]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
Constify add_setshow_*
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68 #include <algorithm>
69
70 /* Forward declarations for local functions. */
71
72 static void rbreak_command (const char *, int);
73
74 static int find_line_common (struct linetable *, int, int *, int);
75
76 static struct block_symbol
77 lookup_symbol_aux (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language,
81 struct field_of_this_result *);
82
83 static
84 struct block_symbol lookup_local_symbol (const char *name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language);
88
89 static struct block_symbol
90 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
91 const char *name, const domain_enum domain);
92
93 /* See symtab.h. */
94 const struct block_symbol null_block_symbol = { NULL, NULL };
95
96 /* Program space key for finding name and language of "main". */
97
98 static const struct program_space_data *main_progspace_key;
99
100 /* Type of the data stored on the program space. */
101
102 struct main_info
103 {
104 /* Name of "main". */
105
106 char *name_of_main;
107
108 /* Language of "main". */
109
110 enum language language_of_main;
111 };
112
113 /* Program space key for finding its symbol cache. */
114
115 static const struct program_space_data *symbol_cache_key;
116
117 /* The default symbol cache size.
118 There is no extra cpu cost for large N (except when flushing the cache,
119 which is rare). The value here is just a first attempt. A better default
120 value may be higher or lower. A prime number can make up for a bad hash
121 computation, so that's why the number is what it is. */
122 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
123
124 /* The maximum symbol cache size.
125 There's no method to the decision of what value to use here, other than
126 there's no point in allowing a user typo to make gdb consume all memory. */
127 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
128
129 /* symbol_cache_lookup returns this if a previous lookup failed to find the
130 symbol in any objfile. */
131 #define SYMBOL_LOOKUP_FAILED \
132 ((struct block_symbol) {(struct symbol *) 1, NULL})
133 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
134
135 /* Recording lookups that don't find the symbol is just as important, if not
136 more so, than recording found symbols. */
137
138 enum symbol_cache_slot_state
139 {
140 SYMBOL_SLOT_UNUSED,
141 SYMBOL_SLOT_NOT_FOUND,
142 SYMBOL_SLOT_FOUND
143 };
144
145 struct symbol_cache_slot
146 {
147 enum symbol_cache_slot_state state;
148
149 /* The objfile that was current when the symbol was looked up.
150 This is only needed for global blocks, but for simplicity's sake
151 we allocate the space for both. If data shows the extra space used
152 for static blocks is a problem, we can split things up then.
153
154 Global blocks need cache lookup to include the objfile context because
155 we need to account for gdbarch_iterate_over_objfiles_in_search_order
156 which can traverse objfiles in, effectively, any order, depending on
157 the current objfile, thus affecting which symbol is found. Normally,
158 only the current objfile is searched first, and then the rest are
159 searched in recorded order; but putting cache lookup inside
160 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
161 Instead we just make the current objfile part of the context of
162 cache lookup. This means we can record the same symbol multiple times,
163 each with a different "current objfile" that was in effect when the
164 lookup was saved in the cache, but cache space is pretty cheap. */
165 const struct objfile *objfile_context;
166
167 union
168 {
169 struct block_symbol found;
170 struct
171 {
172 char *name;
173 domain_enum domain;
174 } not_found;
175 } value;
176 };
177
178 /* Symbols don't specify global vs static block.
179 So keep them in separate caches. */
180
181 struct block_symbol_cache
182 {
183 unsigned int hits;
184 unsigned int misses;
185 unsigned int collisions;
186
187 /* SYMBOLS is a variable length array of this size.
188 One can imagine that in general one cache (global/static) should be a
189 fraction of the size of the other, but there's no data at the moment
190 on which to decide. */
191 unsigned int size;
192
193 struct symbol_cache_slot symbols[1];
194 };
195
196 /* The symbol cache.
197
198 Searching for symbols in the static and global blocks over multiple objfiles
199 again and again can be slow, as can searching very big objfiles. This is a
200 simple cache to improve symbol lookup performance, which is critical to
201 overall gdb performance.
202
203 Symbols are hashed on the name, its domain, and block.
204 They are also hashed on their objfile for objfile-specific lookups. */
205
206 struct symbol_cache
207 {
208 struct block_symbol_cache *global_symbols;
209 struct block_symbol_cache *static_symbols;
210 };
211
212 /* When non-zero, print debugging messages related to symtab creation. */
213 unsigned int symtab_create_debug = 0;
214
215 /* When non-zero, print debugging messages related to symbol lookup. */
216 unsigned int symbol_lookup_debug = 0;
217
218 /* The size of the cache is staged here. */
219 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
220
221 /* The current value of the symbol cache size.
222 This is saved so that if the user enters a value too big we can restore
223 the original value from here. */
224 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
225
226 /* Non-zero if a file may be known by two different basenames.
227 This is the uncommon case, and significantly slows down gdb.
228 Default set to "off" to not slow down the common case. */
229 int basenames_may_differ = 0;
230
231 /* Allow the user to configure the debugger behavior with respect
232 to multiple-choice menus when more than one symbol matches during
233 a symbol lookup. */
234
235 const char multiple_symbols_ask[] = "ask";
236 const char multiple_symbols_all[] = "all";
237 const char multiple_symbols_cancel[] = "cancel";
238 static const char *const multiple_symbols_modes[] =
239 {
240 multiple_symbols_ask,
241 multiple_symbols_all,
242 multiple_symbols_cancel,
243 NULL
244 };
245 static const char *multiple_symbols_mode = multiple_symbols_all;
246
247 /* Read-only accessor to AUTO_SELECT_MODE. */
248
249 const char *
250 multiple_symbols_select_mode (void)
251 {
252 return multiple_symbols_mode;
253 }
254
255 /* Return the name of a domain_enum. */
256
257 const char *
258 domain_name (domain_enum e)
259 {
260 switch (e)
261 {
262 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
263 case VAR_DOMAIN: return "VAR_DOMAIN";
264 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
265 case MODULE_DOMAIN: return "MODULE_DOMAIN";
266 case LABEL_DOMAIN: return "LABEL_DOMAIN";
267 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
268 default: gdb_assert_not_reached ("bad domain_enum");
269 }
270 }
271
272 /* Return the name of a search_domain . */
273
274 const char *
275 search_domain_name (enum search_domain e)
276 {
277 switch (e)
278 {
279 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
280 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
281 case TYPES_DOMAIN: return "TYPES_DOMAIN";
282 case ALL_DOMAIN: return "ALL_DOMAIN";
283 default: gdb_assert_not_reached ("bad search_domain");
284 }
285 }
286
287 /* See symtab.h. */
288
289 struct symtab *
290 compunit_primary_filetab (const struct compunit_symtab *cust)
291 {
292 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
293
294 /* The primary file symtab is the first one in the list. */
295 return COMPUNIT_FILETABS (cust);
296 }
297
298 /* See symtab.h. */
299
300 enum language
301 compunit_language (const struct compunit_symtab *cust)
302 {
303 struct symtab *symtab = compunit_primary_filetab (cust);
304
305 /* The language of the compunit symtab is the language of its primary
306 source file. */
307 return SYMTAB_LANGUAGE (symtab);
308 }
309
310 /* See whether FILENAME matches SEARCH_NAME using the rule that we
311 advertise to the user. (The manual's description of linespecs
312 describes what we advertise). Returns true if they match, false
313 otherwise. */
314
315 int
316 compare_filenames_for_search (const char *filename, const char *search_name)
317 {
318 int len = strlen (filename);
319 size_t search_len = strlen (search_name);
320
321 if (len < search_len)
322 return 0;
323
324 /* The tail of FILENAME must match. */
325 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
326 return 0;
327
328 /* Either the names must completely match, or the character
329 preceding the trailing SEARCH_NAME segment of FILENAME must be a
330 directory separator.
331
332 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
333 cannot match FILENAME "/path//dir/file.c" - as user has requested
334 absolute path. The sama applies for "c:\file.c" possibly
335 incorrectly hypothetically matching "d:\dir\c:\file.c".
336
337 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
338 compatible with SEARCH_NAME "file.c". In such case a compiler had
339 to put the "c:file.c" name into debug info. Such compatibility
340 works only on GDB built for DOS host. */
341 return (len == search_len
342 || (!IS_ABSOLUTE_PATH (search_name)
343 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
344 || (HAS_DRIVE_SPEC (filename)
345 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
346 }
347
348 /* Same as compare_filenames_for_search, but for glob-style patterns.
349 Heads up on the order of the arguments. They match the order of
350 compare_filenames_for_search, but it's the opposite of the order of
351 arguments to gdb_filename_fnmatch. */
352
353 int
354 compare_glob_filenames_for_search (const char *filename,
355 const char *search_name)
356 {
357 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
358 all /s have to be explicitly specified. */
359 int file_path_elements = count_path_elements (filename);
360 int search_path_elements = count_path_elements (search_name);
361
362 if (search_path_elements > file_path_elements)
363 return 0;
364
365 if (IS_ABSOLUTE_PATH (search_name))
366 {
367 return (search_path_elements == file_path_elements
368 && gdb_filename_fnmatch (search_name, filename,
369 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
370 }
371
372 {
373 const char *file_to_compare
374 = strip_leading_path_elements (filename,
375 file_path_elements - search_path_elements);
376
377 return gdb_filename_fnmatch (search_name, file_to_compare,
378 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
379 }
380 }
381
382 /* Check for a symtab of a specific name by searching some symtabs.
383 This is a helper function for callbacks of iterate_over_symtabs.
384
385 If NAME is not absolute, then REAL_PATH is NULL
386 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
387
388 The return value, NAME, REAL_PATH and CALLBACK are identical to the
389 `map_symtabs_matching_filename' method of quick_symbol_functions.
390
391 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
392 Each symtab within the specified compunit symtab is also searched.
393 AFTER_LAST is one past the last compunit symtab to search; NULL means to
394 search until the end of the list. */
395
396 bool
397 iterate_over_some_symtabs (const char *name,
398 const char *real_path,
399 struct compunit_symtab *first,
400 struct compunit_symtab *after_last,
401 gdb::function_view<bool (symtab *)> callback)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s))
414 return true;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s))
427 return true;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s))
442 return true;
443 continue;
444 }
445 }
446 }
447 }
448
449 return false;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found. If CALLBACK returns
457 true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 gdb::function_view<bool (symtab *)> callback)
462 {
463 struct objfile *objfile;
464 gdb::unique_xmalloc_ptr<char> real_path;
465
466 /* Here we are interested in canonicalizing an absolute path, not
467 absolutizing a relative path. */
468 if (IS_ABSOLUTE_PATH (name))
469 {
470 real_path = gdb_realpath (name);
471 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
472 }
473
474 ALL_OBJFILES (objfile)
475 {
476 if (iterate_over_some_symtabs (name, real_path.get (),
477 objfile->compunit_symtabs, NULL,
478 callback))
479 return;
480 }
481
482 /* Same search rules as above apply here, but now we look thru the
483 psymtabs. */
484
485 ALL_OBJFILES (objfile)
486 {
487 if (objfile->sf
488 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
489 name,
490 real_path.get (),
491 callback))
492 return;
493 }
494 }
495
496 /* A wrapper for iterate_over_symtabs that returns the first matching
497 symtab, or NULL. */
498
499 struct symtab *
500 lookup_symtab (const char *name)
501 {
502 struct symtab *result = NULL;
503
504 iterate_over_symtabs (name, [&] (symtab *symtab)
505 {
506 result = symtab;
507 return true;
508 });
509
510 return result;
511 }
512
513 \f
514 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
515 full method name, which consist of the class name (from T), the unadorned
516 method name from METHOD_ID, and the signature for the specific overload,
517 specified by SIGNATURE_ID. Note that this function is g++ specific. */
518
519 char *
520 gdb_mangle_name (struct type *type, int method_id, int signature_id)
521 {
522 int mangled_name_len;
523 char *mangled_name;
524 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
525 struct fn_field *method = &f[signature_id];
526 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
527 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
528 const char *newname = type_name_no_tag (type);
529
530 /* Does the form of physname indicate that it is the full mangled name
531 of a constructor (not just the args)? */
532 int is_full_physname_constructor;
533
534 int is_constructor;
535 int is_destructor = is_destructor_name (physname);
536 /* Need a new type prefix. */
537 const char *const_prefix = method->is_const ? "C" : "";
538 const char *volatile_prefix = method->is_volatile ? "V" : "";
539 char buf[20];
540 int len = (newname == NULL ? 0 : strlen (newname));
541
542 /* Nothing to do if physname already contains a fully mangled v3 abi name
543 or an operator name. */
544 if ((physname[0] == '_' && physname[1] == 'Z')
545 || is_operator_name (field_name))
546 return xstrdup (physname);
547
548 is_full_physname_constructor = is_constructor_name (physname);
549
550 is_constructor = is_full_physname_constructor
551 || (newname && strcmp (field_name, newname) == 0);
552
553 if (!is_destructor)
554 is_destructor = (startswith (physname, "__dt"));
555
556 if (is_destructor || is_full_physname_constructor)
557 {
558 mangled_name = (char *) xmalloc (strlen (physname) + 1);
559 strcpy (mangled_name, physname);
560 return mangled_name;
561 }
562
563 if (len == 0)
564 {
565 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
566 }
567 else if (physname[0] == 't' || physname[0] == 'Q')
568 {
569 /* The physname for template and qualified methods already includes
570 the class name. */
571 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
572 newname = NULL;
573 len = 0;
574 }
575 else
576 {
577 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
578 volatile_prefix, len);
579 }
580 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
581 + strlen (buf) + len + strlen (physname) + 1);
582
583 mangled_name = (char *) xmalloc (mangled_name_len);
584 if (is_constructor)
585 mangled_name[0] = '\0';
586 else
587 strcpy (mangled_name, field_name);
588
589 strcat (mangled_name, buf);
590 /* If the class doesn't have a name, i.e. newname NULL, then we just
591 mangle it using 0 for the length of the class. Thus it gets mangled
592 as something starting with `::' rather than `classname::'. */
593 if (newname != NULL)
594 strcat (mangled_name, newname);
595
596 strcat (mangled_name, physname);
597 return (mangled_name);
598 }
599
600 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
601 correctly allocated. */
602
603 void
604 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
605 const char *name,
606 struct obstack *obstack)
607 {
608 if (gsymbol->language == language_ada)
609 {
610 if (name == NULL)
611 {
612 gsymbol->ada_mangled = 0;
613 gsymbol->language_specific.obstack = obstack;
614 }
615 else
616 {
617 gsymbol->ada_mangled = 1;
618 gsymbol->language_specific.demangled_name = name;
619 }
620 }
621 else
622 gsymbol->language_specific.demangled_name = name;
623 }
624
625 /* Return the demangled name of GSYMBOL. */
626
627 const char *
628 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
629 {
630 if (gsymbol->language == language_ada)
631 {
632 if (!gsymbol->ada_mangled)
633 return NULL;
634 /* Fall through. */
635 }
636
637 return gsymbol->language_specific.demangled_name;
638 }
639
640 \f
641 /* Initialize the language dependent portion of a symbol
642 depending upon the language for the symbol. */
643
644 void
645 symbol_set_language (struct general_symbol_info *gsymbol,
646 enum language language,
647 struct obstack *obstack)
648 {
649 gsymbol->language = language;
650 if (gsymbol->language == language_cplus
651 || gsymbol->language == language_d
652 || gsymbol->language == language_go
653 || gsymbol->language == language_objc
654 || gsymbol->language == language_fortran)
655 {
656 symbol_set_demangled_name (gsymbol, NULL, obstack);
657 }
658 else if (gsymbol->language == language_ada)
659 {
660 gdb_assert (gsymbol->ada_mangled == 0);
661 gsymbol->language_specific.obstack = obstack;
662 }
663 else
664 {
665 memset (&gsymbol->language_specific, 0,
666 sizeof (gsymbol->language_specific));
667 }
668 }
669
670 /* Functions to initialize a symbol's mangled name. */
671
672 /* Objects of this type are stored in the demangled name hash table. */
673 struct demangled_name_entry
674 {
675 const char *mangled;
676 char demangled[1];
677 };
678
679 /* Hash function for the demangled name hash. */
680
681 static hashval_t
682 hash_demangled_name_entry (const void *data)
683 {
684 const struct demangled_name_entry *e
685 = (const struct demangled_name_entry *) data;
686
687 return htab_hash_string (e->mangled);
688 }
689
690 /* Equality function for the demangled name hash. */
691
692 static int
693 eq_demangled_name_entry (const void *a, const void *b)
694 {
695 const struct demangled_name_entry *da
696 = (const struct demangled_name_entry *) a;
697 const struct demangled_name_entry *db
698 = (const struct demangled_name_entry *) b;
699
700 return strcmp (da->mangled, db->mangled) == 0;
701 }
702
703 /* Create the hash table used for demangled names. Each hash entry is
704 a pair of strings; one for the mangled name and one for the demangled
705 name. The entry is hashed via just the mangled name. */
706
707 static void
708 create_demangled_names_hash (struct objfile *objfile)
709 {
710 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
711 The hash table code will round this up to the next prime number.
712 Choosing a much larger table size wastes memory, and saves only about
713 1% in symbol reading. */
714
715 objfile->per_bfd->demangled_names_hash = htab_create_alloc
716 (256, hash_demangled_name_entry, eq_demangled_name_entry,
717 NULL, xcalloc, xfree);
718 }
719
720 /* Try to determine the demangled name for a symbol, based on the
721 language of that symbol. If the language is set to language_auto,
722 it will attempt to find any demangling algorithm that works and
723 then set the language appropriately. The returned name is allocated
724 by the demangler and should be xfree'd. */
725
726 static char *
727 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
728 const char *mangled)
729 {
730 char *demangled = NULL;
731 int i;
732 int recognized;
733
734 if (gsymbol->language == language_unknown)
735 gsymbol->language = language_auto;
736
737 if (gsymbol->language != language_auto)
738 {
739 const struct language_defn *lang = language_def (gsymbol->language);
740
741 language_sniff_from_mangled_name (lang, mangled, &demangled);
742 return demangled;
743 }
744
745 for (i = language_unknown; i < nr_languages; ++i)
746 {
747 enum language l = (enum language) i;
748 const struct language_defn *lang = language_def (l);
749
750 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
751 {
752 gsymbol->language = l;
753 return demangled;
754 }
755 }
756
757 return NULL;
758 }
759
760 /* Set both the mangled and demangled (if any) names for GSYMBOL based
761 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
762 objfile's obstack; but if COPY_NAME is 0 and if NAME is
763 NUL-terminated, then this function assumes that NAME is already
764 correctly saved (either permanently or with a lifetime tied to the
765 objfile), and it will not be copied.
766
767 The hash table corresponding to OBJFILE is used, and the memory
768 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
769 so the pointer can be discarded after calling this function. */
770
771 void
772 symbol_set_names (struct general_symbol_info *gsymbol,
773 const char *linkage_name, int len, int copy_name,
774 struct objfile *objfile)
775 {
776 struct demangled_name_entry **slot;
777 /* A 0-terminated copy of the linkage name. */
778 const char *linkage_name_copy;
779 struct demangled_name_entry entry;
780 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
781
782 if (gsymbol->language == language_ada)
783 {
784 /* In Ada, we do the symbol lookups using the mangled name, so
785 we can save some space by not storing the demangled name. */
786 if (!copy_name)
787 gsymbol->name = linkage_name;
788 else
789 {
790 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
791 len + 1);
792
793 memcpy (name, linkage_name, len);
794 name[len] = '\0';
795 gsymbol->name = name;
796 }
797 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
798
799 return;
800 }
801
802 if (per_bfd->demangled_names_hash == NULL)
803 create_demangled_names_hash (objfile);
804
805 if (linkage_name[len] != '\0')
806 {
807 char *alloc_name;
808
809 alloc_name = (char *) alloca (len + 1);
810 memcpy (alloc_name, linkage_name, len);
811 alloc_name[len] = '\0';
812
813 linkage_name_copy = alloc_name;
814 }
815 else
816 linkage_name_copy = linkage_name;
817
818 entry.mangled = linkage_name_copy;
819 slot = ((struct demangled_name_entry **)
820 htab_find_slot (per_bfd->demangled_names_hash,
821 &entry, INSERT));
822
823 /* If this name is not in the hash table, add it. */
824 if (*slot == NULL
825 /* A C version of the symbol may have already snuck into the table.
826 This happens to, e.g., main.init (__go_init_main). Cope. */
827 || (gsymbol->language == language_go
828 && (*slot)->demangled[0] == '\0'))
829 {
830 char *demangled_name = symbol_find_demangled_name (gsymbol,
831 linkage_name_copy);
832 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
833
834 /* Suppose we have demangled_name==NULL, copy_name==0, and
835 linkage_name_copy==linkage_name. In this case, we already have the
836 mangled name saved, and we don't have a demangled name. So,
837 you might think we could save a little space by not recording
838 this in the hash table at all.
