]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
* symfile.c (allocate_symtab): Use host_address_to_string
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84
85 /* External variables and functions referenced. */
86
87 extern void report_transfer_performance (unsigned long, time_t, time_t);
88
89 /* Functions this file defines. */
90
91 static void load_command (char *, int);
92
93 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
94
95 static void add_symbol_file_command (char *, int);
96
97 bfd *symfile_bfd_open (char *);
98
99 int get_section_index (struct objfile *, char *);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void decrement_reading_symtab (void *);
104
105 static void overlay_invalidate_all (void);
106
107 void list_overlays_command (char *, int);
108
109 void map_overlay_command (char *, int);
110
111 void unmap_overlay_command (char *, int);
112
113 static void overlay_auto_command (char *, int);
114
115 static void overlay_manual_command (char *, int);
116
117 static void overlay_off_command (char *, int);
118
119 static void overlay_load_command (char *, int);
120
121 static void overlay_command (char *, int);
122
123 static void simple_free_overlay_table (void);
124
125 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
126 enum bfd_endian);
127
128 static int simple_read_overlay_table (void);
129
130 static int simple_overlay_update_1 (struct obj_section *);
131
132 static void add_filename_language (char *ext, enum language lang);
133
134 static void info_ext_lang_command (char *args, int from_tty);
135
136 static void init_filename_language_table (void);
137
138 static void symfile_find_segment_sections (struct objfile *objfile);
139
140 void _initialize_symfile (void);
141
142 /* List of all available sym_fns. On gdb startup, each object file reader
143 calls add_symtab_fns() to register information on each format it is
144 prepared to read. */
145
146 typedef const struct sym_fns *sym_fns_ptr;
147 DEF_VEC_P (sym_fns_ptr);
148
149 static VEC (sym_fns_ptr) *symtab_fns = NULL;
150
151 /* If non-zero, shared library symbols will be added automatically
152 when the inferior is created, new libraries are loaded, or when
153 attaching to the inferior. This is almost always what users will
154 want to have happen; but for very large programs, the startup time
155 will be excessive, and so if this is a problem, the user can clear
156 this flag and then add the shared library symbols as needed. Note
157 that there is a potential for confusion, since if the shared
158 library symbols are not loaded, commands like "info fun" will *not*
159 report all the functions that are actually present. */
160
161 int auto_solib_add = 1;
162 \f
163
164 /* Make a null terminated copy of the string at PTR with SIZE characters in
165 the obstack pointed to by OBSTACKP . Returns the address of the copy.
166 Note that the string at PTR does not have to be null terminated, I.e. it
167 may be part of a larger string and we are only saving a substring. */
168
169 char *
170 obsavestring (const char *ptr, int size, struct obstack *obstackp)
171 {
172 char *p = (char *) obstack_alloc (obstackp, size + 1);
173 /* Open-coded memcpy--saves function call time. These strings are usually
174 short. FIXME: Is this really still true with a compiler that can
175 inline memcpy? */
176 {
177 const char *p1 = ptr;
178 char *p2 = p;
179 const char *end = ptr + size;
180
181 while (p1 != end)
182 *p2++ = *p1++;
183 }
184 p[size] = 0;
185 return p;
186 }
187
188 /* Concatenate NULL terminated variable argument list of `const char *'
189 strings; return the new string. Space is found in the OBSTACKP.
190 Argument list must be terminated by a sentinel expression `(char *)
191 NULL'. */
192
193 char *
194 obconcat (struct obstack *obstackp, ...)
195 {
196 va_list ap;
197
198 va_start (ap, obstackp);
199 for (;;)
200 {
201 const char *s = va_arg (ap, const char *);
202
203 if (s == NULL)
204 break;
205
206 obstack_grow_str (obstackp, s);
207 }
208 va_end (ap);
209 obstack_1grow (obstackp, 0);
210
211 return obstack_finish (obstackp);
212 }
213
214 /* True if we are reading a symbol table. */
215
216 int currently_reading_symtab = 0;
217
218 static void
219 decrement_reading_symtab (void *dummy)
220 {
221 currently_reading_symtab--;
222 }
223
224 /* Increment currently_reading_symtab and return a cleanup that can be
225 used to decrement it. */
226 struct cleanup *
227 increment_reading_symtab (void)
228 {
229 ++currently_reading_symtab;
230 return make_cleanup (decrement_reading_symtab, NULL);
231 }
232
233 /* Remember the lowest-addressed loadable section we've seen.
234 This function is called via bfd_map_over_sections.
235
236 In case of equal vmas, the section with the largest size becomes the
237 lowest-addressed loadable section.
238
239 If the vmas and sizes are equal, the last section is considered the
240 lowest-addressed loadable section. */
241
242 void
243 find_lowest_section (bfd *abfd, asection *sect, void *obj)
244 {
245 asection **lowest = (asection **) obj;
246
247 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
248 return;
249 if (!*lowest)
250 *lowest = sect; /* First loadable section */
251 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
252 *lowest = sect; /* A lower loadable section */
253 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
254 && (bfd_section_size (abfd, (*lowest))
255 <= bfd_section_size (abfd, sect)))
256 *lowest = sect;
257 }
258
259 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
260
261 struct section_addr_info *
262 alloc_section_addr_info (size_t num_sections)
263 {
264 struct section_addr_info *sap;
265 size_t size;
266
267 size = (sizeof (struct section_addr_info)
268 + sizeof (struct other_sections) * (num_sections - 1));
269 sap = (struct section_addr_info *) xmalloc (size);
270 memset (sap, 0, size);
271 sap->num_sections = num_sections;
272
273 return sap;
274 }
275
276 /* Build (allocate and populate) a section_addr_info struct from
277 an existing section table. */
278
279 extern struct section_addr_info *
280 build_section_addr_info_from_section_table (const struct target_section *start,
281 const struct target_section *end)
282 {
283 struct section_addr_info *sap;
284 const struct target_section *stp;
285 int oidx;
286
287 sap = alloc_section_addr_info (end - start);
288
289 for (stp = start, oidx = 0; stp != end; stp++)
290 {
291 if (bfd_get_section_flags (stp->bfd,
292 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
293 && oidx < end - start)
294 {
295 sap->other[oidx].addr = stp->addr;
296 sap->other[oidx].name
297 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
298 sap->other[oidx].sectindex = stp->the_bfd_section->index;
299 oidx++;
300 }
301 }
302
303 return sap;
304 }
305
306 /* Create a section_addr_info from section offsets in ABFD. */
307
308 static struct section_addr_info *
309 build_section_addr_info_from_bfd (bfd *abfd)
310 {
311 struct section_addr_info *sap;
312 int i;
313 struct bfd_section *sec;
314
315 sap = alloc_section_addr_info (bfd_count_sections (abfd));
316 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
317 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
318 {
319 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
320 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
321 sap->other[i].sectindex = sec->index;
322 i++;
323 }
324 return sap;
325 }
326
327 /* Create a section_addr_info from section offsets in OBJFILE. */
328
329 struct section_addr_info *
330 build_section_addr_info_from_objfile (const struct objfile *objfile)
331 {
332 struct section_addr_info *sap;
333 int i;
334
335 /* Before reread_symbols gets rewritten it is not safe to call:
336 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
337 */
338 sap = build_section_addr_info_from_bfd (objfile->obfd);
339 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
340 {
341 int sectindex = sap->other[i].sectindex;
342
343 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
344 }
345 return sap;
346 }
347
348 /* Free all memory allocated by build_section_addr_info_from_section_table. */
349
350 extern void
351 free_section_addr_info (struct section_addr_info *sap)
352 {
353 int idx;
354
355 for (idx = 0; idx < sap->num_sections; idx++)
356 if (sap->other[idx].name)
357 xfree (sap->other[idx].name);
358 xfree (sap);
359 }
360
361
362 /* Initialize OBJFILE's sect_index_* members. */
363 static void
364 init_objfile_sect_indices (struct objfile *objfile)
365 {
366 asection *sect;
367 int i;
368
369 sect = bfd_get_section_by_name (objfile->obfd, ".text");
370 if (sect)
371 objfile->sect_index_text = sect->index;
372
373 sect = bfd_get_section_by_name (objfile->obfd, ".data");
374 if (sect)
375 objfile->sect_index_data = sect->index;
376
377 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
378 if (sect)
379 objfile->sect_index_bss = sect->index;
380
381 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
382 if (sect)
383 objfile->sect_index_rodata = sect->index;
384
385 /* This is where things get really weird... We MUST have valid
386 indices for the various sect_index_* members or gdb will abort.
387 So if for example, there is no ".text" section, we have to
388 accomodate that. First, check for a file with the standard
389 one or two segments. */
390
391 symfile_find_segment_sections (objfile);
392
393 /* Except when explicitly adding symbol files at some address,
394 section_offsets contains nothing but zeros, so it doesn't matter
395 which slot in section_offsets the individual sect_index_* members
396 index into. So if they are all zero, it is safe to just point
397 all the currently uninitialized indices to the first slot. But
398 beware: if this is the main executable, it may be relocated
399 later, e.g. by the remote qOffsets packet, and then this will
400 be wrong! That's why we try segments first. */
401
402 for (i = 0; i < objfile->num_sections; i++)
403 {
404 if (ANOFFSET (objfile->section_offsets, i) != 0)
405 {
406 break;
407 }
408 }
409 if (i == objfile->num_sections)
410 {
411 if (objfile->sect_index_text == -1)
412 objfile->sect_index_text = 0;
413 if (objfile->sect_index_data == -1)
414 objfile->sect_index_data = 0;
415 if (objfile->sect_index_bss == -1)
416 objfile->sect_index_bss = 0;
417 if (objfile->sect_index_rodata == -1)
418 objfile->sect_index_rodata = 0;
419 }
420 }
421
422 /* The arguments to place_section. */
423
424 struct place_section_arg
425 {
426 struct section_offsets *offsets;
427 CORE_ADDR lowest;
428 };
429
430 /* Find a unique offset to use for loadable section SECT if
431 the user did not provide an offset. */
432
433 static void
434 place_section (bfd *abfd, asection *sect, void *obj)
435 {
436 struct place_section_arg *arg = obj;
437 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
438 int done;
439 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
440
441 /* We are only interested in allocated sections. */
442 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
443 return;
444
445 /* If the user specified an offset, honor it. */
446 if (offsets[sect->index] != 0)
447 return;
448
449 /* Otherwise, let's try to find a place for the section. */
450 start_addr = (arg->lowest + align - 1) & -align;
451
452 do {
453 asection *cur_sec;
454
455 done = 1;
456
457 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
458 {
459 int indx = cur_sec->index;
460
461 /* We don't need to compare against ourself. */
462 if (cur_sec == sect)
463 continue;
464
465 /* We can only conflict with allocated sections. */
466 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
467 continue;
468
469 /* If the section offset is 0, either the section has not been placed
470 yet, or it was the lowest section placed (in which case LOWEST
471 will be past its end). */
472 if (offsets[indx] == 0)
473 continue;
474
475 /* If this section would overlap us, then we must move up. */
476 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
477 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
478 {
479 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
480 start_addr = (start_addr + align - 1) & -align;
481 done = 0;
482 break;
483 }
484
485 /* Otherwise, we appear to be OK. So far. */
486 }
487 }
488 while (!done);
489
490 offsets[sect->index] = start_addr;
491 arg->lowest = start_addr + bfd_get_section_size (sect);
492 }
493
494 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
495 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
496 entries. */
497
498 void
499 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
500 int num_sections,
501 struct section_addr_info *addrs)
502 {
503 int i;
504
505 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
506
507 /* Now calculate offsets for section that were specified by the caller. */
508 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
509 {
510 struct other_sections *osp;
511
512 osp = &addrs->other[i];
513 if (osp->sectindex == -1)
514 continue;
515
516 /* Record all sections in offsets. */
517 /* The section_offsets in the objfile are here filled in using
518 the BFD index. */
519 section_offsets->offsets[osp->sectindex] = osp->addr;
520 }
521 }
522
523 /* Transform section name S for a name comparison. prelink can split section
524 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
525 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
526 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
527 (`.sbss') section has invalid (increased) virtual address. */
528
529 static const char *
530 addr_section_name (const char *s)
531 {
532 if (strcmp (s, ".dynbss") == 0)
533 return ".bss";
534 if (strcmp (s, ".sdynbss") == 0)
535 return ".sbss";
536
537 return s;
538 }
539
540 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
541 their (name, sectindex) pair. sectindex makes the sort by name stable. */
542
543 static int
544 addrs_section_compar (const void *ap, const void *bp)
545 {
546 const struct other_sections *a = *((struct other_sections **) ap);
547 const struct other_sections *b = *((struct other_sections **) bp);
548 int retval;
549
550 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
551 if (retval)
552 return retval;
553
554 return a->sectindex - b->sectindex;
555 }
556
557 /* Provide sorted array of pointers to sections of ADDRS. The array is
558 terminated by NULL. Caller is responsible to call xfree for it. */
559
560 static struct other_sections **
561 addrs_section_sort (struct section_addr_info *addrs)
562 {
563 struct other_sections **array;
564 int i;
565
566 /* `+ 1' for the NULL terminator. */
567 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
568 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
569 array[i] = &addrs->other[i];
570 array[i] = NULL;
571
572 qsort (array, i, sizeof (*array), addrs_section_compar);
573
574 return array;
575 }
576
577 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
578 also SECTINDEXes specific to ABFD there. This function can be used to
579 rebase ADDRS to start referencing different BFD than before. */
580
581 void
582 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
583 {
584 asection *lower_sect;
585 CORE_ADDR lower_offset;
586 int i;
587 struct cleanup *my_cleanup;
588 struct section_addr_info *abfd_addrs;
589 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
590 struct other_sections **addrs_to_abfd_addrs;
591
592 /* Find lowest loadable section to be used as starting point for
593 continguous sections. */
594 lower_sect = NULL;
595 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
596 if (lower_sect == NULL)
597 {
598 warning (_("no loadable sections found in added symbol-file %s"),
599 bfd_get_filename (abfd));
600 lower_offset = 0;
601 }
602 else
603 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
604
605 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
606 in ABFD. Section names are not unique - there can be multiple sections of
607 the same name. Also the sections of the same name do not have to be
608 adjacent to each other. Some sections may be present only in one of the
609 files. Even sections present in both files do not have to be in the same
610 order.
