]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
Add support for the readnever concept
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "common/byte-vector.h"
60 #include "selftest.h"
61
62 #include <sys/types.h>
63 #include <fcntl.h>
64 #include <sys/stat.h>
65 #include <ctype.h>
66 #include <chrono>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section,
71 unsigned long num);
72 void (*deprecated_show_load_progress) (const char *section,
73 unsigned long section_sent,
74 unsigned long section_size,
75 unsigned long total_sent,
76 unsigned long total_size);
77 void (*deprecated_pre_add_symbol_hook) (const char *);
78 void (*deprecated_post_add_symbol_hook) (void);
79
80 static void clear_symtab_users_cleanup (void *ignore);
81
82 /* Global variables owned by this file. */
83 int readnow_symbol_files; /* Read full symbols immediately. */
84 int readnever_symbol_files; /* Never read full symbols. */
85
86 /* Functions this file defines. */
87
88 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
89 objfile_flags flags);
90
91 static const struct sym_fns *find_sym_fns (bfd *);
92
93 static void overlay_invalidate_all (void);
94
95 static void simple_free_overlay_table (void);
96
97 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
98 enum bfd_endian);
99
100 static int simple_read_overlay_table (void);
101
102 static int simple_overlay_update_1 (struct obj_section *);
103
104 static void symfile_find_segment_sections (struct objfile *objfile);
105
106 /* List of all available sym_fns. On gdb startup, each object file reader
107 calls add_symtab_fns() to register information on each format it is
108 prepared to read. */
109
110 struct registered_sym_fns
111 {
112 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
113 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
114 {}
115
116 /* BFD flavour that we handle. */
117 enum bfd_flavour sym_flavour;
118
119 /* The "vtable" of symbol functions. */
120 const struct sym_fns *sym_fns;
121 };
122
123 static std::vector<registered_sym_fns> symtab_fns;
124
125 /* Values for "set print symbol-loading". */
126
127 const char print_symbol_loading_off[] = "off";
128 const char print_symbol_loading_brief[] = "brief";
129 const char print_symbol_loading_full[] = "full";
130 static const char *print_symbol_loading_enums[] =
131 {
132 print_symbol_loading_off,
133 print_symbol_loading_brief,
134 print_symbol_loading_full,
135 NULL
136 };
137 static const char *print_symbol_loading = print_symbol_loading_full;
138
139 /* If non-zero, shared library symbols will be added automatically
140 when the inferior is created, new libraries are loaded, or when
141 attaching to the inferior. This is almost always what users will
142 want to have happen; but for very large programs, the startup time
143 will be excessive, and so if this is a problem, the user can clear
144 this flag and then add the shared library symbols as needed. Note
145 that there is a potential for confusion, since if the shared
146 library symbols are not loaded, commands like "info fun" will *not*
147 report all the functions that are actually present. */
148
149 int auto_solib_add = 1;
150 \f
151
152 /* Return non-zero if symbol-loading messages should be printed.
153 FROM_TTY is the standard from_tty argument to gdb commands.
154 If EXEC is non-zero the messages are for the executable.
155 Otherwise, messages are for shared libraries.
156 If FULL is non-zero then the caller is printing a detailed message.
157 E.g., the message includes the shared library name.
158 Otherwise, the caller is printing a brief "summary" message. */
159
160 int
161 print_symbol_loading_p (int from_tty, int exec, int full)
162 {
163 if (!from_tty && !info_verbose)
164 return 0;
165
166 if (exec)
167 {
168 /* We don't check FULL for executables, there are few such
169 messages, therefore brief == full. */
170 return print_symbol_loading != print_symbol_loading_off;
171 }
172 if (full)
173 return print_symbol_loading == print_symbol_loading_full;
174 return print_symbol_loading == print_symbol_loading_brief;
175 }
176
177 /* True if we are reading a symbol table. */
178
179 int currently_reading_symtab = 0;
180
181 /* Increment currently_reading_symtab and return a cleanup that can be
182 used to decrement it. */
183
184 scoped_restore_tmpl<int>
185 increment_reading_symtab (void)
186 {
187 gdb_assert (currently_reading_symtab >= 0);
188 return make_scoped_restore (&currently_reading_symtab,
189 currently_reading_symtab + 1);
190 }
191
192 /* Remember the lowest-addressed loadable section we've seen.
193 This function is called via bfd_map_over_sections.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 void
202 find_lowest_section (bfd *abfd, asection *sect, void *obj)
203 {
204 asection **lowest = (asection **) obj;
205
206 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
207 return;
208 if (!*lowest)
209 *lowest = sect; /* First loadable section */
210 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
211 *lowest = sect; /* A lower loadable section */
212 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
213 && (bfd_section_size (abfd, (*lowest))
214 <= bfd_section_size (abfd, sect)))
215 *lowest = sect;
216 }
217
218 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
219 new object's 'num_sections' field is set to 0; it must be updated
220 by the caller. */
221
222 struct section_addr_info *
223 alloc_section_addr_info (size_t num_sections)
224 {
225 struct section_addr_info *sap;
226 size_t size;
227
228 size = (sizeof (struct section_addr_info)
229 + sizeof (struct other_sections) * (num_sections - 1));
230 sap = (struct section_addr_info *) xmalloc (size);
231 memset (sap, 0, size);
232
233 return sap;
234 }
235
236 /* Build (allocate and populate) a section_addr_info struct from
237 an existing section table. */
238
239 extern struct section_addr_info *
240 build_section_addr_info_from_section_table (const struct target_section *start,
241 const struct target_section *end)
242 {
243 struct section_addr_info *sap;
244 const struct target_section *stp;
245 int oidx;
246
247 sap = alloc_section_addr_info (end - start);
248
249 for (stp = start, oidx = 0; stp != end; stp++)
250 {
251 struct bfd_section *asect = stp->the_bfd_section;
252 bfd *abfd = asect->owner;
253
254 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
255 && oidx < end - start)
256 {
257 sap->other[oidx].addr = stp->addr;
258 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
259 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
260 oidx++;
261 }
262 }
263
264 sap->num_sections = oidx;
265
266 return sap;
267 }
268
269 /* Create a section_addr_info from section offsets in ABFD. */
270
271 static struct section_addr_info *
272 build_section_addr_info_from_bfd (bfd *abfd)
273 {
274 struct section_addr_info *sap;
275 int i;
276 struct bfd_section *sec;
277
278 sap = alloc_section_addr_info (bfd_count_sections (abfd));
279 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
280 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
281 {
282 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
283 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
284 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
285 i++;
286 }
287
288 sap->num_sections = i;
289
290 return sap;
291 }
292
293 /* Create a section_addr_info from section offsets in OBJFILE. */
294
295 struct section_addr_info *
296 build_section_addr_info_from_objfile (const struct objfile *objfile)
297 {
298 struct section_addr_info *sap;
299 int i;
300
301 /* Before reread_symbols gets rewritten it is not safe to call:
302 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
303 */
304 sap = build_section_addr_info_from_bfd (objfile->obfd);
305 for (i = 0; i < sap->num_sections; i++)
306 {
307 int sectindex = sap->other[i].sectindex;
308
309 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
310 }
311 return sap;
312 }
313
314 /* Free all memory allocated by build_section_addr_info_from_section_table. */
315
316 extern void
317 free_section_addr_info (struct section_addr_info *sap)
318 {
319 int idx;
320
321 for (idx = 0; idx < sap->num_sections; idx++)
322 xfree (sap->other[idx].name);
323 xfree (sap);
324 }
325
326 /* Initialize OBJFILE's sect_index_* members. */
327
328 static void
329 init_objfile_sect_indices (struct objfile *objfile)
330 {
331 asection *sect;
332 int i;
333
334 sect = bfd_get_section_by_name (objfile->obfd, ".text");
335 if (sect)
336 objfile->sect_index_text = sect->index;
337
338 sect = bfd_get_section_by_name (objfile->obfd, ".data");
339 if (sect)
340 objfile->sect_index_data = sect->index;
341
342 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
343 if (sect)
344 objfile->sect_index_bss = sect->index;
345
346 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
347 if (sect)
348 objfile->sect_index_rodata = sect->index;
349
350 /* This is where things get really weird... We MUST have valid
351 indices for the various sect_index_* members or gdb will abort.
352 So if for example, there is no ".text" section, we have to
353 accomodate that. First, check for a file with the standard
354 one or two segments. */
355
356 symfile_find_segment_sections (objfile);
357
358 /* Except when explicitly adding symbol files at some address,
359 section_offsets contains nothing but zeros, so it doesn't matter
360 which slot in section_offsets the individual sect_index_* members
361 index into. So if they are all zero, it is safe to just point
362 all the currently uninitialized indices to the first slot. But
363 beware: if this is the main executable, it may be relocated
364 later, e.g. by the remote qOffsets packet, and then this will
365 be wrong! That's why we try segments first. */
366
367 for (i = 0; i < objfile->num_sections; i++)
368 {
369 if (ANOFFSET (objfile->section_offsets, i) != 0)
370 {
371 break;
372 }
373 }
374 if (i == objfile->num_sections)
375 {
376 if (objfile->sect_index_text == -1)
377 objfile->sect_index_text = 0;
378 if (objfile->sect_index_data == -1)
379 objfile->sect_index_data = 0;
380 if (objfile->sect_index_bss == -1)
381 objfile->sect_index_bss = 0;
382 if (objfile->sect_index_rodata == -1)
383 objfile->sect_index_rodata = 0;
384 }
385 }
386
387 /* The arguments to place_section. */
388
389 struct place_section_arg
390 {
391 struct section_offsets *offsets;
392 CORE_ADDR lowest;
393 };
394
395 /* Find a unique offset to use for loadable section SECT if
396 the user did not provide an offset. */
397
398 static void
399 place_section (bfd *abfd, asection *sect, void *obj)
400 {
401 struct place_section_arg *arg = (struct place_section_arg *) obj;
402 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
403 int done;
404 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
405
406 /* We are only interested in allocated sections. */
407 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
408 return;
409
410 /* If the user specified an offset, honor it. */
411 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
412 return;
413
414 /* Otherwise, let's try to find a place for the section. */
415 start_addr = (arg->lowest + align - 1) & -align;
416
417 do {
418 asection *cur_sec;
419
420 done = 1;
421
422 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
423 {
424 int indx = cur_sec->index;
425
426 /* We don't need to compare against ourself. */
427 if (cur_sec == sect)
428 continue;
429
430 /* We can only conflict with allocated sections. */
431 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
432 continue;
433
434 /* If the section offset is 0, either the section has not been placed
435 yet, or it was the lowest section placed (in which case LOWEST
436 will be past its end). */
437 if (offsets[indx] == 0)
438 continue;
439
440 /* If this section would overlap us, then we must move up. */
441 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
442 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
443 {
444 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
445 start_addr = (start_addr + align - 1) & -align;
446 done = 0;
447 break;
448 }
449
450 /* Otherwise, we appear to be OK. So far. */
451 }
452 }
453 while (!done);
454
455 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
456 arg->lowest = start_addr + bfd_get_section_size (sect);
457 }
458
459 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
460 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
461 entries. */
462
463 void
464 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
465 int num_sections,
466 const struct section_addr_info *addrs)
467 {
468 int i;
469
470 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
471
472 /* Now calculate offsets for section that were specified by the caller. */
473 for (i = 0; i < addrs->num_sections; i++)
474 {
475 const struct other_sections *osp;
476
477 osp = &addrs->other[i];
478 if (osp->sectindex == -1)
479 continue;
480
481 /* Record all sections in offsets. */
482 /* The section_offsets in the objfile are here filled in using
483 the BFD index. */
484 section_offsets->offsets[osp->sectindex] = osp->addr;
485 }
486 }
487
488 /* Transform section name S for a name comparison. prelink can split section
489 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
490 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
491 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
492 (`.sbss') section has invalid (increased) virtual address. */
493
494 static const char *
495 addr_section_name (const char *s)
496 {
497 if (strcmp (s, ".dynbss") == 0)
498 return ".bss";
499 if (strcmp (s, ".sdynbss") == 0)
500 return ".sbss";
501
502 return s;
503 }
504
505 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
506 their (name, sectindex) pair. sectindex makes the sort by name stable. */
507
508 static int
509 addrs_section_compar (const void *ap, const void *bp)
510 {
511 const struct other_sections *a = *((struct other_sections **) ap);
512 const struct other_sections *b = *((struct other_sections **) bp);
513 int retval;
514
515 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
516 if (retval)
517 return retval;
518
519 return a->sectindex - b->sectindex;
520 }
521
522 /* Provide sorted array of pointers to sections of ADDRS. The array is
523 terminated by NULL. Caller is responsible to call xfree for it. */
524
525 static struct other_sections **
526 addrs_section_sort (struct section_addr_info *addrs)
527 {
528 struct other_sections **array;
529 int i;
530
531 /* `+ 1' for the NULL terminator. */
532 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
533 for (i = 0; i < addrs->num_sections; i++)
534 array[i] = &addrs->other[i];
535 array[i] = NULL;
536
537 qsort (array, i, sizeof (*array), addrs_section_compar);
538
539 return array;
540 }
541
542 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
543 also SECTINDEXes specific to ABFD there. This function can be used to
544 rebase ADDRS to start referencing different BFD than before. */
545
546 void
547 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
548 {
549 asection *lower_sect;
550 CORE_ADDR lower_offset;
551 int i;
552 struct cleanup *my_cleanup;
553 struct section_addr_info *abfd_addrs;
554 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
555 struct other_sections **addrs_to_abfd_addrs;
556
557 /* Find lowest loadable section to be used as starting point for
558 continguous sections. */
559 lower_sect = NULL;
560 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
561 if (lower_sect == NULL)
562 {
563 warning (_("no loadable sections found in added symbol-file %s"),
564 bfd_get_filename (abfd));
565 lower_offset = 0;
566 }
567 else
568 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
569
570 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
571 in ABFD. Section names are not unique - there can be multiple sections of
572 the same name. Also the sections of the same name do not have to be
573 adjacent to each other. Some sections may be present only in one of the
574 files. Even sections present in both files do not have to be in the same
575 order.
576
577 Use stable sort by name for the sections in both files. Then linearly
578 scan both lists matching as most of the entries as possible. */
579
580 addrs_sorted = addrs_section_sort (addrs);
581 my_cleanup = make_cleanup (xfree, addrs_sorted);
582
583 abfd_addrs = build_section_addr_info_from_bfd (abfd);
584 make_cleanup_free_section_addr_info (abfd_addrs);
585 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
586 make_cleanup (xfree, abfd_addrs_sorted);
587
588 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
589 ABFD_ADDRS_SORTED. */
590
591 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
592 make_cleanup (xfree, addrs_to_abfd_addrs);
593
594 while (*addrs_sorted)
595 {
596 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
597
598 while (*abfd_addrs_sorted
599 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
600 sect_name) < 0)
601 abfd_addrs_sorted++;
602
603 if (*abfd_addrs_sorted
604 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
605 sect_name) == 0)
606 {
607 int index_in_addrs;
608
609 /* Make the found item directly addressable from ADDRS. */
610 index_in_addrs = *addrs_sorted - addrs->other;
611 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
612 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
613
614 /* Never use the same ABFD entry twice. */
615 abfd_addrs_sorted++;
616 }
617
618 addrs_sorted++;
619 }
620
621 /* Calculate offsets for the loadable sections.
622 FIXME! Sections must be in order of increasing loadable section
623 so that contiguous sections can use the lower-offset!!!
