300 return 0;
1301
1302 abfd = bfd_open_maybe_remote (name);
1303
1304 if (!abfd)
1305 return 0;
1306
1307 /* Verify symlinks were not the cause of strcmp name difference above.
1308
1309 Some operating systems, e.g. Windows, do not provide a meaningful
1310 st_ino; they always set it to zero. (Windows does provide a
1311 meaningful st_dev.) Do not indicate a duplicate library in that
1312 case. While there is no guarantee that a system that provides
1313 meaningful inode numbers will never set st_ino to zero, this is
1314 merely an optimization, so we do not need to worry about false
1315 negatives. */
1316
1317 if (bfd_stat (abfd, &abfd_stat) == 0
1318 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1319 && abfd_stat.st_dev == parent_stat.st_dev
1320 && abfd_stat.st_ino == parent_stat.st_ino
1321 && abfd_stat.st_ino != 0)
1322 {
1323 bfd_close (abfd);
1324 return 0;
1325 }
1326
1327 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329
1330 bfd_close (abfd);
1331
1332 if (crc != file_crc)
1333 {
1334 warning (_("the debug information found in \"%s\""
1335 " does not match \"%s\" (CRC mismatch).\n"),
1336 name, parent_objfile->name);
1337 return 0;
1338 }
1339
1340 return 1;
1341 }
1342
1343 char *debug_file_directory = NULL;
1344 static void
1345 show_debug_file_directory (struct ui_file *file, int from_tty,
1346 struct cmd_list_element *c, const char *value)
1347 {
1348 fprintf_filtered (file, _("\
1349 The directory where separate debug symbols are searched for is \"%s\".\n"),
1350 value);
1351 }
1352
1353 #if ! defined (DEBUG_SUBDIRECTORY)
1354 #define DEBUG_SUBDIRECTORY ".debug"
1355 #endif
1356
1357 char *
1358 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1359 {
1360 char *basename, *debugdir;
1361 char *dir = NULL;
1362 char *debugfile = NULL;
1363 char *canon_name = NULL;
1364 unsigned long crc32;
1365 int i;
1366
1367 basename = get_debug_link_info (objfile, &crc32);
1368
1369 if (basename == NULL)
1370 /* There's no separate debug info, hence there's no way we could
1371 load it => no warning. */
1372 goto cleanup_return_debugfile;
1373
1374 dir = xstrdup (objfile->name);
1375
1376 /* Strip off the final filename part, leaving the directory name,
1377 followed by a slash. Objfile names should always be absolute and
1378 tilde-expanded, so there should always be a slash in there
1379 somewhere. */
1380 for (i = strlen(dir) - 1; i >= 0; i--)
1381 {
1382 if (IS_DIR_SEPARATOR (dir[i]))
1383 break;
1384 }
1385 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1386 dir[i+1] = '\0';
1387
1388 /* Set I to max (strlen (canon_name), strlen (dir)). */
1389 canon_name = lrealpath (dir);
1390 i = strlen (dir);
1391 if (canon_name && strlen (canon_name) > i)
1392 i = strlen (canon_name);
1393
1394 debugfile = xmalloc (strlen (debug_file_directory) + 1
1395 + i
1396 + strlen (DEBUG_SUBDIRECTORY)
1397 + strlen ("/")
1398 + strlen (basename)
1399 + 1);
1400
1401 /* First try in the same directory as the original file. */
1402 strcpy (debugfile, dir);
1403 strcat (debugfile, basename);
1404
1405 if (separate_debug_file_exists (debugfile, crc32, objfile))
1406 goto cleanup_return_debugfile;
1407
1408 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1409 strcpy (debugfile, dir);
1410 strcat (debugfile, DEBUG_SUBDIRECTORY);
1411 strcat (debugfile, "/");
1412 strcat (debugfile, basename);
1413
1414 if (separate_debug_file_exists (debugfile, crc32, objfile))
1415 goto cleanup_return_debugfile;
1416
1417 /* Then try in the global debugfile directories.
1418
1419 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1420 cause "/..." lookups. */
1421
1422 debugdir = debug_file_directory;
1423 do
1424 {
1425 char *debugdir_end;
1426
1427 while (*debugdir == DIRNAME_SEPARATOR)
1428 debugdir++;
1429
1430 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1431 if (debugdir_end == NULL)
1432 debugdir_end = &debugdir[strlen (debugdir)];
1433
1434 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1435 debugfile[debugdir_end - debugdir] = 0;
1436 strcat (debugfile, "/");
1437 strcat (debugfile, dir);
1438 strcat (debugfile, basename);
1439
1440 if (separate_debug_file_exists (debugfile, crc32, objfile))
1441 goto cleanup_return_debugfile;
1442
1443 /* If the file is in the sysroot, try using its base path in the
1444 global debugfile directory. */
1445 if (canon_name
1446 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1447 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1448 {
1449 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1450 debugfile[debugdir_end - debugdir] = 0;
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32, objfile))
1456 goto cleanup_return_debugfile;
1457 }
1458
1459 debugdir = debugdir_end;
1460 }
1461 while (*debugdir != 0);
1462
1463 xfree (debugfile);
1464 debugfile = NULL;
1465
1466 cleanup_return_debugfile:
1467 xfree (canon_name);
1468 xfree (basename);
1469 xfree (dir);
1470 return debugfile;
1471 }
1472
1473
1474 /* This is the symbol-file command. Read the file, analyze its
1475 symbols, and add a struct symtab to a symtab list. The syntax of
1476 the command is rather bizarre:
1477
1478 1. The function buildargv implements various quoting conventions
1479 which are undocumented and have little or nothing in common with
1480 the way things are quoted (or not quoted) elsewhere in GDB.
1481
1482 2. Options are used, which are not generally used in GDB (perhaps
1483 "set mapped on", "set readnow on" would be better)
1484
1485 3. The order of options matters, which is contrary to GNU
1486 conventions (because it is confusing and inconvenient). */
1487
1488 void
1489 symbol_file_command (char *args, int from_tty)
1490 {
1491 dont_repeat ();
1492
1493 if (args == NULL)
1494 {
1495 symbol_file_clear (from_tty);
1496 }
1497 else
1498 {
1499 char **argv = gdb_buildargv (args);
1500 int flags = OBJF_USERLOADED;
1501 struct cleanup *cleanups;
1502 char *name = NULL;
1503
1504 cleanups = make_cleanup_freeargv (argv);
1505 while (*argv != NULL)
1506 {
1507 if (strcmp (*argv, "-readnow") == 0)
1508 flags |= OBJF_READNOW;
1509 else if (**argv == '-')
1510 error (_("unknown option `%s'"), *argv);
1511 else
1512 {
1513 symbol_file_add_main_1 (*argv, from_tty, flags);
1514 name = *argv;
1515 }
1516
1517 argv++;
1518 }
1519
1520 if (name == NULL)
1521 error (_("no symbol file name was specified"));
1522
1523 do_cleanups (cleanups);
1524 }
1525 }
1526
1527 /* Set the initial language.
1528
1529 FIXME: A better solution would be to record the language in the
1530 psymtab when reading partial symbols, and then use it (if known) to
1531 set the language. This would be a win for formats that encode the
1532 language in an easily discoverable place, such as DWARF. For
1533 stabs, we can jump through hoops looking for specially named
1534 symbols or try to intuit the language from the specific type of
1535 stabs we find, but we can't do that until later when we read in
1536 full symbols. */
1537
1538 void
1539 set_initial_language (void)
1540 {
1541 char *filename;
1542 enum language lang = language_unknown;
1543
1544 filename = find_main_filename ();
1545 if (filename != NULL)
1546 lang = deduce_language_from_filename (filename);
1547
1548 if (lang == language_unknown)
1549 {
1550 /* Make C the default language */
1551 lang = language_c;
1552 }
1553
1554 set_language (lang);
1555 expected_language = current_language; /* Don't warn the user. */
1556 }
1557
1558 /* If NAME is a remote name open the file using remote protocol, otherwise
1559 open it normally. */
1560
1561 bfd *
1562 bfd_open_maybe_remote (const char *name)
1563 {
1564 if (remote_filename_p (name))
1565 return remote_bfd_open (name, gnutarget);
1566 else
1567 return bfd_openr (name, gnutarget);
1568 }
1569
1570
1571 /* Open the file specified by NAME and hand it off to BFD for
1572 preliminary analysis. Return a newly initialized bfd *, which
1573 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1574 absolute). In case of trouble, error() is called. */
1575
1576 bfd *
1577 symfile_bfd_open (char *name)
1578 {
1579 bfd *sym_bfd;
1580 int desc;
1581 char *absolute_name;
1582
1583 if (remote_filename_p (name))
1584 {
1585 name = xstrdup (name);
1586 sym_bfd = remote_bfd_open (name, gnutarget);
1587 if (!sym_bfd)
1588 {
1589 make_cleanup (xfree, name);
1590 error (_("`%s': can't open to read symbols: %s."), name,
1591 bfd_errmsg (bfd_get_error ()));
1592 }
1593
1594 if (!bfd_check_format (sym_bfd, bfd_object))
1595 {
1596 bfd_close (sym_bfd);
1597 make_cleanup (xfree, name);
1598 error (_("`%s': can't read symbols: %s."), name,
1599 bfd_errmsg (bfd_get_error ()));
1600 }
1601
1602 return sym_bfd;
1603 }
1604
1605 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1606
1607 /* Look down path for it, allocate 2nd new malloc'd copy. */
1608 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1609 O_RDONLY | O_BINARY, &absolute_name);
1610 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1611 if (desc < 0)
1612 {
1613 char *exename = alloca (strlen (name) + 5);
1614
1615 strcat (strcpy (exename, name), ".exe");
1616 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1617 O_RDONLY | O_BINARY, &absolute_name);
1618 }
1619 #endif
1620 if (desc < 0)
1621 {
1622 make_cleanup (xfree, name);
1623 perror_with_name (name);
1624 }
1625
1626 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1627 bfd. It'll be freed in free_objfile(). */
1628 xfree (name);
1629 name = absolute_name;
1630
1631 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1632 if (!sym_bfd)
1633 {
1634 close (desc);
1635 make_cleanup (xfree, name);
1636 error (_("`%s': can't open to read symbols: %s."), name,
1637 bfd_errmsg (bfd_get_error ()));
1638 }
1639 bfd_set_cacheable (sym_bfd, 1);
1640
1641 if (!bfd_check_format (sym_bfd, bfd_object))
1642 {