611
612 Use stable sort by name for the sections in both files. Then linearly
613 scan both lists matching as most of the entries as possible. */
614
615 addrs_sorted = addrs_section_sort (addrs);
616 my_cleanup = make_cleanup (xfree, addrs_sorted);
617
618 abfd_addrs = build_section_addr_info_from_bfd (abfd);
619 make_cleanup_free_section_addr_info (abfd_addrs);
620 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
621 make_cleanup (xfree, abfd_addrs_sorted);
622
623 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
624 ABFD_ADDRS_SORTED. */
625
626 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
627 * addrs->num_sections);
628 make_cleanup (xfree, addrs_to_abfd_addrs);
629
630 while (*addrs_sorted)
631 {
632 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
633
634 while (*abfd_addrs_sorted
635 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
636 sect_name) < 0)
637 abfd_addrs_sorted++;
638
639 if (*abfd_addrs_sorted
640 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
641 sect_name) == 0)
642 {
643 int index_in_addrs;
644
645 /* Make the found item directly addressable from ADDRS. */
646 index_in_addrs = *addrs_sorted - addrs->other;
647 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
648 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
649
650 /* Never use the same ABFD entry twice. */
651 abfd_addrs_sorted++;
652 }
653
654 addrs_sorted++;
655 }
656
657 /* Calculate offsets for the loadable sections.
658 FIXME! Sections must be in order of increasing loadable section
659 so that contiguous sections can use the lower-offset!!!
660
661 Adjust offsets if the segments are not contiguous.
662 If the section is contiguous, its offset should be set to
663 the offset of the highest loadable section lower than it
664 (the loadable section directly below it in memory).
665 this_offset = lower_offset = lower_addr - lower_orig_addr */
666
667 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
668 {
669 struct other_sections *sect = addrs_to_abfd_addrs[i];
670
671 if (sect)
672 {
673 /* This is the index used by BFD. */
674 addrs->other[i].sectindex = sect->sectindex;
675
676 if (addrs->other[i].addr != 0)
677 {
678 addrs->other[i].addr -= sect->addr;
679 lower_offset = addrs->other[i].addr;
680 }
681 else
682 addrs->other[i].addr = lower_offset;
683 }
684 else
685 {
686 /* addr_section_name transformation is not used for SECT_NAME. */
687 const char *sect_name = addrs->other[i].name;
688
689 /* This section does not exist in ABFD, which is normally
690 unexpected and we want to issue a warning.
691
692 However, the ELF prelinker does create a few sections which are
693 marked in the main executable as loadable (they are loaded in
694 memory from the DYNAMIC segment) and yet are not present in
695 separate debug info files. This is fine, and should not cause
696 a warning. Shared libraries contain just the section
697 ".gnu.liblist" but it is not marked as loadable there. There is
698 no other way to identify them than by their name as the sections
699 created by prelink have no special flags.
700
701 For the sections `.bss' and `.sbss' see addr_section_name. */
702
703 if (!(strcmp (sect_name, ".gnu.liblist") == 0
704 || strcmp (sect_name, ".gnu.conflict") == 0
705 || (strcmp (sect_name, ".bss") == 0
706 && i > 0
707 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
708 && addrs_to_abfd_addrs[i - 1] != NULL)
709 || (strcmp (sect_name, ".sbss") == 0
710 && i > 0
711 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
712 && addrs_to_abfd_addrs[i - 1] != NULL)))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717 addrs->other[i].sectindex = -1;
718 }
719 }
720
721 do_cleanups (my_cleanup);
722 }
723
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730 void
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733 {
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
740
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd),
802 cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 if ((add_flags & SYMFILE_NO_READ) == 0)
1002 require_partial_symbols (objfile, 0);
1003
1004 /* Discard cleanups as symbol reading was successful. */
1005
1006 discard_cleanups (old_chain);
1007 xfree (local_addr);
1008 }
1009
1010 /* Perform required actions after either reading in the initial
1011 symbols for a new objfile, or mapping in the symbols from a reusable
1012 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1013
1014 void
1015 new_symfile_objfile (struct objfile *objfile, int add_flags)
1016 {
1017 /* If this is the main symbol file we have to clean up all users of the
1018 old main symbol file. Otherwise it is sufficient to fixup all the
1019 breakpoints that may have been redefined by this symbol file. */
1020 if (add_flags & SYMFILE_MAINLINE)
1021 {
1022 /* OK, make it the "real" symbol file. */
1023 symfile_objfile = objfile;
1024
1025 clear_symtab_users (add_flags);
1026 }
1027 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1028 {
1029 breakpoint_re_set ();
1030 }
1031
1032 /* We're done reading the symbol file; finish off complaints. */
1033 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1034 }
1035
1036 /* Process a symbol file, as either the main file or as a dynamically
1037 loaded file.
1038
1039 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1040 A new reference is acquired by this function.
1041
1042 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1043 extra, such as dynamically loaded code, and what to do with breakpoins.
1044
1045 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1046 syms_from_objfile, above.
1047 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1048
1049 PARENT is the original objfile if ABFD is a separate debug info file.
1050 Otherwise PARENT is NULL.
1051
1052 Upon success, returns a pointer to the objfile that was added.
1053 Upon failure, jumps back to command level (never returns). */
1054
1055 static struct objfile *
1056 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1057 int add_flags,
1058 struct section_addr_info *addrs,
1059 struct section_offsets *offsets,
1060 int num_offsets,
1061 int flags, struct objfile *parent)
1062 {
1063 struct objfile *objfile;
1064 const char *name = bfd_get_filename (abfd);
1065 const int from_tty = add_flags & SYMFILE_VERBOSE;
1066 const int mainline = add_flags & SYMFILE_MAINLINE;
1067 const int should_print = ((from_tty || info_verbose)
1068 && (readnow_symbol_files
1069 || (add_flags & SYMFILE_NO_READ) == 0));
1070
1071 if (readnow_symbol_files)
1072 {
1073 flags |= OBJF_READNOW;
1074 add_flags &= ~SYMFILE_NO_READ;
1075 }
1076
1077 /* Give user a chance to burp if we'd be
1078 interactively wiping out any existing symbols. */
1079
1080 if ((have_full_symbols () || have_partial_symbols ())
1081 && mainline
1082 && from_tty
1083 && !query (_("Load new symbol table from \"%s\"? "), name))
1084 error (_("Not confirmed."));
1085
1086 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1087
1088 if (parent)
1089 add_separate_debug_objfile (objfile, parent);
1090
1091 /* We either created a new mapped symbol table, mapped an existing
1092 symbol table file which has not had initial symbol reading
1093 performed, or need to read an unmapped symbol table. */
1094 if (should_print)
1095 {
1096 if (deprecated_pre_add_symbol_hook)
1097 deprecated_pre_add_symbol_hook (name);
1098 else
1099 {
1100 printf_unfiltered (_("Reading symbols from %s..."), name);
1101 wrap_here ("");
1102 gdb_flush (gdb_stdout);
1103 }
1104 }
1105 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1106 add_flags);
1107
1108 /* We now have at least a partial symbol table. Check to see if the
1109 user requested that all symbols be read on initial access via either
1110 the gdb startup command line or on a per symbol file basis. Expand
1111 all partial symbol tables for this objfile if so. */
1112
1113 if ((flags & OBJF_READNOW))
1114 {
1115 if (should_print)
1116 {
1117 printf_unfiltered (_("expanding to full symbols..."));
1118 wrap_here ("");
1119 gdb_flush (gdb_stdout);
1120 }
1121
1122 if (objfile->sf)
1123 objfile->sf->qf->expand_all_symtabs (objfile);
1124 }
1125
1126 if (should_print && !objfile_has_symbols (objfile))
1127 {
1128 wrap_here ("");
1129 printf_unfiltered (_("(no debugging symbols found)..."));
1130 wrap_here ("");
1131 }
1132
1133 if (should_print)
1134 {
1135 if (deprecated_post_add_symbol_hook)
1136 deprecated_post_add_symbol_hook ();
1137 else
1138 printf_unfiltered (_("done.\n"));
1139 }
1140
1141 /* We print some messages regardless of whether 'from_tty ||
1142 info_verbose' is true, so make sure they go out at the right
1143 time. */
1144 gdb_flush (gdb_stdout);
1145
1146 if (objfile->sf == NULL)
1147 {
1148 observer_notify_new_objfile (objfile);
1149 return objfile; /* No symbols. */
1150 }
1151
1152 new_symfile_objfile (objfile, add_flags);
1153
1154 observer_notify_new_objfile (objfile);
1155
1156 bfd_cache_close_all ();
1157 return (objfile);
1158 }
1159
1160 /* Add BFD as a separate debug file for OBJFILE. */
1161
1162 void
1163 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1164 {
1165 struct objfile *new_objfile;
1166 struct section_addr_info *sap;
1167 struct cleanup *my_cleanup;
1168
1169 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1170 because sections of BFD may not match sections of OBJFILE and because
1171 vma may have been modified by tools such as prelink. */
1172 sap = build_section_addr_info_from_objfile (objfile);
1173 my_cleanup = make_cleanup_free_section_addr_info (sap);
1174
1175 new_objfile = symbol_file_add_with_addrs_or_offsets
1176 (bfd, symfile_flags,
1177 sap, NULL, 0,
1178 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1179 | OBJF_USERLOADED),
1180 objfile);
1181
1182 do_cleanups (my_cleanup);
1183 }
1184
1185 /* Process the symbol file ABFD, as either the main file or as a
1186 dynamically loaded file.
1187
1188 See symbol_file_add_with_addrs_or_offsets's comments for
1189 details. */
1190 struct objfile *
1191 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1192 struct section_addr_info *addrs,
1193 int flags, struct objfile *parent)
1194 {
1195 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1196 flags, parent);
1197 }
1198
1199
1200 /* Process a symbol file, as either the main file or as a dynamically
1201 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1202 for details. */
1203 struct objfile *
1204 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1205 int flags)
1206 {
1207 bfd *bfd = symfile_bfd_open (name);
1208 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1209 struct objfile *objf;
1210
1211 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1212 do_cleanups (cleanup);
1213 return objf;
1214 }
1215
1216
1217 /* Call symbol_file_add() with default values and update whatever is
1218 affected by the loading of a new main().
1219 Used when the file is supplied in the gdb command line
1220 and by some targets with special loading requirements.
1221 The auxiliary function, symbol_file_add_main_1(), has the flags
1222 argument for the switches that can only be specified in the symbol_file
1223 command itself. */
1224
1225 void
1226 symbol_file_add_main (char *args, int from_tty)
1227 {
1228 symbol_file_add_main_1 (args, from_tty, 0);
1229 }
1230
1231 static void
1232 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1233 {
1234 const int add_flags = (current_inferior ()->symfile_flags
1235 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1236
1237 symbol_file_add (args, add_flags, NULL, flags);
1238
1239 /* Getting new symbols may change our opinion about
1240 what is frameless. */
1241 reinit_frame_cache ();
1242
1243 if ((flags & SYMFILE_NO_READ) == 0)
1244 set_initial_language ();
1245 }
1246
1247 void
1248 symbol_file_clear (int from_tty)
1249 {
1250 if ((have_full_symbols () || have_partial_symbols ())
1251 && from_tty
1252 && (symfile_objfile
1253 ? !query (_("Discard symbol table from `%s'? "),
1254 symfile_objfile->name)
1255 : !query (_("Discard symbol table? "))))
1256 error (_("Not confirmed."));
1257
1258 /* solib descriptors may have handles to objfiles. Wipe them before their
1259 objfiles get stale by free_all_objfiles. */
1260 no_shared_libraries (NULL, from_tty);
1261
1262 free_all_objfiles ();
1263
1264 gdb_assert (symfile_objfile == NULL);
1265 if (from_tty)
1266 printf_unfiltered (_("No symbol file now.\n"));
1267 }
1268
1269 static char *
1270 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1271 {
1272 asection *sect;
1273 bfd_size_type debuglink_size;
1274 unsigned long crc32;
1275 char *contents;
1276 int crc_offset;
1277
1278 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1279
1280 if (sect == NULL)
1281 return NULL;
1282
1283 debuglink_size = bfd_section_size (objfile->obfd, sect);
1284
1285 contents = xmalloc (debuglink_size);
1286 bfd_get_section_contents (objfile->obfd, sect, contents,
1287 (file_ptr)0, (bfd_size_type)debuglink_size);
1288
1289 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1290 crc_offset = strlen (contents) + 1;
1291 crc_offset = (crc_offset + 3) & ~3;
1292
1293 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1294
1295 *crc32_out = crc32;
1296 return contents;
1297 }
1298
1299 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1300 return 1. Otherwise print a warning and return 0. ABFD seek position is
1301 not preserved. */
1302
1303 static int
1304 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1305 {
1306 unsigned long file_crc = 0;
1307
1308 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1309 {
1310 warning (_("Problem reading \"%s\" for CRC: %s"),
1311 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1312 return 0;
1313 }
1314
1315 for (;;)
1316 {
1317 gdb_byte buffer[8 * 1024];
1318 bfd_size_type count;
1319
1320 count = bfd_bread (buffer, sizeof (buffer), abfd);
1321 if (count == (bfd_size_type) -1)
1322 {
1323 warning (_("Problem reading \"%s\" for CRC: %s"),
1324 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1325 return 0;
1326 }
1327 if (count == 0)
1328 break;
1329 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1330 }
1331
1332 *file_crc_return = file_crc;
1333 return 1;
1334 }
1335
1336 static int
1337 separate_debug_file_exists (const char *name, unsigned long crc,
1338 struct objfile *parent_objfile)
1339 {
1340 unsigned long file_crc;
1341 int file_crc_p;
1342 bfd *abfd;
1343 struct stat parent_stat, abfd_stat;
1344 int verified_as_different;
1345
1346 /* Find a separate debug info file as if symbols would be present in
1347 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1348 section can contain just the basename of PARENT_OBJFILE without any
1349 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1350 the separate debug infos with the same basename can exist. */
1351
1352 if (filename_cmp (name, parent_objfile->name) == 0)
1353 return 0;
1354
1355 abfd = gdb_bfd_open_maybe_remote (name);
1356
1357 if (!abfd)
1358 return 0;
1359
1360 /* Verify symlinks were not the cause of filename_cmp name difference above.