839
840 It turns out that it is actually important to still save such
841 an entry in the hash table, because storing this name gives
842 us better bcache hit rates for partial symbols. */
843 if (!copy_name && linkage_name_copy == linkage_name)
844 {
845 *slot
846 = ((struct demangled_name_entry *)
847 obstack_alloc (&per_bfd->storage_obstack,
848 offsetof (struct demangled_name_entry, demangled)
849 + demangled_len + 1));
850 (*slot)->mangled = linkage_name;
851 }
852 else
853 {
854 char *mangled_ptr;
855
856 /* If we must copy the mangled name, put it directly after
857 the demangled name so we can have a single
858 allocation. */
859 *slot
860 = ((struct demangled_name_entry *)
861 obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry, demangled)
863 + len + demangled_len + 2));
864 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
865 strcpy (mangled_ptr, linkage_name_copy);
866 (*slot)->mangled = mangled_ptr;
867 }
868
869 if (demangled_name != NULL)
870 {
871 strcpy ((*slot)->demangled, demangled_name);
872 xfree (demangled_name);
873 }
874 else
875 (*slot)->demangled[0] = '\0';
876 }
877
878 gsymbol->name = (*slot)->mangled;
879 if ((*slot)->demangled[0] != '\0')
880 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
881 &per_bfd->storage_obstack);
882 else
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
884 }
885
886 /* Return the source code name of a symbol. In languages where
887 demangling is necessary, this is the demangled name. */
888
889 const char *
890 symbol_natural_name (const struct general_symbol_info *gsymbol)
891 {
892 switch (gsymbol->language)
893 {
894 case language_cplus:
895 case language_d:
896 case language_go:
897 case language_objc:
898 case language_fortran:
899 if (symbol_get_demangled_name (gsymbol) != NULL)
900 return symbol_get_demangled_name (gsymbol);
901 break;
902 case language_ada:
903 return ada_decode_symbol (gsymbol);
904 default:
905 break;
906 }
907 return gsymbol->name;
908 }
909
910 /* Return the demangled name for a symbol based on the language for
911 that symbol. If no demangled name exists, return NULL. */
912
913 const char *
914 symbol_demangled_name (const struct general_symbol_info *gsymbol)
915 {
916 const char *dem_name = NULL;
917
918 switch (gsymbol->language)
919 {
920 case language_cplus:
921 case language_d:
922 case language_go:
923 case language_objc:
924 case language_fortran:
925 dem_name = symbol_get_demangled_name (gsymbol);
926 break;
927 case language_ada:
928 dem_name = ada_decode_symbol (gsymbol);
929 break;
930 default:
931 break;
932 }
933 return dem_name;
934 }
935
936 /* Return the search name of a symbol---generally the demangled or
937 linkage name of the symbol, depending on how it will be searched for.
938 If there is no distinct demangled name, then returns the same value
939 (same pointer) as SYMBOL_LINKAGE_NAME. */
940
941 const char *
942 symbol_search_name (const struct general_symbol_info *gsymbol)
943 {
944 if (gsymbol->language == language_ada)
945 return gsymbol->name;
946 else
947 return symbol_natural_name (gsymbol);
948 }
949 \f
950
951 /* Return 1 if the two sections are the same, or if they could
952 plausibly be copies of each other, one in an original object
953 file and another in a separated debug file. */
954
955 int
956 matching_obj_sections (struct obj_section *obj_first,
957 struct obj_section *obj_second)
958 {
959 asection *first = obj_first? obj_first->the_bfd_section : NULL;
960 asection *second = obj_second? obj_second->the_bfd_section : NULL;
961 struct objfile *obj;
962
963 /* If they're the same section, then they match. */
964 if (first == second)
965 return 1;
966
967 /* If either is NULL, give up. */
968 if (first == NULL || second == NULL)
969 return 0;
970
971 /* This doesn't apply to absolute symbols. */
972 if (first->owner == NULL || second->owner == NULL)
973 return 0;
974
975 /* If they're in the same object file, they must be different sections. */
976 if (first->owner == second->owner)
977 return 0;
978
979 /* Check whether the two sections are potentially corresponding. They must
980 have the same size, address, and name. We can't compare section indexes,
981 which would be more reliable, because some sections may have been
982 stripped. */
983 if (bfd_get_section_size (first) != bfd_get_section_size (second))
984 return 0;
985
986 /* In-memory addresses may start at a different offset, relativize them. */
987 if (bfd_get_section_vma (first->owner, first)
988 - bfd_get_start_address (first->owner)
989 != bfd_get_section_vma (second->owner, second)
990 - bfd_get_start_address (second->owner))
991 return 0;
992
993 if (bfd_get_section_name (first->owner, first) == NULL
994 || bfd_get_section_name (second->owner, second) == NULL
995 || strcmp (bfd_get_section_name (first->owner, first),
996 bfd_get_section_name (second->owner, second)) != 0)
997 return 0;
998
999 /* Otherwise check that they are in corresponding objfiles. */
1000
1001 ALL_OBJFILES (obj)
1002 if (obj->obfd == first->owner)
1003 break;
1004 gdb_assert (obj != NULL);
1005
1006 if (obj->separate_debug_objfile != NULL
1007 && obj->separate_debug_objfile->obfd == second->owner)
1008 return 1;
1009 if (obj->separate_debug_objfile_backlink != NULL
1010 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1011 return 1;
1012
1013 return 0;
1014 }
1015
1016 /* See symtab.h. */
1017
1018 void
1019 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1020 {
1021 struct objfile *objfile;
1022 struct bound_minimal_symbol msymbol;
1023
1024 /* If we know that this is not a text address, return failure. This is
1025 necessary because we loop based on texthigh and textlow, which do
1026 not include the data ranges. */
1027 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1028 if (msymbol.minsym
1029 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1030 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1031 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1032 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1033 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1034 return;
1035
1036 ALL_OBJFILES (objfile)
1037 {
1038 struct compunit_symtab *cust = NULL;
1039
1040 if (objfile->sf)
1041 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1042 pc, section, 0);
1043 if (cust)
1044 return;
1045 }
1046 }
1047 \f
1048 /* Hash function for the symbol cache. */
1049
1050 static unsigned int
1051 hash_symbol_entry (const struct objfile *objfile_context,
1052 const char *name, domain_enum domain)
1053 {
1054 unsigned int hash = (uintptr_t) objfile_context;
1055
1056 if (name != NULL)
1057 hash += htab_hash_string (name);
1058
1059 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1060 to map to the same slot. */
1061 if (domain == STRUCT_DOMAIN)
1062 hash += VAR_DOMAIN * 7;
1063 else
1064 hash += domain * 7;
1065
1066 return hash;
1067 }
1068
1069 /* Equality function for the symbol cache. */
1070
1071 static int
1072 eq_symbol_entry (const struct symbol_cache_slot *slot,
1073 const struct objfile *objfile_context,
1074 const char *name, domain_enum domain)
1075 {
1076 const char *slot_name;
1077 domain_enum slot_domain;
1078
1079 if (slot->state == SYMBOL_SLOT_UNUSED)
1080 return 0;
1081
1082 if (slot->objfile_context != objfile_context)
1083 return 0;
1084
1085 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1086 {
1087 slot_name = slot->value.not_found.name;
1088 slot_domain = slot->value.not_found.domain;
1089 }
1090 else
1091 {
1092 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1093 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1094 }
1095
1096 /* NULL names match. */
1097 if (slot_name == NULL && name == NULL)
1098 {
1099 /* But there's no point in calling symbol_matches_domain in the
1100 SYMBOL_SLOT_FOUND case. */
1101 if (slot_domain != domain)
1102 return 0;
1103 }
1104 else if (slot_name != NULL && name != NULL)
1105 {
1106 /* It's important that we use the same comparison that was done the
1107 first time through. If the slot records a found symbol, then this
1108 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1109 It also means using symbol_matches_domain for found symbols.
1110 See block.c.
1111
1112 If the slot records a not-found symbol, then require a precise match.
1113 We could still be lax with whitespace like strcmp_iw though. */
1114
1115 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1116 {
1117 if (strcmp (slot_name, name) != 0)
1118 return 0;
1119 if (slot_domain != domain)
1120 return 0;
1121 }
1122 else
1123 {
1124 struct symbol *sym = slot->value.found.symbol;
1125
1126 if (strcmp_iw (slot_name, name) != 0)
1127 return 0;
1128 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1129 slot_domain, domain))
1130 return 0;
1131 }
1132 }
1133 else
1134 {
1135 /* Only one name is NULL. */
1136 return 0;
1137 }
1138
1139 return 1;
1140 }
1141
1142 /* Given a cache of size SIZE, return the size of the struct (with variable
1143 length array) in bytes. */
1144
1145 static size_t
1146 symbol_cache_byte_size (unsigned int size)
1147 {
1148 return (sizeof (struct block_symbol_cache)
1149 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1150 }
1151
1152 /* Resize CACHE. */
1153
1154 static void
1155 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1156 {
1157 /* If there's no change in size, don't do anything.
1158 All caches have the same size, so we can just compare with the size
1159 of the global symbols cache. */
1160 if ((cache->global_symbols != NULL
1161 && cache->global_symbols->size == new_size)
1162 || (cache->global_symbols == NULL
1163 && new_size == 0))
1164 return;
1165
1166 xfree (cache->global_symbols);
1167 xfree (cache->static_symbols);
1168
1169 if (new_size == 0)
1170 {
1171 cache->global_symbols = NULL;
1172 cache->static_symbols = NULL;
1173 }
1174 else
1175 {
1176 size_t total_size = symbol_cache_byte_size (new_size);
1177
1178 cache->global_symbols
1179 = (struct block_symbol_cache *) xcalloc (1, total_size);
1180 cache->static_symbols
1181 = (struct block_symbol_cache *) xcalloc (1, total_size);
1182 cache->global_symbols->size = new_size;
1183 cache->static_symbols->size = new_size;
1184 }
1185 }
1186
1187 /* Make a symbol cache of size SIZE. */
1188
1189 static struct symbol_cache *
1190 make_symbol_cache (unsigned int size)
1191 {
1192 struct symbol_cache *cache;
1193
1194 cache = XCNEW (struct symbol_cache);
1195 resize_symbol_cache (cache, symbol_cache_size);
1196 return cache;
1197 }
1198
1199 /* Free the space used by CACHE. */
1200
1201 static void
1202 free_symbol_cache (struct symbol_cache *cache)
1203 {
1204 xfree (cache->global_symbols);
1205 xfree (cache->static_symbols);
1206 xfree (cache);
1207 }
1208
1209 /* Return the symbol cache of PSPACE.
1210 Create one if it doesn't exist yet. */
1211
1212 static struct symbol_cache *
1213 get_symbol_cache (struct program_space *pspace)
1214 {
1215 struct symbol_cache *cache
1216 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1217
1218 if (cache == NULL)
1219 {
1220 cache = make_symbol_cache (symbol_cache_size);
1221 set_program_space_data (pspace, symbol_cache_key, cache);
1222 }
1223
1224 return cache;
1225 }
1226
1227 /* Delete the symbol cache of PSPACE.
1228 Called when PSPACE is destroyed. */
1229
1230 static void
1231 symbol_cache_cleanup (struct program_space *pspace, void *data)
1232 {
1233 struct symbol_cache *cache = (struct symbol_cache *) data;
1234
1235 free_symbol_cache (cache);
1236 }
1237
1238 /* Set the size of the symbol cache in all program spaces. */
1239
1240 static void
1241 set_symbol_cache_size (unsigned int new_size)
1242 {
1243 struct program_space *pspace;
1244
1245 ALL_PSPACES (pspace)
1246 {
1247 struct symbol_cache *cache
1248 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1249
1250 /* The pspace could have been created but not have a cache yet. */
1251 if (cache != NULL)
1252 resize_symbol_cache (cache, new_size);
1253 }
1254 }
1255
1256 /* Called when symbol-cache-size is set. */
1257
1258 static void
1259 set_symbol_cache_size_handler (const char *args, int from_tty,
1260 struct cmd_list_element *c)
1261 {
1262 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1263 {
1264 /* Restore the previous value.
1265 This is the value the "show" command prints. */
1266 new_symbol_cache_size = symbol_cache_size;
1267
1268 error (_("Symbol cache size is too large, max is %u."),
1269 MAX_SYMBOL_CACHE_SIZE);
1270 }
1271 symbol_cache_size = new_symbol_cache_size;
1272
1273 set_symbol_cache_size (symbol_cache_size);
1274 }
1275
1276 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1277 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1278 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1279 failed (and thus this one will too), or NULL if the symbol is not present
1280 in the cache.
1281 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1282 set to the cache and slot of the symbol to save the result of a full lookup
1283 attempt. */
1284
1285 static struct block_symbol
1286 symbol_cache_lookup (struct symbol_cache *cache,
1287 struct objfile *objfile_context, int block,
1288 const char *name, domain_enum domain,
1289 struct block_symbol_cache **bsc_ptr,
1290 struct symbol_cache_slot **slot_ptr)
1291 {
1292 struct block_symbol_cache *bsc;
1293 unsigned int hash;
1294 struct symbol_cache_slot *slot;
1295
1296 if (block == GLOBAL_BLOCK)
1297 bsc = cache->global_symbols;
1298 else
1299 bsc = cache->static_symbols;
1300 if (bsc == NULL)
1301 {
1302 *bsc_ptr = NULL;
1303 *slot_ptr = NULL;
1304 return (struct block_symbol) {NULL, NULL};
1305 }
1306
1307 hash = hash_symbol_entry (objfile_context, name, domain);
1308 slot = bsc->symbols + hash % bsc->size;
1309
1310 if (eq_symbol_entry (slot, objfile_context, name, domain))
1311 {
1312 if (symbol_lookup_debug)
1313 fprintf_unfiltered (gdb_stdlog,
1314 "%s block symbol cache hit%s for %s, %s\n",
1315 block == GLOBAL_BLOCK ? "Global" : "Static",
1316 slot->state == SYMBOL_SLOT_NOT_FOUND
1317 ? " (not found)" : "",
1318 name, domain_name (domain));
1319 ++bsc->hits;
1320 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1321 return SYMBOL_LOOKUP_FAILED;
1322 return slot->value.found;
1323 }
1324
1325 /* Symbol is not present in the cache. */
1326
1327 *bsc_ptr = bsc;
1328 *slot_ptr = slot;
1329
1330 if (symbol_lookup_debug)
1331 {
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache miss for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 name, domain_name (domain));
1336 }
1337 ++bsc->misses;
1338 return (struct block_symbol) {NULL, NULL};
1339 }
1340
1341 /* Clear out SLOT. */
1342
1343 static void
1344 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1345 {
1346 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1347 xfree (slot->value.not_found.name);
1348 slot->state = SYMBOL_SLOT_UNUSED;
1349 }
1350
1351 /* Mark SYMBOL as found in SLOT.
1352 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1353 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1354 necessarily the objfile the symbol was found in. */
1355
1356 static void
1357 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1358 struct symbol_cache_slot *slot,
1359 struct objfile *objfile_context,
1360 struct symbol *symbol,
1361 const struct block *block)
1362 {
1363 if (bsc == NULL)
1364 return;
1365 if (slot->state != SYMBOL_SLOT_UNUSED)
1366 {
1367 ++bsc->collisions;
1368 symbol_cache_clear_slot (slot);
1369 }
1370 slot->state = SYMBOL_SLOT_FOUND;
1371 slot->objfile_context = objfile_context;
1372 slot->value.found.symbol = symbol;
1373 slot->value.found.block = block;
1374 }
1375
1376 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1377 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1378 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1379
1380 static void
1381 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1382 struct symbol_cache_slot *slot,
1383 struct objfile *objfile_context,
1384 const char *name, domain_enum domain)
1385 {
1386 if (bsc == NULL)
1387 return;
1388 if (slot->state != SYMBOL_SLOT_UNUSED)
1389 {
1390 ++bsc->collisions;
1391 symbol_cache_clear_slot (slot);
1392 }
1393 slot->state = SYMBOL_SLOT_NOT_FOUND;
1394 slot->objfile_context = objfile_context;
1395 slot->value.not_found.name = xstrdup (name);
1396 slot->value.not_found.domain = domain;
1397 }
1398
1399 /* Flush the symbol cache of PSPACE. */
1400
1401 static void
1402 symbol_cache_flush (struct program_space *pspace)
1403 {
1404 struct symbol_cache *cache
1405 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1406 int pass;
1407
1408 if (cache == NULL)
1409 return;
1410 if (cache->global_symbols == NULL)
1411 {
1412 gdb_assert (symbol_cache_size == 0);
1413 gdb_assert (cache->static_symbols == NULL);
1414 return;
1415 }
1416
1417 /* If the cache is untouched since the last flush, early exit.
1418 This is important for performance during the startup of a program linked
1419 with 100s (or 1000s) of shared libraries. */
1420 if (cache->global_symbols->misses == 0
1421 && cache->static_symbols->misses == 0)
1422 return;
1423
1424 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1425 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1426
1427 for (pass = 0; pass < 2; ++pass)
1428 {
1429 struct block_symbol_cache *bsc
1430 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1431 unsigned int i;
1432
1433 for (i = 0; i < bsc->size; ++i)
1434 symbol_cache_clear_slot (&bsc->symbols[i]);
1435 }
1436
1437 cache->global_symbols->hits = 0;
1438 cache->global_symbols->misses = 0;
1439 cache->global_symbols->collisions = 0;
1440 cache->static_symbols->hits = 0;
1441 cache->static_symbols->misses = 0;
1442 cache->static_symbols->collisions = 0;
1443 }
1444
1445 /* Dump CACHE. */
1446
1447 static void
1448 symbol_cache_dump (const struct symbol_cache *cache)
1449 {
1450 int pass;
1451
1452 if (cache->global_symbols == NULL)
1453 {
1454 printf_filtered (" <disabled>\n");
1455 return;
1456 }
1457
1458 for (pass = 0; pass < 2; ++pass)
1459 {
1460 const struct block_symbol_cache *bsc
1461 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1462 unsigned int i;
1463
1464 if (pass == 0)
1465 printf_filtered ("Global symbols:\n");
1466 else
1467 printf_filtered ("Static symbols:\n");
1468
1469 for (i = 0; i < bsc->size; ++i)
1470 {
1471 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1472
1473 QUIT;
1474
1475 switch (slot->state)
1476 {
1477 case SYMBOL_SLOT_UNUSED:
1478 break;
1479 case SYMBOL_SLOT_NOT_FOUND:
1480 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1481 host_address_to_string (slot->objfile_context),
1482 slot->value.not_found.name,
1483 domain_name (slot->value.not_found.domain));
1484 break;
1485 case SYMBOL_SLOT_FOUND:
1486 {
1487 struct symbol *found = slot->value.found.symbol;
1488 const struct objfile *context = slot->objfile_context;
1489
1490 printf_filtered (" [%4u] = %s, %s %s\n", i,
1491 host_address_to_string (context),
1492 SYMBOL_PRINT_NAME (found),
1493 domain_name (SYMBOL_DOMAIN (found)));
1494 break;
1495 }
1496 }
1497 }
1498 }
1499 }
1500
1501 /* The "mt print symbol-cache" command. */
1502
1503 static void
1504 maintenance_print_symbol_cache (const char *args, int from_tty)
1505 {
1506 struct program_space *pspace;
1507
1508 ALL_PSPACES (pspace)
1509 {
1510 struct symbol_cache *cache;
1511
1512 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1513 pspace->num,
1514 pspace->symfile_object_file != NULL
1515 ? objfile_name (pspace->symfile_object_file)
1516 : "(no object file)");
1517
1518 /* If the cache hasn't been created yet, avoid creating one. */
1519 cache
1520 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1521 if (cache == NULL)
1522 printf_filtered (" <empty>\n");
1523 else
1524 symbol_cache_dump (cache);
1525 }
1526 }
1527
1528 /* The "mt flush-symbol-cache" command. */
1529
1530 static void
1531 maintenance_flush_symbol_cache (const char *args, int from_tty)
1532 {
1533 struct program_space *pspace;
1534
1535 ALL_PSPACES (pspace)
1536 {
1537 symbol_cache_flush (pspace);
1538 }
1539 }
1540
1541 /* Print usage statistics of CACHE. */
1542
1543 static void
1544 symbol_cache_stats (struct symbol_cache *cache)
1545 {
1546 int pass;
1547
1548 if (cache->global_symbols == NULL)
1549 {
1550 printf_filtered (" <disabled>\n");
1551 return;
1552 }
1553
1554 for (pass = 0; pass < 2; ++pass)
1555 {
1556 const struct block_symbol_cache *bsc
1557 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1558
1559 QUIT;
1560
1561 if (pass == 0)
1562 printf_filtered ("Global block cache stats:\n");
1563 else
1564 printf_filtered ("Static block cache stats:\n");
1565
1566 printf_filtered (" size: %u\n", bsc->size);
1567 printf_filtered (" hits: %u\n", bsc->hits);
1568 printf_filtered (" misses: %u\n", bsc->misses);
1569 printf_filtered (" collisions: %u\n", bsc->collisions);
1570 }
1571 }
1572
1573 /* The "mt print symbol-cache-statistics" command. */
1574
1575 static void
1576 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1577 {
1578 struct program_space *pspace;
1579
1580 ALL_PSPACES (pspace)
1581 {
1582 struct symbol_cache *cache;
1583
1584 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1585 pspace->num,
1586 pspace->symfile_object_file != NULL
1587 ? objfile_name (pspace->symfile_object_file)
1588 : "(no object file)");
1589
1590 /* If the cache hasn't been created yet, avoid creating one. */
1591 cache
1592 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1593 if (cache == NULL)
1594 printf_filtered (" empty, no stats available\n");
1595 else
1596 symbol_cache_stats (cache);
1597 }
1598 }
1599
1600 /* This module's 'new_objfile' observer. */
1601
1602 static void
1603 symtab_new_objfile_observer (struct objfile *objfile)
1604 {
1605 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1606 symbol_cache_flush (current_program_space);
1607 }
1608
1609 /* This module's 'free_objfile' observer. */
1610
1611 static void
1612 symtab_free_objfile_observer (struct objfile *objfile)
1613 {
1614 symbol_cache_flush (objfile->pspace);
1615 }
1616 \f
1617 /* Debug symbols usually don't have section information. We need to dig that
1618 out of the minimal symbols and stash that in the debug symbol. */
1619
1620 void
1621 fixup_section (struct general_symbol_info *ginfo,
1622 CORE_ADDR addr, struct objfile *objfile)
1623 {
1624 struct minimal_symbol *msym;
1625
1626 /* First, check whether a minimal symbol with the same name exists
1627 and points to the same address. The address check is required
1628 e.g. on PowerPC64, where the minimal symbol for a function will
1629 point to the function descriptor, while the debug symbol will
1630 point to the actual function code. */
1631 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1632 if (msym)
1633 ginfo->section = MSYMBOL_SECTION (msym);
1634 else
1635 {
1636 /* Static, function-local variables do appear in the linker
1637 (minimal) symbols, but are frequently given names that won't
1638 be found via lookup_minimal_symbol(). E.g., it has been
1639 observed in frv-uclinux (ELF) executables that a static,
1640 function-local variable named "foo" might appear in the
1641 linker symbols as "foo.6" or "foo.3". Thus, there is no
1642 point in attempting to extend the lookup-by-name mechanism to
1643 handle this case due to the fact that there can be multiple
1644 names.