624
625 Adjust offsets if the segments are not contiguous.
626 If the section is contiguous, its offset should be set to
627 the offset of the highest loadable section lower than it
628 (the loadable section directly below it in memory).
629 this_offset = lower_offset = lower_addr - lower_orig_addr */
630
631 for (i = 0; i < addrs->num_sections; i++)
632 {
633 struct other_sections *sect = addrs_to_abfd_addrs[i];
634
635 if (sect)
636 {
637 /* This is the index used by BFD. */
638 addrs->other[i].sectindex = sect->sectindex;
639
640 if (addrs->other[i].addr != 0)
641 {
642 addrs->other[i].addr -= sect->addr;
643 lower_offset = addrs->other[i].addr;
644 }
645 else
646 addrs->other[i].addr = lower_offset;
647 }
648 else
649 {
650 /* addr_section_name transformation is not used for SECT_NAME. */
651 const char *sect_name = addrs->other[i].name;
652
653 /* This section does not exist in ABFD, which is normally
654 unexpected and we want to issue a warning.
655
656 However, the ELF prelinker does create a few sections which are
657 marked in the main executable as loadable (they are loaded in
658 memory from the DYNAMIC segment) and yet are not present in
659 separate debug info files. This is fine, and should not cause
660 a warning. Shared libraries contain just the section
661 ".gnu.liblist" but it is not marked as loadable there. There is
662 no other way to identify them than by their name as the sections
663 created by prelink have no special flags.
664
665 For the sections `.bss' and `.sbss' see addr_section_name. */
666
667 if (!(strcmp (sect_name, ".gnu.liblist") == 0
668 || strcmp (sect_name, ".gnu.conflict") == 0
669 || (strcmp (sect_name, ".bss") == 0
670 && i > 0
671 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
672 && addrs_to_abfd_addrs[i - 1] != NULL)
673 || (strcmp (sect_name, ".sbss") == 0
674 && i > 0
675 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
676 && addrs_to_abfd_addrs[i - 1] != NULL)))
677 warning (_("section %s not found in %s"), sect_name,
678 bfd_get_filename (abfd));
679
680 addrs->other[i].addr = 0;
681 addrs->other[i].sectindex = -1;
682 }
683 }
684
685 do_cleanups (my_cleanup);
686 }
687
688 /* Parse the user's idea of an offset for dynamic linking, into our idea
689 of how to represent it for fast symbol reading. This is the default
690 version of the sym_fns.sym_offsets function for symbol readers that
691 don't need to do anything special. It allocates a section_offsets table
692 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
693
694 void
695 default_symfile_offsets (struct objfile *objfile,
696 const struct section_addr_info *addrs)
697 {
698 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
699 objfile->section_offsets = (struct section_offsets *)
700 obstack_alloc (&objfile->objfile_obstack,
701 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
702 relative_addr_info_to_section_offsets (objfile->section_offsets,
703 objfile->num_sections, addrs);
704
705 /* For relocatable files, all loadable sections will start at zero.
706 The zero is meaningless, so try to pick arbitrary addresses such
707 that no loadable sections overlap. This algorithm is quadratic,
708 but the number of sections in a single object file is generally
709 small. */
710 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
711 {
712 struct place_section_arg arg;
713 bfd *abfd = objfile->obfd;
714 asection *cur_sec;
715
716 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
717 /* We do not expect this to happen; just skip this step if the
718 relocatable file has a section with an assigned VMA. */
719 if (bfd_section_vma (abfd, cur_sec) != 0)
720 break;
721
722 if (cur_sec == NULL)
723 {
724 CORE_ADDR *offsets = objfile->section_offsets->offsets;
725
726 /* Pick non-overlapping offsets for sections the user did not
727 place explicitly. */
728 arg.offsets = objfile->section_offsets;
729 arg.lowest = 0;
730 bfd_map_over_sections (objfile->obfd, place_section, &arg);
731
732 /* Correctly filling in the section offsets is not quite
733 enough. Relocatable files have two properties that
734 (most) shared objects do not:
735
736 - Their debug information will contain relocations. Some
737 shared libraries do also, but many do not, so this can not
738 be assumed.
739
740 - If there are multiple code sections they will be loaded
741 at different relative addresses in memory than they are
742 in the objfile, since all sections in the file will start
743 at address zero.
744
745 Because GDB has very limited ability to map from an
746 address in debug info to the correct code section,
747 it relies on adding SECT_OFF_TEXT to things which might be
748 code. If we clear all the section offsets, and set the
749 section VMAs instead, then symfile_relocate_debug_section
750 will return meaningful debug information pointing at the
751 correct sections.
752
753 GDB has too many different data structures for section
754 addresses - a bfd, objfile, and so_list all have section
755 tables, as does exec_ops. Some of these could probably
756 be eliminated. */
757
758 for (cur_sec = abfd->sections; cur_sec != NULL;
759 cur_sec = cur_sec->next)
760 {
761 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
762 continue;
763
764 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
765 exec_set_section_address (bfd_get_filename (abfd),
766 cur_sec->index,
767 offsets[cur_sec->index]);
768 offsets[cur_sec->index] = 0;
769 }
770 }
771 }
772
773 /* Remember the bfd indexes for the .text, .data, .bss and
774 .rodata sections. */
775 init_objfile_sect_indices (objfile);
776 }
777
778 /* Divide the file into segments, which are individual relocatable units.
779 This is the default version of the sym_fns.sym_segments function for
780 symbol readers that do not have an explicit representation of segments.
781 It assumes that object files do not have segments, and fully linked
782 files have a single segment. */
783
784 struct symfile_segment_data *
785 default_symfile_segments (bfd *abfd)
786 {
787 int num_sections, i;
788 asection *sect;
789 struct symfile_segment_data *data;
790 CORE_ADDR low, high;
791
792 /* Relocatable files contain enough information to position each
793 loadable section independently; they should not be relocated
794 in segments. */
795 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
796 return NULL;
797
798 /* Make sure there is at least one loadable section in the file. */
799 for (sect = abfd->sections; sect != NULL; sect = sect->next)
800 {
801 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
802 continue;
803
804 break;
805 }
806 if (sect == NULL)
807 return NULL;
808
809 low = bfd_get_section_vma (abfd, sect);
810 high = low + bfd_get_section_size (sect);
811
812 data = XCNEW (struct symfile_segment_data);
813 data->num_segments = 1;
814 data->segment_bases = XCNEW (CORE_ADDR);
815 data->segment_sizes = XCNEW (CORE_ADDR);
816
817 num_sections = bfd_count_sections (abfd);
818 data->segment_info = XCNEWVEC (int, num_sections);
819
820 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
821 {
822 CORE_ADDR vma;
823
824 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
825 continue;
826
827 vma = bfd_get_section_vma (abfd, sect);
828 if (vma < low)
829 low = vma;
830 if (vma + bfd_get_section_size (sect) > high)
831 high = vma + bfd_get_section_size (sect);
832
833 data->segment_info[i] = 1;
834 }
835
836 data->segment_bases[0] = low;
837 data->segment_sizes[0] = high - low;
838
839 return data;
840 }
841
842 /* This is a convenience function to call sym_read for OBJFILE and
843 possibly force the partial symbols to be read. */
844
845 static void
846 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
847 {
848 (*objfile->sf->sym_read) (objfile, add_flags);
849 objfile->per_bfd->minsyms_read = true;
850
851 /* find_separate_debug_file_in_section should be called only if there is
852 single binary with no existing separate debug info file. */
853 if (!objfile_has_partial_symbols (objfile)
854 && objfile->separate_debug_objfile == NULL
855 && objfile->separate_debug_objfile_backlink == NULL)
856 {
857 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
858
859 if (abfd != NULL)
860 {
861 /* find_separate_debug_file_in_section uses the same filename for the
862 virtual section-as-bfd like the bfd filename containing the
863 section. Therefore use also non-canonical name form for the same
864 file containing the section. */
865 symbol_file_add_separate (abfd.get (), objfile->original_name,
866 add_flags, objfile);
867 }
868 }
869 if ((add_flags & SYMFILE_NO_READ) == 0)
870 require_partial_symbols (objfile, 0);
871 }
872
873 /* Initialize entry point information for this objfile. */
874
875 static void
876 init_entry_point_info (struct objfile *objfile)
877 {
878 struct entry_info *ei = &objfile->per_bfd->ei;
879
880 if (ei->initialized)
881 return;
882 ei->initialized = 1;
883
884 /* Save startup file's range of PC addresses to help blockframe.c
885 decide where the bottom of the stack is. */
886
887 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
888 {
889 /* Executable file -- record its entry point so we'll recognize
890 the startup file because it contains the entry point. */
891 ei->entry_point = bfd_get_start_address (objfile->obfd);
892 ei->entry_point_p = 1;
893 }
894 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
895 && bfd_get_start_address (objfile->obfd) != 0)
896 {
897 /* Some shared libraries may have entry points set and be
898 runnable. There's no clear way to indicate this, so just check
899 for values other than zero. */
900 ei->entry_point = bfd_get_start_address (objfile->obfd);
901 ei->entry_point_p = 1;
902 }
903 else
904 {
905 /* Examination of non-executable.o files. Short-circuit this stuff. */
906 ei->entry_point_p = 0;
907 }
908
909 if (ei->entry_point_p)
910 {
911 struct obj_section *osect;
912 CORE_ADDR entry_point = ei->entry_point;
913 int found;
914
915 /* Make certain that the address points at real code, and not a
916 function descriptor. */
917 entry_point
918 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
919 entry_point,
920 &current_target);
921
922 /* Remove any ISA markers, so that this matches entries in the
923 symbol table. */
924 ei->entry_point
925 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
926
927 found = 0;
928 ALL_OBJFILE_OSECTIONS (objfile, osect)
929 {
930 struct bfd_section *sect = osect->the_bfd_section;
931
932 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
933 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
934 + bfd_get_section_size (sect)))
935 {
936 ei->the_bfd_section_index
937 = gdb_bfd_section_index (objfile->obfd, sect);
938 found = 1;
939 break;
940 }
941 }
942
943 if (!found)
944 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
945 }
946 }
947
948 /* Process a symbol file, as either the main file or as a dynamically
949 loaded file.
950
951 This function does not set the OBJFILE's entry-point info.
952
953 OBJFILE is where the symbols are to be read from.
954
955 ADDRS is the list of section load addresses. If the user has given
956 an 'add-symbol-file' command, then this is the list of offsets and
957 addresses he or she provided as arguments to the command; or, if
958 we're handling a shared library, these are the actual addresses the
959 sections are loaded at, according to the inferior's dynamic linker
960 (as gleaned by GDB's shared library code). We convert each address
961 into an offset from the section VMA's as it appears in the object
962 file, and then call the file's sym_offsets function to convert this
963 into a format-specific offset table --- a `struct section_offsets'.
964
965 ADD_FLAGS encodes verbosity level, whether this is main symbol or
966 an extra symbol file such as dynamically loaded code, and wether
967 breakpoint reset should be deferred. */
968
969 static void
970 syms_from_objfile_1 (struct objfile *objfile,
971 struct section_addr_info *addrs,
972 symfile_add_flags add_flags)
973 {
974 struct section_addr_info *local_addr = NULL;
975 struct cleanup *old_chain;
976 const int mainline = add_flags & SYMFILE_MAINLINE;
977
978 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
979
980 if (objfile->sf == NULL)
981 {
982 /* No symbols to load, but we still need to make sure
983 that the section_offsets table is allocated. */
984 int num_sections = gdb_bfd_count_sections (objfile->obfd);
985 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
986
987 objfile->num_sections = num_sections;
988 objfile->section_offsets
989 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
990 size);
991 memset (objfile->section_offsets, 0, size);
992 return;
993 }
994
995 /* Make sure that partially constructed symbol tables will be cleaned up
996 if an error occurs during symbol reading. */
997 old_chain = make_cleanup (null_cleanup, NULL);
998 std::unique_ptr<struct objfile> objfile_holder (objfile);
999
1000 /* If ADDRS is NULL, put together a dummy address list.
1001 We now establish the convention that an addr of zero means
1002 no load address was specified. */
1003 if (! addrs)
1004 {
1005 local_addr = alloc_section_addr_info (1);
1006 make_cleanup (xfree, local_addr);
1007 addrs = local_addr;
1008 }
1009
1010 if (mainline)
1011 {
1012 /* We will modify the main symbol table, make sure that all its users
1013 will be cleaned up if an error occurs during symbol reading. */
1014 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1015
1016 /* Since no error yet, throw away the old symbol table. */
1017
1018 if (symfile_objfile != NULL)
1019 {
1020 delete symfile_objfile;
1021 gdb_assert (symfile_objfile == NULL);
1022 }
1023
1024 /* Currently we keep symbols from the add-symbol-file command.
1025 If the user wants to get rid of them, they should do "symbol-file"
1026 without arguments first. Not sure this is the best behavior
1027 (PR 2207). */
1028
1029 (*objfile->sf->sym_new_init) (objfile);
1030 }
1031
1032 /* Convert addr into an offset rather than an absolute address.
1033 We find the lowest address of a loaded segment in the objfile,
1034 and assume that <addr> is where that got loaded.
1035
1036 We no longer warn if the lowest section is not a text segment (as
1037 happens for the PA64 port. */
1038 if (addrs->num_sections > 0)
1039 addr_info_make_relative (addrs, objfile->obfd);
1040
1041 /* Initialize symbol reading routines for this objfile, allow complaints to
1042 appear for this new file, and record how verbose to be, then do the
1043 initial symbol reading for this file. */
1044
1045 (*objfile->sf->sym_init) (objfile);
1046 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1047
1048 (*objfile->sf->sym_offsets) (objfile, addrs);
1049
1050 read_symbols (objfile, add_flags);
1051
1052 /* Discard cleanups as symbol reading was successful. */
1053
1054 objfile_holder.release ();
1055 discard_cleanups (old_chain);
1056 xfree (local_addr);
1057 }
1058
1059 /* Same as syms_from_objfile_1, but also initializes the objfile
1060 entry-point info. */
1061
1062 static void
1063 syms_from_objfile (struct objfile *objfile,
1064 struct section_addr_info *addrs,
1065 symfile_add_flags add_flags)
1066 {
1067 syms_from_objfile_1 (objfile, addrs, add_flags);
1068 init_entry_point_info (objfile);
1069 }
1070
1071 /* Perform required actions after either reading in the initial
1072 symbols for a new objfile, or mapping in the symbols from a reusable
1073 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1074
1075 static void
1076 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1077 {
1078 /* If this is the main symbol file we have to clean up all users of the
1079 old main symbol file. Otherwise it is sufficient to fixup all the
1080 breakpoints that may have been redefined by this symbol file. */
1081 if (add_flags & SYMFILE_MAINLINE)
1082 {
1083 /* OK, make it the "real" symbol file. */
1084 symfile_objfile = objfile;
1085
1086 clear_symtab_users (add_flags);
1087 }
1088 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1089 {
1090 breakpoint_re_set ();
1091 }
1092
1093 /* We're done reading the symbol file; finish off complaints. */
1094 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1095 }
1096
1097 /* Process a symbol file, as either the main file or as a dynamically
1098 loaded file.
1099
1100 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1101 A new reference is acquired by this function.
1102
1103 For NAME description see the objfile constructor.
1104
1105 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1106 extra, such as dynamically loaded code, and what to do with breakpoins.