1361
1362 Some operating systems, e.g. Windows, do not provide a meaningful
1363 st_ino; they always set it to zero. (Windows does provide a
1364 meaningful st_dev.) Do not indicate a duplicate library in that
1365 case. While there is no guarantee that a system that provides
1366 meaningful inode numbers will never set st_ino to zero, this is
1367 merely an optimization, so we do not need to worry about false
1368 negatives. */
1369
1370 if (bfd_stat (abfd, &abfd_stat) == 0
1371 && abfd_stat.st_ino != 0
1372 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1373 {
1374 if (abfd_stat.st_dev == parent_stat.st_dev
1375 && abfd_stat.st_ino == parent_stat.st_ino)
1376 {
1377 gdb_bfd_unref (abfd);
1378 return 0;
1379 }
1380 verified_as_different = 1;
1381 }
1382 else
1383 verified_as_different = 0;
1384
1385 file_crc_p = get_file_crc (abfd, &file_crc);
1386
1387 gdb_bfd_unref (abfd);
1388
1389 if (!file_crc_p)
1390 return 0;
1391
1392 if (crc != file_crc)
1393 {
1394 /* If one (or both) the files are accessed for example the via "remote:"
1395 gdbserver way it does not support the bfd_stat operation. Verify
1396 whether those two files are not the same manually. */
1397
1398 if (!verified_as_different && !parent_objfile->crc32_p)
1399 {
1400 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1401 &parent_objfile->crc32);
1402 if (!parent_objfile->crc32_p)
1403 return 0;
1404 }
1405
1406 if (verified_as_different || parent_objfile->crc32 != file_crc)
1407 warning (_("the debug information found in \"%s\""
1408 " does not match \"%s\" (CRC mismatch).\n"),
1409 name, parent_objfile->name);
1410
1411 return 0;
1412 }
1413
1414 return 1;
1415 }
1416
1417 char *debug_file_directory = NULL;
1418 static void
1419 show_debug_file_directory (struct ui_file *file, int from_tty,
1420 struct cmd_list_element *c, const char *value)
1421 {
1422 fprintf_filtered (file,
1423 _("The directory where separate debug "
1424 "symbols are searched for is \"%s\".\n"),
1425 value);
1426 }
1427
1428 #if ! defined (DEBUG_SUBDIRECTORY)
1429 #define DEBUG_SUBDIRECTORY ".debug"
1430 #endif
1431
1432 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1433 where the original file resides (may not be the same as
1434 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1435 looking for. Returns the name of the debuginfo, of NULL. */
1436
1437 static char *
1438 find_separate_debug_file (const char *dir,
1439 const char *canon_dir,
1440 const char *debuglink,
1441 unsigned long crc32, struct objfile *objfile)
1442 {
1443 char *debugdir;
1444 char *debugfile;
1445 int i;
1446 VEC (char_ptr) *debugdir_vec;
1447 struct cleanup *back_to;
1448 int ix;
1449
1450 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1451 i = strlen (dir);
1452 if (canon_dir != NULL && strlen (canon_dir) > i)
1453 i = strlen (canon_dir);
1454
1455 debugfile = xmalloc (strlen (debug_file_directory) + 1
1456 + i
1457 + strlen (DEBUG_SUBDIRECTORY)
1458 + strlen ("/")
1459 + strlen (debuglink)
1460 + 1);
1461
1462 /* First try in the same directory as the original file. */
1463 strcpy (debugfile, dir);
1464 strcat (debugfile, debuglink);
1465
1466 if (separate_debug_file_exists (debugfile, crc32, objfile))
1467 return debugfile;
1468
1469 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1470 strcpy (debugfile, dir);
1471 strcat (debugfile, DEBUG_SUBDIRECTORY);
1472 strcat (debugfile, "/");
1473 strcat (debugfile, debuglink);
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1476 return debugfile;
1477
1478 /* Then try in the global debugfile directories.
1479
1480 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1481 cause "/..." lookups. */
1482
1483 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1484 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1485
1486 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1487 {
1488 strcpy (debugfile, debugdir);
1489 strcat (debugfile, "/");
1490 strcat (debugfile, dir);
1491 strcat (debugfile, debuglink);
1492
1493 if (separate_debug_file_exists (debugfile, crc32, objfile))
1494 return debugfile;
1495
1496 /* If the file is in the sysroot, try using its base path in the
1497 global debugfile directory. */
1498 if (canon_dir != NULL
1499 && filename_ncmp (canon_dir, gdb_sysroot,
1500 strlen (gdb_sysroot)) == 0
1501 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1502 {
1503 strcpy (debugfile, debugdir);
1504 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1505 strcat (debugfile, "/");
1506 strcat (debugfile, debuglink);
1507
1508 if (separate_debug_file_exists (debugfile, crc32, objfile))
1509 return debugfile;
1510 }
1511 }
1512
1513 do_cleanups (back_to);
1514 xfree (debugfile);
1515 return NULL;
1516 }
1517
1518 /* Modify PATH to contain only "directory/" part of PATH.
1519 If there were no directory separators in PATH, PATH will be empty
1520 string on return. */
1521
1522 static void
1523 terminate_after_last_dir_separator (char *path)
1524 {
1525 int i;
1526
1527 /* Strip off the final filename part, leaving the directory name,
1528 followed by a slash. The directory can be relative or absolute. */
1529 for (i = strlen(path) - 1; i >= 0; i--)
1530 if (IS_DIR_SEPARATOR (path[i]))
1531 break;
1532
1533 /* If I is -1 then no directory is present there and DIR will be "". */
1534 path[i + 1] = '\0';
1535 }
1536
1537 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1538 Returns pathname, or NULL. */
1539
1540 char *
1541 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1542 {
1543 char *debuglink;
1544 char *dir, *canon_dir;
1545 char *debugfile;
1546 unsigned long crc32;
1547 struct cleanup *cleanups;
1548
1549 debuglink = get_debug_link_info (objfile, &crc32);
1550
1551 if (debuglink == NULL)
1552 {
1553 /* There's no separate debug info, hence there's no way we could
1554 load it => no warning. */
1555 return NULL;
1556 }
1557
1558 cleanups = make_cleanup (xfree, debuglink);
1559 dir = xstrdup (objfile->name);
1560 make_cleanup (xfree, dir);
1561 terminate_after_last_dir_separator (dir);
1562 canon_dir = lrealpath (dir);
1563
1564 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1565 crc32, objfile);
1566 xfree (canon_dir);
1567
1568 if (debugfile == NULL)
1569 {
1570 #ifdef HAVE_LSTAT
1571 /* For PR gdb/9538, try again with realpath (if different from the
1572 original). */
1573
1574 struct stat st_buf;
1575
1576 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1577 {
1578 char *symlink_dir;
1579
1580 symlink_dir = lrealpath (objfile->name);
1581 if (symlink_dir != NULL)
1582 {
1583 make_cleanup (xfree, symlink_dir);
1584 terminate_after_last_dir_separator (symlink_dir);
1585 if (strcmp (dir, symlink_dir) != 0)
1586 {
1587 /* Different directory, so try using it. */
1588 debugfile = find_separate_debug_file (symlink_dir,
1589 symlink_dir,
1590 debuglink,
1591 crc32,
1592 objfile);
1593 }
1594 }
1595 }
1596 #endif /* HAVE_LSTAT */
1597 }
1598
1599 do_cleanups (cleanups);
1600 return debugfile;
1601 }
1602
1603
1604 /* This is the symbol-file command. Read the file, analyze its
1605 symbols, and add a struct symtab to a symtab list. The syntax of
1606 the command is rather bizarre:
1607
1608 1. The function buildargv implements various quoting conventions
1609 which are undocumented and have little or nothing in common with
1610 the way things are quoted (or not quoted) elsewhere in GDB.
1611
1612 2. Options are used, which are not generally used in GDB (perhaps
1613 "set mapped on", "set readnow on" would be better)
1614
1615 3. The order of options matters, which is contrary to GNU
1616 conventions (because it is confusing and inconvenient). */
1617
1618 void
1619 symbol_file_command (char *args, int from_tty)
1620 {
1621 dont_repeat ();
1622
1623 if (args == NULL)
1624 {
1625 symbol_file_clear (from_tty);
1626 }
1627 else
1628 {
1629 char **argv = gdb_buildargv (args);
1630 int flags = OBJF_USERLOADED;
1631 struct cleanup *cleanups;
1632 char *name = NULL;
1633
1634 cleanups = make_cleanup_freeargv (argv);
1635 while (*argv != NULL)
1636 {
1637 if (strcmp (*argv, "-readnow") == 0)
1638 flags |= OBJF_READNOW;
1639 else if (**argv == '-')
1640 error (_("unknown option `%s'"), *argv);
1641 else
1642 {
1643 symbol_file_add_main_1 (*argv, from_tty, flags);
1644 name = *argv;
1645 }
1646
1647 argv++;
1648 }
1649
1650 if (name == NULL)
1651 error (_("no symbol file name was specified"));
1652
1653 do_cleanups (cleanups);
1654 }
1655 }
1656
1657 /* Set the initial language.
1658
1659 FIXME: A better solution would be to record the language in the
1660 psymtab when reading partial symbols, and then use it (if known) to
1661 set the language. This would be a win for formats that encode the
1662 language in an easily discoverable place, such as DWARF. For
1663 stabs, we can jump through hoops looking for specially named
1664 symbols or try to intuit the language from the specific type of
1665 stabs we find, but we can't do that until later when we read in
1666 full symbols. */
1667
1668 void
1669 set_initial_language (void)
1670 {
1671 enum language lang = language_unknown;
1672
1673 if (language_of_main != language_unknown)
1674 lang = language_of_main;
1675 else
1676 {
1677 const char *filename;
1678
1679 filename = find_main_filename ();
1680 if (filename != NULL)
1681 lang = deduce_language_from_filename (filename);
1682 }
1683
1684 if (lang == language_unknown)
1685 {
1686 /* Make C the default language */
1687 lang = language_c;
1688 }
1689
1690 set_language (lang);
1691 expected_language = current_language; /* Don't warn the user. */
1692 }
1693
1694 /* If NAME is a remote name open the file using remote protocol, otherwise
1695 open it normally. Returns a new reference to the BFD. On error,
1696 returns NULL with the BFD error set. */
1697
1698 bfd *
1699 gdb_bfd_open_maybe_remote (const char *name)
1700 {
1701 bfd *result;
1702
1703 if (remote_filename_p (name))
1704 result = remote_bfd_open (name, gnutarget);
1705 else
1706 result = gdb_bfd_openr (name, gnutarget);
1707
1708 return result;
1709 }
1710
1711
1712 /* Open the file specified by NAME and hand it off to BFD for
1713 preliminary analysis. Return a newly initialized bfd *, which
1714 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1715 absolute). In case of trouble, error() is called. */
1716
1717 bfd *
1718 symfile_bfd_open (char *name)
1719 {
1720 bfd *sym_bfd;
1721 int desc;
1722 char *absolute_name;
1723
1724 if (remote_filename_p (name))
1725 {
1726 sym_bfd = remote_bfd_open (name, gnutarget);
1727 if (!sym_bfd)
1728 error (_("`%s': can't open to read symbols: %s."), name,
1729 bfd_errmsg (bfd_get_error ()));
1730
1731 if (!bfd_check_format (sym_bfd, bfd_object))
1732 {
1733 make_cleanup_bfd_unref (sym_bfd);
1734 error (_("`%s': can't read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
1736 }
1737
1738 return sym_bfd;
1739 }
1740
1741 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1742
1743 /* Look down path for it, allocate 2nd new malloc'd copy. */
1744 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1745 O_RDONLY | O_BINARY, &absolute_name);
1746 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1747 if (desc < 0)
1748 {
1749 char *exename = alloca (strlen (name) + 5);
1750
1751 strcat (strcpy (exename, name), ".exe");
1752 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1753 O_RDONLY | O_BINARY, &absolute_name);
1754 }
1755 #endif
1756 if (desc < 0)
1757 {
1758 make_cleanup (xfree, name);
1759 perror_with_name (name);
1760 }
1761
1762 xfree (name);
1763 name = absolute_name;
1764 make_cleanup (xfree, name);
1765
1766 sym_bfd = gdb_bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1767 if (!sym_bfd)
1768 {
1769 make_cleanup (xfree, name);
1770 error (_("`%s': can't open to read symbols: %s."), name,
1771 bfd_errmsg (bfd_get_error ()));
1772 }
1773 bfd_set_cacheable (sym_bfd, 1);
1774
1775 if (!bfd_check_format (sym_bfd, bfd_object))
1776 {
1777 make_cleanup_bfd_unref (sym_bfd);
1778 error (_("`%s': can't read symbols: %s."), name,
1779 bfd_errmsg (bfd_get_error ()));
1780 }
1781
1782 return sym_bfd;
1783 }
1784
1785 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1786 the section was not found. */
1787
1788 int
1789 get_section_index (struct objfile *objfile, char *section_name)
1790 {
1791 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1792
1793 if (sect)
1794 return sect->index;
1795 else
1796 return -1;
1797 }
1798
1799 /* Link SF into the global symtab_fns list. Called on startup by the
1800 _initialize routine in each object file format reader, to register
1801 information about each format the reader is prepared to handle. */
1802
1803 void
1804 add_symtab_fns (const struct sym_fns *sf)
1805 {
1806 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1807 }
1808
1809 /* Initialize OBJFILE to read symbols from its associated BFD. It
1810 either returns or calls error(). The result is an initialized
1811 struct sym_fns in the objfile structure, that contains cached
1812 information about the symbol file. */
1813
1814 static const struct sym_fns *
1815 find_sym_fns (bfd *abfd)
1816 {
1817 const struct sym_fns *sf;
1818 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1819 int i;
1820
1821 if (our_flavour == bfd_target_srec_flavour
1822 || our_flavour == bfd_target_ihex_flavour
1823 || our_flavour == bfd_target_tekhex_flavour)
1824 return NULL; /* No symbols. */
1825
1826 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1827 if (our_flavour == sf->sym_flavour)
1828 return sf;
1829
1830 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1831 bfd_get_target (abfd));
1832 }
1833 \f
1834
1835 /* This function runs the load command of our current target. */
1836
1837 static void
1838 load_command (char *arg, int from_tty)
1839 {
1840 dont_repeat ();
1841
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1845 reread_symbols ();
1846
1847 if (arg == NULL)
1848 {
1849 char *parg;
1850 int count = 0;
1851
1852 parg = arg = get_exec_file (1);
1853
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1856 {
1857 parg++;
1858 count++;
1859 }
1860
1861 if (count)
1862 {
1863 /* We need to quote this string so buildargv can pull it apart. */
1864 char *temp = xmalloc (strlen (arg) + count + 1 );
1865 char *ptemp = temp;
1866 char *prev;
1867
1868 make_cleanup (xfree, temp);
1869
1870 prev = parg = arg;
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1872 {
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1875 prev = parg++;
1876 *ptemp++ = '\\';
1877 }
1878 strcpy (ptemp, prev);
1879
1880 arg = temp;
1881 }
1882 }
1883
1884 target_load (arg, from_tty);
1885
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
1889 }
1890
1891 /* This version of "load" should be usable for any target. Currently
1892 it is just used for remote targets, not inftarg.c or core files,
1893 on the theory that only in that case is it useful.
