]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Remove most uses of ALL_OBJFILES
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61 #include "cli/cli-style.h"
62
63 #include <sys/types.h>
64 #include <fcntl.h>
65 #include <sys/stat.h>
66 #include <ctype.h>
67 #include <chrono>
68 #include <algorithm>
69
70 #include "psymtab.h"
71
72 int (*deprecated_ui_load_progress_hook) (const char *section,
73 unsigned long num);
74 void (*deprecated_show_load_progress) (const char *section,
75 unsigned long section_sent,
76 unsigned long section_size,
77 unsigned long total_sent,
78 unsigned long total_size);
79 void (*deprecated_pre_add_symbol_hook) (const char *);
80 void (*deprecated_post_add_symbol_hook) (void);
81
82 static void clear_symtab_users_cleanup (void *ignore);
83
84 /* Global variables owned by this file. */
85 int readnow_symbol_files; /* Read full symbols immediately. */
86 int readnever_symbol_files; /* Never read full symbols. */
87
88 /* Functions this file defines. */
89
90 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
91 objfile_flags flags, CORE_ADDR reloff);
92
93 static const struct sym_fns *find_sym_fns (bfd *);
94
95 static void overlay_invalidate_all (void);
96
97 static void simple_free_overlay_table (void);
98
99 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
100 enum bfd_endian);
101
102 static int simple_read_overlay_table (void);
103
104 static int simple_overlay_update_1 (struct obj_section *);
105
106 static void symfile_find_segment_sections (struct objfile *objfile);
107
108 /* List of all available sym_fns. On gdb startup, each object file reader
109 calls add_symtab_fns() to register information on each format it is
110 prepared to read. */
111
112 struct registered_sym_fns
113 {
114 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
115 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
116 {}
117
118 /* BFD flavour that we handle. */
119 enum bfd_flavour sym_flavour;
120
121 /* The "vtable" of symbol functions. */
122 const struct sym_fns *sym_fns;
123 };
124
125 static std::vector<registered_sym_fns> symtab_fns;
126
127 /* Values for "set print symbol-loading". */
128
129 const char print_symbol_loading_off[] = "off";
130 const char print_symbol_loading_brief[] = "brief";
131 const char print_symbol_loading_full[] = "full";
132 static const char *print_symbol_loading_enums[] =
133 {
134 print_symbol_loading_off,
135 print_symbol_loading_brief,
136 print_symbol_loading_full,
137 NULL
138 };
139 static const char *print_symbol_loading = print_symbol_loading_full;
140
141 /* If non-zero, shared library symbols will be added automatically
142 when the inferior is created, new libraries are loaded, or when
143 attaching to the inferior. This is almost always what users will
144 want to have happen; but for very large programs, the startup time
145 will be excessive, and so if this is a problem, the user can clear
146 this flag and then add the shared library symbols as needed. Note
147 that there is a potential for confusion, since if the shared
148 library symbols are not loaded, commands like "info fun" will *not*
149 report all the functions that are actually present. */
150
151 int auto_solib_add = 1;
152 \f
153
154 /* Return non-zero if symbol-loading messages should be printed.
155 FROM_TTY is the standard from_tty argument to gdb commands.
156 If EXEC is non-zero the messages are for the executable.
157 Otherwise, messages are for shared libraries.
158 If FULL is non-zero then the caller is printing a detailed message.
159 E.g., the message includes the shared library name.
160 Otherwise, the caller is printing a brief "summary" message. */
161
162 int
163 print_symbol_loading_p (int from_tty, int exec, int full)
164 {
165 if (!from_tty && !info_verbose)
166 return 0;
167
168 if (exec)
169 {
170 /* We don't check FULL for executables, there are few such
171 messages, therefore brief == full. */
172 return print_symbol_loading != print_symbol_loading_off;
173 }
174 if (full)
175 return print_symbol_loading == print_symbol_loading_full;
176 return print_symbol_loading == print_symbol_loading_brief;
177 }
178
179 /* True if we are reading a symbol table. */
180
181 int currently_reading_symtab = 0;
182
183 /* Increment currently_reading_symtab and return a cleanup that can be
184 used to decrement it. */
185
186 scoped_restore_tmpl<int>
187 increment_reading_symtab (void)
188 {
189 gdb_assert (currently_reading_symtab >= 0);
190 return make_scoped_restore (&currently_reading_symtab,
191 currently_reading_symtab + 1);
192 }
193
194 /* Remember the lowest-addressed loadable section we've seen.
195 This function is called via bfd_map_over_sections.
196
197 In case of equal vmas, the section with the largest size becomes the
198 lowest-addressed loadable section.
199
200 If the vmas and sizes are equal, the last section is considered the
201 lowest-addressed loadable section. */
202
203 void
204 find_lowest_section (bfd *abfd, asection *sect, void *obj)
205 {
206 asection **lowest = (asection **) obj;
207
208 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
209 return;
210 if (!*lowest)
211 *lowest = sect; /* First loadable section */
212 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
213 *lowest = sect; /* A lower loadable section */
214 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
215 && (bfd_section_size (abfd, (*lowest))
216 <= bfd_section_size (abfd, sect)))
217 *lowest = sect;
218 }
219
220 /* Build (allocate and populate) a section_addr_info struct from
221 an existing section table. */
222
223 section_addr_info
224 build_section_addr_info_from_section_table (const struct target_section *start,
225 const struct target_section *end)
226 {
227 const struct target_section *stp;
228
229 section_addr_info sap;
230
231 for (stp = start; stp != end; stp++)
232 {
233 struct bfd_section *asect = stp->the_bfd_section;
234 bfd *abfd = asect->owner;
235
236 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
237 && sap.size () < end - start)
238 sap.emplace_back (stp->addr,
239 bfd_section_name (abfd, asect),
240 gdb_bfd_section_index (abfd, asect));
241 }
242
243 return sap;
244 }
245
246 /* Create a section_addr_info from section offsets in ABFD. */
247
248 static section_addr_info
249 build_section_addr_info_from_bfd (bfd *abfd)
250 {
251 struct bfd_section *sec;
252
253 section_addr_info sap;
254 for (sec = abfd->sections; sec != NULL; sec = sec->next)
255 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
256 sap.emplace_back (bfd_get_section_vma (abfd, sec),
257 bfd_get_section_name (abfd, sec),
258 gdb_bfd_section_index (abfd, sec));
259
260 return sap;
261 }
262
263 /* Create a section_addr_info from section offsets in OBJFILE. */
264
265 section_addr_info
266 build_section_addr_info_from_objfile (const struct objfile *objfile)
267 {
268 int i;
269
270 /* Before reread_symbols gets rewritten it is not safe to call:
271 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
272 */
273 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
274 for (i = 0; i < sap.size (); i++)
275 {
276 int sectindex = sap[i].sectindex;
277
278 sap[i].addr += objfile->section_offsets->offsets[sectindex];
279 }
280 return sap;
281 }
282
283 /* Initialize OBJFILE's sect_index_* members. */
284
285 static void
286 init_objfile_sect_indices (struct objfile *objfile)
287 {
288 asection *sect;
289 int i;
290
291 sect = bfd_get_section_by_name (objfile->obfd, ".text");
292 if (sect)
293 objfile->sect_index_text = sect->index;
294
295 sect = bfd_get_section_by_name (objfile->obfd, ".data");
296 if (sect)
297 objfile->sect_index_data = sect->index;
298
299 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
300 if (sect)
301 objfile->sect_index_bss = sect->index;
302
303 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
304 if (sect)
305 objfile->sect_index_rodata = sect->index;
306
307 /* This is where things get really weird... We MUST have valid
308 indices for the various sect_index_* members or gdb will abort.
309 So if for example, there is no ".text" section, we have to
310 accomodate that. First, check for a file with the standard
311 one or two segments. */
312
313 symfile_find_segment_sections (objfile);
314
315 /* Except when explicitly adding symbol files at some address,
316 section_offsets contains nothing but zeros, so it doesn't matter
317 which slot in section_offsets the individual sect_index_* members
318 index into. So if they are all zero, it is safe to just point
319 all the currently uninitialized indices to the first slot. But
320 beware: if this is the main executable, it may be relocated
321 later, e.g. by the remote qOffsets packet, and then this will
322 be wrong! That's why we try segments first. */
323
324 for (i = 0; i < objfile->num_sections; i++)
325 {
326 if (ANOFFSET (objfile->section_offsets, i) != 0)
327 {
328 break;
329 }
330 }
331 if (i == objfile->num_sections)
332 {
333 if (objfile->sect_index_text == -1)
334 objfile->sect_index_text = 0;
335 if (objfile->sect_index_data == -1)
336 objfile->sect_index_data = 0;
337 if (objfile->sect_index_bss == -1)
338 objfile->sect_index_bss = 0;
339 if (objfile->sect_index_rodata == -1)
340 objfile->sect_index_rodata = 0;
341 }
342 }
343
344 /* The arguments to place_section. */
345
346 struct place_section_arg
347 {
348 struct section_offsets *offsets;
349 CORE_ADDR lowest;
350 };
351
352 /* Find a unique offset to use for loadable section SECT if
353 the user did not provide an offset. */
354
355 static void
356 place_section (bfd *abfd, asection *sect, void *obj)
357 {
358 struct place_section_arg *arg = (struct place_section_arg *) obj;
359 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
360 int done;
361 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
362
363 /* We are only interested in allocated sections. */
364 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
365 return;
366
367 /* If the user specified an offset, honor it. */
368 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
369 return;
370
371 /* Otherwise, let's try to find a place for the section. */
372 start_addr = (arg->lowest + align - 1) & -align;
373
374 do {
375 asection *cur_sec;
376
377 done = 1;
378
379 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
380 {
381 int indx = cur_sec->index;
382
383 /* We don't need to compare against ourself. */
384 if (cur_sec == sect)
385 continue;
386
387 /* We can only conflict with allocated sections. */
388 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
389 continue;
390
391 /* If the section offset is 0, either the section has not been placed
392 yet, or it was the lowest section placed (in which case LOWEST
393 will be past its end). */
394 if (offsets[indx] == 0)
395 continue;
396
397 /* If this section would overlap us, then we must move up. */
398 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
399 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
400 {
401 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
402 start_addr = (start_addr + align - 1) & -align;
403 done = 0;
404 break;
405 }
406
407 /* Otherwise, we appear to be OK. So far. */
408 }
409 }
410 while (!done);
411
412 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
413 arg->lowest = start_addr + bfd_get_section_size (sect);
414 }
415
416 /* Store section_addr_info as prepared (made relative and with SECTINDEX
417 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
418 entries. */
419
420 void
421 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
422 int num_sections,
423 const section_addr_info &addrs)
424 {
425 int i;
426
427 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
428
429 /* Now calculate offsets for section that were specified by the caller. */
430 for (i = 0; i < addrs.size (); i++)
431 {
432 const struct other_sections *osp;
433
434 osp = &addrs[i];
435 if (osp->sectindex == -1)
436 continue;
437
438 /* Record all sections in offsets. */
439 /* The section_offsets in the objfile are here filled in using
440 the BFD index. */
441 section_offsets->offsets[osp->sectindex] = osp->addr;
442 }
443 }
444
445 /* Transform section name S for a name comparison. prelink can split section
446 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
447 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
448 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
449 (`.sbss') section has invalid (increased) virtual address. */
450
451 static const char *
452 addr_section_name (const char *s)
453 {
454 if (strcmp (s, ".dynbss") == 0)
455 return ".bss";
456 if (strcmp (s, ".sdynbss") == 0)
457 return ".sbss";
458
459 return s;
460 }
461
462 /* std::sort comparator for addrs_section_sort. Sort entries in
463 ascending order by their (name, sectindex) pair. sectindex makes
464 the sort by name stable. */
465
466 static bool
467 addrs_section_compar (const struct other_sections *a,
468 const struct other_sections *b)
469 {
470 int retval;
471
472 retval = strcmp (addr_section_name (a->name.c_str ()),
473 addr_section_name (b->name.c_str ()));
474 if (retval != 0)
475 return retval < 0;
476
477 return a->sectindex < b->sectindex;
478 }
479
480 /* Provide sorted array of pointers to sections of ADDRS. */
481
482 static std::vector<const struct other_sections *>
483 addrs_section_sort (const section_addr_info &addrs)
484 {
485 int i;
486
487 std::vector<const struct other_sections *> array (addrs.size ());
488 for (i = 0; i < addrs.size (); i++)
489 array[i] = &addrs[i];
490
491 std::sort (array.begin (), array.end (), addrs_section_compar);
492
493 return array;
494 }
495
496 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
497 also SECTINDEXes specific to ABFD there. This function can be used to
498 rebase ADDRS to start referencing different BFD than before. */
499
500 void
501 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
502 {
503 asection *lower_sect;
504 CORE_ADDR lower_offset;
505 int i;
506
507 /* Find lowest loadable section to be used as starting point for
508 continguous sections. */
509 lower_sect = NULL;
510 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
511 if (lower_sect == NULL)
512 {
513 warning (_("no loadable sections found in added symbol-file %s"),
514 bfd_get_filename (abfd));
515 lower_offset = 0;
516 }
517 else
518 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
519
520 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
521 in ABFD. Section names are not unique - there can be multiple sections of
522 the same name. Also the sections of the same name do not have to be
523 adjacent to each other. Some sections may be present only in one of the
524 files. Even sections present in both files do not have to be in the same
525 order.
526
527 Use stable sort by name for the sections in both files. Then linearly
528 scan both lists matching as most of the entries as possible. */
529
530 std::vector<const struct other_sections *> addrs_sorted
531 = addrs_section_sort (*addrs);
532
533 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
534 std::vector<const struct other_sections *> abfd_addrs_sorted
535 = addrs_section_sort (abfd_addrs);
536
537 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
538 ABFD_ADDRS_SORTED. */
539
540 std::vector<const struct other_sections *>
541 addrs_to_abfd_addrs (addrs->size (), nullptr);
542
543 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
544 = abfd_addrs_sorted.begin ();
545 for (const other_sections *sect : addrs_sorted)
546 {
547 const char *sect_name = addr_section_name (sect->name.c_str ());
548
549 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
550 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
551 sect_name) < 0)
552 abfd_sorted_iter++;
553
554 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
555 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
556 sect_name) == 0)
557 {
558 int index_in_addrs;
559
560 /* Make the found item directly addressable from ADDRS. */
561 index_in_addrs = sect - addrs->data ();
562 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
563 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
564
565 /* Never use the same ABFD entry twice. */
566 abfd_sorted_iter++;
567 }
568 }
569
570 /* Calculate offsets for the loadable sections.
571 FIXME! Sections must be in order of increasing loadable section
572 so that contiguous sections can use the lower-offset!!!
573
574 Adjust offsets if the segments are not contiguous.
575 If the section is contiguous, its offset should be set to
576 the offset of the highest loadable section lower than it
577 (the loadable section directly below it in memory).
578 this_offset = lower_offset = lower_addr - lower_orig_addr */
579
580 for (i = 0; i < addrs->size (); i++)
581 {
582 const struct other_sections *sect = addrs_to_abfd_addrs[i];
583
584 if (sect)
585 {
586 /* This is the index used by BFD. */
587 (*addrs)[i].sectindex = sect->sectindex;
588
589 if ((*addrs)[i].addr != 0)
590 {
591 (*addrs)[i].addr -= sect->addr;
592 lower_offset = (*addrs)[i].addr;
593 }
594 else
595 (*addrs)[i].addr = lower_offset;
596 }
597 else
598 {
599 /* addr_section_name transformation is not used for SECT_NAME. */
600 const std::string &sect_name = (*addrs)[i].name;
601
602 /* This section does not exist in ABFD, which is normally
603 unexpected and we want to issue a warning.