1643 /* FIXME: should be checking for errors from bfd_close (for one
1644 thing, on error it does not free all the storage associated
1645 with the bfd). */
1646 bfd_close (sym_bfd); /* This also closes desc. */
1647 make_cleanup (xfree, name);
1648 error (_("`%s': can't read symbols: %s."), name,
1649 bfd_errmsg (bfd_get_error ()));
1650 }
1651
1652 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1653 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1654
1655 return sym_bfd;
1656 }
1657
1658 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1659 the section was not found. */
1660
1661 int
1662 get_section_index (struct objfile *objfile, char *section_name)
1663 {
1664 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1665
1666 if (sect)
1667 return sect->index;
1668 else
1669 return -1;
1670 }
1671
1672 /* Link SF into the global symtab_fns list. Called on startup by the
1673 _initialize routine in each object file format reader, to register
1674 information about each format the the reader is prepared to
1675 handle. */
1676
1677 void
1678 add_symtab_fns (struct sym_fns *sf)
1679 {
1680 sf->next = symtab_fns;
1681 symtab_fns = sf;
1682 }
1683
1684 /* Initialize OBJFILE to read symbols from its associated BFD. It
1685 either returns or calls error(). The result is an initialized
1686 struct sym_fns in the objfile structure, that contains cached
1687 information about the symbol file. */
1688
1689 static struct sym_fns *
1690 find_sym_fns (bfd *abfd)
1691 {
1692 struct sym_fns *sf;
1693 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1694
1695 if (our_flavour == bfd_target_srec_flavour
1696 || our_flavour == bfd_target_ihex_flavour
1697 || our_flavour == bfd_target_tekhex_flavour)
1698 return NULL; /* No symbols. */
1699
1700 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1701 if (our_flavour == sf->sym_flavour)
1702 return sf;
1703
1704 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1705 bfd_get_target (abfd));
1706 }
1707 \f
1708
1709 /* This function runs the load command of our current target. */
1710
1711 static void
1712 load_command (char *arg, int from_tty)
1713 {
1714 /* The user might be reloading because the binary has changed. Take
1715 this opportunity to check. */
1716 reopen_exec_file ();
1717 reread_symbols ();
1718
1719 if (arg == NULL)
1720 {
1721 char *parg;
1722 int count = 0;
1723
1724 parg = arg = get_exec_file (1);
1725
1726 /* Count how many \ " ' tab space there are in the name. */
1727 while ((parg = strpbrk (parg, "\\\"'\t ")))
1728 {
1729 parg++;
1730 count++;
1731 }
1732
1733 if (count)
1734 {
1735 /* We need to quote this string so buildargv can pull it apart. */
1736 char *temp = xmalloc (strlen (arg) + count + 1 );
1737 char *ptemp = temp;
1738 char *prev;
1739
1740 make_cleanup (xfree, temp);
1741
1742 prev = parg = arg;
1743 while ((parg = strpbrk (parg, "\\\"'\t ")))
1744 {
1745 strncpy (ptemp, prev, parg - prev);
1746 ptemp += parg - prev;
1747 prev = parg++;
1748 *ptemp++ = '\\';
1749 }
1750 strcpy (ptemp, prev);
1751
1752 arg = temp;
1753 }
1754 }
1755
1756 target_load (arg, from_tty);
1757
1758 /* After re-loading the executable, we don't really know which
1759 overlays are mapped any more. */
1760 overlay_cache_invalid = 1;
1761 }
1762
1763 /* This version of "load" should be usable for any target. Currently
1764 it is just used for remote targets, not inftarg.c or core files,
1765 on the theory that only in that case is it useful.
1766
1767 Avoiding xmodem and the like seems like a win (a) because we don't have
1768 to worry about finding it, and (b) On VMS, fork() is very slow and so
1769 we don't want to run a subprocess. On the other hand, I'm not sure how
1770 performance compares. */
1771
1772 static int validate_download = 0;
1773
1774 /* Callback service function for generic_load (bfd_map_over_sections). */
1775
1776 static void
1777 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1778 {
1779 bfd_size_type *sum = data;
1780
1781 *sum += bfd_get_section_size (asec);
1782 }
1783
1784 /* Opaque data for load_section_callback. */
1785 struct load_section_data {
1786 unsigned long load_offset;
1787 struct load_progress_data *progress_data;
1788 VEC(memory_write_request_s) *requests;
1789 };
1790
1791 /* Opaque data for load_progress. */
1792 struct load_progress_data {
1793 /* Cumulative data. */
1794 unsigned long write_count;
1795 unsigned long data_count;
1796 bfd_size_type total_size;
1797 };
1798
1799 /* Opaque data for load_progress for a single section. */
1800 struct load_progress_section_data {
1801 struct load_progress_data *cumulative;
1802
1803 /* Per-section data. */
1804 const char *section_name;
1805 ULONGEST section_sent;
1806 ULONGEST section_size;
1807 CORE_ADDR lma;
1808 gdb_byte *buffer;
1809 };
1810
1811 /* Target write callback routine for progress reporting. */
1812
1813 static void
1814 load_progress (ULONGEST bytes, void *untyped_arg)
1815 {
1816 struct load_progress_section_data *args = untyped_arg;
1817 struct load_progress_data *totals;
1818
1819 if (args == NULL)
1820 /* Writing padding data. No easy way to get at the cumulative
1821 stats, so just ignore this. */
1822 return;
1823
1824 totals = args->cumulative;
1825
1826 if (bytes == 0 && args->section_sent == 0)
1827 {
1828 /* The write is just starting. Let the user know we've started
1829 this section. */
1830 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1831 args->section_name, hex_string (args->section_size),
1832 paddress (target_gdbarch, args->lma));
1833 return;
1834 }
1835
1836 if (validate_download)
1837 {
1838 /* Broken memories and broken monitors manifest themselves here
1839 when bring new computers to life. This doubles already slow
1840 downloads. */
1841 /* NOTE: cagney/1999-10-18: A more efficient implementation
1842 might add a verify_memory() method to the target vector and
1843 then use that. remote.c could implement that method using
1844 the ``qCRC'' packet. */
1845 gdb_byte *check = xmalloc (bytes);
1846 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1847
1848 if (target_read_memory (args->lma, check, bytes) != 0)
1849 error (_("Download verify read failed at %s"),
1850 paddress (target_gdbarch, args->lma));
1851 if (memcmp (args->buffer, check, bytes) != 0)
1852 error (_("Download verify compare failed at %s"),
1853 paddress (target_gdbarch, args->lma));
1854 do_cleanups (verify_cleanups);
1855 }
1856 totals->data_count += bytes;
1857 args->lma += bytes;
1858 args->buffer += bytes;
1859 totals->write_count += 1;
1860 args->section_sent += bytes;
1861 if (quit_flag
1862 || (deprecated_ui_load_progress_hook != NULL
1863 && deprecated_ui_load_progress_hook (args->section_name,
1864 args->section_sent)))
1865 error (_("Canceled the download"));
1866
1867 if (deprecated_show_load_progress != NULL)
1868 deprecated_show_load_progress (args->section_name,
1869 args->section_sent,
1870 args->section_size,
1871 totals->data_count,
1872 totals->total_size);
1873 }
1874
1875 /* Callback service function for generic_load (bfd_map_over_sections). */
1876
1877 static void
1878 load_section_callback (bfd *abfd, asection *asec, void *data)
1879 {
1880 struct memory_write_request *new_request;
1881 struct load_section_data *args = data;
1882 struct load_progress_section_data *section_data;
1883 bfd_size_type size = bfd_get_section_size (asec);
1884 gdb_byte *buffer;
1885 const char *sect_name = bfd_get_section_name (abfd, asec);
1886
1887 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1888 return;
1889
1890 if (size == 0)
1891 return;
1892
1893 new_request = VEC_safe_push (memory_write_request_s,
1894 args->requests, NULL);
1895 memset (new_request, 0, sizeof (struct memory_write_request));
1896 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1897 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1898 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1899 new_request->data = xmalloc (size);
1900 new_request->baton = section_data;
1901
1902 buffer = new_request->data;
1903
1904 section_data->cumulative = args->progress_data;
1905 section_data->section_name = sect_name;
1906 section_data->section_size = size;
1907 section_data->lma = new_request->begin;
1908 section_data->buffer = buffer;
1909
1910 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1911 }
1912
1913 /* Clean up an entire memory request vector, including load
1914 data and progress records. */
1915
1916 static void
1917 clear_memory_write_data (void *arg)
1918 {
1919 VEC(memory_write_request_s) **vec_p = arg;
1920 VEC(memory_write_request_s) *vec = *vec_p;
1921 int i;
1922 struct memory_write_request *mr;
1923
1924 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1925 {
1926 xfree (mr->data);
1927 xfree (mr->baton);
1928 }
1929 VEC_free (memory_write_request_s, vec);
1930 }
1931
1932 void
1933 generic_load (char *args, int from_tty)
1934 {
1935 bfd *loadfile_bfd;
1936 struct timeval start_time, end_time;
1937 char *filename;
1938 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1939 struct load_section_data cbdata;
1940 struct load_progress_data total_progress;
1941
1942 CORE_ADDR entry;
1943 char **argv;
1944
1945 memset (&cbdata, 0, sizeof (cbdata));
1946 memset (&total_progress, 0, sizeof (total_progress));
1947 cbdata.progress_data = &total_progress;
1948
1949 make_cleanup (clear_memory_write_data, &cbdata.requests);
1950
1951 if (args == NULL)
1952 error_no_arg (_("file to load"));
1953
1954 argv = gdb_buildargv (args);
1955 make_cleanup_freeargv (argv);
1956
1957 filename = tilde_expand (argv[0]);
1958 make_cleanup (xfree, filename);
1959
1960 if (argv[1] != NULL)
1961 {
1962 char *endptr;
1963
1964 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1965
1966 /* If the last word was not a valid number then
1967 treat it as a file name with spaces in. */
1968 if (argv[1] == endptr)
