]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
gdb/
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). We assume that SEARCH_NAME is
151 a relative path. Returns true if they match, false otherwise. */
152
153 int
154 compare_filenames_for_search (const char *filename, const char *search_name)
155 {
156 int len = strlen (filename);
157 size_t search_len = strlen (search_name);
158
159 if (len < search_len)
160 return 0;
161
162 /* The tail of FILENAME must match. */
163 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
164 return 0;
165
166 /* Either the names must completely match, or the character
167 preceding the trailing SEARCH_NAME segment of FILENAME must be a
168 directory separator. */
169 return (len == search_len
170 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
171 || (HAS_DRIVE_SPEC (filename)
172 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
173 }
174
175 /* Check for a symtab of a specific name by searching some symtabs.
176 This is a helper function for callbacks of iterate_over_symtabs.
177
178 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
179 are identical to the `map_symtabs_matching_filename' method of
180 quick_symbol_functions.
181
182 FIRST and AFTER_LAST indicate the range of symtabs to search.
183 AFTER_LAST is one past the last symtab to search; NULL means to
184 search until the end of the list. */
185
186 int
187 iterate_over_some_symtabs (const char *name,
188 const char *full_path,
189 const char *real_path,
190 int (*callback) (struct symtab *symtab,
191 void *data),
192 void *data,
193 struct symtab *first,
194 struct symtab *after_last)
195 {
196 struct symtab *s = NULL;
197 const char* base_name = lbasename (name);
198 int is_abs = IS_ABSOLUTE_PATH (name);
199
200 for (s = first; s != NULL && s != after_last; s = s->next)
201 {
202 /* Exact match is always ok. */
203 if (FILENAME_CMP (name, s->filename) == 0)
204 {
205 if (callback (s, data))
206 return 1;
207 }
208
209 if (!is_abs && compare_filenames_for_search (s->filename, name))
210 {
211 if (callback (s, data))
212 return 1;
213 }
214
215 /* Before we invoke realpath, which can get expensive when many
216 files are involved, do a quick comparison of the basenames. */
217 if (! basenames_may_differ
218 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
219 continue;
220
221 /* If the user gave us an absolute path, try to find the file in
222 this symtab and use its absolute path. */
223
224 if (full_path != NULL)
225 {
226 const char *fp = symtab_to_fullname (s);
227
228 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
229 {
230 if (callback (s, data))
231 return 1;
232 }
233
234 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name))
235 {
236 if (callback (s, data))
237 return 1;
238 }
239 }
240
241 if (real_path != NULL)
242 {
243 const char *fullname = symtab_to_fullname (s);
244
245 if (fullname != NULL)
246 {
247 char *rp = gdb_realpath (fullname);
248
249 make_cleanup (xfree, rp);
250 if (FILENAME_CMP (real_path, rp) == 0)
251 {
252 if (callback (s, data))
253 return 1;
254 }
255
256 if (!is_abs && compare_filenames_for_search (rp, name))
257 {
258 if (callback (s, data))
259 return 1;
260 }
261 }
262 }
263 }
264
265 return 0;
266 }
267
268 /* Check for a symtab of a specific name; first in symtabs, then in
269 psymtabs. *If* there is no '/' in the name, a match after a '/'
270 in the symtab filename will also work.
271
272 Calls CALLBACK with each symtab that is found and with the supplied
273 DATA. If CALLBACK returns true, the search stops. */
274
275 void
276 iterate_over_symtabs (const char *name,
277 int (*callback) (struct symtab *symtab,
278 void *data),
279 void *data)
280 {
281 struct symtab *s = NULL;
282 struct objfile *objfile;
283 char *real_path = NULL;
284 char *full_path = NULL;
285 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
286
287 /* Here we are interested in canonicalizing an absolute path, not
288 absolutizing a relative path. */
289 if (IS_ABSOLUTE_PATH (name))
290 {
291 full_path = xfullpath (name);
292 make_cleanup (xfree, full_path);
293 real_path = gdb_realpath (name);
294 make_cleanup (xfree, real_path);
295 }
296
297 ALL_OBJFILES (objfile)
298 {
299 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
300 objfile->symtabs, NULL))
301 {
302 do_cleanups (cleanups);
303 return;
304 }
305 }
306
307 /* Same search rules as above apply here, but now we look thru the
308 psymtabs. */
309
310 ALL_OBJFILES (objfile)
311 {
312 if (objfile->sf
313 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
314 name,
315 full_path,
316 real_path,
317 callback,
318 data))
319 {
320 do_cleanups (cleanups);
321 return;
322 }
323 }
324
325 do_cleanups (cleanups);
326 }
327
328 /* The callback function used by lookup_symtab. */
329
330 static int
331 lookup_symtab_callback (struct symtab *symtab, void *data)
332 {
333 struct symtab **result_ptr = data;
334
335 *result_ptr = symtab;
336 return 1;
337 }
338
339 /* A wrapper for iterate_over_symtabs that returns the first matching
340 symtab, or NULL. */
341
342 struct symtab *
343 lookup_symtab (const char *name)
344 {
345 struct symtab *result = NULL;
346
347 iterate_over_symtabs (name, lookup_symtab_callback, &result);
348 return result;
349 }
350
351 \f
352 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
353 full method name, which consist of the class name (from T), the unadorned
354 method name from METHOD_ID, and the signature for the specific overload,
355 specified by SIGNATURE_ID. Note that this function is g++ specific. */
356
357 char *
358 gdb_mangle_name (struct type *type, int method_id, int signature_id)
359 {
360 int mangled_name_len;
361 char *mangled_name;
362 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
363 struct fn_field *method = &f[signature_id];
364 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
365 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
366 const char *newname = type_name_no_tag (type);
367
368 /* Does the form of physname indicate that it is the full mangled name
369 of a constructor (not just the args)? */
370 int is_full_physname_constructor;
371
372 int is_constructor;
373 int is_destructor = is_destructor_name (physname);
374 /* Need a new type prefix. */
375 char *const_prefix = method->is_const ? "C" : "";
376 char *volatile_prefix = method->is_volatile ? "V" : "";
377 char buf[20];
378 int len = (newname == NULL ? 0 : strlen (newname));
379
380 /* Nothing to do if physname already contains a fully mangled v3 abi name
381 or an operator name. */
382 if ((physname[0] == '_' && physname[1] == 'Z')
383 || is_operator_name (field_name))
384 return xstrdup (physname);
385
386 is_full_physname_constructor = is_constructor_name (physname);
387
388 is_constructor = is_full_physname_constructor
389 || (newname && strcmp (field_name, newname) == 0);
390
391 if (!is_destructor)
392 is_destructor = (strncmp (physname, "__dt", 4) == 0);
393
394 if (is_destructor || is_full_physname_constructor)
395 {
396 mangled_name = (char *) xmalloc (strlen (physname) + 1);
397 strcpy (mangled_name, physname);
398 return mangled_name;
399 }
400
401 if (len == 0)
402 {
403 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
404 }
405 else if (physname[0] == 't' || physname[0] == 'Q')
406 {
407 /* The physname for template and qualified methods already includes
408 the class name. */
409 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
410 newname = NULL;
411 len = 0;
412 }
413 else
414 {
415 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
416 volatile_prefix, len);
417 }
418 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
419 + strlen (buf) + len + strlen (physname) + 1);
420
421 mangled_name = (char *) xmalloc (mangled_name_len);
422 if (is_constructor)
423 mangled_name[0] = '\0';
424 else
425 strcpy (mangled_name, field_name);
426
427 strcat (mangled_name, buf);
428 /* If the class doesn't have a name, i.e. newname NULL, then we just
429 mangle it using 0 for the length of the class. Thus it gets mangled
430 as something starting with `::' rather than `classname::'. */
431 if (newname != NULL)
432 strcat (mangled_name, newname);
433
434 strcat (mangled_name, physname);
435 return (mangled_name);
436 }
437
438 /* Initialize the cplus_specific structure. 'cplus_specific' should
439 only be allocated for use with cplus symbols. */
440
441 static void
442 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
443 struct objfile *objfile)
444 {
445 /* A language_specific structure should not have been previously
446 initialized. */
447 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
448 gdb_assert (objfile != NULL);
449
450 gsymbol->language_specific.cplus_specific =
451 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
452 }
453
454 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
455 correctly allocated. For C++ symbols a cplus_specific struct is
456 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
457 OBJFILE can be NULL. */
458
459 void
460 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
461 char *name,
462 struct objfile *objfile)
463 {
464 if (gsymbol->language == language_cplus)
465 {
466 if (gsymbol->language_specific.cplus_specific == NULL)
467 symbol_init_cplus_specific (gsymbol, objfile);
468
469 gsymbol->language_specific.cplus_specific->demangled_name = name;
470 }
471 else
472 gsymbol->language_specific.mangled_lang.demangled_name = name;
473 }
474
475 /* Return the demangled name of GSYMBOL. */
476
477 const char *
478 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
479 {
480 if (gsymbol->language == language_cplus)
481 {
482 if (gsymbol->language_specific.cplus_specific != NULL)
483 return gsymbol->language_specific.cplus_specific->demangled_name;
484 else
485 return NULL;
486 }
487 else
488 return gsymbol->language_specific.mangled_lang.demangled_name;
489 }
490
491 \f
492 /* Initialize the language dependent portion of a symbol
493 depending upon the language for the symbol. */
494
495 void
496 symbol_set_language (struct general_symbol_info *gsymbol,
497 enum language language)
498 {
499 gsymbol->language = language;
500 if (gsymbol->language == language_d
501 || gsymbol->language == language_go
502 || gsymbol->language == language_java
503 || gsymbol->language == language_objc
504 || gsymbol->language == language_fortran)
505 {
506 symbol_set_demangled_name (gsymbol, NULL, NULL);
507 }
508 else if (gsymbol->language == language_cplus)
509 gsymbol->language_specific.cplus_specific = NULL;
510 else
511 {
512 memset (&gsymbol->language_specific, 0,
513 sizeof (gsymbol->language_specific));
514 }
515 }
516
517 /* Functions to initialize a symbol's mangled name. */
518
519 /* Objects of this type are stored in the demangled name hash table. */
520 struct demangled_name_entry
521 {
522 char *mangled;
523 char demangled[1];
524 };
525
526 /* Hash function for the demangled name hash. */
527
528 static hashval_t
529 hash_demangled_name_entry (const void *data)
530 {
531 const struct demangled_name_entry *e = data;
532
533 return htab_hash_string (e->mangled);
534 }
535
536 /* Equality function for the demangled name hash. */
537
538 static int
539 eq_demangled_name_entry (const void *a, const void *b)
540 {
541 const struct demangled_name_entry *da = a;
542 const struct demangled_name_entry *db = b;
543
544 return strcmp (da->mangled, db->mangled) == 0;
545 }
546
547 /* Create the hash table used for demangled names. Each hash entry is
548 a pair of strings; one for the mangled name and one for the demangled
549 name. The entry is hashed via just the mangled name. */
550
551 static void
552 create_demangled_names_hash (struct objfile *objfile)
553 {
554 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
555 The hash table code will round this up to the next prime number.
556 Choosing a much larger table size wastes memory, and saves only about
557 1% in symbol reading. */
558
559 objfile->demangled_names_hash = htab_create_alloc
560 (256, hash_demangled_name_entry, eq_demangled_name_entry,
561 NULL, xcalloc, xfree);
562 }
563
564 /* Try to determine the demangled name for a symbol, based on the
565 language of that symbol. If the language is set to language_auto,
566 it will attempt to find any demangling algorithm that works and
567 then set the language appropriately. The returned name is allocated
568 by the demangler and should be xfree'd. */
569
570 static char *
571 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
572 const char *mangled)
573 {
574 char *demangled = NULL;
575
576 if (gsymbol->language == language_unknown)
577 gsymbol->language = language_auto;
578
579 if (gsymbol->language == language_objc
580 || gsymbol->language == language_auto)
581 {
582 demangled =
583 objc_demangle (mangled, 0);
584 if (demangled != NULL)
585 {
586 gsymbol->language = language_objc;
587 return demangled;
588 }
589 }
590 if (gsymbol->language == language_cplus
591 || gsymbol->language == language_auto)
592 {
593 demangled =
594 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
595 if (demangled != NULL)
596 {
597 gsymbol->language = language_cplus;
598 return demangled;
599 }
600 }
601 if (gsymbol->language == language_java)
602 {
603 demangled =
604 cplus_demangle (mangled,
605 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
606 if (demangled != NULL)
607 {
608 gsymbol->language = language_java;
609 return demangled;
610 }
611 }
612 if (gsymbol->language == language_d
613 || gsymbol->language == language_auto)
614 {
615 demangled = d_demangle(mangled, 0);
616 if (demangled != NULL)
617 {
618 gsymbol->language = language_d;
619 return demangled;
620 }
621 }
622 /* FIXME(dje): Continually adding languages here is clumsy.
623 Better to just call la_demangle if !auto, and if auto then call
624 a utility routine that tries successive languages in turn and reports
625 which one it finds. I realize the la_demangle options may be different
626 for different languages but there's already a FIXME for that. */
627 if (gsymbol->language == language_go
628 || gsymbol->language == language_auto)
629 {
630 demangled = go_demangle (mangled, 0);
631 if (demangled != NULL)
632 {
633 gsymbol->language = language_go;
634 return demangled;
635 }
636 }
637
638 /* We could support `gsymbol->language == language_fortran' here to provide
639 module namespaces also for inferiors with only minimal symbol table (ELF
640 symbols). Just the mangling standard is not standardized across compilers
641 and there is no DW_AT_producer available for inferiors with only the ELF
642 symbols to check the mangling kind. */
643 return NULL;
644 }
645
646 /* Set both the mangled and demangled (if any) names for GSYMBOL based
647 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
648 objfile's obstack; but if COPY_NAME is 0 and if NAME is
649 NUL-terminated, then this function assumes that NAME is already
650 correctly saved (either permanently or with a lifetime tied to the
651 objfile), and it will not be copied.