604
605 However, the ELF prelinker does create a few sections which are
606 marked in the main executable as loadable (they are loaded in
607 memory from the DYNAMIC segment) and yet are not present in
608 separate debug info files. This is fine, and should not cause
609 a warning. Shared libraries contain just the section
610 ".gnu.liblist" but it is not marked as loadable there. There is
611 no other way to identify them than by their name as the sections
612 created by prelink have no special flags.
613
614 For the sections `.bss' and `.sbss' see addr_section_name. */
615
616 if (!(sect_name == ".gnu.liblist"
617 || sect_name == ".gnu.conflict"
618 || (sect_name == ".bss"
619 && i > 0
620 && (*addrs)[i - 1].name == ".dynbss"
621 && addrs_to_abfd_addrs[i - 1] != NULL)
622 || (sect_name == ".sbss"
623 && i > 0
624 && (*addrs)[i - 1].name == ".sdynbss"
625 && addrs_to_abfd_addrs[i - 1] != NULL)))
626 warning (_("section %s not found in %s"), sect_name.c_str (),
627 bfd_get_filename (abfd));
628
629 (*addrs)[i].addr = 0;
630 (*addrs)[i].sectindex = -1;
631 }
632 }
633 }
634
635 /* Parse the user's idea of an offset for dynamic linking, into our idea
636 of how to represent it for fast symbol reading. This is the default
637 version of the sym_fns.sym_offsets function for symbol readers that
638 don't need to do anything special. It allocates a section_offsets table
639 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
640
641 void
642 default_symfile_offsets (struct objfile *objfile,
643 const section_addr_info &addrs)
644 {
645 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
646 objfile->section_offsets = (struct section_offsets *)
647 obstack_alloc (&objfile->objfile_obstack,
648 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
649 relative_addr_info_to_section_offsets (objfile->section_offsets,
650 objfile->num_sections, addrs);
651
652 /* For relocatable files, all loadable sections will start at zero.
653 The zero is meaningless, so try to pick arbitrary addresses such
654 that no loadable sections overlap. This algorithm is quadratic,
655 but the number of sections in a single object file is generally
656 small. */
657 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
658 {
659 struct place_section_arg arg;
660 bfd *abfd = objfile->obfd;
661 asection *cur_sec;
662
663 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
664 /* We do not expect this to happen; just skip this step if the
665 relocatable file has a section with an assigned VMA. */
666 if (bfd_section_vma (abfd, cur_sec) != 0)
667 break;
668
669 if (cur_sec == NULL)
670 {
671 CORE_ADDR *offsets = objfile->section_offsets->offsets;
672
673 /* Pick non-overlapping offsets for sections the user did not
674 place explicitly. */
675 arg.offsets = objfile->section_offsets;
676 arg.lowest = 0;
677 bfd_map_over_sections (objfile->obfd, place_section, &arg);
678
679 /* Correctly filling in the section offsets is not quite
680 enough. Relocatable files have two properties that
681 (most) shared objects do not:
682
683 - Their debug information will contain relocations. Some
684 shared libraries do also, but many do not, so this can not
685 be assumed.
686
687 - If there are multiple code sections they will be loaded
688 at different relative addresses in memory than they are
689 in the objfile, since all sections in the file will start
690 at address zero.
691
692 Because GDB has very limited ability to map from an
693 address in debug info to the correct code section,
694 it relies on adding SECT_OFF_TEXT to things which might be
695 code. If we clear all the section offsets, and set the
696 section VMAs instead, then symfile_relocate_debug_section
697 will return meaningful debug information pointing at the
698 correct sections.
699
700 GDB has too many different data structures for section
701 addresses - a bfd, objfile, and so_list all have section
702 tables, as does exec_ops. Some of these could probably
703 be eliminated. */
704
705 for (cur_sec = abfd->sections; cur_sec != NULL;
706 cur_sec = cur_sec->next)
707 {
708 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
709 continue;
710
711 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
712 exec_set_section_address (bfd_get_filename (abfd),
713 cur_sec->index,
714 offsets[cur_sec->index]);
715 offsets[cur_sec->index] = 0;
716 }
717 }
718 }
719
720 /* Remember the bfd indexes for the .text, .data, .bss and
721 .rodata sections. */
722 init_objfile_sect_indices (objfile);
723 }
724
725 /* Divide the file into segments, which are individual relocatable units.
726 This is the default version of the sym_fns.sym_segments function for
727 symbol readers that do not have an explicit representation of segments.
728 It assumes that object files do not have segments, and fully linked
729 files have a single segment. */
730
731 struct symfile_segment_data *
732 default_symfile_segments (bfd *abfd)
733 {
734 int num_sections, i;
735 asection *sect;
736 struct symfile_segment_data *data;
737 CORE_ADDR low, high;
738
739 /* Relocatable files contain enough information to position each
740 loadable section independently; they should not be relocated
741 in segments. */
742 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
743 return NULL;
744
745 /* Make sure there is at least one loadable section in the file. */
746 for (sect = abfd->sections; sect != NULL; sect = sect->next)
747 {
748 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
749 continue;
750
751 break;
752 }
753 if (sect == NULL)
754 return NULL;
755
756 low = bfd_get_section_vma (abfd, sect);
757 high = low + bfd_get_section_size (sect);
758
759 data = XCNEW (struct symfile_segment_data);
760 data->num_segments = 1;
761 data->segment_bases = XCNEW (CORE_ADDR);
762 data->segment_sizes = XCNEW (CORE_ADDR);
763
764 num_sections = bfd_count_sections (abfd);
765 data->segment_info = XCNEWVEC (int, num_sections);
766
767 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
768 {
769 CORE_ADDR vma;
770
771 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
772 continue;
773
774 vma = bfd_get_section_vma (abfd, sect);
775 if (vma < low)
776 low = vma;
777 if (vma + bfd_get_section_size (sect) > high)
778 high = vma + bfd_get_section_size (sect);
779
780 data->segment_info[i] = 1;
781 }
782
783 data->segment_bases[0] = low;
784 data->segment_sizes[0] = high - low;
785
786 return data;
787 }
788
789 /* This is a convenience function to call sym_read for OBJFILE and
790 possibly force the partial symbols to be read. */
791
792 static void
793 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
794 {
795 (*objfile->sf->sym_read) (objfile, add_flags);
796 objfile->per_bfd->minsyms_read = true;
797
798 /* find_separate_debug_file_in_section should be called only if there is
799 single binary with no existing separate debug info file. */
800 if (!objfile_has_partial_symbols (objfile)
801 && objfile->separate_debug_objfile == NULL
802 && objfile->separate_debug_objfile_backlink == NULL)
803 {
804 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
805
806 if (abfd != NULL)
807 {
808 /* find_separate_debug_file_in_section uses the same filename for the
809 virtual section-as-bfd like the bfd filename containing the
810 section. Therefore use also non-canonical name form for the same
811 file containing the section. */
812 symbol_file_add_separate (abfd.get (),
813 bfd_get_filename (abfd.get ()),
814 add_flags | SYMFILE_NOT_FILENAME, objfile);
815 }
816 }
817 if ((add_flags & SYMFILE_NO_READ) == 0)
818 require_partial_symbols (objfile, 0);
819 }
820
821 /* Initialize entry point information for this objfile. */
822
823 static void
824 init_entry_point_info (struct objfile *objfile)
825 {
826 struct entry_info *ei = &objfile->per_bfd->ei;
827
828 if (ei->initialized)
829 return;
830 ei->initialized = 1;
831
832 /* Save startup file's range of PC addresses to help blockframe.c
833 decide where the bottom of the stack is. */
834
835 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
836 {
837 /* Executable file -- record its entry point so we'll recognize
838 the startup file because it contains the entry point. */
839 ei->entry_point = bfd_get_start_address (objfile->obfd);
840 ei->entry_point_p = 1;
841 }
842 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
843 && bfd_get_start_address (objfile->obfd) != 0)
844 {
845 /* Some shared libraries may have entry points set and be
846 runnable. There's no clear way to indicate this, so just check
847 for values other than zero. */
848 ei->entry_point = bfd_get_start_address (objfile->obfd);
849 ei->entry_point_p = 1;
850 }
851 else
852 {
853 /* Examination of non-executable.o files. Short-circuit this stuff. */
854 ei->entry_point_p = 0;
855 }
856
857 if (ei->entry_point_p)
858 {
859 struct obj_section *osect;
860 CORE_ADDR entry_point = ei->entry_point;
861 int found;
862
863 /* Make certain that the address points at real code, and not a
864 function descriptor. */
865 entry_point
866 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
867 entry_point,
868 current_top_target ());
869
870 /* Remove any ISA markers, so that this matches entries in the
871 symbol table. */
872 ei->entry_point
873 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
874
875 found = 0;
876 ALL_OBJFILE_OSECTIONS (objfile, osect)
877 {
878 struct bfd_section *sect = osect->the_bfd_section;
879
880 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
881 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
882 + bfd_get_section_size (sect)))
883 {
884 ei->the_bfd_section_index
885 = gdb_bfd_section_index (objfile->obfd, sect);
886 found = 1;
887 break;
888 }
889 }
890
891 if (!found)
892 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
893 }
894 }
895
896 /* Process a symbol file, as either the main file or as a dynamically
897 loaded file.
898
899 This function does not set the OBJFILE's entry-point info.
900
901 OBJFILE is where the symbols are to be read from.
902
903 ADDRS is the list of section load addresses. If the user has given
904 an 'add-symbol-file' command, then this is the list of offsets and
905 addresses he or she provided as arguments to the command; or, if
906 we're handling a shared library, these are the actual addresses the
907 sections are loaded at, according to the inferior's dynamic linker
908 (as gleaned by GDB's shared library code). We convert each address
909 into an offset from the section VMA's as it appears in the object
910 file, and then call the file's sym_offsets function to convert this
911 into a format-specific offset table --- a `struct section_offsets'.
912 The sectindex field is used to control the ordering of sections
913 with the same name. Upon return, it is updated to contain the
914 correspondig BFD section index, or -1 if the section was not found.
915
916 ADD_FLAGS encodes verbosity level, whether this is main symbol or
917 an extra symbol file such as dynamically loaded code, and wether
918 breakpoint reset should be deferred. */
919
920 static void
921 syms_from_objfile_1 (struct objfile *objfile,
922 section_addr_info *addrs,
923 symfile_add_flags add_flags)
924 {
925 section_addr_info local_addr;
926 struct cleanup *old_chain;
927 const int mainline = add_flags & SYMFILE_MAINLINE;
928
929 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
930
931 if (objfile->sf == NULL)
932 {
933 /* No symbols to load, but we still need to make sure
934 that the section_offsets table is allocated. */
935 int num_sections = gdb_bfd_count_sections (objfile->obfd);
936 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
937
938 objfile->num_sections = num_sections;
939 objfile->section_offsets
940 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
941 size);
942 memset (objfile->section_offsets, 0, size);
943 return;
944 }
945
946 /* Make sure that partially constructed symbol tables will be cleaned up
947 if an error occurs during symbol reading. */
948 old_chain = make_cleanup (null_cleanup, NULL);
949 std::unique_ptr<struct objfile> objfile_holder (objfile);
950
951 /* If ADDRS is NULL, put together a dummy address list.
952 We now establish the convention that an addr of zero means
953 no load address was specified. */
954 if (! addrs)
955 addrs = &local_addr;
956
957 if (mainline)
958 {
959 /* We will modify the main symbol table, make sure that all its users
960 will be cleaned up if an error occurs during symbol reading. */
961 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
962
963 /* Since no error yet, throw away the old symbol table. */
964
965 if (symfile_objfile != NULL)
966 {
967 delete symfile_objfile;
968 gdb_assert (symfile_objfile == NULL);
969 }
970
971 /* Currently we keep symbols from the add-symbol-file command.
972 If the user wants to get rid of them, they should do "symbol-file"
973 without arguments first. Not sure this is the best behavior
974 (PR 2207). */
975
976 (*objfile->sf->sym_new_init) (objfile);
977 }
978
979 /* Convert addr into an offset rather than an absolute address.
980 We find the lowest address of a loaded segment in the objfile,
981 and assume that <addr> is where that got loaded.
982
983 We no longer warn if the lowest section is not a text segment (as
984 happens for the PA64 port. */
985 if (addrs->size () > 0)
986 addr_info_make_relative (addrs, objfile->obfd);
987
988 /* Initialize symbol reading routines for this objfile, allow complaints to
989 appear for this new file, and record how verbose to be, then do the
990 initial symbol reading for this file. */
991
992 (*objfile->sf->sym_init) (objfile);
993 clear_complaints ();
994
995 (*objfile->sf->sym_offsets) (objfile, *addrs);
996
997 read_symbols (objfile, add_flags);
998
999 /* Discard cleanups as symbol reading was successful. */
1000
1001 objfile_holder.release ();
1002 discard_cleanups (old_chain);
1003 }
1004
1005 /* Same as syms_from_objfile_1, but also initializes the objfile
1006 entry-point info. */
1007
1008 static void
1009 syms_from_objfile (struct objfile *objfile,
1010 section_addr_info *addrs,
1011 symfile_add_flags add_flags)
1012 {
1013 syms_from_objfile_1 (objfile, addrs, add_flags);
1014 init_entry_point_info (objfile);
1015 }
1016
1017 /* Perform required actions after either reading in the initial
1018 symbols for a new objfile, or mapping in the symbols from a reusable
1019 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1020
1021 static void
1022 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1023 {
1024 /* If this is the main symbol file we have to clean up all users of the
1025 old main symbol file. Otherwise it is sufficient to fixup all the
1026 breakpoints that may have been redefined by this symbol file. */
1027 if (add_flags & SYMFILE_MAINLINE)
1028 {
1029 /* OK, make it the "real" symbol file. */
1030 symfile_objfile = objfile;
1031
1032 clear_symtab_users (add_flags);
1033 }
1034 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1035 {
1036 breakpoint_re_set ();
1037 }
1038
1039 /* We're done reading the symbol file; finish off complaints. */
1040 clear_complaints ();
1041 }
1042
1043 /* Process a symbol file, as either the main file or as a dynamically
1044 loaded file.
1045
1046 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1047 A new reference is acquired by this function.
1048
1049 For NAME description see the objfile constructor.
1050
1051 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1052 extra, such as dynamically loaded code, and what to do with breakpoins.