1894
1895 Avoiding xmodem and the like seems like a win (a) because we don't have
1896 to worry about finding it, and (b) On VMS, fork() is very slow and so
1897 we don't want to run a subprocess. On the other hand, I'm not sure how
1898 performance compares. */
1899
1900 static int validate_download = 0;
1901
1902 /* Callback service function for generic_load (bfd_map_over_sections). */
1903
1904 static void
1905 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1906 {
1907 bfd_size_type *sum = data;
1908
1909 *sum += bfd_get_section_size (asec);
1910 }
1911
1912 /* Opaque data for load_section_callback. */
1913 struct load_section_data {
1914 unsigned long load_offset;
1915 struct load_progress_data *progress_data;
1916 VEC(memory_write_request_s) *requests;
1917 };
1918
1919 /* Opaque data for load_progress. */
1920 struct load_progress_data {
1921 /* Cumulative data. */
1922 unsigned long write_count;
1923 unsigned long data_count;
1924 bfd_size_type total_size;
1925 };
1926
1927 /* Opaque data for load_progress for a single section. */
1928 struct load_progress_section_data {
1929 struct load_progress_data *cumulative;
1930
1931 /* Per-section data. */
1932 const char *section_name;
1933 ULONGEST section_sent;
1934 ULONGEST section_size;
1935 CORE_ADDR lma;
1936 gdb_byte *buffer;
1937 };
1938
1939 /* Target write callback routine for progress reporting. */
1940
1941 static void
1942 load_progress (ULONGEST bytes, void *untyped_arg)
1943 {
1944 struct load_progress_section_data *args = untyped_arg;
1945 struct load_progress_data *totals;
1946
1947 if (args == NULL)
1948 /* Writing padding data. No easy way to get at the cumulative
1949 stats, so just ignore this. */
1950 return;
1951
1952 totals = args->cumulative;
1953
1954 if (bytes == 0 && args->section_sent == 0)
1955 {
1956 /* The write is just starting. Let the user know we've started
1957 this section. */
1958 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1959 args->section_name, hex_string (args->section_size),
1960 paddress (target_gdbarch, args->lma));
1961 return;
1962 }
1963
1964 if (validate_download)
1965 {
1966 /* Broken memories and broken monitors manifest themselves here
1967 when bring new computers to life. This doubles already slow
1968 downloads. */
1969 /* NOTE: cagney/1999-10-18: A more efficient implementation
1970 might add a verify_memory() method to the target vector and
1971 then use that. remote.c could implement that method using
1972 the ``qCRC'' packet. */
1973 gdb_byte *check = xmalloc (bytes);
1974 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1975
1976 if (target_read_memory (args->lma, check, bytes) != 0)
1977 error (_("Download verify read failed at %s"),
1978 paddress (target_gdbarch, args->lma));
1979 if (memcmp (args->buffer, check, bytes) != 0)
1980 error (_("Download verify compare failed at %s"),
1981 paddress (target_gdbarch, args->lma));
1982 do_cleanups (verify_cleanups);
1983 }
1984 totals->data_count += bytes;
1985 args->lma += bytes;
1986 args->buffer += bytes;
1987 totals->write_count += 1;
1988 args->section_sent += bytes;
1989 if (quit_flag
1990 || (deprecated_ui_load_progress_hook != NULL
1991 && deprecated_ui_load_progress_hook (args->section_name,
1992 args->section_sent)))
1993 error (_("Canceled the download"));
1994
1995 if (deprecated_show_load_progress != NULL)
1996 deprecated_show_load_progress (args->section_name,
1997 args->section_sent,
1998 args->section_size,
1999 totals->data_count,
2000 totals->total_size);
2001 }
2002
2003 /* Callback service function for generic_load (bfd_map_over_sections). */
2004
2005 static void
2006 load_section_callback (bfd *abfd, asection *asec, void *data)
2007 {
2008 struct memory_write_request *new_request;
2009 struct load_section_data *args = data;
2010 struct load_progress_section_data *section_data;
2011 bfd_size_type size = bfd_get_section_size (asec);
2012 gdb_byte *buffer;
2013 const char *sect_name = bfd_get_section_name (abfd, asec);
2014
2015 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2016 return;
2017
2018 if (size == 0)
2019 return;
2020
2021 new_request = VEC_safe_push (memory_write_request_s,
2022 args->requests, NULL);
2023 memset (new_request, 0, sizeof (struct memory_write_request));
2024 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2025 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2026 new_request->end = new_request->begin + size; /* FIXME Should size
2027 be in instead? */
2028 new_request->data = xmalloc (size);
2029 new_request->baton = section_data;
2030
2031 buffer = new_request->data;
2032
2033 section_data->cumulative = args->progress_data;
2034 section_data->section_name = sect_name;
2035 section_data->section_size = size;
2036 section_data->lma = new_request->begin;
2037 section_data->buffer = buffer;
2038
2039 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2040 }
2041
2042 /* Clean up an entire memory request vector, including load
2043 data and progress records. */
2044
2045 static void
2046 clear_memory_write_data (void *arg)
2047 {
2048 VEC(memory_write_request_s) **vec_p = arg;
2049 VEC(memory_write_request_s) *vec = *vec_p;
2050 int i;
2051 struct memory_write_request *mr;
2052
2053 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2054 {
2055 xfree (mr->data);
2056 xfree (mr->baton);
2057 }
2058 VEC_free (memory_write_request_s, vec);
2059 }
2060
2061 void
2062 generic_load (char *args, int from_tty)
2063 {
2064 bfd *loadfile_bfd;
2065 struct timeval start_time, end_time;
2066 char *filename;
2067 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2068 struct load_section_data cbdata;
2069 struct load_progress_data total_progress;
2070 struct ui_out *uiout = current_uiout;
2071
2072 CORE_ADDR entry;
2073 char **argv;
2074
2075 memset (&cbdata, 0, sizeof (cbdata));
2076 memset (&total_progress, 0, sizeof (total_progress));
2077 cbdata.progress_data = &total_progress;
2078
2079 make_cleanup (clear_memory_write_data, &cbdata.requests);
2080
2081 if (args == NULL)
2082 error_no_arg (_("file to load"));
2083
2084 argv = gdb_buildargv (args);
2085 make_cleanup_freeargv (argv);
2086
2087 filename = tilde_expand (argv[0]);
2088 make_cleanup (xfree, filename);
2089
2090 if (argv[1] != NULL)
2091 {
2092 char *endptr;
2093
2094 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
2095
2096 /* If the last word was not a valid number then
2097 treat it as a file name with spaces in. */
2098 if (argv[1] == endptr)
2099 error (_("Invalid download offset:%s."), argv[1]);
2100
2101 if (argv[2] != NULL)
2102 error (_("Too many parameters."));
2103 }
2104
2105 /* Open the file for loading. */
2106 loadfile_bfd = gdb_bfd_openr (filename, gnutarget);
2107 if (loadfile_bfd == NULL)
2108 {
2109 perror_with_name (filename);
2110 return;
2111 }
2112
2113 make_cleanup_bfd_unref (loadfile_bfd);
2114
2115 if (!bfd_check_format (loadfile_bfd, bfd_object))
2116 {
2117 error (_("\"%s\" is not an object file: %s"), filename,
2118 bfd_errmsg (bfd_get_error ()));
2119 }
2120
2121 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2122 (void *) &total_progress.total_size);
2123
2124 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2125
2126 gettimeofday (&start_time, NULL);
2127
2128 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2129 load_progress) != 0)
2130 error (_("Load failed"));
2131
2132 gettimeofday (&end_time, NULL);
2133
2134 entry = bfd_get_start_address (loadfile_bfd);
2135 ui_out_text (uiout, "Start address ");
2136 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2137 ui_out_text (uiout, ", load size ");
2138 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2139 ui_out_text (uiout, "\n");
2140 /* We were doing this in remote-mips.c, I suspect it is right
2141 for other targets too. */
2142 regcache_write_pc (get_current_regcache (), entry);
2143
2144 /* Reset breakpoints, now that we have changed the load image. For
2145 instance, breakpoints may have been set (or reset, by
2146 post_create_inferior) while connected to the target but before we
2147 loaded the program. In that case, the prologue analyzer could
2148 have read instructions from the target to find the right
2149 breakpoint locations. Loading has changed the contents of that
2150 memory. */
2151
2152 breakpoint_re_set ();
2153
2154 /* FIXME: are we supposed to call symbol_file_add or not? According
2155 to a comment from remote-mips.c (where a call to symbol_file_add
2156 was commented out), making the call confuses GDB if more than one
2157 file is loaded in. Some targets do (e.g., remote-vx.c) but
2158 others don't (or didn't - perhaps they have all been deleted). */
2159
2160 print_transfer_performance (gdb_stdout, total_progress.data_count,
2161 total_progress.write_count,
2162 &start_time, &end_time);
2163
2164 do_cleanups (old_cleanups);
2165 }
2166
2167 /* Report how fast the transfer went. */
2168
2169 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2170 replaced by print_transfer_performance (with a very different
2171 function signature). */
2172
2173 void
2174 report_transfer_performance (unsigned long data_count, time_t start_time,
2175 time_t end_time)
2176 {
2177 struct timeval start, end;
2178
2179 start.tv_sec = start_time;
2180 start.tv_usec = 0;
2181 end.tv_sec = end_time;
2182 end.tv_usec = 0;
2183
2184 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2185 }
2186
2187 void
2188 print_transfer_performance (struct ui_file *stream,
2189 unsigned long data_count,
2190 unsigned long write_count,
2191 const struct timeval *start_time,
2192 const struct timeval *end_time)
2193 {
2194 ULONGEST time_count;
2195 struct ui_out *uiout = current_uiout;
2196
2197 /* Compute the elapsed time in milliseconds, as a tradeoff between
2198 accuracy and overflow. */
2199 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2200 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2201
2202 ui_out_text (uiout, "Transfer rate: ");
2203 if (time_count > 0)
2204 {
2205 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2206
2207 if (ui_out_is_mi_like_p (uiout))
2208 {
2209 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2210 ui_out_text (uiout, " bits/sec");
2211 }
2212 else if (rate < 1024)
2213 {
2214 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2215 ui_out_text (uiout, " bytes/sec");
2216 }
2217 else
2218 {
2219 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2220 ui_out_text (uiout, " KB/sec");
2221 }
2222 }
2223 else
2224 {
2225 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2226 ui_out_text (uiout, " bits in <1 sec");
2227 }
2228 if (write_count > 0)
2229 {
2230 ui_out_text (uiout, ", ");
2231 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2232 ui_out_text (uiout, " bytes/write");
2233 }
2234 ui_out_text (uiout, ".\n");
2235 }
2236
2237 /* This function allows the addition of incrementally linked object files.