1107
1108 ADDRS is as described for syms_from_objfile_1, above.
1109 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1110
1111 PARENT is the original objfile if ABFD is a separate debug info file.
1112 Otherwise PARENT is NULL.
1113
1114 Upon success, returns a pointer to the objfile that was added.
1115 Upon failure, jumps back to command level (never returns). */
1116
1117 static struct objfile *
1118 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1119 symfile_add_flags add_flags,
1120 struct section_addr_info *addrs,
1121 objfile_flags flags, struct objfile *parent)
1122 {
1123 struct objfile *objfile;
1124 const int from_tty = add_flags & SYMFILE_VERBOSE;
1125 const int mainline = add_flags & SYMFILE_MAINLINE;
1126 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1127 && (readnow_symbol_files
1128 || (add_flags & SYMFILE_NO_READ) == 0));
1129
1130 if (readnow_symbol_files)
1131 {
1132 flags |= OBJF_READNOW;
1133 add_flags &= ~SYMFILE_NO_READ;
1134 }
1135 else if (readnever_symbol_files
1136 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1137 {
1138 flags |= OBJF_READNEVER;
1139 add_flags |= SYMFILE_NO_READ;
1140 }
1141
1142 /* Give user a chance to burp if we'd be
1143 interactively wiping out any existing symbols. */
1144
1145 if ((have_full_symbols () || have_partial_symbols ())
1146 && mainline
1147 && from_tty
1148 && !query (_("Load new symbol table from \"%s\"? "), name))
1149 error (_("Not confirmed."));
1150
1151 if (mainline)
1152 flags |= OBJF_MAINLINE;
1153 objfile = new struct objfile (abfd, name, flags);
1154
1155 if (parent)
1156 add_separate_debug_objfile (objfile, parent);
1157
1158 /* We either created a new mapped symbol table, mapped an existing
1159 symbol table file which has not had initial symbol reading
1160 performed, or need to read an unmapped symbol table. */
1161 if (should_print)
1162 {
1163 if (deprecated_pre_add_symbol_hook)
1164 deprecated_pre_add_symbol_hook (name);
1165 else
1166 {
1167 printf_unfiltered (_("Reading symbols from %s..."), name);
1168 wrap_here ("");
1169 gdb_flush (gdb_stdout);
1170 }
1171 }
1172 syms_from_objfile (objfile, addrs, add_flags);
1173
1174 /* We now have at least a partial symbol table. Check to see if the
1175 user requested that all symbols be read on initial access via either
1176 the gdb startup command line or on a per symbol file basis. Expand
1177 all partial symbol tables for this objfile if so. */
1178
1179 if ((flags & OBJF_READNOW))
1180 {
1181 if (should_print)
1182 {
1183 printf_unfiltered (_("expanding to full symbols..."));
1184 wrap_here ("");
1185 gdb_flush (gdb_stdout);
1186 }
1187
1188 if (objfile->sf)
1189 objfile->sf->qf->expand_all_symtabs (objfile);
1190 }
1191
1192 if (should_print && !objfile_has_symbols (objfile))
1193 {
1194 wrap_here ("");
1195 printf_unfiltered (_("(no debugging symbols found)..."));
1196 wrap_here ("");
1197 }
1198
1199 if (should_print)
1200 {
1201 if (deprecated_post_add_symbol_hook)
1202 deprecated_post_add_symbol_hook ();
1203 else
1204 printf_unfiltered (_("done.\n"));
1205 }
1206
1207 /* We print some messages regardless of whether 'from_tty ||
1208 info_verbose' is true, so make sure they go out at the right
1209 time. */
1210 gdb_flush (gdb_stdout);
1211
1212 if (objfile->sf == NULL)
1213 {
1214 observer_notify_new_objfile (objfile);
1215 return objfile; /* No symbols. */
1216 }
1217
1218 finish_new_objfile (objfile, add_flags);
1219
1220 observer_notify_new_objfile (objfile);
1221
1222 bfd_cache_close_all ();
1223 return (objfile);
1224 }
1225
1226 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1227 see the objfile constructor. */
1228
1229 void
1230 symbol_file_add_separate (bfd *bfd, const char *name,
1231 symfile_add_flags symfile_flags,
1232 struct objfile *objfile)
1233 {
1234 struct section_addr_info *sap;
1235 struct cleanup *my_cleanup;
1236
1237 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1238 because sections of BFD may not match sections of OBJFILE and because
1239 vma may have been modified by tools such as prelink. */
1240 sap = build_section_addr_info_from_objfile (objfile);
1241 my_cleanup = make_cleanup_free_section_addr_info (sap);
1242
1243 symbol_file_add_with_addrs
1244 (bfd, name, symfile_flags, sap,
1245 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1246 | OBJF_USERLOADED),
1247 objfile);
1248
1249 do_cleanups (my_cleanup);
1250 }
1251
1252 /* Process the symbol file ABFD, as either the main file or as a
1253 dynamically loaded file.
1254 See symbol_file_add_with_addrs's comments for details. */
1255
1256 struct objfile *
1257 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1258 symfile_add_flags add_flags,
1259 struct section_addr_info *addrs,
1260 objfile_flags flags, struct objfile *parent)
1261 {
1262 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1263 parent);
1264 }
1265
1266 /* Process a symbol file, as either the main file or as a dynamically
1267 loaded file. See symbol_file_add_with_addrs's comments for details. */
1268
1269 struct objfile *
1270 symbol_file_add (const char *name, symfile_add_flags add_flags,
1271 struct section_addr_info *addrs, objfile_flags flags)
1272 {
1273 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1274
1275 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1276 flags, NULL);
1277 }
1278
1279 /* Call symbol_file_add() with default values and update whatever is
1280 affected by the loading of a new main().
1281 Used when the file is supplied in the gdb command line
1282 and by some targets with special loading requirements.
1283 The auxiliary function, symbol_file_add_main_1(), has the flags
1284 argument for the switches that can only be specified in the symbol_file
1285 command itself. */
1286
1287 void
1288 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1289 {
1290 symbol_file_add_main_1 (args, add_flags, 0);
1291 }
1292
1293 static void
1294 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1295 objfile_flags flags)
1296 {
1297 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1298
1299 symbol_file_add (args, add_flags, NULL, flags);
1300
1301 /* Getting new symbols may change our opinion about
1302 what is frameless. */
1303 reinit_frame_cache ();
1304
1305 if ((add_flags & SYMFILE_NO_READ) == 0)
1306 set_initial_language ();
1307 }
1308
1309 void
1310 symbol_file_clear (int from_tty)
1311 {
1312 if ((have_full_symbols () || have_partial_symbols ())
1313 && from_tty
1314 && (symfile_objfile
1315 ? !query (_("Discard symbol table from `%s'? "),
1316 objfile_name (symfile_objfile))
1317 : !query (_("Discard symbol table? "))))
1318 error (_("Not confirmed."));
1319
1320 /* solib descriptors may have handles to objfiles. Wipe them before their
1321 objfiles get stale by free_all_objfiles. */
1322 no_shared_libraries (NULL, from_tty);
1323
1324 free_all_objfiles ();
1325
1326 gdb_assert (symfile_objfile == NULL);
1327 if (from_tty)
1328 printf_unfiltered (_("No symbol file now.\n"));
1329 }
1330
1331 /* See symfile.h. */
1332
1333 int separate_debug_file_debug = 0;
1334
1335 static int
1336 separate_debug_file_exists (const char *name, unsigned long crc,
1337 struct objfile *parent_objfile)
1338 {
1339 unsigned long file_crc;
1340 int file_crc_p;
1341 struct stat parent_stat, abfd_stat;
1342 int verified_as_different;
1343
1344 /* Find a separate debug info file as if symbols would be present in
1345 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1346 section can contain just the basename of PARENT_OBJFILE without any
1347 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1348 the separate debug infos with the same basename can exist. */
1349
1350 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1351 return 0;
1352
1353 if (separate_debug_file_debug)
1354 printf_unfiltered (_(" Trying %s\n"), name);
1355
1356 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name, gnutarget, -1));
1357
1358 if (abfd == NULL)
1359 return 0;
1360
1361 /* Verify symlinks were not the cause of filename_cmp name difference above.
1362
1363 Some operating systems, e.g. Windows, do not provide a meaningful
1364 st_ino; they always set it to zero. (Windows does provide a
1365 meaningful st_dev.) Files accessed from gdbservers that do not
1366 support the vFile:fstat packet will also have st_ino set to zero.
1367 Do not indicate a duplicate library in either case. While there
1368 is no guarantee that a system that provides meaningful inode
1369 numbers will never set st_ino to zero, this is merely an
1370 optimization, so we do not need to worry about false negatives. */
1371
1372 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1373 && abfd_stat.st_ino != 0
1374 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1375 {
1376 if (abfd_stat.st_dev == parent_stat.st_dev
1377 && abfd_stat.st_ino == parent_stat.st_ino)
1378 return 0;
1379 verified_as_different = 1;
1380 }
1381 else
1382 verified_as_different = 0;
1383
1384 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1385
1386 if (!file_crc_p)
1387 return 0;
1388
1389 if (crc != file_crc)
1390 {
1391 unsigned long parent_crc;
1392
1393 /* If the files could not be verified as different with
1394 bfd_stat then we need to calculate the parent's CRC
1395 to verify whether the files are different or not. */
1396
1397 if (!verified_as_different)
1398 {
1399 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1400 return 0;
1401 }
1402
1403 if (verified_as_different || parent_crc != file_crc)
1404 warning (_("the debug information found in \"%s\""
1405 " does not match \"%s\" (CRC mismatch).\n"),
1406 name, objfile_name (parent_objfile));
1407
1408 return 0;
1409 }
1410
1411 return 1;
1412 }
1413
1414 char *debug_file_directory = NULL;
1415 static void
1416 show_debug_file_directory (struct ui_file *file, int from_tty,
1417 struct cmd_list_element *c, const char *value)
1418 {
1419 fprintf_filtered (file,
1420 _("The directory where separate debug "
1421 "symbols are searched for is \"%s\".\n"),
1422 value);
1423 }
1424
1425 #if ! defined (DEBUG_SUBDIRECTORY)
1426 #define DEBUG_SUBDIRECTORY ".debug"
1427 #endif
1428
1429 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1430 where the original file resides (may not be the same as
1431 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1432 looking for. CANON_DIR is the "realpath" form of DIR.
1433 DIR must contain a trailing '/'.
1434 Returns the path of the file with separate debug info, of NULL. */
1435
1436 static char *
1437 find_separate_debug_file (const char *dir,
1438 const char *canon_dir,
1439 const char *debuglink,
1440 unsigned long crc32, struct objfile *objfile)
1441 {
1442 char *debugdir;
1443 char *debugfile;
1444 int i;
1445 VEC (char_ptr) *debugdir_vec;
1446 struct cleanup *back_to;
1447 int ix;
1448
1449 if (separate_debug_file_debug)
1450 printf_unfiltered (_("\nLooking for separate debug info (debug link) for "
1451 "%s\n"), objfile_name (objfile));
1452
1453 /* Set I to std::max (strlen (canon_dir), strlen (dir)). */
1454 i = strlen (dir);
1455 if (canon_dir != NULL && strlen (canon_dir) > i)
1456 i = strlen (canon_dir);
1457
1458 debugfile
1459 = (char *) xmalloc (strlen (debug_file_directory) + 1
1460 + i
1461 + strlen (DEBUG_SUBDIRECTORY)
1462 + strlen ("/")
1463 + strlen (debuglink)
1464 + 1);
1465
1466 /* First try in the same directory as the original file. */
1467 strcpy (debugfile, dir);
1468 strcat (debugfile, debuglink);
1469
1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1471 return debugfile;
1472
1473 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1474 strcpy (debugfile, dir);
1475 strcat (debugfile, DEBUG_SUBDIRECTORY);
1476 strcat (debugfile, "/");
1477 strcat (debugfile, debuglink);
1478
1479 if (separate_debug_file_exists (debugfile, crc32, objfile))
1480 return debugfile;
1481
1482 /* Then try in the global debugfile directories.
1483
1484 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1485 cause "/..." lookups. */
1486
1487 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1488 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1489
1490 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1491 {
1492 strcpy (debugfile, debugdir);
1493 strcat (debugfile, "/");
1494 strcat (debugfile, dir);
1495 strcat (debugfile, debuglink);
1496
1497 if (separate_debug_file_exists (debugfile, crc32, objfile))
1498 {
1499 do_cleanups (back_to);
1500 return debugfile;
1501 }
1502
1503 /* If the file is in the sysroot, try using its base path in the
1504 global debugfile directory. */
1505 if (canon_dir != NULL
1506 && filename_ncmp (canon_dir, gdb_sysroot,
1507 strlen (gdb_sysroot)) == 0
1508 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1509 {
1510 strcpy (debugfile, debugdir);
1511 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1512 strcat (debugfile, "/");
1513 strcat (debugfile, debuglink);
1514
1515 if (separate_debug_file_exists (debugfile, crc32, objfile))
1516 {
1517 do_cleanups (back_to);
1518 return debugfile;
1519 }
1520 }
1521 }
1522
1523 do_cleanups (back_to);
1524 xfree (debugfile);
1525 return NULL;
1526 }
1527
1528 /* Modify PATH to contain only "[/]directory/" part of PATH.
1529 If there were no directory separators in PATH, PATH will be empty
1530 string on return. */
1531
1532 static void
1533 terminate_after_last_dir_separator (char *path)
1534 {
1535 int i;
1536
1537 /* Strip off the final filename part, leaving the directory name,
1538 followed by a slash. The directory can be relative or absolute. */
1539 for (i = strlen(path) - 1; i >= 0; i--)
1540 if (IS_DIR_SEPARATOR (path[i]))
1541 break;
1542
1543 /* If I is -1 then no directory is present there and DIR will be "". */
1544 path[i + 1] = '\0';
1545 }
1546
1547 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1548 Returns pathname, or NULL. */
1549
1550 char *
1551 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1552 {
1553 char *debugfile;
1554 unsigned long crc32;
1555
1556 gdb::unique_xmalloc_ptr<char> debuglink
1557 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1558
1559 if (debuglink == NULL)
1560 {
1561 /* There's no separate debug info, hence there's no way we could
1562 load it => no warning. */
1563 return NULL;
1564 }
1565
1566 std::string dir = objfile_name (objfile);
1567 terminate_after_last_dir_separator (&dir[0]);
1568 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1569
1570 debugfile = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1571 debuglink.get (), crc32, objfile);
1572
1573 if (debugfile == NULL)
1574 {
1575 /* For PR gdb/9538, try again with realpath (if different from the
1576 original). */
1577
1578 struct stat st_buf;
1579
1580 if (lstat (objfile_name (objfile), &st_buf) == 0
1581 && S_ISLNK (st_buf.st_mode))
1582 {
1583 gdb::unique_xmalloc_ptr<char> symlink_dir
1584 (lrealpath (objfile_name (objfile)));
1585 if (symlink_dir != NULL)
1586 {
1587 terminate_after_last_dir_separator (symlink_dir.get ());
1588 if (dir != symlink_dir.get ())
1589 {
1590 /* Different directory, so try using it. */
1591 debugfile = find_separate_debug_file (symlink_dir.get (),
1592 symlink_dir.get (),
1593 debuglink.get (),
1594 crc32,
1595 objfile);
1596 }
1597 }
1598 }
1599 }
1600
1601 return debugfile;
1602 }
1603
1604 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1605 simultaneously. */
1606
1607 static void
1608 validate_readnow_readnever (objfile_flags flags)
1609 {
1610 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1611 error (_("-readnow and -readnever cannot be used simultaneously"));
1612 }
1613
1614 /* This is the symbol-file command. Read the file, analyze its
1615 symbols, and add a struct symtab to a symtab list. The syntax of
1616 the command is rather bizarre:
1617
1618 1. The function buildargv implements various quoting conventions
1619 which are undocumented and have little or nothing in common with
1620 the way things are quoted (or not quoted) elsewhere in GDB.