652
653 The hash table corresponding to OBJFILE is used, and the memory
654 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
655 so the pointer can be discarded after calling this function. */
656
657 /* We have to be careful when dealing with Java names: when we run
658 into a Java minimal symbol, we don't know it's a Java symbol, so it
659 gets demangled as a C++ name. This is unfortunate, but there's not
660 much we can do about it: but when demangling partial symbols and
661 regular symbols, we'd better not reuse the wrong demangled name.
662 (See PR gdb/1039.) We solve this by putting a distinctive prefix
663 on Java names when storing them in the hash table. */
664
665 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
666 don't mind the Java prefix so much: different languages have
667 different demangling requirements, so it's only natural that we
668 need to keep language data around in our demangling cache. But
669 it's not good that the minimal symbol has the wrong demangled name.
670 Unfortunately, I can't think of any easy solution to that
671 problem. */
672
673 #define JAVA_PREFIX "##JAVA$$"
674 #define JAVA_PREFIX_LEN 8
675
676 void
677 symbol_set_names (struct general_symbol_info *gsymbol,
678 const char *linkage_name, int len, int copy_name,
679 struct objfile *objfile)
680 {
681 struct demangled_name_entry **slot;
682 /* A 0-terminated copy of the linkage name. */
683 const char *linkage_name_copy;
684 /* A copy of the linkage name that might have a special Java prefix
685 added to it, for use when looking names up in the hash table. */
686 const char *lookup_name;
687 /* The length of lookup_name. */
688 int lookup_len;
689 struct demangled_name_entry entry;
690
691 if (gsymbol->language == language_ada)
692 {
693 /* In Ada, we do the symbol lookups using the mangled name, so
694 we can save some space by not storing the demangled name.
695
696 As a side note, we have also observed some overlap between
697 the C++ mangling and Ada mangling, similarly to what has
698 been observed with Java. Because we don't store the demangled
699 name with the symbol, we don't need to use the same trick
700 as Java. */
701 if (!copy_name)
702 gsymbol->name = linkage_name;
703 else
704 {
705 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
706
707 memcpy (name, linkage_name, len);
708 name[len] = '\0';
709 gsymbol->name = name;
710 }
711 symbol_set_demangled_name (gsymbol, NULL, NULL);
712
713 return;
714 }
715
716 if (objfile->demangled_names_hash == NULL)
717 create_demangled_names_hash (objfile);
718
719 /* The stabs reader generally provides names that are not
720 NUL-terminated; most of the other readers don't do this, so we
721 can just use the given copy, unless we're in the Java case. */
722 if (gsymbol->language == language_java)
723 {
724 char *alloc_name;
725
726 lookup_len = len + JAVA_PREFIX_LEN;
727 alloc_name = alloca (lookup_len + 1);
728 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
729 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
730 alloc_name[lookup_len] = '\0';
731
732 lookup_name = alloc_name;
733 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
734 }
735 else if (linkage_name[len] != '\0')
736 {
737 char *alloc_name;
738
739 lookup_len = len;
740 alloc_name = alloca (lookup_len + 1);
741 memcpy (alloc_name, linkage_name, len);
742 alloc_name[lookup_len] = '\0';
743
744 lookup_name = alloc_name;
745 linkage_name_copy = alloc_name;
746 }
747 else
748 {
749 lookup_len = len;
750 lookup_name = linkage_name;
751 linkage_name_copy = linkage_name;
752 }
753
754 entry.mangled = (char *) lookup_name;
755 slot = ((struct demangled_name_entry **)
756 htab_find_slot (objfile->demangled_names_hash,
757 &entry, INSERT));
758
759 /* If this name is not in the hash table, add it. */
760 if (*slot == NULL
761 /* A C version of the symbol may have already snuck into the table.
762 This happens to, e.g., main.init (__go_init_main). Cope. */
763 || (gsymbol->language == language_go
764 && (*slot)->demangled[0] == '\0'))
765 {
766 char *demangled_name = symbol_find_demangled_name (gsymbol,
767 linkage_name_copy);
768 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
769
770 /* Suppose we have demangled_name==NULL, copy_name==0, and
771 lookup_name==linkage_name. In this case, we already have the
772 mangled name saved, and we don't have a demangled name. So,
773 you might think we could save a little space by not recording
774 this in the hash table at all.
775
776 It turns out that it is actually important to still save such
777 an entry in the hash table, because storing this name gives
778 us better bcache hit rates for partial symbols. */
779 if (!copy_name && lookup_name == linkage_name)
780 {
781 *slot = obstack_alloc (&objfile->objfile_obstack,
782 offsetof (struct demangled_name_entry,
783 demangled)
784 + demangled_len + 1);
785 (*slot)->mangled = (char *) lookup_name;
786 }
787 else
788 {
789 /* If we must copy the mangled name, put it directly after
790 the demangled name so we can have a single
791 allocation. */
792 *slot = obstack_alloc (&objfile->objfile_obstack,
793 offsetof (struct demangled_name_entry,
794 demangled)
795 + lookup_len + demangled_len + 2);
796 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
797 strcpy ((*slot)->mangled, lookup_name);
798 }
799
800 if (demangled_name != NULL)
801 {
802 strcpy ((*slot)->demangled, demangled_name);
803 xfree (demangled_name);
804 }
805 else
806 (*slot)->demangled[0] = '\0';
807 }
808
809 gsymbol->name = (*slot)->mangled + lookup_len - len;
810 if ((*slot)->demangled[0] != '\0')
811 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
812 else
813 symbol_set_demangled_name (gsymbol, NULL, objfile);
814 }
815
816 /* Return the source code name of a symbol. In languages where
817 demangling is necessary, this is the demangled name. */
818
819 const char *
820 symbol_natural_name (const struct general_symbol_info *gsymbol)
821 {
822 switch (gsymbol->language)
823 {
824 case language_cplus:
825 case language_d:
826 case language_go:
827 case language_java:
828 case language_objc:
829 case language_fortran:
830 if (symbol_get_demangled_name (gsymbol) != NULL)
831 return symbol_get_demangled_name (gsymbol);
832 break;
833 case language_ada:
834 if (symbol_get_demangled_name (gsymbol) != NULL)
835 return symbol_get_demangled_name (gsymbol);
836 else
837 return ada_decode_symbol (gsymbol);
838 break;
839 default:
840 break;
841 }
842 return gsymbol->name;
843 }
844
845 /* Return the demangled name for a symbol based on the language for
846 that symbol. If no demangled name exists, return NULL. */
847
848 const char *
849 symbol_demangled_name (const struct general_symbol_info *gsymbol)
850 {
851 const char *dem_name = NULL;
852
853 switch (gsymbol->language)
854 {
855 case language_cplus:
856 case language_d:
857 case language_go:
858 case language_java:
859 case language_objc:
860 case language_fortran:
861 dem_name = symbol_get_demangled_name (gsymbol);
862 break;
863 case language_ada:
864 dem_name = symbol_get_demangled_name (gsymbol);
865 if (dem_name == NULL)
866 dem_name = ada_decode_symbol (gsymbol);
867 break;
868 default:
869 break;
870 }
871 return dem_name;
872 }
873
874 /* Return the search name of a symbol---generally the demangled or
875 linkage name of the symbol, depending on how it will be searched for.
876 If there is no distinct demangled name, then returns the same value
877 (same pointer) as SYMBOL_LINKAGE_NAME. */
878
879 const char *
880 symbol_search_name (const struct general_symbol_info *gsymbol)
881 {
882 if (gsymbol->language == language_ada)
883 return gsymbol->name;
884 else
885 return symbol_natural_name (gsymbol);
886 }
887
888 /* Initialize the structure fields to zero values. */
889
890 void
891 init_sal (struct symtab_and_line *sal)
892 {
893 sal->pspace = NULL;
894 sal->symtab = 0;
895 sal->section = 0;
896 sal->line = 0;
897 sal->pc = 0;
898 sal->end = 0;
899 sal->explicit_pc = 0;
900 sal->explicit_line = 0;
901 sal->probe = NULL;
902 }
903 \f
904
905 /* Return 1 if the two sections are the same, or if they could
906 plausibly be copies of each other, one in an original object
907 file and another in a separated debug file. */
908
909 int
910 matching_obj_sections (struct obj_section *obj_first,
911 struct obj_section *obj_second)
912 {
913 asection *first = obj_first? obj_first->the_bfd_section : NULL;
914 asection *second = obj_second? obj_second->the_bfd_section : NULL;
915 struct objfile *obj;
916
917 /* If they're the same section, then they match. */
918 if (first == second)
919 return 1;
920
921 /* If either is NULL, give up. */
922 if (first == NULL || second == NULL)
923 return 0;
924
925 /* This doesn't apply to absolute symbols. */
926 if (first->owner == NULL || second->owner == NULL)
927 return 0;
928
929 /* If they're in the same object file, they must be different sections. */
930 if (first->owner == second->owner)
931 return 0;
932
933 /* Check whether the two sections are potentially corresponding. They must
934 have the same size, address, and name. We can't compare section indexes,
935 which would be more reliable, because some sections may have been
936 stripped. */
937 if (bfd_get_section_size (first) != bfd_get_section_size (second))
938 return 0;
939
940 /* In-memory addresses may start at a different offset, relativize them. */
941 if (bfd_get_section_vma (first->owner, first)
942 - bfd_get_start_address (first->owner)
943 != bfd_get_section_vma (second->owner, second)
944 - bfd_get_start_address (second->owner))
945 return 0;
946
947 if (bfd_get_section_name (first->owner, first) == NULL
948 || bfd_get_section_name (second->owner, second) == NULL
949 || strcmp (bfd_get_section_name (first->owner, first),
950 bfd_get_section_name (second->owner, second)) != 0)
951 return 0;
952
953 /* Otherwise check that they are in corresponding objfiles. */
954
955 ALL_OBJFILES (obj)
956 if (obj->obfd == first->owner)
957 break;
958 gdb_assert (obj != NULL);
959
960 if (obj->separate_debug_objfile != NULL
961 && obj->separate_debug_objfile->obfd == second->owner)
962 return 1;
963 if (obj->separate_debug_objfile_backlink != NULL
964 && obj->separate_debug_objfile_backlink->obfd == second->owner)
965 return 1;
966
967 return 0;
968 }
969
970 struct symtab *
971 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
972 {
973 struct objfile *objfile;
974 struct minimal_symbol *msymbol;
975
976 /* If we know that this is not a text address, return failure. This is
977 necessary because we loop based on texthigh and textlow, which do
978 not include the data ranges. */
979 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
980 if (msymbol
981 && (MSYMBOL_TYPE (msymbol) == mst_data
982 || MSYMBOL_TYPE (msymbol) == mst_bss
983 || MSYMBOL_TYPE (msymbol) == mst_abs
984 || MSYMBOL_TYPE (msymbol) == mst_file_data
985 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
986 return NULL;
987
988 ALL_OBJFILES (objfile)
989 {
990 struct symtab *result = NULL;
991
992 if (objfile->sf)
993 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
994 pc, section, 0);
995 if (result)
996 return result;
997 }
998
999 return NULL;
1000 }
1001 \f
1002 /* Debug symbols usually don't have section information. We need to dig that
1003 out of the minimal symbols and stash that in the debug symbol. */
1004
1005 void
1006 fixup_section (struct general_symbol_info *ginfo,
1007 CORE_ADDR addr, struct objfile *objfile)
1008 {
1009 struct minimal_symbol *msym;
1010
1011 /* First, check whether a minimal symbol with the same name exists
1012 and points to the same address. The address check is required
1013 e.g. on PowerPC64, where the minimal symbol for a function will
1014 point to the function descriptor, while the debug symbol will
1015 point to the actual function code. */
1016 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1017 if (msym)
1018 {
1019 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1020 ginfo->section = SYMBOL_SECTION (msym);
1021 }
1022 else
1023 {
1024 /* Static, function-local variables do appear in the linker
1025 (minimal) symbols, but are frequently given names that won't
1026 be found via lookup_minimal_symbol(). E.g., it has been
1027 observed in frv-uclinux (ELF) executables that a static,
1028 function-local variable named "foo" might appear in the
1029 linker symbols as "foo.6" or "foo.3". Thus, there is no
1030 point in attempting to extend the lookup-by-name mechanism to
1031 handle this case due to the fact that there can be multiple
1032 names.
1033
1034 So, instead, search the section table when lookup by name has
1035 failed. The ``addr'' and ``endaddr'' fields may have already
1036 been relocated. If so, the relocation offset (i.e. the
1037 ANOFFSET value) needs to be subtracted from these values when
1038 performing the comparison. We unconditionally subtract it,
1039 because, when no relocation has been performed, the ANOFFSET
1040 value will simply be zero.
1041
1042 The address of the symbol whose section we're fixing up HAS
1043 NOT BEEN adjusted (relocated) yet. It can't have been since
1044 the section isn't yet known and knowing the section is
1045 necessary in order to add the correct relocation value. In
1046 other words, we wouldn't even be in this function (attempting
1047 to compute the section) if it were already known.
1048
1049 Note that it is possible to search the minimal symbols
1050 (subtracting the relocation value if necessary) to find the
1051 matching minimal symbol, but this is overkill and much less
1052 efficient. It is not necessary to find the matching minimal
1053 symbol, only its section.