2238 It does not modify any state in the target, only in the debugger. */
2239 /* Note: ezannoni 2000-04-13 This function/command used to have a
2240 special case syntax for the rombug target (Rombug is the boot
2241 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2242 rombug case, the user doesn't need to supply a text address,
2243 instead a call to target_link() (in target.c) would supply the
2244 value to use. We are now discontinuing this type of ad hoc syntax. */
2245
2246 static void
2247 add_symbol_file_command (char *args, int from_tty)
2248 {
2249 struct gdbarch *gdbarch = get_current_arch ();
2250 char *filename = NULL;
2251 int flags = OBJF_USERLOADED;
2252 char *arg;
2253 int section_index = 0;
2254 int argcnt = 0;
2255 int sec_num = 0;
2256 int i;
2257 int expecting_sec_name = 0;
2258 int expecting_sec_addr = 0;
2259 char **argv;
2260
2261 struct sect_opt
2262 {
2263 char *name;
2264 char *value;
2265 };
2266
2267 struct section_addr_info *section_addrs;
2268 struct sect_opt *sect_opts = NULL;
2269 size_t num_sect_opts = 0;
2270 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2271
2272 num_sect_opts = 16;
2273 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2274 * sizeof (struct sect_opt));
2275
2276 dont_repeat ();
2277
2278 if (args == NULL)
2279 error (_("add-symbol-file takes a file name and an address"));
2280
2281 argv = gdb_buildargv (args);
2282 make_cleanup_freeargv (argv);
2283
2284 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2285 {
2286 /* Process the argument. */
2287 if (argcnt == 0)
2288 {
2289 /* The first argument is the file name. */
2290 filename = tilde_expand (arg);
2291 make_cleanup (xfree, filename);
2292 }
2293 else
2294 if (argcnt == 1)
2295 {
2296 /* The second argument is always the text address at which
2297 to load the program. */
2298 sect_opts[section_index].name = ".text";
2299 sect_opts[section_index].value = arg;
2300 if (++section_index >= num_sect_opts)
2301 {
2302 num_sect_opts *= 2;
2303 sect_opts = ((struct sect_opt *)
2304 xrealloc (sect_opts,
2305 num_sect_opts
2306 * sizeof (struct sect_opt)));
2307 }
2308 }
2309 else
2310 {
2311 /* It's an option (starting with '-') or it's an argument
2312 to an option. */
2313
2314 if (*arg == '-')
2315 {
2316 if (strcmp (arg, "-readnow") == 0)
2317 flags |= OBJF_READNOW;
2318 else if (strcmp (arg, "-s") == 0)
2319 {
2320 expecting_sec_name = 1;
2321 expecting_sec_addr = 1;
2322 }
2323 }
2324 else
2325 {
2326 if (expecting_sec_name)
2327 {
2328 sect_opts[section_index].name = arg;
2329 expecting_sec_name = 0;
2330 }
2331 else
2332 if (expecting_sec_addr)
2333 {
2334 sect_opts[section_index].value = arg;
2335 expecting_sec_addr = 0;
2336 if (++section_index >= num_sect_opts)
2337 {
2338 num_sect_opts *= 2;
2339 sect_opts = ((struct sect_opt *)
2340 xrealloc (sect_opts,
2341 num_sect_opts
2342 * sizeof (struct sect_opt)));
2343 }
2344 }
2345 else
2346 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2347 " [-readnow] [-s <secname> <addr>]*"));
2348 }
2349 }
2350 }
2351
2352 /* This command takes at least two arguments. The first one is a
2353 filename, and the second is the address where this file has been
2354 loaded. Abort now if this address hasn't been provided by the
2355 user. */
2356 if (section_index < 1)
2357 error (_("The address where %s has been loaded is missing"), filename);
2358
2359 /* Print the prompt for the query below. And save the arguments into
2360 a sect_addr_info structure to be passed around to other
2361 functions. We have to split this up into separate print
2362 statements because hex_string returns a local static
2363 string. */
2364
2365 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2366 section_addrs = alloc_section_addr_info (section_index);
2367 make_cleanup (xfree, section_addrs);
2368 for (i = 0; i < section_index; i++)
2369 {
2370 CORE_ADDR addr;
2371 char *val = sect_opts[i].value;
2372 char *sec = sect_opts[i].name;
2373
2374 addr = parse_and_eval_address (val);
2375
2376 /* Here we store the section offsets in the order they were
2377 entered on the command line. */
2378 section_addrs->other[sec_num].name = sec;
2379 section_addrs->other[sec_num].addr = addr;
2380 printf_unfiltered ("\t%s_addr = %s\n", sec,
2381 paddress (gdbarch, addr));
2382 sec_num++;
2383
2384 /* The object's sections are initialized when a
2385 call is made to build_objfile_section_table (objfile).
2386 This happens in reread_symbols.
2387 At this point, we don't know what file type this is,
2388 so we can't determine what section names are valid. */
2389 }
2390
2391 if (from_tty && (!query ("%s", "")))
2392 error (_("Not confirmed."));
2393
2394 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2395 section_addrs, flags);
2396
2397 /* Getting new symbols may change our opinion about what is
2398 frameless. */
2399 reinit_frame_cache ();
2400 do_cleanups (my_cleanups);
2401 }
2402 \f
2403
2404 typedef struct objfile *objfilep;
2405
2406 DEF_VEC_P (objfilep);
2407
2408 /* Re-read symbols if a symbol-file has changed. */
2409 void
2410 reread_symbols (void)
2411 {
2412 struct objfile *objfile;
2413 long new_modtime;
2414 struct stat new_statbuf;
2415 int res;
2416 VEC (objfilep) *new_objfiles = NULL;
2417 struct cleanup *all_cleanups;
2418
2419 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2420
2421 /* With the addition of shared libraries, this should be modified,
2422 the load time should be saved in the partial symbol tables, since
2423 different tables may come from different source files. FIXME.
2424 This routine should then walk down each partial symbol table
2425 and see if the symbol table that it originates from has been changed. */
2426
2427 for (objfile = object_files; objfile; objfile = objfile->next)
2428 {
2429 /* solib-sunos.c creates one objfile with obfd. */
2430 if (objfile->obfd == NULL)
2431 continue;
2432
2433 /* Separate debug objfiles are handled in the main objfile. */
2434 if (objfile->separate_debug_objfile_backlink)
2435 continue;
2436
2437 /* If this object is from an archive (what you usually create with
2438 `ar', often called a `static library' on most systems, though
2439 a `shared library' on AIX is also an archive), then you should
2440 stat on the archive name, not member name. */
2441 if (objfile->obfd->my_archive)
2442 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2443 else
2444 res = stat (objfile->name, &new_statbuf);
2445 if (res != 0)
2446 {
2447 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2448 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2449 objfile->name);
2450 continue;
2451 }
2452 new_modtime = new_statbuf.st_mtime;
2453 if (new_modtime != objfile->mtime)
2454 {
2455 struct cleanup *old_cleanups;
2456 struct section_offsets *offsets;
2457 int num_offsets;
2458 char *obfd_filename;
2459
2460 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2461 objfile->name);
2462
2463 /* There are various functions like symbol_file_add,
2464 symfile_bfd_open, syms_from_objfile, etc., which might
2465 appear to do what we want. But they have various other
2466 effects which we *don't* want. So we just do stuff
2467 ourselves. We don't worry about mapped files (for one thing,
2468 any mapped file will be out of date). */
2469
2470 /* If we get an error, blow away this objfile (not sure if
2471 that is the correct response for things like shared
2472 libraries). */
2473 old_cleanups = make_cleanup_free_objfile (objfile);
2474 /* We need to do this whenever any symbols go away. */
2475 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2476
2477 if (exec_bfd != NULL
2478 && filename_cmp (bfd_get_filename (objfile->obfd),
2479 bfd_get_filename (exec_bfd)) == 0)
2480 {
2481 /* Reload EXEC_BFD without asking anything. */
2482
2483 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2484 }
2485
2486 /* Keep the calls order approx. the same as in free_objfile. */
2487
2488 /* Free the separate debug objfiles. It will be
2489 automatically recreated by sym_read. */
2490 free_objfile_separate_debug (objfile);
2491
2492 /* Remove any references to this objfile in the global
2493 value lists. */
2494 preserve_values (objfile);
2495
2496 /* Nuke all the state that we will re-read. Much of the following
2497 code which sets things to NULL really is necessary to tell
2498 other parts of GDB that there is nothing currently there.
2499
2500 Try to keep the freeing order compatible with free_objfile. */
2501
2502 if (objfile->sf != NULL)
2503 {
2504 (*objfile->sf->sym_finish) (objfile);
2505 }
2506
2507 clear_objfile_data (objfile);
2508
2509 /* Clean up any state BFD has sitting around. We don't need
2510 to close the descriptor but BFD lacks a way of closing the
2511 BFD without closing the descriptor. */
2512 {
2513 struct bfd *obfd = objfile->obfd;
2514
2515 obfd_filename = bfd_get_filename (objfile->obfd);
2516 /* Open the new BFD before freeing the old one, so that
2517 the filename remains live. */
2518 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2519 gdb_bfd_unref (obfd);
2520 }
2521
2522 if (objfile->obfd == NULL)
2523 error (_("Can't open %s to read symbols."), objfile->name);
2524 /* bfd_openr sets cacheable to true, which is what we want. */
2525 if (!bfd_check_format (objfile->obfd, bfd_object))
2526 error (_("Can't read symbols from %s: %s."), objfile->name,
2527 bfd_errmsg (bfd_get_error ()));
2528
2529 /* Save the offsets, we will nuke them with the rest of the
2530 objfile_obstack. */
2531 num_offsets = objfile->num_sections;
2532 offsets = ((struct section_offsets *)
2533 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2534 memcpy (offsets, objfile->section_offsets,
2535 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2536
2537 /* FIXME: Do we have to free a whole linked list, or is this
2538 enough? */
2539 if (objfile->global_psymbols.list)
2540 xfree (objfile->global_psymbols.list);
2541 memset (&objfile->global_psymbols, 0,
2542 sizeof (objfile->global_psymbols));
2543 if (objfile->static_psymbols.list)
2544 xfree (objfile->static_psymbols.list);
2545 memset (&objfile->static_psymbols, 0,
2546 sizeof (objfile->static_psymbols));
2547
2548 /* Free the obstacks for non-reusable objfiles. */
2549 psymbol_bcache_free (objfile->psymbol_cache);
2550 objfile->psymbol_cache = psymbol_bcache_init ();
2551 bcache_xfree (objfile->macro_cache);
2552 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2553 bcache_xfree (objfile->filename_cache);
2554 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2555 if (objfile->demangled_names_hash != NULL)
2556 {
2557 htab_delete (objfile->demangled_names_hash);
2558 objfile->demangled_names_hash = NULL;
2559 }
2560 obstack_free (&objfile->objfile_obstack, 0);
2561 objfile->sections = NULL;
2562 objfile->symtabs = NULL;
2563 objfile->psymtabs = NULL;
2564 objfile->psymtabs_addrmap = NULL;
2565 objfile->free_psymtabs = NULL;
2566 objfile->template_symbols = NULL;
2567 objfile->msymbols = NULL;
2568 objfile->deprecated_sym_private = NULL;
2569 objfile->minimal_symbol_count = 0;
2570 memset (&objfile->msymbol_hash, 0,
2571 sizeof (objfile->msymbol_hash));
2572 memset (&objfile->msymbol_demangled_hash, 0,
2573 sizeof (objfile->msymbol_demangled_hash));
2574
2575 /* obstack_init also initializes the obstack so it is
2576 empty. We could use obstack_specify_allocation but
2577 gdb_obstack.h specifies the alloc/dealloc functions. */
2578 obstack_init (&objfile->objfile_obstack);
2579 build_objfile_section_table (objfile);
2580 terminate_minimal_symbol_table (objfile);
2581
2582 /* We use the same section offsets as from last time. I'm not
2583 sure whether that is always correct for shared libraries. */
2584 objfile->section_offsets = (struct section_offsets *)
2585 obstack_alloc (&objfile->objfile_obstack,
2586 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2587 memcpy (objfile->section_offsets, offsets,
2588 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2589 objfile->num_sections = num_offsets;
2590
2591 /* What the hell is sym_new_init for, anyway? The concept of
2592 distinguishing between the main file and additional files
2593 in this way seems rather dubious. */
2594 if (objfile == symfile_objfile)
2595 {
2596 (*objfile->sf->sym_new_init) (objfile);
2597 }
2598
2599 (*objfile->sf->sym_init) (objfile);
2600 clear_complaints (&symfile_complaints, 1, 1);
2601 /* Do not set flags as this is safe and we don't want to be
2602 verbose. */
2603 (*objfile->sf->sym_read) (objfile, 0);
2604 if ((objfile->flags & OBJF_PSYMTABS_READ) != 0)
2605 {
2606 objfile->flags &= ~OBJF_PSYMTABS_READ;
2607 require_partial_symbols (objfile, 0);
2608 }
2609
2610 if (!objfile_has_symbols (objfile))
2611 {
2612 wrap_here ("");
2613 printf_unfiltered (_("(no debugging symbols found)\n"));
2614 wrap_here ("");
2615 }
2616
2617 /* We're done reading the symbol file; finish off complaints. */
2618 clear_complaints (&symfile_complaints, 0, 1);
2619
2620 /* Getting new symbols may change our opinion about what is
2621 frameless. */
2622
2623 reinit_frame_cache ();
2624
2625 /* Discard cleanups as symbol reading was successful. */
2626 discard_cleanups (old_cleanups);
2627
2628 /* If the mtime has changed between the time we set new_modtime
2629 and now, we *want* this to be out of date, so don't call stat
2630 again now. */
2631 objfile->mtime = new_modtime;
2632 init_entry_point_info (objfile);
2633
2634 VEC_safe_push (objfilep, new_objfiles, objfile);
2635 }
2636 }
2637
2638 if (new_objfiles)
2639 {
2640 int ix;
2641
2642 /* Notify objfiles that we've modified objfile sections. */
2643 objfiles_changed ();
2644
2645 clear_symtab_users (0);
2646
2647 /* clear_objfile_data for each objfile was called before freeing it and
2648 observer_notify_new_objfile (NULL) has been called by
2649 clear_symtab_users above. Notify the new files now. */
2650 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2651 observer_notify_new_objfile (objfile);
2652
2653 /* At least one objfile has changed, so we can consider that
2654 the executable we're debugging has changed too. */
2655 observer_notify_executable_changed ();
2656 }
2657
2658 do_cleanups (all_cleanups);
2659 }
2660 \f
2661
2662
2663 typedef struct
2664 {
2665 char *ext;
2666 enum language lang;
2667 }
2668 filename_language;
2669
2670 static filename_language *filename_language_table;
2671 static int fl_table_size, fl_table_next;
2672
2673 static void
2674 add_filename_language (char *ext, enum language lang)
2675 {
2676 if (fl_table_next >= fl_table_size)
2677 {
2678 fl_table_size += 10;
2679 filename_language_table =
2680 xrealloc (filename_language_table,
2681 fl_table_size * sizeof (*filename_language_table));
2682 }
2683
2684 filename_language_table[fl_table_next].ext = xstrdup (ext);
2685 filename_language_table[fl_table_next].lang = lang;
2686 fl_table_next++;
2687 }
2688
2689 static char *ext_args;
2690 static void
2691 show_ext_args (struct ui_file *file, int from_tty,
2692 struct cmd_list_element *c, const char *value)
2693 {
2694 fprintf_filtered (file,
2695 _("Mapping between filename extension "
2696 "and source language is \"%s\".\n"),
2697 value);
2698 }
2699
2700 static void
2701 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2702 {
2703 int i;
2704 char *cp = ext_args;
2705 enum language lang;
2706
2707 /* First arg is filename extension, starting with '.' */
2708 if (*cp != '.')