1621
1622 2. Options are used, which are not generally used in GDB (perhaps
1623 "set mapped on", "set readnow on" would be better)
1624
1625 3. The order of options matters, which is contrary to GNU
1626 conventions (because it is confusing and inconvenient). */
1627
1628 void
1629 symbol_file_command (const char *args, int from_tty)
1630 {
1631 dont_repeat ();
1632
1633 if (args == NULL)
1634 {
1635 symbol_file_clear (from_tty);
1636 }
1637 else
1638 {
1639 objfile_flags flags = OBJF_USERLOADED;
1640 symfile_add_flags add_flags = 0;
1641 char *name = NULL;
1642
1643 if (from_tty)
1644 add_flags |= SYMFILE_VERBOSE;
1645
1646 gdb_argv built_argv (args);
1647 for (char *arg : built_argv)
1648 {
1649 if (strcmp (arg, "-readnow") == 0)
1650 flags |= OBJF_READNOW;
1651 else if (strcmp (arg, "-readnever") == 0)
1652 flags |= OBJF_READNEVER;
1653 else if (*arg == '-')
1654 error (_("unknown option `%s'"), arg);
1655 else
1656 name = arg;
1657 }
1658
1659 if (name == NULL)
1660 error (_("no symbol file name was specified"));
1661
1662 validate_readnow_readnever (flags);
1663
1664 symbol_file_add_main_1 (name, add_flags, flags);
1665 }
1666 }
1667
1668 /* Set the initial language.
1669
1670 FIXME: A better solution would be to record the language in the
1671 psymtab when reading partial symbols, and then use it (if known) to
1672 set the language. This would be a win for formats that encode the
1673 language in an easily discoverable place, such as DWARF. For
1674 stabs, we can jump through hoops looking for specially named
1675 symbols or try to intuit the language from the specific type of
1676 stabs we find, but we can't do that until later when we read in
1677 full symbols. */
1678
1679 void
1680 set_initial_language (void)
1681 {
1682 enum language lang = main_language ();
1683
1684 if (lang == language_unknown)
1685 {
1686 char *name = main_name ();
1687 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1688
1689 if (sym != NULL)
1690 lang = SYMBOL_LANGUAGE (sym);
1691 }
1692
1693 if (lang == language_unknown)
1694 {
1695 /* Make C the default language */
1696 lang = language_c;
1697 }
1698
1699 set_language (lang);
1700 expected_language = current_language; /* Don't warn the user. */
1701 }
1702
1703 /* Open the file specified by NAME and hand it off to BFD for
1704 preliminary analysis. Return a newly initialized bfd *, which
1705 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1706 absolute). In case of trouble, error() is called. */
1707
1708 gdb_bfd_ref_ptr
1709 symfile_bfd_open (const char *name)
1710 {
1711 int desc = -1;
1712 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1713
1714 if (!is_target_filename (name))
1715 {
1716 char *absolute_name;
1717
1718 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1719
1720 /* Look down path for it, allocate 2nd new malloc'd copy. */
1721 desc = openp (getenv ("PATH"),
1722 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1723 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1724 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1725 if (desc < 0)
1726 {
1727 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1728
1729 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1730 desc = openp (getenv ("PATH"),
1731 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1732 exename, O_RDONLY | O_BINARY, &absolute_name);
1733 }
1734 #endif
1735 if (desc < 0)
1736 perror_with_name (expanded_name.get ());
1737
1738 make_cleanup (xfree, absolute_name);
1739 name = absolute_name;
1740 }
1741
1742 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1743 if (sym_bfd == NULL)
1744 error (_("`%s': can't open to read symbols: %s."), name,
1745 bfd_errmsg (bfd_get_error ()));
1746
1747 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1748 bfd_set_cacheable (sym_bfd.get (), 1);
1749
1750 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1751 error (_("`%s': can't read symbols: %s."), name,
1752 bfd_errmsg (bfd_get_error ()));
1753
1754 do_cleanups (back_to);
1755
1756 return sym_bfd;
1757 }
1758
1759 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1760 the section was not found. */
1761
1762 int
1763 get_section_index (struct objfile *objfile, const char *section_name)
1764 {
1765 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1766
1767 if (sect)
1768 return sect->index;
1769 else
1770 return -1;
1771 }
1772
1773 /* Link SF into the global symtab_fns list.
1774 FLAVOUR is the file format that SF handles.
1775 Called on startup by the _initialize routine in each object file format
1776 reader, to register information about each format the reader is prepared
1777 to handle. */
1778
1779 void
1780 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1781 {
1782 symtab_fns.emplace_back (flavour, sf);
1783 }
1784
1785 /* Initialize OBJFILE to read symbols from its associated BFD. It
1786 either returns or calls error(). The result is an initialized
1787 struct sym_fns in the objfile structure, that contains cached
1788 information about the symbol file. */
1789
1790 static const struct sym_fns *
1791 find_sym_fns (bfd *abfd)
1792 {
1793 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1794
1795 if (our_flavour == bfd_target_srec_flavour
1796 || our_flavour == bfd_target_ihex_flavour
1797 || our_flavour == bfd_target_tekhex_flavour)
1798 return NULL; /* No symbols. */
1799
1800 for (const registered_sym_fns &rsf : symtab_fns)
1801 if (our_flavour == rsf.sym_flavour)
1802 return rsf.sym_fns;
1803
1804 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1805 bfd_get_target (abfd));
1806 }
1807 \f
1808
1809 /* This function runs the load command of our current target. */
1810
1811 static void
1812 load_command (const char *arg, int from_tty)
1813 {
1814 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1815
1816 dont_repeat ();
1817
1818 /* The user might be reloading because the binary has changed. Take
1819 this opportunity to check. */
1820 reopen_exec_file ();
1821 reread_symbols ();
1822
1823 if (arg == NULL)
1824 {
1825 const char *parg;
1826 int count = 0;
1827
1828 parg = arg = get_exec_file (1);
1829
1830 /* Count how many \ " ' tab space there are in the name. */
1831 while ((parg = strpbrk (parg, "\\\"'\t ")))
1832 {
1833 parg++;
1834 count++;
1835 }
1836
1837 if (count)
1838 {
1839 /* We need to quote this string so buildargv can pull it apart. */
1840 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1841 char *ptemp = temp;
1842 const char *prev;
1843
1844 make_cleanup (xfree, temp);
1845
1846 prev = parg = arg;
1847 while ((parg = strpbrk (parg, "\\\"'\t ")))
1848 {
1849 strncpy (ptemp, prev, parg - prev);
1850 ptemp += parg - prev;
1851 prev = parg++;
1852 *ptemp++ = '\\';
1853 }
1854 strcpy (ptemp, prev);
1855
1856 arg = temp;
1857 }
1858 }
1859
1860 target_load (arg, from_tty);
1861
1862 /* After re-loading the executable, we don't really know which
1863 overlays are mapped any more. */
1864 overlay_cache_invalid = 1;
1865
1866 do_cleanups (cleanup);
1867 }
1868
1869 /* This version of "load" should be usable for any target. Currently
1870 it is just used for remote targets, not inftarg.c or core files,
1871 on the theory that only in that case is it useful.
1872
1873 Avoiding xmodem and the like seems like a win (a) because we don't have
1874 to worry about finding it, and (b) On VMS, fork() is very slow and so
1875 we don't want to run a subprocess. On the other hand, I'm not sure how
1876 performance compares. */
1877
1878 static int validate_download = 0;
1879
1880 /* Callback service function for generic_load (bfd_map_over_sections). */
1881
1882 static void
1883 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1884 {
1885 bfd_size_type *sum = (bfd_size_type *) data;
1886
1887 *sum += bfd_get_section_size (asec);
1888 }
1889
1890 /* Opaque data for load_section_callback. */
1891 struct load_section_data {
1892 CORE_ADDR load_offset;
1893 struct load_progress_data *progress_data;
1894 VEC(memory_write_request_s) *requests;
1895 };
1896
1897 /* Opaque data for load_progress. */
1898 struct load_progress_data {
1899 /* Cumulative data. */
1900 unsigned long write_count;
1901 unsigned long data_count;
1902 bfd_size_type total_size;
1903 };
1904
1905 /* Opaque data for load_progress for a single section. */
1906 struct load_progress_section_data {
1907 struct load_progress_data *cumulative;
1908
1909 /* Per-section data. */
1910 const char *section_name;
1911 ULONGEST section_sent;
1912 ULONGEST section_size;
1913 CORE_ADDR lma;
1914 gdb_byte *buffer;
1915 };
1916
1917 /* Target write callback routine for progress reporting. */
1918
1919 static void
1920 load_progress (ULONGEST bytes, void *untyped_arg)
1921 {
1922 struct load_progress_section_data *args
1923 = (struct load_progress_section_data *) untyped_arg;
1924 struct load_progress_data *totals;
1925
1926 if (args == NULL)
1927 /* Writing padding data. No easy way to get at the cumulative
1928 stats, so just ignore this. */
1929 return;
1930
1931 totals = args->cumulative;
1932
1933 if (bytes == 0 && args->section_sent == 0)
1934 {
1935 /* The write is just starting. Let the user know we've started
1936 this section. */
1937 current_uiout->message ("Loading section %s, size %s lma %s\n",
1938 args->section_name,
1939 hex_string (args->section_size),
1940 paddress (target_gdbarch (), args->lma));
1941 return;
1942 }
1943
1944 if (validate_download)
1945 {
1946 /* Broken memories and broken monitors manifest themselves here
1947 when bring new computers to life. This doubles already slow
1948 downloads. */
1949 /* NOTE: cagney/1999-10-18: A more efficient implementation
1950 might add a verify_memory() method to the target vector and
1951 then use that. remote.c could implement that method using
1952 the ``qCRC'' packet. */
1953 gdb::byte_vector check (bytes);
1954
1955 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1956 error (_("Download verify read failed at %s"),
1957 paddress (target_gdbarch (), args->lma));
1958 if (memcmp (args->buffer, check.data (), bytes) != 0)
1959 error (_("Download verify compare failed at %s"),
1960 paddress (target_gdbarch (), args->lma));
1961 }
1962 totals->data_count += bytes;
1963 args->lma += bytes;
1964 args->buffer += bytes;
1965 totals->write_count += 1;
1966 args->section_sent += bytes;
1967 if (check_quit_flag ()
1968 || (deprecated_ui_load_progress_hook != NULL
1969 && deprecated_ui_load_progress_hook (args->section_name,
1970 args->section_sent)))
1971 error (_("Canceled the download"));
1972
1973 if (deprecated_show_load_progress != NULL)
1974 deprecated_show_load_progress (args->section_name,
1975 args->section_sent,
1976 args->section_size,
1977 totals->data_count,
1978 totals->total_size);
1979 }
1980
1981 /* Callback service function for generic_load (bfd_map_over_sections). */
1982
1983 static void
1984 load_section_callback (bfd *abfd, asection *asec, void *data)
1985 {
1986 struct memory_write_request *new_request;
1987 struct load_section_data *args = (struct load_section_data *) data;
1988 struct load_progress_section_data *section_data;
1989 bfd_size_type size = bfd_get_section_size (asec);
1990 gdb_byte *buffer;
1991 const char *sect_name = bfd_get_section_name (abfd, asec);
1992
1993 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1994 return;
1995
1996 if (size == 0)
1997 return;
1998
1999 new_request = VEC_safe_push (memory_write_request_s,
2000 args->requests, NULL);
2001 memset (new_request, 0, sizeof (struct memory_write_request));
2002 section_data = XCNEW (struct load_progress_section_data);
2003 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2004 new_request->end = new_request->begin + size; /* FIXME Should size
2005 be in instead? */
2006 new_request->data = (gdb_byte *) xmalloc (size);
2007 new_request->baton = section_data;
2008
2009 buffer = new_request->data;
2010
2011 section_data->cumulative = args->progress_data;
2012 section_data->section_name = sect_name;
2013 section_data->section_size = size;
2014 section_data->lma = new_request->begin;
2015 section_data->buffer = buffer;
2016
2017 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2018 }
2019
2020 /* Clean up an entire memory request vector, including load
2021 data and progress records. */
2022
2023 static void
2024 clear_memory_write_data (void *arg)
2025 {
2026 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2027 VEC(memory_write_request_s) *vec = *vec_p;
2028 int i;
2029 struct memory_write_request *mr;
2030
2031 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2032 {
2033 xfree (mr->data);
2034 xfree (mr->baton);
2035 }
2036 VEC_free (memory_write_request_s, vec);
2037 }
2038
2039 static void print_transfer_performance (struct ui_file *stream,
2040 unsigned long data_count,
2041 unsigned long write_count,
2042 std::chrono::steady_clock::duration d);
2043
2044 void
2045 generic_load (const char *args, int from_tty)
2046 {
2047 struct cleanup *old_cleanups;
2048 struct load_section_data cbdata;
2049 struct load_progress_data total_progress;
2050 struct ui_out *uiout = current_uiout;
2051
2052 CORE_ADDR entry;
2053
2054 memset (&cbdata, 0, sizeof (cbdata));
2055 memset (&total_progress, 0, sizeof (total_progress));
2056 cbdata.progress_data = &total_progress;
2057
2058 old_cleanups = make_cleanup (clear_memory_write_data, &cbdata.requests);
2059
2060 if (args == NULL)
2061 error_no_arg (_("file to load"));
2062
2063 gdb_argv argv (args);
2064
2065 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2066
2067 if (argv[1] != NULL)
2068 {
2069 const char *endptr;
2070
2071 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2072
2073 /* If the last word was not a valid number then
2074 treat it as a file name with spaces in. */
2075 if (argv[1] == endptr)
2076 error (_("Invalid download offset:%s."), argv[1]);
2077
2078 if (argv[2] != NULL)
2079 error (_("Too many parameters."));
2080 }
2081
2082 /* Open the file for loading. */
2083 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2084 if (loadfile_bfd == NULL)
2085 perror_with_name (filename.get ());
2086
2087 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2088 {
2089 error (_("\"%s\" is not an object file: %s"), filename.get (),
2090 bfd_errmsg (bfd_get_error ()));
2091 }
2092
2093 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2094 (void *) &total_progress.total_size);
2095
2096 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2097
2098 using namespace std::chrono;
2099
2100 steady_clock::time_point start_time = steady_clock::now ();
2101
2102 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2103 load_progress) != 0)
2104 error (_("Load failed"));
2105
2106 steady_clock::time_point end_time = steady_clock::now ();
2107
2108 entry = bfd_get_start_address (loadfile_bfd.get ());
2109 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2110 uiout->text ("Start address ");
2111 uiout->field_fmt ("address", "%s", paddress (target_gdbarch (), entry));
2112 uiout->text (", load size ");
2113 uiout->field_fmt ("load-size", "%lu", total_progress.data_count);
2114 uiout->text ("\n");
2115 regcache_write_pc (get_current_regcache (), entry);
2116
2117 /* Reset breakpoints, now that we have changed the load image. For
2118 instance, breakpoints may have been set (or reset, by
2119 post_create_inferior) while connected to the target but before we
2120 loaded the program. In that case, the prologue analyzer could
2121 have read instructions from the target to find the right
2122 breakpoint locations. Loading has changed the contents of that
2123 memory. */
2124
2125 breakpoint_re_set ();
2126
2127 print_transfer_performance (gdb_stdout, total_progress.data_count,
2128 total_progress.write_count,
2129 end_time - start_time);
2130
2131 do_cleanups (old_cleanups);
2132 }
2133
2134 /* Report on STREAM the performance of a memory transfer operation,
2135 such as 'load'. DATA_COUNT is the number of bytes transferred.