1054
1055 Note that this technique (of doing a section table search)
1056 can fail when unrelocated section addresses overlap. For
1057 this reason, we still attempt a lookup by name prior to doing
1058 a search of the section table. */
1059
1060 struct obj_section *s;
1061
1062 ALL_OBJFILE_OSECTIONS (objfile, s)
1063 {
1064 int idx = s->the_bfd_section->index;
1065 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1066
1067 if (obj_section_addr (s) - offset <= addr
1068 && addr < obj_section_endaddr (s) - offset)
1069 {
1070 ginfo->obj_section = s;
1071 ginfo->section = idx;
1072 return;
1073 }
1074 }
1075 }
1076 }
1077
1078 struct symbol *
1079 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1080 {
1081 CORE_ADDR addr;
1082
1083 if (!sym)
1084 return NULL;
1085
1086 if (SYMBOL_OBJ_SECTION (sym))
1087 return sym;
1088
1089 /* We either have an OBJFILE, or we can get at it from the sym's
1090 symtab. Anything else is a bug. */
1091 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1092
1093 if (objfile == NULL)
1094 objfile = SYMBOL_SYMTAB (sym)->objfile;
1095
1096 /* We should have an objfile by now. */
1097 gdb_assert (objfile);
1098
1099 switch (SYMBOL_CLASS (sym))
1100 {
1101 case LOC_STATIC:
1102 case LOC_LABEL:
1103 addr = SYMBOL_VALUE_ADDRESS (sym);
1104 break;
1105 case LOC_BLOCK:
1106 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1107 break;
1108
1109 default:
1110 /* Nothing else will be listed in the minsyms -- no use looking
1111 it up. */
1112 return sym;
1113 }
1114
1115 fixup_section (&sym->ginfo, addr, objfile);
1116
1117 return sym;
1118 }
1119
1120 /* Compute the demangled form of NAME as used by the various symbol
1121 lookup functions. The result is stored in *RESULT_NAME. Returns a
1122 cleanup which can be used to clean up the result.
1123
1124 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1125 Normally, Ada symbol lookups are performed using the encoded name
1126 rather than the demangled name, and so it might seem to make sense
1127 for this function to return an encoded version of NAME.
1128 Unfortunately, we cannot do this, because this function is used in
1129 circumstances where it is not appropriate to try to encode NAME.
1130 For instance, when displaying the frame info, we demangle the name
1131 of each parameter, and then perform a symbol lookup inside our
1132 function using that demangled name. In Ada, certain functions
1133 have internally-generated parameters whose name contain uppercase
1134 characters. Encoding those name would result in those uppercase
1135 characters to become lowercase, and thus cause the symbol lookup
1136 to fail. */
1137
1138 struct cleanup *
1139 demangle_for_lookup (const char *name, enum language lang,
1140 const char **result_name)
1141 {
1142 char *demangled_name = NULL;
1143 const char *modified_name = NULL;
1144 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1145
1146 modified_name = name;
1147
1148 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1149 lookup, so we can always binary search. */
1150 if (lang == language_cplus)
1151 {
1152 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1153 if (demangled_name)
1154 {
1155 modified_name = demangled_name;
1156 make_cleanup (xfree, demangled_name);
1157 }
1158 else
1159 {
1160 /* If we were given a non-mangled name, canonicalize it
1161 according to the language (so far only for C++). */
1162 demangled_name = cp_canonicalize_string (name);
1163 if (demangled_name)
1164 {
1165 modified_name = demangled_name;
1166 make_cleanup (xfree, demangled_name);
1167 }
1168 }
1169 }
1170 else if (lang == language_java)
1171 {
1172 demangled_name = cplus_demangle (name,
1173 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1174 if (demangled_name)
1175 {
1176 modified_name = demangled_name;
1177 make_cleanup (xfree, demangled_name);
1178 }
1179 }
1180 else if (lang == language_d)
1181 {
1182 demangled_name = d_demangle (name, 0);
1183 if (demangled_name)
1184 {
1185 modified_name = demangled_name;
1186 make_cleanup (xfree, demangled_name);
1187 }
1188 }
1189 else if (lang == language_go)
1190 {
1191 demangled_name = go_demangle (name, 0);
1192 if (demangled_name)
1193 {
1194 modified_name = demangled_name;
1195 make_cleanup (xfree, demangled_name);
1196 }
1197 }
1198
1199 *result_name = modified_name;
1200 return cleanup;
1201 }
1202
1203 /* Find the definition for a specified symbol name NAME
1204 in domain DOMAIN, visible from lexical block BLOCK.
1205 Returns the struct symbol pointer, or zero if no symbol is found.
1206 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1207 NAME is a field of the current implied argument `this'. If so set
1208 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1209 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1210 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1211
1212 /* This function (or rather its subordinates) have a bunch of loops and
1213 it would seem to be attractive to put in some QUIT's (though I'm not really
1214 sure whether it can run long enough to be really important). But there
1215 are a few calls for which it would appear to be bad news to quit
1216 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1217 that there is C++ code below which can error(), but that probably
1218 doesn't affect these calls since they are looking for a known
1219 variable and thus can probably assume it will never hit the C++
1220 code). */
1221
1222 struct symbol *
1223 lookup_symbol_in_language (const char *name, const struct block *block,
1224 const domain_enum domain, enum language lang,
1225 struct field_of_this_result *is_a_field_of_this)
1226 {
1227 const char *modified_name;
1228 struct symbol *returnval;
1229 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1230
1231 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1232 is_a_field_of_this);
1233 do_cleanups (cleanup);
1234
1235 return returnval;
1236 }
1237
1238 /* Behave like lookup_symbol_in_language, but performed with the
1239 current language. */
1240
1241 struct symbol *
1242 lookup_symbol (const char *name, const struct block *block,
1243 domain_enum domain,
1244 struct field_of_this_result *is_a_field_of_this)
1245 {
1246 return lookup_symbol_in_language (name, block, domain,
1247 current_language->la_language,
1248 is_a_field_of_this);
1249 }
1250
1251 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1252 found, or NULL if not found. */
1253
1254 struct symbol *
1255 lookup_language_this (const struct language_defn *lang,
1256 const struct block *block)
1257 {
1258 if (lang->la_name_of_this == NULL || block == NULL)
1259 return NULL;
1260
1261 while (block)
1262 {
1263 struct symbol *sym;
1264
1265 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1266 if (sym != NULL)
1267 {
1268 block_found = block;
1269 return sym;
1270 }
1271 if (BLOCK_FUNCTION (block))
1272 break;
1273 block = BLOCK_SUPERBLOCK (block);
1274 }
1275
1276 return NULL;
1277 }
1278
1279 /* Given TYPE, a structure/union,
1280 return 1 if the component named NAME from the ultimate target
1281 structure/union is defined, otherwise, return 0. */
1282
1283 static int
1284 check_field (struct type *type, const char *name,
1285 struct field_of_this_result *is_a_field_of_this)
1286 {
1287 int i;
1288
1289 /* The type may be a stub. */
1290 CHECK_TYPEDEF (type);
1291
1292 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1293 {
1294 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1295
1296 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1297 {
1298 is_a_field_of_this->type = type;
1299 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1300 return 1;
1301 }
1302 }
1303
1304 /* C++: If it was not found as a data field, then try to return it
1305 as a pointer to a method. */
1306
1307 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1308 {
1309 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1310 {
1311 is_a_field_of_this->type = type;
1312 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1313 return 1;
1314 }
1315 }
1316
1317 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1318 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1319 return 1;
1320
1321 return 0;
1322 }
1323
1324 /* Behave like lookup_symbol except that NAME is the natural name
1325 (e.g., demangled name) of the symbol that we're looking for. */
1326
1327 static struct symbol *
1328 lookup_symbol_aux (const char *name, const struct block *block,
1329 const domain_enum domain, enum language language,
1330 struct field_of_this_result *is_a_field_of_this)
1331 {
1332 struct symbol *sym;
1333 const struct language_defn *langdef;
1334
1335 /* Make sure we do something sensible with is_a_field_of_this, since
1336 the callers that set this parameter to some non-null value will
1337 certainly use it later. If we don't set it, the contents of
1338 is_a_field_of_this are undefined. */
1339 if (is_a_field_of_this != NULL)
1340 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1341
1342 /* Search specified block and its superiors. Don't search
1343 STATIC_BLOCK or GLOBAL_BLOCK. */
1344
1345 sym = lookup_symbol_aux_local (name, block, domain, language);
1346 if (sym != NULL)
1347 return sym;
1348
1349 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1350 check to see if NAME is a field of `this'. */
1351
1352 langdef = language_def (language);
1353
1354 /* Don't do this check if we are searching for a struct. It will
1355 not be found by check_field, but will be found by other
1356 means. */
1357 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1358 {
1359 struct symbol *sym = lookup_language_this (langdef, block);
1360
1361 if (sym)
1362 {
1363 struct type *t = sym->type;
1364
1365 /* I'm not really sure that type of this can ever
1366 be typedefed; just be safe. */
1367 CHECK_TYPEDEF (t);
1368 if (TYPE_CODE (t) == TYPE_CODE_PTR
1369 || TYPE_CODE (t) == TYPE_CODE_REF)
1370 t = TYPE_TARGET_TYPE (t);
1371
1372 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1373 && TYPE_CODE (t) != TYPE_CODE_UNION)
1374 error (_("Internal error: `%s' is not an aggregate"),
1375 langdef->la_name_of_this);
1376
1377 if (check_field (t, name, is_a_field_of_this))
1378 return NULL;
1379 }
1380 }
1381
1382 /* Now do whatever is appropriate for LANGUAGE to look
1383 up static and global variables. */
1384
1385 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1386 if (sym != NULL)
1387 return sym;
1388
1389 /* Now search all static file-level symbols. Not strictly correct,
1390 but more useful than an error. */
1391
1392 return lookup_static_symbol_aux (name, domain);
1393 }
1394
1395 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1396 first, then check the psymtabs. If a psymtab indicates the existence of the
1397 desired name as a file-level static, then do psymtab-to-symtab conversion on
1398 the fly and return the found symbol. */
1399
1400 struct symbol *
1401 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1402 {
1403 struct objfile *objfile;
1404 struct symbol *sym;
1405
1406 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1407 if (sym != NULL)
1408 return sym;
1409
1410 ALL_OBJFILES (objfile)
1411 {
1412 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1413 if (sym != NULL)
1414 return sym;
1415 }
1416
1417 return NULL;
1418 }
1419
1420 /* Check to see if the symbol is defined in BLOCK or its superiors.