1969 error (_("Invalid download offset:%s."), argv[1]);
1970
1971 if (argv[2] != NULL)
1972 error (_("Too many parameters."));
1973 }
1974
1975 /* Open the file for loading. */
1976 loadfile_bfd = bfd_openr (filename, gnutarget);
1977 if (loadfile_bfd == NULL)
1978 {
1979 perror_with_name (filename);
1980 return;
1981 }
1982
1983 /* FIXME: should be checking for errors from bfd_close (for one thing,
1984 on error it does not free all the storage associated with the
1985 bfd). */
1986 make_cleanup_bfd_close (loadfile_bfd);
1987
1988 if (!bfd_check_format (loadfile_bfd, bfd_object))
1989 {
1990 error (_("\"%s\" is not an object file: %s"), filename,
1991 bfd_errmsg (bfd_get_error ()));
1992 }
1993
1994 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1995 (void *) &total_progress.total_size);
1996
1997 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1998
1999 gettimeofday (&start_time, NULL);
2000
2001 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2002 load_progress) != 0)
2003 error (_("Load failed"));
2004
2005 gettimeofday (&end_time, NULL);
2006
2007 entry = bfd_get_start_address (loadfile_bfd);
2008 ui_out_text (uiout, "Start address ");
2009 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2010 ui_out_text (uiout, ", load size ");
2011 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2012 ui_out_text (uiout, "\n");
2013 /* We were doing this in remote-mips.c, I suspect it is right
2014 for other targets too. */
2015 regcache_write_pc (get_current_regcache (), entry);
2016
2017 /* Reset breakpoints, now that we have changed the load image. For
2018 instance, breakpoints may have been set (or reset, by
2019 post_create_inferior) while connected to the target but before we
2020 loaded the program. In that case, the prologue analyzer could
2021 have read instructions from the target to find the right
2022 breakpoint locations. Loading has changed the contents of that
2023 memory. */
2024
2025 breakpoint_re_set ();
2026
2027 /* FIXME: are we supposed to call symbol_file_add or not? According
2028 to a comment from remote-mips.c (where a call to symbol_file_add
2029 was commented out), making the call confuses GDB if more than one
2030 file is loaded in. Some targets do (e.g., remote-vx.c) but
2031 others don't (or didn't - perhaps they have all been deleted). */
2032
2033 print_transfer_performance (gdb_stdout, total_progress.data_count,
2034 total_progress.write_count,
2035 &start_time, &end_time);
2036
2037 do_cleanups (old_cleanups);
2038 }
2039
2040 /* Report how fast the transfer went. */
2041
2042 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2043 replaced by print_transfer_performance (with a very different
2044 function signature). */
2045
2046 void
2047 report_transfer_performance (unsigned long data_count, time_t start_time,
2048 time_t end_time)
2049 {
2050 struct timeval start, end;
2051
2052 start.tv_sec = start_time;
2053 start.tv_usec = 0;
2054 end.tv_sec = end_time;
2055 end.tv_usec = 0;
2056
2057 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2058 }
2059
2060 void
2061 print_transfer_performance (struct ui_file *stream,
2062 unsigned long data_count,
2063 unsigned long write_count,
2064 const struct timeval *start_time,
2065 const struct timeval *end_time)
2066 {
2067 ULONGEST time_count;
2068
2069 /* Compute the elapsed time in milliseconds, as a tradeoff between
2070 accuracy and overflow. */
2071 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2072 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2073
2074 ui_out_text (uiout, "Transfer rate: ");
2075 if (time_count > 0)
2076 {
2077 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2078
2079 if (ui_out_is_mi_like_p (uiout))
2080 {
2081 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2082 ui_out_text (uiout, " bits/sec");
2083 }
2084 else if (rate < 1024)
2085 {
2086 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2087 ui_out_text (uiout, " bytes/sec");
2088 }
2089 else
2090 {
2091 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2092 ui_out_text (uiout, " KB/sec");
2093 }
2094 }
2095 else
2096 {
2097 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2098 ui_out_text (uiout, " bits in <1 sec");
2099 }
2100 if (write_count > 0)
2101 {
2102 ui_out_text (uiout, ", ");
2103 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2104 ui_out_text (uiout, " bytes/write");
2105 }
2106 ui_out_text (uiout, ".\n");
2107 }
2108
2109 /* This function allows the addition of incrementally linked object files.
2110 It does not modify any state in the target, only in the debugger. */
2111 /* Note: ezannoni 2000-04-13 This function/command used to have a
2112 special case syntax for the rombug target (Rombug is the boot
2113 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2114 rombug case, the user doesn't need to supply a text address,
2115 instead a call to target_link() (in target.c) would supply the
2116 value to use. We are now discontinuing this type of ad hoc syntax. */
2117
2118 static void
2119 add_symbol_file_command (char *args, int from_tty)
2120 {
2121 struct gdbarch *gdbarch = get_current_arch ();
2122 char *filename = NULL;
2123 int flags = OBJF_USERLOADED;
2124 char *arg;
2125 int section_index = 0;
2126 int argcnt = 0;
2127 int sec_num = 0;
2128 int i;
2129 int expecting_sec_name = 0;
2130 int expecting_sec_addr = 0;
2131 char **argv;
2132
2133 struct sect_opt
2134 {
2135 char *name;
2136 char *value;
2137 };
2138
2139 struct section_addr_info *section_addrs;
2140 struct sect_opt *sect_opts = NULL;
2141 size_t num_sect_opts = 0;
2142 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2143
2144 num_sect_opts = 16;
2145 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2146 * sizeof (struct sect_opt));
2147
2148 dont_repeat ();
2149
2150 if (args == NULL)
2151 error (_("add-symbol-file takes a file name and an address"));
2152
2153 argv = gdb_buildargv (args);
2154 make_cleanup_freeargv (argv);
2155
2156 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2157 {
2158 /* Process the argument. */
2159 if (argcnt == 0)
2160 {
2161 /* The first argument is the file name. */
2162 filename = tilde_expand (arg);
2163 make_cleanup (xfree, filename);
2164 }
2165 else
2166 if (argcnt == 1)
2167 {
2168 /* The second argument is always the text address at which
2169 to load the program. */
2170 sect_opts[section_index].name = ".text";
2171 sect_opts[section_index].value = arg;
2172 if (++section_index >= num_sect_opts)
2173 {
2174 num_sect_opts *= 2;
2175 sect_opts = ((struct sect_opt *)
2176 xrealloc (sect_opts,
2177 num_sect_opts
2178 * sizeof (struct sect_opt)));
2179 }
2180 }
2181 else
2182 {
2183 /* It's an option (starting with '-') or it's an argument
2184 to an option */
2185
2186 if (*arg == '-')
2187 {
2188 if (strcmp (arg, "-readnow") == 0)
2189 flags |= OBJF_READNOW;
2190 else if (strcmp (arg, "-s") == 0)
2191 {
2192 expecting_sec_name = 1;
2193 expecting_sec_addr = 1;
2194 }
2195 }
2196 else
2197 {
2198 if (expecting_sec_name)
2199 {
2200 sect_opts[section_index].name = arg;
2201 expecting_sec_name = 0;
2202 }
2203 else
2204 if (expecting_sec_addr)
2205 {
2206 sect_opts[section_index].value = arg;
2207 expecting_sec_addr = 0;
2208 if (++section_index >= num_sect_opts)
2209 {
2210 num_sect_opts *= 2;
2211 sect_opts = ((struct sect_opt *)
2212 xrealloc (sect_opts,
2213 num_sect_opts
2214 * sizeof (struct sect_opt)));
2215 }
2216 }
2217 else
2218 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2219 }
2220 }
2221 }
2222
2223 /* This command takes at least two arguments. The first one is a
2224 filename, and the second is the address where this file has been
2225 loaded. Abort now if this address hasn't been provided by the
2226 user. */
2227 if (section_index < 1)
2228 error (_("The address where %s has been loaded is missing"), filename);
2229
2230 /* Print the prompt for the query below. And save the arguments into
2231 a sect_addr_info structure to be passed around to other
2232 functions. We have to split this up into separate print
2233 statements because hex_string returns a local static
2234 string. */
2235
2236 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2237 section_addrs = alloc_section_addr_info (section_index);
2238 make_cleanup (xfree, section_addrs);
2239 for (i = 0; i < section_index; i++)
2240 {
2241 CORE_ADDR addr;
2242 char *val = sect_opts[i].value;
2243 char *sec = sect_opts[i].name;
2244
2245 addr = parse_and_eval_address (val);
2246
2247 /* Here we store the section offsets in the order they were
2248 entered on the command line. */
2249 section_addrs->other[sec_num].name = sec;
2250 section_addrs->other[sec_num].addr = addr;
2251 printf_unfiltered ("\t%s_addr = %s\n", sec,
2252 paddress (gdbarch, addr));
2253 sec_num++;
2254
2255 /* The object's sections are initialized when a
2256 call is made to build_objfile_section_table (objfile).
2257 This happens in reread_symbols.
2258 At this point, we don't know what file type this is,
2259 so we can't determine what section names are valid. */
2260 }
2261
2262 if (from_tty && (!query ("%s", "")))
2263 error (_("Not confirmed."));
2264
2265 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2266 section_addrs, flags);
2267
2268 /* Getting new symbols may change our opinion about what is
2269 frameless. */
2270 reinit_frame_cache ();
2271 do_cleanups (my_cleanups);
2272 }
2273 \f
2274
2275 /* Re-read symbols if a symbol-file has changed. */
2276 void
2277 reread_symbols (void)
2278 {
2279 struct objfile *objfile;
2280 long new_modtime;
2281 int reread_one = 0;
2282 struct stat new_statbuf;
2283 int res;
2284
2285 /* With the addition of shared libraries, this should be modified,
2286 the load time should be saved in the partial symbol tables, since
2287 different tables may come from different source files. FIXME.