2136 WRITE_COUNT is the number of separate write operations, or 0, if
2137 that information is not available. TIME is how long the operation
2138 lasted. */
2139
2140 static void
2141 print_transfer_performance (struct ui_file *stream,
2142 unsigned long data_count,
2143 unsigned long write_count,
2144 std::chrono::steady_clock::duration time)
2145 {
2146 using namespace std::chrono;
2147 struct ui_out *uiout = current_uiout;
2148
2149 milliseconds ms = duration_cast<milliseconds> (time);
2150
2151 uiout->text ("Transfer rate: ");
2152 if (ms.count () > 0)
2153 {
2154 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2155
2156 if (uiout->is_mi_like_p ())
2157 {
2158 uiout->field_fmt ("transfer-rate", "%lu", rate * 8);
2159 uiout->text (" bits/sec");
2160 }
2161 else if (rate < 1024)
2162 {
2163 uiout->field_fmt ("transfer-rate", "%lu", rate);
2164 uiout->text (" bytes/sec");
2165 }
2166 else
2167 {
2168 uiout->field_fmt ("transfer-rate", "%lu", rate / 1024);
2169 uiout->text (" KB/sec");
2170 }
2171 }
2172 else
2173 {
2174 uiout->field_fmt ("transferred-bits", "%lu", (data_count * 8));
2175 uiout->text (" bits in <1 sec");
2176 }
2177 if (write_count > 0)
2178 {
2179 uiout->text (", ");
2180 uiout->field_fmt ("write-rate", "%lu", data_count / write_count);
2181 uiout->text (" bytes/write");
2182 }
2183 uiout->text (".\n");
2184 }
2185
2186 /* This function allows the addition of incrementally linked object files.
2187 It does not modify any state in the target, only in the debugger. */
2188 /* Note: ezannoni 2000-04-13 This function/command used to have a
2189 special case syntax for the rombug target (Rombug is the boot
2190 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2191 rombug case, the user doesn't need to supply a text address,
2192 instead a call to target_link() (in target.c) would supply the
2193 value to use. We are now discontinuing this type of ad hoc syntax. */
2194
2195 static void
2196 add_symbol_file_command (const char *args, int from_tty)
2197 {
2198 struct gdbarch *gdbarch = get_current_arch ();
2199 gdb::unique_xmalloc_ptr<char> filename;
2200 char *arg;
2201 int argcnt = 0;
2202 int sec_num = 0;
2203 int expecting_sec_name = 0;
2204 int expecting_sec_addr = 0;
2205 struct objfile *objf;
2206 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2207 symfile_add_flags add_flags = 0;
2208
2209 if (from_tty)
2210 add_flags |= SYMFILE_VERBOSE;
2211
2212 struct sect_opt
2213 {
2214 const char *name;
2215 const char *value;
2216 };
2217
2218 struct section_addr_info *section_addrs;
2219 std::vector<sect_opt> sect_opts;
2220 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2221
2222 dont_repeat ();
2223
2224 if (args == NULL)
2225 error (_("add-symbol-file takes a file name and an address"));
2226
2227 gdb_argv argv (args);
2228
2229 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2230 {
2231 /* Process the argument. */
2232 if (argcnt == 0)
2233 {
2234 /* The first argument is the file name. */
2235 filename.reset (tilde_expand (arg));
2236 }
2237 else if (argcnt == 1)
2238 {
2239 /* The second argument is always the text address at which
2240 to load the program. */
2241 sect_opt sect = { ".text", arg };
2242 sect_opts.push_back (sect);
2243 }
2244 else
2245 {
2246 /* It's an option (starting with '-') or it's an argument
2247 to an option. */
2248 if (expecting_sec_name)
2249 {
2250 sect_opt sect = { arg, NULL };
2251 sect_opts.push_back (sect);
2252 expecting_sec_name = 0;
2253 }
2254 else if (expecting_sec_addr)
2255 {
2256 sect_opts.back ().value = arg;
2257 expecting_sec_addr = 0;
2258 }
2259 else if (strcmp (arg, "-readnow") == 0)
2260 flags |= OBJF_READNOW;
2261 else if (strcmp (arg, "-readnever") == 0)
2262 flags |= OBJF_READNEVER;
2263 else if (strcmp (arg, "-s") == 0)
2264 {
2265 expecting_sec_name = 1;
2266 expecting_sec_addr = 1;
2267 }
2268 else
2269 error (_("Unrecognized argument \"%s\""), arg);
2270 }
2271 }
2272
2273 validate_readnow_readnever (flags);
2274
2275 /* This command takes at least two arguments. The first one is a
2276 filename, and the second is the address where this file has been
2277 loaded. Abort now if this address hasn't been provided by the
2278 user. */
2279 if (sect_opts.empty ())
2280 error (_("The address where %s has been loaded is missing"),
2281 filename.get ());
2282
2283 if (expecting_sec_name)
2284 error (_("Missing section name after \"-s\""));
2285 else if (expecting_sec_addr)
2286 error (_("Missing section address after \"-s\""));
2287
2288 /* Print the prompt for the query below. And save the arguments into
2289 a sect_addr_info structure to be passed around to other
2290 functions. We have to split this up into separate print
2291 statements because hex_string returns a local static
2292 string. */
2293
2294 printf_unfiltered (_("add symbol table from file \"%s\" at\n"),
2295 filename.get ());
2296 section_addrs = alloc_section_addr_info (sect_opts.size ());
2297 make_cleanup (xfree, section_addrs);
2298 for (sect_opt &sect : sect_opts)
2299 {
2300 CORE_ADDR addr;
2301 const char *val = sect.value;
2302 const char *sec = sect.name;
2303
2304 addr = parse_and_eval_address (val);
2305
2306 /* Here we store the section offsets in the order they were
2307 entered on the command line. */
2308 section_addrs->other[sec_num].name = (char *) sec;
2309 section_addrs->other[sec_num].addr = addr;
2310 printf_unfiltered ("\t%s_addr = %s\n", sec,
2311 paddress (gdbarch, addr));
2312 sec_num++;
2313
2314 /* The object's sections are initialized when a
2315 call is made to build_objfile_section_table (objfile).
2316 This happens in reread_symbols.
2317 At this point, we don't know what file type this is,
2318 so we can't determine what section names are valid. */
2319 }
2320 section_addrs->num_sections = sec_num;
2321
2322 if (from_tty && (!query ("%s", "")))
2323 error (_("Not confirmed."));
2324
2325 objf = symbol_file_add (filename.get (), add_flags, section_addrs, flags);
2326
2327 add_target_sections_of_objfile (objf);
2328
2329 /* Getting new symbols may change our opinion about what is
2330 frameless. */
2331 reinit_frame_cache ();
2332 do_cleanups (my_cleanups);
2333 }
2334 \f
2335
2336 /* This function removes a symbol file that was added via add-symbol-file. */
2337
2338 static void
2339 remove_symbol_file_command (const char *args, int from_tty)
2340 {
2341 struct objfile *objf = NULL;
2342 struct program_space *pspace = current_program_space;
2343
2344 dont_repeat ();
2345
2346 if (args == NULL)
2347 error (_("remove-symbol-file: no symbol file provided"));
2348
2349 gdb_argv argv (args);
2350
2351 if (strcmp (argv[0], "-a") == 0)
2352 {
2353 /* Interpret the next argument as an address. */
2354 CORE_ADDR addr;
2355
2356 if (argv[1] == NULL)
2357 error (_("Missing address argument"));
2358
2359 if (argv[2] != NULL)
2360 error (_("Junk after %s"), argv[1]);
2361
2362 addr = parse_and_eval_address (argv[1]);
2363
2364 ALL_OBJFILES (objf)
2365 {
2366 if ((objf->flags & OBJF_USERLOADED) != 0
2367 && (objf->flags & OBJF_SHARED) != 0
2368 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2369 break;
2370 }
2371 }
2372 else if (argv[0] != NULL)
2373 {
2374 /* Interpret the current argument as a file name. */
2375
2376 if (argv[1] != NULL)
2377 error (_("Junk after %s"), argv[0]);
2378
2379 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2380
2381 ALL_OBJFILES (objf)
2382 {
2383 if ((objf->flags & OBJF_USERLOADED) != 0
2384 && (objf->flags & OBJF_SHARED) != 0
2385 && objf->pspace == pspace
2386 && filename_cmp (filename.get (), objfile_name (objf)) == 0)
2387 break;
2388 }
2389 }
2390
2391 if (objf == NULL)
2392 error (_("No symbol file found"));
2393
2394 if (from_tty
2395 && !query (_("Remove symbol table from file \"%s\"? "),
2396 objfile_name (objf)))
2397 error (_("Not confirmed."));
2398
2399 delete objf;
2400 clear_symtab_users (0);
2401 }
2402
2403 /* Re-read symbols if a symbol-file has changed. */
2404
2405 void
2406 reread_symbols (void)
2407 {
2408 struct objfile *objfile;
2409 long new_modtime;
2410 struct stat new_statbuf;
2411 int res;
2412 std::vector<struct objfile *> new_objfiles;
2413
2414 /* With the addition of shared libraries, this should be modified,
2415 the load time should be saved in the partial symbol tables, since
2416 different tables may come from different source files. FIXME.
2417 This routine should then walk down each partial symbol table
2418 and see if the symbol table that it originates from has been changed. */
2419
2420 for (objfile = object_files; objfile; objfile = objfile->next)
2421 {
2422 if (objfile->obfd == NULL)
2423 continue;
2424
2425 /* Separate debug objfiles are handled in the main objfile. */
2426 if (objfile->separate_debug_objfile_backlink)
2427 continue;
2428
2429 /* If this object is from an archive (what you usually create with
2430 `ar', often called a `static library' on most systems, though
2431 a `shared library' on AIX is also an archive), then you should
2432 stat on the archive name, not member name. */
2433 if (objfile->obfd->my_archive)
2434 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2435 else
2436 res = stat (objfile_name (objfile), &new_statbuf);
2437 if (res != 0)
2438 {
2439 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2440 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2441 objfile_name (objfile));
2442 continue;
2443 }
2444 new_modtime = new_statbuf.st_mtime;
2445 if (new_modtime != objfile->mtime)
2446 {
2447 struct cleanup *old_cleanups;
2448 struct section_offsets *offsets;
2449 int num_offsets;
2450 char *original_name;
2451
2452 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2453 objfile_name (objfile));
2454
2455 /* There are various functions like symbol_file_add,
2456 symfile_bfd_open, syms_from_objfile, etc., which might
2457 appear to do what we want. But they have various other
2458 effects which we *don't* want. So we just do stuff
2459 ourselves. We don't worry about mapped files (for one thing,
2460 any mapped file will be out of date). */
2461
2462 /* If we get an error, blow away this objfile (not sure if
2463 that is the correct response for things like shared
2464 libraries). */
2465 std::unique_ptr<struct objfile> objfile_holder (objfile);
2466
2467 /* We need to do this whenever any symbols go away. */
2468 old_cleanups = make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2469
2470 if (exec_bfd != NULL
2471 && filename_cmp (bfd_get_filename (objfile->obfd),
2472 bfd_get_filename (exec_bfd)) == 0)
2473 {
2474 /* Reload EXEC_BFD without asking anything. */
2475
2476 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2477 }
2478
2479 /* Keep the calls order approx. the same as in free_objfile. */
2480
2481 /* Free the separate debug objfiles. It will be
2482 automatically recreated by sym_read. */
2483 free_objfile_separate_debug (objfile);
2484
2485 /* Remove any references to this objfile in the global
2486 value lists. */
2487 preserve_values (objfile);
2488
2489 /* Nuke all the state that we will re-read. Much of the following
2490 code which sets things to NULL really is necessary to tell
2491 other parts of GDB that there is nothing currently there.
2492
2493 Try to keep the freeing order compatible with free_objfile. */
2494
2495 if (objfile->sf != NULL)
2496 {
2497 (*objfile->sf->sym_finish) (objfile);
2498 }
2499
2500 clear_objfile_data (objfile);
2501
2502 /* Clean up any state BFD has sitting around. */
2503 {
2504 gdb_bfd_ref_ptr obfd (objfile->obfd);
2505 char *obfd_filename;
2506
2507 obfd_filename = bfd_get_filename (objfile->obfd);
2508 /* Open the new BFD before freeing the old one, so that
2509 the filename remains live. */
2510 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2511 objfile->obfd = temp.release ();
2512 if (objfile->obfd == NULL)
2513 error (_("Can't open %s to read symbols."), obfd_filename);
2514 }
2515
2516 original_name = xstrdup (objfile->original_name);
2517 make_cleanup (xfree, original_name);
2518
2519 /* bfd_openr sets cacheable to true, which is what we want. */
2520 if (!bfd_check_format (objfile->obfd, bfd_object))
2521 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2522 bfd_errmsg (bfd_get_error ()));
2523
2524 /* Save the offsets, we will nuke them with the rest of the
2525 objfile_obstack. */
2526 num_offsets = objfile->num_sections;
2527 offsets = ((struct section_offsets *)
2528 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2529 memcpy (offsets, objfile->section_offsets,
2530 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2531
2532 /* FIXME: Do we have to free a whole linked list, or is this
2533 enough? */
2534 objfile->global_psymbols.clear ();
2535 objfile->static_psymbols.clear ();
2536
2537 /* Free the obstacks for non-reusable objfiles. */
2538 psymbol_bcache_free (objfile->psymbol_cache);
2539 objfile->psymbol_cache = psymbol_bcache_init ();
2540
2541 /* NB: after this call to obstack_free, objfiles_changed
2542 will need to be called (see discussion below). */
2543 obstack_free (&objfile->objfile_obstack, 0);
2544 objfile->sections = NULL;
2545 objfile->compunit_symtabs = NULL;
2546 objfile->psymtabs = NULL;
2547 objfile->psymtabs_addrmap = NULL;
2548 objfile->free_psymtabs = NULL;
2549 objfile->template_symbols = NULL;
2550
2551 /* obstack_init also initializes the obstack so it is
2552 empty. We could use obstack_specify_allocation but
2553 gdb_obstack.h specifies the alloc/dealloc functions. */
2554 obstack_init (&objfile->objfile_obstack);
2555
2556 /* set_objfile_per_bfd potentially allocates the per-bfd
2557 data on the objfile's obstack (if sharing data across
2558 multiple users is not possible), so it's important to
2559 do it *after* the obstack has been initialized. */
2560 set_objfile_per_bfd (objfile);
2561
2562 objfile->original_name
2563 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2564 strlen (original_name));
2565
2566 /* Reset the sym_fns pointer. The ELF reader can change it
2567 based on whether .gdb_index is present, and we need it to
2568 start over. PR symtab/15885 */
2569 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2570
2571 build_objfile_section_table (objfile);
2572 terminate_minimal_symbol_table (objfile);
2573
2574 /* We use the same section offsets as from last time. I'm not
2575 sure whether that is always correct for shared libraries. */
2576 objfile->section_offsets = (struct section_offsets *)
2577 obstack_alloc (&objfile->objfile_obstack,
2578 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2579 memcpy (objfile->section_offsets, offsets,
2580 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2581 objfile->num_sections = num_offsets;
2582
2583 /* What the hell is sym_new_init for, anyway? The concept of
2584 distinguishing between the main file and additional files
2585 in this way seems rather dubious. */
2586 if (objfile == symfile_objfile)
2587 {
2588 (*objfile->sf->sym_new_init) (objfile);
2589 }
2590
2591 (*objfile->sf->sym_init) (objfile);
2592 clear_complaints (&symfile_complaints, 1, 1);
2593
2594 objfile->flags &= ~OBJF_PSYMTABS_READ;
2595
2596 /* We are about to read new symbols and potentially also
2597 DWARF information. Some targets may want to pass addresses
2598 read from DWARF DIE's through an adjustment function before
2599 saving them, like MIPS, which may call into
2600 "find_pc_section". When called, that function will make
2601 use of per-objfile program space data.