1053
1054 ADDRS is as described for syms_from_objfile_1, above.
1055 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1056
1057 PARENT is the original objfile if ABFD is a separate debug info file.
1058 Otherwise PARENT is NULL.
1059
1060 Upon success, returns a pointer to the objfile that was added.
1061 Upon failure, jumps back to command level (never returns). */
1062
1063 static struct objfile *
1064 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1065 symfile_add_flags add_flags,
1066 section_addr_info *addrs,
1067 objfile_flags flags, struct objfile *parent)
1068 {
1069 struct objfile *objfile;
1070 const int from_tty = add_flags & SYMFILE_VERBOSE;
1071 const int mainline = add_flags & SYMFILE_MAINLINE;
1072 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1073 && (readnow_symbol_files
1074 || (add_flags & SYMFILE_NO_READ) == 0));
1075
1076 if (readnow_symbol_files)
1077 {
1078 flags |= OBJF_READNOW;
1079 add_flags &= ~SYMFILE_NO_READ;
1080 }
1081 else if (readnever_symbol_files
1082 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1083 {
1084 flags |= OBJF_READNEVER;
1085 add_flags |= SYMFILE_NO_READ;
1086 }
1087 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1088 flags |= OBJF_NOT_FILENAME;
1089
1090 /* Give user a chance to burp if we'd be
1091 interactively wiping out any existing symbols. */
1092
1093 if ((have_full_symbols () || have_partial_symbols ())
1094 && mainline
1095 && from_tty
1096 && !query (_("Load new symbol table from \"%s\"? "), name))
1097 error (_("Not confirmed."));
1098
1099 if (mainline)
1100 flags |= OBJF_MAINLINE;
1101 objfile = new struct objfile (abfd, name, flags);
1102
1103 if (parent)
1104 add_separate_debug_objfile (objfile, parent);
1105
1106 /* We either created a new mapped symbol table, mapped an existing
1107 symbol table file which has not had initial symbol reading
1108 performed, or need to read an unmapped symbol table. */
1109 if (should_print)
1110 {
1111 if (deprecated_pre_add_symbol_hook)
1112 deprecated_pre_add_symbol_hook (name);
1113 else
1114 {
1115 puts_filtered (_("Reading symbols from "));
1116 fputs_styled (name, file_name_style.style (), gdb_stdout);
1117 puts_filtered ("...\n");
1118 }
1119 }
1120 syms_from_objfile (objfile, addrs, add_flags);
1121
1122 /* We now have at least a partial symbol table. Check to see if the
1123 user requested that all symbols be read on initial access via either
1124 the gdb startup command line or on a per symbol file basis. Expand
1125 all partial symbol tables for this objfile if so. */
1126
1127 if ((flags & OBJF_READNOW))
1128 {
1129 if (should_print)
1130 printf_filtered (_("Expanding full symbols from %s...\n"), name);
1131
1132 if (objfile->sf)
1133 objfile->sf->qf->expand_all_symtabs (objfile);
1134 }
1135
1136 /* Note that we only print a message if we have no symbols and have
1137 no separate debug file. If there is a separate debug file which
1138 does not have symbols, we'll have emitted this message for that
1139 file, and so printing it twice is just redundant. */
1140 if (should_print && !objfile_has_symbols (objfile)
1141 && objfile->separate_debug_objfile == nullptr)
1142 printf_filtered (_("(No debugging symbols found in %s)\n"), name);
1143
1144 if (should_print)
1145 {
1146 if (deprecated_post_add_symbol_hook)
1147 deprecated_post_add_symbol_hook ();
1148 }
1149
1150 /* We print some messages regardless of whether 'from_tty ||
1151 info_verbose' is true, so make sure they go out at the right
1152 time. */
1153 gdb_flush (gdb_stdout);
1154
1155 if (objfile->sf == NULL)
1156 {
1157 gdb::observers::new_objfile.notify (objfile);
1158 return objfile; /* No symbols. */
1159 }
1160
1161 finish_new_objfile (objfile, add_flags);
1162
1163 gdb::observers::new_objfile.notify (objfile);
1164
1165 bfd_cache_close_all ();
1166 return (objfile);
1167 }
1168
1169 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1170 see the objfile constructor. */
1171
1172 void
1173 symbol_file_add_separate (bfd *bfd, const char *name,
1174 symfile_add_flags symfile_flags,
1175 struct objfile *objfile)
1176 {
1177 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1178 because sections of BFD may not match sections of OBJFILE and because
1179 vma may have been modified by tools such as prelink. */
1180 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1181
1182 symbol_file_add_with_addrs
1183 (bfd, name, symfile_flags, &sap,
1184 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1185 | OBJF_USERLOADED),
1186 objfile);
1187 }
1188
1189 /* Process the symbol file ABFD, as either the main file or as a
1190 dynamically loaded file.
1191 See symbol_file_add_with_addrs's comments for details. */
1192
1193 struct objfile *
1194 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1195 symfile_add_flags add_flags,
1196 section_addr_info *addrs,
1197 objfile_flags flags, struct objfile *parent)
1198 {
1199 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1200 parent);
1201 }
1202
1203 /* Process a symbol file, as either the main file or as a dynamically
1204 loaded file. See symbol_file_add_with_addrs's comments for details. */
1205
1206 struct objfile *
1207 symbol_file_add (const char *name, symfile_add_flags add_flags,
1208 section_addr_info *addrs, objfile_flags flags)
1209 {
1210 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1211
1212 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1213 flags, NULL);
1214 }
1215
1216 /* Call symbol_file_add() with default values and update whatever is
1217 affected by the loading of a new main().
1218 Used when the file is supplied in the gdb command line
1219 and by some targets with special loading requirements.
1220 The auxiliary function, symbol_file_add_main_1(), has the flags
1221 argument for the switches that can only be specified in the symbol_file
1222 command itself. */
1223
1224 void
1225 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1226 {
1227 symbol_file_add_main_1 (args, add_flags, 0, 0);
1228 }
1229
1230 static void
1231 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1232 objfile_flags flags, CORE_ADDR reloff)
1233 {
1234 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1235
1236 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1237 if (reloff != 0)
1238 objfile_rebase (objfile, reloff);
1239
1240 /* Getting new symbols may change our opinion about
1241 what is frameless. */
1242 reinit_frame_cache ();
1243
1244 if ((add_flags & SYMFILE_NO_READ) == 0)
1245 set_initial_language ();
1246 }
1247
1248 void
1249 symbol_file_clear (int from_tty)
1250 {
1251 if ((have_full_symbols () || have_partial_symbols ())
1252 && from_tty
1253 && (symfile_objfile
1254 ? !query (_("Discard symbol table from `%s'? "),
1255 objfile_name (symfile_objfile))
1256 : !query (_("Discard symbol table? "))))
1257 error (_("Not confirmed."));
1258
1259 /* solib descriptors may have handles to objfiles. Wipe them before their
1260 objfiles get stale by free_all_objfiles. */
1261 no_shared_libraries (NULL, from_tty);
1262
1263 free_all_objfiles ();
1264
1265 gdb_assert (symfile_objfile == NULL);
1266 if (from_tty)
1267 printf_filtered (_("No symbol file now.\n"));
1268 }
1269
1270 /* See symfile.h. */
1271
1272 int separate_debug_file_debug = 0;
1273
1274 static int
1275 separate_debug_file_exists (const std::string &name, unsigned long crc,
1276 struct objfile *parent_objfile)
1277 {
1278 unsigned long file_crc;
1279 int file_crc_p;
1280 struct stat parent_stat, abfd_stat;
1281 int verified_as_different;
1282
1283 /* Find a separate debug info file as if symbols would be present in
1284 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1285 section can contain just the basename of PARENT_OBJFILE without any
1286 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1287 the separate debug infos with the same basename can exist. */
1288
1289 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1290 return 0;
1291
1292 if (separate_debug_file_debug)
1293 {
1294 printf_filtered (_(" Trying %s..."), name.c_str ());
1295 gdb_flush (gdb_stdout);
1296 }
1297
1298 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1299
1300 if (abfd == NULL)
1301 {
1302 if (separate_debug_file_debug)
1303 printf_filtered (_(" no, unable to open.\n"));
1304
1305 return 0;
1306 }
1307
1308 /* Verify symlinks were not the cause of filename_cmp name difference above.
1309
1310 Some operating systems, e.g. Windows, do not provide a meaningful
1311 st_ino; they always set it to zero. (Windows does provide a
1312 meaningful st_dev.) Files accessed from gdbservers that do not
1313 support the vFile:fstat packet will also have st_ino set to zero.
1314 Do not indicate a duplicate library in either case. While there
1315 is no guarantee that a system that provides meaningful inode
1316 numbers will never set st_ino to zero, this is merely an
1317 optimization, so we do not need to worry about false negatives. */
1318
1319 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1320 && abfd_stat.st_ino != 0
1321 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1322 {
1323 if (abfd_stat.st_dev == parent_stat.st_dev
1324 && abfd_stat.st_ino == parent_stat.st_ino)
1325 {
1326 if (separate_debug_file_debug)
1327 printf_filtered (_(" no, same file as the objfile.\n"));
1328
1329 return 0;
1330 }
1331 verified_as_different = 1;
1332 }
1333 else
1334 verified_as_different = 0;
1335
1336 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1337
1338 if (!file_crc_p)
1339 {
1340 if (separate_debug_file_debug)
1341 printf_filtered (_(" no, error computing CRC.\n"));
1342
1343 return 0;
1344 }
1345
1346 if (crc != file_crc)
1347 {
1348 unsigned long parent_crc;
1349
1350 /* If the files could not be verified as different with
1351 bfd_stat then we need to calculate the parent's CRC
1352 to verify whether the files are different or not. */
1353
1354 if (!verified_as_different)
1355 {
1356 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1357 {
1358 if (separate_debug_file_debug)
1359 printf_filtered (_(" no, error computing CRC.\n"));
1360
1361 return 0;
1362 }
1363 }
1364
1365 if (verified_as_different || parent_crc != file_crc)
1366 warning (_("the debug information found in \"%s\""
1367 " does not match \"%s\" (CRC mismatch).\n"),
1368 name.c_str (), objfile_name (parent_objfile));
1369
1370 if (separate_debug_file_debug)
1371 printf_filtered (_(" no, CRC doesn't match.\n"));
1372
1373 return 0;
1374 }
1375
1376 if (separate_debug_file_debug)
1377 printf_filtered (_(" yes!\n"));
1378
1379 return 1;
1380 }
1381
1382 char *debug_file_directory = NULL;
1383 static void
1384 show_debug_file_directory (struct ui_file *file, int from_tty,
1385 struct cmd_list_element *c, const char *value)
1386 {
1387 fprintf_filtered (file,
1388 _("The directory where separate debug "
1389 "symbols are searched for is \"%s\".\n"),
1390 value);
1391 }
1392
1393 #if ! defined (DEBUG_SUBDIRECTORY)
1394 #define DEBUG_SUBDIRECTORY ".debug"
1395 #endif
1396
1397 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1398 where the original file resides (may not be the same as
1399 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1400 looking for. CANON_DIR is the "realpath" form of DIR.
1401 DIR must contain a trailing '/'.
1402 Returns the path of the file with separate debug info, or an empty
1403 string. */
1404
1405 static std::string
1406 find_separate_debug_file (const char *dir,
1407 const char *canon_dir,
1408 const char *debuglink,
1409 unsigned long crc32, struct objfile *objfile)
1410 {
1411 if (separate_debug_file_debug)
1412 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1413 "%s\n"), objfile_name (objfile));
1414
1415 /* First try in the same directory as the original file. */
1416 std::string debugfile = dir;
1417 debugfile += debuglink;
1418
1419 if (separate_debug_file_exists (debugfile, crc32, objfile))
1420 return debugfile;
1421
1422 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1423 debugfile = dir;
1424 debugfile += DEBUG_SUBDIRECTORY;
1425 debugfile += "/";
1426 debugfile += debuglink;
1427
1428 if (separate_debug_file_exists (debugfile, crc32, objfile))
1429 return debugfile;
1430
1431 /* Then try in the global debugfile directories.
1432
1433 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1434 cause "/..." lookups. */
1435
1436 bool target_prefix = startswith (dir, "target:");
1437 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1438 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1439 = dirnames_to_char_ptr_vec (debug_file_directory);
1440
1441 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1442 {
1443 debugfile = target_prefix ? "target:" : "";
1444 debugfile += debugdir.get ();
1445 debugfile += "/";
1446 debugfile += dir_notarget;
1447 debugfile += debuglink;
1448
1449 if (separate_debug_file_exists (debugfile, crc32, objfile))
1450 return debugfile;
1451
1452 /* If the file is in the sysroot, try using its base path in the
1453 global debugfile directory. */
1454 if (canon_dir != NULL
1455 && filename_ncmp (canon_dir, gdb_sysroot,
1456 strlen (gdb_sysroot)) == 0
1457 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1458 {
1459 debugfile = target_prefix ? "target:" : "";
1460 debugfile += debugdir.get ();
1461 debugfile += (canon_dir + strlen (gdb_sysroot));
1462 debugfile += "/";
1463 debugfile += debuglink;
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 return debugfile;
1467 }
1468 }
1469
1470 return std::string ();
1471 }
1472
1473 /* Modify PATH to contain only "[/]directory/" part of PATH.
1474 If there were no directory separators in PATH, PATH will be empty
1475 string on return. */
1476
1477 static void
1478 terminate_after_last_dir_separator (char *path)
1479 {
1480 int i;
1481
1482 /* Strip off the final filename part, leaving the directory name,
1483 followed by a slash. The directory can be relative or absolute. */
1484 for (i = strlen(path) - 1; i >= 0; i--)
1485 if (IS_DIR_SEPARATOR (path[i]))
1486 break;
1487
1488 /* If I is -1 then no directory is present there and DIR will be "". */
1489 path[i + 1] = '\0';
1490 }
1491
1492 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1493 Returns pathname, or an empty string. */
1494
1495 std::string
1496 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1497 {
1498 unsigned long crc32;
1499
1500 gdb::unique_xmalloc_ptr<char> debuglink
1501 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1502
1503 if (debuglink == NULL)
1504 {
1505 /* There's no separate debug info, hence there's no way we could
1506 load it => no warning. */
1507 return std::string ();
1508 }
1509
1510 std::string dir = objfile_name (objfile);
1511 terminate_after_last_dir_separator (&dir[0]);
1512 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1513
1514 std::string debugfile
1515 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1516 debuglink.get (), crc32, objfile);
1517
1518 if (debugfile.empty ())
1519 {
1520 /* For PR gdb/9538, try again with realpath (if different from the
1521 original). */
1522
1523 struct stat st_buf;
1524
1525 if (lstat (objfile_name (objfile), &st_buf) == 0
1526 && S_ISLNK (st_buf.st_mode))
1527 {
1528 gdb::unique_xmalloc_ptr<char> symlink_dir
1529 (lrealpath (objfile_name (objfile)));
1530 if (symlink_dir != NULL)
1531 {
1532 terminate_after_last_dir_separator (symlink_dir.get ());
1533 if (dir != symlink_dir.get ())
1534 {
1535 /* Different directory, so try using it. */
1536 debugfile = find_separate_debug_file (symlink_dir.get (),
1537 symlink_dir.get (),
1538 debuglink.get (),
1539 crc32,
1540 objfile);
1541 }
1542 }
1543 }
1544 }
1545
1546 return debugfile;
1547 }
1548
1549 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1550 simultaneously. */
1551
1552 static void
1553 validate_readnow_readnever (objfile_flags flags)
1554 {
1555 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1556 error (_("-readnow and -readnever cannot be used simultaneously"));
1557 }
1558
1559 /* This is the symbol-file command. Read the file, analyze its
1560 symbols, and add a struct symtab to a symtab list. The syntax of
1561 the command is rather bizarre:
1562
1563 1. The function buildargv implements various quoting conventions
1564 which are undocumented and have little or nothing in common with
1565 the way things are quoted (or not quoted) elsewhere in GDB.