1645
1646 So, instead, search the section table when lookup by name has
1647 failed. The ``addr'' and ``endaddr'' fields may have already
1648 been relocated. If so, the relocation offset (i.e. the
1649 ANOFFSET value) needs to be subtracted from these values when
1650 performing the comparison. We unconditionally subtract it,
1651 because, when no relocation has been performed, the ANOFFSET
1652 value will simply be zero.
1653
1654 The address of the symbol whose section we're fixing up HAS
1655 NOT BEEN adjusted (relocated) yet. It can't have been since
1656 the section isn't yet known and knowing the section is
1657 necessary in order to add the correct relocation value. In
1658 other words, we wouldn't even be in this function (attempting
1659 to compute the section) if it were already known.
1660
1661 Note that it is possible to search the minimal symbols
1662 (subtracting the relocation value if necessary) to find the
1663 matching minimal symbol, but this is overkill and much less
1664 efficient. It is not necessary to find the matching minimal
1665 symbol, only its section.
1666
1667 Note that this technique (of doing a section table search)
1668 can fail when unrelocated section addresses overlap. For
1669 this reason, we still attempt a lookup by name prior to doing
1670 a search of the section table. */
1671
1672 struct obj_section *s;
1673 int fallback = -1;
1674
1675 ALL_OBJFILE_OSECTIONS (objfile, s)
1676 {
1677 int idx = s - objfile->sections;
1678 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1679
1680 if (fallback == -1)
1681 fallback = idx;
1682
1683 if (obj_section_addr (s) - offset <= addr
1684 && addr < obj_section_endaddr (s) - offset)
1685 {
1686 ginfo->section = idx;
1687 return;
1688 }
1689 }
1690
1691 /* If we didn't find the section, assume it is in the first
1692 section. If there is no allocated section, then it hardly
1693 matters what we pick, so just pick zero. */
1694 if (fallback == -1)
1695 ginfo->section = 0;
1696 else
1697 ginfo->section = fallback;
1698 }
1699 }
1700
1701 struct symbol *
1702 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1703 {
1704 CORE_ADDR addr;
1705
1706 if (!sym)
1707 return NULL;
1708
1709 if (!SYMBOL_OBJFILE_OWNED (sym))
1710 return sym;
1711
1712 /* We either have an OBJFILE, or we can get at it from the sym's
1713 symtab. Anything else is a bug. */
1714 gdb_assert (objfile || symbol_symtab (sym));
1715
1716 if (objfile == NULL)
1717 objfile = symbol_objfile (sym);
1718
1719 if (SYMBOL_OBJ_SECTION (objfile, sym))
1720 return sym;
1721
1722 /* We should have an objfile by now. */
1723 gdb_assert (objfile);
1724
1725 switch (SYMBOL_CLASS (sym))
1726 {
1727 case LOC_STATIC:
1728 case LOC_LABEL:
1729 addr = SYMBOL_VALUE_ADDRESS (sym);
1730 break;
1731 case LOC_BLOCK:
1732 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1733 break;
1734
1735 default:
1736 /* Nothing else will be listed in the minsyms -- no use looking
1737 it up. */
1738 return sym;
1739 }
1740
1741 fixup_section (&sym->ginfo, addr, objfile);
1742
1743 return sym;
1744 }
1745
1746 /* Compute the demangled form of NAME as used by the various symbol
1747 lookup functions. The result can either be the input NAME
1748 directly, or a pointer to a buffer owned by the STORAGE object.
1749
1750 For Ada, this function just returns NAME, unmodified.
1751 Normally, Ada symbol lookups are performed using the encoded name
1752 rather than the demangled name, and so it might seem to make sense
1753 for this function to return an encoded version of NAME.
1754 Unfortunately, we cannot do this, because this function is used in
1755 circumstances where it is not appropriate to try to encode NAME.
1756 For instance, when displaying the frame info, we demangle the name
1757 of each parameter, and then perform a symbol lookup inside our
1758 function using that demangled name. In Ada, certain functions
1759 have internally-generated parameters whose name contain uppercase
1760 characters. Encoding those name would result in those uppercase
1761 characters to become lowercase, and thus cause the symbol lookup
1762 to fail. */
1763
1764 const char *
1765 demangle_for_lookup (const char *name, enum language lang,
1766 demangle_result_storage &storage)
1767 {
1768 /* If we are using C++, D, or Go, demangle the name before doing a
1769 lookup, so we can always binary search. */
1770 if (lang == language_cplus)
1771 {
1772 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1773 if (demangled_name != NULL)
1774 return storage.set_malloc_ptr (demangled_name);
1775
1776 /* If we were given a non-mangled name, canonicalize it
1777 according to the language (so far only for C++). */
1778 std::string canon = cp_canonicalize_string (name);
1779 if (!canon.empty ())
1780 return storage.swap_string (canon);
1781 }
1782 else if (lang == language_d)
1783 {
1784 char *demangled_name = d_demangle (name, 0);
1785 if (demangled_name != NULL)
1786 return storage.set_malloc_ptr (demangled_name);
1787 }
1788 else if (lang == language_go)
1789 {
1790 char *demangled_name = go_demangle (name, 0);
1791 if (demangled_name != NULL)
1792 return storage.set_malloc_ptr (demangled_name);
1793 }
1794
1795 return name;
1796 }
1797
1798 /* See symtab.h.
1799
1800 This function (or rather its subordinates) have a bunch of loops and
1801 it would seem to be attractive to put in some QUIT's (though I'm not really
1802 sure whether it can run long enough to be really important). But there
1803 are a few calls for which it would appear to be bad news to quit
1804 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1805 that there is C++ code below which can error(), but that probably
1806 doesn't affect these calls since they are looking for a known
1807 variable and thus can probably assume it will never hit the C++
1808 code). */
1809
1810 struct block_symbol
1811 lookup_symbol_in_language (const char *name, const struct block *block,
1812 const domain_enum domain, enum language lang,
1813 struct field_of_this_result *is_a_field_of_this)
1814 {
1815 demangle_result_storage storage;
1816 const char *modified_name = demangle_for_lookup (name, lang, storage);
1817
1818 return lookup_symbol_aux (modified_name, block, domain, lang,
1819 is_a_field_of_this);
1820 }
1821
1822 /* See symtab.h. */
1823
1824 struct block_symbol
1825 lookup_symbol (const char *name, const struct block *block,
1826 domain_enum domain,
1827 struct field_of_this_result *is_a_field_of_this)
1828 {
1829 return lookup_symbol_in_language (name, block, domain,
1830 current_language->la_language,
1831 is_a_field_of_this);
1832 }
1833
1834 /* See symtab.h. */
1835
1836 struct block_symbol
1837 lookup_language_this (const struct language_defn *lang,
1838 const struct block *block)
1839 {
1840 if (lang->la_name_of_this == NULL || block == NULL)
1841 return (struct block_symbol) {NULL, NULL};
1842
1843 if (symbol_lookup_debug > 1)
1844 {
1845 struct objfile *objfile = lookup_objfile_from_block (block);
1846
1847 fprintf_unfiltered (gdb_stdlog,
1848 "lookup_language_this (%s, %s (objfile %s))",
1849 lang->la_name, host_address_to_string (block),
1850 objfile_debug_name (objfile));
1851 }
1852
1853 while (block)
1854 {
1855 struct symbol *sym;
1856
1857 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1858 if (sym != NULL)
1859 {
1860 if (symbol_lookup_debug > 1)
1861 {
1862 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1863 SYMBOL_PRINT_NAME (sym),
1864 host_address_to_string (sym),
1865 host_address_to_string (block));
1866 }
1867 return (struct block_symbol) {sym, block};
1868 }
1869 if (BLOCK_FUNCTION (block))
1870 break;
1871 block = BLOCK_SUPERBLOCK (block);
1872 }
1873
1874 if (symbol_lookup_debug > 1)
1875 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1876 return (struct block_symbol) {NULL, NULL};
1877 }
1878
1879 /* Given TYPE, a structure/union,
1880 return 1 if the component named NAME from the ultimate target
1881 structure/union is defined, otherwise, return 0. */
1882
1883 static int
1884 check_field (struct type *type, const char *name,
1885 struct field_of_this_result *is_a_field_of_this)
1886 {
1887 int i;
1888
1889 /* The type may be a stub. */
1890 type = check_typedef (type);
1891
1892 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1893 {
1894 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1895
1896 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1897 {
1898 is_a_field_of_this->type = type;
1899 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1900 return 1;
1901 }
1902 }
1903
1904 /* C++: If it was not found as a data field, then try to return it
1905 as a pointer to a method. */
1906
1907 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1908 {
1909 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1910 {
1911 is_a_field_of_this->type = type;
1912 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1913 return 1;
1914 }
1915 }
1916
1917 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1918 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1919 return 1;
1920
1921 return 0;
1922 }
1923
1924 /* Behave like lookup_symbol except that NAME is the natural name
1925 (e.g., demangled name) of the symbol that we're looking for. */
1926
1927 static struct block_symbol
1928 lookup_symbol_aux (const char *name, const struct block *block,
1929 const domain_enum domain, enum language language,
1930 struct field_of_this_result *is_a_field_of_this)
1931 {
1932 struct block_symbol result;
1933 const struct language_defn *langdef;
1934
1935 if (symbol_lookup_debug)
1936 {
1937 struct objfile *objfile = lookup_objfile_from_block (block);
1938
1939 fprintf_unfiltered (gdb_stdlog,
1940 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1941 name, host_address_to_string (block),
1942 objfile != NULL
1943 ? objfile_debug_name (objfile) : "NULL",
1944 domain_name (domain), language_str (language));
1945 }
1946
1947 /* Make sure we do something sensible with is_a_field_of_this, since
1948 the callers that set this parameter to some non-null value will
1949 certainly use it later. If we don't set it, the contents of
1950 is_a_field_of_this are undefined. */
1951 if (is_a_field_of_this != NULL)
1952 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1953
1954 /* Search specified block and its superiors. Don't search
1955 STATIC_BLOCK or GLOBAL_BLOCK. */
1956
1957 result = lookup_local_symbol (name, block, domain, language);
1958 if (result.symbol != NULL)
1959 {
1960 if (symbol_lookup_debug)
1961 {
1962 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
1963 host_address_to_string (result.symbol));
1964 }
1965 return result;
1966 }
1967
1968 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1969 check to see if NAME is a field of `this'. */
1970
1971 langdef = language_def (language);
1972
1973 /* Don't do this check if we are searching for a struct. It will
1974 not be found by check_field, but will be found by other
1975 means. */
1976 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1977 {
1978 result = lookup_language_this (langdef, block);
1979
1980 if (result.symbol)
1981 {
1982 struct type *t = result.symbol->type;
1983
1984 /* I'm not really sure that type of this can ever
1985 be typedefed; just be safe. */
1986 t = check_typedef (t);
1987 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
1988 t = TYPE_TARGET_TYPE (t);
1989
1990 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1991 && TYPE_CODE (t) != TYPE_CODE_UNION)
1992 error (_("Internal error: `%s' is not an aggregate"),
1993 langdef->la_name_of_this);
1994
1995 if (check_field (t, name, is_a_field_of_this))
1996 {
1997 if (symbol_lookup_debug)
1998 {
1999 fprintf_unfiltered (gdb_stdlog,
2000 "lookup_symbol_aux (...) = NULL\n");
2001 }
2002 return (struct block_symbol) {NULL, NULL};
2003 }
2004 }
2005 }
2006
2007 /* Now do whatever is appropriate for LANGUAGE to look
2008 up static and global variables. */
2009
2010 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2011 if (result.symbol != NULL)
2012 {
2013 if (symbol_lookup_debug)
2014 {
2015 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2016 host_address_to_string (result.symbol));
2017 }
2018 return result;
2019 }
2020
2021 /* Now search all static file-level symbols. Not strictly correct,
2022 but more useful than an error. */
2023
2024 result = lookup_static_symbol (name, domain);
2025 if (symbol_lookup_debug)
2026 {
2027 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2028 result.symbol != NULL
2029 ? host_address_to_string (result.symbol)
2030 : "NULL");
2031 }
2032 return result;
2033 }
2034
2035 /* Check to see if the symbol is defined in BLOCK or its superiors.
2036 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2037
2038 static struct block_symbol
2039 lookup_local_symbol (const char *name, const struct block *block,
2040 const domain_enum domain,
2041 enum language language)
2042 {
2043 struct symbol *sym;
2044 const struct block *static_block = block_static_block (block);
2045 const char *scope = block_scope (block);
2046
2047 /* Check if either no block is specified or it's a global block. */
2048
2049 if (static_block == NULL)
2050 return (struct block_symbol) {NULL, NULL};
2051
2052 while (block != static_block)
2053 {
2054 sym = lookup_symbol_in_block (name, block, domain);
2055 if (sym != NULL)
2056 return (struct block_symbol) {sym, block};
2057
2058 if (language == language_cplus || language == language_fortran)
2059 {
2060 struct block_symbol sym
2061 = cp_lookup_symbol_imports_or_template (scope, name, block,
2062 domain);
2063
2064 if (sym.symbol != NULL)
2065 return sym;
2066 }
2067
2068 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2069 break;
2070 block = BLOCK_SUPERBLOCK (block);
2071 }
2072
2073 /* We've reached the end of the function without finding a result. */
2074
2075 return (struct block_symbol) {NULL, NULL};
2076 }
2077
2078 /* See symtab.h. */
2079
2080 struct objfile *
2081 lookup_objfile_from_block (const struct block *block)
2082 {
2083 struct objfile *obj;
2084 struct compunit_symtab *cust;
2085
2086 if (block == NULL)
2087 return NULL;
2088
2089 block = block_global_block (block);
2090 /* Look through all blockvectors. */
2091 ALL_COMPUNITS (obj, cust)
2092 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2093 GLOBAL_BLOCK))
2094 {
2095 if (obj->separate_debug_objfile_backlink)
2096 obj = obj->separate_debug_objfile_backlink;
2097
2098 return obj;
2099 }
2100
2101 return NULL;
2102 }
2103
2104 /* See symtab.h. */
2105
2106 struct symbol *
2107 lookup_symbol_in_block (const char *name, const struct block *block,
2108 const domain_enum domain)
2109 {
2110 struct symbol *sym;
2111
2112 if (symbol_lookup_debug > 1)
2113 {
2114 struct objfile *objfile = lookup_objfile_from_block (block);
2115
2116 fprintf_unfiltered (gdb_stdlog,
2117 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2118 name, host_address_to_string (block),
2119 objfile_debug_name (objfile),
2120 domain_name (domain));
2121 }
2122
2123 sym = block_lookup_symbol (block, name, domain);
2124 if (sym)
2125 {
2126 if (symbol_lookup_debug > 1)
2127 {
2128 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2129 host_address_to_string (sym));
2130 }
2131 return fixup_symbol_section (sym, NULL);
2132 }
2133
2134 if (symbol_lookup_debug > 1)
2135 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2136 return NULL;
2137 }
2138
2139 /* See symtab.h. */
2140
2141 struct block_symbol
2142 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2143 const char *name,
2144 const domain_enum domain)
2145 {
2146 struct objfile *objfile;
2147
2148 for (objfile = main_objfile;
2149 objfile;
2150 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2151 {
2152 struct block_symbol result
2153 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2154
2155 if (result.symbol != NULL)
2156 return result;
2157 }
2158
2159 return (struct block_symbol) {NULL, NULL};
2160 }
2161
2162 /* Check to see if the symbol is defined in one of the OBJFILE's
2163 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2164 depending on whether or not we want to search global symbols or
2165 static symbols. */
2166
2167 static struct block_symbol
2168 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2169 const char *name, const domain_enum domain)
2170 {
2171 struct compunit_symtab *cust;
2172
2173 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2174
2175 if (symbol_lookup_debug > 1)
2176 {
2177 fprintf_unfiltered (gdb_stdlog,
2178 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2179 objfile_debug_name (objfile),
2180 block_index == GLOBAL_BLOCK
2181 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2182 name, domain_name (domain));
2183 }
2184
2185 ALL_OBJFILE_COMPUNITS (objfile, cust)
2186 {
2187 const struct blockvector *bv;
2188 const struct block *block;
2189 struct block_symbol result;
2190
2191 bv = COMPUNIT_BLOCKVECTOR (cust);
2192 block = BLOCKVECTOR_BLOCK (bv, block_index);
2193 result.symbol = block_lookup_symbol_primary (block, name, domain);
2194 result.block = block;
2195 if (result.symbol != NULL)
2196 {
2197 if (symbol_lookup_debug > 1)
2198 {
2199 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2200 host_address_to_string (result.symbol),
2201 host_address_to_string (block));
2202 }
2203 result.symbol = fixup_symbol_section (result.symbol, objfile);
2204 return result;
2205
2206 }
2207 }
2208
2209 if (symbol_lookup_debug > 1)
2210 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2211 return (struct block_symbol) {NULL, NULL};
2212 }
2213
2214 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2215 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2216 and all associated separate debug objfiles.