2602
2603 Since we discarded our section information above, we have
2604 dangling pointers in the per-objfile program space data
2605 structure. Force GDB to update the section mapping
2606 information by letting it know the objfile has changed,
2607 making the dangling pointers point to correct data
2608 again. */
2609
2610 objfiles_changed ();
2611
2612 read_symbols (objfile, 0);
2613
2614 if (!objfile_has_symbols (objfile))
2615 {
2616 wrap_here ("");
2617 printf_unfiltered (_("(no debugging symbols found)\n"));
2618 wrap_here ("");
2619 }
2620
2621 /* We're done reading the symbol file; finish off complaints. */
2622 clear_complaints (&symfile_complaints, 0, 1);
2623
2624 /* Getting new symbols may change our opinion about what is
2625 frameless. */
2626
2627 reinit_frame_cache ();
2628
2629 /* Discard cleanups as symbol reading was successful. */
2630 objfile_holder.release ();
2631 discard_cleanups (old_cleanups);
2632
2633 /* If the mtime has changed between the time we set new_modtime
2634 and now, we *want* this to be out of date, so don't call stat
2635 again now. */
2636 objfile->mtime = new_modtime;
2637 init_entry_point_info (objfile);
2638
2639 new_objfiles.push_back (objfile);
2640 }
2641 }
2642
2643 if (!new_objfiles.empty ())
2644 {
2645 clear_symtab_users (0);
2646
2647 /* clear_objfile_data for each objfile was called before freeing it and
2648 observer_notify_new_objfile (NULL) has been called by
2649 clear_symtab_users above. Notify the new files now. */
2650 for (auto iter : new_objfiles)
2651 observer_notify_new_objfile (iter);
2652
2653 /* At least one objfile has changed, so we can consider that
2654 the executable we're debugging has changed too. */
2655 observer_notify_executable_changed ();
2656 }
2657 }
2658 \f
2659
2660 struct filename_language
2661 {
2662 filename_language (const std::string &ext_, enum language lang_)
2663 : ext (ext_), lang (lang_)
2664 {}
2665
2666 std::string ext;
2667 enum language lang;
2668 };
2669
2670 static std::vector<filename_language> filename_language_table;
2671
2672 /* See symfile.h. */
2673
2674 void
2675 add_filename_language (const char *ext, enum language lang)
2676 {
2677 filename_language_table.emplace_back (ext, lang);
2678 }
2679
2680 static char *ext_args;
2681 static void
2682 show_ext_args (struct ui_file *file, int from_tty,
2683 struct cmd_list_element *c, const char *value)
2684 {
2685 fprintf_filtered (file,
2686 _("Mapping between filename extension "
2687 "and source language is \"%s\".\n"),
2688 value);
2689 }
2690
2691 static void
2692 set_ext_lang_command (const char *args,
2693 int from_tty, struct cmd_list_element *e)
2694 {
2695 char *cp = ext_args;
2696 enum language lang;
2697
2698 /* First arg is filename extension, starting with '.' */
2699 if (*cp != '.')
2700 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2701
2702 /* Find end of first arg. */
2703 while (*cp && !isspace (*cp))
2704 cp++;
2705
2706 if (*cp == '\0')
2707 error (_("'%s': two arguments required -- "
2708 "filename extension and language"),
2709 ext_args);
2710
2711 /* Null-terminate first arg. */
2712 *cp++ = '\0';
2713
2714 /* Find beginning of second arg, which should be a source language. */
2715 cp = skip_spaces (cp);
2716
2717 if (*cp == '\0')
2718 error (_("'%s': two arguments required -- "
2719 "filename extension and language"),
2720 ext_args);
2721
2722 /* Lookup the language from among those we know. */
2723 lang = language_enum (cp);
2724
2725 auto it = filename_language_table.begin ();
2726 /* Now lookup the filename extension: do we already know it? */
2727 for (; it != filename_language_table.end (); it++)
2728 {
2729 if (it->ext == ext_args)
2730 break;
2731 }
2732
2733 if (it == filename_language_table.end ())
2734 {
2735 /* New file extension. */
2736 add_filename_language (ext_args, lang);
2737 }
2738 else
2739 {
2740 /* Redefining a previously known filename extension. */
2741
2742 /* if (from_tty) */
2743 /* query ("Really make files of type %s '%s'?", */
2744 /* ext_args, language_str (lang)); */
2745
2746 it->lang = lang;
2747 }
2748 }
2749
2750 static void
2751 info_ext_lang_command (const char *args, int from_tty)
2752 {
2753 printf_filtered (_("Filename extensions and the languages they represent:"));
2754 printf_filtered ("\n\n");
2755 for (const filename_language &entry : filename_language_table)
2756 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2757 language_str (entry.lang));
2758 }
2759
2760 enum language
2761 deduce_language_from_filename (const char *filename)
2762 {
2763 const char *cp;
2764
2765 if (filename != NULL)
2766 if ((cp = strrchr (filename, '.')) != NULL)
2767 {
2768 for (const filename_language &entry : filename_language_table)
2769 if (entry.ext == cp)
2770 return entry.lang;
2771 }
2772
2773 return language_unknown;
2774 }
2775 \f
2776 /* Allocate and initialize a new symbol table.
2777 CUST is from the result of allocate_compunit_symtab. */
2778
2779 struct symtab *
2780 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2781 {
2782 struct objfile *objfile = cust->objfile;
2783 struct symtab *symtab
2784 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2785
2786 symtab->filename
2787 = (const char *) bcache (filename, strlen (filename) + 1,
2788 objfile->per_bfd->filename_cache);
2789 symtab->fullname = NULL;
2790 symtab->language = deduce_language_from_filename (filename);
2791
2792 /* This can be very verbose with lots of headers.
2793 Only print at higher debug levels. */
2794 if (symtab_create_debug >= 2)
2795 {
2796 /* Be a bit clever with debugging messages, and don't print objfile
2797 every time, only when it changes. */
2798 static char *last_objfile_name = NULL;
2799
2800 if (last_objfile_name == NULL
2801 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2802 {
2803 xfree (last_objfile_name);
2804 last_objfile_name = xstrdup (objfile_name (objfile));
2805 fprintf_unfiltered (gdb_stdlog,
2806 "Creating one or more symtabs for objfile %s ...\n",
2807 last_objfile_name);
2808 }
2809 fprintf_unfiltered (gdb_stdlog,
2810 "Created symtab %s for module %s.\n",
2811 host_address_to_string (symtab), filename);
2812 }
2813
2814 /* Add it to CUST's list of symtabs. */
2815 if (cust->filetabs == NULL)
2816 {
2817 cust->filetabs = symtab;
2818 cust->last_filetab = symtab;
2819 }
2820 else
2821 {
2822 cust->last_filetab->next = symtab;
2823 cust->last_filetab = symtab;
2824 }
2825
2826 /* Backlink to the containing compunit symtab. */
2827 symtab->compunit_symtab = cust;
2828
2829 return symtab;
2830 }
2831
2832 /* Allocate and initialize a new compunit.
2833 NAME is the name of the main source file, if there is one, or some
2834 descriptive text if there are no source files. */
2835
2836 struct compunit_symtab *
2837 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2838 {
2839 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2840 struct compunit_symtab);
2841 const char *saved_name;
2842
2843 cu->objfile = objfile;
2844
2845 /* The name we record here is only for display/debugging purposes.
2846 Just save the basename to avoid path issues (too long for display,
2847 relative vs absolute, etc.). */
2848 saved_name = lbasename (name);
2849 cu->name
2850 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2851 strlen (saved_name));
2852
2853 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2854
2855 if (symtab_create_debug)
2856 {
2857 fprintf_unfiltered (gdb_stdlog,
2858 "Created compunit symtab %s for %s.\n",
2859 host_address_to_string (cu),
2860 cu->name);
2861 }
2862
2863 return cu;
2864 }
2865
2866 /* Hook CU to the objfile it comes from. */
2867
2868 void
2869 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2870 {
2871 cu->next = cu->objfile->compunit_symtabs;
2872 cu->objfile->compunit_symtabs = cu;
2873 }
2874 \f
2875
2876 /* Reset all data structures in gdb which may contain references to
2877 symbol table data. */
2878
2879 void
2880 clear_symtab_users (symfile_add_flags add_flags)
2881 {
2882 /* Someday, we should do better than this, by only blowing away
2883 the things that really need to be blown. */
2884
2885 /* Clear the "current" symtab first, because it is no longer valid.
2886 breakpoint_re_set may try to access the current symtab. */
2887 clear_current_source_symtab_and_line ();
2888
2889 clear_displays ();
2890 clear_last_displayed_sal ();
2891 clear_pc_function_cache ();
2892 observer_notify_new_objfile (NULL);
2893
2894 /* Clear globals which might have pointed into a removed objfile.
2895 FIXME: It's not clear which of these are supposed to persist
2896 between expressions and which ought to be reset each time. */
2897 expression_context_block = NULL;
2898 innermost_block = NULL;
2899
2900 /* Varobj may refer to old symbols, perform a cleanup. */
2901 varobj_invalidate ();
2902
2903 /* Now that the various caches have been cleared, we can re_set
2904 our breakpoints without risking it using stale data. */
2905 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2906 breakpoint_re_set ();
2907 }
2908
2909 static void
2910 clear_symtab_users_cleanup (void *ignore)
2911 {
2912 clear_symtab_users (0);
2913 }
2914 \f
2915 /* OVERLAYS:
2916 The following code implements an abstraction for debugging overlay sections.
2917
2918 The target model is as follows:
2919 1) The gnu linker will permit multiple sections to be mapped into the
2920 same VMA, each with its own unique LMA (or load address).
2921 2) It is assumed that some runtime mechanism exists for mapping the
2922 sections, one by one, from the load address into the VMA address.
2923 3) This code provides a mechanism for gdb to keep track of which
2924 sections should be considered to be mapped from the VMA to the LMA.
2925 This information is used for symbol lookup, and memory read/write.
2926 For instance, if a section has been mapped then its contents
2927 should be read from the VMA, otherwise from the LMA.
2928
2929 Two levels of debugger support for overlays are available. One is
2930 "manual", in which the debugger relies on the user to tell it which
2931 overlays are currently mapped. This level of support is
2932 implemented entirely in the core debugger, and the information about
2933 whether a section is mapped is kept in the objfile->obj_section table.
2934
2935 The second level of support is "automatic", and is only available if
2936 the target-specific code provides functionality to read the target's
2937 overlay mapping table, and translate its contents for the debugger
2938 (by updating the mapped state information in the obj_section tables).
2939
2940 The interface is as follows:
2941 User commands:
2942 overlay map <name> -- tell gdb to consider this section mapped
2943 overlay unmap <name> -- tell gdb to consider this section unmapped
2944 overlay list -- list the sections that GDB thinks are mapped
2945 overlay read-target -- get the target's state of what's mapped
2946 overlay off/manual/auto -- set overlay debugging state
2947 Functional interface:
2948 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2949 section, return that section.
2950 find_pc_overlay(pc): find any overlay section that contains
2951 the pc, either in its VMA or its LMA
2952 section_is_mapped(sect): true if overlay is marked as mapped
2953 section_is_overlay(sect): true if section's VMA != LMA
2954 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2955 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2956 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2957 overlay_mapped_address(...): map an address from section's LMA to VMA
2958 overlay_unmapped_address(...): map an address from section's VMA to LMA
2959 symbol_overlayed_address(...): Return a "current" address for symbol:
2960 either in VMA or LMA depending on whether
2961 the symbol's section is currently mapped. */
2962
2963 /* Overlay debugging state: */
2964
2965 enum overlay_debugging_state overlay_debugging = ovly_off;
2966 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2967
2968 /* Function: section_is_overlay (SECTION)
2969 Returns true if SECTION has VMA not equal to LMA, ie.
2970 SECTION is loaded at an address different from where it will "run". */
2971
2972 int
2973 section_is_overlay (struct obj_section *section)
2974 {
2975 if (overlay_debugging && section)
2976 {
2977 bfd *abfd = section->objfile->obfd;
2978 asection *bfd_section = section->the_bfd_section;
2979
2980 if (bfd_section_lma (abfd, bfd_section) != 0
2981 && bfd_section_lma (abfd, bfd_section)
2982 != bfd_section_vma (abfd, bfd_section))
2983 return 1;
2984 }
2985
2986 return 0;
2987 }
2988
2989 /* Function: overlay_invalidate_all (void)
2990 Invalidate the mapped state of all overlay sections (mark it as stale). */
2991
2992 static void
2993 overlay_invalidate_all (void)
2994 {
2995 struct objfile *objfile;
2996 struct obj_section *sect;
2997
2998 ALL_OBJSECTIONS (objfile, sect)
2999 if (section_is_overlay (sect))
3000 sect->ovly_mapped = -1;
3001 }
3002
3003 /* Function: section_is_mapped (SECTION)
3004 Returns true if section is an overlay, and is currently mapped.
3005
3006 Access to the ovly_mapped flag is restricted to this function, so
3007 that we can do automatic update. If the global flag
3008 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3009 overlay_invalidate_all. If the mapped state of the particular
3010 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3011
3012 int
3013 section_is_mapped (struct obj_section *osect)
3014 {
3015 struct gdbarch *gdbarch;
3016
3017 if (osect == 0 || !section_is_overlay (osect))
3018 return 0;
3019
3020 switch (overlay_debugging)
3021 {
3022 default:
3023 case ovly_off:
3024 return 0; /* overlay debugging off */
3025 case ovly_auto: /* overlay debugging automatic */
3026 /* Unles there is a gdbarch_overlay_update function,
3027 there's really nothing useful to do here (can't really go auto). */
3028 gdbarch = get_objfile_arch (osect->objfile);
3029 if (gdbarch_overlay_update_p (gdbarch))
3030 {
3031 if (overlay_cache_invalid)
3032 {
3033 overlay_invalidate_all ();
3034 overlay_cache_invalid = 0;
3035 }
3036 if (osect->ovly_mapped == -1)
3037 gdbarch_overlay_update (gdbarch, osect);
3038 }
3039 /* fall thru to manual case */
3040 case ovly_on: /* overlay debugging manual */
3041 return osect->ovly_mapped == 1;
3042 }
3043 }
3044
3045 /* Function: pc_in_unmapped_range
3046 If PC falls into the lma range of SECTION, return true, else false. */
3047
3048 CORE_ADDR
3049 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3050 {
3051 if (section_is_overlay (section))
3052 {
3053 bfd *abfd = section->objfile->obfd;
3054 asection *bfd_section = section->the_bfd_section;
3055
3056 /* We assume the LMA is relocated by the same offset as the VMA. */
3057 bfd_vma size = bfd_get_section_size (bfd_section);
3058 CORE_ADDR offset = obj_section_offset (section);
3059
3060 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3061 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3062 return 1;
3063 }
3064
3065 return 0;
3066 }
3067
3068 /* Function: pc_in_mapped_range
3069 If PC falls into the vma range of SECTION, return true, else false. */
3070
3071 CORE_ADDR
3072 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3073 {
3074 if (section_is_overlay (section))
3075 {
3076 if (obj_section_addr (section) <= pc
3077 && pc < obj_section_endaddr (section))
3078 return 1;
3079 }
3080
3081 return 0;
3082 }
3083
3084 /* Return true if the mapped ranges of sections A and B overlap, false
3085 otherwise. */
3086
3087 static int
3088 sections_overlap (struct obj_section *a, struct obj_section *b)
3089 {
3090 CORE_ADDR a_start = obj_section_addr (a);
3091 CORE_ADDR a_end = obj_section_endaddr (a);
3092 CORE_ADDR b_start = obj_section_addr (b);
3093 CORE_ADDR b_end = obj_section_endaddr (b);
3094
3095 return (a_start < b_end && b_start < a_end);
3096 }
3097
3098 /* Function: overlay_unmapped_address (PC, SECTION)