2288 This routine should then walk down each partial symbol table
2289 and see if the symbol table that it originates from has been changed */
2290
2291 for (objfile = object_files; objfile; objfile = objfile->next)
2292 {
2293 /* solib-sunos.c creates one objfile with obfd. */
2294 if (objfile->obfd == NULL)
2295 continue;
2296
2297 /* Separate debug objfiles are handled in the main objfile. */
2298 if (objfile->separate_debug_objfile_backlink)
2299 continue;
2300
2301 /* If this object is from an archive (what you usually create with
2302 `ar', often called a `static library' on most systems, though
2303 a `shared library' on AIX is also an archive), then you should
2304 stat on the archive name, not member name. */
2305 if (objfile->obfd->my_archive)
2306 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2307 else
2308 res = stat (objfile->name, &new_statbuf);
2309 if (res != 0)
2310 {
2311 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2312 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2313 objfile->name);
2314 continue;
2315 }
2316 new_modtime = new_statbuf.st_mtime;
2317 if (new_modtime != objfile->mtime)
2318 {
2319 struct cleanup *old_cleanups;
2320 struct section_offsets *offsets;
2321 int num_offsets;
2322 char *obfd_filename;
2323
2324 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2325 objfile->name);
2326
2327 /* There are various functions like symbol_file_add,
2328 symfile_bfd_open, syms_from_objfile, etc., which might
2329 appear to do what we want. But they have various other
2330 effects which we *don't* want. So we just do stuff
2331 ourselves. We don't worry about mapped files (for one thing,
2332 any mapped file will be out of date). */
2333
2334 /* If we get an error, blow away this objfile (not sure if
2335 that is the correct response for things like shared
2336 libraries). */
2337 old_cleanups = make_cleanup_free_objfile (objfile);
2338 /* We need to do this whenever any symbols go away. */
2339 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2340
2341 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2342 bfd_get_filename (exec_bfd)) == 0)
2343 {
2344 /* Reload EXEC_BFD without asking anything. */
2345
2346 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2347 }
2348
2349 /* Clean up any state BFD has sitting around. We don't need
2350 to close the descriptor but BFD lacks a way of closing the
2351 BFD without closing the descriptor. */
2352 obfd_filename = bfd_get_filename (objfile->obfd);
2353 if (!bfd_close (objfile->obfd))
2354 error (_("Can't close BFD for %s: %s"), objfile->name,
2355 bfd_errmsg (bfd_get_error ()));
2356 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2357 if (objfile->obfd == NULL)
2358 error (_("Can't open %s to read symbols."), objfile->name);
2359 else
2360 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2361 /* bfd_openr sets cacheable to true, which is what we want. */
2362 if (!bfd_check_format (objfile->obfd, bfd_object))
2363 error (_("Can't read symbols from %s: %s."), objfile->name,
2364 bfd_errmsg (bfd_get_error ()));
2365
2366 /* Save the offsets, we will nuke them with the rest of the
2367 objfile_obstack. */
2368 num_offsets = objfile->num_sections;
2369 offsets = ((struct section_offsets *)
2370 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2371 memcpy (offsets, objfile->section_offsets,
2372 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2373
2374 /* Remove any references to this objfile in the global
2375 value lists. */
2376 preserve_values (objfile);
2377
2378 /* Nuke all the state that we will re-read. Much of the following
2379 code which sets things to NULL really is necessary to tell
2380 other parts of GDB that there is nothing currently there.
2381
2382 Try to keep the freeing order compatible with free_objfile. */
2383
2384 if (objfile->sf != NULL)
2385 {
2386 (*objfile->sf->sym_finish) (objfile);
2387 }
2388
2389 clear_objfile_data (objfile);
2390
2391 /* Free the separate debug objfiles. It will be
2392 automatically recreated by sym_read. */
2393 free_objfile_separate_debug (objfile);
2394
2395 /* FIXME: Do we have to free a whole linked list, or is this
2396 enough? */
2397 if (objfile->global_psymbols.list)
2398 xfree (objfile->global_psymbols.list);
2399 memset (&objfile->global_psymbols, 0,
2400 sizeof (objfile->global_psymbols));
2401 if (objfile->static_psymbols.list)
2402 xfree (objfile->static_psymbols.list);
2403 memset (&objfile->static_psymbols, 0,
2404 sizeof (objfile->static_psymbols));
2405
2406 /* Free the obstacks for non-reusable objfiles */
2407 bcache_xfree (objfile->psymbol_cache);
2408 objfile->psymbol_cache = bcache_xmalloc ();
2409 bcache_xfree (objfile->macro_cache);
2410 objfile->macro_cache = bcache_xmalloc ();
2411 bcache_xfree (objfile->filename_cache);
2412 objfile->filename_cache = bcache_xmalloc ();
2413 if (objfile->demangled_names_hash != NULL)
2414 {
2415 htab_delete (objfile->demangled_names_hash);
2416 objfile->demangled_names_hash = NULL;
2417 }
2418 obstack_free (&objfile->objfile_obstack, 0);
2419 objfile->sections = NULL;
2420 objfile->symtabs = NULL;
2421 objfile->psymtabs = NULL;
2422 objfile->psymtabs_addrmap = NULL;
2423 objfile->free_psymtabs = NULL;
2424 objfile->cp_namespace_symtab = NULL;
2425 objfile->msymbols = NULL;
2426 objfile->deprecated_sym_private = NULL;
2427 objfile->minimal_symbol_count = 0;
2428 memset (&objfile->msymbol_hash, 0,
2429 sizeof (objfile->msymbol_hash));
2430 memset (&objfile->msymbol_demangled_hash, 0,
2431 sizeof (objfile->msymbol_demangled_hash));
2432
2433 objfile->psymbol_cache = bcache_xmalloc ();
2434 objfile->macro_cache = bcache_xmalloc ();
2435 objfile->filename_cache = bcache_xmalloc ();
2436 /* obstack_init also initializes the obstack so it is
2437 empty. We could use obstack_specify_allocation but
2438 gdb_obstack.h specifies the alloc/dealloc
2439 functions. */
2440 obstack_init (&objfile->objfile_obstack);
2441 if (build_objfile_section_table (objfile))
2442 {
2443 error (_("Can't find the file sections in `%s': %s"),
2444 objfile->name, bfd_errmsg (bfd_get_error ()));
2445 }
2446 terminate_minimal_symbol_table (objfile);
2447
2448 /* We use the same section offsets as from last time. I'm not
2449 sure whether that is always correct for shared libraries. */
2450 objfile->section_offsets = (struct section_offsets *)
2451 obstack_alloc (&objfile->objfile_obstack,
2452 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2453 memcpy (objfile->section_offsets, offsets,
2454 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2455 objfile->num_sections = num_offsets;
2456
2457 /* What the hell is sym_new_init for, anyway? The concept of
2458 distinguishing between the main file and additional files
2459 in this way seems rather dubious. */
2460 if (objfile == symfile_objfile)
2461 {
2462 (*objfile->sf->sym_new_init) (objfile);
2463 }
2464
2465 (*objfile->sf->sym_init) (objfile);
2466 clear_complaints (&symfile_complaints, 1, 1);
2467 /* Do not set flags as this is safe and we don't want to be
2468 verbose. */
2469 (*objfile->sf->sym_read) (objfile, 0);
2470 if (!objfile_has_symbols (objfile))
2471 {
2472 wrap_here ("");
2473 printf_unfiltered (_("(no debugging symbols found)\n"));
2474 wrap_here ("");
2475 }
2476
2477 /* We're done reading the symbol file; finish off complaints. */
2478 clear_complaints (&symfile_complaints, 0, 1);
2479
2480 /* Getting new symbols may change our opinion about what is
2481 frameless. */
2482
2483 reinit_frame_cache ();
2484
2485 /* Discard cleanups as symbol reading was successful. */
2486 discard_cleanups (old_cleanups);
2487
2488 /* If the mtime has changed between the time we set new_modtime
2489 and now, we *want* this to be out of date, so don't call stat
2490 again now. */
2491 objfile->mtime = new_modtime;
2492 reread_one = 1;
2493 init_entry_point_info (objfile);
2494 }
2495 }
2496
2497 if (reread_one)
2498 {
2499 /* Notify objfiles that we've modified objfile sections. */
2500 objfiles_changed ();
2501
2502 clear_symtab_users ();
2503 /* At least one objfile has changed, so we can consider that
2504 the executable we're debugging has changed too. */
2505 observer_notify_executable_changed ();
2506 }
2507 }
2508 \f
2509
2510
2511 typedef struct
2512 {
2513 char *ext;
2514 enum language lang;
2515 }
2516 filename_language;
2517
2518 static filename_language *filename_language_table;
2519 static int fl_table_size, fl_table_next;
2520
2521 static void
2522 add_filename_language (char *ext, enum language lang)
2523 {
2524 if (fl_table_next >= fl_table_size)
2525 {
2526 fl_table_size += 10;
2527 filename_language_table =
2528 xrealloc (filename_language_table,
2529 fl_table_size * sizeof (*filename_language_table));
2530 }
2531
2532 filename_language_table[fl_table_next].ext = xstrdup (ext);
2533 filename_language_table[fl_table_next].lang = lang;
2534 fl_table_next++;
2535 }
2536
2537 static char *ext_args;
2538 static void
2539 show_ext_args (struct ui_file *file, int from_tty,
2540 struct cmd_list_element *c, const char *value)
2541 {
2542 fprintf_filtered (file, _("\
2543 Mapping between filename extension and source language is \"%s\".\n"),
2544 value);
2545 }
2546
2547 static void
2548 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2549 {
2550 int i;
2551 char *cp = ext_args;
2552 enum language lang;
2553
2554 /* First arg is filename extension, starting with '.' */
2555 if (*cp != '.')