1421 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1422
1423 static struct symbol *
1424 lookup_symbol_aux_local (const char *name, const struct block *block,
1425 const domain_enum domain,
1426 enum language language)
1427 {
1428 struct symbol *sym;
1429 const struct block *static_block = block_static_block (block);
1430 const char *scope = block_scope (block);
1431
1432 /* Check if either no block is specified or it's a global block. */
1433
1434 if (static_block == NULL)
1435 return NULL;
1436
1437 while (block != static_block)
1438 {
1439 sym = lookup_symbol_aux_block (name, block, domain);
1440 if (sym != NULL)
1441 return sym;
1442
1443 if (language == language_cplus || language == language_fortran)
1444 {
1445 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1446 domain);
1447 if (sym != NULL)
1448 return sym;
1449 }
1450
1451 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1452 break;
1453 block = BLOCK_SUPERBLOCK (block);
1454 }
1455
1456 /* We've reached the edge of the function without finding a result. */
1457
1458 return NULL;
1459 }
1460
1461 /* Look up OBJFILE to BLOCK. */
1462
1463 struct objfile *
1464 lookup_objfile_from_block (const struct block *block)
1465 {
1466 struct objfile *obj;
1467 struct symtab *s;
1468
1469 if (block == NULL)
1470 return NULL;
1471
1472 block = block_global_block (block);
1473 /* Go through SYMTABS. */
1474 ALL_SYMTABS (obj, s)
1475 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1476 {
1477 if (obj->separate_debug_objfile_backlink)
1478 obj = obj->separate_debug_objfile_backlink;
1479
1480 return obj;
1481 }
1482
1483 return NULL;
1484 }
1485
1486 /* Look up a symbol in a block; if found, fixup the symbol, and set
1487 block_found appropriately. */
1488
1489 struct symbol *
1490 lookup_symbol_aux_block (const char *name, const struct block *block,
1491 const domain_enum domain)
1492 {
1493 struct symbol *sym;
1494
1495 sym = lookup_block_symbol (block, name, domain);
1496 if (sym)
1497 {
1498 block_found = block;
1499 return fixup_symbol_section (sym, NULL);
1500 }
1501
1502 return NULL;
1503 }
1504
1505 /* Check all global symbols in OBJFILE in symtabs and
1506 psymtabs. */
1507
1508 struct symbol *
1509 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1510 const char *name,
1511 const domain_enum domain)
1512 {
1513 const struct objfile *objfile;
1514 struct symbol *sym;
1515 struct blockvector *bv;
1516 const struct block *block;
1517 struct symtab *s;
1518
1519 for (objfile = main_objfile;
1520 objfile;
1521 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1522 {
1523 /* Go through symtabs. */
1524 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1525 {
1526 bv = BLOCKVECTOR (s);
1527 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1528 sym = lookup_block_symbol (block, name, domain);
1529 if (sym)
1530 {
1531 block_found = block;
1532 return fixup_symbol_section (sym, (struct objfile *)objfile);
1533 }
1534 }
1535
1536 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1537 name, domain);
1538 if (sym)
1539 return sym;
1540 }
1541
1542 return NULL;
1543 }
1544
1545 /* Check to see if the symbol is defined in one of the OBJFILE's
1546 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1547 depending on whether or not we want to search global symbols or
1548 static symbols. */
1549
1550 static struct symbol *
1551 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1552 const char *name, const domain_enum domain)
1553 {
1554 struct symbol *sym = NULL;
1555 struct blockvector *bv;
1556 const struct block *block;
1557 struct symtab *s;
1558
1559 if (objfile->sf)
1560 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1561 name, domain);
1562
1563 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1564 {
1565 bv = BLOCKVECTOR (s);
1566 block = BLOCKVECTOR_BLOCK (bv, block_index);
1567 sym = lookup_block_symbol (block, name, domain);
1568 if (sym)
1569 {
1570 block_found = block;
1571 return fixup_symbol_section (sym, objfile);
1572 }
1573 }
1574
1575 return NULL;
1576 }
1577
1578 /* Same as lookup_symbol_aux_objfile, except that it searches all
1579 objfiles. Return the first match found. */
1580
1581 static struct symbol *
1582 lookup_symbol_aux_symtabs (int block_index, const char *name,
1583 const domain_enum domain)
1584 {
1585 struct symbol *sym;
1586 struct objfile *objfile;
1587
1588 ALL_OBJFILES (objfile)
1589 {
1590 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1591 if (sym)
1592 return sym;
1593 }
1594
1595 return NULL;
1596 }
1597
1598 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1599 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1600 and all related objfiles. */
1601
1602 static struct symbol *
1603 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1604 const char *linkage_name,
1605 domain_enum domain)
1606 {
1607 enum language lang = current_language->la_language;
1608 const char *modified_name;
1609 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1610 &modified_name);
1611 struct objfile *main_objfile, *cur_objfile;
1612
1613 if (objfile->separate_debug_objfile_backlink)
1614 main_objfile = objfile->separate_debug_objfile_backlink;
1615 else
1616 main_objfile = objfile;
1617
1618 for (cur_objfile = main_objfile;
1619 cur_objfile;
1620 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1621 {
1622 struct symbol *sym;
1623
1624 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1625 modified_name, domain);
1626 if (sym == NULL)
1627 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1628 modified_name, domain);
1629 if (sym != NULL)
1630 {
1631 do_cleanups (cleanup);
1632 return sym;
1633 }
1634 }
1635
1636 do_cleanups (cleanup);
1637 return NULL;
1638 }
1639
1640 /* A helper function for lookup_symbol_aux that interfaces with the
1641 "quick" symbol table functions. */
1642
1643 static struct symbol *
1644 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1645 const char *name, const domain_enum domain)
1646 {
1647 struct symtab *symtab;
1648 struct blockvector *bv;
1649 const struct block *block;
1650 struct symbol *sym;
1651
1652 if (!objfile->sf)
1653 return NULL;
1654 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1655 if (!symtab)
1656 return NULL;
1657
1658 bv = BLOCKVECTOR (symtab);
1659 block = BLOCKVECTOR_BLOCK (bv, kind);
1660 sym = lookup_block_symbol (block, name, domain);
1661 if (!sym)
1662 {
1663 /* This shouldn't be necessary, but as a last resort try
1664 looking in the statics even though the psymtab claimed
1665 the symbol was global, or vice-versa. It's possible
1666 that the psymtab gets it wrong in some cases. */
1667
1668 /* FIXME: carlton/2002-09-30: Should we really do that?
1669 If that happens, isn't it likely to be a GDB error, in
1670 which case we should fix the GDB error rather than
1671 silently dealing with it here? So I'd vote for
1672 removing the check for the symbol in the other
1673 block. */
1674 block = BLOCKVECTOR_BLOCK (bv,
1675 kind == GLOBAL_BLOCK ?
1676 STATIC_BLOCK : GLOBAL_BLOCK);
1677 sym = lookup_block_symbol (block, name, domain);
1678 if (!sym)
1679 error (_("\
1680 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1681 %s may be an inlined function, or may be a template function\n\
1682 (if a template, try specifying an instantiation: %s<type>)."),
1683 kind == GLOBAL_BLOCK ? "global" : "static",
1684 name, symtab->filename, name, name);
1685 }
1686 return fixup_symbol_section (sym, objfile);
1687 }
1688
1689 /* A default version of lookup_symbol_nonlocal for use by languages
1690 that can't think of anything better to do. This implements the C
1691 lookup rules. */
1692
1693 struct symbol *
1694 basic_lookup_symbol_nonlocal (const char *name,
1695 const struct block *block,
1696 const domain_enum domain)
1697 {
1698 struct symbol *sym;
1699
1700 /* NOTE: carlton/2003-05-19: The comments below were written when
1701 this (or what turned into this) was part of lookup_symbol_aux;
1702 I'm much less worried about these questions now, since these
1703 decisions have turned out well, but I leave these comments here
1704 for posterity. */
1705
1706 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1707 not it would be appropriate to search the current global block
1708 here as well. (That's what this code used to do before the
1709 is_a_field_of_this check was moved up.) On the one hand, it's
1710 redundant with the lookup_symbol_aux_symtabs search that happens
1711 next. On the other hand, if decode_line_1 is passed an argument
1712 like filename:var, then the user presumably wants 'var' to be
1713 searched for in filename. On the third hand, there shouldn't be
1714 multiple global variables all of which are named 'var', and it's
1715 not like decode_line_1 has ever restricted its search to only
1716 global variables in a single filename. All in all, only
1717 searching the static block here seems best: it's correct and it's
1718 cleanest. */
1719
1720 /* NOTE: carlton/2002-12-05: There's also a possible performance
1721 issue here: if you usually search for global symbols in the
1722 current file, then it would be slightly better to search the
1723 current global block before searching all the symtabs. But there
1724 are other factors that have a much greater effect on performance
1725 than that one, so I don't think we should worry about that for
1726 now. */
1727
1728 sym = lookup_symbol_static (name, block, domain);
1729 if (sym != NULL)
1730 return sym;
1731
1732 return lookup_symbol_global (name, block, domain);
1733 }
1734
1735 /* Lookup a symbol in the static block associated to BLOCK, if there
1736 is one; do nothing if BLOCK is NULL or a global block. */
1737
1738 struct symbol *
1739 lookup_symbol_static (const char *name,
1740 const struct block *block,
1741 const domain_enum domain)
1742 {
1743 const struct block *static_block = block_static_block (block);
1744
1745 if (static_block != NULL)
1746 return lookup_symbol_aux_block (name, static_block, domain);
1747 else
1748 return NULL;
1749 }
1750
1751 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1752
1753 struct global_sym_lookup_data
1754 {
1755 /* The name of the symbol we are searching for. */
1756 const char *name;
1757
1758 /* The domain to use for our search. */
1759 domain_enum domain;
1760
1761 /* The field where the callback should store the symbol if found.
1762 It should be initialized to NULL before the search is started. */
1763 struct symbol *result;
1764 };
1765
1766 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1767 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1768 OBJFILE. The arguments for the search are passed via CB_DATA,
1769 which in reality is a pointer to struct global_sym_lookup_data. */
1770
1771 static int
1772 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1773 void *cb_data)
1774 {
1775 struct global_sym_lookup_data *data =
1776 (struct global_sym_lookup_data *) cb_data;
1777
1778 gdb_assert (data->result == NULL);
1779
1780 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1781 data->name, data->domain);
1782 if (data->result == NULL)
1783 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1784 data->name, data->domain);
1785
1786 /* If we found a match, tell the iterator to stop. Otherwise,
1787 keep going. */
1788 return (data->result != NULL);
1789 }
1790
1791 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1792 necessary). */
1793
1794 struct symbol *
1795 lookup_symbol_global (const char *name,
1796 const struct block *block,
1797 const domain_enum domain)
1798 {
1799 struct symbol *sym = NULL;
1800 struct objfile *objfile = NULL;
1801 struct global_sym_lookup_data lookup_data;
1802
1803 /* Call library-specific lookup procedure. */
1804 objfile = lookup_objfile_from_block (block);
1805 if (objfile != NULL)
1806 sym = solib_global_lookup (objfile, name, domain);
1807 if (sym != NULL)
1808 return sym;
1809
1810 memset (&lookup_data, 0, sizeof (lookup_data));
1811 lookup_data.name = name;
1812 lookup_data.domain = domain;
1813 gdbarch_iterate_over_objfiles_in_search_order
1814 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1815 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1816
1817 return lookup_data.result;
1818 }
1819
1820 int
1821 symbol_matches_domain (enum language symbol_language,
1822 domain_enum symbol_domain,
1823 domain_enum domain)
1824 {
1825 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1826 A Java class declaration also defines a typedef for the class.
1827 Similarly, any Ada type declaration implicitly defines a typedef. */
1828 if (symbol_language == language_cplus
1829 || symbol_language == language_d
1830 || symbol_language == language_java
1831 || symbol_language == language_ada)
1832 {
1833 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1834 && symbol_domain == STRUCT_DOMAIN)
1835 return 1;
1836 }
1837 /* For all other languages, strict match is required. */
1838 return (symbol_domain == domain);
1839 }
1840
1841 /* Look up a type named NAME in the struct_domain. The type returned
1842 must not be opaque -- i.e., must have at least one field
1843 defined. */
1844
1845 struct type *
1846 lookup_transparent_type (const char *name)
1847 {
1848 return current_language->la_lookup_transparent_type (name);
1849 }
1850
1851 /* A helper for basic_lookup_transparent_type that interfaces with the
1852 "quick" symbol table functions. */
1853
1854 static struct type *
1855 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1856 const char *name)
1857 {
1858 struct symtab *symtab;
1859 struct blockvector *bv;
1860 struct block *block;
1861 struct symbol *sym;
1862
1863 if (!objfile->sf)
1864 return NULL;
1865 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1866 if (!symtab)
1867 return NULL;
1868
1869 bv = BLOCKVECTOR (symtab);
1870 block = BLOCKVECTOR_BLOCK (bv, kind);
1871 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1872 if (!sym)
1873 {
1874 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1875
1876 /* This shouldn't be necessary, but as a last resort
1877 * try looking in the 'other kind' even though the psymtab
1878 * claimed the symbol was one thing. It's possible that
1879 * the psymtab gets it wrong in some cases.
1880 */
1881 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1882 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1883 if (!sym)
1884 /* FIXME; error is wrong in one case. */
1885 error (_("\
1886 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1887 %s may be an inlined function, or may be a template function\n\
1888 (if a template, try specifying an instantiation: %s<type>)."),
1889 name, symtab->filename, name, name);
1890 }
1891 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1892 return SYMBOL_TYPE (sym);
1893
1894 return NULL;
1895 }
1896
1897 /* The standard implementation of lookup_transparent_type. This code
1898 was modeled on lookup_symbol -- the parts not relevant to looking
1899 up types were just left out. In particular it's assumed here that
1900 types are available in struct_domain and only at file-static or
1901 global blocks. */
1902
1903 struct type *
1904 basic_lookup_transparent_type (const char *name)
1905 {
1906 struct symbol *sym;
1907 struct symtab *s = NULL;
1908 struct blockvector *bv;
1909 struct objfile *objfile;
1910 struct block *block;
1911 struct type *t;
1912
1913 /* Now search all the global symbols. Do the symtab's first, then
1914 check the psymtab's. If a psymtab indicates the existence
1915 of the desired name as a global, then do psymtab-to-symtab
1916 conversion on the fly and return the found symbol. */
1917
1918 ALL_OBJFILES (objfile)
1919 {
1920 if (objfile->sf)
1921 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1922 GLOBAL_BLOCK,
1923 name, STRUCT_DOMAIN);
1924
1925 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1926 {
1927 bv = BLOCKVECTOR (s);
1928 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1929 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1930 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1931 {
1932 return SYMBOL_TYPE (sym);
1933 }
1934 }
1935 }
1936
1937 ALL_OBJFILES (objfile)
1938 {
1939 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1940 if (t)
1941 return t;
1942 }
1943
1944 /* Now search the static file-level symbols.
1945 Not strictly correct, but more useful than an error.
1946 Do the symtab's first, then
1947 check the psymtab's. If a psymtab indicates the existence
1948 of the desired name as a file-level static, then do psymtab-to-symtab
1949 conversion on the fly and return the found symbol. */
1950
1951 ALL_OBJFILES (objfile)
1952 {
1953 if (objfile->sf)
1954 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1955 name, STRUCT_DOMAIN);
1956
1957 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1958 {
1959 bv = BLOCKVECTOR (s);
1960 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1961 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1962 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1963 {
1964 return SYMBOL_TYPE (sym);
1965 }
1966 }
1967 }
1968
1969 ALL_OBJFILES (objfile)
1970 {
1971 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1972 if (t)
1973 return t;
1974 }
1975
1976 return (struct type *) 0;
1977 }
1978
1979 /* Find the name of the file containing main(). */
1980 /* FIXME: What about languages without main() or specially linked
1981 executables that have no main() ? */
1982
1983 const char *
1984 find_main_filename (void)
1985 {
1986 struct objfile *objfile;
1987 char *name = main_name ();
1988
1989 ALL_OBJFILES (objfile)
1990 {
1991 const char *result;
1992
1993 if (!objfile->sf)
1994 continue;
1995 result = objfile->sf->qf->find_symbol_file (objfile, name);
1996 if (result)
1997 return result;
1998 }
1999 return (NULL);
2000 }
2001
2002 /* Search BLOCK for symbol NAME in DOMAIN.