2709 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2710
2711 /* Find end of first arg. */
2712 while (*cp && !isspace (*cp))
2713 cp++;
2714
2715 if (*cp == '\0')
2716 error (_("'%s': two arguments required -- "
2717 "filename extension and language"),
2718 ext_args);
2719
2720 /* Null-terminate first arg. */
2721 *cp++ = '\0';
2722
2723 /* Find beginning of second arg, which should be a source language. */
2724 while (*cp && isspace (*cp))
2725 cp++;
2726
2727 if (*cp == '\0')
2728 error (_("'%s': two arguments required -- "
2729 "filename extension and language"),
2730 ext_args);
2731
2732 /* Lookup the language from among those we know. */
2733 lang = language_enum (cp);
2734
2735 /* Now lookup the filename extension: do we already know it? */
2736 for (i = 0; i < fl_table_next; i++)
2737 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2738 break;
2739
2740 if (i >= fl_table_next)
2741 {
2742 /* New file extension. */
2743 add_filename_language (ext_args, lang);
2744 }
2745 else
2746 {
2747 /* Redefining a previously known filename extension. */
2748
2749 /* if (from_tty) */
2750 /* query ("Really make files of type %s '%s'?", */
2751 /* ext_args, language_str (lang)); */
2752
2753 xfree (filename_language_table[i].ext);
2754 filename_language_table[i].ext = xstrdup (ext_args);
2755 filename_language_table[i].lang = lang;
2756 }
2757 }
2758
2759 static void
2760 info_ext_lang_command (char *args, int from_tty)
2761 {
2762 int i;
2763
2764 printf_filtered (_("Filename extensions and the languages they represent:"));
2765 printf_filtered ("\n\n");
2766 for (i = 0; i < fl_table_next; i++)
2767 printf_filtered ("\t%s\t- %s\n",
2768 filename_language_table[i].ext,
2769 language_str (filename_language_table[i].lang));
2770 }
2771
2772 static void
2773 init_filename_language_table (void)
2774 {
2775 if (fl_table_size == 0) /* Protect against repetition. */
2776 {
2777 fl_table_size = 20;
2778 fl_table_next = 0;
2779 filename_language_table =
2780 xmalloc (fl_table_size * sizeof (*filename_language_table));
2781 add_filename_language (".c", language_c);
2782 add_filename_language (".d", language_d);
2783 add_filename_language (".C", language_cplus);
2784 add_filename_language (".cc", language_cplus);
2785 add_filename_language (".cp", language_cplus);
2786 add_filename_language (".cpp", language_cplus);
2787 add_filename_language (".cxx", language_cplus);
2788 add_filename_language (".c++", language_cplus);
2789 add_filename_language (".java", language_java);
2790 add_filename_language (".class", language_java);
2791 add_filename_language (".m", language_objc);
2792 add_filename_language (".f", language_fortran);
2793 add_filename_language (".F", language_fortran);
2794 add_filename_language (".for", language_fortran);
2795 add_filename_language (".FOR", language_fortran);
2796 add_filename_language (".ftn", language_fortran);
2797 add_filename_language (".FTN", language_fortran);
2798 add_filename_language (".fpp", language_fortran);
2799 add_filename_language (".FPP", language_fortran);
2800 add_filename_language (".f90", language_fortran);
2801 add_filename_language (".F90", language_fortran);
2802 add_filename_language (".f95", language_fortran);
2803 add_filename_language (".F95", language_fortran);
2804 add_filename_language (".f03", language_fortran);
2805 add_filename_language (".F03", language_fortran);
2806 add_filename_language (".f08", language_fortran);
2807 add_filename_language (".F08", language_fortran);
2808 add_filename_language (".s", language_asm);
2809 add_filename_language (".sx", language_asm);
2810 add_filename_language (".S", language_asm);
2811 add_filename_language (".pas", language_pascal);
2812 add_filename_language (".p", language_pascal);
2813 add_filename_language (".pp", language_pascal);
2814 add_filename_language (".adb", language_ada);
2815 add_filename_language (".ads", language_ada);
2816 add_filename_language (".a", language_ada);
2817 add_filename_language (".ada", language_ada);
2818 add_filename_language (".dg", language_ada);
2819 }
2820 }
2821
2822 enum language
2823 deduce_language_from_filename (const char *filename)
2824 {
2825 int i;
2826 char *cp;
2827
2828 if (filename != NULL)
2829 if ((cp = strrchr (filename, '.')) != NULL)
2830 for (i = 0; i < fl_table_next; i++)
2831 if (strcmp (cp, filename_language_table[i].ext) == 0)
2832 return filename_language_table[i].lang;
2833
2834 return language_unknown;
2835 }
2836 \f
2837 /* allocate_symtab:
2838
2839 Allocate and partly initialize a new symbol table. Return a pointer
2840 to it. error() if no space.
2841
2842 Caller must set these fields:
2843 LINETABLE(symtab)
2844 symtab->blockvector
2845 symtab->dirname
2846 symtab->free_code
2847 symtab->free_ptr
2848 */
2849
2850 struct symtab *
2851 allocate_symtab (const char *filename, struct objfile *objfile)
2852 {
2853 struct symtab *symtab;
2854
2855 symtab = (struct symtab *)
2856 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2857 memset (symtab, 0, sizeof (*symtab));
2858 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2859 objfile->filename_cache);
2860 symtab->fullname = NULL;
2861 symtab->language = deduce_language_from_filename (filename);
2862 symtab->debugformat = "unknown";
2863
2864 /* Hook it to the objfile it comes from. */
2865
2866 symtab->objfile = objfile;
2867 symtab->next = objfile->symtabs;
2868 objfile->symtabs = symtab;
2869
2870 if (symtab_create_debug)
2871 {
2872 /* Be a bit clever with debugging messages, and don't print objfile
2873 every time, only when it changes. */
2874 static char *last_objfile_name = NULL;
2875
2876 if (last_objfile_name == NULL
2877 || strcmp (last_objfile_name, objfile->name) != 0)
2878 {
2879 xfree (last_objfile_name);
2880 last_objfile_name = xstrdup (objfile->name);
2881 fprintf_unfiltered (gdb_stdlog,
2882 "Creating one or more symtabs for objfile %s ...\n",
2883 last_objfile_name);
2884 }
2885 fprintf_unfiltered (gdb_stdlog,
2886 "Created symtab %s for module %s.\n",
2887 host_address_to_string (symtab), filename);
2888 }
2889
2890 return (symtab);
2891 }
2892 \f
2893
2894 /* Reset all data structures in gdb which may contain references to symbol
2895 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2896
2897 void
2898 clear_symtab_users (int add_flags)
2899 {
2900 /* Someday, we should do better than this, by only blowing away
2901 the things that really need to be blown. */
2902
2903 /* Clear the "current" symtab first, because it is no longer valid.
2904 breakpoint_re_set may try to access the current symtab. */
2905 clear_current_source_symtab_and_line ();
2906
2907 clear_displays ();
2908 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2909 breakpoint_re_set ();
2910 clear_last_displayed_sal ();
2911 clear_pc_function_cache ();
2912 observer_notify_new_objfile (NULL);
2913
2914 /* Clear globals which might have pointed into a removed objfile.
2915 FIXME: It's not clear which of these are supposed to persist
2916 between expressions and which ought to be reset each time. */
2917 expression_context_block = NULL;
2918 innermost_block = NULL;
2919
2920 /* Varobj may refer to old symbols, perform a cleanup. */
2921 varobj_invalidate ();
2922
2923 }
2924
2925 static void
2926 clear_symtab_users_cleanup (void *ignore)
2927 {
2928 clear_symtab_users (0);
2929 }
2930 \f
2931 /* OVERLAYS:
2932 The following code implements an abstraction for debugging overlay sections.
2933
2934 The target model is as follows:
2935 1) The gnu linker will permit multiple sections to be mapped into the
2936 same VMA, each with its own unique LMA (or load address).
2937 2) It is assumed that some runtime mechanism exists for mapping the
2938 sections, one by one, from the load address into the VMA address.
2939 3) This code provides a mechanism for gdb to keep track of which
2940 sections should be considered to be mapped from the VMA to the LMA.
2941 This information is used for symbol lookup, and memory read/write.
2942 For instance, if a section has been mapped then its contents
2943 should be read from the VMA, otherwise from the LMA.
2944
2945 Two levels of debugger support for overlays are available. One is
2946 "manual", in which the debugger relies on the user to tell it which
2947 overlays are currently mapped. This level of support is
2948 implemented entirely in the core debugger, and the information about
2949 whether a section is mapped is kept in the objfile->obj_section table.
2950
2951 The second level of support is "automatic", and is only available if
2952 the target-specific code provides functionality to read the target's
2953 overlay mapping table, and translate its contents for the debugger
2954 (by updating the mapped state information in the obj_section tables).
2955
2956 The interface is as follows:
2957 User commands:
2958 overlay map <name> -- tell gdb to consider this section mapped
2959 overlay unmap <name> -- tell gdb to consider this section unmapped
2960 overlay list -- list the sections that GDB thinks are mapped
2961 overlay read-target -- get the target's state of what's mapped
2962 overlay off/manual/auto -- set overlay debugging state
2963 Functional interface:
2964 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2965 section, return that section.
2966 find_pc_overlay(pc): find any overlay section that contains
2967 the pc, either in its VMA or its LMA
2968 section_is_mapped(sect): true if overlay is marked as mapped
2969 section_is_overlay(sect): true if section's VMA != LMA
2970 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2971 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2972 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2973 overlay_mapped_address(...): map an address from section's LMA to VMA
2974 overlay_unmapped_address(...): map an address from section's VMA to LMA
2975 symbol_overlayed_address(...): Return a "current" address for symbol:
2976 either in VMA or LMA depending on whether
2977 the symbol's section is currently mapped. */
2978
2979 /* Overlay debugging state: */
2980
2981 enum overlay_debugging_state overlay_debugging = ovly_off;
2982 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2983
2984 /* Function: section_is_overlay (SECTION)
2985 Returns true if SECTION has VMA not equal to LMA, ie.
2986 SECTION is loaded at an address different from where it will "run". */
2987
2988 int
2989 section_is_overlay (struct obj_section *section)
2990 {
2991 if (overlay_debugging && section)
2992 {
2993 bfd *abfd = section->objfile->obfd;
2994 asection *bfd_section = section->the_bfd_section;
2995
2996 if (bfd_section_lma (abfd, bfd_section) != 0
2997 && bfd_section_lma (abfd, bfd_section)
2998 != bfd_section_vma (abfd, bfd_section))
2999 return 1;
3000 }
3001
3002 return 0;
3003 }
3004
3005 /* Function: overlay_invalidate_all (void)
3006 Invalidate the mapped state of all overlay sections (mark it as stale). */
3007
3008 static void
3009 overlay_invalidate_all (void)
3010 {
3011 struct objfile *objfile;
3012 struct obj_section *sect;
3013
3014 ALL_OBJSECTIONS (objfile, sect)
3015 if (section_is_overlay (sect))
3016 sect->ovly_mapped = -1;
3017 }
3018
3019 /* Function: section_is_mapped (SECTION)