2217
2218 Normally we only look in OBJFILE, and not any separate debug objfiles
2219 because the outer loop will cause them to be searched too. This case is
2220 different. Here we're called from search_symbols where it will only
2221 call us for the the objfile that contains a matching minsym. */
2222
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2225 const char *linkage_name,
2226 domain_enum domain)
2227 {
2228 enum language lang = current_language->la_language;
2229 struct objfile *main_objfile, *cur_objfile;
2230
2231 demangle_result_storage storage;
2232 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2233
2234 if (objfile->separate_debug_objfile_backlink)
2235 main_objfile = objfile->separate_debug_objfile_backlink;
2236 else
2237 main_objfile = objfile;
2238
2239 for (cur_objfile = main_objfile;
2240 cur_objfile;
2241 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2242 {
2243 struct block_symbol result;
2244
2245 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2246 modified_name, domain);
2247 if (result.symbol == NULL)
2248 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2249 modified_name, domain);
2250 if (result.symbol != NULL)
2251 return result;
2252 }
2253
2254 return (struct block_symbol) {NULL, NULL};
2255 }
2256
2257 /* A helper function that throws an exception when a symbol was found
2258 in a psymtab but not in a symtab. */
2259
2260 static void ATTRIBUTE_NORETURN
2261 error_in_psymtab_expansion (int block_index, const char *name,
2262 struct compunit_symtab *cust)
2263 {
2264 error (_("\
2265 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2266 %s may be an inlined function, or may be a template function\n \
2267 (if a template, try specifying an instantiation: %s<type>)."),
2268 block_index == GLOBAL_BLOCK ? "global" : "static",
2269 name,
2270 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2271 name, name);
2272 }
2273
2274 /* A helper function for various lookup routines that interfaces with
2275 the "quick" symbol table functions. */
2276
2277 static struct block_symbol
2278 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2279 const char *name, const domain_enum domain)
2280 {
2281 struct compunit_symtab *cust;
2282 const struct blockvector *bv;
2283 const struct block *block;
2284 struct block_symbol result;
2285
2286 if (!objfile->sf)
2287 return (struct block_symbol) {NULL, NULL};
2288
2289 if (symbol_lookup_debug > 1)
2290 {
2291 fprintf_unfiltered (gdb_stdlog,
2292 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2293 objfile_debug_name (objfile),
2294 block_index == GLOBAL_BLOCK
2295 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2296 name, domain_name (domain));
2297 }
2298
2299 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2300 if (cust == NULL)
2301 {
2302 if (symbol_lookup_debug > 1)
2303 {
2304 fprintf_unfiltered (gdb_stdlog,
2305 "lookup_symbol_via_quick_fns (...) = NULL\n");
2306 }
2307 return (struct block_symbol) {NULL, NULL};
2308 }
2309
2310 bv = COMPUNIT_BLOCKVECTOR (cust);
2311 block = BLOCKVECTOR_BLOCK (bv, block_index);
2312 result.symbol = block_lookup_symbol (block, name, domain);
2313 if (result.symbol == NULL)
2314 error_in_psymtab_expansion (block_index, name, cust);
2315
2316 if (symbol_lookup_debug > 1)
2317 {
2318 fprintf_unfiltered (gdb_stdlog,
2319 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2320 host_address_to_string (result.symbol),
2321 host_address_to_string (block));
2322 }
2323
2324 result.symbol = fixup_symbol_section (result.symbol, objfile);
2325 result.block = block;
2326 return result;
2327 }
2328
2329 /* See symtab.h. */
2330
2331 struct block_symbol
2332 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2333 const char *name,
2334 const struct block *block,
2335 const domain_enum domain)
2336 {
2337 struct block_symbol result;
2338
2339 /* NOTE: carlton/2003-05-19: The comments below were written when
2340 this (or what turned into this) was part of lookup_symbol_aux;
2341 I'm much less worried about these questions now, since these
2342 decisions have turned out well, but I leave these comments here
2343 for posterity. */
2344
2345 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2346 not it would be appropriate to search the current global block
2347 here as well. (That's what this code used to do before the
2348 is_a_field_of_this check was moved up.) On the one hand, it's
2349 redundant with the lookup in all objfiles search that happens
2350 next. On the other hand, if decode_line_1 is passed an argument
2351 like filename:var, then the user presumably wants 'var' to be
2352 searched for in filename. On the third hand, there shouldn't be
2353 multiple global variables all of which are named 'var', and it's
2354 not like decode_line_1 has ever restricted its search to only
2355 global variables in a single filename. All in all, only
2356 searching the static block here seems best: it's correct and it's
2357 cleanest. */
2358
2359 /* NOTE: carlton/2002-12-05: There's also a possible performance
2360 issue here: if you usually search for global symbols in the
2361 current file, then it would be slightly better to search the
2362 current global block before searching all the symtabs. But there
2363 are other factors that have a much greater effect on performance
2364 than that one, so I don't think we should worry about that for
2365 now. */
2366
2367 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2368 the current objfile. Searching the current objfile first is useful
2369 for both matching user expectations as well as performance. */
2370
2371 result = lookup_symbol_in_static_block (name, block, domain);
2372 if (result.symbol != NULL)
2373 return result;
2374
2375 /* If we didn't find a definition for a builtin type in the static block,
2376 search for it now. This is actually the right thing to do and can be
2377 a massive performance win. E.g., when debugging a program with lots of
2378 shared libraries we could search all of them only to find out the
2379 builtin type isn't defined in any of them. This is common for types
2380 like "void". */
2381 if (domain == VAR_DOMAIN)
2382 {
2383 struct gdbarch *gdbarch;
2384
2385 if (block == NULL)
2386 gdbarch = target_gdbarch ();
2387 else
2388 gdbarch = block_gdbarch (block);
2389 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2390 gdbarch, name);
2391 result.block = NULL;
2392 if (result.symbol != NULL)
2393 return result;
2394 }
2395
2396 return lookup_global_symbol (name, block, domain);
2397 }
2398
2399 /* See symtab.h. */
2400
2401 struct block_symbol
2402 lookup_symbol_in_static_block (const char *name,
2403 const struct block *block,
2404 const domain_enum domain)
2405 {
2406 const struct block *static_block = block_static_block (block);
2407 struct symbol *sym;
2408
2409 if (static_block == NULL)
2410 return (struct block_symbol) {NULL, NULL};
2411
2412 if (symbol_lookup_debug)
2413 {
2414 struct objfile *objfile = lookup_objfile_from_block (static_block);
2415
2416 fprintf_unfiltered (gdb_stdlog,
2417 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2418 " %s)\n",
2419 name,
2420 host_address_to_string (block),
2421 objfile_debug_name (objfile),
2422 domain_name (domain));
2423 }
2424
2425 sym = lookup_symbol_in_block (name, static_block, domain);
2426 if (symbol_lookup_debug)
2427 {
2428 fprintf_unfiltered (gdb_stdlog,
2429 "lookup_symbol_in_static_block (...) = %s\n",
2430 sym != NULL ? host_address_to_string (sym) : "NULL");
2431 }
2432 return (struct block_symbol) {sym, static_block};
2433 }
2434
2435 /* Perform the standard symbol lookup of NAME in OBJFILE:
2436 1) First search expanded symtabs, and if not found
2437 2) Search the "quick" symtabs (partial or .gdb_index).
2438 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2439
2440 static struct block_symbol
2441 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2442 const char *name, const domain_enum domain)
2443 {
2444 struct block_symbol result;
2445
2446 if (symbol_lookup_debug)
2447 {
2448 fprintf_unfiltered (gdb_stdlog,
2449 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2450 objfile_debug_name (objfile),
2451 block_index == GLOBAL_BLOCK
2452 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2453 name, domain_name (domain));
2454 }
2455
2456 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2457 name, domain);
2458 if (result.symbol != NULL)
2459 {
2460 if (symbol_lookup_debug)
2461 {
2462 fprintf_unfiltered (gdb_stdlog,
2463 "lookup_symbol_in_objfile (...) = %s"
2464 " (in symtabs)\n",
2465 host_address_to_string (result.symbol));
2466 }
2467 return result;
2468 }
2469
2470 result = lookup_symbol_via_quick_fns (objfile, block_index,
2471 name, domain);
2472 if (symbol_lookup_debug)
2473 {
2474 fprintf_unfiltered (gdb_stdlog,
2475 "lookup_symbol_in_objfile (...) = %s%s\n",
2476 result.symbol != NULL
2477 ? host_address_to_string (result.symbol)
2478 : "NULL",
2479 result.symbol != NULL ? " (via quick fns)" : "");
2480 }
2481 return result;
2482 }
2483
2484 /* See symtab.h. */
2485
2486 struct block_symbol
2487 lookup_static_symbol (const char *name, const domain_enum domain)
2488 {
2489 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2490 struct objfile *objfile;
2491 struct block_symbol result;
2492 struct block_symbol_cache *bsc;
2493 struct symbol_cache_slot *slot;
2494
2495 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2496 NULL for OBJFILE_CONTEXT. */
2497 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2498 &bsc, &slot);
2499 if (result.symbol != NULL)
2500 {
2501 if (SYMBOL_LOOKUP_FAILED_P (result))
2502 return (struct block_symbol) {NULL, NULL};
2503 return result;
2504 }
2505
2506 ALL_OBJFILES (objfile)
2507 {
2508 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2509 if (result.symbol != NULL)
2510 {
2511 /* Still pass NULL for OBJFILE_CONTEXT here. */
2512 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2513 result.block);
2514 return result;
2515 }
2516 }
2517
2518 /* Still pass NULL for OBJFILE_CONTEXT here. */
2519 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2520 return (struct block_symbol) {NULL, NULL};
2521 }
2522
2523 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2524
2525 struct global_sym_lookup_data
2526 {
2527 /* The name of the symbol we are searching for. */
2528 const char *name;
2529
2530 /* The domain to use for our search. */
2531 domain_enum domain;
2532
2533 /* The field where the callback should store the symbol if found.
2534 It should be initialized to {NULL, NULL} before the search is started. */
2535 struct block_symbol result;
2536 };
2537
2538 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2539 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2540 OBJFILE. The arguments for the search are passed via CB_DATA,
2541 which in reality is a pointer to struct global_sym_lookup_data. */
2542
2543 static int
2544 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2545 void *cb_data)
2546 {
2547 struct global_sym_lookup_data *data =
2548 (struct global_sym_lookup_data *) cb_data;
2549
2550 gdb_assert (data->result.symbol == NULL
2551 && data->result.block == NULL);
2552
2553 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2554 data->name, data->domain);
2555
2556 /* If we found a match, tell the iterator to stop. Otherwise,
2557 keep going. */
2558 return (data->result.symbol != NULL);
2559 }
2560
2561 /* See symtab.h. */
2562
2563 struct block_symbol
2564 lookup_global_symbol (const char *name,
2565 const struct block *block,
2566 const domain_enum domain)
2567 {
2568 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2569 struct block_symbol result;
2570 struct objfile *objfile;
2571 struct global_sym_lookup_data lookup_data;
2572 struct block_symbol_cache *bsc;
2573 struct symbol_cache_slot *slot;
2574
2575 objfile = lookup_objfile_from_block (block);
2576
2577 /* First see if we can find the symbol in the cache.
2578 This works because we use the current objfile to qualify the lookup. */
2579 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2580 &bsc, &slot);
2581 if (result.symbol != NULL)
2582 {
2583 if (SYMBOL_LOOKUP_FAILED_P (result))
2584 return (struct block_symbol) {NULL, NULL};
2585 return result;
2586 }
2587
2588 /* Call library-specific lookup procedure. */
2589 if (objfile != NULL)
2590 result = solib_global_lookup (objfile, name, domain);
2591
2592 /* If that didn't work go a global search (of global blocks, heh). */
2593 if (result.symbol == NULL)
2594 {
2595 memset (&lookup_data, 0, sizeof (lookup_data));
2596 lookup_data.name = name;
2597 lookup_data.domain = domain;
2598 gdbarch_iterate_over_objfiles_in_search_order
2599 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2600 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2601 result = lookup_data.result;
2602 }
2603
2604 if (result.symbol != NULL)
2605 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2606 else
2607 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2608
2609 return result;
2610 }
2611
2612 int
2613 symbol_matches_domain (enum language symbol_language,
2614 domain_enum symbol_domain,
2615 domain_enum domain)
2616 {
2617 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2618 Similarly, any Ada type declaration implicitly defines a typedef. */
2619 if (symbol_language == language_cplus
2620 || symbol_language == language_d
2621 || symbol_language == language_ada
2622 || symbol_language == language_rust)
2623 {
2624 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2625 && symbol_domain == STRUCT_DOMAIN)
2626 return 1;
2627 }
2628 /* For all other languages, strict match is required. */
2629 return (symbol_domain == domain);
2630 }
2631
2632 /* See symtab.h. */
2633
2634 struct type *
2635 lookup_transparent_type (const char *name)
2636 {
2637 return current_language->la_lookup_transparent_type (name);
2638 }
2639
2640 /* A helper for basic_lookup_transparent_type that interfaces with the
2641 "quick" symbol table functions. */
2642
2643 static struct type *
2644 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2645 const char *name)
2646 {
2647 struct compunit_symtab *cust;
2648 const struct blockvector *bv;
2649 struct block *block;
2650 struct symbol *sym;
2651
2652 if (!objfile->sf)
2653 return NULL;
2654 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2655 STRUCT_DOMAIN);
2656 if (cust == NULL)
2657 return NULL;
2658
2659 bv = COMPUNIT_BLOCKVECTOR (cust);
2660 block = BLOCKVECTOR_BLOCK (bv, block_index);
2661 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2662 block_find_non_opaque_type, NULL);
2663 if (sym == NULL)
2664 error_in_psymtab_expansion (block_index, name, cust);
2665 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2666 return SYMBOL_TYPE (sym);
2667 }
2668
2669 /* Subroutine of basic_lookup_transparent_type to simplify it.
2670 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2671 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2672
2673 static struct type *
2674 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2675 const char *name)
2676 {
2677 const struct compunit_symtab *cust;
2678 const struct blockvector *bv;
2679 const struct block *block;
2680 const struct symbol *sym;
2681
2682 ALL_OBJFILE_COMPUNITS (objfile, cust)
2683 {
2684 bv = COMPUNIT_BLOCKVECTOR (cust);
2685 block = BLOCKVECTOR_BLOCK (bv, block_index);
2686 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2687 block_find_non_opaque_type, NULL);
2688 if (sym != NULL)
2689 {
2690 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2691 return SYMBOL_TYPE (sym);
2692 }
2693 }
2694
2695 return NULL;
2696 }
2697
2698 /* The standard implementation of lookup_transparent_type. This code
2699 was modeled on lookup_symbol -- the parts not relevant to looking
2700 up types were just left out. In particular it's assumed here that
2701 types are available in STRUCT_DOMAIN and only in file-static or
2702 global blocks. */
2703
2704 struct type *
2705 basic_lookup_transparent_type (const char *name)
2706 {
2707 struct objfile *objfile;
2708 struct type *t;
2709
2710 /* Now search all the global symbols. Do the symtab's first, then
2711 check the psymtab's. If a psymtab indicates the existence
2712 of the desired name as a global, then do psymtab-to-symtab
2713 conversion on the fly and return the found symbol. */
2714
2715 ALL_OBJFILES (objfile)
2716 {
2717 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2718 if (t)
2719 return t;
2720 }
2721
2722 ALL_OBJFILES (objfile)
2723 {
2724 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2725 if (t)
2726 return t;
2727 }
2728
2729 /* Now search the static file-level symbols.
2730 Not strictly correct, but more useful than an error.
2731 Do the symtab's first, then
2732 check the psymtab's. If a psymtab indicates the existence
2733 of the desired name as a file-level static, then do psymtab-to-symtab
2734 conversion on the fly and return the found symbol. */
2735
2736 ALL_OBJFILES (objfile)
2737 {
2738 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2739 if (t)
2740 return t;
2741 }
2742
2743 ALL_OBJFILES (objfile)
2744 {
2745 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2746 if (t)
2747 return t;
2748 }
2749
2750 return (struct type *) 0;
2751 }
2752
2753 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2754
2755 For each symbol that matches, CALLBACK is called. The symbol is
2756 passed to the callback.
2757
2758 If CALLBACK returns false, the iteration ends. Otherwise, the
2759 search continues. */
2760
2761 void
2762 iterate_over_symbols (const struct block *block, const char *name,
2763 const domain_enum domain,
2764 gdb::function_view<symbol_found_callback_ftype> callback)
2765 {
2766 struct block_iterator iter;
2767 struct symbol *sym;
2768
2769 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2770 {
2771 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2772 SYMBOL_DOMAIN (sym), domain))
2773 {
2774 if (!callback (sym))
2775 return;
2776 }
2777 }
2778 }
2779
2780 /* Find the compunit symtab associated with PC and SECTION.
2781 This will read in debug info as necessary. */
2782
2783 struct compunit_symtab *
2784 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2785 {
2786 struct compunit_symtab *cust;
2787 struct compunit_symtab *best_cust = NULL;
2788 struct objfile *objfile;
2789 CORE_ADDR distance = 0;
2790 struct bound_minimal_symbol msymbol;
2791
2792 /* If we know that this is not a text address, return failure. This is
2793 necessary because we loop based on the block's high and low code
2794 addresses, which do not include the data ranges, and because
2795 we call find_pc_sect_psymtab which has a similar restriction based
2796 on the partial_symtab's texthigh and textlow. */
2797 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2798 if (msymbol.minsym
2799 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2800 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2801 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2802 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2803 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2804 return NULL;
2805
2806 /* Search all symtabs for the one whose file contains our address, and which
2807 is the smallest of all the ones containing the address. This is designed
2808 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2809 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2810 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2811
2812 This happens for native ecoff format, where code from included files
2813 gets its own symtab. The symtab for the included file should have
2814 been read in already via the dependency mechanism.
2815 It might be swifter to create several symtabs with the same name
2816 like xcoff does (I'm not sure).
2817
2818 It also happens for objfiles that have their functions reordered.
2819 For these, the symtab we are looking for is not necessarily read in. */
2820
2821 ALL_COMPUNITS (objfile, cust)
2822 {
2823 struct block *b;
2824 const struct blockvector *bv;
2825
2826 bv = COMPUNIT_BLOCKVECTOR (cust);
2827 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2828
2829 if (BLOCK_START (b) <= pc
2830 && BLOCK_END (b) > pc
2831 && (distance == 0
2832 || BLOCK_END (b) - BLOCK_START (b) < distance))
2833 {
2834 /* For an objfile that has its functions reordered,
2835 find_pc_psymtab will find the proper partial symbol table
2836 and we simply return its corresponding symtab. */
2837 /* In order to better support objfiles that contain both
2838 stabs and coff debugging info, we continue on if a psymtab
2839 can't be found. */
2840 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2841 {
2842 struct compunit_symtab *result;
2843
2844 result
2845 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2846 msymbol,
2847 pc, section,
2848 0);
2849 if (result != NULL)
2850 return result;
2851 }
2852 if (section != 0)
2853 {
2854 struct block_iterator iter;
2855 struct symbol *sym = NULL;
2856
2857 ALL_BLOCK_SYMBOLS (b, iter, sym)
2858 {
2859 fixup_symbol_section (sym, objfile);
2860 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2861 section))
2862 break;
2863 }
2864 if (sym == NULL)
2865 continue; /* No symbol in this symtab matches
2866 section. */
2867 }
2868 distance = BLOCK_END (b) - BLOCK_START (b);
2869 best_cust = cust;
2870 }
2871 }
2872
2873 if (best_cust != NULL)
2874 return best_cust;
2875
2876 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2877
2878 ALL_OBJFILES (objfile)
2879 {
2880 struct compunit_symtab *result;
2881
2882 if (!objfile->sf)
2883 continue;
2884 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2885 msymbol,
2886 pc, section,
2887 1);
2888 if (result != NULL)
2889 return result;
2890 }
2891
2892 return NULL;
2893 }
2894
2895 /* Find the compunit symtab associated with PC.
2896 This will read in debug info as necessary.
2897 Backward compatibility, no section. */
2898
2899 struct compunit_symtab *
2900 find_pc_compunit_symtab (CORE_ADDR pc)
2901 {
2902 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2903 }
2904 \f
2905
2906 /* Find the source file and line number for a given PC value and SECTION.
2907 Return a structure containing a symtab pointer, a line number,
2908 and a pc range for the entire source line.
2909 The value's .pc field is NOT the specified pc.
2910 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2911 use the line that ends there. Otherwise, in that case, the line
2912 that begins there is used. */
2913
2914 /* The big complication here is that a line may start in one file, and end just
2915 before the start of another file. This usually occurs when you #include
2916 code in the middle of a subroutine. To properly find the end of a line's PC
2917 range, we must search all symtabs associated with this compilation unit, and
2918 find the one whose first PC is closer than that of the next line in this
2919 symtab. */
2920
2921 /* If it's worth the effort, we could be using a binary search. */
2922
2923 struct symtab_and_line
2924 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2925 {
2926 struct compunit_symtab *cust;
2927 struct symtab *iter_s;
2928 struct linetable *l;
2929 int len;
2930 int i;
2931 struct linetable_entry *item;
2932 const struct blockvector *bv;
2933 struct bound_minimal_symbol msymbol;
2934
2935 /* Info on best line seen so far, and where it starts, and its file. */
2936
2937 struct linetable_entry *best = NULL;
2938 CORE_ADDR best_end = 0;
2939 struct symtab *best_symtab = 0;
2940
2941 /* Store here the first line number
2942 of a file which contains the line at the smallest pc after PC.
2943 If we don't find a line whose range contains PC,
2944 we will use a line one less than this,
2945 with a range from the start of that file to the first line's pc. */
2946 struct linetable_entry *alt = NULL;
2947
2948 /* Info on best line seen in this file. */
2949
2950 struct linetable_entry *prev;
2951
2952 /* If this pc is not from the current frame,
2953 it is the address of the end of a call instruction.
2954 Quite likely that is the start of the following statement.
2955 But what we want is the statement containing the instruction.
2956 Fudge the pc to make sure we get that. */
2957
2958 /* It's tempting to assume that, if we can't find debugging info for
2959 any function enclosing PC, that we shouldn't search for line
2960 number info, either. However, GAS can emit line number info for
2961 assembly files --- very helpful when debugging hand-written
2962 assembly code. In such a case, we'd have no debug info for the
2963 function, but we would have line info. */
2964
2965 if (notcurrent)
2966 pc -= 1;
2967
2968 /* elz: added this because this function returned the wrong
2969 information if the pc belongs to a stub (import/export)
2970 to call a shlib function. This stub would be anywhere between
2971 two functions in the target, and the line info was erroneously
2972 taken to be the one of the line before the pc. */
2973
2974 /* RT: Further explanation:
2975
2976 * We have stubs (trampolines) inserted between procedures.
2977 *
2978 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2979 * exists in the main image.
2980 *
2981 * In the minimal symbol table, we have a bunch of symbols
2982 * sorted by start address. The stubs are marked as "trampoline",
2983 * the others appear as text. E.g.:
2984 *
2985 * Minimal symbol table for main image
2986 * main: code for main (text symbol)
2987 * shr1: stub (trampoline symbol)
2988 * foo: code for foo (text symbol)
2989 * ...
2990 * Minimal symbol table for "shr1" image:
2991 * ...
2992 * shr1: code for shr1 (text symbol)
2993 * ...
2994 *
2995 * So the code below is trying to detect if we are in the stub
2996 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2997 * and if found, do the symbolization from the real-code address
2998 * rather than the stub address.
2999 *
3000 * Assumptions being made about the minimal symbol table:
3001 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3002 * if we're really in the trampoline.s If we're beyond it (say
3003 * we're in "foo" in the above example), it'll have a closer
3004 * symbol (the "foo" text symbol for example) and will not
3005 * return the trampoline.
3006 * 2. lookup_minimal_symbol_text() will find a real text symbol
3007 * corresponding to the trampoline, and whose address will
3008 * be different than the trampoline address. I put in a sanity
3009 * check for the address being the same, to avoid an
3010 * infinite recursion.