2003
2004 Note that if NAME is the demangled form of a C++ symbol, we will fail
2005 to find a match during the binary search of the non-encoded names, but
2006 for now we don't worry about the slight inefficiency of looking for
2007 a match we'll never find, since it will go pretty quick. Once the
2008 binary search terminates, we drop through and do a straight linear
2009 search on the symbols. Each symbol which is marked as being a ObjC/C++
2010 symbol (language_cplus or language_objc set) has both the encoded and
2011 non-encoded names tested for a match. */
2012
2013 struct symbol *
2014 lookup_block_symbol (const struct block *block, const char *name,
2015 const domain_enum domain)
2016 {
2017 struct block_iterator iter;
2018 struct symbol *sym;
2019
2020 if (!BLOCK_FUNCTION (block))
2021 {
2022 for (sym = block_iter_name_first (block, name, &iter);
2023 sym != NULL;
2024 sym = block_iter_name_next (name, &iter))
2025 {
2026 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2027 SYMBOL_DOMAIN (sym), domain))
2028 return sym;
2029 }
2030 return NULL;
2031 }
2032 else
2033 {
2034 /* Note that parameter symbols do not always show up last in the
2035 list; this loop makes sure to take anything else other than
2036 parameter symbols first; it only uses parameter symbols as a
2037 last resort. Note that this only takes up extra computation
2038 time on a match. */
2039
2040 struct symbol *sym_found = NULL;
2041
2042 for (sym = block_iter_name_first (block, name, &iter);
2043 sym != NULL;
2044 sym = block_iter_name_next (name, &iter))
2045 {
2046 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2047 SYMBOL_DOMAIN (sym), domain))
2048 {
2049 sym_found = sym;
2050 if (!SYMBOL_IS_ARGUMENT (sym))
2051 {
2052 break;
2053 }
2054 }
2055 }
2056 return (sym_found); /* Will be NULL if not found. */
2057 }
2058 }
2059
2060 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2061 BLOCK.
2062
2063 For each symbol that matches, CALLBACK is called. The symbol and
2064 DATA are passed to the callback.
2065
2066 If CALLBACK returns zero, the iteration ends. Otherwise, the
2067 search continues. This function iterates upward through blocks.
2068 When the outermost block has been finished, the function
2069 returns. */
2070
2071 void
2072 iterate_over_symbols (const struct block *block, const char *name,
2073 const domain_enum domain,
2074 symbol_found_callback_ftype *callback,
2075 void *data)
2076 {
2077 while (block)
2078 {
2079 struct block_iterator iter;
2080 struct symbol *sym;
2081
2082 for (sym = block_iter_name_first (block, name, &iter);
2083 sym != NULL;
2084 sym = block_iter_name_next (name, &iter))
2085 {
2086 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2087 SYMBOL_DOMAIN (sym), domain))
2088 {
2089 if (!callback (sym, data))
2090 return;
2091 }
2092 }
2093
2094 block = BLOCK_SUPERBLOCK (block);
2095 }
2096 }
2097
2098 /* Find the symtab associated with PC and SECTION. Look through the
2099 psymtabs and read in another symtab if necessary. */
2100
2101 struct symtab *
2102 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2103 {
2104 struct block *b;
2105 struct blockvector *bv;
2106 struct symtab *s = NULL;
2107 struct symtab *best_s = NULL;
2108 struct objfile *objfile;
2109 struct program_space *pspace;
2110 CORE_ADDR distance = 0;
2111 struct minimal_symbol *msymbol;
2112
2113 pspace = current_program_space;
2114
2115 /* If we know that this is not a text address, return failure. This is
2116 necessary because we loop based on the block's high and low code
2117 addresses, which do not include the data ranges, and because
2118 we call find_pc_sect_psymtab which has a similar restriction based
2119 on the partial_symtab's texthigh and textlow. */
2120 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2121 if (msymbol
2122 && (MSYMBOL_TYPE (msymbol) == mst_data
2123 || MSYMBOL_TYPE (msymbol) == mst_bss
2124 || MSYMBOL_TYPE (msymbol) == mst_abs
2125 || MSYMBOL_TYPE (msymbol) == mst_file_data
2126 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2127 return NULL;
2128
2129 /* Search all symtabs for the one whose file contains our address, and which
2130 is the smallest of all the ones containing the address. This is designed
2131 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2132 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2133 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2134
2135 This happens for native ecoff format, where code from included files
2136 gets its own symtab. The symtab for the included file should have
2137 been read in already via the dependency mechanism.
2138 It might be swifter to create several symtabs with the same name
2139 like xcoff does (I'm not sure).
2140
2141 It also happens for objfiles that have their functions reordered.
2142 For these, the symtab we are looking for is not necessarily read in. */
2143
2144 ALL_PRIMARY_SYMTABS (objfile, s)
2145 {
2146 bv = BLOCKVECTOR (s);
2147 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2148
2149 if (BLOCK_START (b) <= pc
2150 && BLOCK_END (b) > pc
2151 && (distance == 0
2152 || BLOCK_END (b) - BLOCK_START (b) < distance))
2153 {
2154 /* For an objfile that has its functions reordered,
2155 find_pc_psymtab will find the proper partial symbol table
2156 and we simply return its corresponding symtab. */
2157 /* In order to better support objfiles that contain both
2158 stabs and coff debugging info, we continue on if a psymtab
2159 can't be found. */
2160 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2161 {
2162 struct symtab *result;
2163
2164 result
2165 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2166 msymbol,
2167 pc, section,
2168 0);
2169 if (result)
2170 return result;
2171 }
2172 if (section != 0)
2173 {
2174 struct block_iterator iter;
2175 struct symbol *sym = NULL;
2176
2177 ALL_BLOCK_SYMBOLS (b, iter, sym)
2178 {
2179 fixup_symbol_section (sym, objfile);
2180 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2181 break;
2182 }
2183 if (sym == NULL)
2184 continue; /* No symbol in this symtab matches
2185 section. */
2186 }
2187 distance = BLOCK_END (b) - BLOCK_START (b);
2188 best_s = s;
2189 }
2190 }
2191
2192 if (best_s != NULL)
2193 return (best_s);
2194
2195 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2196
2197 ALL_OBJFILES (objfile)
2198 {
2199 struct symtab *result;
2200
2201 if (!objfile->sf)
2202 continue;
2203 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2204 msymbol,
2205 pc, section,
2206 1);
2207 if (result)
2208 return result;
2209 }
2210
2211 return NULL;
2212 }
2213
2214 /* Find the symtab associated with PC. Look through the psymtabs and read
2215 in another symtab if necessary. Backward compatibility, no section. */
2216
2217 struct symtab *
2218 find_pc_symtab (CORE_ADDR pc)
2219 {
2220 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2221 }
2222 \f
2223
2224 /* Find the source file and line number for a given PC value and SECTION.
2225 Return a structure containing a symtab pointer, a line number,
2226 and a pc range for the entire source line.
2227 The value's .pc field is NOT the specified pc.
2228 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2229 use the line that ends there. Otherwise, in that case, the line
2230 that begins there is used. */
2231
2232 /* The big complication here is that a line may start in one file, and end just
2233 before the start of another file. This usually occurs when you #include
2234 code in the middle of a subroutine. To properly find the end of a line's PC
2235 range, we must search all symtabs associated with this compilation unit, and
2236 find the one whose first PC is closer than that of the next line in this
2237 symtab. */
2238
2239 /* If it's worth the effort, we could be using a binary search. */
2240
2241 struct symtab_and_line
2242 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2243 {
2244 struct symtab *s;
2245 struct linetable *l;
2246 int len;
2247 int i;
2248 struct linetable_entry *item;
2249 struct symtab_and_line val;
2250 struct blockvector *bv;
2251 struct minimal_symbol *msymbol;
2252 struct minimal_symbol *mfunsym;
2253 struct objfile *objfile;
2254
2255 /* Info on best line seen so far, and where it starts, and its file. */
2256
2257 struct linetable_entry *best = NULL;
2258 CORE_ADDR best_end = 0;
2259 struct symtab *best_symtab = 0;
2260
2261 /* Store here the first line number
2262 of a file which contains the line at the smallest pc after PC.
2263 If we don't find a line whose range contains PC,
2264 we will use a line one less than this,
2265 with a range from the start of that file to the first line's pc. */
2266 struct linetable_entry *alt = NULL;
2267 struct symtab *alt_symtab = 0;
2268
2269 /* Info on best line seen in this file. */
2270
2271 struct linetable_entry *prev;
2272
2273 /* If this pc is not from the current frame,
2274 it is the address of the end of a call instruction.
2275 Quite likely that is the start of the following statement.
2276 But what we want is the statement containing the instruction.
2277 Fudge the pc to make sure we get that. */
2278
2279 init_sal (&val); /* initialize to zeroes */
2280
2281 val.pspace = current_program_space;
2282
2283 /* It's tempting to assume that, if we can't find debugging info for
2284 any function enclosing PC, that we shouldn't search for line
2285 number info, either. However, GAS can emit line number info for
2286 assembly files --- very helpful when debugging hand-written
2287 assembly code. In such a case, we'd have no debug info for the
2288 function, but we would have line info. */
2289
2290 if (notcurrent)
2291 pc -= 1;
2292
2293 /* elz: added this because this function returned the wrong
2294 information if the pc belongs to a stub (import/export)
2295 to call a shlib function. This stub would be anywhere between
2296 two functions in the target, and the line info was erroneously
2297 taken to be the one of the line before the pc. */
2298
2299 /* RT: Further explanation:
2300
2301 * We have stubs (trampolines) inserted between procedures.
2302 *
2303 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2304 * exists in the main image.
2305 *
2306 * In the minimal symbol table, we have a bunch of symbols
2307 * sorted by start address. The stubs are marked as "trampoline",
2308 * the others appear as text. E.g.:
2309 *
2310 * Minimal symbol table for main image
2311 * main: code for main (text symbol)
2312 * shr1: stub (trampoline symbol)
2313 * foo: code for foo (text symbol)
2314 * ...
2315 * Minimal symbol table for "shr1" image:
2316 * ...
2317 * shr1: code for shr1 (text symbol)
2318 * ...
2319 *
2320 * So the code below is trying to detect if we are in the stub
2321 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2322 * and if found, do the symbolization from the real-code address
2323 * rather than the stub address.
2324 *
2325 * Assumptions being made about the minimal symbol table:
2326 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2327 * if we're really in the trampoline.s If we're beyond it (say
2328 * we're in "foo" in the above example), it'll have a closer
2329 * symbol (the "foo" text symbol for example) and will not
2330 * return the trampoline.
2331 * 2. lookup_minimal_symbol_text() will find a real text symbol
2332 * corresponding to the trampoline, and whose address will
2333 * be different than the trampoline address. I put in a sanity
2334 * check for the address being the same, to avoid an
2335 * infinite recursion.
2336 */
2337 msymbol = lookup_minimal_symbol_by_pc (pc);
2338 if (msymbol != NULL)
2339 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2340 {
2341 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2342 NULL);
2343 if (mfunsym == NULL)
2344 /* I eliminated this warning since it is coming out
2345 * in the following situation:
2346 * gdb shmain // test program with shared libraries
2347 * (gdb) break shr1 // function in shared lib
2348 * Warning: In stub for ...
2349 * In the above situation, the shared lib is not loaded yet,
2350 * so of course we can't find the real func/line info,
2351 * but the "break" still works, and the warning is annoying.
2352 * So I commented out the warning. RT */
2353 /* warning ("In stub for %s; unable to find real function/line info",
2354 SYMBOL_LINKAGE_NAME (msymbol)); */
2355 ;
2356 /* fall through */
2357 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2358 == SYMBOL_VALUE_ADDRESS (msymbol))
2359 /* Avoid infinite recursion */
2360 /* See above comment about why warning is commented out. */
2361 /* warning ("In stub for %s; unable to find real function/line info",
2362 SYMBOL_LINKAGE_NAME (msymbol)); */
2363 ;
2364 /* fall through */
2365 else
2366 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2367 }
2368
2369
2370 s = find_pc_sect_symtab (pc, section);
2371 if (!s)
2372 {
2373 /* If no symbol information, return previous pc. */
2374 if (notcurrent)
2375 pc++;
2376 val.pc = pc;
2377 return val;
2378 }
2379
2380 bv = BLOCKVECTOR (s);
2381 objfile = s->objfile;
2382
2383 /* Look at all the symtabs that share this blockvector.
2384 They all have the same apriori range, that we found was right;
2385 but they have different line tables. */
2386
2387 ALL_OBJFILE_SYMTABS (objfile, s)
2388 {
2389 if (BLOCKVECTOR (s) != bv)
2390 continue;
2391
2392 /* Find the best line in this symtab. */
2393 l = LINETABLE (s);
2394 if (!l)
2395 continue;
2396 len = l->nitems;
2397 if (len <= 0)
2398 {
2399 /* I think len can be zero if the symtab lacks line numbers
2400 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2401 I'm not sure which, and maybe it depends on the symbol
2402 reader). */
2403 continue;
2404 }
2405
2406 prev = NULL;
2407 item = l->item; /* Get first line info. */
2408
2409 /* Is this file's first line closer than the first lines of other files?
2410 If so, record this file, and its first line, as best alternate. */
2411 if (item->pc > pc && (!alt || item->pc < alt->pc))
2412 {
2413 alt = item;
2414 alt_symtab = s;
2415 }
2416
2417 for (i = 0; i < len; i++, item++)
2418 {
2419 /* Leave prev pointing to the linetable entry for the last line
2420 that started at or before PC. */
2421 if (item->pc > pc)
2422 break;
2423
2424 prev = item;
2425 }
2426
2427 /* At this point, prev points at the line whose start addr is <= pc, and
2428 item points at the next line. If we ran off the end of the linetable
2429 (pc >= start of the last line), then prev == item. If pc < start of
2430 the first line, prev will not be set. */
2431
2432 /* Is this file's best line closer than the best in the other files?