3099 Returns the address corresponding to PC in the unmapped (load) range.
3100 May be the same as PC. */
3101
3102 CORE_ADDR
3103 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3104 {
3105 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3106 {
3107 bfd *abfd = section->objfile->obfd;
3108 asection *bfd_section = section->the_bfd_section;
3109
3110 return pc + bfd_section_lma (abfd, bfd_section)
3111 - bfd_section_vma (abfd, bfd_section);
3112 }
3113
3114 return pc;
3115 }
3116
3117 /* Function: overlay_mapped_address (PC, SECTION)
3118 Returns the address corresponding to PC in the mapped (runtime) range.
3119 May be the same as PC. */
3120
3121 CORE_ADDR
3122 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3123 {
3124 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3125 {
3126 bfd *abfd = section->objfile->obfd;
3127 asection *bfd_section = section->the_bfd_section;
3128
3129 return pc + bfd_section_vma (abfd, bfd_section)
3130 - bfd_section_lma (abfd, bfd_section);
3131 }
3132
3133 return pc;
3134 }
3135
3136 /* Function: symbol_overlayed_address
3137 Return one of two addresses (relative to the VMA or to the LMA),
3138 depending on whether the section is mapped or not. */
3139
3140 CORE_ADDR
3141 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3142 {
3143 if (overlay_debugging)
3144 {
3145 /* If the symbol has no section, just return its regular address. */
3146 if (section == 0)
3147 return address;
3148 /* If the symbol's section is not an overlay, just return its
3149 address. */
3150 if (!section_is_overlay (section))
3151 return address;
3152 /* If the symbol's section is mapped, just return its address. */
3153 if (section_is_mapped (section))
3154 return address;
3155 /*
3156 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3157 * then return its LOADED address rather than its vma address!!
3158 */
3159 return overlay_unmapped_address (address, section);
3160 }
3161 return address;
3162 }
3163
3164 /* Function: find_pc_overlay (PC)
3165 Return the best-match overlay section for PC:
3166 If PC matches a mapped overlay section's VMA, return that section.
3167 Else if PC matches an unmapped section's VMA, return that section.
3168 Else if PC matches an unmapped section's LMA, return that section. */
3169
3170 struct obj_section *
3171 find_pc_overlay (CORE_ADDR pc)
3172 {
3173 struct objfile *objfile;
3174 struct obj_section *osect, *best_match = NULL;
3175
3176 if (overlay_debugging)
3177 {
3178 ALL_OBJSECTIONS (objfile, osect)
3179 if (section_is_overlay (osect))
3180 {
3181 if (pc_in_mapped_range (pc, osect))
3182 {
3183 if (section_is_mapped (osect))
3184 return osect;
3185 else
3186 best_match = osect;
3187 }
3188 else if (pc_in_unmapped_range (pc, osect))
3189 best_match = osect;
3190 }
3191 }
3192 return best_match;
3193 }
3194
3195 /* Function: find_pc_mapped_section (PC)
3196 If PC falls into the VMA address range of an overlay section that is
3197 currently marked as MAPPED, return that section. Else return NULL. */
3198
3199 struct obj_section *
3200 find_pc_mapped_section (CORE_ADDR pc)
3201 {
3202 struct objfile *objfile;
3203 struct obj_section *osect;
3204
3205 if (overlay_debugging)
3206 {
3207 ALL_OBJSECTIONS (objfile, osect)
3208 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3209 return osect;
3210 }
3211
3212 return NULL;
3213 }
3214
3215 /* Function: list_overlays_command
3216 Print a list of mapped sections and their PC ranges. */
3217
3218 static void
3219 list_overlays_command (const char *args, int from_tty)
3220 {
3221 int nmapped = 0;
3222 struct objfile *objfile;
3223 struct obj_section *osect;
3224
3225 if (overlay_debugging)
3226 {
3227 ALL_OBJSECTIONS (objfile, osect)
3228 if (section_is_mapped (osect))
3229 {
3230 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3231 const char *name;
3232 bfd_vma lma, vma;
3233 int size;
3234
3235 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3236 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3237 size = bfd_get_section_size (osect->the_bfd_section);
3238 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3239
3240 printf_filtered ("Section %s, loaded at ", name);
3241 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3242 puts_filtered (" - ");
3243 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3244 printf_filtered (", mapped at ");
3245 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3246 puts_filtered (" - ");
3247 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3248 puts_filtered ("\n");
3249
3250 nmapped++;
3251 }
3252 }
3253 if (nmapped == 0)
3254 printf_filtered (_("No sections are mapped.\n"));
3255 }
3256
3257 /* Function: map_overlay_command
3258 Mark the named section as mapped (ie. residing at its VMA address). */
3259
3260 static void
3261 map_overlay_command (const char *args, int from_tty)
3262 {
3263 struct objfile *objfile, *objfile2;
3264 struct obj_section *sec, *sec2;
3265
3266 if (!overlay_debugging)
3267 error (_("Overlay debugging not enabled. Use "
3268 "either the 'overlay auto' or\n"
3269 "the 'overlay manual' command."));
3270
3271 if (args == 0 || *args == 0)
3272 error (_("Argument required: name of an overlay section"));
3273
3274 /* First, find a section matching the user supplied argument. */
3275 ALL_OBJSECTIONS (objfile, sec)
3276 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3277 {
3278 /* Now, check to see if the section is an overlay. */
3279 if (!section_is_overlay (sec))
3280 continue; /* not an overlay section */
3281
3282 /* Mark the overlay as "mapped". */
3283 sec->ovly_mapped = 1;
3284
3285 /* Next, make a pass and unmap any sections that are
3286 overlapped by this new section: */
3287 ALL_OBJSECTIONS (objfile2, sec2)
3288 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3289 {
3290 if (info_verbose)
3291 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3292 bfd_section_name (objfile->obfd,
3293 sec2->the_bfd_section));
3294 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3295 }
3296 return;
3297 }
3298 error (_("No overlay section called %s"), args);
3299 }
3300
3301 /* Function: unmap_overlay_command
3302 Mark the overlay section as unmapped
3303 (ie. resident in its LMA address range, rather than the VMA range). */
3304
3305 static void
3306 unmap_overlay_command (const char *args, int from_tty)
3307 {
3308 struct objfile *objfile;
3309 struct obj_section *sec = NULL;
3310
3311 if (!overlay_debugging)
3312 error (_("Overlay debugging not enabled. "
3313 "Use either the 'overlay auto' or\n"
3314 "the 'overlay manual' command."));
3315
3316 if (args == 0 || *args == 0)
3317 error (_("Argument required: name of an overlay section"));
3318
3319 /* First, find a section matching the user supplied argument. */
3320 ALL_OBJSECTIONS (objfile, sec)
3321 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3322 {
3323 if (!sec->ovly_mapped)
3324 error (_("Section %s is not mapped"), args);
3325 sec->ovly_mapped = 0;
3326 return;
3327 }
3328 error (_("No overlay section called %s"), args);
3329 }
3330
3331 /* Function: overlay_auto_command
3332 A utility command to turn on overlay debugging.
3333 Possibly this should be done via a set/show command. */
3334
3335 static void
3336 overlay_auto_command (const char *args, int from_tty)
3337 {
3338 overlay_debugging = ovly_auto;
3339 enable_overlay_breakpoints ();
3340 if (info_verbose)
3341 printf_unfiltered (_("Automatic overlay debugging enabled."));
3342 }
3343
3344 /* Function: overlay_manual_command
3345 A utility command to turn on overlay debugging.
3346 Possibly this should be done via a set/show command. */
3347
3348 static void
3349 overlay_manual_command (const char *args, int from_tty)
3350 {
3351 overlay_debugging = ovly_on;
3352 disable_overlay_breakpoints ();
3353 if (info_verbose)
3354 printf_unfiltered (_("Overlay debugging enabled."));
3355 }
3356
3357 /* Function: overlay_off_command
3358 A utility command to turn on overlay debugging.
3359 Possibly this should be done via a set/show command. */
3360
3361 static void
3362 overlay_off_command (const char *args, int from_tty)
3363 {
3364 overlay_debugging = ovly_off;
3365 disable_overlay_breakpoints ();
3366 if (info_verbose)
3367 printf_unfiltered (_("Overlay debugging disabled."));
3368 }
3369
3370 static void
3371 overlay_load_command (const char *args, int from_tty)
3372 {
3373 struct gdbarch *gdbarch = get_current_arch ();
3374
3375 if (gdbarch_overlay_update_p (gdbarch))
3376 gdbarch_overlay_update (gdbarch, NULL);
3377 else
3378 error (_("This target does not know how to read its overlay state."));
3379 }
3380
3381 /* Function: overlay_command
3382 A place-holder for a mis-typed command. */
3383
3384 /* Command list chain containing all defined "overlay" subcommands. */
3385 static struct cmd_list_element *overlaylist;
3386
3387 static void
3388 overlay_command (const char *args, int from_tty)
3389 {
3390 printf_unfiltered
3391 ("\"overlay\" must be followed by the name of an overlay command.\n");
3392 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3393 }
3394
3395 /* Target Overlays for the "Simplest" overlay manager:
3396
3397 This is GDB's default target overlay layer. It works with the
3398 minimal overlay manager supplied as an example by Cygnus. The
3399 entry point is via a function pointer "gdbarch_overlay_update",
3400 so targets that use a different runtime overlay manager can
3401 substitute their own overlay_update function and take over the
3402 function pointer.
3403
3404 The overlay_update function pokes around in the target's data structures
3405 to see what overlays are mapped, and updates GDB's overlay mapping with
3406 this information.
3407
3408 In this simple implementation, the target data structures are as follows:
3409 unsigned _novlys; /# number of overlay sections #/
3410 unsigned _ovly_table[_novlys][4] = {
3411 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3412 {..., ..., ..., ...},
3413 }
3414 unsigned _novly_regions; /# number of overlay regions #/
3415 unsigned _ovly_region_table[_novly_regions][3] = {
3416 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3417 {..., ..., ...},
3418 }
3419 These functions will attempt to update GDB's mappedness state in the
3420 symbol section table, based on the target's mappedness state.
3421
3422 To do this, we keep a cached copy of the target's _ovly_table, and
3423 attempt to detect when the cached copy is invalidated. The main
3424 entry point is "simple_overlay_update(SECT), which looks up SECT in
3425 the cached table and re-reads only the entry for that section from
3426 the target (whenever possible). */
3427
3428 /* Cached, dynamically allocated copies of the target data structures: */
3429 static unsigned (*cache_ovly_table)[4] = 0;
3430 static unsigned cache_novlys = 0;
3431 static CORE_ADDR cache_ovly_table_base = 0;
3432 enum ovly_index
3433 {
3434 VMA, OSIZE, LMA, MAPPED
3435 };
3436
3437 /* Throw away the cached copy of _ovly_table. */
3438
3439 static void
3440 simple_free_overlay_table (void)
3441 {
3442 if (cache_ovly_table)
3443 xfree (cache_ovly_table);
3444 cache_novlys = 0;
3445 cache_ovly_table = NULL;
3446 cache_ovly_table_base = 0;
3447 }
3448
3449 /* Read an array of ints of size SIZE from the target into a local buffer.
3450 Convert to host order. int LEN is number of ints. */
3451
3452 static void
3453 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3454 int len, int size, enum bfd_endian byte_order)
3455 {
3456 /* FIXME (alloca): Not safe if array is very large. */
3457 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3458 int i;
3459
3460 read_memory (memaddr, buf, len * size);
3461 for (i = 0; i < len; i++)
3462 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3463 }
3464
3465 /* Find and grab a copy of the target _ovly_table
3466 (and _novlys, which is needed for the table's size). */
3467
3468 static int
3469 simple_read_overlay_table (void)
3470 {
3471 struct bound_minimal_symbol novlys_msym;
3472 struct bound_minimal_symbol ovly_table_msym;
3473 struct gdbarch *gdbarch;
3474 int word_size;
3475 enum bfd_endian byte_order;
3476
3477 simple_free_overlay_table ();
3478 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3479 if (! novlys_msym.minsym)
3480 {
3481 error (_("Error reading inferior's overlay table: "
3482 "couldn't find `_novlys' variable\n"
3483 "in inferior. Use `overlay manual' mode."));
3484 return 0;
3485 }
3486
3487 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3488 if (! ovly_table_msym.minsym)
3489 {
3490 error (_("Error reading inferior's overlay table: couldn't find "
3491 "`_ovly_table' array\n"
3492 "in inferior. Use `overlay manual' mode."));
3493 return 0;
3494 }
3495
3496 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3497 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3498 byte_order = gdbarch_byte_order (gdbarch);
3499
3500 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3501 4, byte_order);
3502 cache_ovly_table
3503 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3504 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3505 read_target_long_array (cache_ovly_table_base,
3506 (unsigned int *) cache_ovly_table,
3507 cache_novlys * 4, word_size, byte_order);
3508
3509 return 1; /* SUCCESS */
3510 }
3511
3512 /* Function: simple_overlay_update_1
3513 A helper function for simple_overlay_update. Assuming a cached copy
3514 of _ovly_table exists, look through it to find an entry whose vma,
3515 lma and size match those of OSECT. Re-read the entry and make sure
3516 it still matches OSECT (else the table may no longer be valid).
3517 Set OSECT's mapped state to match the entry. Return: 1 for
3518 success, 0 for failure. */
3519
3520 static int
3521 simple_overlay_update_1 (struct obj_section *osect)
3522 {
3523 int i;
3524 bfd *obfd = osect->objfile->obfd;
3525 asection *bsect = osect->the_bfd_section;
3526 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3527 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3528 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3529
3530 for (i = 0; i < cache_novlys; i++)
3531 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3532 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3533 {
3534 read_target_long_array (cache_ovly_table_base + i * word_size,
3535 (unsigned int *) cache_ovly_table[i],
3536 4, word_size, byte_order);
3537 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3538 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3539 {
3540 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3541 return 1;
3542 }
3543 else /* Warning! Warning! Target's ovly table has changed! */
3544 return 0;
3545 }
3546 return 0;
3547 }
3548
3549 /* Function: simple_overlay_update
3550 If OSECT is NULL, then update all sections' mapped state
3551 (after re-reading the entire target _ovly_table).
3552 If OSECT is non-NULL, then try to find a matching entry in the
3553 cached ovly_table and update only OSECT's mapped state.