1566
1567 2. Options are used, which are not generally used in GDB (perhaps
1568 "set mapped on", "set readnow on" would be better)
1569
1570 3. The order of options matters, which is contrary to GNU
1571 conventions (because it is confusing and inconvenient). */
1572
1573 void
1574 symbol_file_command (const char *args, int from_tty)
1575 {
1576 dont_repeat ();
1577
1578 if (args == NULL)
1579 {
1580 symbol_file_clear (from_tty);
1581 }
1582 else
1583 {
1584 objfile_flags flags = OBJF_USERLOADED;
1585 symfile_add_flags add_flags = 0;
1586 char *name = NULL;
1587 bool stop_processing_options = false;
1588 CORE_ADDR offset = 0;
1589 int idx;
1590 char *arg;
1591
1592 if (from_tty)
1593 add_flags |= SYMFILE_VERBOSE;
1594
1595 gdb_argv built_argv (args);
1596 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1597 {
1598 if (stop_processing_options || *arg != '-')
1599 {
1600 if (name == NULL)
1601 name = arg;
1602 else
1603 error (_("Unrecognized argument \"%s\""), arg);
1604 }
1605 else if (strcmp (arg, "-readnow") == 0)
1606 flags |= OBJF_READNOW;
1607 else if (strcmp (arg, "-readnever") == 0)
1608 flags |= OBJF_READNEVER;
1609 else if (strcmp (arg, "-o") == 0)
1610 {
1611 arg = built_argv[++idx];
1612 if (arg == NULL)
1613 error (_("Missing argument to -o"));
1614
1615 offset = parse_and_eval_address (arg);
1616 }
1617 else if (strcmp (arg, "--") == 0)
1618 stop_processing_options = true;
1619 else
1620 error (_("Unrecognized argument \"%s\""), arg);
1621 }
1622
1623 if (name == NULL)
1624 error (_("no symbol file name was specified"));
1625
1626 validate_readnow_readnever (flags);
1627
1628 symbol_file_add_main_1 (name, add_flags, flags, offset);
1629 }
1630 }
1631
1632 /* Set the initial language.
1633
1634 FIXME: A better solution would be to record the language in the
1635 psymtab when reading partial symbols, and then use it (if known) to
1636 set the language. This would be a win for formats that encode the
1637 language in an easily discoverable place, such as DWARF. For
1638 stabs, we can jump through hoops looking for specially named
1639 symbols or try to intuit the language from the specific type of
1640 stabs we find, but we can't do that until later when we read in
1641 full symbols. */
1642
1643 void
1644 set_initial_language (void)
1645 {
1646 enum language lang = main_language ();
1647
1648 if (lang == language_unknown)
1649 {
1650 char *name = main_name ();
1651 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1652
1653 if (sym != NULL)
1654 lang = SYMBOL_LANGUAGE (sym);
1655 }
1656
1657 if (lang == language_unknown)
1658 {
1659 /* Make C the default language */
1660 lang = language_c;
1661 }
1662
1663 set_language (lang);
1664 expected_language = current_language; /* Don't warn the user. */
1665 }
1666
1667 /* Open the file specified by NAME and hand it off to BFD for
1668 preliminary analysis. Return a newly initialized bfd *, which
1669 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1670 absolute). In case of trouble, error() is called. */
1671
1672 gdb_bfd_ref_ptr
1673 symfile_bfd_open (const char *name)
1674 {
1675 int desc = -1;
1676
1677 gdb::unique_xmalloc_ptr<char> absolute_name;
1678 if (!is_target_filename (name))
1679 {
1680 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1681
1682 /* Look down path for it, allocate 2nd new malloc'd copy. */
1683 desc = openp (getenv ("PATH"),
1684 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1685 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1686 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1687 if (desc < 0)
1688 {
1689 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1690
1691 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1692 desc = openp (getenv ("PATH"),
1693 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1694 exename, O_RDONLY | O_BINARY, &absolute_name);
1695 }
1696 #endif
1697 if (desc < 0)
1698 perror_with_name (expanded_name.get ());
1699
1700 name = absolute_name.get ();
1701 }
1702
1703 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1704 if (sym_bfd == NULL)
1705 error (_("`%s': can't open to read symbols: %s."), name,
1706 bfd_errmsg (bfd_get_error ()));
1707
1708 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1709 bfd_set_cacheable (sym_bfd.get (), 1);
1710
1711 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1712 error (_("`%s': can't read symbols: %s."), name,
1713 bfd_errmsg (bfd_get_error ()));
1714
1715 return sym_bfd;
1716 }
1717
1718 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1719 the section was not found. */
1720
1721 int
1722 get_section_index (struct objfile *objfile, const char *section_name)
1723 {
1724 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1725
1726 if (sect)
1727 return sect->index;
1728 else
1729 return -1;
1730 }
1731
1732 /* Link SF into the global symtab_fns list.
1733 FLAVOUR is the file format that SF handles.
1734 Called on startup by the _initialize routine in each object file format
1735 reader, to register information about each format the reader is prepared
1736 to handle. */
1737
1738 void
1739 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1740 {
1741 symtab_fns.emplace_back (flavour, sf);
1742 }
1743
1744 /* Initialize OBJFILE to read symbols from its associated BFD. It
1745 either returns or calls error(). The result is an initialized
1746 struct sym_fns in the objfile structure, that contains cached
1747 information about the symbol file. */
1748
1749 static const struct sym_fns *
1750 find_sym_fns (bfd *abfd)
1751 {
1752 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1753
1754 if (our_flavour == bfd_target_srec_flavour
1755 || our_flavour == bfd_target_ihex_flavour
1756 || our_flavour == bfd_target_tekhex_flavour)
1757 return NULL; /* No symbols. */
1758
1759 for (const registered_sym_fns &rsf : symtab_fns)
1760 if (our_flavour == rsf.sym_flavour)
1761 return rsf.sym_fns;
1762
1763 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1764 bfd_get_target (abfd));
1765 }
1766 \f
1767
1768 /* This function runs the load command of our current target. */
1769
1770 static void
1771 load_command (const char *arg, int from_tty)
1772 {
1773 dont_repeat ();
1774
1775 /* The user might be reloading because the binary has changed. Take
1776 this opportunity to check. */
1777 reopen_exec_file ();
1778 reread_symbols ();
1779
1780 std::string temp;
1781 if (arg == NULL)
1782 {
1783 const char *parg, *prev;
1784
1785 arg = get_exec_file (1);
1786
1787 /* We may need to quote this string so buildargv can pull it
1788 apart. */
1789 prev = parg = arg;
1790 while ((parg = strpbrk (parg, "\\\"'\t ")))
1791 {
1792 temp.append (prev, parg - prev);
1793 prev = parg++;
1794 temp.push_back ('\\');
1795 }
1796 /* If we have not copied anything yet, then we didn't see a
1797 character to quote, and we can just leave ARG unchanged. */
1798 if (!temp.empty ())
1799 {
1800 temp.append (prev);
1801 arg = temp.c_str ();
1802 }
1803 }
1804
1805 target_load (arg, from_tty);
1806
1807 /* After re-loading the executable, we don't really know which
1808 overlays are mapped any more. */
1809 overlay_cache_invalid = 1;
1810 }
1811
1812 /* This version of "load" should be usable for any target. Currently
1813 it is just used for remote targets, not inftarg.c or core files,
1814 on the theory that only in that case is it useful.
1815
1816 Avoiding xmodem and the like seems like a win (a) because we don't have
1817 to worry about finding it, and (b) On VMS, fork() is very slow and so
1818 we don't want to run a subprocess. On the other hand, I'm not sure how
1819 performance compares. */
1820
1821 static int validate_download = 0;
1822
1823 /* Callback service function for generic_load (bfd_map_over_sections). */
1824
1825 static void
1826 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1827 {
1828 bfd_size_type *sum = (bfd_size_type *) data;
1829
1830 *sum += bfd_get_section_size (asec);
1831 }
1832
1833 /* Opaque data for load_progress. */
1834 struct load_progress_data
1835 {
1836 /* Cumulative data. */
1837 unsigned long write_count = 0;
1838 unsigned long data_count = 0;
1839 bfd_size_type total_size = 0;
1840 };
1841
1842 /* Opaque data for load_progress for a single section. */
1843 struct load_progress_section_data
1844 {
1845 load_progress_section_data (load_progress_data *cumulative_,
1846 const char *section_name_, ULONGEST section_size_,
1847 CORE_ADDR lma_, gdb_byte *buffer_)
1848 : cumulative (cumulative_), section_name (section_name_),
1849 section_size (section_size_), lma (lma_), buffer (buffer_)
1850 {}
1851
1852 struct load_progress_data *cumulative;
1853
1854 /* Per-section data. */
1855 const char *section_name;
1856 ULONGEST section_sent = 0;
1857 ULONGEST section_size;
1858 CORE_ADDR lma;
1859 gdb_byte *buffer;
1860 };
1861
1862 /* Opaque data for load_section_callback. */
1863 struct load_section_data
1864 {
1865 load_section_data (load_progress_data *progress_data_)
1866 : progress_data (progress_data_)
1867 {}
1868
1869 ~load_section_data ()
1870 {
1871 for (auto &&request : requests)
1872 {
1873 xfree (request.data);
1874 delete ((load_progress_section_data *) request.baton);
1875 }
1876 }
1877
1878 CORE_ADDR load_offset = 0;
1879 struct load_progress_data *progress_data;
1880 std::vector<struct memory_write_request> requests;
1881 };
1882
1883 /* Target write callback routine for progress reporting. */
1884
1885 static void
1886 load_progress (ULONGEST bytes, void *untyped_arg)
1887 {
1888 struct load_progress_section_data *args
1889 = (struct load_progress_section_data *) untyped_arg;
1890 struct load_progress_data *totals;
1891
1892 if (args == NULL)
1893 /* Writing padding data. No easy way to get at the cumulative
1894 stats, so just ignore this. */
1895 return;
1896
1897 totals = args->cumulative;
1898
1899 if (bytes == 0 && args->section_sent == 0)
1900 {
1901 /* The write is just starting. Let the user know we've started
1902 this section. */
1903 current_uiout->message ("Loading section %s, size %s lma %s\n",
1904 args->section_name,
1905 hex_string (args->section_size),
1906 paddress (target_gdbarch (), args->lma));
1907 return;
1908 }
1909
1910 if (validate_download)
1911 {
1912 /* Broken memories and broken monitors manifest themselves here
1913 when bring new computers to life. This doubles already slow
1914 downloads. */
1915 /* NOTE: cagney/1999-10-18: A more efficient implementation
1916 might add a verify_memory() method to the target vector and
1917 then use that. remote.c could implement that method using
1918 the ``qCRC'' packet. */
1919 gdb::byte_vector check (bytes);
1920
1921 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1922 error (_("Download verify read failed at %s"),
1923 paddress (target_gdbarch (), args->lma));
1924 if (memcmp (args->buffer, check.data (), bytes) != 0)
1925 error (_("Download verify compare failed at %s"),
1926 paddress (target_gdbarch (), args->lma));
1927 }
1928 totals->data_count += bytes;
1929 args->lma += bytes;
1930 args->buffer += bytes;
1931 totals->write_count += 1;
1932 args->section_sent += bytes;
1933 if (check_quit_flag ()
1934 || (deprecated_ui_load_progress_hook != NULL
1935 && deprecated_ui_load_progress_hook (args->section_name,
1936 args->section_sent)))
1937 error (_("Canceled the download"));
1938
1939 if (deprecated_show_load_progress != NULL)
1940 deprecated_show_load_progress (args->section_name,
1941 args->section_sent,
1942 args->section_size,
1943 totals->data_count,
1944 totals->total_size);
1945 }
1946
1947 /* Callback service function for generic_load (bfd_map_over_sections). */
1948
1949 static void
1950 load_section_callback (bfd *abfd, asection *asec, void *data)
1951 {
1952 struct load_section_data *args = (struct load_section_data *) data;
1953 bfd_size_type size = bfd_get_section_size (asec);
1954 const char *sect_name = bfd_get_section_name (abfd, asec);
1955
1956 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1957 return;
1958
1959 if (size == 0)
1960 return;
1961
1962 ULONGEST begin = bfd_section_lma (abfd, asec) + args->load_offset;
1963 ULONGEST end = begin + size;
1964 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1965 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1966
1967 load_progress_section_data *section_data
1968 = new load_progress_section_data (args->progress_data, sect_name, size,
1969 begin, buffer);
1970
1971 args->requests.emplace_back (begin, end, buffer, section_data);
1972 }
1973
1974 static void print_transfer_performance (struct ui_file *stream,
1975 unsigned long data_count,
1976 unsigned long write_count,
1977 std::chrono::steady_clock::duration d);
1978
1979 void
1980 generic_load (const char *args, int from_tty)
1981 {
1982 struct load_progress_data total_progress;
1983 struct load_section_data cbdata (&total_progress);
1984 struct ui_out *uiout = current_uiout;
1985
1986 if (args == NULL)
1987 error_no_arg (_("file to load"));
1988
1989 gdb_argv argv (args);
1990
1991 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
1992
1993 if (argv[1] != NULL)
1994 {
1995 const char *endptr;
1996
1997 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
1998
1999 /* If the last word was not a valid number then
2000 treat it as a file name with spaces in. */
2001 if (argv[1] == endptr)
2002 error (_("Invalid download offset:%s."), argv[1]);
2003
2004 if (argv[2] != NULL)
2005 error (_("Too many parameters."));
2006 }
2007
2008 /* Open the file for loading. */
2009 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2010 if (loadfile_bfd == NULL)
2011 perror_with_name (filename.get ());
2012
2013 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2014 {
2015 error (_("\"%s\" is not an object file: %s"), filename.get (),
2016 bfd_errmsg (bfd_get_error ()));
2017 }
2018
2019 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2020 (void *) &total_progress.total_size);
2021
2022 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2023
2024 using namespace std::chrono;
2025
2026 steady_clock::time_point start_time = steady_clock::now ();
2027
2028 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2029 load_progress) != 0)
2030 error (_("Load failed"));
2031
2032 steady_clock::time_point end_time = steady_clock::now ();
2033
2034 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2035 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2036 uiout->text ("Start address ");
2037 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2038 uiout->text (", load size ");
2039 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2040 uiout->text ("\n");
2041 regcache_write_pc (get_current_regcache (), entry);
2042
2043 /* Reset breakpoints, now that we have changed the load image. For
2044 instance, breakpoints may have been set (or reset, by
2045 post_create_inferior) while connected to the target but before we
2046 loaded the program. In that case, the prologue analyzer could
2047 have read instructions from the target to find the right
2048 breakpoint locations. Loading has changed the contents of that
2049 memory. */
2050
2051 breakpoint_re_set ();
2052
2053 print_transfer_performance (gdb_stdout, total_progress.data_count,
2054 total_progress.write_count,
2055 end_time - start_time);
2056 }
2057
2058 /* Report on STREAM the performance of a memory transfer operation,
2059 such as 'load'. DATA_COUNT is the number of bytes transferred.