2556 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2557
2558 /* Find end of first arg. */
2559 while (*cp && !isspace (*cp))
2560 cp++;
2561
2562 if (*cp == '\0')
2563 error (_("'%s': two arguments required -- filename extension and language"),
2564 ext_args);
2565
2566 /* Null-terminate first arg */
2567 *cp++ = '\0';
2568
2569 /* Find beginning of second arg, which should be a source language. */
2570 while (*cp && isspace (*cp))
2571 cp++;
2572
2573 if (*cp == '\0')
2574 error (_("'%s': two arguments required -- filename extension and language"),
2575 ext_args);
2576
2577 /* Lookup the language from among those we know. */
2578 lang = language_enum (cp);
2579
2580 /* Now lookup the filename extension: do we already know it? */
2581 for (i = 0; i < fl_table_next; i++)
2582 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2583 break;
2584
2585 if (i >= fl_table_next)
2586 {
2587 /* new file extension */
2588 add_filename_language (ext_args, lang);
2589 }
2590 else
2591 {
2592 /* redefining a previously known filename extension */
2593
2594 /* if (from_tty) */
2595 /* query ("Really make files of type %s '%s'?", */
2596 /* ext_args, language_str (lang)); */
2597
2598 xfree (filename_language_table[i].ext);
2599 filename_language_table[i].ext = xstrdup (ext_args);
2600 filename_language_table[i].lang = lang;
2601 }
2602 }
2603
2604 static void
2605 info_ext_lang_command (char *args, int from_tty)
2606 {
2607 int i;
2608
2609 printf_filtered (_("Filename extensions and the languages they represent:"));
2610 printf_filtered ("\n\n");
2611 for (i = 0; i < fl_table_next; i++)
2612 printf_filtered ("\t%s\t- %s\n",
2613 filename_language_table[i].ext,
2614 language_str (filename_language_table[i].lang));
2615 }
2616
2617 static void
2618 init_filename_language_table (void)
2619 {
2620 if (fl_table_size == 0) /* protect against repetition */
2621 {
2622 fl_table_size = 20;
2623 fl_table_next = 0;
2624 filename_language_table =
2625 xmalloc (fl_table_size * sizeof (*filename_language_table));
2626 add_filename_language (".c", language_c);
2627 add_filename_language (".d", language_d);
2628 add_filename_language (".C", language_cplus);
2629 add_filename_language (".cc", language_cplus);
2630 add_filename_language (".cp", language_cplus);
2631 add_filename_language (".cpp", language_cplus);
2632 add_filename_language (".cxx", language_cplus);
2633 add_filename_language (".c++", language_cplus);
2634 add_filename_language (".java", language_java);
2635 add_filename_language (".class", language_java);
2636 add_filename_language (".m", language_objc);
2637 add_filename_language (".f", language_fortran);
2638 add_filename_language (".F", language_fortran);
2639 add_filename_language (".for", language_fortran);
2640 add_filename_language (".FOR", language_fortran);
2641 add_filename_language (".ftn", language_fortran);
2642 add_filename_language (".FTN", language_fortran);
2643 add_filename_language (".fpp", language_fortran);
2644 add_filename_language (".FPP", language_fortran);
2645 add_filename_language (".f90", language_fortran);
2646 add_filename_language (".F90", language_fortran);
2647 add_filename_language (".f95", language_fortran);
2648 add_filename_language (".F95", language_fortran);
2649 add_filename_language (".f03", language_fortran);
2650 add_filename_language (".F03", language_fortran);
2651 add_filename_language (".f08", language_fortran);
2652 add_filename_language (".F08", language_fortran);
2653 add_filename_language (".s", language_asm);
2654 add_filename_language (".sx", language_asm);
2655 add_filename_language (".S", language_asm);
2656 add_filename_language (".pas", language_pascal);
2657 add_filename_language (".p", language_pascal);
2658 add_filename_language (".pp", language_pascal);
2659 add_filename_language (".adb", language_ada);
2660 add_filename_language (".ads", language_ada);
2661 add_filename_language (".a", language_ada);
2662 add_filename_language (".ada", language_ada);
2663 add_filename_language (".dg", language_ada);
2664 }
2665 }
2666
2667 enum language
2668 deduce_language_from_filename (char *filename)
2669 {
2670 int i;
2671 char *cp;
2672
2673 if (filename != NULL)
2674 if ((cp = strrchr (filename, '.')) != NULL)
2675 for (i = 0; i < fl_table_next; i++)
2676 if (strcmp (cp, filename_language_table[i].ext) == 0)
2677 return filename_language_table[i].lang;
2678
2679 return language_unknown;
2680 }
2681 \f
2682 /* allocate_symtab:
2683
2684 Allocate and partly initialize a new symbol table. Return a pointer
2685 to it. error() if no space.
2686
2687 Caller must set these fields:
2688 LINETABLE(symtab)
2689 symtab->blockvector
2690 symtab->dirname
2691 symtab->free_code
2692 symtab->free_ptr
2693 */
2694
2695 struct symtab *
2696 allocate_symtab (char *filename, struct objfile *objfile)
2697 {
2698 struct symtab *symtab;
2699
2700 symtab = (struct symtab *)
2701 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2702 memset (symtab, 0, sizeof (*symtab));
2703 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2704 objfile->filename_cache);
2705 symtab->fullname = NULL;
2706 symtab->language = deduce_language_from_filename (filename);
2707 symtab->debugformat = "unknown";
2708
2709 /* Hook it to the objfile it comes from */
2710
2711 symtab->objfile = objfile;
2712 symtab->next = objfile->symtabs;
2713 objfile->symtabs = symtab;
2714
2715 return (symtab);
2716 }
2717 \f
2718
2719 /* Reset all data structures in gdb which may contain references to symbol
2720 table data. */
2721
2722 void
2723 clear_symtab_users (void)
2724 {
2725 /* Someday, we should do better than this, by only blowing away
2726 the things that really need to be blown. */
2727
2728 /* Clear the "current" symtab first, because it is no longer valid.
2729 breakpoint_re_set may try to access the current symtab. */
2730 clear_current_source_symtab_and_line ();
2731
2732 clear_displays ();
2733 breakpoint_re_set ();
2734 set_default_breakpoint (0, NULL, 0, 0, 0);
2735 clear_pc_function_cache ();
2736 observer_notify_new_objfile (NULL);
2737
2738 /* Clear globals which might have pointed into a removed objfile.
2739 FIXME: It's not clear which of these are supposed to persist
2740 between expressions and which ought to be reset each time. */
2741 expression_context_block = NULL;
2742 innermost_block = NULL;
2743
2744 /* Varobj may refer to old symbols, perform a cleanup. */
2745 varobj_invalidate ();
2746
2747 }
2748
2749 static void
2750 clear_symtab_users_cleanup (void *ignore)
2751 {
2752 clear_symtab_users ();
2753 }
2754 \f
2755 /* OVERLAYS:
2756 The following code implements an abstraction for debugging overlay sections.
2757
2758 The target model is as follows:
2759 1) The gnu linker will permit multiple sections to be mapped into the
2760 same VMA, each with its own unique LMA (or load address).
2761 2) It is assumed that some runtime mechanism exists for mapping the
2762 sections, one by one, from the load address into the VMA address.
2763 3) This code provides a mechanism for gdb to keep track of which
2764 sections should be considered to be mapped from the VMA to the LMA.
2765 This information is used for symbol lookup, and memory read/write.
2766 For instance, if a section has been mapped then its contents
2767 should be read from the VMA, otherwise from the LMA.
2768
2769 Two levels of debugger support for overlays are available. One is
2770 "manual", in which the debugger relies on the user to tell it which
2771 overlays are currently mapped. This level of support is
2772 implemented entirely in the core debugger, and the information about
2773 whether a section is mapped is kept in the objfile->obj_section table.
2774
2775 The second level of support is "automatic", and is only available if
2776 the target-specific code provides functionality to read the target's
2777 overlay mapping table, and translate its contents for the debugger
2778 (by updating the mapped state information in the obj_section tables).
2779
2780 The interface is as follows:
2781 User commands:
2782 overlay map <name> -- tell gdb to consider this section mapped
2783 overlay unmap <name> -- tell gdb to consider this section unmapped
2784 overlay list -- list the sections that GDB thinks are mapped
2785 overlay read-target -- get the target's state of what's mapped
2786 overlay off/manual/auto -- set overlay debugging state
2787 Functional interface:
2788 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2789 section, return that section.
2790 find_pc_overlay(pc): find any overlay section that contains
2791 the pc, either in its VMA or its LMA
2792 section_is_mapped(sect): true if overlay is marked as mapped
2793 section_is_overlay(sect): true if section's VMA != LMA
2794 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2795 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2796 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2797 overlay_mapped_address(...): map an address from section's LMA to VMA
2798 overlay_unmapped_address(...): map an address from section's VMA to LMA
2799 symbol_overlayed_address(...): Return a "current" address for symbol:
2800 either in VMA or LMA depending on whether
2801 the symbol's section is currently mapped
2802 */
2803
2804 /* Overlay debugging state: */
2805
2806 enum overlay_debugging_state overlay_debugging = ovly_off;
2807 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2808
2809 /* Function: section_is_overlay (SECTION)
2810 Returns true if SECTION has VMA not equal to LMA, ie.
2811 SECTION is loaded at an address different from where it will "run". */
2812
2813 int
2814 section_is_overlay (struct obj_section *section)
2815 {
2816 if (overlay_debugging && section)
2817 {
2818 bfd *abfd = section->objfile->obfd;
2819 asection *bfd_section = section->the_bfd_section;
2820
2821 if (bfd_section_lma (abfd, bfd_section) != 0
2822 && bfd_section_lma (abfd, bfd_section)
2823 != bfd_section_vma (abfd, bfd_section))
2824 return 1;
2825 }
2826
2827 return 0;
2828 }
2829
2830 /* Function: overlay_invalidate_all (void)
2831 Invalidate the mapped state of all overlay sections (mark it as stale). */
2832
2833 static void
2834 overlay_invalidate_all (void)
2835 {
2836 struct objfile *objfile;
2837 struct obj_section *sect;
2838
2839 ALL_OBJSECTIONS (objfile, sect)
2840 if (section_is_overlay (sect))
2841 sect->ovly_mapped = -1;
2842 }
2843
2844 /* Function: section_is_mapped (SECTION)