3011 */
3012 msymbol = lookup_minimal_symbol_by_pc (pc);
3013 if (msymbol.minsym != NULL)
3014 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3015 {
3016 struct bound_minimal_symbol mfunsym
3017 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3018 NULL);
3019
3020 if (mfunsym.minsym == NULL)
3021 /* I eliminated this warning since it is coming out
3022 * in the following situation:
3023 * gdb shmain // test program with shared libraries
3024 * (gdb) break shr1 // function in shared lib
3025 * Warning: In stub for ...
3026 * In the above situation, the shared lib is not loaded yet,
3027 * so of course we can't find the real func/line info,
3028 * but the "break" still works, and the warning is annoying.
3029 * So I commented out the warning. RT */
3030 /* warning ("In stub for %s; unable to find real function/line info",
3031 SYMBOL_LINKAGE_NAME (msymbol)); */
3032 ;
3033 /* fall through */
3034 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3035 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3036 /* Avoid infinite recursion */
3037 /* See above comment about why warning is commented out. */
3038 /* warning ("In stub for %s; unable to find real function/line info",
3039 SYMBOL_LINKAGE_NAME (msymbol)); */
3040 ;
3041 /* fall through */
3042 else
3043 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3044 }
3045
3046 symtab_and_line val;
3047 val.pspace = current_program_space;
3048
3049 cust = find_pc_sect_compunit_symtab (pc, section);
3050 if (cust == NULL)
3051 {
3052 /* If no symbol information, return previous pc. */
3053 if (notcurrent)
3054 pc++;
3055 val.pc = pc;
3056 return val;
3057 }
3058
3059 bv = COMPUNIT_BLOCKVECTOR (cust);
3060
3061 /* Look at all the symtabs that share this blockvector.
3062 They all have the same apriori range, that we found was right;
3063 but they have different line tables. */
3064
3065 ALL_COMPUNIT_FILETABS (cust, iter_s)
3066 {
3067 /* Find the best line in this symtab. */
3068 l = SYMTAB_LINETABLE (iter_s);
3069 if (!l)
3070 continue;
3071 len = l->nitems;
3072 if (len <= 0)
3073 {
3074 /* I think len can be zero if the symtab lacks line numbers
3075 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3076 I'm not sure which, and maybe it depends on the symbol
3077 reader). */
3078 continue;
3079 }
3080
3081 prev = NULL;
3082 item = l->item; /* Get first line info. */
3083
3084 /* Is this file's first line closer than the first lines of other files?
3085 If so, record this file, and its first line, as best alternate. */
3086 if (item->pc > pc && (!alt || item->pc < alt->pc))
3087 alt = item;
3088
3089 for (i = 0; i < len; i++, item++)
3090 {
3091 /* Leave prev pointing to the linetable entry for the last line
3092 that started at or before PC. */
3093 if (item->pc > pc)
3094 break;
3095
3096 prev = item;
3097 }
3098
3099 /* At this point, prev points at the line whose start addr is <= pc, and
3100 item points at the next line. If we ran off the end of the linetable
3101 (pc >= start of the last line), then prev == item. If pc < start of
3102 the first line, prev will not be set. */
3103
3104 /* Is this file's best line closer than the best in the other files?
3105 If so, record this file, and its best line, as best so far. Don't
3106 save prev if it represents the end of a function (i.e. line number
3107 0) instead of a real line. */
3108
3109 if (prev && prev->line && (!best || prev->pc > best->pc))
3110 {
3111 best = prev;
3112 best_symtab = iter_s;
3113
3114 /* Discard BEST_END if it's before the PC of the current BEST. */
3115 if (best_end <= best->pc)
3116 best_end = 0;
3117 }
3118
3119 /* If another line (denoted by ITEM) is in the linetable and its
3120 PC is after BEST's PC, but before the current BEST_END, then
3121 use ITEM's PC as the new best_end. */
3122 if (best && i < len && item->pc > best->pc
3123 && (best_end == 0 || best_end > item->pc))
3124 best_end = item->pc;
3125 }
3126
3127 if (!best_symtab)
3128 {
3129 /* If we didn't find any line number info, just return zeros.
3130 We used to return alt->line - 1 here, but that could be
3131 anywhere; if we don't have line number info for this PC,
3132 don't make some up. */
3133 val.pc = pc;
3134 }
3135 else if (best->line == 0)
3136 {
3137 /* If our best fit is in a range of PC's for which no line
3138 number info is available (line number is zero) then we didn't
3139 find any valid line information. */
3140 val.pc = pc;
3141 }
3142 else
3143 {
3144 val.symtab = best_symtab;
3145 val.line = best->line;
3146 val.pc = best->pc;
3147 if (best_end && (!alt || best_end < alt->pc))
3148 val.end = best_end;
3149 else if (alt)
3150 val.end = alt->pc;
3151 else
3152 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3153 }
3154 val.section = section;
3155 return val;
3156 }
3157
3158 /* Backward compatibility (no section). */
3159
3160 struct symtab_and_line
3161 find_pc_line (CORE_ADDR pc, int notcurrent)
3162 {
3163 struct obj_section *section;
3164
3165 section = find_pc_overlay (pc);
3166 if (pc_in_unmapped_range (pc, section))
3167 pc = overlay_mapped_address (pc, section);
3168 return find_pc_sect_line (pc, section, notcurrent);
3169 }
3170
3171 /* See symtab.h. */
3172
3173 struct symtab *
3174 find_pc_line_symtab (CORE_ADDR pc)
3175 {
3176 struct symtab_and_line sal;
3177
3178 /* This always passes zero for NOTCURRENT to find_pc_line.
3179 There are currently no callers that ever pass non-zero. */
3180 sal = find_pc_line (pc, 0);
3181 return sal.symtab;
3182 }
3183 \f
3184 /* Find line number LINE in any symtab whose name is the same as
3185 SYMTAB.
3186
3187 If found, return the symtab that contains the linetable in which it was
3188 found, set *INDEX to the index in the linetable of the best entry
3189 found, and set *EXACT_MATCH nonzero if the value returned is an
3190 exact match.
3191
3192 If not found, return NULL. */
3193
3194 struct symtab *
3195 find_line_symtab (struct symtab *symtab, int line,
3196 int *index, int *exact_match)
3197 {
3198 int exact = 0; /* Initialized here to avoid a compiler warning. */
3199
3200 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3201 so far seen. */
3202
3203 int best_index;
3204 struct linetable *best_linetable;
3205 struct symtab *best_symtab;
3206
3207 /* First try looking it up in the given symtab. */
3208 best_linetable = SYMTAB_LINETABLE (symtab);
3209 best_symtab = symtab;
3210 best_index = find_line_common (best_linetable, line, &exact, 0);
3211 if (best_index < 0 || !exact)
3212 {
3213 /* Didn't find an exact match. So we better keep looking for
3214 another symtab with the same name. In the case of xcoff,
3215 multiple csects for one source file (produced by IBM's FORTRAN
3216 compiler) produce multiple symtabs (this is unavoidable
3217 assuming csects can be at arbitrary places in memory and that
3218 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3219
3220 /* BEST is the smallest linenumber > LINE so far seen,
3221 or 0 if none has been seen so far.
3222 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3223 int best;
3224
3225 struct objfile *objfile;
3226 struct compunit_symtab *cu;
3227 struct symtab *s;
3228
3229 if (best_index >= 0)
3230 best = best_linetable->item[best_index].line;
3231 else
3232 best = 0;
3233
3234 ALL_OBJFILES (objfile)
3235 {
3236 if (objfile->sf)
3237 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3238 symtab_to_fullname (symtab));
3239 }
3240
3241 ALL_FILETABS (objfile, cu, s)
3242 {
3243 struct linetable *l;
3244 int ind;
3245
3246 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3247 continue;
3248 if (FILENAME_CMP (symtab_to_fullname (symtab),
3249 symtab_to_fullname (s)) != 0)
3250 continue;
3251 l = SYMTAB_LINETABLE (s);
3252 ind = find_line_common (l, line, &exact, 0);
3253 if (ind >= 0)
3254 {
3255 if (exact)
3256 {
3257 best_index = ind;
3258 best_linetable = l;
3259 best_symtab = s;
3260 goto done;
3261 }
3262 if (best == 0 || l->item[ind].line < best)
3263 {
3264 best = l->item[ind].line;
3265 best_index = ind;
3266 best_linetable = l;
3267 best_symtab = s;
3268 }
3269 }
3270 }
3271 }
3272 done:
3273 if (best_index < 0)
3274 return NULL;
3275
3276 if (index)
3277 *index = best_index;
3278 if (exact_match)
3279 *exact_match = exact;
3280
3281 return best_symtab;
3282 }
3283
3284 /* Given SYMTAB, returns all the PCs function in the symtab that
3285 exactly match LINE. Returns an empty vector if there are no exact
3286 matches, but updates BEST_ITEM in this case. */
3287
3288 std::vector<CORE_ADDR>
3289 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3290 struct linetable_entry **best_item)
3291 {
3292 int start = 0;
3293 std::vector<CORE_ADDR> result;
3294
3295 /* First, collect all the PCs that are at this line. */
3296 while (1)
3297 {
3298 int was_exact;
3299 int idx;
3300
3301 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3302 start);
3303 if (idx < 0)
3304 break;
3305
3306 if (!was_exact)
3307 {
3308 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3309
3310 if (*best_item == NULL || item->line < (*best_item)->line)
3311 *best_item = item;
3312
3313 break;
3314 }
3315
3316 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3317 start = idx + 1;
3318 }
3319
3320 return result;
3321 }
3322
3323 \f
3324 /* Set the PC value for a given source file and line number and return true.
3325 Returns zero for invalid line number (and sets the PC to 0).
3326 The source file is specified with a struct symtab. */
3327
3328 int
3329 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3330 {
3331 struct linetable *l;
3332 int ind;
3333
3334 *pc = 0;
3335 if (symtab == 0)
3336 return 0;
3337
3338 symtab = find_line_symtab (symtab, line, &ind, NULL);
3339 if (symtab != NULL)
3340 {
3341 l = SYMTAB_LINETABLE (symtab);
3342 *pc = l->item[ind].pc;
3343 return 1;
3344 }
3345 else
3346 return 0;
3347 }
3348
3349 /* Find the range of pc values in a line.
3350 Store the starting pc of the line into *STARTPTR
3351 and the ending pc (start of next line) into *ENDPTR.
3352 Returns 1 to indicate success.
3353 Returns 0 if could not find the specified line. */
3354
3355 int
3356 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3357 CORE_ADDR *endptr)
3358 {
3359 CORE_ADDR startaddr;
3360 struct symtab_and_line found_sal;
3361
3362 startaddr = sal.pc;
3363 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3364 return 0;
3365
3366 /* This whole function is based on address. For example, if line 10 has
3367 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3368 "info line *0x123" should say the line goes from 0x100 to 0x200
3369 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3370 This also insures that we never give a range like "starts at 0x134
3371 and ends at 0x12c". */
3372
3373 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3374 if (found_sal.line != sal.line)
3375 {
3376 /* The specified line (sal) has zero bytes. */
3377 *startptr = found_sal.pc;
3378 *endptr = found_sal.pc;
3379 }
3380 else
3381 {
3382 *startptr = found_sal.pc;
3383 *endptr = found_sal.end;
3384 }
3385 return 1;
3386 }
3387
3388 /* Given a line table and a line number, return the index into the line
3389 table for the pc of the nearest line whose number is >= the specified one.
3390 Return -1 if none is found. The value is >= 0 if it is an index.
3391 START is the index at which to start searching the line table.
3392
3393 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3394
3395 static int
3396 find_line_common (struct linetable *l, int lineno,
3397 int *exact_match, int start)
3398 {
3399 int i;
3400 int len;
3401
3402 /* BEST is the smallest linenumber > LINENO so far seen,
3403 or 0 if none has been seen so far.
3404 BEST_INDEX identifies the item for it. */
3405
3406 int best_index = -1;
3407 int best = 0;
3408
3409 *exact_match = 0;
3410
3411 if (lineno <= 0)
3412 return -1;
3413 if (l == 0)
3414 return -1;
3415
3416 len = l->nitems;
3417 for (i = start; i < len; i++)
3418 {
3419 struct linetable_entry *item = &(l->item[i]);
3420
3421 if (item->line == lineno)
3422 {
3423 /* Return the first (lowest address) entry which matches. */
3424 *exact_match = 1;
3425 return i;
3426 }
3427
3428 if (item->line > lineno && (best == 0 || item->line < best))
3429 {
3430 best = item->line;
3431 best_index = i;
3432 }
3433 }
3434
3435 /* If we got here, we didn't get an exact match. */
3436 return best_index;
3437 }
3438
3439 int
3440 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3441 {
3442 struct symtab_and_line sal;
3443
3444 sal = find_pc_line (pc, 0);
3445 *startptr = sal.pc;
3446 *endptr = sal.end;
3447 return sal.symtab != 0;
3448 }
3449
3450 /* Given a function symbol SYM, find the symtab and line for the start
3451 of the function.
3452 If the argument FUNFIRSTLINE is nonzero, we want the first line
3453 of real code inside the function.
3454 This function should return SALs matching those from minsym_found,
3455 otherwise false multiple-locations breakpoints could be placed. */
3456
3457 struct symtab_and_line
3458 find_function_start_sal (struct symbol *sym, int funfirstline)
3459 {
3460 fixup_symbol_section (sym, NULL);
3461
3462 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3463 symtab_and_line sal
3464 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3465 sal.symbol = sym;
3466
3467 if (funfirstline && sal.symtab != NULL
3468 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3469 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3470 {
3471 struct gdbarch *gdbarch = symbol_arch (sym);
3472
3473 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3474 if (gdbarch_skip_entrypoint_p (gdbarch))
3475 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3476 return sal;
3477 }
3478
3479 /* We always should have a line for the function start address.
3480 If we don't, something is odd. Create a plain SAL refering
3481 just the PC and hope that skip_prologue_sal (if requested)
3482 can find a line number for after the prologue. */
3483 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3484 {
3485 sal = {};
3486 sal.pspace = current_program_space;
3487 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3488 sal.section = section;
3489 sal.symbol = sym;
3490 }
3491
3492 if (funfirstline)
3493 skip_prologue_sal (&sal);
3494
3495 return sal;
3496 }
3497
3498 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3499 address for that function that has an entry in SYMTAB's line info
3500 table. If such an entry cannot be found, return FUNC_ADDR
3501 unaltered. */
3502
3503 static CORE_ADDR
3504 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3505 {
3506 CORE_ADDR func_start, func_end;
3507 struct linetable *l;
3508 int i;
3509
3510 /* Give up if this symbol has no lineinfo table. */
3511 l = SYMTAB_LINETABLE (symtab);
3512 if (l == NULL)
3513 return func_addr;
3514
3515 /* Get the range for the function's PC values, or give up if we
3516 cannot, for some reason. */
3517 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3518 return func_addr;
3519
3520 /* Linetable entries are ordered by PC values, see the commentary in
3521 symtab.h where `struct linetable' is defined. Thus, the first
3522 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3523 address we are looking for. */
3524 for (i = 0; i < l->nitems; i++)
3525 {
3526 struct linetable_entry *item = &(l->item[i]);
3527
3528 /* Don't use line numbers of zero, they mark special entries in
3529 the table. See the commentary on symtab.h before the
3530 definition of struct linetable. */
3531 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3532 return item->pc;
3533 }
3534
3535 return func_addr;
3536 }
3537
3538 /* Adjust SAL to the first instruction past the function prologue.
3539 If the PC was explicitly specified, the SAL is not changed.
3540 If the line number was explicitly specified, at most the SAL's PC
3541 is updated. If SAL is already past the prologue, then do nothing. */
3542
3543 void
3544 skip_prologue_sal (struct symtab_and_line *sal)
3545 {
3546 struct symbol *sym;
3547 struct symtab_and_line start_sal;
3548 CORE_ADDR pc, saved_pc;
3549 struct obj_section *section;
3550 const char *name;
3551 struct objfile *objfile;
3552 struct gdbarch *gdbarch;
3553 const struct block *b, *function_block;
3554 int force_skip, skip;
3555
3556 /* Do not change the SAL if PC was specified explicitly. */
3557 if (sal->explicit_pc)
3558 return;
3559
3560 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3561
3562 switch_to_program_space_and_thread (sal->pspace);
3563
3564 sym = find_pc_sect_function (sal->pc, sal->section);
3565 if (sym != NULL)
3566 {
3567 fixup_symbol_section (sym, NULL);
3568
3569 objfile = symbol_objfile (sym);
3570 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3571 section = SYMBOL_OBJ_SECTION (objfile, sym);
3572 name = SYMBOL_LINKAGE_NAME (sym);
3573 }
3574 else
3575 {
3576 struct bound_minimal_symbol msymbol
3577 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3578
3579 if (msymbol.minsym == NULL)
3580 return;
3581
3582 objfile = msymbol.objfile;
3583 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3584 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3585 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3586 }
3587
3588 gdbarch = get_objfile_arch (objfile);
3589
3590 /* Process the prologue in two passes. In the first pass try to skip the
3591 prologue (SKIP is true) and verify there is a real need for it (indicated
3592 by FORCE_SKIP). If no such reason was found run a second pass where the
3593 prologue is not skipped (SKIP is false). */
3594
3595 skip = 1;
3596 force_skip = 1;
3597
3598 /* Be conservative - allow direct PC (without skipping prologue) only if we
3599 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3600 have to be set by the caller so we use SYM instead. */
3601 if (sym != NULL
3602 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3603 force_skip = 0;
3604
3605 saved_pc = pc;
3606 do
3607 {
3608 pc = saved_pc;
3609
3610 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3611 so that gdbarch_skip_prologue has something unique to work on. */
3612 if (section_is_overlay (section) && !section_is_mapped (section))
3613 pc = overlay_unmapped_address (pc, section);
3614
3615 /* Skip "first line" of function (which is actually its prologue). */
3616 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3617 if (gdbarch_skip_entrypoint_p (gdbarch))
3618 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3619 if (skip)
3620 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3621
3622 /* For overlays, map pc back into its mapped VMA range. */
3623 pc = overlay_mapped_address (pc, section);
3624
3625 /* Calculate line number. */
3626 start_sal = find_pc_sect_line (pc, section, 0);
3627
3628 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3629 line is still part of the same function. */
3630 if (skip && start_sal.pc != pc
3631 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3632 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3633 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3634 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3635 {
3636 /* First pc of next line */
3637 pc = start_sal.end;
3638 /* Recalculate the line number (might not be N+1). */
3639 start_sal = find_pc_sect_line (pc, section, 0);
3640 }
3641
3642 /* On targets with executable formats that don't have a concept of
3643 constructors (ELF with .init has, PE doesn't), gcc emits a call
3644 to `__main' in `main' between the prologue and before user
3645 code. */
3646 if (gdbarch_skip_main_prologue_p (gdbarch)
3647 && name && strcmp_iw (name, "main") == 0)
3648 {
3649 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3650 /* Recalculate the line number (might not be N+1). */
3651 start_sal = find_pc_sect_line (pc, section, 0);
3652 force_skip = 1;
3653 }
3654 }
3655 while (!force_skip && skip--);
3656
3657 /* If we still don't have a valid source line, try to find the first
3658 PC in the lineinfo table that belongs to the same function. This
3659 happens with COFF debug info, which does not seem to have an
3660 entry in lineinfo table for the code after the prologue which has
3661 no direct relation to source. For example, this was found to be
3662 the case with the DJGPP target using "gcc -gcoff" when the
3663 compiler inserted code after the prologue to make sure the stack
3664 is aligned. */
3665 if (!force_skip && sym && start_sal.symtab == NULL)
3666 {
3667 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3668 /* Recalculate the line number. */
3669 start_sal = find_pc_sect_line (pc, section, 0);
3670 }
3671
3672 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3673 forward SAL to the end of the prologue. */
3674 if (sal->pc >= pc)
3675 return;
3676
3677 sal->pc = pc;
3678 sal->section = section;
3679
3680 /* Unless the explicit_line flag was set, update the SAL line
3681 and symtab to correspond to the modified PC location. */
3682 if (sal->explicit_line)
3683 return;
3684
3685 sal->symtab = start_sal.symtab;
3686 sal->line = start_sal.line;
3687 sal->end = start_sal.end;
3688
3689 /* Check if we are now inside an inlined function. If we can,
3690 use the call site of the function instead. */
3691 b = block_for_pc_sect (sal->pc, sal->section);
3692 function_block = NULL;
3693 while (b != NULL)
3694 {
3695 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3696 function_block = b;
3697 else if (BLOCK_FUNCTION (b) != NULL)
3698 break;
3699 b = BLOCK_SUPERBLOCK (b);
3700 }
3701 if (function_block != NULL
3702 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3703 {
3704 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3705 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3706 }
3707 }
3708
3709 /* Given PC at the function's start address, attempt to find the
3710 prologue end using SAL information. Return zero if the skip fails.
3711
3712 A non-optimized prologue traditionally has one SAL for the function
3713 and a second for the function body. A single line function has
3714 them both pointing at the same line.
3715
3716 An optimized prologue is similar but the prologue may contain
3717 instructions (SALs) from the instruction body. Need to skip those
3718 while not getting into the function body.