2433 If so, record this file, and its best line, as best so far. Don't
2434 save prev if it represents the end of a function (i.e. line number
2435 0) instead of a real line. */
2436
2437 if (prev && prev->line && (!best || prev->pc > best->pc))
2438 {
2439 best = prev;
2440 best_symtab = s;
2441
2442 /* Discard BEST_END if it's before the PC of the current BEST. */
2443 if (best_end <= best->pc)
2444 best_end = 0;
2445 }
2446
2447 /* If another line (denoted by ITEM) is in the linetable and its
2448 PC is after BEST's PC, but before the current BEST_END, then
2449 use ITEM's PC as the new best_end. */
2450 if (best && i < len && item->pc > best->pc
2451 && (best_end == 0 || best_end > item->pc))
2452 best_end = item->pc;
2453 }
2454
2455 if (!best_symtab)
2456 {
2457 /* If we didn't find any line number info, just return zeros.
2458 We used to return alt->line - 1 here, but that could be
2459 anywhere; if we don't have line number info for this PC,
2460 don't make some up. */
2461 val.pc = pc;
2462 }
2463 else if (best->line == 0)
2464 {
2465 /* If our best fit is in a range of PC's for which no line
2466 number info is available (line number is zero) then we didn't
2467 find any valid line information. */
2468 val.pc = pc;
2469 }
2470 else
2471 {
2472 val.symtab = best_symtab;
2473 val.line = best->line;
2474 val.pc = best->pc;
2475 if (best_end && (!alt || best_end < alt->pc))
2476 val.end = best_end;
2477 else if (alt)
2478 val.end = alt->pc;
2479 else
2480 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2481 }
2482 val.section = section;
2483 return val;
2484 }
2485
2486 /* Backward compatibility (no section). */
2487
2488 struct symtab_and_line
2489 find_pc_line (CORE_ADDR pc, int notcurrent)
2490 {
2491 struct obj_section *section;
2492
2493 section = find_pc_overlay (pc);
2494 if (pc_in_unmapped_range (pc, section))
2495 pc = overlay_mapped_address (pc, section);
2496 return find_pc_sect_line (pc, section, notcurrent);
2497 }
2498 \f
2499 /* Find line number LINE in any symtab whose name is the same as
2500 SYMTAB.
2501
2502 If found, return the symtab that contains the linetable in which it was
2503 found, set *INDEX to the index in the linetable of the best entry
2504 found, and set *EXACT_MATCH nonzero if the value returned is an
2505 exact match.
2506
2507 If not found, return NULL. */
2508
2509 struct symtab *
2510 find_line_symtab (struct symtab *symtab, int line,
2511 int *index, int *exact_match)
2512 {
2513 int exact = 0; /* Initialized here to avoid a compiler warning. */
2514
2515 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2516 so far seen. */
2517
2518 int best_index;
2519 struct linetable *best_linetable;
2520 struct symtab *best_symtab;
2521
2522 /* First try looking it up in the given symtab. */
2523 best_linetable = LINETABLE (symtab);
2524 best_symtab = symtab;
2525 best_index = find_line_common (best_linetable, line, &exact, 0);
2526 if (best_index < 0 || !exact)
2527 {
2528 /* Didn't find an exact match. So we better keep looking for
2529 another symtab with the same name. In the case of xcoff,
2530 multiple csects for one source file (produced by IBM's FORTRAN
2531 compiler) produce multiple symtabs (this is unavoidable
2532 assuming csects can be at arbitrary places in memory and that
2533 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2534
2535 /* BEST is the smallest linenumber > LINE so far seen,
2536 or 0 if none has been seen so far.
2537 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2538 int best;
2539
2540 struct objfile *objfile;
2541 struct symtab *s;
2542
2543 if (best_index >= 0)
2544 best = best_linetable->item[best_index].line;
2545 else
2546 best = 0;
2547
2548 ALL_OBJFILES (objfile)
2549 {
2550 if (objfile->sf)
2551 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2552 symtab->filename);
2553 }
2554
2555 /* Get symbol full file name if possible. */
2556 symtab_to_fullname (symtab);
2557
2558 ALL_SYMTABS (objfile, s)
2559 {
2560 struct linetable *l;
2561 int ind;
2562
2563 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2564 continue;
2565 if (symtab->fullname != NULL
2566 && symtab_to_fullname (s) != NULL
2567 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2568 continue;
2569 l = LINETABLE (s);
2570 ind = find_line_common (l, line, &exact, 0);
2571 if (ind >= 0)
2572 {
2573 if (exact)
2574 {
2575 best_index = ind;
2576 best_linetable = l;
2577 best_symtab = s;
2578 goto done;
2579 }
2580 if (best == 0 || l->item[ind].line < best)
2581 {
2582 best = l->item[ind].line;
2583 best_index = ind;
2584 best_linetable = l;
2585 best_symtab = s;
2586 }
2587 }
2588 }
2589 }
2590 done:
2591 if (best_index < 0)
2592 return NULL;
2593
2594 if (index)
2595 *index = best_index;
2596 if (exact_match)
2597 *exact_match = exact;
2598
2599 return best_symtab;
2600 }
2601
2602 /* Given SYMTAB, returns all the PCs function in the symtab that
2603 exactly match LINE. Returns NULL if there are no exact matches,
2604 but updates BEST_ITEM in this case. */
2605
2606 VEC (CORE_ADDR) *
2607 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2608 struct linetable_entry **best_item)
2609 {
2610 int start = 0, ix;
2611 struct symbol *previous_function = NULL;
2612 VEC (CORE_ADDR) *result = NULL;
2613
2614 /* First, collect all the PCs that are at this line. */
2615 while (1)
2616 {
2617 int was_exact;
2618 int idx;
2619
2620 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2621 if (idx < 0)
2622 break;
2623
2624 if (!was_exact)
2625 {
2626 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2627
2628 if (*best_item == NULL || item->line < (*best_item)->line)
2629 *best_item = item;
2630
2631 break;
2632 }
2633
2634 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2635 start = idx + 1;
2636 }
2637
2638 return result;
2639 }
2640
2641 \f
2642 /* Set the PC value for a given source file and line number and return true.
2643 Returns zero for invalid line number (and sets the PC to 0).
2644 The source file is specified with a struct symtab. */
2645
2646 int
2647 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2648 {
2649 struct linetable *l;
2650 int ind;
2651
2652 *pc = 0;
2653 if (symtab == 0)
2654 return 0;
2655
2656 symtab = find_line_symtab (symtab, line, &ind, NULL);
2657 if (symtab != NULL)
2658 {
2659 l = LINETABLE (symtab);
2660 *pc = l->item[ind].pc;
2661 return 1;
2662 }
2663 else
2664 return 0;
2665 }
2666
2667 /* Find the range of pc values in a line.
2668 Store the starting pc of the line into *STARTPTR
2669 and the ending pc (start of next line) into *ENDPTR.
2670 Returns 1 to indicate success.
2671 Returns 0 if could not find the specified line. */
2672
2673 int
2674 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2675 CORE_ADDR *endptr)
2676 {
2677 CORE_ADDR startaddr;
2678 struct symtab_and_line found_sal;
2679
2680 startaddr = sal.pc;
2681 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2682 return 0;
2683
2684 /* This whole function is based on address. For example, if line 10 has
2685 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2686 "info line *0x123" should say the line goes from 0x100 to 0x200
2687 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2688 This also insures that we never give a range like "starts at 0x134
2689 and ends at 0x12c". */
2690
2691 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2692 if (found_sal.line != sal.line)
2693 {
2694 /* The specified line (sal) has zero bytes. */
2695 *startptr = found_sal.pc;
2696 *endptr = found_sal.pc;
2697 }
2698 else
2699 {
2700 *startptr = found_sal.pc;
2701 *endptr = found_sal.end;
2702 }
2703 return 1;
2704 }
2705
2706 /* Given a line table and a line number, return the index into the line
2707 table for the pc of the nearest line whose number is >= the specified one.
2708 Return -1 if none is found. The value is >= 0 if it is an index.
2709 START is the index at which to start searching the line table.
2710
2711 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2712
2713 static int
2714 find_line_common (struct linetable *l, int lineno,
2715 int *exact_match, int start)
2716 {
2717 int i;
2718 int len;
2719
2720 /* BEST is the smallest linenumber > LINENO so far seen,
2721 or 0 if none has been seen so far.
2722 BEST_INDEX identifies the item for it. */
2723
2724 int best_index = -1;
2725 int best = 0;
2726
2727 *exact_match = 0;
2728
2729 if (lineno <= 0)
2730 return -1;
2731 if (l == 0)
2732 return -1;
2733
2734 len = l->nitems;
2735 for (i = start; i < len; i++)
2736 {
2737 struct linetable_entry *item = &(l->item[i]);
2738
2739 if (item->line == lineno)
2740 {
2741 /* Return the first (lowest address) entry which matches. */
2742 *exact_match = 1;
2743 return i;
2744 }
2745
2746 if (item->line > lineno && (best == 0 || item->line < best))
2747 {
2748 best = item->line;
2749 best_index = i;
2750 }
2751 }
2752
2753 /* If we got here, we didn't get an exact match. */
2754 return best_index;
2755 }
2756
2757 int
2758 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2759 {
2760 struct symtab_and_line sal;
2761
2762 sal = find_pc_line (pc, 0);
2763 *startptr = sal.pc;
2764 *endptr = sal.end;
2765 return sal.symtab != 0;
2766 }
2767
2768 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2769 address for that function that has an entry in SYMTAB's line info
2770 table. If such an entry cannot be found, return FUNC_ADDR
2771 unaltered. */
2772
2773 static CORE_ADDR
2774 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2775 {
2776 CORE_ADDR func_start, func_end;
2777 struct linetable *l;
2778 int i;
2779
2780 /* Give up if this symbol has no lineinfo table. */
2781 l = LINETABLE (symtab);
2782 if (l == NULL)
2783 return func_addr;
2784
2785 /* Get the range for the function's PC values, or give up if we
2786 cannot, for some reason. */
2787 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2788 return func_addr;
2789
2790 /* Linetable entries are ordered by PC values, see the commentary in
2791 symtab.h where `struct linetable' is defined. Thus, the first
2792 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2793 address we are looking for. */
2794 for (i = 0; i < l->nitems; i++)
2795 {
2796 struct linetable_entry *item = &(l->item[i]);
2797
2798 /* Don't use line numbers of zero, they mark special entries in
2799 the table. See the commentary on symtab.h before the
2800 definition of struct linetable. */
2801 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2802 return item->pc;
2803 }
2804
2805 return func_addr;
2806 }
2807
2808 /* Given a function symbol SYM, find the symtab and line for the start
2809 of the function.
2810 If the argument FUNFIRSTLINE is nonzero, we want the first line
2811 of real code inside the function. */
2812
2813 struct symtab_and_line
2814 find_function_start_sal (struct symbol *sym, int funfirstline)
2815 {
2816 struct symtab_and_line sal;
2817
2818 fixup_symbol_section (sym, NULL);
2819 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2820 SYMBOL_OBJ_SECTION (sym), 0);
2821
2822 /* We always should have a line for the function start address.
2823 If we don't, something is odd. Create a plain SAL refering
2824 just the PC and hope that skip_prologue_sal (if requested)
2825 can find a line number for after the prologue. */
2826 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2827 {
2828 init_sal (&sal);
2829 sal.pspace = current_program_space;
2830 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2831 sal.section = SYMBOL_OBJ_SECTION (sym);
2832 }
2833
2834 if (funfirstline)
2835 skip_prologue_sal (&sal);
2836
2837 return sal;
2838 }
2839
2840 /* Adjust SAL to the first instruction past the function prologue.