2845 Returns true if section is an overlay, and is currently mapped.
2846
2847 Access to the ovly_mapped flag is restricted to this function, so
2848 that we can do automatic update. If the global flag
2849 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2850 overlay_invalidate_all. If the mapped state of the particular
2851 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2852
2853 int
2854 section_is_mapped (struct obj_section *osect)
2855 {
2856 struct gdbarch *gdbarch;
2857
2858 if (osect == 0 || !section_is_overlay (osect))
2859 return 0;
2860
2861 switch (overlay_debugging)
2862 {
2863 default:
2864 case ovly_off:
2865 return 0; /* overlay debugging off */
2866 case ovly_auto: /* overlay debugging automatic */
2867 /* Unles there is a gdbarch_overlay_update function,
2868 there's really nothing useful to do here (can't really go auto) */
2869 gdbarch = get_objfile_arch (osect->objfile);
2870 if (gdbarch_overlay_update_p (gdbarch))
2871 {
2872 if (overlay_cache_invalid)
2873 {
2874 overlay_invalidate_all ();
2875 overlay_cache_invalid = 0;
2876 }
2877 if (osect->ovly_mapped == -1)
2878 gdbarch_overlay_update (gdbarch, osect);
2879 }
2880 /* fall thru to manual case */
2881 case ovly_on: /* overlay debugging manual */
2882 return osect->ovly_mapped == 1;
2883 }
2884 }
2885
2886 /* Function: pc_in_unmapped_range
2887 If PC falls into the lma range of SECTION, return true, else false. */
2888
2889 CORE_ADDR
2890 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2891 {
2892 if (section_is_overlay (section))
2893 {
2894 bfd *abfd = section->objfile->obfd;
2895 asection *bfd_section = section->the_bfd_section;
2896
2897 /* We assume the LMA is relocated by the same offset as the VMA. */
2898 bfd_vma size = bfd_get_section_size (bfd_section);
2899 CORE_ADDR offset = obj_section_offset (section);
2900
2901 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2902 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2903 return 1;
2904 }
2905
2906 return 0;
2907 }
2908
2909 /* Function: pc_in_mapped_range
2910 If PC falls into the vma range of SECTION, return true, else false. */
2911
2912 CORE_ADDR
2913 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2914 {
2915 if (section_is_overlay (section))
2916 {
2917 if (obj_section_addr (section) <= pc
2918 && pc < obj_section_endaddr (section))
2919 return 1;
2920 }
2921
2922 return 0;
2923 }
2924
2925
2926 /* Return true if the mapped ranges of sections A and B overlap, false
2927 otherwise. */
2928 static int
2929 sections_overlap (struct obj_section *a, struct obj_section *b)
2930 {
2931 CORE_ADDR a_start = obj_section_addr (a);
2932 CORE_ADDR a_end = obj_section_endaddr (a);
2933 CORE_ADDR b_start = obj_section_addr (b);
2934 CORE_ADDR b_end = obj_section_endaddr (b);
2935
2936 return (a_start < b_end && b_start < a_end);
2937 }
2938
2939 /* Function: overlay_unmapped_address (PC, SECTION)
2940 Returns the address corresponding to PC in the unmapped (load) range.
2941 May be the same as PC. */
2942
2943 CORE_ADDR
2944 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2945 {
2946 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2947 {
2948 bfd *abfd = section->objfile->obfd;
2949 asection *bfd_section = section->the_bfd_section;
2950
2951 return pc + bfd_section_lma (abfd, bfd_section)
2952 - bfd_section_vma (abfd, bfd_section);
2953 }
2954
2955 return pc;
2956 }
2957
2958 /* Function: overlay_mapped_address (PC, SECTION)
2959 Returns the address corresponding to PC in the mapped (runtime) range.
2960 May be the same as PC. */
2961
2962 CORE_ADDR
2963 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2964 {
2965 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2966 {
2967 bfd *abfd = section->objfile->obfd;
2968 asection *bfd_section = section->the_bfd_section;
2969
2970 return pc + bfd_section_vma (abfd, bfd_section)
2971 - bfd_section_lma (abfd, bfd_section);
2972 }
2973
2974 return pc;
2975 }
2976
2977
2978 /* Function: symbol_overlayed_address
2979 Return one of two addresses (relative to the VMA or to the LMA),
2980 depending on whether the section is mapped or not. */
2981
2982 CORE_ADDR
2983 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
2984 {
2985 if (overlay_debugging)
2986 {
2987 /* If the symbol has no section, just return its regular address. */
2988 if (section == 0)
2989 return address;
2990 /* If the symbol's section is not an overlay, just return its address */
2991 if (!section_is_overlay (section))
2992 return address;
2993 /* If the symbol's section is mapped, just return its address */
2994 if (section_is_mapped (section))
2995 return address;
2996 /*
2997 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2998 * then return its LOADED address rather than its vma address!!
2999 */
3000 return overlay_unmapped_address (address, section);
3001 }
3002 return address;
3003 }
3004
3005 /* Function: find_pc_overlay (PC)
3006 Return the best-match overlay section for PC:
3007 If PC matches a mapped overlay section's VMA, return that section.
3008 Else if PC matches an unmapped section's VMA, return that section.
3009 Else if PC matches an unmapped section's LMA, return that section. */
3010
3011 struct obj_section *
3012 find_pc_overlay (CORE_ADDR pc)
3013 {
3014 struct objfile *objfile;
3015 struct obj_section *osect, *best_match = NULL;
3016
3017 if (overlay_debugging)
3018 ALL_OBJSECTIONS (objfile, osect)
3019 if (section_is_overlay (osect))
3020 {
3021 if (pc_in_mapped_range (pc, osect))
3022 {
3023 if (section_is_mapped (osect))
3024 return osect;
3025 else
3026 best_match = osect;
3027 }
3028 else if (pc_in_unmapped_range (pc, osect))
3029 best_match = osect;
3030 }
3031 return best_match;
3032 }
3033
3034 /* Function: find_pc_mapped_section (PC)
3035 If PC falls into the VMA address range of an overlay section that is
3036 currently marked as MAPPED, return that section. Else return NULL. */
3037
3038 struct obj_section *
3039 find_pc_mapped_section (CORE_ADDR pc)
3040 {
3041 struct objfile *objfile;
3042 struct obj_section *osect;
3043
3044 if (overlay_debugging)
3045 ALL_OBJSECTIONS (objfile, osect)
3046 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3047 return osect;
3048
3049 return NULL;
3050 }
3051
3052 /* Function: list_overlays_command
3053 Print a list of mapped sections and their PC ranges */
3054
3055 void
3056 list_overlays_command (char *args, int from_tty)
3057 {
3058 int nmapped = 0;
3059 struct objfile *objfile;
3060 struct obj_section *osect;
3061
3062 if (overlay_debugging)
3063 ALL_OBJSECTIONS (objfile, osect)
3064 if (section_is_mapped (osect))
3065 {
3066 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3067 const char *name;
3068 bfd_vma lma, vma;
3069 int size;
3070
3071 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3072 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3073 size = bfd_get_section_size (osect->the_bfd_section);
3074 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3075
3076 printf_filtered ("Section %s, loaded at ", name);
3077 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3078 puts_filtered (" - ");
3079 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3080 printf_filtered (", mapped at ");
3081 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3082 puts_filtered (" - ");
3083 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3084 puts_filtered ("\n");
3085
3086 nmapped++;
3087 }
3088 if (nmapped == 0)
3089 printf_filtered (_("No sections are mapped.\n"));
3090 }
3091
3092 /* Function: map_overlay_command
3093 Mark the named section as mapped (ie. residing at its VMA address). */
3094
3095 void
3096 map_overlay_command (char *args, int from_tty)
3097 {
3098 struct objfile *objfile, *objfile2;
3099 struct obj_section *sec, *sec2;
3100
3101 if (!overlay_debugging)
3102 error (_("\
3103 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3104 the 'overlay manual' command."));
3105
3106 if (args == 0 || *args == 0)
3107 error (_("Argument required: name of an overlay section"));
3108
3109 /* First, find a section matching the user supplied argument */
3110 ALL_OBJSECTIONS (objfile, sec)
3111 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3112 {
3113 /* Now, check to see if the section is an overlay. */
3114 if (!section_is_overlay (sec))
3115 continue; /* not an overlay section */
3116
3117 /* Mark the overlay as "mapped" */
3118 sec->ovly_mapped = 1;
3119
3120 /* Next, make a pass and unmap any sections that are
3121 overlapped by this new section: */
3122 ALL_OBJSECTIONS (objfile2, sec2)
3123 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3124 {
3125 if (info_verbose)
3126 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3127 bfd_section_name (objfile->obfd,
3128 sec2->the_bfd_section));
3129 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3130 }
3131 return;
3132 }
3133 error (_("No overlay section called %s"), args);
3134 }
3135
3136 /* Function: unmap_overlay_command
3137 Mark the overlay section as unmapped
3138 (ie. resident in its LMA address range, rather than the VMA range). */
3139
3140 void
3141 unmap_overlay_command (char *args, int from_tty)
3142 {
3143 struct objfile *objfile;
3144 struct obj_section *sec;
3145
3146 if (!overlay_debugging)
3147 error (_("\
3148 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3149 the 'overlay manual' command."));
3150
3151 if (args == 0 || *args == 0)
3152 error (_("Argument required: name of an overlay section"));
3153
3154 /* First, find a section matching the user supplied argument */
3155 ALL_OBJSECTIONS (objfile, sec)
3156 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3157 {
3158 if (!sec->ovly_mapped)
3159 error (_("Section %s is not mapped"), args);
3160 sec->ovly_mapped = 0;
3161 return;
3162 }
3163 error (_("No overlay section called %s"), args);