2060 WRITE_COUNT is the number of separate write operations, or 0, if
2061 that information is not available. TIME is how long the operation
2062 lasted. */
2063
2064 static void
2065 print_transfer_performance (struct ui_file *stream,
2066 unsigned long data_count,
2067 unsigned long write_count,
2068 std::chrono::steady_clock::duration time)
2069 {
2070 using namespace std::chrono;
2071 struct ui_out *uiout = current_uiout;
2072
2073 milliseconds ms = duration_cast<milliseconds> (time);
2074
2075 uiout->text ("Transfer rate: ");
2076 if (ms.count () > 0)
2077 {
2078 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2079
2080 if (uiout->is_mi_like_p ())
2081 {
2082 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2083 uiout->text (" bits/sec");
2084 }
2085 else if (rate < 1024)
2086 {
2087 uiout->field_fmt ("transfer-rate", "%lu", rate);
2088 uiout->text (" bytes/sec");
2089 }
2090 else
2091 {
2092 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2093 uiout->text (" KB/sec");
2094 }
2095 }
2096 else
2097 {
2098 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2099 uiout->text (" bits in <1 sec");
2100 }
2101 if (write_count > 0)
2102 {
2103 uiout->text (", ");
2104 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2105 uiout->text (" bytes/write");
2106 }
2107 uiout->text (".\n");
2108 }
2109
2110 /* Add an OFFSET to the start address of each section in OBJF, except
2111 sections that were specified in ADDRS. */
2112
2113 static void
2114 set_objfile_default_section_offset (struct objfile *objf,
2115 const section_addr_info &addrs,
2116 CORE_ADDR offset)
2117 {
2118 /* Add OFFSET to all sections by default. */
2119 std::vector<struct section_offsets> offsets (objf->num_sections,
2120 { { offset } });
2121
2122 /* Create sorted lists of all sections in ADDRS as well as all
2123 sections in OBJF. */
2124
2125 std::vector<const struct other_sections *> addrs_sorted
2126 = addrs_section_sort (addrs);
2127
2128 section_addr_info objf_addrs
2129 = build_section_addr_info_from_objfile (objf);
2130 std::vector<const struct other_sections *> objf_addrs_sorted
2131 = addrs_section_sort (objf_addrs);
2132
2133 /* Walk the BFD section list, and if a matching section is found in
2134 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2135 unchanged.
2136
2137 Note that both lists may contain multiple sections with the same
2138 name, and then the sections from ADDRS are matched in BFD order
2139 (thanks to sectindex). */
2140
2141 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2142 = addrs_sorted.begin ();
2143 for (const other_sections *objf_sect : objf_addrs_sorted)
2144 {
2145 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2146 int cmp = -1;
2147
2148 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2149 {
2150 const struct other_sections *sect = *addrs_sorted_iter;
2151 const char *sect_name = addr_section_name (sect->name.c_str ());
2152 cmp = strcmp (sect_name, objf_name);
2153 if (cmp <= 0)
2154 ++addrs_sorted_iter;
2155 }
2156
2157 if (cmp == 0)
2158 offsets[objf_sect->sectindex].offsets[0] = 0;
2159 }
2160
2161 /* Apply the new section offsets. */
2162 objfile_relocate (objf, offsets.data ());
2163 }
2164
2165 /* This function allows the addition of incrementally linked object files.
2166 It does not modify any state in the target, only in the debugger. */
2167 /* Note: ezannoni 2000-04-13 This function/command used to have a
2168 special case syntax for the rombug target (Rombug is the boot
2169 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2170 rombug case, the user doesn't need to supply a text address,
2171 instead a call to target_link() (in target.c) would supply the
2172 value to use. We are now discontinuing this type of ad hoc syntax. */
2173
2174 static void
2175 add_symbol_file_command (const char *args, int from_tty)
2176 {
2177 struct gdbarch *gdbarch = get_current_arch ();
2178 gdb::unique_xmalloc_ptr<char> filename;
2179 char *arg;
2180 int argcnt = 0;
2181 struct objfile *objf;
2182 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2183 symfile_add_flags add_flags = 0;
2184
2185 if (from_tty)
2186 add_flags |= SYMFILE_VERBOSE;
2187
2188 struct sect_opt
2189 {
2190 const char *name;
2191 const char *value;
2192 };
2193
2194 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2195 bool stop_processing_options = false;
2196 CORE_ADDR offset = 0;
2197
2198 dont_repeat ();
2199
2200 if (args == NULL)
2201 error (_("add-symbol-file takes a file name and an address"));
2202
2203 bool seen_addr = false;
2204 bool seen_offset = false;
2205 gdb_argv argv (args);
2206
2207 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2208 {
2209 if (stop_processing_options || *arg != '-')
2210 {
2211 if (filename == NULL)
2212 {
2213 /* First non-option argument is always the filename. */
2214 filename.reset (tilde_expand (arg));
2215 }
2216 else if (!seen_addr)
2217 {
2218 /* The second non-option argument is always the text
2219 address at which to load the program. */
2220 sect_opts[0].value = arg;
2221 seen_addr = true;
2222 }
2223 else
2224 error (_("Unrecognized argument \"%s\""), arg);
2225 }
2226 else if (strcmp (arg, "-readnow") == 0)
2227 flags |= OBJF_READNOW;
2228 else if (strcmp (arg, "-readnever") == 0)
2229 flags |= OBJF_READNEVER;
2230 else if (strcmp (arg, "-s") == 0)
2231 {
2232 if (argv[argcnt + 1] == NULL)
2233 error (_("Missing section name after \"-s\""));
2234 else if (argv[argcnt + 2] == NULL)
2235 error (_("Missing section address after \"-s\""));
2236
2237 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2238
2239 sect_opts.push_back (sect);
2240 argcnt += 2;
2241 }
2242 else if (strcmp (arg, "-o") == 0)
2243 {
2244 arg = argv[++argcnt];
2245 if (arg == NULL)
2246 error (_("Missing argument to -o"));
2247
2248 offset = parse_and_eval_address (arg);
2249 seen_offset = true;
2250 }
2251 else if (strcmp (arg, "--") == 0)
2252 stop_processing_options = true;
2253 else
2254 error (_("Unrecognized argument \"%s\""), arg);
2255 }
2256
2257 if (filename == NULL)
2258 error (_("You must provide a filename to be loaded."));
2259
2260 validate_readnow_readnever (flags);
2261
2262 /* Print the prompt for the query below. And save the arguments into
2263 a sect_addr_info structure to be passed around to other
2264 functions. We have to split this up into separate print
2265 statements because hex_string returns a local static
2266 string. */
2267
2268 printf_unfiltered (_("add symbol table from file \"%s\""),
2269 filename.get ());
2270 section_addr_info section_addrs;
2271 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2272 if (!seen_addr)
2273 ++it;
2274 for (; it != sect_opts.end (); ++it)
2275 {
2276 CORE_ADDR addr;
2277 const char *val = it->value;
2278 const char *sec = it->name;
2279
2280 if (section_addrs.empty ())
2281 printf_unfiltered (_(" at\n"));
2282 addr = parse_and_eval_address (val);
2283
2284 /* Here we store the section offsets in the order they were
2285 entered on the command line. Every array element is
2286 assigned an ascending section index to preserve the above
2287 order over an unstable sorting algorithm. This dummy
2288 index is not used for any other purpose.
2289 */
2290 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2291 printf_filtered ("\t%s_addr = %s\n", sec,
2292 paddress (gdbarch, addr));
2293
2294 /* The object's sections are initialized when a
2295 call is made to build_objfile_section_table (objfile).
2296 This happens in reread_symbols.
2297 At this point, we don't know what file type this is,
2298 so we can't determine what section names are valid. */
2299 }
2300 if (seen_offset)
2301 printf_unfiltered (_("%s offset by %s\n"),
2302 (section_addrs.empty ()
2303 ? _(" with all sections")
2304 : _("with other sections")),
2305 paddress (gdbarch, offset));
2306 else if (section_addrs.empty ())
2307 printf_unfiltered ("\n");
2308
2309 if (from_tty && (!query ("%s", "")))
2310 error (_("Not confirmed."));
2311
2312 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2313 flags);
2314
2315 if (seen_offset)
2316 set_objfile_default_section_offset (objf, section_addrs, offset);
2317
2318 add_target_sections_of_objfile (objf);
2319
2320 /* Getting new symbols may change our opinion about what is
2321 frameless. */
2322 reinit_frame_cache ();
2323 }
2324 \f
2325
2326 /* This function removes a symbol file that was added via add-symbol-file. */
2327
2328 static void
2329 remove_symbol_file_command (const char *args, int from_tty)
2330 {
2331 struct objfile *objf = NULL;
2332 struct program_space *pspace = current_program_space;
2333
2334 dont_repeat ();
2335
2336 if (args == NULL)
2337 error (_("remove-symbol-file: no symbol file provided"));
2338
2339 gdb_argv argv (args);
2340
2341 if (strcmp (argv[0], "-a") == 0)
2342 {
2343 /* Interpret the next argument as an address. */
2344 CORE_ADDR addr;
2345
2346 if (argv[1] == NULL)
2347 error (_("Missing address argument"));
2348
2349 if (argv[2] != NULL)
2350 error (_("Junk after %s"), argv[1]);
2351
2352 addr = parse_and_eval_address (argv[1]);
2353
2354 for (objfile *objfile : all_objfiles (current_program_space))
2355 {
2356 if ((objfile->flags & OBJF_USERLOADED) != 0
2357 && (objfile->flags & OBJF_SHARED) != 0
2358 && objfile->pspace == pspace
2359 && is_addr_in_objfile (addr, objfile))
2360 {
2361 objf = objfile;
2362 break;
2363 }
2364 }
2365 }
2366 else if (argv[0] != NULL)
2367 {
2368 /* Interpret the current argument as a file name. */
2369
2370 if (argv[1] != NULL)
2371 error (_("Junk after %s"), argv[0]);
2372
2373 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2374
2375 for (objfile *objfile : all_objfiles (current_program_space))
2376 {
2377 if ((objfile->flags & OBJF_USERLOADED) != 0
2378 && (objfile->flags & OBJF_SHARED) != 0
2379 && objfile->pspace == pspace
2380 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2381 {
2382 objf = objfile;
2383 break;
2384 }
2385 }
2386 }
2387
2388 if (objf == NULL)
2389 error (_("No symbol file found"));
2390
2391 if (from_tty
2392 && !query (_("Remove symbol table from file \"%s\"? "),
2393 objfile_name (objf)))
2394 error (_("Not confirmed."));
2395
2396 delete objf;
2397 clear_symtab_users (0);
2398 }
2399
2400 /* Re-read symbols if a symbol-file has changed. */
2401
2402 void
2403 reread_symbols (void)
2404 {
2405 struct objfile *objfile;
2406 long new_modtime;
2407 struct stat new_statbuf;
2408 int res;
2409 std::vector<struct objfile *> new_objfiles;
2410
2411 /* With the addition of shared libraries, this should be modified,
2412 the load time should be saved in the partial symbol tables, since
2413 different tables may come from different source files. FIXME.
2414 This routine should then walk down each partial symbol table
2415 and see if the symbol table that it originates from has been changed. */
2416
2417 for (objfile = object_files; objfile; objfile = objfile->next)
2418 {
2419 if (objfile->obfd == NULL)
2420 continue;
2421
2422 /* Separate debug objfiles are handled in the main objfile. */
2423 if (objfile->separate_debug_objfile_backlink)
2424 continue;
2425
2426 /* If this object is from an archive (what you usually create with
2427 `ar', often called a `static library' on most systems, though
2428 a `shared library' on AIX is also an archive), then you should
2429 stat on the archive name, not member name. */
2430 if (objfile->obfd->my_archive)
2431 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2432 else
2433 res = stat (objfile_name (objfile), &new_statbuf);
2434 if (res != 0)
2435 {
2436 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2437 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2438 objfile_name (objfile));
2439 continue;
2440 }
2441 new_modtime = new_statbuf.st_mtime;
2442 if (new_modtime != objfile->mtime)
2443 {
2444 struct cleanup *old_cleanups;
2445 struct section_offsets *offsets;
2446 int num_offsets;
2447
2448 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2449 objfile_name (objfile));
2450
2451 /* There are various functions like symbol_file_add,
2452 symfile_bfd_open, syms_from_objfile, etc., which might
2453 appear to do what we want. But they have various other
2454 effects which we *don't* want. So we just do stuff
2455 ourselves. We don't worry about mapped files (for one thing,
2456 any mapped file will be out of date). */
2457
2458 /* If we get an error, blow away this objfile (not sure if
2459 that is the correct response for things like shared
2460 libraries). */
2461 std::unique_ptr<struct objfile> objfile_holder (objfile);
2462
2463 /* We need to do this whenever any symbols go away. */
2464 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2465
2466 if (exec_bfd != NULL
2467 && filename_cmp (bfd_get_filename (objfile->obfd),
2468 bfd_get_filename (exec_bfd)) == 0)
2469 {
2470 /* Reload EXEC_BFD without asking anything. */
2471
2472 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2473 }
2474
2475 /* Keep the calls order approx. the same as in free_objfile. */
2476
2477 /* Free the separate debug objfiles. It will be
2478 automatically recreated by sym_read. */
2479 free_objfile_separate_debug (objfile);
2480
2481 /* Remove any references to this objfile in the global
2482 value lists. */
2483 preserve_values (objfile);
2484
2485 /* Nuke all the state that we will re-read. Much of the following
2486 code which sets things to NULL really is necessary to tell
2487 other parts of GDB that there is nothing currently there.
2488
2489 Try to keep the freeing order compatible with free_objfile. */
2490
2491 if (objfile->sf != NULL)
2492 {
2493 (*objfile->sf->sym_finish) (objfile);
2494 }
2495
2496 clear_objfile_data (objfile);
2497
2498 /* Clean up any state BFD has sitting around. */
2499 {
2500 gdb_bfd_ref_ptr obfd (objfile->obfd);
2501 char *obfd_filename;
2502
2503 obfd_filename = bfd_get_filename (objfile->obfd);
2504 /* Open the new BFD before freeing the old one, so that
2505 the filename remains live. */
2506 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2507 objfile->obfd = temp.release ();
2508 if (objfile->obfd == NULL)
2509 error (_("Can't open %s to read symbols."), obfd_filename);
2510 }
2511
2512 std::string original_name = objfile->original_name;
2513
2514 /* bfd_openr sets cacheable to true, which is what we want. */
2515 if (!bfd_check_format (objfile->obfd, bfd_object))
2516 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2517 bfd_errmsg (bfd_get_error ()));
2518
2519 /* Save the offsets, we will nuke them with the rest of the
2520 objfile_obstack. */
2521 num_offsets = objfile->num_sections;
2522 offsets = ((struct section_offsets *)
2523 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2524 memcpy (offsets, objfile->section_offsets,
2525 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2526
2527 /* FIXME: Do we have to free a whole linked list, or is this
2528 enough? */
2529 objfile->global_psymbols.clear ();
2530 objfile->static_psymbols.clear ();
2531
2532 /* Free the obstacks for non-reusable objfiles. */
2533 psymbol_bcache_free (objfile->psymbol_cache);
2534 objfile->psymbol_cache = psymbol_bcache_init ();
2535
2536 /* NB: after this call to obstack_free, objfiles_changed
2537 will need to be called (see discussion below). */
2538 obstack_free (&objfile->objfile_obstack, 0);
2539 objfile->sections = NULL;
2540 objfile->compunit_symtabs = NULL;
2541 objfile->psymtabs = NULL;
2542 objfile->psymtabs_addrmap = NULL;
2543 objfile->free_psymtabs = NULL;
2544 objfile->template_symbols = NULL;
2545 objfile->static_links = NULL;
2546
2547 /* obstack_init also initializes the obstack so it is
2548 empty. We could use obstack_specify_allocation but
2549 gdb_obstack.h specifies the alloc/dealloc functions. */
2550 obstack_init (&objfile->objfile_obstack);
2551
2552 /* set_objfile_per_bfd potentially allocates the per-bfd
2553 data on the objfile's obstack (if sharing data across
2554 multiple users is not possible), so it's important to
2555 do it *after* the obstack has been initialized. */
2556 set_objfile_per_bfd (objfile);
2557
2558 objfile->original_name
2559 = (char *) obstack_copy0 (&objfile->objfile_obstack,
2560 original_name.c_str (),
2561 original_name.size ());
2562
2563 /* Reset the sym_fns pointer. The ELF reader can change it
2564 based on whether .gdb_index is present, and we need it to
2565 start over. PR symtab/15885 */
2566 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2567
2568 build_objfile_section_table (objfile);
2569 terminate_minimal_symbol_table (objfile);
2570
2571 /* We use the same section offsets as from last time. I'm not
2572 sure whether that is always correct for shared libraries. */
2573 objfile->section_offsets = (struct section_offsets *)
2574 obstack_alloc (&objfile->objfile_obstack,
2575 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2576 memcpy (objfile->section_offsets, offsets,
2577 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2578 objfile->num_sections = num_offsets;
2579
2580 /* What the hell is sym_new_init for, anyway? The concept of
2581 distinguishing between the main file and additional files
2582 in this way seems rather dubious. */
2583 if (objfile == symfile_objfile)
2584 {
2585 (*objfile->sf->sym_new_init) (objfile);
2586 }
2587
2588 (*objfile->sf->sym_init) (objfile);
2589 clear_complaints ();
2590
2591 objfile->flags &= ~OBJF_PSYMTABS_READ;
2592
2593 /* We are about to read new symbols and potentially also
2594 DWARF information. Some targets may want to pass addresses
2595 read from DWARF DIE's through an adjustment function before
2596 saving them, like MIPS, which may call into
2597 "find_pc_section". When called, that function will make
2598 use of per-objfile program space data.