3719
3720 The functions end point and an increasing SAL line are used as
3721 indicators of the prologue's endpoint.
3722
3723 This code is based on the function refine_prologue_limit
3724 (found in ia64). */
3725
3726 CORE_ADDR
3727 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3728 {
3729 struct symtab_and_line prologue_sal;
3730 CORE_ADDR start_pc;
3731 CORE_ADDR end_pc;
3732 const struct block *bl;
3733
3734 /* Get an initial range for the function. */
3735 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3736 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3737
3738 prologue_sal = find_pc_line (start_pc, 0);
3739 if (prologue_sal.line != 0)
3740 {
3741 /* For languages other than assembly, treat two consecutive line
3742 entries at the same address as a zero-instruction prologue.
3743 The GNU assembler emits separate line notes for each instruction
3744 in a multi-instruction macro, but compilers generally will not
3745 do this. */
3746 if (prologue_sal.symtab->language != language_asm)
3747 {
3748 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3749 int idx = 0;
3750
3751 /* Skip any earlier lines, and any end-of-sequence marker
3752 from a previous function. */
3753 while (linetable->item[idx].pc != prologue_sal.pc
3754 || linetable->item[idx].line == 0)
3755 idx++;
3756
3757 if (idx+1 < linetable->nitems
3758 && linetable->item[idx+1].line != 0
3759 && linetable->item[idx+1].pc == start_pc)
3760 return start_pc;
3761 }
3762
3763 /* If there is only one sal that covers the entire function,
3764 then it is probably a single line function, like
3765 "foo(){}". */
3766 if (prologue_sal.end >= end_pc)
3767 return 0;
3768
3769 while (prologue_sal.end < end_pc)
3770 {
3771 struct symtab_and_line sal;
3772
3773 sal = find_pc_line (prologue_sal.end, 0);
3774 if (sal.line == 0)
3775 break;
3776 /* Assume that a consecutive SAL for the same (or larger)
3777 line mark the prologue -> body transition. */
3778 if (sal.line >= prologue_sal.line)
3779 break;
3780 /* Likewise if we are in a different symtab altogether
3781 (e.g. within a file included via #include).  */
3782 if (sal.symtab != prologue_sal.symtab)
3783 break;
3784
3785 /* The line number is smaller. Check that it's from the
3786 same function, not something inlined. If it's inlined,
3787 then there is no point comparing the line numbers. */
3788 bl = block_for_pc (prologue_sal.end);
3789 while (bl)
3790 {
3791 if (block_inlined_p (bl))
3792 break;
3793 if (BLOCK_FUNCTION (bl))
3794 {
3795 bl = NULL;
3796 break;
3797 }
3798 bl = BLOCK_SUPERBLOCK (bl);
3799 }
3800 if (bl != NULL)
3801 break;
3802
3803 /* The case in which compiler's optimizer/scheduler has
3804 moved instructions into the prologue. We look ahead in
3805 the function looking for address ranges whose
3806 corresponding line number is less the first one that we
3807 found for the function. This is more conservative then
3808 refine_prologue_limit which scans a large number of SALs
3809 looking for any in the prologue. */
3810 prologue_sal = sal;
3811 }
3812 }
3813
3814 if (prologue_sal.end < end_pc)
3815 /* Return the end of this line, or zero if we could not find a
3816 line. */
3817 return prologue_sal.end;
3818 else
3819 /* Don't return END_PC, which is past the end of the function. */
3820 return prologue_sal.pc;
3821 }
3822
3823 /* See symtab.h. */
3824
3825 symbol *
3826 find_function_alias_target (bound_minimal_symbol msymbol)
3827 {
3828 if (!msymbol_is_text (msymbol.minsym))
3829 return NULL;
3830
3831 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
3832 symbol *sym = find_pc_function (addr);
3833 if (sym != NULL
3834 && SYMBOL_CLASS (sym) == LOC_BLOCK
3835 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == addr)
3836 return sym;
3837
3838 return NULL;
3839 }
3840
3841 \f
3842 /* If P is of the form "operator[ \t]+..." where `...' is
3843 some legitimate operator text, return a pointer to the
3844 beginning of the substring of the operator text.
3845 Otherwise, return "". */
3846
3847 static const char *
3848 operator_chars (const char *p, const char **end)
3849 {
3850 *end = "";
3851 if (!startswith (p, CP_OPERATOR_STR))
3852 return *end;
3853 p += CP_OPERATOR_LEN;
3854
3855 /* Don't get faked out by `operator' being part of a longer
3856 identifier. */
3857 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3858 return *end;
3859
3860 /* Allow some whitespace between `operator' and the operator symbol. */
3861 while (*p == ' ' || *p == '\t')
3862 p++;
3863
3864 /* Recognize 'operator TYPENAME'. */
3865
3866 if (isalpha (*p) || *p == '_' || *p == '$')
3867 {
3868 const char *q = p + 1;
3869
3870 while (isalnum (*q) || *q == '_' || *q == '$')
3871 q++;
3872 *end = q;
3873 return p;
3874 }
3875
3876 while (*p)
3877 switch (*p)
3878 {
3879 case '\\': /* regexp quoting */
3880 if (p[1] == '*')
3881 {
3882 if (p[2] == '=') /* 'operator\*=' */
3883 *end = p + 3;
3884 else /* 'operator\*' */
3885 *end = p + 2;
3886 return p;
3887 }
3888 else if (p[1] == '[')
3889 {
3890 if (p[2] == ']')
3891 error (_("mismatched quoting on brackets, "
3892 "try 'operator\\[\\]'"));
3893 else if (p[2] == '\\' && p[3] == ']')
3894 {
3895 *end = p + 4; /* 'operator\[\]' */
3896 return p;
3897 }
3898 else
3899 error (_("nothing is allowed between '[' and ']'"));
3900 }
3901 else
3902 {
3903 /* Gratuitous qoute: skip it and move on. */
3904 p++;
3905 continue;
3906 }
3907 break;
3908 case '!':
3909 case '=':
3910 case '*':
3911 case '/':
3912 case '%':
3913 case '^':
3914 if (p[1] == '=')
3915 *end = p + 2;
3916 else
3917 *end = p + 1;
3918 return p;
3919 case '<':
3920 case '>':
3921 case '+':
3922 case '-':
3923 case '&':
3924 case '|':
3925 if (p[0] == '-' && p[1] == '>')
3926 {
3927 /* Struct pointer member operator 'operator->'. */
3928 if (p[2] == '*')
3929 {
3930 *end = p + 3; /* 'operator->*' */
3931 return p;
3932 }
3933 else if (p[2] == '\\')
3934 {
3935 *end = p + 4; /* Hopefully 'operator->\*' */
3936 return p;
3937 }
3938 else
3939 {
3940 *end = p + 2; /* 'operator->' */
3941 return p;
3942 }
3943 }
3944 if (p[1] == '=' || p[1] == p[0])
3945 *end = p + 2;
3946 else
3947 *end = p + 1;
3948 return p;
3949 case '~':
3950 case ',':
3951 *end = p + 1;
3952 return p;
3953 case '(':
3954 if (p[1] != ')')
3955 error (_("`operator ()' must be specified "
3956 "without whitespace in `()'"));
3957 *end = p + 2;
3958 return p;
3959 case '?':
3960 if (p[1] != ':')
3961 error (_("`operator ?:' must be specified "
3962 "without whitespace in `?:'"));
3963 *end = p + 2;
3964 return p;
3965 case '[':
3966 if (p[1] != ']')
3967 error (_("`operator []' must be specified "
3968 "without whitespace in `[]'"));
3969 *end = p + 2;
3970 return p;
3971 default:
3972 error (_("`operator %s' not supported"), p);
3973 break;
3974 }
3975
3976 *end = "";
3977 return *end;
3978 }
3979 \f
3980
3981 /* Data structure to maintain printing state for output_source_filename. */
3982
3983 struct output_source_filename_data
3984 {
3985 /* Cache of what we've seen so far. */
3986 struct filename_seen_cache *filename_seen_cache;
3987
3988 /* Flag of whether we're printing the first one. */
3989 int first;
3990 };
3991
3992 /* Slave routine for sources_info. Force line breaks at ,'s.
3993 NAME is the name to print.
3994 DATA contains the state for printing and watching for duplicates. */
3995
3996 static void
3997 output_source_filename (const char *name,
3998 struct output_source_filename_data *data)
3999 {
4000 /* Since a single source file can result in several partial symbol
4001 tables, we need to avoid printing it more than once. Note: if
4002 some of the psymtabs are read in and some are not, it gets
4003 printed both under "Source files for which symbols have been
4004 read" and "Source files for which symbols will be read in on
4005 demand". I consider this a reasonable way to deal with the
4006 situation. I'm not sure whether this can also happen for
4007 symtabs; it doesn't hurt to check. */
4008
4009 /* Was NAME already seen? */
4010 if (data->filename_seen_cache->seen (name))
4011 {
4012 /* Yes; don't print it again. */
4013 return;
4014 }
4015
4016 /* No; print it and reset *FIRST. */
4017 if (! data->first)
4018 printf_filtered (", ");
4019 data->first = 0;
4020
4021 wrap_here ("");
4022 fputs_filtered (name, gdb_stdout);
4023 }
4024
4025 /* A callback for map_partial_symbol_filenames. */
4026
4027 static void
4028 output_partial_symbol_filename (const char *filename, const char *fullname,
4029 void *data)
4030 {
4031 output_source_filename (fullname ? fullname : filename,
4032 (struct output_source_filename_data *) data);
4033 }
4034
4035 static void
4036 info_sources_command (const char *ignore, int from_tty)
4037 {
4038 struct compunit_symtab *cu;
4039 struct symtab *s;
4040 struct objfile *objfile;
4041 struct output_source_filename_data data;
4042
4043 if (!have_full_symbols () && !have_partial_symbols ())
4044 {
4045 error (_("No symbol table is loaded. Use the \"file\" command."));
4046 }
4047
4048 filename_seen_cache filenames_seen;
4049
4050 data.filename_seen_cache = &filenames_seen;
4051
4052 printf_filtered ("Source files for which symbols have been read in:\n\n");
4053
4054 data.first = 1;
4055 ALL_FILETABS (objfile, cu, s)
4056 {
4057 const char *fullname = symtab_to_fullname (s);
4058
4059 output_source_filename (fullname, &data);
4060 }
4061 printf_filtered ("\n\n");
4062
4063 printf_filtered ("Source files for which symbols "
4064 "will be read in on demand:\n\n");
4065
4066 filenames_seen.clear ();
4067 data.first = 1;
4068 map_symbol_filenames (output_partial_symbol_filename, &data,
4069 1 /*need_fullname*/);
4070 printf_filtered ("\n");
4071 }
4072
4073 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4074 non-zero compare only lbasename of FILES. */
4075
4076 static int
4077 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4078 {
4079 int i;
4080
4081 if (file != NULL && nfiles != 0)
4082 {
4083 for (i = 0; i < nfiles; i++)
4084 {
4085 if (compare_filenames_for_search (file, (basenames
4086 ? lbasename (files[i])
4087 : files[i])))
4088 return 1;
4089 }
4090 }
4091 else if (nfiles == 0)
4092 return 1;
4093 return 0;
4094 }
4095
4096 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4097 sort symbols, not minimal symbols. */
4098
4099 int
4100 symbol_search::compare_search_syms (const symbol_search &sym_a,
4101 const symbol_search &sym_b)
4102 {
4103 int c;
4104
4105 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4106 symbol_symtab (sym_b.symbol)->filename);
4107 if (c != 0)
4108 return c;
4109
4110 if (sym_a.block != sym_b.block)
4111 return sym_a.block - sym_b.block;
4112
4113 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4114 SYMBOL_PRINT_NAME (sym_b.symbol));
4115 }
4116
4117 /* Sort the symbols in RESULT and remove duplicates. */
4118
4119 static void
4120 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4121 {
4122 std::sort (result->begin (), result->end ());
4123 result->erase (std::unique (result->begin (), result->end ()),
4124 result->end ());
4125 }
4126
4127 /* Search the symbol table for matches to the regular expression REGEXP,
4128 returning the results.
4129
4130 Only symbols of KIND are searched:
4131 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4132 and constants (enums)
4133 FUNCTIONS_DOMAIN - search all functions
4134 TYPES_DOMAIN - search all type names
4135 ALL_DOMAIN - an internal error for this function
4136
4137 Within each file the results are sorted locally; each symtab's global and
4138 static blocks are separately alphabetized.
4139 Duplicate entries are removed. */
4140
4141 std::vector<symbol_search>
4142 search_symbols (const char *regexp, enum search_domain kind,
4143 int nfiles, const char *files[])
4144 {
4145 struct compunit_symtab *cust;
4146 const struct blockvector *bv;
4147 struct block *b;
4148 int i = 0;
4149 struct block_iterator iter;
4150 struct symbol *sym;
4151 struct objfile *objfile;
4152 struct minimal_symbol *msymbol;
4153 int found_misc = 0;
4154 static const enum minimal_symbol_type types[]
4155 = {mst_data, mst_text, mst_abs};
4156 static const enum minimal_symbol_type types2[]
4157 = {mst_bss, mst_file_text, mst_abs};
4158 static const enum minimal_symbol_type types3[]
4159 = {mst_file_data, mst_solib_trampoline, mst_abs};
4160 static const enum minimal_symbol_type types4[]
4161 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4162 enum minimal_symbol_type ourtype;
4163 enum minimal_symbol_type ourtype2;
4164 enum minimal_symbol_type ourtype3;
4165 enum minimal_symbol_type ourtype4;
4166 std::vector<symbol_search> result;
4167 gdb::optional<compiled_regex> preg;
4168
4169 gdb_assert (kind <= TYPES_DOMAIN);
4170
4171 ourtype = types[kind];
4172 ourtype2 = types2[kind];
4173 ourtype3 = types3[kind];
4174 ourtype4 = types4[kind];
4175
4176 if (regexp != NULL)
4177 {
4178 /* Make sure spacing is right for C++ operators.
4179 This is just a courtesy to make the matching less sensitive
4180 to how many spaces the user leaves between 'operator'
4181 and <TYPENAME> or <OPERATOR>. */
4182 const char *opend;
4183 const char *opname = operator_chars (regexp, &opend);
4184 int errcode;
4185
4186 if (*opname)
4187 {
4188 int fix = -1; /* -1 means ok; otherwise number of
4189 spaces needed. */
4190
4191 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4192 {
4193 /* There should 1 space between 'operator' and 'TYPENAME'. */
4194 if (opname[-1] != ' ' || opname[-2] == ' ')
4195 fix = 1;
4196 }
4197 else
4198 {
4199 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4200 if (opname[-1] == ' ')
4201 fix = 0;
4202 }
4203 /* If wrong number of spaces, fix it. */
4204 if (fix >= 0)
4205 {
4206 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4207
4208 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4209 regexp = tmp;
4210 }
4211 }
4212
4213 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4214 ? REG_ICASE : 0);
4215 preg.emplace (regexp, cflags, _("Invalid regexp"));
4216 }
4217
4218 /* Search through the partial symtabs *first* for all symbols
4219 matching the regexp. That way we don't have to reproduce all of
4220 the machinery below. */
4221 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4222 {
4223 return file_matches (filename, files, nfiles,
4224 basenames);
4225 },
4226 [&] (const char *symname)
4227 {
4228 return (!preg || preg->exec (symname,
4229 0, NULL, 0) == 0);
4230 },
4231 NULL,
4232 kind);
4233
4234 /* Here, we search through the minimal symbol tables for functions
4235 and variables that match, and force their symbols to be read.
4236 This is in particular necessary for demangled variable names,
4237 which are no longer put into the partial symbol tables.
4238 The symbol will then be found during the scan of symtabs below.
4239
4240 For functions, find_pc_symtab should succeed if we have debug info
4241 for the function, for variables we have to call
4242 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4243 has debug info.
4244 If the lookup fails, set found_misc so that we will rescan to print
4245 any matching symbols without debug info.
4246 We only search the objfile the msymbol came from, we no longer search
4247 all objfiles. In large programs (1000s of shared libs) searching all
4248 objfiles is not worth the pain. */
4249
4250 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4251 {
4252 ALL_MSYMBOLS (objfile, msymbol)
4253 {
4254 QUIT;
4255
4256 if (msymbol->created_by_gdb)
4257 continue;
4258
4259 if (MSYMBOL_TYPE (msymbol) == ourtype
4260 || MSYMBOL_TYPE (msymbol) == ourtype2
4261 || MSYMBOL_TYPE (msymbol) == ourtype3
4262 || MSYMBOL_TYPE (msymbol) == ourtype4)
4263 {
4264 if (!preg
4265 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4266 NULL, 0) == 0)
4267 {
4268 /* Note: An important side-effect of these lookup functions
4269 is to expand the symbol table if msymbol is found, for the
4270 benefit of the next loop on ALL_COMPUNITS. */
4271 if (kind == FUNCTIONS_DOMAIN
4272 ? (find_pc_compunit_symtab
4273 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4274 : (lookup_symbol_in_objfile_from_linkage_name
4275 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4276 .symbol == NULL))
4277 found_misc = 1;
4278 }
4279 }
4280 }
4281 }
4282
4283 ALL_COMPUNITS (objfile, cust)
4284 {
4285 bv = COMPUNIT_BLOCKVECTOR (cust);
4286 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4287 {
4288 b = BLOCKVECTOR_BLOCK (bv, i);
4289 ALL_BLOCK_SYMBOLS (b, iter, sym)
4290 {
4291 struct symtab *real_symtab = symbol_symtab (sym);
4292
4293 QUIT;
4294
4295 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4296 a substring of symtab_to_fullname as it may contain "./" etc. */
4297 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4298 || ((basenames_may_differ
4299 || file_matches (lbasename (real_symtab->filename),
4300 files, nfiles, 1))
4301 && file_matches (symtab_to_fullname (real_symtab),
4302 files, nfiles, 0)))
4303 && ((!preg
4304 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4305 NULL, 0) == 0)
4306 && ((kind == VARIABLES_DOMAIN
4307 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4308 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4309 && SYMBOL_CLASS (sym) != LOC_BLOCK
4310 /* LOC_CONST can be used for more than just enums,
4311 e.g., c++ static const members.