3554 If a cached entry can't be found or the cache isn't valid, then
3555 re-read the entire cache, and go ahead and update all sections. */
3556
3557 void
3558 simple_overlay_update (struct obj_section *osect)
3559 {
3560 struct objfile *objfile;
3561
3562 /* Were we given an osect to look up? NULL means do all of them. */
3563 if (osect)
3564 /* Have we got a cached copy of the target's overlay table? */
3565 if (cache_ovly_table != NULL)
3566 {
3567 /* Does its cached location match what's currently in the
3568 symtab? */
3569 struct bound_minimal_symbol minsym
3570 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3571
3572 if (minsym.minsym == NULL)
3573 error (_("Error reading inferior's overlay table: couldn't "
3574 "find `_ovly_table' array\n"
3575 "in inferior. Use `overlay manual' mode."));
3576
3577 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3578 /* Then go ahead and try to look up this single section in
3579 the cache. */
3580 if (simple_overlay_update_1 (osect))
3581 /* Found it! We're done. */
3582 return;
3583 }
3584
3585 /* Cached table no good: need to read the entire table anew.
3586 Or else we want all the sections, in which case it's actually
3587 more efficient to read the whole table in one block anyway. */
3588
3589 if (! simple_read_overlay_table ())
3590 return;
3591
3592 /* Now may as well update all sections, even if only one was requested. */
3593 ALL_OBJSECTIONS (objfile, osect)
3594 if (section_is_overlay (osect))
3595 {
3596 int i;
3597 bfd *obfd = osect->objfile->obfd;
3598 asection *bsect = osect->the_bfd_section;
3599
3600 for (i = 0; i < cache_novlys; i++)
3601 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3602 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect))
3603 { /* obj_section matches i'th entry in ovly_table. */
3604 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3605 break; /* finished with inner for loop: break out. */
3606 }
3607 }
3608 }
3609
3610 /* Set the output sections and output offsets for section SECTP in
3611 ABFD. The relocation code in BFD will read these offsets, so we
3612 need to be sure they're initialized. We map each section to itself,
3613 with no offset; this means that SECTP->vma will be honored. */
3614
3615 static void
3616 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3617 {
3618 sectp->output_section = sectp;
3619 sectp->output_offset = 0;
3620 }
3621
3622 /* Default implementation for sym_relocate. */
3623
3624 bfd_byte *
3625 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3626 bfd_byte *buf)
3627 {
3628 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3629 DWO file. */
3630 bfd *abfd = sectp->owner;
3631
3632 /* We're only interested in sections with relocation
3633 information. */
3634 if ((sectp->flags & SEC_RELOC) == 0)
3635 return NULL;
3636
3637 /* We will handle section offsets properly elsewhere, so relocate as if
3638 all sections begin at 0. */
3639 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3640
3641 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3642 }
3643
3644 /* Relocate the contents of a debug section SECTP in ABFD. The
3645 contents are stored in BUF if it is non-NULL, or returned in a
3646 malloc'd buffer otherwise.
3647
3648 For some platforms and debug info formats, shared libraries contain
3649 relocations against the debug sections (particularly for DWARF-2;
3650 one affected platform is PowerPC GNU/Linux, although it depends on
3651 the version of the linker in use). Also, ELF object files naturally
3652 have unresolved relocations for their debug sections. We need to apply
3653 the relocations in order to get the locations of symbols correct.
3654 Another example that may require relocation processing, is the
3655 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3656 debug section. */
3657
3658 bfd_byte *
3659 symfile_relocate_debug_section (struct objfile *objfile,
3660 asection *sectp, bfd_byte *buf)
3661 {
3662 gdb_assert (objfile->sf->sym_relocate);
3663
3664 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3665 }
3666
3667 struct symfile_segment_data *
3668 get_symfile_segment_data (bfd *abfd)
3669 {
3670 const struct sym_fns *sf = find_sym_fns (abfd);
3671
3672 if (sf == NULL)
3673 return NULL;
3674
3675 return sf->sym_segments (abfd);
3676 }
3677
3678 void
3679 free_symfile_segment_data (struct symfile_segment_data *data)
3680 {
3681 xfree (data->segment_bases);
3682 xfree (data->segment_sizes);
3683 xfree (data->segment_info);
3684 xfree (data);
3685 }
3686
3687 /* Given:
3688 - DATA, containing segment addresses from the object file ABFD, and
3689 the mapping from ABFD's sections onto the segments that own them,
3690 and
3691 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3692 segment addresses reported by the target,
3693 store the appropriate offsets for each section in OFFSETS.
3694
3695 If there are fewer entries in SEGMENT_BASES than there are segments
3696 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3697
3698 If there are more entries, then ignore the extra. The target may
3699 not be able to distinguish between an empty data segment and a
3700 missing data segment; a missing text segment is less plausible. */
3701
3702 int
3703 symfile_map_offsets_to_segments (bfd *abfd,
3704 const struct symfile_segment_data *data,
3705 struct section_offsets *offsets,
3706 int num_segment_bases,
3707 const CORE_ADDR *segment_bases)
3708 {
3709 int i;
3710 asection *sect;
3711
3712 /* It doesn't make sense to call this function unless you have some
3713 segment base addresses. */
3714 gdb_assert (num_segment_bases > 0);
3715
3716 /* If we do not have segment mappings for the object file, we
3717 can not relocate it by segments. */
3718 gdb_assert (data != NULL);
3719 gdb_assert (data->num_segments > 0);
3720
3721 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3722 {
3723 int which = data->segment_info[i];
3724
3725 gdb_assert (0 <= which && which <= data->num_segments);
3726
3727 /* Don't bother computing offsets for sections that aren't
3728 loaded as part of any segment. */
3729 if (! which)
3730 continue;
3731
3732 /* Use the last SEGMENT_BASES entry as the address of any extra
3733 segments mentioned in DATA->segment_info. */
3734 if (which > num_segment_bases)
3735 which = num_segment_bases;
3736
3737 offsets->offsets[i] = (segment_bases[which - 1]
3738 - data->segment_bases[which - 1]);
3739 }
3740
3741 return 1;
3742 }
3743
3744 static void
3745 symfile_find_segment_sections (struct objfile *objfile)
3746 {
3747 bfd *abfd = objfile->obfd;
3748 int i;
3749 asection *sect;
3750 struct symfile_segment_data *data;
3751
3752 data = get_symfile_segment_data (objfile->obfd);
3753 if (data == NULL)
3754 return;
3755
3756 if (data->num_segments != 1 && data->num_segments != 2)
3757 {
3758 free_symfile_segment_data (data);
3759 return;
3760 }
3761
3762 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3763 {
3764 int which = data->segment_info[i];
3765
3766 if (which == 1)
3767 {
3768 if (objfile->sect_index_text == -1)
3769 objfile->sect_index_text = sect->index;
3770
3771 if (objfile->sect_index_rodata == -1)
3772 objfile->sect_index_rodata = sect->index;
3773 }
3774 else if (which == 2)
3775 {
3776 if (objfile->sect_index_data == -1)
3777 objfile->sect_index_data = sect->index;
3778
3779 if (objfile->sect_index_bss == -1)
3780 objfile->sect_index_bss = sect->index;
3781 }
3782 }
3783
3784 free_symfile_segment_data (data);
3785 }
3786
3787 /* Listen for free_objfile events. */
3788
3789 static void
3790 symfile_free_objfile (struct objfile *objfile)
3791 {
3792 /* Remove the target sections owned by this objfile. */
3793 if (objfile != NULL)
3794 remove_target_sections ((void *) objfile);
3795 }
3796
3797 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3798 Expand all symtabs that match the specified criteria.
3799 See quick_symbol_functions.expand_symtabs_matching for details. */
3800
3801 void
3802 expand_symtabs_matching
3803 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3804 const lookup_name_info &lookup_name,
3805 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3806 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3807 enum search_domain kind)
3808 {
3809 struct objfile *objfile;
3810
3811 ALL_OBJFILES (objfile)
3812 {
3813 if (objfile->sf)
3814 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3815 lookup_name,
3816 symbol_matcher,
3817 expansion_notify, kind);
3818 }
3819 }
3820
3821 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3822 Map function FUN over every file.
3823 See quick_symbol_functions.map_symbol_filenames for details. */
3824
3825 void
3826 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3827 int need_fullname)
3828 {
3829 struct objfile *objfile;
3830
3831 ALL_OBJFILES (objfile)
3832 {
3833 if (objfile->sf)
3834 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3835 need_fullname);
3836 }
3837 }
3838
3839 #if GDB_SELF_TEST
3840
3841 namespace selftests {
3842 namespace filename_language {
3843
3844 static void test_filename_language ()
3845 {
3846 /* This test messes up the filename_language_table global. */
3847 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3848
3849 /* Test deducing an unknown extension. */
3850 language lang = deduce_language_from_filename ("myfile.blah");
3851 SELF_CHECK (lang == language_unknown);
3852
3853 /* Test deducing a known extension. */
3854 lang = deduce_language_from_filename ("myfile.c");
3855 SELF_CHECK (lang == language_c);
3856
3857 /* Test adding a new extension using the internal API. */
3858 add_filename_language (".blah", language_pascal);
3859 lang = deduce_language_from_filename ("myfile.blah");
3860 SELF_CHECK (lang == language_pascal);
3861 }
3862
3863 static void
3864 test_set_ext_lang_command ()
3865 {
3866 /* This test messes up the filename_language_table global. */
3867 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3868
3869 /* Confirm that the .hello extension is not known. */
3870 language lang = deduce_language_from_filename ("cake.hello");
3871 SELF_CHECK (lang == language_unknown);
3872
3873 /* Test adding a new extension using the CLI command. */
3874 gdb::unique_xmalloc_ptr<char> args_holder (xstrdup (".hello rust"));
3875 ext_args = args_holder.get ();
3876 set_ext_lang_command (NULL, 1, NULL);
3877
3878 lang = deduce_language_from_filename ("cake.hello");
3879 SELF_CHECK (lang == language_rust);
3880
3881 /* Test overriding an existing extension using the CLI command. */
3882 int size_before = filename_language_table.size ();
3883 args_holder.reset (xstrdup (".hello pascal"));
3884 ext_args = args_holder.get ();
3885 set_ext_lang_command (NULL, 1, NULL);
3886 int size_after = filename_language_table.size ();
3887
3888 lang = deduce_language_from_filename ("cake.hello");
3889 SELF_CHECK (lang == language_pascal);
3890 SELF_CHECK (size_before == size_after);
3891 }
3892
3893 } /* namespace filename_language */
3894 } /* namespace selftests */
3895
3896 #endif /* GDB_SELF_TEST */
3897
3898 void
3899 _initialize_symfile (void)
3900 {
3901 struct cmd_list_element *c;
3902
3903 observer_attach_free_objfile (symfile_free_objfile);
3904
3905 #define READNOW_READNEVER_HELP \
3906 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3907 immediately. This makes the command slower, but may make future operations\n\
3908 faster.\n\
3909 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3910 symbolic debug information."
3911
3912 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3913 Load symbol table from executable file FILE.\n\
3914 Usage: symbol-file [-readnow | -readnever] FILE\n\
3915 The `file' command can also load symbol tables, as well as setting the file\n\
3916 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3917 set_cmd_completer (c, filename_completer);
3918
3919 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3920 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3921 Usage: add-symbol-file FILE ADDR [-readnow | -readnever | \
3922 -s SECT-NAME SECT-ADDR]...\n\
3923 ADDR is the starting address of the file's text.\n\
3924 Each '-s' argument provides a section name and address, and\n\
3925 should be specified if the data and bss segments are not contiguous\n\
3926 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n"
3927 READNOW_READNEVER_HELP),
3928 &cmdlist);
3929 set_cmd_completer (c, filename_completer);
3930
3931 c = add_cmd ("remove-symbol-file", class_files,
3932 remove_symbol_file_command, _("\
3933 Remove a symbol file added via the add-symbol-file command.\n\
3934 Usage: remove-symbol-file FILENAME\n\
3935 remove-symbol-file -a ADDRESS\n\
3936 The file to remove can be identified by its filename or by an address\n\
3937 that lies within the boundaries of this symbol file in memory."),
3938 &cmdlist);
3939
3940 c = add_cmd ("load", class_files, load_command, _("\
3941 Dynamically load FILE into the running program, and record its symbols\n\
3942 for access from GDB.\n\
3943 Usage: load [FILE] [OFFSET]\n\
3944 An optional load OFFSET may also be given as a literal address.\n\
3945 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3946 on its own."), &cmdlist);
3947 set_cmd_completer (c, filename_completer);
3948
3949 add_prefix_cmd ("overlay", class_support, overlay_command,
3950 _("Commands for debugging overlays."), &overlaylist,
3951 "overlay ", 0, &cmdlist);
3952
3953 add_com_alias ("ovly", "overlay", class_alias, 1);
3954 add_com_alias ("ov", "overlay", class_alias, 1);
3955
3956 add_cmd ("map-overlay", class_support, map_overlay_command,
3957 _("Assert that an overlay section is mapped."), &overlaylist);
3958
3959 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3960 _("Assert that an overlay section is unmapped."), &overlaylist);
3961
3962 add_cmd ("list-overlays", class_support, list_overlays_command,
3963 _("List mappings of overlay sections."), &overlaylist);
3964
3965 add_cmd ("manual", class_support, overlay_manual_command,
3966 _("Enable overlay debugging."), &overlaylist);
3967 add_cmd ("off", class_support, overlay_off_command,
3968 _("Disable overlay debugging."), &overlaylist);
3969 add_cmd ("auto", class_support, overlay_auto_command,
3970 _("Enable automatic overlay debugging."), &overlaylist);
3971 add_cmd ("load-target", class_support, overlay_load_command,
3972 _("Read the overlay mapping state from the target."), &overlaylist);
3973
3974 /* Filename extension to source language lookup table: */
3975 add_setshow_string_noescape_cmd ("extension-language", class_files,
3976 &ext_args, _("\
3977 Set mapping between filename extension and source language."), _("\
3978 Show mapping between filename extension and source language."), _("\
3979 Usage: set extension-language .foo bar"),
3980 set_ext_lang_command,
3981 show_ext_args,
3982 &setlist, &showlist);
3983
3984 add_info ("extensions", info_ext_lang_command,
3985 _("All filename extensions associated with a source language."));
3986
3987 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3988 &debug_file_directory, _("\
3989 Set the directories where separate debug symbols are searched for."), _("\
3990 Show the directories where separate debug symbols are searched for."), _("\
3991 Separate debug symbols are first searched for in the same\n\
3992 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3993 and lastly at the path of the directory of the binary with\n\
3994 each global debug-file-directory component prepended."),
3995 NULL,
3996 show_debug_file_directory,
3997 &setlist, &showlist);
3998
3999 add_setshow_enum_cmd ("symbol-loading", no_class,
4000 print_symbol_loading_enums, &print_symbol_loading,
4001 _("\
4002 Set printing of symbol loading messages."), _("\
4003 Show printing of symbol loading messages."), _("\
4004 off == turn all messages off\n\
4005 brief == print messages for the executable,\n\
4006 and brief messages for shared libraries\n\
4007 full == print messages for the executable,\n\
4008 and messages for each shared library."),
4009 NULL,
4010 NULL,
4011 &setprintlist, &showprintlist);
4012
4013 add_setshow_boolean_cmd ("separate-debug-file", no_class,
4014 &separate_debug_file_debug, _("\
4015 Set printing of separate debug info file search debug."), _("\
4016 Show printing of separate debug info file search debug."), _("\
4017 When on, GDB prints the searched locations while looking for separate debug \
4018 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
4019
4020 #if GDB_SELF_TEST
4021 selftests::register_test
4022 ("filename_language", selftests::filename_language::test_filename_language);
4023 selftests::register_test
4024 ("set_ext_lang_command",
4025 selftests::filename_language::test_set_ext_lang_command);
4026 #endif
4027 }