2599
2600 Since we discarded our section information above, we have
2601 dangling pointers in the per-objfile program space data
2602 structure. Force GDB to update the section mapping
2603 information by letting it know the objfile has changed,
2604 making the dangling pointers point to correct data
2605 again. */
2606
2607 objfiles_changed ();
2608
2609 read_symbols (objfile, 0);
2610
2611 if (!objfile_has_symbols (objfile))
2612 {
2613 wrap_here ("");
2614 printf_filtered (_("(no debugging symbols found)\n"));
2615 wrap_here ("");
2616 }
2617
2618 /* We're done reading the symbol file; finish off complaints. */
2619 clear_complaints ();
2620
2621 /* Getting new symbols may change our opinion about what is
2622 frameless. */
2623
2624 reinit_frame_cache ();
2625
2626 /* Discard cleanups as symbol reading was successful. */
2627 objfile_holder.release ();
2628 discard_cleanups (old_cleanups);
2629
2630 /* If the mtime has changed between the time we set new_modtime
2631 and now, we *want* this to be out of date, so don't call stat
2632 again now. */
2633 objfile->mtime = new_modtime;
2634 init_entry_point_info (objfile);
2635
2636 new_objfiles.push_back (objfile);
2637 }
2638 }
2639
2640 if (!new_objfiles.empty ())
2641 {
2642 clear_symtab_users (0);
2643
2644 /* clear_objfile_data for each objfile was called before freeing it and
2645 gdb::observers::new_objfile.notify (NULL) has been called by
2646 clear_symtab_users above. Notify the new files now. */
2647 for (auto iter : new_objfiles)
2648 gdb::observers::new_objfile.notify (iter);
2649
2650 /* At least one objfile has changed, so we can consider that
2651 the executable we're debugging has changed too. */
2652 gdb::observers::executable_changed.notify ();
2653 }
2654 }
2655 \f
2656
2657 struct filename_language
2658 {
2659 filename_language (const std::string &ext_, enum language lang_)
2660 : ext (ext_), lang (lang_)
2661 {}
2662
2663 std::string ext;
2664 enum language lang;
2665 };
2666
2667 static std::vector<filename_language> filename_language_table;
2668
2669 /* See symfile.h. */
2670
2671 void
2672 add_filename_language (const char *ext, enum language lang)
2673 {
2674 filename_language_table.emplace_back (ext, lang);
2675 }
2676
2677 static char *ext_args;
2678 static void
2679 show_ext_args (struct ui_file *file, int from_tty,
2680 struct cmd_list_element *c, const char *value)
2681 {
2682 fprintf_filtered (file,
2683 _("Mapping between filename extension "
2684 "and source language is \"%s\".\n"),
2685 value);
2686 }
2687
2688 static void
2689 set_ext_lang_command (const char *args,
2690 int from_tty, struct cmd_list_element *e)
2691 {
2692 char *cp = ext_args;
2693 enum language lang;
2694
2695 /* First arg is filename extension, starting with '.' */
2696 if (*cp != '.')
2697 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2698
2699 /* Find end of first arg. */
2700 while (*cp && !isspace (*cp))
2701 cp++;
2702
2703 if (*cp == '\0')
2704 error (_("'%s': two arguments required -- "
2705 "filename extension and language"),
2706 ext_args);
2707
2708 /* Null-terminate first arg. */
2709 *cp++ = '\0';
2710
2711 /* Find beginning of second arg, which should be a source language. */
2712 cp = skip_spaces (cp);
2713
2714 if (*cp == '\0')
2715 error (_("'%s': two arguments required -- "
2716 "filename extension and language"),
2717 ext_args);
2718
2719 /* Lookup the language from among those we know. */
2720 lang = language_enum (cp);
2721
2722 auto it = filename_language_table.begin ();
2723 /* Now lookup the filename extension: do we already know it? */
2724 for (; it != filename_language_table.end (); it++)
2725 {
2726 if (it->ext == ext_args)
2727 break;
2728 }
2729
2730 if (it == filename_language_table.end ())
2731 {
2732 /* New file extension. */
2733 add_filename_language (ext_args, lang);
2734 }
2735 else
2736 {
2737 /* Redefining a previously known filename extension. */
2738
2739 /* if (from_tty) */
2740 /* query ("Really make files of type %s '%s'?", */
2741 /* ext_args, language_str (lang)); */
2742
2743 it->lang = lang;
2744 }
2745 }
2746
2747 static void
2748 info_ext_lang_command (const char *args, int from_tty)
2749 {
2750 printf_filtered (_("Filename extensions and the languages they represent:"));
2751 printf_filtered ("\n\n");
2752 for (const filename_language &entry : filename_language_table)
2753 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2754 language_str (entry.lang));
2755 }
2756
2757 enum language
2758 deduce_language_from_filename (const char *filename)
2759 {
2760 const char *cp;
2761
2762 if (filename != NULL)
2763 if ((cp = strrchr (filename, '.')) != NULL)
2764 {
2765 for (const filename_language &entry : filename_language_table)
2766 if (entry.ext == cp)
2767 return entry.lang;
2768 }
2769
2770 return language_unknown;
2771 }
2772 \f
2773 /* Allocate and initialize a new symbol table.
2774 CUST is from the result of allocate_compunit_symtab. */
2775
2776 struct symtab *
2777 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2778 {
2779 struct objfile *objfile = cust->objfile;
2780 struct symtab *symtab
2781 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2782
2783 symtab->filename
2784 = (const char *) bcache (filename, strlen (filename) + 1,
2785 objfile->per_bfd->filename_cache);
2786 symtab->fullname = NULL;
2787 symtab->language = deduce_language_from_filename (filename);
2788
2789 /* This can be very verbose with lots of headers.
2790 Only print at higher debug levels. */
2791 if (symtab_create_debug >= 2)
2792 {
2793 /* Be a bit clever with debugging messages, and don't print objfile
2794 every time, only when it changes. */
2795 static char *last_objfile_name = NULL;
2796
2797 if (last_objfile_name == NULL
2798 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2799 {
2800 xfree (last_objfile_name);
2801 last_objfile_name = xstrdup (objfile_name (objfile));
2802 fprintf_filtered (gdb_stdlog,
2803 "Creating one or more symtabs for objfile %s ...\n",
2804 last_objfile_name);
2805 }
2806 fprintf_filtered (gdb_stdlog,
2807 "Created symtab %s for module %s.\n",
2808 host_address_to_string (symtab), filename);
2809 }
2810
2811 /* Add it to CUST's list of symtabs. */
2812 if (cust->filetabs == NULL)
2813 {
2814 cust->filetabs = symtab;
2815 cust->last_filetab = symtab;
2816 }
2817 else
2818 {
2819 cust->last_filetab->next = symtab;
2820 cust->last_filetab = symtab;
2821 }
2822
2823 /* Backlink to the containing compunit symtab. */
2824 symtab->compunit_symtab = cust;
2825
2826 return symtab;
2827 }
2828
2829 /* Allocate and initialize a new compunit.
2830 NAME is the name of the main source file, if there is one, or some
2831 descriptive text if there are no source files. */
2832
2833 struct compunit_symtab *
2834 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2835 {
2836 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2837 struct compunit_symtab);
2838 const char *saved_name;
2839
2840 cu->objfile = objfile;
2841
2842 /* The name we record here is only for display/debugging purposes.
2843 Just save the basename to avoid path issues (too long for display,
2844 relative vs absolute, etc.). */
2845 saved_name = lbasename (name);
2846 cu->name
2847 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2848 strlen (saved_name));
2849
2850 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2851
2852 if (symtab_create_debug)
2853 {
2854 fprintf_filtered (gdb_stdlog,
2855 "Created compunit symtab %s for %s.\n",
2856 host_address_to_string (cu),
2857 cu->name);
2858 }
2859
2860 return cu;
2861 }
2862
2863 /* Hook CU to the objfile it comes from. */
2864
2865 void
2866 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2867 {
2868 cu->next = cu->objfile->compunit_symtabs;
2869 cu->objfile->compunit_symtabs = cu;
2870 }
2871 \f
2872
2873 /* Reset all data structures in gdb which may contain references to
2874 symbol table data. */
2875
2876 void
2877 clear_symtab_users (symfile_add_flags add_flags)
2878 {
2879 /* Someday, we should do better than this, by only blowing away
2880 the things that really need to be blown. */
2881
2882 /* Clear the "current" symtab first, because it is no longer valid.
2883 breakpoint_re_set may try to access the current symtab. */
2884 clear_current_source_symtab_and_line ();
2885
2886 clear_displays ();
2887 clear_last_displayed_sal ();
2888 clear_pc_function_cache ();
2889 gdb::observers::new_objfile.notify (NULL);
2890
2891 /* Clear globals which might have pointed into a removed objfile.
2892 FIXME: It's not clear which of these are supposed to persist
2893 between expressions and which ought to be reset each time. */
2894 expression_context_block = NULL;
2895 innermost_block.reset ();
2896
2897 /* Varobj may refer to old symbols, perform a cleanup. */
2898 varobj_invalidate ();
2899
2900 /* Now that the various caches have been cleared, we can re_set
2901 our breakpoints without risking it using stale data. */
2902 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2903 breakpoint_re_set ();
2904 }
2905
2906 static void
2907 clear_symtab_users_cleanup (void *ignore)
2908 {
2909 clear_symtab_users (0);
2910 }
2911 \f
2912 /* OVERLAYS:
2913 The following code implements an abstraction for debugging overlay sections.
2914
2915 The target model is as follows:
2916 1) The gnu linker will permit multiple sections to be mapped into the
2917 same VMA, each with its own unique LMA (or load address).
2918 2) It is assumed that some runtime mechanism exists for mapping the
2919 sections, one by one, from the load address into the VMA address.
2920 3) This code provides a mechanism for gdb to keep track of which
2921 sections should be considered to be mapped from the VMA to the LMA.
2922 This information is used for symbol lookup, and memory read/write.
2923 For instance, if a section has been mapped then its contents
2924 should be read from the VMA, otherwise from the LMA.
2925
2926 Two levels of debugger support for overlays are available. One is
2927 "manual", in which the debugger relies on the user to tell it which
2928 overlays are currently mapped. This level of support is
2929 implemented entirely in the core debugger, and the information about
2930 whether a section is mapped is kept in the objfile->obj_section table.
2931
2932 The second level of support is "automatic", and is only available if
2933 the target-specific code provides functionality to read the target's
2934 overlay mapping table, and translate its contents for the debugger
2935 (by updating the mapped state information in the obj_section tables).
2936
2937 The interface is as follows:
2938 User commands:
2939 overlay map <name> -- tell gdb to consider this section mapped
2940 overlay unmap <name> -- tell gdb to consider this section unmapped
2941 overlay list -- list the sections that GDB thinks are mapped
2942 overlay read-target -- get the target's state of what's mapped
2943 overlay off/manual/auto -- set overlay debugging state
2944 Functional interface:
2945 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2946 section, return that section.
2947 find_pc_overlay(pc): find any overlay section that contains
2948 the pc, either in its VMA or its LMA
2949 section_is_mapped(sect): true if overlay is marked as mapped
2950 section_is_overlay(sect): true if section's VMA != LMA
2951 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2952 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2953 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2954 overlay_mapped_address(...): map an address from section's LMA to VMA
2955 overlay_unmapped_address(...): map an address from section's VMA to LMA
2956 symbol_overlayed_address(...): Return a "current" address for symbol:
2957 either in VMA or LMA depending on whether
2958 the symbol's section is currently mapped. */
2959
2960 /* Overlay debugging state: */
2961
2962 enum overlay_debugging_state overlay_debugging = ovly_off;
2963 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2964
2965 /* Function: section_is_overlay (SECTION)
2966 Returns true if SECTION has VMA not equal to LMA, ie.
2967 SECTION is loaded at an address different from where it will "run". */
2968
2969 int
2970 section_is_overlay (struct obj_section *section)
2971 {
2972 if (overlay_debugging && section)
2973 {
2974 asection *bfd_section = section->the_bfd_section;
2975
2976 if (bfd_section_lma (abfd, bfd_section) != 0
2977 && bfd_section_lma (abfd, bfd_section)
2978 != bfd_section_vma (abfd, bfd_section))
2979 return 1;
2980 }
2981
2982 return 0;
2983 }
2984
2985 /* Function: overlay_invalidate_all (void)
2986 Invalidate the mapped state of all overlay sections (mark it as stale). */
2987
2988 static void
2989 overlay_invalidate_all (void)
2990 {
2991 struct objfile *objfile;
2992 struct obj_section *sect;
2993
2994 ALL_OBJSECTIONS (objfile, sect)
2995 if (section_is_overlay (sect))
2996 sect->ovly_mapped = -1;
2997 }
2998
2999 /* Function: section_is_mapped (SECTION)
3000 Returns true if section is an overlay, and is currently mapped.
3001
3002 Access to the ovly_mapped flag is restricted to this function, so
3003 that we can do automatic update. If the global flag
3004 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3005 overlay_invalidate_all. If the mapped state of the particular
3006 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3007
3008 int
3009 section_is_mapped (struct obj_section *osect)
3010 {
3011 struct gdbarch *gdbarch;
3012
3013 if (osect == 0 || !section_is_overlay (osect))
3014 return 0;
3015
3016 switch (overlay_debugging)
3017 {
3018 default:
3019 case ovly_off:
3020 return 0; /* overlay debugging off */
3021 case ovly_auto: /* overlay debugging automatic */
3022 /* Unles there is a gdbarch_overlay_update function,
3023 there's really nothing useful to do here (can't really go auto). */
3024 gdbarch = get_objfile_arch (osect->objfile);
3025 if (gdbarch_overlay_update_p (gdbarch))
3026 {
3027 if (overlay_cache_invalid)
3028 {
3029 overlay_invalidate_all ();
3030 overlay_cache_invalid = 0;
3031 }
3032 if (osect->ovly_mapped == -1)
3033 gdbarch_overlay_update (gdbarch, osect);
3034 }
3035 /* fall thru */
3036 case ovly_on: /* overlay debugging manual */
3037 return osect->ovly_mapped == 1;
3038 }
3039 }
3040
3041 /* Function: pc_in_unmapped_range
3042 If PC falls into the lma range of SECTION, return true, else false. */
3043
3044 CORE_ADDR
3045 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3046 {
3047 if (section_is_overlay (section))
3048 {
3049 bfd *abfd = section->objfile->obfd;
3050 asection *bfd_section = section->the_bfd_section;
3051
3052 /* We assume the LMA is relocated by the same offset as the VMA. */
3053 bfd_vma size = bfd_get_section_size (bfd_section);
3054 CORE_ADDR offset = obj_section_offset (section);
3055
3056 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3057 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063
3064 /* Function: pc_in_mapped_range
3065 If PC falls into the vma range of SECTION, return true, else false. */
3066
3067 CORE_ADDR
3068 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3069 {
3070 if (section_is_overlay (section))
3071 {
3072 if (obj_section_addr (section) <= pc
3073 && pc < obj_section_endaddr (section))
3074 return 1;
3075 }
3076
3077 return 0;
3078 }
3079
3080 /* Return true if the mapped ranges of sections A and B overlap, false
3081 otherwise. */
3082
3083 static int
3084 sections_overlap (struct obj_section *a, struct obj_section *b)
3085 {
3086 CORE_ADDR a_start = obj_section_addr (a);
3087 CORE_ADDR a_end = obj_section_endaddr (a);
3088 CORE_ADDR b_start = obj_section_addr (b);
3089 CORE_ADDR b_end = obj_section_endaddr (b);
3090
3091 return (a_start < b_end && b_start < a_end);
3092 }
3093
3094 /* Function: overlay_unmapped_address (PC, SECTION)