3164 }
3165
3166 /* Function: overlay_auto_command
3167 A utility command to turn on overlay debugging.
3168 Possibly this should be done via a set/show command. */
3169
3170 static void
3171 overlay_auto_command (char *args, int from_tty)
3172 {
3173 overlay_debugging = ovly_auto;
3174 enable_overlay_breakpoints ();
3175 if (info_verbose)
3176 printf_unfiltered (_("Automatic overlay debugging enabled."));
3177 }
3178
3179 /* Function: overlay_manual_command
3180 A utility command to turn on overlay debugging.
3181 Possibly this should be done via a set/show command. */
3182
3183 static void
3184 overlay_manual_command (char *args, int from_tty)
3185 {
3186 overlay_debugging = ovly_on;
3187 disable_overlay_breakpoints ();
3188 if (info_verbose)
3189 printf_unfiltered (_("Overlay debugging enabled."));
3190 }
3191
3192 /* Function: overlay_off_command
3193 A utility command to turn on overlay debugging.
3194 Possibly this should be done via a set/show command. */
3195
3196 static void
3197 overlay_off_command (char *args, int from_tty)
3198 {
3199 overlay_debugging = ovly_off;
3200 disable_overlay_breakpoints ();
3201 if (info_verbose)
3202 printf_unfiltered (_("Overlay debugging disabled."));
3203 }
3204
3205 static void
3206 overlay_load_command (char *args, int from_tty)
3207 {
3208 struct gdbarch *gdbarch = get_current_arch ();
3209
3210 if (gdbarch_overlay_update_p (gdbarch))
3211 gdbarch_overlay_update (gdbarch, NULL);
3212 else
3213 error (_("This target does not know how to read its overlay state."));
3214 }
3215
3216 /* Function: overlay_command
3217 A place-holder for a mis-typed command */
3218
3219 /* Command list chain containing all defined "overlay" subcommands. */
3220 struct cmd_list_element *overlaylist;
3221
3222 static void
3223 overlay_command (char *args, int from_tty)
3224 {
3225 printf_unfiltered
3226 ("\"overlay\" must be followed by the name of an overlay command.\n");
3227 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3228 }
3229
3230
3231 /* Target Overlays for the "Simplest" overlay manager:
3232
3233 This is GDB's default target overlay layer. It works with the
3234 minimal overlay manager supplied as an example by Cygnus. The
3235 entry point is via a function pointer "gdbarch_overlay_update",
3236 so targets that use a different runtime overlay manager can
3237 substitute their own overlay_update function and take over the
3238 function pointer.
3239
3240 The overlay_update function pokes around in the target's data structures
3241 to see what overlays are mapped, and updates GDB's overlay mapping with
3242 this information.
3243
3244 In this simple implementation, the target data structures are as follows:
3245 unsigned _novlys; /# number of overlay sections #/
3246 unsigned _ovly_table[_novlys][4] = {
3247 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3248 {..., ..., ..., ...},
3249 }
3250 unsigned _novly_regions; /# number of overlay regions #/
3251 unsigned _ovly_region_table[_novly_regions][3] = {
3252 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3253 {..., ..., ...},
3254 }
3255 These functions will attempt to update GDB's mappedness state in the
3256 symbol section table, based on the target's mappedness state.
3257
3258 To do this, we keep a cached copy of the target's _ovly_table, and
3259 attempt to detect when the cached copy is invalidated. The main
3260 entry point is "simple_overlay_update(SECT), which looks up SECT in
3261 the cached table and re-reads only the entry for that section from
3262 the target (whenever possible).
3263 */
3264
3265 /* Cached, dynamically allocated copies of the target data structures: */
3266 static unsigned (*cache_ovly_table)[4] = 0;
3267 #if 0
3268 static unsigned (*cache_ovly_region_table)[3] = 0;
3269 #endif
3270 static unsigned cache_novlys = 0;
3271 #if 0
3272 static unsigned cache_novly_regions = 0;
3273 #endif
3274 static CORE_ADDR cache_ovly_table_base = 0;
3275 #if 0
3276 static CORE_ADDR cache_ovly_region_table_base = 0;
3277 #endif
3278 enum ovly_index
3279 {
3280 VMA, SIZE, LMA, MAPPED
3281 };
3282
3283 /* Throw away the cached copy of _ovly_table */
3284 static void
3285 simple_free_overlay_table (void)
3286 {
3287 if (cache_ovly_table)
3288 xfree (cache_ovly_table);
3289 cache_novlys = 0;
3290 cache_ovly_table = NULL;
3291 cache_ovly_table_base = 0;
3292 }
3293
3294 #if 0
3295 /* Throw away the cached copy of _ovly_region_table */
3296 static void
3297 simple_free_overlay_region_table (void)
3298 {
3299 if (cache_ovly_region_table)
3300 xfree (cache_ovly_region_table);
3301 cache_novly_regions = 0;
3302 cache_ovly_region_table = NULL;
3303 cache_ovly_region_table_base = 0;
3304 }
3305 #endif
3306
3307 /* Read an array of ints of size SIZE from the target into a local buffer.
3308 Convert to host order. int LEN is number of ints */
3309 static void
3310 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3311 int len, int size, enum bfd_endian byte_order)
3312 {
3313 /* FIXME (alloca): Not safe if array is very large. */
3314 gdb_byte *buf = alloca (len * size);
3315 int i;
3316
3317 read_memory (memaddr, buf, len * size);
3318 for (i = 0; i < len; i++)
3319 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3320 }
3321
3322 /* Find and grab a copy of the target _ovly_table
3323 (and _novlys, which is needed for the table's size) */
3324 static int
3325 simple_read_overlay_table (void)
3326 {
3327 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3328 struct gdbarch *gdbarch;
3329 int word_size;
3330 enum bfd_endian byte_order;
3331
3332 simple_free_overlay_table ();
3333 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3334 if (! novlys_msym)
3335 {
3336 error (_("Error reading inferior's overlay table: "
3337 "couldn't find `_novlys' variable\n"
3338 "in inferior. Use `overlay manual' mode."));
3339 return 0;
3340 }
3341
3342 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3343 if (! ovly_table_msym)
3344 {
3345 error (_("Error reading inferior's overlay table: couldn't find "
3346 "`_ovly_table' array\n"
3347 "in inferior. Use `overlay manual' mode."));
3348 return 0;
3349 }
3350
3351 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3352 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3353 byte_order = gdbarch_byte_order (gdbarch);
3354
3355 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3356 4, byte_order);
3357 cache_ovly_table
3358 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3359 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3360 read_target_long_array (cache_ovly_table_base,
3361 (unsigned int *) cache_ovly_table,
3362 cache_novlys * 4, word_size, byte_order);
3363
3364 return 1; /* SUCCESS */
3365 }
3366
3367 #if 0
3368 /* Find and grab a copy of the target _ovly_region_table
3369 (and _novly_regions, which is needed for the table's size) */
3370 static int
3371 simple_read_overlay_region_table (void)
3372 {
3373 struct minimal_symbol *msym;
3374 struct gdbarch *gdbarch;
3375 int word_size;
3376 enum bfd_endian byte_order;
3377
3378 simple_free_overlay_region_table ();
3379 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3380 if (msym == NULL)
3381 return 0; /* failure */
3382
3383 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3384 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3385 byte_order = gdbarch_byte_order (gdbarch);
3386
3387 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3388 4, byte_order);
3389
3390 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3391 if (cache_ovly_region_table != NULL)
3392 {
3393 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3394 if (msym != NULL)
3395 {
3396 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3397 read_target_long_array (cache_ovly_region_table_base,
3398 (unsigned int *) cache_ovly_region_table,
3399 cache_novly_regions * 3,
3400 word_size, byte_order);
3401 }
3402 else
3403 return 0; /* failure */
3404 }
3405 else
3406 return 0; /* failure */
3407 return 1; /* SUCCESS */
3408 }
3409 #endif
3410
3411 /* Function: simple_overlay_update_1
3412 A helper function for simple_overlay_update. Assuming a cached copy
3413 of _ovly_table exists, look through it to find an entry whose vma,
3414 lma and size match those of OSECT. Re-read the entry and make sure
3415 it still matches OSECT (else the table may no longer be valid).
3416 Set OSECT's mapped state to match the entry. Return: 1 for
3417 success, 0 for failure. */
3418
3419 static int
3420 simple_overlay_update_1 (struct obj_section *osect)
3421 {
3422 int i, size;
3423 bfd *obfd = osect->objfile->obfd;
3424 asection *bsect = osect->the_bfd_section;
3425 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3426 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3427 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3428
3429 size = bfd_get_section_size (osect->the_bfd_section);
3430 for (i = 0; i < cache_novlys; i++)
3431 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3432 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3433 /* && cache_ovly_table[i][SIZE] == size */ )
3434 {
3435 read_target_long_array (cache_ovly_table_base + i * word_size,
3436 (unsigned int *) cache_ovly_table[i],
3437 4, word_size, byte_order);
3438 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3439 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3440 /* && cache_ovly_table[i][SIZE] == size */ )
3441 {
3442 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3443 return 1;
3444 }
3445 else /* Warning! Warning! Target's ovly table has changed! */
3446 return 0;
3447 }
3448 return 0;
3449 }
3450
3451 /* Function: simple_overlay_update
3452 If OSECT is NULL, then update all sections' mapped state
3453 (after re-reading the entire target _ovly_table).
3454 If OSECT is non-NULL, then try to find a matching entry in the
3455 cached ovly_table and update only OSECT's mapped state.
3456 If a cached entry can't be found or the cache isn't valid, then
3457 re-read the entire cache, and go ahead and update all sections. */
3458
3459 void
3460 simple_overlay_update (struct obj_section *osect)
3461 {
3462 struct objfile *objfile;
3463
3464 /* Were we given an osect to look up? NULL means do all of them. */
3465 if (osect)
3466 /* Have we got a cached copy of the target's overlay table? */
3467 if (cache_ovly_table != NULL)
3468 /* Does its cached location match what's currently in the symtab? */
3469 if (cache_ovly_table_base ==
3470 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3471 /* Then go ahead and try to look up this single section in the cache */
3472 if (simple_overlay_update_1 (osect))
3473 /* Found it! We're done. */
3474 return;
3475
3476 /* Cached table no good: need to read the entire table anew.