2841 If the PC was explicitly specified, the SAL is not changed.
2842 If the line number was explicitly specified, at most the SAL's PC
2843 is updated. If SAL is already past the prologue, then do nothing. */
2844
2845 void
2846 skip_prologue_sal (struct symtab_and_line *sal)
2847 {
2848 struct symbol *sym;
2849 struct symtab_and_line start_sal;
2850 struct cleanup *old_chain;
2851 CORE_ADDR pc, saved_pc;
2852 struct obj_section *section;
2853 const char *name;
2854 struct objfile *objfile;
2855 struct gdbarch *gdbarch;
2856 struct block *b, *function_block;
2857 int force_skip, skip;
2858
2859 /* Do not change the SAL if PC was specified explicitly. */
2860 if (sal->explicit_pc)
2861 return;
2862
2863 old_chain = save_current_space_and_thread ();
2864 switch_to_program_space_and_thread (sal->pspace);
2865
2866 sym = find_pc_sect_function (sal->pc, sal->section);
2867 if (sym != NULL)
2868 {
2869 fixup_symbol_section (sym, NULL);
2870
2871 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2872 section = SYMBOL_OBJ_SECTION (sym);
2873 name = SYMBOL_LINKAGE_NAME (sym);
2874 objfile = SYMBOL_SYMTAB (sym)->objfile;
2875 }
2876 else
2877 {
2878 struct minimal_symbol *msymbol
2879 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2880
2881 if (msymbol == NULL)
2882 {
2883 do_cleanups (old_chain);
2884 return;
2885 }
2886
2887 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2888 section = SYMBOL_OBJ_SECTION (msymbol);
2889 name = SYMBOL_LINKAGE_NAME (msymbol);
2890 objfile = msymbol_objfile (msymbol);
2891 }
2892
2893 gdbarch = get_objfile_arch (objfile);
2894
2895 /* Process the prologue in two passes. In the first pass try to skip the
2896 prologue (SKIP is true) and verify there is a real need for it (indicated
2897 by FORCE_SKIP). If no such reason was found run a second pass where the
2898 prologue is not skipped (SKIP is false). */
2899
2900 skip = 1;
2901 force_skip = 1;
2902
2903 /* Be conservative - allow direct PC (without skipping prologue) only if we
2904 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2905 have to be set by the caller so we use SYM instead. */
2906 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2907 force_skip = 0;
2908
2909 saved_pc = pc;
2910 do
2911 {
2912 pc = saved_pc;
2913
2914 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2915 so that gdbarch_skip_prologue has something unique to work on. */
2916 if (section_is_overlay (section) && !section_is_mapped (section))
2917 pc = overlay_unmapped_address (pc, section);
2918
2919 /* Skip "first line" of function (which is actually its prologue). */
2920 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2921 if (skip)
2922 pc = gdbarch_skip_prologue (gdbarch, pc);
2923
2924 /* For overlays, map pc back into its mapped VMA range. */
2925 pc = overlay_mapped_address (pc, section);
2926
2927 /* Calculate line number. */
2928 start_sal = find_pc_sect_line (pc, section, 0);
2929
2930 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2931 line is still part of the same function. */
2932 if (skip && start_sal.pc != pc
2933 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2934 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2935 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2936 == lookup_minimal_symbol_by_pc_section (pc, section))))
2937 {
2938 /* First pc of next line */
2939 pc = start_sal.end;
2940 /* Recalculate the line number (might not be N+1). */
2941 start_sal = find_pc_sect_line (pc, section, 0);
2942 }
2943
2944 /* On targets with executable formats that don't have a concept of
2945 constructors (ELF with .init has, PE doesn't), gcc emits a call
2946 to `__main' in `main' between the prologue and before user
2947 code. */
2948 if (gdbarch_skip_main_prologue_p (gdbarch)
2949 && name && strcmp_iw (name, "main") == 0)
2950 {
2951 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2952 /* Recalculate the line number (might not be N+1). */
2953 start_sal = find_pc_sect_line (pc, section, 0);
2954 force_skip = 1;
2955 }
2956 }
2957 while (!force_skip && skip--);
2958
2959 /* If we still don't have a valid source line, try to find the first
2960 PC in the lineinfo table that belongs to the same function. This
2961 happens with COFF debug info, which does not seem to have an
2962 entry in lineinfo table for the code after the prologue which has
2963 no direct relation to source. For example, this was found to be
2964 the case with the DJGPP target using "gcc -gcoff" when the
2965 compiler inserted code after the prologue to make sure the stack
2966 is aligned. */
2967 if (!force_skip && sym && start_sal.symtab == NULL)
2968 {
2969 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2970 /* Recalculate the line number. */
2971 start_sal = find_pc_sect_line (pc, section, 0);
2972 }
2973
2974 do_cleanups (old_chain);
2975
2976 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2977 forward SAL to the end of the prologue. */
2978 if (sal->pc >= pc)
2979 return;
2980
2981 sal->pc = pc;
2982 sal->section = section;
2983
2984 /* Unless the explicit_line flag was set, update the SAL line
2985 and symtab to correspond to the modified PC location. */
2986 if (sal->explicit_line)
2987 return;
2988
2989 sal->symtab = start_sal.symtab;
2990 sal->line = start_sal.line;
2991 sal->end = start_sal.end;
2992
2993 /* Check if we are now inside an inlined function. If we can,
2994 use the call site of the function instead. */
2995 b = block_for_pc_sect (sal->pc, sal->section);
2996 function_block = NULL;
2997 while (b != NULL)
2998 {
2999 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3000 function_block = b;
3001 else if (BLOCK_FUNCTION (b) != NULL)
3002 break;
3003 b = BLOCK_SUPERBLOCK (b);
3004 }
3005 if (function_block != NULL
3006 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3007 {
3008 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3009 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3010 }
3011 }
3012
3013 /* If P is of the form "operator[ \t]+..." where `...' is
3014 some legitimate operator text, return a pointer to the
3015 beginning of the substring of the operator text.
3016 Otherwise, return "". */
3017
3018 static char *
3019 operator_chars (char *p, char **end)
3020 {
3021 *end = "";
3022 if (strncmp (p, "operator", 8))
3023 return *end;
3024 p += 8;
3025
3026 /* Don't get faked out by `operator' being part of a longer
3027 identifier. */
3028 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3029 return *end;
3030
3031 /* Allow some whitespace between `operator' and the operator symbol. */
3032 while (*p == ' ' || *p == '\t')
3033 p++;
3034
3035 /* Recognize 'operator TYPENAME'. */
3036
3037 if (isalpha (*p) || *p == '_' || *p == '$')
3038 {
3039 char *q = p + 1;
3040
3041 while (isalnum (*q) || *q == '_' || *q == '$')
3042 q++;
3043 *end = q;
3044 return p;
3045 }
3046
3047 while (*p)
3048 switch (*p)
3049 {
3050 case '\\': /* regexp quoting */
3051 if (p[1] == '*')
3052 {
3053 if (p[2] == '=') /* 'operator\*=' */
3054 *end = p + 3;
3055 else /* 'operator\*' */
3056 *end = p + 2;
3057 return p;
3058 }
3059 else if (p[1] == '[')
3060 {
3061 if (p[2] == ']')
3062 error (_("mismatched quoting on brackets, "
3063 "try 'operator\\[\\]'"));
3064 else if (p[2] == '\\' && p[3] == ']')
3065 {
3066 *end = p + 4; /* 'operator\[\]' */
3067 return p;
3068 }
3069 else
3070 error (_("nothing is allowed between '[' and ']'"));
3071 }
3072 else
3073 {
3074 /* Gratuitous qoute: skip it and move on. */
3075 p++;
3076 continue;
3077 }
3078 break;
3079 case '!':
3080 case '=':
3081 case '*':
3082 case '/':
3083 case '%':
3084 case '^':
3085 if (p[1] == '=')
3086 *end = p + 2;
3087 else
3088 *end = p + 1;
3089 return p;
3090 case '<':
3091 case '>':
3092 case '+':
3093 case '-':
3094 case '&':
3095 case '|':
3096 if (p[0] == '-' && p[1] == '>')
3097 {
3098 /* Struct pointer member operator 'operator->'. */
3099 if (p[2] == '*')
3100 {
3101 *end = p + 3; /* 'operator->*' */
3102 return p;
3103 }
3104 else if (p[2] == '\\')
3105 {
3106 *end = p + 4; /* Hopefully 'operator->\*' */
3107 return p;
3108 }
3109 else
3110 {
3111 *end = p + 2; /* 'operator->' */
3112 return p;
3113 }
3114 }
3115 if (p[1] == '=' || p[1] == p[0])
3116 *end = p + 2;
3117 else
3118 *end = p + 1;
3119 return p;
3120 case '~':
3121 case ',':
3122 *end = p + 1;
3123 return p;
3124 case '(':
3125 if (p[1] != ')')
3126 error (_("`operator ()' must be specified "
3127 "without whitespace in `()'"));
3128 *end = p + 2;
3129 return p;
3130 case '?':
3131 if (p[1] != ':')
3132 error (_("`operator ?:' must be specified "
3133 "without whitespace in `?:'"));
3134 *end = p + 2;
3135 return p;
3136 case '[':
3137 if (p[1] != ']')
3138 error (_("`operator []' must be specified "
3139 "without whitespace in `[]'"));
3140 *end = p + 2;
3141 return p;
3142 default:
3143 error (_("`operator %s' not supported"), p);
3144 break;
3145 }
3146
3147 *end = "";
3148 return *end;
3149 }
3150 \f
3151
3152 /* Cache to watch for file names already seen by filename_seen. */
3153
3154 struct filename_seen_cache
3155 {
3156 /* Table of files seen so far. */
3157 htab_t tab;
3158 /* Initial size of the table. It automagically grows from here. */
3159 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3160 };
3161
3162 /* filename_seen_cache constructor. */
3163
3164 static struct filename_seen_cache *
3165 create_filename_seen_cache (void)
3166 {
3167 struct filename_seen_cache *cache;
3168
3169 cache = XNEW (struct filename_seen_cache);
3170 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3171 filename_hash, filename_eq,
3172 NULL, xcalloc, xfree);
3173
3174 return cache;
3175 }
3176
3177 /* Empty the cache, but do not delete it. */
3178
3179 static void
3180 clear_filename_seen_cache (struct filename_seen_cache *cache)
3181 {
3182 htab_empty (cache->tab);
3183 }
3184
3185 /* filename_seen_cache destructor.
3186 This takes a void * argument as it is generally used as a cleanup. */
3187
3188 static void
3189 delete_filename_seen_cache (void *ptr)
3190 {
3191 struct filename_seen_cache *cache = ptr;
3192
3193 htab_delete (cache->tab);
3194 xfree (cache);
3195 }
3196
3197 /* If FILE is not already in the table of files in CACHE, return zero;
3198 otherwise return non-zero. Optionally add FILE to the table if ADD
3199 is non-zero.
3200
3201 NOTE: We don't manage space for FILE, we assume FILE lives as long
3202 as the caller needs. */
3203
3204 static int
3205 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3206 {
3207 void **slot;
3208
3209 /* Is FILE in tab? */
3210 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3211 if (*slot != NULL)
3212 return 1;
3213
3214 /* No; maybe add it to tab. */
3215 if (add)
3216 *slot = (char *) file;
3217
3218 return 0;
3219 }
3220
3221 /* Data structure to maintain printing state for output_source_filename. */
3222
3223 struct output_source_filename_data
3224 {
3225 /* Cache of what we've seen so far. */
3226 struct filename_seen_cache *filename_seen_cache;
3227
3228 /* Flag of whether we're printing the first one. */
3229 int first;
3230 };
3231
3232 /* Slave routine for sources_info. Force line breaks at ,'s.
3233 NAME is the name to print.
3234 DATA contains the state for printing and watching for duplicates. */
3235
3236 static void
3237 output_source_filename (const char *name,
3238 struct output_source_filename_data *data)
3239 {
3240 /* Since a single source file can result in several partial symbol
3241 tables, we need to avoid printing it more than once. Note: if
3242 some of the psymtabs are read in and some are not, it gets
3243 printed both under "Source files for which symbols have been
3244 read" and "Source files for which symbols will be read in on
3245 demand". I consider this a reasonable way to deal with the
3246 situation. I'm not sure whether this can also happen for
3247 symtabs; it doesn't hurt to check. */
3248
3249 /* Was NAME already seen? */
3250 if (filename_seen (data->filename_seen_cache, name, 1))
3251 {
3252 /* Yes; don't print it again. */
3253 return;
3254 }
3255
3256 /* No; print it and reset *FIRST. */
3257 if (! data->first)
3258 printf_filtered (", ");
3259 data->first = 0;
3260
3261 wrap_here ("");
3262 fputs_filtered (name, gdb_stdout);
3263 }
3264
3265 /* A callback for map_partial_symbol_filenames. */
3266
3267 static void
3268 output_partial_symbol_filename (const char *filename, const char *fullname,
3269 void *data)
3270 {
3271 output_source_filename (fullname ? fullname : filename, data);
3272 }
3273
3274 static void
3275 sources_info (char *ignore, int from_tty)
3276 {
3277 struct symtab *s;
3278 struct objfile *objfile;
3279 struct output_source_filename_data data;
3280 struct cleanup *cleanups;
3281
3282 if (!have_full_symbols () && !have_partial_symbols ())
3283 {
3284 error (_("No symbol table is loaded. Use the \"file\" command."));
3285 }
3286
3287 data.filename_seen_cache = create_filename_seen_cache ();
3288 cleanups = make_cleanup (delete_filename_seen_cache,
3289 data.filename_seen_cache);
3290
3291 printf_filtered ("Source files for which symbols have been read in:\n\n");
3292
3293 data.first = 1;
3294 ALL_SYMTABS (objfile, s)
3295 {
3296 const char *fullname = symtab_to_fullname (s);
3297
3298 output_source_filename (fullname ? fullname : s->filename, &data);
3299 }
3300 printf_filtered ("\n\n");
3301
3302 printf_filtered ("Source files for which symbols "
3303 "will be read in on demand:\n\n");
3304
3305 clear_filename_seen_cache (data.filename_seen_cache);
3306 data.first = 1;
3307 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3308 1 /*need_fullname*/);
3309 printf_filtered ("\n");
3310
3311 do_cleanups (cleanups);
3312 }
3313
3314 static int
3315 file_matches (const char *file, char *files[], int nfiles)
3316 {
3317 int i;
3318
3319 if (file != NULL && nfiles != 0)
3320 {
3321 for (i = 0; i < nfiles; i++)
3322 {
3323 if (filename_cmp (files[i], lbasename (file)) == 0)
3324 return 1;
3325 }
3326 }
3327 else if (nfiles == 0)
3328 return 1;
3329 return 0;
3330 }
3331
3332 /* Free any memory associated with a search. */
3333
3334 void
3335 free_search_symbols (struct symbol_search *symbols)
3336 {
3337 struct symbol_search *p;
3338 struct symbol_search *next;
3339
3340 for (p = symbols; p != NULL; p = next)
3341 {
3342 next = p->next;
3343 xfree (p);
3344 }
3345 }
3346
3347 static void
3348 do_free_search_symbols_cleanup (void *symbols)
3349 {
3350 free_search_symbols (symbols);
3351 }
3352
3353 struct cleanup *
3354 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3355 {
3356 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3357 }
3358
3359 /* Helper function for sort_search_symbols and qsort. Can only
3360 sort symbols, not minimal symbols. */
3361
3362 static int
3363 compare_search_syms (const void *sa, const void *sb)
3364 {
3365 struct symbol_search **sym_a = (struct symbol_search **) sa;
3366 struct symbol_search **sym_b = (struct symbol_search **) sb;
3367
3368 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3369 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3370 }
3371
3372 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3373 prevtail where it is, but update its next pointer to point to
3374 the first of the sorted symbols. */
3375
3376 static struct symbol_search *
3377 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3378 {
3379 struct symbol_search **symbols, *symp, *old_next;
3380 int i;
3381
3382 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3383 * nfound);
3384 symp = prevtail->next;
3385 for (i = 0; i < nfound; i++)
3386 {
3387 symbols[i] = symp;
3388 symp = symp->next;
3389 }
3390 /* Generally NULL. */
3391 old_next = symp;
3392
3393 qsort (symbols, nfound, sizeof (struct symbol_search *),
3394 compare_search_syms);
3395
3396 symp = prevtail;
3397 for (i = 0; i < nfound; i++)
3398 {
3399 symp->next = symbols[i];
3400 symp = symp->next;
3401 }
3402 symp->next = old_next;
3403
3404 xfree (symbols);
3405 return symp;
3406 }
3407
3408 /* An object of this type is passed as the user_data to the
3409 expand_symtabs_matching method. */
3410 struct search_symbols_data
3411 {
3412 int nfiles;
3413 char **files;
3414
3415 /* It is true if PREG contains valid data, false otherwise. */
3416 unsigned preg_p : 1;
3417 regex_t preg;
3418 };
3419
3420 /* A callback for expand_symtabs_matching. */
3421
3422 static int
3423 search_symbols_file_matches (const char *filename, void *user_data)
3424 {
3425 struct search_symbols_data *data = user_data;
3426
3427 return file_matches (filename, data->files, data->nfiles);
3428 }
3429
3430 /* A callback for expand_symtabs_matching. */
3431
3432 static int
3433 search_symbols_name_matches (const char *symname, void *user_data)
3434 {
3435 struct search_symbols_data *data = user_data;
3436
3437 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3438 }
3439
3440 /* Search the symbol table for matches to the regular expression REGEXP,
3441 returning the results in *MATCHES.