4312 We only want to skip enums here. */
4313 && !(SYMBOL_CLASS (sym) == LOC_CONST
4314 && (TYPE_CODE (SYMBOL_TYPE (sym))
4315 == TYPE_CODE_ENUM)))
4316 || (kind == FUNCTIONS_DOMAIN
4317 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4318 || (kind == TYPES_DOMAIN
4319 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4320 {
4321 /* match */
4322 result.emplace_back (i, sym);
4323 }
4324 }
4325 }
4326 }
4327
4328 if (!result.empty ())
4329 sort_search_symbols_remove_dups (&result);
4330
4331 /* If there are no eyes, avoid all contact. I mean, if there are
4332 no debug symbols, then add matching minsyms. */
4333
4334 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4335 {
4336 ALL_MSYMBOLS (objfile, msymbol)
4337 {
4338 QUIT;
4339
4340 if (msymbol->created_by_gdb)
4341 continue;
4342
4343 if (MSYMBOL_TYPE (msymbol) == ourtype
4344 || MSYMBOL_TYPE (msymbol) == ourtype2
4345 || MSYMBOL_TYPE (msymbol) == ourtype3
4346 || MSYMBOL_TYPE (msymbol) == ourtype4)
4347 {
4348 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4349 NULL, 0) == 0)
4350 {
4351 /* For functions we can do a quick check of whether the
4352 symbol might be found via find_pc_symtab. */
4353 if (kind != FUNCTIONS_DOMAIN
4354 || (find_pc_compunit_symtab
4355 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4356 {
4357 if (lookup_symbol_in_objfile_from_linkage_name
4358 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4359 .symbol == NULL)
4360 {
4361 /* match */
4362 result.emplace_back (i, msymbol, objfile);
4363 }
4364 }
4365 }
4366 }
4367 }
4368 }
4369
4370 return result;
4371 }
4372
4373 /* Helper function for symtab_symbol_info, this function uses
4374 the data returned from search_symbols() to print information
4375 regarding the match to gdb_stdout. */
4376
4377 static void
4378 print_symbol_info (enum search_domain kind,
4379 struct symbol *sym,
4380 int block, const char *last)
4381 {
4382 struct symtab *s = symbol_symtab (sym);
4383 const char *s_filename = symtab_to_filename_for_display (s);
4384
4385 if (last == NULL || filename_cmp (last, s_filename) != 0)
4386 {
4387 fputs_filtered ("\nFile ", gdb_stdout);
4388 fputs_filtered (s_filename, gdb_stdout);
4389 fputs_filtered (":\n", gdb_stdout);
4390 }
4391
4392 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4393 printf_filtered ("static ");
4394
4395 /* Typedef that is not a C++ class. */
4396 if (kind == TYPES_DOMAIN
4397 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4398 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4399 /* variable, func, or typedef-that-is-c++-class. */
4400 else if (kind < TYPES_DOMAIN
4401 || (kind == TYPES_DOMAIN
4402 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4403 {
4404 type_print (SYMBOL_TYPE (sym),
4405 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4406 ? "" : SYMBOL_PRINT_NAME (sym)),
4407 gdb_stdout, 0);
4408
4409 printf_filtered (";\n");
4410 }
4411 }
4412
4413 /* This help function for symtab_symbol_info() prints information
4414 for non-debugging symbols to gdb_stdout. */
4415
4416 static void
4417 print_msymbol_info (struct bound_minimal_symbol msymbol)
4418 {
4419 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4420 char *tmp;
4421
4422 if (gdbarch_addr_bit (gdbarch) <= 32)
4423 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4424 & (CORE_ADDR) 0xffffffff,
4425 8);
4426 else
4427 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4428 16);
4429 printf_filtered ("%s %s\n",
4430 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4431 }
4432
4433 /* This is the guts of the commands "info functions", "info types", and
4434 "info variables". It calls search_symbols to find all matches and then
4435 print_[m]symbol_info to print out some useful information about the
4436 matches. */
4437
4438 static void
4439 symtab_symbol_info (const char *regexp, enum search_domain kind, int from_tty)
4440 {
4441 static const char * const classnames[] =
4442 {"variable", "function", "type"};
4443 const char *last_filename = NULL;
4444 int first = 1;
4445
4446 gdb_assert (kind <= TYPES_DOMAIN);
4447
4448 /* Must make sure that if we're interrupted, symbols gets freed. */
4449 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 0, NULL);
4450
4451 if (regexp != NULL)
4452 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4453 classnames[kind], regexp);
4454 else
4455 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4456
4457 for (const symbol_search &p : symbols)
4458 {
4459 QUIT;
4460
4461 if (p.msymbol.minsym != NULL)
4462 {
4463 if (first)
4464 {
4465 printf_filtered (_("\nNon-debugging symbols:\n"));
4466 first = 0;
4467 }
4468 print_msymbol_info (p.msymbol);
4469 }
4470 else
4471 {
4472 print_symbol_info (kind,
4473 p.symbol,
4474 p.block,
4475 last_filename);
4476 last_filename
4477 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4478 }
4479 }
4480 }
4481
4482 static void
4483 info_variables_command (const char *regexp, int from_tty)
4484 {
4485 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4486 }
4487
4488 static void
4489 info_functions_command (const char *regexp, int from_tty)
4490 {
4491 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4492 }
4493
4494
4495 static void
4496 info_types_command (const char *regexp, int from_tty)
4497 {
4498 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4499 }
4500
4501 /* Breakpoint all functions matching regular expression. */
4502
4503 void
4504 rbreak_command_wrapper (char *regexp, int from_tty)
4505 {
4506 rbreak_command (regexp, from_tty);
4507 }
4508
4509 static void
4510 rbreak_command (const char *regexp, int from_tty)
4511 {
4512 std::string string;
4513 const char **files = NULL;
4514 const char *file_name;
4515 int nfiles = 0;
4516
4517 if (regexp)
4518 {
4519 const char *colon = strchr (regexp, ':');
4520
4521 if (colon && *(colon + 1) != ':')
4522 {
4523 int colon_index;
4524 char *local_name;
4525
4526 colon_index = colon - regexp;
4527 local_name = (char *) alloca (colon_index + 1);
4528 memcpy (local_name, regexp, colon_index);
4529 local_name[colon_index--] = 0;
4530 while (isspace (local_name[colon_index]))
4531 local_name[colon_index--] = 0;
4532 file_name = local_name;
4533 files = &file_name;
4534 nfiles = 1;
4535 regexp = skip_spaces (colon + 1);
4536 }
4537 }
4538
4539 std::vector<symbol_search> symbols = search_symbols (regexp,
4540 FUNCTIONS_DOMAIN,
4541 nfiles, files);
4542
4543 scoped_rbreak_breakpoints finalize;
4544 for (const symbol_search &p : symbols)
4545 {
4546 if (p.msymbol.minsym == NULL)
4547 {
4548 struct symtab *symtab = symbol_symtab (p.symbol);
4549 const char *fullname = symtab_to_fullname (symtab);
4550
4551 string = string_printf ("%s:'%s'", fullname,
4552 SYMBOL_LINKAGE_NAME (p.symbol));
4553 break_command (&string[0], from_tty);
4554 print_symbol_info (FUNCTIONS_DOMAIN,
4555 p.symbol,
4556 p.block,
4557 symtab_to_filename_for_display (symtab));
4558 }
4559 else
4560 {
4561 string = string_printf ("'%s'",
4562 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4563
4564 break_command (&string[0], from_tty);
4565 printf_filtered ("<function, no debug info> %s;\n",
4566 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4567 }
4568 }
4569 }
4570 \f
4571
4572 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4573
4574 Either sym_text[sym_text_len] != '(' and then we search for any
4575 symbol starting with SYM_TEXT text.
4576
4577 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4578 be terminated at that point. Partial symbol tables do not have parameters
4579 information. */
4580
4581 static int
4582 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4583 {
4584 int (*ncmp) (const char *, const char *, size_t);
4585
4586 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4587
4588 if (ncmp (name, sym_text, sym_text_len) != 0)
4589 return 0;
4590
4591 if (sym_text[sym_text_len] == '(')
4592 {
4593 /* User searches for `name(someth...'. Require NAME to be terminated.
4594 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4595 present but accept even parameters presence. In this case this
4596 function is in fact strcmp_iw but whitespace skipping is not supported
4597 for tab completion. */
4598
4599 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4600 return 0;
4601 }
4602
4603 return 1;
4604 }
4605
4606 /* Test to see if the symbol specified by SYMNAME (which is already
4607 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4608 characters. If so, add it to the current completion list. */
4609
4610 static void
4611 completion_list_add_name (completion_tracker &tracker,
4612 const char *symname,
4613 const char *sym_text, int sym_text_len,
4614 const char *text, const char *word)
4615 {
4616 /* Clip symbols that cannot match. */
4617 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4618 return;
4619
4620 /* We have a match for a completion, so add SYMNAME to the current list
4621 of matches. Note that the name is moved to freshly malloc'd space. */
4622
4623 {
4624 char *newobj;
4625
4626 if (word == sym_text)
4627 {
4628 newobj = (char *) xmalloc (strlen (symname) + 5);
4629 strcpy (newobj, symname);
4630 }
4631 else if (word > sym_text)
4632 {
4633 /* Return some portion of symname. */
4634 newobj = (char *) xmalloc (strlen (symname) + 5);
4635 strcpy (newobj, symname + (word - sym_text));
4636 }
4637 else
4638 {
4639 /* Return some of SYM_TEXT plus symname. */
4640 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4641 strncpy (newobj, word, sym_text - word);
4642 newobj[sym_text - word] = '\0';
4643 strcat (newobj, symname);
4644 }
4645
4646 gdb::unique_xmalloc_ptr<char> completion (newobj);
4647
4648 tracker.add_completion (std::move (completion));
4649 }
4650 }
4651
4652 /* completion_list_add_name wrapper for struct symbol. */
4653
4654 static void
4655 completion_list_add_symbol (completion_tracker &tracker,
4656 symbol *sym,
4657 const char *sym_text, int sym_text_len,
4658 const char *text, const char *word)
4659 {
4660 completion_list_add_name (tracker, SYMBOL_NATURAL_NAME (sym),
4661 sym_text, sym_text_len, text, word);
4662 }
4663
4664 /* completion_list_add_name wrapper for struct minimal_symbol. */
4665
4666 static void
4667 completion_list_add_msymbol (completion_tracker &tracker,
4668 minimal_symbol *sym,
4669 const char *sym_text, int sym_text_len,
4670 const char *text, const char *word)
4671 {
4672 completion_list_add_name (tracker, MSYMBOL_NATURAL_NAME (sym),
4673 sym_text, sym_text_len, text, word);
4674 }
4675
4676 /* ObjC: In case we are completing on a selector, look as the msymbol
4677 again and feed all the selectors into the mill. */
4678
4679 static void
4680 completion_list_objc_symbol (completion_tracker &tracker,
4681 struct minimal_symbol *msymbol,
4682 const char *sym_text, int sym_text_len,
4683 const char *text, const char *word)
4684 {
4685 static char *tmp = NULL;
4686 static unsigned int tmplen = 0;
4687
4688 const char *method, *category, *selector;
4689 char *tmp2 = NULL;
4690
4691 method = MSYMBOL_NATURAL_NAME (msymbol);
4692
4693 /* Is it a method? */
4694 if ((method[0] != '-') && (method[0] != '+'))
4695 return;
4696
4697 if (sym_text[0] == '[')
4698 /* Complete on shortened method method. */
4699 completion_list_add_name (tracker, method + 1,
4700 sym_text, sym_text_len, text, word);
4701
4702 while ((strlen (method) + 1) >= tmplen)
4703 {
4704 if (tmplen == 0)
4705 tmplen = 1024;
4706 else
4707 tmplen *= 2;
4708 tmp = (char *) xrealloc (tmp, tmplen);
4709 }
4710 selector = strchr (method, ' ');
4711 if (selector != NULL)
4712 selector++;
4713
4714 category = strchr (method, '(');
4715
4716 if ((category != NULL) && (selector != NULL))
4717 {
4718 memcpy (tmp, method, (category - method));
4719 tmp[category - method] = ' ';
4720 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4721 completion_list_add_name (tracker, tmp,
4722 sym_text, sym_text_len, text, word);
4723 if (sym_text[0] == '[')
4724 completion_list_add_name (tracker, tmp + 1,
4725 sym_text, sym_text_len, text, word);
4726 }
4727
4728 if (selector != NULL)
4729 {
4730 /* Complete on selector only. */
4731 strcpy (tmp, selector);
4732 tmp2 = strchr (tmp, ']');
4733 if (tmp2 != NULL)
4734 *tmp2 = '\0';
4735
4736 completion_list_add_name (tracker, tmp,
4737 sym_text, sym_text_len, text, word);
4738 }
4739 }
4740
4741 /* Break the non-quoted text based on the characters which are in
4742 symbols. FIXME: This should probably be language-specific. */
4743
4744 static const char *
4745 language_search_unquoted_string (const char *text, const char *p)
4746 {
4747 for (; p > text; --p)
4748 {
4749 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4750 continue;
4751 else
4752 {
4753 if ((current_language->la_language == language_objc))
4754 {
4755 if (p[-1] == ':') /* Might be part of a method name. */
4756 continue;
4757 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4758 p -= 2; /* Beginning of a method name. */
4759 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4760 { /* Might be part of a method name. */
4761 const char *t = p;
4762
4763 /* Seeing a ' ' or a '(' is not conclusive evidence
4764 that we are in the middle of a method name. However,
4765 finding "-[" or "+[" should be pretty un-ambiguous.
4766 Unfortunately we have to find it now to decide. */
4767
4768 while (t > text)
4769 if (isalnum (t[-1]) || t[-1] == '_' ||
4770 t[-1] == ' ' || t[-1] == ':' ||
4771 t[-1] == '(' || t[-1] == ')')
4772 --t;
4773 else
4774 break;
4775
4776 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4777 p = t - 2; /* Method name detected. */
4778 /* Else we leave with p unchanged. */
4779 }
4780 }
4781 break;
4782 }
4783 }
4784 return p;
4785 }
4786
4787 static void
4788 completion_list_add_fields (completion_tracker &tracker,
4789 struct symbol *sym,
4790 const char *sym_text, int sym_text_len,
4791 const char *text, const char *word)
4792 {
4793 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4794 {
4795 struct type *t = SYMBOL_TYPE (sym);
4796 enum type_code c = TYPE_CODE (t);
4797 int j;
4798
4799 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4800 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4801 if (TYPE_FIELD_NAME (t, j))
4802 completion_list_add_name (tracker, TYPE_FIELD_NAME (t, j),
4803 sym_text, sym_text_len, text, word);
4804 }
4805 }
4806
4807 /* Add matching symbols from SYMTAB to the current completion list. */
4808
4809 static void
4810 add_symtab_completions (struct compunit_symtab *cust,
4811 completion_tracker &tracker,
4812 const char *sym_text, int sym_text_len,
4813 const char *text, const char *word,
4814 enum type_code code)
4815 {
4816 struct symbol *sym;
4817 const struct block *b;
4818 struct block_iterator iter;
4819 int i;
4820
4821 if (cust == NULL)
4822 return;
4823
4824 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4825 {
4826 QUIT;
4827 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4828 ALL_BLOCK_SYMBOLS (b, iter, sym)
4829 {
4830 if (code == TYPE_CODE_UNDEF
4831 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4832 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4833 completion_list_add_symbol (tracker, sym,
4834 sym_text, sym_text_len,
4835 text, word);
4836 }
4837 }
4838 }
4839
4840 void
4841 default_collect_symbol_completion_matches_break_on
4842 (completion_tracker &tracker,
4843 complete_symbol_mode mode,
4844 const char *text, const char *word,
4845 const char *break_on, enum type_code code)
4846 {
4847 /* Problem: All of the symbols have to be copied because readline
4848 frees them. I'm not going to worry about this; hopefully there
4849 won't be that many. */
4850
4851 struct symbol *sym;
4852 struct compunit_symtab *cust;
4853 struct minimal_symbol *msymbol;
4854 struct objfile *objfile;
4855 const struct block *b;
4856 const struct block *surrounding_static_block, *surrounding_global_block;
4857 struct block_iterator iter;
4858 /* The symbol we are completing on. Points in same buffer as text. */
4859 const char *sym_text;
4860 /* Length of sym_text. */
4861 int sym_text_len;
4862
4863 /* Now look for the symbol we are supposed to complete on. */
4864 if (mode == complete_symbol_mode::LINESPEC)
4865 sym_text = text;
4866 else
4867 {
4868 const char *p;
4869 char quote_found;
4870 const char *quote_pos = NULL;
4871
4872 /* First see if this is a quoted string. */
4873 quote_found = '\0';
4874 for (p = text; *p != '\0'; ++p)
4875 {
4876 if (quote_found != '\0')
4877 {
4878 if (*p == quote_found)
4879 /* Found close quote. */
4880 quote_found = '\0';
4881 else if (*p == '\\' && p[1] == quote_found)
4882 /* A backslash followed by the quote character
4883 doesn't end the string. */
4884 ++p;
4885 }
4886 else if (*p == '\'' || *p == '"')
4887 {
4888 quote_found = *p;
4889 quote_pos = p;
4890 }
4891 }
4892 if (quote_found == '\'')
4893 /* A string within single quotes can be a symbol, so complete on it. */
4894 sym_text = quote_pos + 1;
4895 else if (quote_found == '"')
4896 /* A double-quoted string is never a symbol, nor does it make sense
4897 to complete it any other way. */
4898 {
4899 return;
4900 }
4901 else
4902 {
4903 /* It is not a quoted string. Break it based on the characters
4904 which are in symbols. */
4905 while (p > text)
4906 {
4907 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4908 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4909 --p;
4910 else
4911 break;
4912 }
4913 sym_text = p;
4914 }
4915 }
4916
4917 sym_text_len = strlen (sym_text);
4918
4919 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4920
4921 if (current_language->la_language == language_cplus
4922 || current_language->la_language == language_fortran)
4923 {
4924 /* These languages may have parameters entered by user but they are never
4925 present in the partial symbol tables. */
4926
4927 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
4928
4929 if (cs)
4930 sym_text_len = cs - sym_text;
4931 }
4932 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4933
4934 /* At this point scan through the misc symbol vectors and add each
4935 symbol you find to the list. Eventually we want to ignore
4936 anything that isn't a text symbol (everything else will be
4937 handled by the psymtab code below). */
4938
4939 if (code == TYPE_CODE_UNDEF)
4940 {
4941 ALL_MSYMBOLS (objfile, msymbol)
4942 {
4943 QUIT;
4944
4945 completion_list_add_msymbol (tracker,
4946 msymbol, sym_text, sym_text_len,
4947 text, word);
4948
4949 completion_list_objc_symbol (tracker,
4950 msymbol, sym_text, sym_text_len,
4951 text, word);
4952 }
4953 }
4954
4955 /* Add completions for all currently loaded symbol tables. */
4956 ALL_COMPUNITS (objfile, cust)
4957 add_symtab_completions (cust, tracker,
4958 sym_text, sym_text_len, text, word, code);
4959
4960 /* Look through the partial symtabs for all symbols which begin by
4961 matching SYM_TEXT. Expand all CUs that you find to the list. */
4962 expand_symtabs_matching (NULL,
4963 [&] (const char *name) /* symbol matcher */
4964 {
4965 return compare_symbol_name (name,
4966 sym_text,
4967 sym_text_len);
4968 },
4969 [&] (compunit_symtab *symtab) /* expansion notify */
4970 {
4971 add_symtab_completions (symtab,
4972 tracker,
4973 sym_text, sym_text_len,
4974 text, word, code);
4975 },
4976 ALL_DOMAIN);
4977
4978 /* Search upwards from currently selected frame (so that we can
4979 complete on local vars). Also catch fields of types defined in
4980 this places which match our text string. Only complete on types
4981 visible from current context. */
4982
4983 b = get_selected_block (0);
4984 surrounding_static_block = block_static_block (b);
4985 surrounding_global_block = block_global_block (b);
4986 if (surrounding_static_block != NULL)
4987 while (b != surrounding_static_block)
4988 {
4989 QUIT;
4990
4991 ALL_BLOCK_SYMBOLS (b, iter, sym)
4992 {
4993 if (code == TYPE_CODE_UNDEF)
4994 {
4995 completion_list_add_symbol (tracker, sym,
4996 sym_text, sym_text_len, text,
4997 word);
4998 completion_list_add_fields (tracker, sym,
4999 sym_text, sym_text_len, text,
5000 word);
5001 }
5002 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5003 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5004 completion_list_add_symbol (tracker, sym,
5005 sym_text, sym_text_len, text,
5006 word);
5007 }
5008
5009 /* Stop when we encounter an enclosing function. Do not stop for
5010 non-inlined functions - the locals of the enclosing function
5011 are in scope for a nested function. */
5012 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5013 break;
5014 b = BLOCK_SUPERBLOCK (b);
5015 }
5016
5017 /* Add fields from the file's types; symbols will be added below. */
5018
5019 if (code == TYPE_CODE_UNDEF)
5020 {
5021 if (surrounding_static_block != NULL)
5022 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5023 completion_list_add_fields (tracker, sym,
5024 sym_text, sym_text_len, text, word);
5025
5026 if (surrounding_global_block != NULL)
5027 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5028 completion_list_add_fields (tracker, sym,
5029 sym_text, sym_text_len, text, word);
5030 }
5031
5032 /* Skip macros if we are completing a struct tag -- arguable but
5033 usually what is expected. */
5034 if (current_language->la_macro_expansion == macro_expansion_c
5035 && code == TYPE_CODE_UNDEF)
5036 {
5037 struct macro_scope *scope;
5038
5039 /* This adds a macro's name to the current completion list. */
5040 auto add_macro_name = [&] (const char *macro_name,
5041 const macro_definition *,
5042 macro_source_file *,
5043 int)
5044 {
5045 completion_list_add_name (tracker, macro_name,
5046 sym_text, sym_text_len,
5047 text, word);
5048 };
5049
5050 /* Add any macros visible in the default scope. Note that this
5051 may yield the occasional wrong result, because an expression
5052 might be evaluated in a scope other than the default. For
5053 example, if the user types "break file:line if <TAB>", the
5054 resulting expression will be evaluated at "file:line" -- but
5055 at there does not seem to be a way to detect this at
5056 completion time. */
5057 scope = default_macro_scope ();
5058 if (scope)
5059 {
5060 macro_for_each_in_scope (scope->file, scope->line,
5061 add_macro_name);
5062 xfree (scope);
5063 }
5064
5065 /* User-defined macros are always visible. */
5066 macro_for_each (macro_user_macros, add_macro_name);
5067 }
5068 }
5069
5070 void
5071 default_collect_symbol_completion_matches (completion_tracker &tracker,
5072 complete_symbol_mode mode,
5073 const char *text, const char *word,
5074 enum type_code code)
5075 {
5076 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5077 text, word, "",
5078 code);
5079 }
5080
5081 /* Collect all symbols (regardless of class) which begin by matching
5082 TEXT. */
5083
5084 void
5085 collect_symbol_completion_matches (completion_tracker &tracker,
5086 complete_symbol_mode mode,
5087 const char *text, const char *word)
5088 {
5089 current_language->la_collect_symbol_completion_matches (tracker, mode,
5090 text, word,
5091 TYPE_CODE_UNDEF);
5092 }
5093
5094 /* Like collect_symbol_completion_matches, but only collect
5095 STRUCT_DOMAIN symbols whose type code is CODE. */
5096
5097 void
5098 collect_symbol_completion_matches_type (completion_tracker &tracker,
5099 const char *text, const char *word,
5100 enum type_code code)
5101 {
5102 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5103
5104 gdb_assert (code == TYPE_CODE_UNION
5105 || code == TYPE_CODE_STRUCT
5106 || code == TYPE_CODE_ENUM);
5107 current_language->la_collect_symbol_completion_matches (tracker, mode,
5108 text, word, code);
5109 }
5110
5111 /* Like collect_symbol_completion_matches, but collects a list of
5112 symbols defined in all source files named SRCFILE. */
5113
5114 void
5115 collect_file_symbol_completion_matches (completion_tracker &tracker,
5116 complete_symbol_mode mode,
5117 const char *text, const char *word,
5118 const char *srcfile)
5119 {
5120 /* The symbol we are completing on. Points in same buffer as text. */
5121 const char *sym_text;
5122 /* Length of sym_text. */
5123 int sym_text_len;
5124
5125 /* Now look for the symbol we are supposed to complete on.