3095 Returns the address corresponding to PC in the unmapped (load) range.
3096 May be the same as PC. */
3097
3098 CORE_ADDR
3099 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3100 {
3101 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3102 {
3103 asection *bfd_section = section->the_bfd_section;
3104
3105 return pc + bfd_section_lma (abfd, bfd_section)
3106 - bfd_section_vma (abfd, bfd_section);
3107 }
3108
3109 return pc;
3110 }
3111
3112 /* Function: overlay_mapped_address (PC, SECTION)
3113 Returns the address corresponding to PC in the mapped (runtime) range.
3114 May be the same as PC. */
3115
3116 CORE_ADDR
3117 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3118 {
3119 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3120 {
3121 asection *bfd_section = section->the_bfd_section;
3122
3123 return pc + bfd_section_vma (abfd, bfd_section)
3124 - bfd_section_lma (abfd, bfd_section);
3125 }
3126
3127 return pc;
3128 }
3129
3130 /* Function: symbol_overlayed_address
3131 Return one of two addresses (relative to the VMA or to the LMA),
3132 depending on whether the section is mapped or not. */
3133
3134 CORE_ADDR
3135 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3136 {
3137 if (overlay_debugging)
3138 {
3139 /* If the symbol has no section, just return its regular address. */
3140 if (section == 0)
3141 return address;
3142 /* If the symbol's section is not an overlay, just return its
3143 address. */
3144 if (!section_is_overlay (section))
3145 return address;
3146 /* If the symbol's section is mapped, just return its address. */
3147 if (section_is_mapped (section))
3148 return address;
3149 /*
3150 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3151 * then return its LOADED address rather than its vma address!!
3152 */
3153 return overlay_unmapped_address (address, section);
3154 }
3155 return address;
3156 }
3157
3158 /* Function: find_pc_overlay (PC)
3159 Return the best-match overlay section for PC:
3160 If PC matches a mapped overlay section's VMA, return that section.
3161 Else if PC matches an unmapped section's VMA, return that section.
3162 Else if PC matches an unmapped section's LMA, return that section. */
3163
3164 struct obj_section *
3165 find_pc_overlay (CORE_ADDR pc)
3166 {
3167 struct objfile *objfile;
3168 struct obj_section *osect, *best_match = NULL;
3169
3170 if (overlay_debugging)
3171 {
3172 ALL_OBJSECTIONS (objfile, osect)
3173 if (section_is_overlay (osect))
3174 {
3175 if (pc_in_mapped_range (pc, osect))
3176 {
3177 if (section_is_mapped (osect))
3178 return osect;
3179 else
3180 best_match = osect;
3181 }
3182 else if (pc_in_unmapped_range (pc, osect))
3183 best_match = osect;
3184 }
3185 }
3186 return best_match;
3187 }
3188
3189 /* Function: find_pc_mapped_section (PC)
3190 If PC falls into the VMA address range of an overlay section that is
3191 currently marked as MAPPED, return that section. Else return NULL. */
3192
3193 struct obj_section *
3194 find_pc_mapped_section (CORE_ADDR pc)
3195 {
3196 struct objfile *objfile;
3197 struct obj_section *osect;
3198
3199 if (overlay_debugging)
3200 {
3201 ALL_OBJSECTIONS (objfile, osect)
3202 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3203 return osect;
3204 }
3205
3206 return NULL;
3207 }
3208
3209 /* Function: list_overlays_command
3210 Print a list of mapped sections and their PC ranges. */
3211
3212 static void
3213 list_overlays_command (const char *args, int from_tty)
3214 {
3215 int nmapped = 0;
3216 struct objfile *objfile;
3217 struct obj_section *osect;
3218
3219 if (overlay_debugging)
3220 {
3221 ALL_OBJSECTIONS (objfile, osect)
3222 if (section_is_mapped (osect))
3223 {
3224 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3225 const char *name;
3226 bfd_vma lma, vma;
3227 int size;
3228
3229 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3230 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3231 size = bfd_get_section_size (osect->the_bfd_section);
3232 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3233
3234 printf_filtered ("Section %s, loaded at ", name);
3235 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3236 puts_filtered (" - ");
3237 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3238 printf_filtered (", mapped at ");
3239 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3240 puts_filtered (" - ");
3241 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3242 puts_filtered ("\n");
3243
3244 nmapped++;
3245 }
3246 }
3247 if (nmapped == 0)
3248 printf_filtered (_("No sections are mapped.\n"));
3249 }
3250
3251 /* Function: map_overlay_command
3252 Mark the named section as mapped (ie. residing at its VMA address). */
3253
3254 static void
3255 map_overlay_command (const char *args, int from_tty)
3256 {
3257 struct objfile *objfile, *objfile2;
3258 struct obj_section *sec, *sec2;
3259
3260 if (!overlay_debugging)
3261 error (_("Overlay debugging not enabled. Use "
3262 "either the 'overlay auto' or\n"
3263 "the 'overlay manual' command."));
3264
3265 if (args == 0 || *args == 0)
3266 error (_("Argument required: name of an overlay section"));
3267
3268 /* First, find a section matching the user supplied argument. */
3269 ALL_OBJSECTIONS (objfile, sec)
3270 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3271 {
3272 /* Now, check to see if the section is an overlay. */
3273 if (!section_is_overlay (sec))
3274 continue; /* not an overlay section */
3275
3276 /* Mark the overlay as "mapped". */
3277 sec->ovly_mapped = 1;
3278
3279 /* Next, make a pass and unmap any sections that are
3280 overlapped by this new section: */
3281 ALL_OBJSECTIONS (objfile2, sec2)
3282 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3283 {
3284 if (info_verbose)
3285 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3286 bfd_section_name (objfile->obfd,
3287 sec2->the_bfd_section));
3288 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3289 }
3290 return;
3291 }
3292 error (_("No overlay section called %s"), args);
3293 }
3294
3295 /* Function: unmap_overlay_command
3296 Mark the overlay section as unmapped
3297 (ie. resident in its LMA address range, rather than the VMA range). */
3298
3299 static void
3300 unmap_overlay_command (const char *args, int from_tty)
3301 {
3302 struct objfile *objfile;
3303 struct obj_section *sec = NULL;
3304
3305 if (!overlay_debugging)
3306 error (_("Overlay debugging not enabled. "
3307 "Use either the 'overlay auto' or\n"
3308 "the 'overlay manual' command."));
3309
3310 if (args == 0 || *args == 0)
3311 error (_("Argument required: name of an overlay section"));
3312
3313 /* First, find a section matching the user supplied argument. */
3314 ALL_OBJSECTIONS (objfile, sec)
3315 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3316 {
3317 if (!sec->ovly_mapped)
3318 error (_("Section %s is not mapped"), args);
3319 sec->ovly_mapped = 0;
3320 return;
3321 }
3322 error (_("No overlay section called %s"), args);
3323 }
3324
3325 /* Function: overlay_auto_command
3326 A utility command to turn on overlay debugging.
3327 Possibly this should be done via a set/show command. */
3328
3329 static void
3330 overlay_auto_command (const char *args, int from_tty)
3331 {
3332 overlay_debugging = ovly_auto;
3333 enable_overlay_breakpoints ();
3334 if (info_verbose)
3335 printf_unfiltered (_("Automatic overlay debugging enabled."));
3336 }
3337
3338 /* Function: overlay_manual_command
3339 A utility command to turn on overlay debugging.
3340 Possibly this should be done via a set/show command. */
3341
3342 static void
3343 overlay_manual_command (const char *args, int from_tty)
3344 {
3345 overlay_debugging = ovly_on;
3346 disable_overlay_breakpoints ();
3347 if (info_verbose)
3348 printf_unfiltered (_("Overlay debugging enabled."));
3349 }
3350
3351 /* Function: overlay_off_command
3352 A utility command to turn on overlay debugging.
3353 Possibly this should be done via a set/show command. */
3354
3355 static void
3356 overlay_off_command (const char *args, int from_tty)
3357 {
3358 overlay_debugging = ovly_off;
3359 disable_overlay_breakpoints ();
3360 if (info_verbose)
3361 printf_unfiltered (_("Overlay debugging disabled."));
3362 }
3363
3364 static void
3365 overlay_load_command (const char *args, int from_tty)
3366 {
3367 struct gdbarch *gdbarch = get_current_arch ();
3368
3369 if (gdbarch_overlay_update_p (gdbarch))
3370 gdbarch_overlay_update (gdbarch, NULL);
3371 else
3372 error (_("This target does not know how to read its overlay state."));
3373 }
3374
3375 /* Function: overlay_command
3376 A place-holder for a mis-typed command. */
3377
3378 /* Command list chain containing all defined "overlay" subcommands. */
3379 static struct cmd_list_element *overlaylist;
3380
3381 static void
3382 overlay_command (const char *args, int from_tty)
3383 {
3384 printf_unfiltered
3385 ("\"overlay\" must be followed by the name of an overlay command.\n");
3386 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3387 }
3388
3389 /* Target Overlays for the "Simplest" overlay manager:
3390
3391 This is GDB's default target overlay layer. It works with the
3392 minimal overlay manager supplied as an example by Cygnus. The
3393 entry point is via a function pointer "gdbarch_overlay_update",
3394 so targets that use a different runtime overlay manager can
3395 substitute their own overlay_update function and take over the
3396 function pointer.
3397
3398 The overlay_update function pokes around in the target's data structures
3399 to see what overlays are mapped, and updates GDB's overlay mapping with
3400 this information.
3401
3402 In this simple implementation, the target data structures are as follows:
3403 unsigned _novlys; /# number of overlay sections #/
3404 unsigned _ovly_table[_novlys][4] = {
3405 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3406 {..., ..., ..., ...},
3407 }
3408 unsigned _novly_regions; /# number of overlay regions #/
3409 unsigned _ovly_region_table[_novly_regions][3] = {
3410 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3411 {..., ..., ...},
3412 }
3413 These functions will attempt to update GDB's mappedness state in the
3414 symbol section table, based on the target's mappedness state.
3415
3416 To do this, we keep a cached copy of the target's _ovly_table, and
3417 attempt to detect when the cached copy is invalidated. The main
3418 entry point is "simple_overlay_update(SECT), which looks up SECT in
3419 the cached table and re-reads only the entry for that section from
3420 the target (whenever possible). */
3421
3422 /* Cached, dynamically allocated copies of the target data structures: */
3423 static unsigned (*cache_ovly_table)[4] = 0;
3424 static unsigned cache_novlys = 0;
3425 static CORE_ADDR cache_ovly_table_base = 0;
3426 enum ovly_index
3427 {
3428 VMA, OSIZE, LMA, MAPPED
3429 };
3430
3431 /* Throw away the cached copy of _ovly_table. */
3432
3433 static void
3434 simple_free_overlay_table (void)
3435 {
3436 if (cache_ovly_table)
3437 xfree (cache_ovly_table);
3438 cache_novlys = 0;
3439 cache_ovly_table = NULL;
3440 cache_ovly_table_base = 0;
3441 }
3442
3443 /* Read an array of ints of size SIZE from the target into a local buffer.
3444 Convert to host order. int LEN is number of ints. */
3445
3446 static void
3447 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3448 int len, int size, enum bfd_endian byte_order)
3449 {
3450 /* FIXME (alloca): Not safe if array is very large. */
3451 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3452 int i;
3453
3454 read_memory (memaddr, buf, len * size);
3455 for (i = 0; i < len; i++)
3456 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3457 }
3458
3459 /* Find and grab a copy of the target _ovly_table
3460 (and _novlys, which is needed for the table's size). */
3461
3462 static int
3463 simple_read_overlay_table (void)
3464 {
3465 struct bound_minimal_symbol novlys_msym;
3466 struct bound_minimal_symbol ovly_table_msym;
3467 struct gdbarch *gdbarch;
3468 int word_size;
3469 enum bfd_endian byte_order;
3470
3471 simple_free_overlay_table ();
3472 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3473 if (! novlys_msym.minsym)
3474 {
3475 error (_("Error reading inferior's overlay table: "
3476 "couldn't find `_novlys' variable\n"
3477 "in inferior. Use `overlay manual' mode."));
3478 return 0;
3479 }
3480
3481 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3482 if (! ovly_table_msym.minsym)
3483 {
3484 error (_("Error reading inferior's overlay table: couldn't find "
3485 "`_ovly_table' array\n"
3486 "in inferior. Use `overlay manual' mode."));
3487 return 0;
3488 }
3489
3490 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3491 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3492 byte_order = gdbarch_byte_order (gdbarch);
3493
3494 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3495 4, byte_order);
3496 cache_ovly_table
3497 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3498 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3499 read_target_long_array (cache_ovly_table_base,
3500 (unsigned int *) cache_ovly_table,
3501 cache_novlys * 4, word_size, byte_order);
3502
3503 return 1; /* SUCCESS */
3504 }
3505
3506 /* Function: simple_overlay_update_1
3507 A helper function for simple_overlay_update. Assuming a cached copy
3508 of _ovly_table exists, look through it to find an entry whose vma,
3509 lma and size match those of OSECT. Re-read the entry and make sure
3510 it still matches OSECT (else the table may no longer be valid).
3511 Set OSECT's mapped state to match the entry. Return: 1 for
3512 success, 0 for failure. */
3513
3514 static int
3515 simple_overlay_update_1 (struct obj_section *osect)
3516 {
3517 int i;
3518 asection *bsect = osect->the_bfd_section;
3519 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3520 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3522
3523 for (i = 0; i < cache_novlys; i++)
3524 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3525 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3526 {
3527 read_target_long_array (cache_ovly_table_base + i * word_size,
3528 (unsigned int *) cache_ovly_table[i],
3529 4, word_size, byte_order);
3530 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3531 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3532 {
3533 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3534 return 1;
3535 }
3536 else /* Warning! Warning! Target's ovly table has changed! */
3537 return 0;
3538 }
3539 return 0;
3540 }
3541
3542 /* Function: simple_overlay_update
3543 If OSECT is NULL, then update all sections' mapped state
3544 (after re-reading the entire target _ovly_table).
3545 If OSECT is non-NULL, then try to find a matching entry in the
3546 cached ovly_table and update only OSECT's mapped state.