3020 Returns true if section is an overlay, and is currently mapped.
3021
3022 Access to the ovly_mapped flag is restricted to this function, so
3023 that we can do automatic update. If the global flag
3024 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3025 overlay_invalidate_all. If the mapped state of the particular
3026 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3027
3028 int
3029 section_is_mapped (struct obj_section *osect)
3030 {
3031 struct gdbarch *gdbarch;
3032
3033 if (osect == 0 || !section_is_overlay (osect))
3034 return 0;
3035
3036 switch (overlay_debugging)
3037 {
3038 default:
3039 case ovly_off:
3040 return 0; /* overlay debugging off */
3041 case ovly_auto: /* overlay debugging automatic */
3042 /* Unles there is a gdbarch_overlay_update function,
3043 there's really nothing useful to do here (can't really go auto). */
3044 gdbarch = get_objfile_arch (osect->objfile);
3045 if (gdbarch_overlay_update_p (gdbarch))
3046 {
3047 if (overlay_cache_invalid)
3048 {
3049 overlay_invalidate_all ();
3050 overlay_cache_invalid = 0;
3051 }
3052 if (osect->ovly_mapped == -1)
3053 gdbarch_overlay_update (gdbarch, osect);
3054 }
3055 /* fall thru to manual case */
3056 case ovly_on: /* overlay debugging manual */
3057 return osect->ovly_mapped == 1;
3058 }
3059 }
3060
3061 /* Function: pc_in_unmapped_range
3062 If PC falls into the lma range of SECTION, return true, else false. */
3063
3064 CORE_ADDR
3065 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3066 {
3067 if (section_is_overlay (section))
3068 {
3069 bfd *abfd = section->objfile->obfd;
3070 asection *bfd_section = section->the_bfd_section;
3071
3072 /* We assume the LMA is relocated by the same offset as the VMA. */
3073 bfd_vma size = bfd_get_section_size (bfd_section);
3074 CORE_ADDR offset = obj_section_offset (section);
3075
3076 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3077 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3078 return 1;
3079 }
3080
3081 return 0;
3082 }
3083
3084 /* Function: pc_in_mapped_range
3085 If PC falls into the vma range of SECTION, return true, else false. */
3086
3087 CORE_ADDR
3088 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3089 {
3090 if (section_is_overlay (section))
3091 {
3092 if (obj_section_addr (section) <= pc
3093 && pc < obj_section_endaddr (section))
3094 return 1;
3095 }
3096
3097 return 0;
3098 }
3099
3100
3101 /* Return true if the mapped ranges of sections A and B overlap, false
3102 otherwise. */
3103 static int
3104 sections_overlap (struct obj_section *a, struct obj_section *b)
3105 {
3106 CORE_ADDR a_start = obj_section_addr (a);
3107 CORE_ADDR a_end = obj_section_endaddr (a);
3108 CORE_ADDR b_start = obj_section_addr (b);
3109 CORE_ADDR b_end = obj_section_endaddr (b);
3110
3111 return (a_start < b_end && b_start < a_end);
3112 }
3113
3114 /* Function: overlay_unmapped_address (PC, SECTION)
3115 Returns the address corresponding to PC in the unmapped (load) range.
3116 May be the same as PC. */
3117
3118 CORE_ADDR
3119 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3120 {
3121 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3122 {
3123 bfd *abfd = section->objfile->obfd;
3124 asection *bfd_section = section->the_bfd_section;
3125
3126 return pc + bfd_section_lma (abfd, bfd_section)
3127 - bfd_section_vma (abfd, bfd_section);
3128 }
3129
3130 return pc;
3131 }
3132
3133 /* Function: overlay_mapped_address (PC, SECTION)
3134 Returns the address corresponding to PC in the mapped (runtime) range.
3135 May be the same as PC. */
3136
3137 CORE_ADDR
3138 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3139 {
3140 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3141 {
3142 bfd *abfd = section->objfile->obfd;
3143 asection *bfd_section = section->the_bfd_section;
3144
3145 return pc + bfd_section_vma (abfd, bfd_section)
3146 - bfd_section_lma (abfd, bfd_section);
3147 }
3148
3149 return pc;
3150 }
3151
3152
3153 /* Function: symbol_overlayed_address
3154 Return one of two addresses (relative to the VMA or to the LMA),
3155 depending on whether the section is mapped or not. */
3156
3157 CORE_ADDR
3158 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3159 {
3160 if (overlay_debugging)
3161 {
3162 /* If the symbol has no section, just return its regular address. */
3163 if (section == 0)
3164 return address;
3165 /* If the symbol's section is not an overlay, just return its
3166 address. */
3167 if (!section_is_overlay (section))
3168 return address;
3169 /* If the symbol's section is mapped, just return its address. */
3170 if (section_is_mapped (section))
3171 return address;
3172 /*
3173 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3174 * then return its LOADED address rather than its vma address!!
3175 */
3176 return overlay_unmapped_address (address, section);
3177 }
3178 return address;
3179 }
3180
3181 /* Function: find_pc_overlay (PC)
3182 Return the best-match overlay section for PC:
3183 If PC matches a mapped overlay section's VMA, return that section.
3184 Else if PC matches an unmapped section's VMA, return that section.
3185 Else if PC matches an unmapped section's LMA, return that section. */
3186
3187 struct obj_section *
3188 find_pc_overlay (CORE_ADDR pc)
3189 {
3190 struct objfile *objfile;
3191 struct obj_section *osect, *best_match = NULL;
3192
3193 if (overlay_debugging)
3194 ALL_OBJSECTIONS (objfile, osect)
3195 if (section_is_overlay (osect))
3196 {
3197 if (pc_in_mapped_range (pc, osect))
3198 {
3199 if (section_is_mapped (osect))
3200 return osect;
3201 else
3202 best_match = osect;
3203 }
3204 else if (pc_in_unmapped_range (pc, osect))
3205 best_match = osect;
3206 }
3207 return best_match;
3208 }
3209
3210 /* Function: find_pc_mapped_section (PC)
3211 If PC falls into the VMA address range of an overlay section that is
3212 currently marked as MAPPED, return that section. Else return NULL. */
3213
3214 struct obj_section *
3215 find_pc_mapped_section (CORE_ADDR pc)
3216 {
3217 struct objfile *objfile;
3218 struct obj_section *osect;
3219
3220 if (overlay_debugging)
3221 ALL_OBJSECTIONS (objfile, osect)
3222 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3223 return osect;
3224
3225 return NULL;
3226 }
3227
3228 /* Function: list_overlays_command
3229 Print a list of mapped sections and their PC ranges. */
3230
3231 void
3232 list_overlays_command (char *args, int from_tty)
3233 {
3234 int nmapped = 0;
3235 struct objfile *objfile;
3236 struct obj_section *osect;
3237
3238 if (overlay_debugging)
3239 ALL_OBJSECTIONS (objfile, osect)
3240 if (section_is_mapped (osect))
3241 {
3242 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3243 const char *name;
3244 bfd_vma lma, vma;
3245 int size;
3246
3247 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3248 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3249 size = bfd_get_section_size (osect->the_bfd_section);
3250 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3251
3252 printf_filtered ("Section %s, loaded at ", name);
3253 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3254 puts_filtered (" - ");
3255 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3256 printf_filtered (", mapped at ");
3257 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3258 puts_filtered (" - ");
3259 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3260 puts_filtered ("\n");
3261
3262 nmapped++;
3263 }
3264 if (nmapped == 0)
3265 printf_filtered (_("No sections are mapped.\n"));
3266 }
3267
3268 /* Function: map_overlay_command
3269 Mark the named section as mapped (ie. residing at its VMA address). */
3270
3271 void
3272 map_overlay_command (char *args, int from_tty)
3273 {
3274 struct objfile *objfile, *objfile2;
3275 struct obj_section *sec, *sec2;
3276
3277 if (!overlay_debugging)
3278 error (_("Overlay debugging not enabled. Use "
3279 "either the 'overlay auto' or\n"
3280 "the 'overlay manual' command."));
3281
3282 if (args == 0 || *args == 0)
3283 error (_("Argument required: name of an overlay section"));
3284
3285 /* First, find a section matching the user supplied argument. */
3286 ALL_OBJSECTIONS (objfile, sec)
3287 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3288 {
3289 /* Now, check to see if the section is an overlay. */
3290 if (!section_is_overlay (sec))
3291 continue; /* not an overlay section */
3292
3293 /* Mark the overlay as "mapped". */
3294 sec->ovly_mapped = 1;
3295
3296 /* Next, make a pass and unmap any sections that are
3297 overlapped by this new section: */
3298 ALL_OBJSECTIONS (objfile2, sec2)
3299 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3300 {
3301 if (info_verbose)
3302 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3303 bfd_section_name (objfile->obfd,
3304 sec2->the_bfd_section));
3305 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3306 }
3307 return;
3308 }
3309 error (_("No overlay section called %s"), args);
3310 }
3311
3312 /* Function: unmap_overlay_command
3313 Mark the overlay section as unmapped
3314 (ie. resident in its LMA address range, rather than the VMA range). */
3315
3316 void
3317 unmap_overlay_command (char *args, int from_tty)
3318 {
3319 struct objfile *objfile;
3320 struct obj_section *sec;
3321
3322 if (!overlay_debugging)
3323 error (_("Overlay debugging not enabled. "
3324 "Use either the 'overlay auto' or\n"
3325 "the 'overlay manual' command."));
3326
3327 if (args == 0 || *args == 0)
3328 error (_("Argument required: name of an overlay section"));
3329
3330 /* First, find a section matching the user supplied argument. */
3331 ALL_OBJSECTIONS (objfile, sec)
3332 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3333 {
3334 if (!sec->ovly_mapped)
3335 error (_("Section %s is not mapped"), args);
3336 sec->ovly_mapped = 0;
3337 return;
3338 }
3339 error (_("No overlay section called %s"), args);
3340 }
3341
3342 /* Function: overlay_auto_command
3343 A utility command to turn on overlay debugging.
3344 Possibly this should be done via a set/show command. */
3345
3346 static void
3347 overlay_auto_command (char *args, int from_tty)
3348 {
3349 overlay_debugging = ovly_auto;
3350 enable_overlay_breakpoints ();
3351 if (info_verbose)
3352 printf_unfiltered (_("Automatic overlay debugging enabled."));
3353 }
3354
3355 /* Function: overlay_manual_command
3356 A utility command to turn on overlay debugging.
3357 Possibly this should be done via a set/show command. */
3358
3359 static void
3360 overlay_manual_command (char *args, int from_tty)
3361 {
3362 overlay_debugging = ovly_on;
3363 disable_overlay_breakpoints ();
3364 if (info_verbose)
3365 printf_unfiltered (_("Overlay debugging enabled."));
3366 }
3367
3368 /* Function: overlay_off_command
3369 A utility command to turn on overlay debugging.
3370 Possibly this should be done via a set/show command. */
3371
3372 static void
3373 overlay_off_command (char *args, int from_tty)
3374 {
3375 overlay_debugging = ovly_off;
3376 disable_overlay_breakpoints ();
3377 if (info_verbose)
3378 printf_unfiltered (_("Overlay debugging disabled."));
3379 }
3380
3381 static void
3382 overlay_load_command (char *args, int from_tty)
3383 {
3384 struct gdbarch *gdbarch = get_current_arch ();
3385
3386 if (gdbarch_overlay_update_p (gdbarch))
3387 gdbarch_overlay_update (gdbarch, NULL);
3388 else
3389 error (_("This target does not know how to read its overlay state."));
3390 }
3391
3392 /* Function: overlay_command
3393 A place-holder for a mis-typed command. */
3394
3395 /* Command list chain containing all defined "overlay" subcommands. */
3396 static struct cmd_list_element *overlaylist;
3397
3398 static void
3399 overlay_command (char *args, int from_tty)
3400 {
3401 printf_unfiltered
3402 ("\"overlay\" must be followed by the name of an overlay command.\n");
3403 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3404 }
3405
3406
3407 /* Target Overlays for the "Simplest" overlay manager:
3408
3409 This is GDB's default target overlay layer. It works with the
3410 minimal overlay manager supplied as an example by Cygnus. The
3411 entry point is via a function pointer "gdbarch_overlay_update",
3412 so targets that use a different runtime overlay manager can
3413 substitute their own overlay_update function and take over the
3414 function pointer.
3415
3416 The overlay_update function pokes around in the target's data structures
3417 to see what overlays are mapped, and updates GDB's overlay mapping with
3418 this information.
3419
3420 In this simple implementation, the target data structures are as follows:
3421 unsigned _novlys; /# number of overlay sections #/
3422 unsigned _ovly_table[_novlys][4] = {
3423 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3424 {..., ..., ..., ...},
3425 }
3426 unsigned _novly_regions; /# number of overlay regions #/
3427 unsigned _ovly_region_table[_novly_regions][3] = {
3428 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3429 {..., ..., ...},
3430 }
3431 These functions will attempt to update GDB's mappedness state in the
3432 symbol section table, based on the target's mappedness state.
3433
3434 To do this, we keep a cached copy of the target's _ovly_table, and
3435 attempt to detect when the cached copy is invalidated. The main
3436 entry point is "simple_overlay_update(SECT), which looks up SECT in
3437 the cached table and re-reads only the entry for that section from
3438 the target (whenever possible). */
3439
3440 /* Cached, dynamically allocated copies of the target data structures: */
3441 static unsigned (*cache_ovly_table)[4] = 0;
3442 static unsigned cache_novlys = 0;
3443 static CORE_ADDR cache_ovly_table_base = 0;
3444 enum ovly_index
3445 {
3446 VMA, SIZE, LMA, MAPPED
3447 };
3448
3449 /* Throw away the cached copy of _ovly_table. */
3450 static void
3451 simple_free_overlay_table (void)
3452 {
3453 if (cache_ovly_table)
3454 xfree (cache_ovly_table);
3455 cache_novlys = 0;
3456 cache_ovly_table = NULL;
3457 cache_ovly_table_base = 0;
3458 }
3459
3460 /* Read an array of ints of size SIZE from the target into a local buffer.