3477 Or else we want all the sections, in which case it's actually
3478 more efficient to read the whole table in one block anyway. */
3479
3480 if (! simple_read_overlay_table ())
3481 return;
3482
3483 /* Now may as well update all sections, even if only one was requested. */
3484 ALL_OBJSECTIONS (objfile, osect)
3485 if (section_is_overlay (osect))
3486 {
3487 int i, size;
3488 bfd *obfd = osect->objfile->obfd;
3489 asection *bsect = osect->the_bfd_section;
3490
3491 size = bfd_get_section_size (bsect);
3492 for (i = 0; i < cache_novlys; i++)
3493 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3494 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3495 /* && cache_ovly_table[i][SIZE] == size */ )
3496 { /* obj_section matches i'th entry in ovly_table */
3497 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3498 break; /* finished with inner for loop: break out */
3499 }
3500 }
3501 }
3502
3503 /* Set the output sections and output offsets for section SECTP in
3504 ABFD. The relocation code in BFD will read these offsets, so we
3505 need to be sure they're initialized. We map each section to itself,
3506 with no offset; this means that SECTP->vma will be honored. */
3507
3508 static void
3509 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3510 {
3511 sectp->output_section = sectp;
3512 sectp->output_offset = 0;
3513 }
3514
3515 /* Default implementation for sym_relocate. */
3516
3517
3518 bfd_byte *
3519 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3520 bfd_byte *buf)
3521 {
3522 bfd *abfd = objfile->obfd;
3523
3524 /* We're only interested in sections with relocation
3525 information. */
3526 if ((sectp->flags & SEC_RELOC) == 0)
3527 return NULL;
3528
3529 /* We will handle section offsets properly elsewhere, so relocate as if
3530 all sections begin at 0. */
3531 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3532
3533 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3534 }
3535
3536 /* Relocate the contents of a debug section SECTP in ABFD. The
3537 contents are stored in BUF if it is non-NULL, or returned in a
3538 malloc'd buffer otherwise.
3539
3540 For some platforms and debug info formats, shared libraries contain
3541 relocations against the debug sections (particularly for DWARF-2;
3542 one affected platform is PowerPC GNU/Linux, although it depends on
3543 the version of the linker in use). Also, ELF object files naturally
3544 have unresolved relocations for their debug sections. We need to apply
3545 the relocations in order to get the locations of symbols correct.
3546 Another example that may require relocation processing, is the
3547 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3548 debug section. */
3549
3550 bfd_byte *
3551 symfile_relocate_debug_section (struct objfile *objfile,
3552 asection *sectp, bfd_byte *buf)
3553 {
3554 gdb_assert (objfile->sf->sym_relocate);
3555
3556 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3557 }
3558
3559 struct symfile_segment_data *
3560 get_symfile_segment_data (bfd *abfd)
3561 {
3562 struct sym_fns *sf = find_sym_fns (abfd);
3563
3564 if (sf == NULL)
3565 return NULL;
3566
3567 return sf->sym_segments (abfd);
3568 }
3569
3570 void
3571 free_symfile_segment_data (struct symfile_segment_data *data)
3572 {
3573 xfree (data->segment_bases);
3574 xfree (data->segment_sizes);
3575 xfree (data->segment_info);
3576 xfree (data);
3577 }
3578
3579
3580 /* Given:
3581 - DATA, containing segment addresses from the object file ABFD, and
3582 the mapping from ABFD's sections onto the segments that own them,
3583 and
3584 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3585 segment addresses reported by the target,
3586 store the appropriate offsets for each section in OFFSETS.
3587
3588 If there are fewer entries in SEGMENT_BASES than there are segments
3589 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3590
3591 If there are more entries, then ignore the extra. The target may
3592 not be able to distinguish between an empty data segment and a
3593 missing data segment; a missing text segment is less plausible. */
3594 int
3595 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3596 struct section_offsets *offsets,
3597 int num_segment_bases,
3598 const CORE_ADDR *segment_bases)
3599 {
3600 int i;
3601 asection *sect;
3602
3603 /* It doesn't make sense to call this function unless you have some
3604 segment base addresses. */
3605 gdb_assert (num_segment_bases > 0);
3606
3607 /* If we do not have segment mappings for the object file, we
3608 can not relocate it by segments. */
3609 gdb_assert (data != NULL);
3610 gdb_assert (data->num_segments > 0);
3611
3612 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3613 {
3614 int which = data->segment_info[i];
3615
3616 gdb_assert (0 <= which && which <= data->num_segments);
3617
3618 /* Don't bother computing offsets for sections that aren't
3619 loaded as part of any segment. */
3620 if (! which)
3621 continue;
3622
3623 /* Use the last SEGMENT_BASES entry as the address of any extra
3624 segments mentioned in DATA->segment_info. */
3625 if (which > num_segment_bases)
3626 which = num_segment_bases;
3627
3628 offsets->offsets[i] = (segment_bases[which - 1]
3629 - data->segment_bases[which - 1]);
3630 }
3631
3632 return 1;
3633 }
3634
3635 static void
3636 symfile_find_segment_sections (struct objfile *objfile)
3637 {
3638 bfd *abfd = objfile->obfd;
3639 int i;
3640 asection *sect;
3641 struct symfile_segment_data *data;
3642
3643 data = get_symfile_segment_data (objfile->obfd);
3644 if (data == NULL)
3645 return;
3646
3647 if (data->num_segments != 1 && data->num_segments != 2)
3648 {
3649 free_symfile_segment_data (data);
3650 return;
3651 }
3652
3653 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3654 {
3655 int which = data->segment_info[i];
3656
3657 if (which == 1)
3658 {
3659 if (objfile->sect_index_text == -1)
3660 objfile->sect_index_text = sect->index;
3661
3662 if (objfile->sect_index_rodata == -1)
3663 objfile->sect_index_rodata = sect->index;
3664 }
3665 else if (which == 2)
3666 {
3667 if (objfile->sect_index_data == -1)
3668 objfile->sect_index_data = sect->index;
3669
3670 if (objfile->sect_index_bss == -1)
3671 objfile->sect_index_bss = sect->index;
3672 }
3673 }
3674
3675 free_symfile_segment_data (data);
3676 }
3677
3678 void
3679 _initialize_symfile (void)
3680 {
3681 struct cmd_list_element *c;
3682
3683 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3684 Load symbol table from executable file FILE.\n\
3685 The `file' command can also load symbol tables, as well as setting the file\n\
3686 to execute."), &cmdlist);
3687 set_cmd_completer (c, filename_completer);
3688
3689 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3690 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3691 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3692 ADDR is the starting address of the file's text.\n\
3693 The optional arguments are section-name section-address pairs and\n\
3694 should be specified if the data and bss segments are not contiguous\n\
3695 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3696 &cmdlist);
3697 set_cmd_completer (c, filename_completer);
3698
3699 c = add_cmd ("load", class_files, load_command, _("\
3700 Dynamically load FILE into the running program, and record its symbols\n\
3701 for access from GDB.\n\
3702 A load OFFSET may also be given."), &cmdlist);
3703 set_cmd_completer (c, filename_completer);
3704
3705 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3706 &symbol_reloading, _("\
3707 Set dynamic symbol table reloading multiple times in one run."), _("\
3708 Show dynamic symbol table reloading multiple times in one run."), NULL,
3709 NULL,
3710 show_symbol_reloading,
3711 &setlist, &showlist);
3712
3713 add_prefix_cmd ("overlay", class_support, overlay_command,
3714 _("Commands for debugging overlays."), &overlaylist,
3715 "overlay ", 0, &cmdlist);
3716
3717 add_com_alias ("ovly", "overlay", class_alias, 1);
3718 add_com_alias ("ov", "overlay", class_alias, 1);
3719
3720 add_cmd ("map-overlay", class_support, map_overlay_command,
3721 _("Assert that an overlay section is mapped."), &overlaylist);
3722
3723 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3724 _("Assert that an overlay section is unmapped."), &overlaylist);
3725
3726 add_cmd ("list-overlays", class_support, list_overlays_command,
3727 _("List mappings of overlay sections."), &overlaylist);
3728
3729 add_cmd ("manual", class_support, overlay_manual_command,
3730 _("Enable overlay debugging."), &overlaylist);
3731 add_cmd ("off", class_support, overlay_off_command,
3732 _("Disable overlay debugging."), &overlaylist);
3733 add_cmd ("auto", class_support, overlay_auto_command,
3734 _("Enable automatic overlay debugging."), &overlaylist);
3735 add_cmd ("load-target", class_support, overlay_load_command,
3736 _("Read the overlay mapping state from the target."), &overlaylist);
3737
3738 /* Filename extension to source language lookup table: */
3739 init_filename_language_table ();
3740 add_setshow_string_noescape_cmd ("extension-language", class_files,
3741 &ext_args, _("\
3742 Set mapping between filename extension and source language."), _("\
3743 Show mapping between filename extension and source language."), _("\
3744 Usage: set extension-language .foo bar"),
3745 set_ext_lang_command,
3746 show_ext_args,
3747 &setlist, &showlist);
3748
3749 add_info ("extensions", info_ext_lang_command,
3750 _("All filename extensions associated with a source language."));
3751
3752 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3753 &debug_file_directory, _("\
3754 Set the directories where separate debug symbols are searched for."), _("\
3755 Show the directories where separate debug symbols are searched for."), _("\
3756 Separate debug symbols are first searched for in the same\n\
3757 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3758 and lastly at the path of the directory of the binary with\n\
3759 each global debug-file-directory component prepended."),
3760 NULL,
3761 show_debug_file_directory,
3762 &setlist, &showlist);
3763 }