3547 If a cached entry can't be found or the cache isn't valid, then
3548 re-read the entire cache, and go ahead and update all sections. */
3549
3550 void
3551 simple_overlay_update (struct obj_section *osect)
3552 {
3553 struct objfile *objfile;
3554
3555 /* Were we given an osect to look up? NULL means do all of them. */
3556 if (osect)
3557 /* Have we got a cached copy of the target's overlay table? */
3558 if (cache_ovly_table != NULL)
3559 {
3560 /* Does its cached location match what's currently in the
3561 symtab? */
3562 struct bound_minimal_symbol minsym
3563 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3564
3565 if (minsym.minsym == NULL)
3566 error (_("Error reading inferior's overlay table: couldn't "
3567 "find `_ovly_table' array\n"
3568 "in inferior. Use `overlay manual' mode."));
3569
3570 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3571 /* Then go ahead and try to look up this single section in
3572 the cache. */
3573 if (simple_overlay_update_1 (osect))
3574 /* Found it! We're done. */
3575 return;
3576 }
3577
3578 /* Cached table no good: need to read the entire table anew.
3579 Or else we want all the sections, in which case it's actually
3580 more efficient to read the whole table in one block anyway. */
3581
3582 if (! simple_read_overlay_table ())
3583 return;
3584
3585 /* Now may as well update all sections, even if only one was requested. */
3586 ALL_OBJSECTIONS (objfile, osect)
3587 if (section_is_overlay (osect))
3588 {
3589 int i;
3590 asection *bsect = osect->the_bfd_section;
3591
3592 for (i = 0; i < cache_novlys; i++)
3593 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3594 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3595 { /* obj_section matches i'th entry in ovly_table. */
3596 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3597 break; /* finished with inner for loop: break out. */
3598 }
3599 }
3600 }
3601
3602 /* Set the output sections and output offsets for section SECTP in
3603 ABFD. The relocation code in BFD will read these offsets, so we
3604 need to be sure they're initialized. We map each section to itself,
3605 with no offset; this means that SECTP->vma will be honored. */
3606
3607 static void
3608 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3609 {
3610 sectp->output_section = sectp;
3611 sectp->output_offset = 0;
3612 }
3613
3614 /* Default implementation for sym_relocate. */
3615
3616 bfd_byte *
3617 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3618 bfd_byte *buf)
3619 {
3620 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3621 DWO file. */
3622 bfd *abfd = sectp->owner;
3623
3624 /* We're only interested in sections with relocation
3625 information. */
3626 if ((sectp->flags & SEC_RELOC) == 0)
3627 return NULL;
3628
3629 /* We will handle section offsets properly elsewhere, so relocate as if
3630 all sections begin at 0. */
3631 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3632
3633 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3634 }
3635
3636 /* Relocate the contents of a debug section SECTP in ABFD. The
3637 contents are stored in BUF if it is non-NULL, or returned in a
3638 malloc'd buffer otherwise.
3639
3640 For some platforms and debug info formats, shared libraries contain
3641 relocations against the debug sections (particularly for DWARF-2;
3642 one affected platform is PowerPC GNU/Linux, although it depends on
3643 the version of the linker in use). Also, ELF object files naturally
3644 have unresolved relocations for their debug sections. We need to apply
3645 the relocations in order to get the locations of symbols correct.
3646 Another example that may require relocation processing, is the
3647 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3648 debug section. */
3649
3650 bfd_byte *
3651 symfile_relocate_debug_section (struct objfile *objfile,
3652 asection *sectp, bfd_byte *buf)
3653 {
3654 gdb_assert (objfile->sf->sym_relocate);
3655
3656 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3657 }
3658
3659 struct symfile_segment_data *
3660 get_symfile_segment_data (bfd *abfd)
3661 {
3662 const struct sym_fns *sf = find_sym_fns (abfd);
3663
3664 if (sf == NULL)
3665 return NULL;
3666
3667 return sf->sym_segments (abfd);
3668 }
3669
3670 void
3671 free_symfile_segment_data (struct symfile_segment_data *data)
3672 {
3673 xfree (data->segment_bases);
3674 xfree (data->segment_sizes);
3675 xfree (data->segment_info);
3676 xfree (data);
3677 }
3678
3679 /* Given:
3680 - DATA, containing segment addresses from the object file ABFD, and
3681 the mapping from ABFD's sections onto the segments that own them,
3682 and
3683 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3684 segment addresses reported by the target,
3685 store the appropriate offsets for each section in OFFSETS.
3686
3687 If there are fewer entries in SEGMENT_BASES than there are segments
3688 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3689
3690 If there are more entries, then ignore the extra. The target may
3691 not be able to distinguish between an empty data segment and a
3692 missing data segment; a missing text segment is less plausible. */
3693
3694 int
3695 symfile_map_offsets_to_segments (bfd *abfd,
3696 const struct symfile_segment_data *data,
3697 struct section_offsets *offsets,
3698 int num_segment_bases,
3699 const CORE_ADDR *segment_bases)
3700 {
3701 int i;
3702 asection *sect;
3703
3704 /* It doesn't make sense to call this function unless you have some
3705 segment base addresses. */
3706 gdb_assert (num_segment_bases > 0);
3707
3708 /* If we do not have segment mappings for the object file, we
3709 can not relocate it by segments. */
3710 gdb_assert (data != NULL);
3711 gdb_assert (data->num_segments > 0);
3712
3713 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3714 {
3715 int which = data->segment_info[i];
3716
3717 gdb_assert (0 <= which && which <= data->num_segments);
3718
3719 /* Don't bother computing offsets for sections that aren't
3720 loaded as part of any segment. */
3721 if (! which)
3722 continue;
3723
3724 /* Use the last SEGMENT_BASES entry as the address of any extra
3725 segments mentioned in DATA->segment_info. */
3726 if (which > num_segment_bases)
3727 which = num_segment_bases;
3728
3729 offsets->offsets[i] = (segment_bases[which - 1]
3730 - data->segment_bases[which - 1]);
3731 }
3732
3733 return 1;
3734 }
3735
3736 static void
3737 symfile_find_segment_sections (struct objfile *objfile)
3738 {
3739 bfd *abfd = objfile->obfd;
3740 int i;
3741 asection *sect;
3742 struct symfile_segment_data *data;
3743
3744 data = get_symfile_segment_data (objfile->obfd);
3745 if (data == NULL)
3746 return;
3747
3748 if (data->num_segments != 1 && data->num_segments != 2)
3749 {
3750 free_symfile_segment_data (data);
3751 return;
3752 }
3753
3754 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3755 {
3756 int which = data->segment_info[i];
3757
3758 if (which == 1)
3759 {
3760 if (objfile->sect_index_text == -1)
3761 objfile->sect_index_text = sect->index;
3762
3763 if (objfile->sect_index_rodata == -1)
3764 objfile->sect_index_rodata = sect->index;
3765 }
3766 else if (which == 2)
3767 {
3768 if (objfile->sect_index_data == -1)
3769 objfile->sect_index_data = sect->index;
3770
3771 if (objfile->sect_index_bss == -1)
3772 objfile->sect_index_bss = sect->index;
3773 }
3774 }
3775
3776 free_symfile_segment_data (data);
3777 }
3778
3779 /* Listen for free_objfile events. */
3780
3781 static void
3782 symfile_free_objfile (struct objfile *objfile)
3783 {
3784 /* Remove the target sections owned by this objfile. */
3785 if (objfile != NULL)
3786 remove_target_sections ((void *) objfile);
3787 }
3788
3789 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3790 Expand all symtabs that match the specified criteria.
3791 See quick_symbol_functions.expand_symtabs_matching for details. */
3792
3793 void
3794 expand_symtabs_matching
3795 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3796 const lookup_name_info &lookup_name,
3797 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3798 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3799 enum search_domain kind)
3800 {
3801 for (objfile *objfile : all_objfiles (current_program_space))
3802 {
3803 if (objfile->sf)
3804 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3805 lookup_name,
3806 symbol_matcher,
3807 expansion_notify, kind);
3808 }
3809 }
3810
3811 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3812 Map function FUN over every file.
3813 See quick_symbol_functions.map_symbol_filenames for details. */
3814
3815 void
3816 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3817 int need_fullname)
3818 {
3819 for (objfile *objfile : all_objfiles (current_program_space))
3820 {
3821 if (objfile->sf)
3822 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3823 need_fullname);
3824 }
3825 }
3826
3827 #if GDB_SELF_TEST
3828
3829 namespace selftests {
3830 namespace filename_language {
3831
3832 static void test_filename_language ()
3833 {
3834 /* This test messes up the filename_language_table global. */
3835 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3836
3837 /* Test deducing an unknown extension. */
3838 language lang = deduce_language_from_filename ("myfile.blah");
3839 SELF_CHECK (lang == language_unknown);
3840
3841 /* Test deducing a known extension. */
3842 lang = deduce_language_from_filename ("myfile.c");
3843 SELF_CHECK (lang == language_c);
3844
3845 /* Test adding a new extension using the internal API. */
3846 add_filename_language (".blah", language_pascal);
3847 lang = deduce_language_from_filename ("myfile.blah");
3848 SELF_CHECK (lang == language_pascal);
3849 }
3850
3851 static void
3852 test_set_ext_lang_command ()
3853 {
3854 /* This test messes up the filename_language_table global. */
3855 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3856
3857 /* Confirm that the .hello extension is not known. */
3858 language lang = deduce_language_from_filename ("cake.hello");
3859 SELF_CHECK (lang == language_unknown);
3860
3861 /* Test adding a new extension using the CLI command. */
3862 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3863 ext_args = args_holder.get ();
3864 set_ext_lang_command (NULL, 1, NULL);
3865
3866 lang = deduce_language_from_filename ("cake.hello");
3867 SELF_CHECK (lang == language_rust);
3868
3869 /* Test overriding an existing extension using the CLI command. */
3870 int size_before = filename_language_table.size ();
3871 args_holder.reset (xstrdup (".hello pascal"));
3872 ext_args = args_holder.get ();
3873 set_ext_lang_command (NULL, 1, NULL);
3874 int size_after = filename_language_table.size ();
3875
3876 lang = deduce_language_from_filename ("cake.hello");
3877 SELF_CHECK (lang == language_pascal);
3878 SELF_CHECK (size_before == size_after);
3879 }
3880
3881 } /* namespace filename_language */
3882 } /* namespace selftests */
3883
3884 #endif /* GDB_SELF_TEST */
3885
3886 void
3887 _initialize_symfile (void)
3888 {
3889 struct cmd_list_element *c;
3890
3891 gdb::observers::free_objfile.attach (symfile_free_objfile);
3892
3893 #define READNOW_READNEVER_HELP \
3894 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3895 immediately. This makes the command slower, but may make future operations\n\
3896 faster.\n\
3897 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3898 symbolic debug information."
3899
3900 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3901 Load symbol table from executable file FILE.\n\
3902 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3903 OFF is an optional offset which is added to each section address.\n\
3904 The `file' command can also load symbol tables, as well as setting the file\n\
3905 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3906 set_cmd_completer (c, filename_completer);
3907
3908 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3909 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3910 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3911 [-s SECT-NAME SECT-ADDR]...\n\
3912 ADDR is the starting address of the file's text.\n\
3913 Each '-s' argument provides a section name and address, and\n\
3914 should be specified if the data and bss segments are not contiguous\n\
3915 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3916 OFF is an optional offset which is added to the default load addresses\n\
3917 of all sections for which no other address was specified.\n"
3918 READNOW_READNEVER_HELP),
3919 &cmdlist);
3920 set_cmd_completer (c, filename_completer);
3921
3922 c = add_cmd ("remove-symbol-file", class_files,
3923 remove_symbol_file_command, _("\
3924 Remove a symbol file added via the add-symbol-file command.\n\
3925 Usage: remove-symbol-file FILENAME\n\
3926 remove-symbol-file -a ADDRESS\n\
3927 The file to remove can be identified by its filename or by an address\n\
3928 that lies within the boundaries of this symbol file in memory."),
3929 &cmdlist);
3930
3931 c = add_cmd ("load", class_files, load_command, _("\
3932 Dynamically load FILE into the running program, and record its symbols\n\
3933 for access from GDB.\n\
3934 Usage: load [FILE] [OFFSET]\n\
3935 An optional load OFFSET may also be given as a literal address.\n\
3936 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3937 on its own."), &cmdlist);
3938 set_cmd_completer (c, filename_completer);
3939
3940 add_prefix_cmd ("overlay", class_support, overlay_command,
3941 _("Commands for debugging overlays."), &overlaylist,
3942 "overlay ", 0, &cmdlist);
3943
3944 add_com_alias ("ovly", "overlay", class_alias, 1);
3945 add_com_alias ("ov", "overlay", class_alias, 1);
3946
3947 add_cmd ("map-overlay", class_support, map_overlay_command,
3948 _("Assert that an overlay section is mapped."), &overlaylist);
3949
3950 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3951 _("Assert that an overlay section is unmapped."), &overlaylist);
3952
3953 add_cmd ("list-overlays", class_support, list_overlays_command,
3954 _("List mappings of overlay sections."), &overlaylist);
3955
3956 add_cmd ("manual", class_support, overlay_manual_command,
3957 _("Enable overlay debugging."), &overlaylist);
3958 add_cmd ("off", class_support, overlay_off_command,
3959 _("Disable overlay debugging."), &overlaylist);
3960 add_cmd ("auto", class_support, overlay_auto_command,
3961 _("Enable automatic overlay debugging."), &overlaylist);
3962 add_cmd ("load-target", class_support, overlay_load_command,
3963 _("Read the overlay mapping state from the target."), &overlaylist);
3964
3965 /* Filename extension to source language lookup table: */
3966 add_setshow_string_noescape_cmd ("extension-language", class_files,
3967 &ext_args, _("\
3968 Set mapping between filename extension and source language."), _("\
3969 Show mapping between filename extension and source language."), _("\
3970 Usage: set extension-language .foo bar"),
3971 set_ext_lang_command,
3972 show_ext_args,
3973 &setlist, &showlist);
3974
3975 add_info ("extensions", info_ext_lang_command,
3976 _("All filename extensions associated with a source language."));
3977
3978 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3979 &debug_file_directory, _("\
3980 Set the directories where separate debug symbols are searched for."), _("\
3981 Show the directories where separate debug symbols are searched for."), _("\
3982 Separate debug symbols are first searched for in the same\n\
3983 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3984 and lastly at the path of the directory of the binary with\n\
3985 each global debug-file-directory component prepended."),
3986 NULL,
3987 show_debug_file_directory,
3988 &setlist, &showlist);
3989
3990 add_setshow_enum_cmd ("symbol-loading", no_class,
3991 print_symbol_loading_enums, &print_symbol_loading,
3992 _("\
3993 Set printing of symbol loading messages."), _("\
3994 Show printing of symbol loading messages."), _("\
3995 off == turn all messages off\n\
3996 brief == print messages for the executable,\n\
3997 and brief messages for shared libraries\n\
3998 full == print messages for the executable,\n\
3999 and messages for each shared library."),
4000 NULL,
4001 NULL,
4002 &setprintlist, &showprintlist);
4003
4004 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4005 &separate_debug_file_debug, _("\
4006 Set printing of separate debug info file search debug."), _("\
4007 Show printing of separate debug info file search debug."), _("\
4008 When on, GDB prints the searched locations while looking for separate debug \
4009 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4010
4011 #if GDB_SELF_TEST
4012 selftests::register_test
4013 ("filename_language", selftests::filename_language::test_filename_language);
4014 selftests::register_test
4015 ("set_ext_lang_command",
4016 selftests::filename_language::test_set_ext_lang_command);
4017 #endif
4018 }