3461 Convert to host order. int LEN is number of ints. */
3462 static void
3463 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3464 int len, int size, enum bfd_endian byte_order)
3465 {
3466 /* FIXME (alloca): Not safe if array is very large. */
3467 gdb_byte *buf = alloca (len * size);
3468 int i;
3469
3470 read_memory (memaddr, buf, len * size);
3471 for (i = 0; i < len; i++)
3472 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3473 }
3474
3475 /* Find and grab a copy of the target _ovly_table
3476 (and _novlys, which is needed for the table's size). */
3477 static int
3478 simple_read_overlay_table (void)
3479 {
3480 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3481 struct gdbarch *gdbarch;
3482 int word_size;
3483 enum bfd_endian byte_order;
3484
3485 simple_free_overlay_table ();
3486 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3487 if (! novlys_msym)
3488 {
3489 error (_("Error reading inferior's overlay table: "
3490 "couldn't find `_novlys' variable\n"
3491 "in inferior. Use `overlay manual' mode."));
3492 return 0;
3493 }
3494
3495 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3496 if (! ovly_table_msym)
3497 {
3498 error (_("Error reading inferior's overlay table: couldn't find "
3499 "`_ovly_table' array\n"
3500 "in inferior. Use `overlay manual' mode."));
3501 return 0;
3502 }
3503
3504 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3505 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3506 byte_order = gdbarch_byte_order (gdbarch);
3507
3508 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3509 4, byte_order);
3510 cache_ovly_table
3511 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3512 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3513 read_target_long_array (cache_ovly_table_base,
3514 (unsigned int *) cache_ovly_table,
3515 cache_novlys * 4, word_size, byte_order);
3516
3517 return 1; /* SUCCESS */
3518 }
3519
3520 /* Function: simple_overlay_update_1
3521 A helper function for simple_overlay_update. Assuming a cached copy
3522 of _ovly_table exists, look through it to find an entry whose vma,
3523 lma and size match those of OSECT. Re-read the entry and make sure
3524 it still matches OSECT (else the table may no longer be valid).
3525 Set OSECT's mapped state to match the entry. Return: 1 for
3526 success, 0 for failure. */
3527
3528 static int
3529 simple_overlay_update_1 (struct obj_section *osect)
3530 {
3531 int i, size;
3532 bfd *obfd = osect->objfile->obfd;
3533 asection *bsect = osect->the_bfd_section;
3534 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3535 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3536 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3537
3538 size = bfd_get_section_size (osect->the_bfd_section);
3539 for (i = 0; i < cache_novlys; i++)
3540 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3541 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3542 /* && cache_ovly_table[i][SIZE] == size */ )
3543 {
3544 read_target_long_array (cache_ovly_table_base + i * word_size,
3545 (unsigned int *) cache_ovly_table[i],
3546 4, word_size, byte_order);
3547 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3548 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3549 /* && cache_ovly_table[i][SIZE] == size */ )
3550 {
3551 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3552 return 1;
3553 }
3554 else /* Warning! Warning! Target's ovly table has changed! */
3555 return 0;
3556 }
3557 return 0;
3558 }
3559
3560 /* Function: simple_overlay_update
3561 If OSECT is NULL, then update all sections' mapped state
3562 (after re-reading the entire target _ovly_table).
3563 If OSECT is non-NULL, then try to find a matching entry in the
3564 cached ovly_table and update only OSECT's mapped state.
3565 If a cached entry can't be found or the cache isn't valid, then
3566 re-read the entire cache, and go ahead and update all sections. */
3567
3568 void
3569 simple_overlay_update (struct obj_section *osect)
3570 {
3571 struct objfile *objfile;
3572
3573 /* Were we given an osect to look up? NULL means do all of them. */
3574 if (osect)
3575 /* Have we got a cached copy of the target's overlay table? */
3576 if (cache_ovly_table != NULL)
3577 {
3578 /* Does its cached location match what's currently in the
3579 symtab? */
3580 struct minimal_symbol *minsym
3581 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3582
3583 if (minsym == NULL)
3584 error (_("Error reading inferior's overlay table: couldn't "
3585 "find `_ovly_table' array\n"
3586 "in inferior. Use `overlay manual' mode."));
3587
3588 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3589 /* Then go ahead and try to look up this single section in
3590 the cache. */
3591 if (simple_overlay_update_1 (osect))
3592 /* Found it! We're done. */
3593 return;
3594 }
3595
3596 /* Cached table no good: need to read the entire table anew.
3597 Or else we want all the sections, in which case it's actually
3598 more efficient to read the whole table in one block anyway. */
3599
3600 if (! simple_read_overlay_table ())
3601 return;
3602
3603 /* Now may as well update all sections, even if only one was requested. */
3604 ALL_OBJSECTIONS (objfile, osect)
3605 if (section_is_overlay (osect))
3606 {
3607 int i, size;
3608 bfd *obfd = osect->objfile->obfd;
3609 asection *bsect = osect->the_bfd_section;
3610
3611 size = bfd_get_section_size (bsect);
3612 for (i = 0; i < cache_novlys; i++)
3613 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3614 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3615 /* && cache_ovly_table[i][SIZE] == size */ )
3616 { /* obj_section matches i'th entry in ovly_table. */
3617 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3618 break; /* finished with inner for loop: break out. */
3619 }
3620 }
3621 }
3622
3623 /* Set the output sections and output offsets for section SECTP in
3624 ABFD. The relocation code in BFD will read these offsets, so we
3625 need to be sure they're initialized. We map each section to itself,
3626 with no offset; this means that SECTP->vma will be honored. */
3627
3628 static void
3629 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3630 {
3631 sectp->output_section = sectp;
3632 sectp->output_offset = 0;
3633 }
3634
3635 /* Default implementation for sym_relocate. */
3636
3637
3638 bfd_byte *
3639 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3640 bfd_byte *buf)
3641 {
3642 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3643 DWO file. */
3644 bfd *abfd = sectp->owner;
3645
3646 /* We're only interested in sections with relocation
3647 information. */
3648 if ((sectp->flags & SEC_RELOC) == 0)
3649 return NULL;
3650
3651 /* We will handle section offsets properly elsewhere, so relocate as if
3652 all sections begin at 0. */
3653 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3654
3655 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3656 }
3657
3658 /* Relocate the contents of a debug section SECTP in ABFD. The
3659 contents are stored in BUF if it is non-NULL, or returned in a
3660 malloc'd buffer otherwise.
3661
3662 For some platforms and debug info formats, shared libraries contain
3663 relocations against the debug sections (particularly for DWARF-2;
3664 one affected platform is PowerPC GNU/Linux, although it depends on
3665 the version of the linker in use). Also, ELF object files naturally
3666 have unresolved relocations for their debug sections. We need to apply
3667 the relocations in order to get the locations of symbols correct.
3668 Another example that may require relocation processing, is the
3669 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3670 debug section. */
3671
3672 bfd_byte *
3673 symfile_relocate_debug_section (struct objfile *objfile,
3674 asection *sectp, bfd_byte *buf)
3675 {
3676 gdb_assert (objfile->sf->sym_relocate);
3677
3678 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3679 }
3680
3681 struct symfile_segment_data *
3682 get_symfile_segment_data (bfd *abfd)
3683 {
3684 const struct sym_fns *sf = find_sym_fns (abfd);
3685
3686 if (sf == NULL)
3687 return NULL;
3688
3689 return sf->sym_segments (abfd);
3690 }
3691
3692 void
3693 free_symfile_segment_data (struct symfile_segment_data *data)
3694 {
3695 xfree (data->segment_bases);
3696 xfree (data->segment_sizes);
3697 xfree (data->segment_info);
3698 xfree (data);
3699 }
3700
3701
3702 /* Given:
3703 - DATA, containing segment addresses from the object file ABFD, and
3704 the mapping from ABFD's sections onto the segments that own them,
3705 and
3706 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3707 segment addresses reported by the target,
3708 store the appropriate offsets for each section in OFFSETS.
3709
3710 If there are fewer entries in SEGMENT_BASES than there are segments
3711 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3712
3713 If there are more entries, then ignore the extra. The target may
3714 not be able to distinguish between an empty data segment and a
3715 missing data segment; a missing text segment is less plausible. */
3716 int
3717 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3718 struct section_offsets *offsets,
3719 int num_segment_bases,
3720 const CORE_ADDR *segment_bases)
3721 {
3722 int i;
3723 asection *sect;
3724
3725 /* It doesn't make sense to call this function unless you have some
3726 segment base addresses. */
3727 gdb_assert (num_segment_bases > 0);
3728
3729 /* If we do not have segment mappings for the object file, we
3730 can not relocate it by segments. */
3731 gdb_assert (data != NULL);
3732 gdb_assert (data->num_segments > 0);
3733
3734 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3735 {
3736 int which = data->segment_info[i];
3737
3738 gdb_assert (0 <= which && which <= data->num_segments);
3739
3740 /* Don't bother computing offsets for sections that aren't
3741 loaded as part of any segment. */
3742 if (! which)
3743 continue;
3744
3745 /* Use the last SEGMENT_BASES entry as the address of any extra
3746 segments mentioned in DATA->segment_info. */
3747 if (which > num_segment_bases)
3748 which = num_segment_bases;
3749
3750 offsets->offsets[i] = (segment_bases[which - 1]
3751 - data->segment_bases[which - 1]);
3752 }
3753
3754 return 1;
3755 }
3756
3757 static void
3758 symfile_find_segment_sections (struct objfile *objfile)
3759 {
3760 bfd *abfd = objfile->obfd;
3761 int i;
3762 asection *sect;
3763 struct symfile_segment_data *data;
3764
3765 data = get_symfile_segment_data (objfile->obfd);
3766 if (data == NULL)
3767 return;
3768
3769 if (data->num_segments != 1 && data->num_segments != 2)
3770 {
3771 free_symfile_segment_data (data);
3772 return;
3773 }
3774
3775 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3776 {
3777 int which = data->segment_info[i];
3778
3779 if (which == 1)
3780 {
3781 if (objfile->sect_index_text == -1)
3782 objfile->sect_index_text = sect->index;
3783
3784 if (objfile->sect_index_rodata == -1)
3785 objfile->sect_index_rodata = sect->index;
3786 }
3787 else if (which == 2)
3788 {
3789 if (objfile->sect_index_data == -1)
3790 objfile->sect_index_data = sect->index;
3791
3792 if (objfile->sect_index_bss == -1)
3793 objfile->sect_index_bss = sect->index;
3794 }
3795 }
3796
3797 free_symfile_segment_data (data);
3798 }
3799
3800 void
3801 _initialize_symfile (void)
3802 {
3803 struct cmd_list_element *c;
3804
3805 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3806 Load symbol table from executable file FILE.\n\
3807 The `file' command can also load symbol tables, as well as setting the file\n\
3808 to execute."), &cmdlist);
3809 set_cmd_completer (c, filename_completer);
3810
3811 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3812 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3813 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3814 ...]\nADDR is the starting address of the file's text.\n\
3815 The optional arguments are section-name section-address pairs and\n\
3816 should be specified if the data and bss segments are not contiguous\n\
3817 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3818 &cmdlist);
3819 set_cmd_completer (c, filename_completer);
3820
3821 c = add_cmd ("load", class_files, load_command, _("\
3822 Dynamically load FILE into the running program, and record its symbols\n\
3823 for access from GDB.\n\
3824 A load OFFSET may also be given."), &cmdlist);
3825 set_cmd_completer (c, filename_completer);
3826
3827 add_prefix_cmd ("overlay", class_support, overlay_command,
3828 _("Commands for debugging overlays."), &overlaylist,
3829 "overlay ", 0, &cmdlist);
3830
3831 add_com_alias ("ovly", "overlay", class_alias, 1);
3832 add_com_alias ("ov", "overlay", class_alias, 1);
3833
3834 add_cmd ("map-overlay", class_support, map_overlay_command,
3835 _("Assert that an overlay section is mapped."), &overlaylist);
3836
3837 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3838 _("Assert that an overlay section is unmapped."), &overlaylist);
3839
3840 add_cmd ("list-overlays", class_support, list_overlays_command,
3841 _("List mappings of overlay sections."), &overlaylist);
3842
3843 add_cmd ("manual", class_support, overlay_manual_command,
3844 _("Enable overlay debugging."), &overlaylist);
3845 add_cmd ("off", class_support, overlay_off_command,
3846 _("Disable overlay debugging."), &overlaylist);
3847 add_cmd ("auto", class_support, overlay_auto_command,
3848 _("Enable automatic overlay debugging."), &overlaylist);
3849 add_cmd ("load-target", class_support, overlay_load_command,
3850 _("Read the overlay mapping state from the target."), &overlaylist);
3851
3852 /* Filename extension to source language lookup table: */
3853 init_filename_language_table ();
3854 add_setshow_string_noescape_cmd ("extension-language", class_files,
3855 &ext_args, _("\
3856 Set mapping between filename extension and source language."), _("\
3857 Show mapping between filename extension and source language."), _("\
3858 Usage: set extension-language .foo bar"),
3859 set_ext_lang_command,
3860 show_ext_args,
3861 &setlist, &showlist);
3862
3863 add_info ("extensions", info_ext_lang_command,
3864 _("All filename extensions associated with a source language."));
3865
3866 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3867 &debug_file_directory, _("\
3868 Set the directories where separate debug symbols are searched for."), _("\
3869 Show the directories where separate debug symbols are searched for."), _("\
3870 Separate debug symbols are first searched for in the same\n\
3871 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3872 and lastly at the path of the directory of the binary with\n\
3873 each global debug-file-directory component prepended."),
3874 NULL,
3875 show_debug_file_directory,
3876 &setlist, &showlist);
3877 }