5126 FIXME: This should be language-specific. */
5127 if (mode == complete_symbol_mode::LINESPEC)
5128 sym_text = text;
5129 else
5130 {
5131 const char *p;
5132 char quote_found;
5133 const char *quote_pos = NULL;
5134
5135 /* First see if this is a quoted string. */
5136 quote_found = '\0';
5137 for (p = text; *p != '\0'; ++p)
5138 {
5139 if (quote_found != '\0')
5140 {
5141 if (*p == quote_found)
5142 /* Found close quote. */
5143 quote_found = '\0';
5144 else if (*p == '\\' && p[1] == quote_found)
5145 /* A backslash followed by the quote character
5146 doesn't end the string. */
5147 ++p;
5148 }
5149 else if (*p == '\'' || *p == '"')
5150 {
5151 quote_found = *p;
5152 quote_pos = p;
5153 }
5154 }
5155 if (quote_found == '\'')
5156 /* A string within single quotes can be a symbol, so complete on it. */
5157 sym_text = quote_pos + 1;
5158 else if (quote_found == '"')
5159 /* A double-quoted string is never a symbol, nor does it make sense
5160 to complete it any other way. */
5161 {
5162 return;
5163 }
5164 else
5165 {
5166 /* Not a quoted string. */
5167 sym_text = language_search_unquoted_string (text, p);
5168 }
5169 }
5170
5171 sym_text_len = strlen (sym_text);
5172
5173 /* Go through symtabs for SRCFILE and check the externs and statics
5174 for symbols which match. */
5175 iterate_over_symtabs (srcfile, [&] (symtab *s)
5176 {
5177 add_symtab_completions (SYMTAB_COMPUNIT (s),
5178 tracker,
5179 sym_text, sym_text_len,
5180 text, word, TYPE_CODE_UNDEF);
5181 return false;
5182 });
5183 }
5184
5185 /* A helper function for make_source_files_completion_list. It adds
5186 another file name to a list of possible completions, growing the
5187 list as necessary. */
5188
5189 static void
5190 add_filename_to_list (const char *fname, const char *text, const char *word,
5191 completion_list *list)
5192 {
5193 char *newobj;
5194 size_t fnlen = strlen (fname);
5195
5196 if (word == text)
5197 {
5198 /* Return exactly fname. */
5199 newobj = (char *) xmalloc (fnlen + 5);
5200 strcpy (newobj, fname);
5201 }
5202 else if (word > text)
5203 {
5204 /* Return some portion of fname. */
5205 newobj = (char *) xmalloc (fnlen + 5);
5206 strcpy (newobj, fname + (word - text));
5207 }
5208 else
5209 {
5210 /* Return some of TEXT plus fname. */
5211 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5212 strncpy (newobj, word, text - word);
5213 newobj[text - word] = '\0';
5214 strcat (newobj, fname);
5215 }
5216 list->emplace_back (newobj);
5217 }
5218
5219 static int
5220 not_interesting_fname (const char *fname)
5221 {
5222 static const char *illegal_aliens[] = {
5223 "_globals_", /* inserted by coff_symtab_read */
5224 NULL
5225 };
5226 int i;
5227
5228 for (i = 0; illegal_aliens[i]; i++)
5229 {
5230 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5231 return 1;
5232 }
5233 return 0;
5234 }
5235
5236 /* An object of this type is passed as the user_data argument to
5237 map_partial_symbol_filenames. */
5238 struct add_partial_filename_data
5239 {
5240 struct filename_seen_cache *filename_seen_cache;
5241 const char *text;
5242 const char *word;
5243 int text_len;
5244 completion_list *list;
5245 };
5246
5247 /* A callback for map_partial_symbol_filenames. */
5248
5249 static void
5250 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5251 void *user_data)
5252 {
5253 struct add_partial_filename_data *data
5254 = (struct add_partial_filename_data *) user_data;
5255
5256 if (not_interesting_fname (filename))
5257 return;
5258 if (!data->filename_seen_cache->seen (filename)
5259 && filename_ncmp (filename, data->text, data->text_len) == 0)
5260 {
5261 /* This file matches for a completion; add it to the
5262 current list of matches. */
5263 add_filename_to_list (filename, data->text, data->word, data->list);
5264 }
5265 else
5266 {
5267 const char *base_name = lbasename (filename);
5268
5269 if (base_name != filename
5270 && !data->filename_seen_cache->seen (base_name)
5271 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5272 add_filename_to_list (base_name, data->text, data->word, data->list);
5273 }
5274 }
5275
5276 /* Return a list of all source files whose names begin with matching
5277 TEXT. The file names are looked up in the symbol tables of this
5278 program. */
5279
5280 completion_list
5281 make_source_files_completion_list (const char *text, const char *word)
5282 {
5283 struct compunit_symtab *cu;
5284 struct symtab *s;
5285 struct objfile *objfile;
5286 size_t text_len = strlen (text);
5287 completion_list list;
5288 const char *base_name;
5289 struct add_partial_filename_data datum;
5290
5291 if (!have_full_symbols () && !have_partial_symbols ())
5292 return list;
5293
5294 filename_seen_cache filenames_seen;
5295
5296 ALL_FILETABS (objfile, cu, s)
5297 {
5298 if (not_interesting_fname (s->filename))
5299 continue;
5300 if (!filenames_seen.seen (s->filename)
5301 && filename_ncmp (s->filename, text, text_len) == 0)
5302 {
5303 /* This file matches for a completion; add it to the current
5304 list of matches. */
5305 add_filename_to_list (s->filename, text, word, &list);
5306 }
5307 else
5308 {
5309 /* NOTE: We allow the user to type a base name when the
5310 debug info records leading directories, but not the other
5311 way around. This is what subroutines of breakpoint
5312 command do when they parse file names. */
5313 base_name = lbasename (s->filename);
5314 if (base_name != s->filename
5315 && !filenames_seen.seen (base_name)
5316 && filename_ncmp (base_name, text, text_len) == 0)
5317 add_filename_to_list (base_name, text, word, &list);
5318 }
5319 }
5320
5321 datum.filename_seen_cache = &filenames_seen;
5322 datum.text = text;
5323 datum.word = word;
5324 datum.text_len = text_len;
5325 datum.list = &list;
5326 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5327 0 /*need_fullname*/);
5328
5329 return list;
5330 }
5331 \f
5332 /* Track MAIN */
5333
5334 /* Return the "main_info" object for the current program space. If
5335 the object has not yet been created, create it and fill in some
5336 default values. */
5337
5338 static struct main_info *
5339 get_main_info (void)
5340 {
5341 struct main_info *info
5342 = (struct main_info *) program_space_data (current_program_space,
5343 main_progspace_key);
5344
5345 if (info == NULL)
5346 {
5347 /* It may seem strange to store the main name in the progspace
5348 and also in whatever objfile happens to see a main name in
5349 its debug info. The reason for this is mainly historical:
5350 gdb returned "main" as the name even if no function named
5351 "main" was defined the program; and this approach lets us
5352 keep compatibility. */
5353 info = XCNEW (struct main_info);
5354 info->language_of_main = language_unknown;
5355 set_program_space_data (current_program_space, main_progspace_key,
5356 info);
5357 }
5358
5359 return info;
5360 }
5361
5362 /* A cleanup to destroy a struct main_info when a progspace is
5363 destroyed. */
5364
5365 static void
5366 main_info_cleanup (struct program_space *pspace, void *data)
5367 {
5368 struct main_info *info = (struct main_info *) data;
5369
5370 if (info != NULL)
5371 xfree (info->name_of_main);
5372 xfree (info);
5373 }
5374
5375 static void
5376 set_main_name (const char *name, enum language lang)
5377 {
5378 struct main_info *info = get_main_info ();
5379
5380 if (info->name_of_main != NULL)
5381 {
5382 xfree (info->name_of_main);
5383 info->name_of_main = NULL;
5384 info->language_of_main = language_unknown;
5385 }
5386 if (name != NULL)
5387 {
5388 info->name_of_main = xstrdup (name);
5389 info->language_of_main = lang;
5390 }
5391 }
5392
5393 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5394 accordingly. */
5395
5396 static void
5397 find_main_name (void)
5398 {
5399 const char *new_main_name;
5400 struct objfile *objfile;
5401
5402 /* First check the objfiles to see whether a debuginfo reader has
5403 picked up the appropriate main name. Historically the main name
5404 was found in a more or less random way; this approach instead
5405 relies on the order of objfile creation -- which still isn't
5406 guaranteed to get the correct answer, but is just probably more
5407 accurate. */
5408 ALL_OBJFILES (objfile)
5409 {
5410 if (objfile->per_bfd->name_of_main != NULL)
5411 {
5412 set_main_name (objfile->per_bfd->name_of_main,
5413 objfile->per_bfd->language_of_main);
5414 return;
5415 }
5416 }
5417
5418 /* Try to see if the main procedure is in Ada. */
5419 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5420 be to add a new method in the language vector, and call this
5421 method for each language until one of them returns a non-empty
5422 name. This would allow us to remove this hard-coded call to
5423 an Ada function. It is not clear that this is a better approach
5424 at this point, because all methods need to be written in a way
5425 such that false positives never be returned. For instance, it is
5426 important that a method does not return a wrong name for the main
5427 procedure if the main procedure is actually written in a different
5428 language. It is easy to guaranty this with Ada, since we use a
5429 special symbol generated only when the main in Ada to find the name
5430 of the main procedure. It is difficult however to see how this can
5431 be guarantied for languages such as C, for instance. This suggests
5432 that order of call for these methods becomes important, which means
5433 a more complicated approach. */
5434 new_main_name = ada_main_name ();
5435 if (new_main_name != NULL)
5436 {
5437 set_main_name (new_main_name, language_ada);
5438 return;
5439 }
5440
5441 new_main_name = d_main_name ();
5442 if (new_main_name != NULL)
5443 {
5444 set_main_name (new_main_name, language_d);
5445 return;
5446 }
5447
5448 new_main_name = go_main_name ();
5449 if (new_main_name != NULL)
5450 {
5451 set_main_name (new_main_name, language_go);
5452 return;
5453 }
5454
5455 new_main_name = pascal_main_name ();
5456 if (new_main_name != NULL)
5457 {
5458 set_main_name (new_main_name, language_pascal);
5459 return;
5460 }
5461
5462 /* The languages above didn't identify the name of the main procedure.
5463 Fallback to "main". */
5464 set_main_name ("main", language_unknown);
5465 }
5466
5467 char *
5468 main_name (void)
5469 {
5470 struct main_info *info = get_main_info ();
5471
5472 if (info->name_of_main == NULL)
5473 find_main_name ();
5474
5475 return info->name_of_main;
5476 }
5477
5478 /* Return the language of the main function. If it is not known,
5479 return language_unknown. */
5480
5481 enum language
5482 main_language (void)
5483 {
5484 struct main_info *info = get_main_info ();
5485
5486 if (info->name_of_main == NULL)
5487 find_main_name ();
5488
5489 return info->language_of_main;
5490 }
5491
5492 /* Handle ``executable_changed'' events for the symtab module. */
5493
5494 static void
5495 symtab_observer_executable_changed (void)
5496 {
5497 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5498 set_main_name (NULL, language_unknown);
5499 }
5500
5501 /* Return 1 if the supplied producer string matches the ARM RealView
5502 compiler (armcc). */
5503
5504 int
5505 producer_is_realview (const char *producer)
5506 {
5507 static const char *const arm_idents[] = {
5508 "ARM C Compiler, ADS",
5509 "Thumb C Compiler, ADS",
5510 "ARM C++ Compiler, ADS",
5511 "Thumb C++ Compiler, ADS",
5512 "ARM/Thumb C/C++ Compiler, RVCT",
5513 "ARM C/C++ Compiler, RVCT"
5514 };
5515 int i;
5516
5517 if (producer == NULL)
5518 return 0;
5519
5520 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5521 if (startswith (producer, arm_idents[i]))
5522 return 1;
5523
5524 return 0;
5525 }
5526
5527 \f
5528
5529 /* The next index to hand out in response to a registration request. */
5530
5531 static int next_aclass_value = LOC_FINAL_VALUE;
5532
5533 /* The maximum number of "aclass" registrations we support. This is
5534 constant for convenience. */
5535 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5536
5537 /* The objects representing the various "aclass" values. The elements
5538 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5539 elements are those registered at gdb initialization time. */
5540
5541 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5542
5543 /* The globally visible pointer. This is separate from 'symbol_impl'
5544 so that it can be const. */
5545
5546 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5547
5548 /* Make sure we saved enough room in struct symbol. */
5549
5550 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5551
5552 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5553 is the ops vector associated with this index. This returns the new
5554 index, which should be used as the aclass_index field for symbols
5555 of this type. */
5556
5557 int
5558 register_symbol_computed_impl (enum address_class aclass,
5559 const struct symbol_computed_ops *ops)
5560 {
5561 int result = next_aclass_value++;
5562
5563 gdb_assert (aclass == LOC_COMPUTED);
5564 gdb_assert (result < MAX_SYMBOL_IMPLS);
5565 symbol_impl[result].aclass = aclass;
5566 symbol_impl[result].ops_computed = ops;
5567
5568 /* Sanity check OPS. */
5569 gdb_assert (ops != NULL);
5570 gdb_assert (ops->tracepoint_var_ref != NULL);
5571 gdb_assert (ops->describe_location != NULL);
5572 gdb_assert (ops->get_symbol_read_needs != NULL);
5573 gdb_assert (ops->read_variable != NULL);
5574
5575 return result;
5576 }
5577
5578 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5579 OPS is the ops vector associated with this index. This returns the
5580 new index, which should be used as the aclass_index field for symbols
5581 of this type. */
5582
5583 int
5584 register_symbol_block_impl (enum address_class aclass,
5585 const struct symbol_block_ops *ops)
5586 {
5587 int result = next_aclass_value++;
5588
5589 gdb_assert (aclass == LOC_BLOCK);
5590 gdb_assert (result < MAX_SYMBOL_IMPLS);
5591 symbol_impl[result].aclass = aclass;
5592 symbol_impl[result].ops_block = ops;
5593
5594 /* Sanity check OPS. */
5595 gdb_assert (ops != NULL);
5596 gdb_assert (ops->find_frame_base_location != NULL);
5597
5598 return result;
5599 }
5600
5601 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5602 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5603 this index. This returns the new index, which should be used as
5604 the aclass_index field for symbols of this type. */
5605
5606 int
5607 register_symbol_register_impl (enum address_class aclass,
5608 const struct symbol_register_ops *ops)
5609 {
5610 int result = next_aclass_value++;
5611
5612 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5613 gdb_assert (result < MAX_SYMBOL_IMPLS);
5614 symbol_impl[result].aclass = aclass;
5615 symbol_impl[result].ops_register = ops;
5616
5617 return result;
5618 }
5619
5620 /* Initialize elements of 'symbol_impl' for the constants in enum
5621 address_class. */
5622
5623 static void
5624 initialize_ordinary_address_classes (void)
5625 {
5626 int i;
5627
5628 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5629 symbol_impl[i].aclass = (enum address_class) i;
5630 }
5631
5632 \f
5633
5634 /* Helper function to initialize the fields of an objfile-owned symbol.
5635 It assumed that *SYM is already all zeroes. */
5636
5637 static void
5638 initialize_objfile_symbol_1 (struct symbol *sym)
5639 {
5640 SYMBOL_OBJFILE_OWNED (sym) = 1;
5641 SYMBOL_SECTION (sym) = -1;
5642 }
5643
5644 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5645
5646 void
5647 initialize_objfile_symbol (struct symbol *sym)
5648 {
5649 memset (sym, 0, sizeof (*sym));
5650 initialize_objfile_symbol_1 (sym);
5651 }
5652
5653 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5654 obstack. */
5655
5656 struct symbol *
5657 allocate_symbol (struct objfile *objfile)
5658 {
5659 struct symbol *result;
5660
5661 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5662 initialize_objfile_symbol_1 (result);
5663
5664 return result;
5665 }
5666
5667 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5668 obstack. */
5669
5670 struct template_symbol *
5671 allocate_template_symbol (struct objfile *objfile)
5672 {
5673 struct template_symbol *result;
5674
5675 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5676 initialize_objfile_symbol_1 (&result->base);
5677
5678 return result;
5679 }
5680
5681 /* See symtab.h. */
5682
5683 struct objfile *
5684 symbol_objfile (const struct symbol *symbol)
5685 {
5686 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5687 return SYMTAB_OBJFILE (symbol->owner.symtab);
5688 }
5689
5690 /* See symtab.h. */
5691
5692 struct gdbarch *
5693 symbol_arch (const struct symbol *symbol)
5694 {
5695 if (!SYMBOL_OBJFILE_OWNED (symbol))
5696 return symbol->owner.arch;
5697 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5698 }
5699
5700 /* See symtab.h. */
5701
5702 struct symtab *
5703 symbol_symtab (const struct symbol *symbol)
5704 {
5705 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5706 return symbol->owner.symtab;
5707 }
5708
5709 /* See symtab.h. */
5710
5711 void
5712 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5713 {
5714 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5715 symbol->owner.symtab = symtab;
5716 }
5717
5718 \f
5719
5720 void
5721 _initialize_symtab (void)
5722 {
5723 initialize_ordinary_address_classes ();
5724
5725 main_progspace_key
5726 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5727
5728 symbol_cache_key
5729 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5730
5731 add_info ("variables", info_variables_command, _("\
5732 All global and static variable names, or those matching REGEXP."));
5733 if (dbx_commands)
5734 add_com ("whereis", class_info, info_variables_command, _("\
5735 All global and static variable names, or those matching REGEXP."));
5736
5737 add_info ("functions", info_functions_command,
5738 _("All function names, or those matching REGEXP."));
5739
5740 /* FIXME: This command has at least the following problems:
5741 1. It prints builtin types (in a very strange and confusing fashion).
5742 2. It doesn't print right, e.g. with
5743 typedef struct foo *FOO
5744 type_print prints "FOO" when we want to make it (in this situation)
5745 print "struct foo *".
5746 I also think "ptype" or "whatis" is more likely to be useful (but if
5747 there is much disagreement "info types" can be fixed). */
5748 add_info ("types", info_types_command,
5749 _("All type names, or those matching REGEXP."));
5750
5751 add_info ("sources", info_sources_command,
5752 _("Source files in the program."));
5753
5754 add_com ("rbreak", class_breakpoint, rbreak_command,
5755 _("Set a breakpoint for all functions matching REGEXP."));
5756
5757 add_setshow_enum_cmd ("multiple-symbols", no_class,
5758 multiple_symbols_modes, &multiple_symbols_mode,
5759 _("\
5760 Set the debugger behavior when more than one symbol are possible matches\n\
5761 in an expression."), _("\
5762 Show how the debugger handles ambiguities in expressions."), _("\
5763 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5764 NULL, NULL, &setlist, &showlist);
5765
5766 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5767 &basenames_may_differ, _("\
5768 Set whether a source file may have multiple base names."), _("\
5769 Show whether a source file may have multiple base names."), _("\
5770 (A \"base name\" is the name of a file with the directory part removed.\n\
5771 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5772 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5773 before comparing them. Canonicalization is an expensive operation,\n\
5774 but it allows the same file be known by more than one base name.\n\
5775 If not set (the default), all source files are assumed to have just\n\
5776 one base name, and gdb will do file name comparisons more efficiently."),
5777 NULL, NULL,
5778 &setlist, &showlist);
5779
5780 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5781 _("Set debugging of symbol table creation."),
5782 _("Show debugging of symbol table creation."), _("\
5783 When enabled (non-zero), debugging messages are printed when building\n\
5784 symbol tables. A value of 1 (one) normally provides enough information.\n\
5785 A value greater than 1 provides more verbose information."),
5786 NULL,
5787 NULL,
5788 &setdebuglist, &showdebuglist);
5789
5790 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5791 _("\
5792 Set debugging of symbol lookup."), _("\
5793 Show debugging of symbol lookup."), _("\
5794 When enabled (non-zero), symbol lookups are logged."),
5795 NULL, NULL,
5796 &setdebuglist, &showdebuglist);
5797
5798 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5799 &new_symbol_cache_size,
5800 _("Set the size of the symbol cache."),
5801 _("Show the size of the symbol cache."), _("\
5802 The size of the symbol cache.\n\
5803 If zero then the symbol cache is disabled."),
5804 set_symbol_cache_size_handler, NULL,
5805 &maintenance_set_cmdlist,
5806 &maintenance_show_cmdlist);
5807
5808 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5809 _("Dump the symbol cache for each program space."),
5810 &maintenanceprintlist);
5811
5812 add_cmd ("symbol-cache-statistics", class_maintenance,
5813 maintenance_print_symbol_cache_statistics,
5814 _("Print symbol cache statistics for each program space."),
5815 &maintenanceprintlist);
5816
5817 add_cmd ("flush-symbol-cache", class_maintenance,
5818 maintenance_flush_symbol_cache,
5819 _("Flush the symbol cache for each program space."),
5820 &maintenancelist);
5821
5822 observer_attach_executable_changed (symtab_observer_executable_changed);
5823 observer_attach_new_objfile (symtab_new_objfile_observer);
5824 observer_attach_free_objfile (symtab_free_objfile_observer);
5825 }