3442
3443 Only symbols of KIND are searched:
3444 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3445 and constants (enums)
3446 FUNCTIONS_DOMAIN - search all functions
3447 TYPES_DOMAIN - search all type names
3448 ALL_DOMAIN - an internal error for this function
3449
3450 free_search_symbols should be called when *MATCHES is no longer needed.
3451
3452 The results are sorted locally; each symtab's global and static blocks are
3453 separately alphabetized. */
3454
3455 void
3456 search_symbols (char *regexp, enum search_domain kind,
3457 int nfiles, char *files[],
3458 struct symbol_search **matches)
3459 {
3460 struct symtab *s;
3461 struct blockvector *bv;
3462 struct block *b;
3463 int i = 0;
3464 struct block_iterator iter;
3465 struct symbol *sym;
3466 struct objfile *objfile;
3467 struct minimal_symbol *msymbol;
3468 int found_misc = 0;
3469 static const enum minimal_symbol_type types[]
3470 = {mst_data, mst_text, mst_abs};
3471 static const enum minimal_symbol_type types2[]
3472 = {mst_bss, mst_file_text, mst_abs};
3473 static const enum minimal_symbol_type types3[]
3474 = {mst_file_data, mst_solib_trampoline, mst_abs};
3475 static const enum minimal_symbol_type types4[]
3476 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3477 enum minimal_symbol_type ourtype;
3478 enum minimal_symbol_type ourtype2;
3479 enum minimal_symbol_type ourtype3;
3480 enum minimal_symbol_type ourtype4;
3481 struct symbol_search *sr;
3482 struct symbol_search *psr;
3483 struct symbol_search *tail;
3484 struct search_symbols_data datum;
3485
3486 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3487 CLEANUP_CHAIN is freed only in the case of an error. */
3488 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3489 struct cleanup *retval_chain;
3490
3491 gdb_assert (kind <= TYPES_DOMAIN);
3492
3493 ourtype = types[kind];
3494 ourtype2 = types2[kind];
3495 ourtype3 = types3[kind];
3496 ourtype4 = types4[kind];
3497
3498 sr = *matches = NULL;
3499 tail = NULL;
3500 datum.preg_p = 0;
3501
3502 if (regexp != NULL)
3503 {
3504 /* Make sure spacing is right for C++ operators.
3505 This is just a courtesy to make the matching less sensitive
3506 to how many spaces the user leaves between 'operator'
3507 and <TYPENAME> or <OPERATOR>. */
3508 char *opend;
3509 char *opname = operator_chars (regexp, &opend);
3510 int errcode;
3511
3512 if (*opname)
3513 {
3514 int fix = -1; /* -1 means ok; otherwise number of
3515 spaces needed. */
3516
3517 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3518 {
3519 /* There should 1 space between 'operator' and 'TYPENAME'. */
3520 if (opname[-1] != ' ' || opname[-2] == ' ')
3521 fix = 1;
3522 }
3523 else
3524 {
3525 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3526 if (opname[-1] == ' ')
3527 fix = 0;
3528 }
3529 /* If wrong number of spaces, fix it. */
3530 if (fix >= 0)
3531 {
3532 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3533
3534 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3535 regexp = tmp;
3536 }
3537 }
3538
3539 errcode = regcomp (&datum.preg, regexp,
3540 REG_NOSUB | (case_sensitivity == case_sensitive_off
3541 ? REG_ICASE : 0));
3542 if (errcode != 0)
3543 {
3544 char *err = get_regcomp_error (errcode, &datum.preg);
3545
3546 make_cleanup (xfree, err);
3547 error (_("Invalid regexp (%s): %s"), err, regexp);
3548 }
3549 datum.preg_p = 1;
3550 make_regfree_cleanup (&datum.preg);
3551 }
3552
3553 /* Search through the partial symtabs *first* for all symbols
3554 matching the regexp. That way we don't have to reproduce all of
3555 the machinery below. */
3556
3557 datum.nfiles = nfiles;
3558 datum.files = files;
3559 ALL_OBJFILES (objfile)
3560 {
3561 if (objfile->sf)
3562 objfile->sf->qf->expand_symtabs_matching (objfile,
3563 (nfiles == 0
3564 ? NULL
3565 : search_symbols_file_matches),
3566 search_symbols_name_matches,
3567 kind,
3568 &datum);
3569 }
3570
3571 retval_chain = old_chain;
3572
3573 /* Here, we search through the minimal symbol tables for functions
3574 and variables that match, and force their symbols to be read.
3575 This is in particular necessary for demangled variable names,
3576 which are no longer put into the partial symbol tables.
3577 The symbol will then be found during the scan of symtabs below.
3578
3579 For functions, find_pc_symtab should succeed if we have debug info
3580 for the function, for variables we have to call
3581 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3582 has debug info.
3583 If the lookup fails, set found_misc so that we will rescan to print
3584 any matching symbols without debug info.
3585 We only search the objfile the msymbol came from, we no longer search
3586 all objfiles. In large programs (1000s of shared libs) searching all
3587 objfiles is not worth the pain. */
3588
3589 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3590 {
3591 ALL_MSYMBOLS (objfile, msymbol)
3592 {
3593 QUIT;
3594
3595 if (msymbol->created_by_gdb)
3596 continue;
3597
3598 if (MSYMBOL_TYPE (msymbol) == ourtype
3599 || MSYMBOL_TYPE (msymbol) == ourtype2
3600 || MSYMBOL_TYPE (msymbol) == ourtype3
3601 || MSYMBOL_TYPE (msymbol) == ourtype4)
3602 {
3603 if (!datum.preg_p
3604 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3605 NULL, 0) == 0)
3606 {
3607 /* Note: An important side-effect of these lookup functions
3608 is to expand the symbol table if msymbol is found, for the
3609 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3610 if (kind == FUNCTIONS_DOMAIN
3611 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3612 : (lookup_symbol_in_objfile_from_linkage_name
3613 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3614 == NULL))
3615 found_misc = 1;
3616 }
3617 }
3618 }
3619 }
3620
3621 ALL_PRIMARY_SYMTABS (objfile, s)
3622 {
3623 bv = BLOCKVECTOR (s);
3624 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3625 {
3626 struct symbol_search *prevtail = tail;
3627 int nfound = 0;
3628
3629 b = BLOCKVECTOR_BLOCK (bv, i);
3630 ALL_BLOCK_SYMBOLS (b, iter, sym)
3631 {
3632 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3633
3634 QUIT;
3635
3636 if (file_matches (real_symtab->filename, files, nfiles)
3637 && ((!datum.preg_p
3638 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3639 NULL, 0) == 0)
3640 && ((kind == VARIABLES_DOMAIN
3641 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3642 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3643 && SYMBOL_CLASS (sym) != LOC_BLOCK
3644 /* LOC_CONST can be used for more than just enums,
3645 e.g., c++ static const members.
3646 We only want to skip enums here. */
3647 && !(SYMBOL_CLASS (sym) == LOC_CONST
3648 && TYPE_CODE (SYMBOL_TYPE (sym))
3649 == TYPE_CODE_ENUM))
3650 || (kind == FUNCTIONS_DOMAIN
3651 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3652 || (kind == TYPES_DOMAIN
3653 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3654 {
3655 /* match */
3656 psr = (struct symbol_search *)
3657 xmalloc (sizeof (struct symbol_search));
3658 psr->block = i;
3659 psr->symtab = real_symtab;
3660 psr->symbol = sym;
3661 psr->msymbol = NULL;
3662 psr->next = NULL;
3663 if (tail == NULL)
3664 sr = psr;
3665 else
3666 tail->next = psr;
3667 tail = psr;
3668 nfound ++;
3669 }
3670 }
3671 if (nfound > 0)
3672 {
3673 if (prevtail == NULL)
3674 {
3675 struct symbol_search dummy;
3676
3677 dummy.next = sr;
3678 tail = sort_search_symbols (&dummy, nfound);
3679 sr = dummy.next;
3680
3681 make_cleanup_free_search_symbols (sr);
3682 }
3683 else
3684 tail = sort_search_symbols (prevtail, nfound);
3685 }
3686 }
3687 }
3688
3689 /* If there are no eyes, avoid all contact. I mean, if there are
3690 no debug symbols, then print directly from the msymbol_vector. */
3691
3692 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3693 {
3694 ALL_MSYMBOLS (objfile, msymbol)
3695 {
3696 QUIT;
3697
3698 if (msymbol->created_by_gdb)
3699 continue;
3700
3701 if (MSYMBOL_TYPE (msymbol) == ourtype
3702 || MSYMBOL_TYPE (msymbol) == ourtype2
3703 || MSYMBOL_TYPE (msymbol) == ourtype3
3704 || MSYMBOL_TYPE (msymbol) == ourtype4)
3705 {
3706 if (!datum.preg_p
3707 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3708 NULL, 0) == 0)
3709 {
3710 /* For functions we can do a quick check of whether the
3711 symbol might be found via find_pc_symtab. */
3712 if (kind != FUNCTIONS_DOMAIN
3713 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3714 {
3715 if (lookup_symbol_in_objfile_from_linkage_name
3716 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3717 == NULL)
3718 {
3719 /* match */
3720 psr = (struct symbol_search *)
3721 xmalloc (sizeof (struct symbol_search));
3722 psr->block = i;
3723 psr->msymbol = msymbol;
3724 psr->symtab = NULL;
3725 psr->symbol = NULL;
3726 psr->next = NULL;
3727 if (tail == NULL)
3728 {
3729 sr = psr;
3730 make_cleanup_free_search_symbols (sr);
3731 }
3732 else
3733 tail->next = psr;
3734 tail = psr;
3735 }
3736 }
3737 }
3738 }
3739 }
3740 }
3741
3742 discard_cleanups (retval_chain);
3743 do_cleanups (old_chain);
3744 *matches = sr;
3745 }
3746
3747 /* Helper function for symtab_symbol_info, this function uses
3748 the data returned from search_symbols() to print information
3749 regarding the match to gdb_stdout. */
3750
3751 static void
3752 print_symbol_info (enum search_domain kind,
3753 struct symtab *s, struct symbol *sym,
3754 int block, char *last)
3755 {
3756 if (last == NULL || filename_cmp (last, s->filename) != 0)
3757 {
3758 fputs_filtered ("\nFile ", gdb_stdout);
3759 fputs_filtered (s->filename, gdb_stdout);
3760 fputs_filtered (":\n", gdb_stdout);
3761 }
3762
3763 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3764 printf_filtered ("static ");
3765
3766 /* Typedef that is not a C++ class. */
3767 if (kind == TYPES_DOMAIN
3768 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3769 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3770 /* variable, func, or typedef-that-is-c++-class. */
3771 else if (kind < TYPES_DOMAIN
3772 || (kind == TYPES_DOMAIN
3773 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3774 {
3775 type_print (SYMBOL_TYPE (sym),
3776 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3777 ? "" : SYMBOL_PRINT_NAME (sym)),
3778 gdb_stdout, 0);
3779
3780 printf_filtered (";\n");
3781 }
3782 }
3783
3784 /* This help function for symtab_symbol_info() prints information
3785 for non-debugging symbols to gdb_stdout. */
3786
3787 static void
3788 print_msymbol_info (struct minimal_symbol *msymbol)
3789 {
3790 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3791 char *tmp;
3792
3793 if (gdbarch_addr_bit (gdbarch) <= 32)
3794 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3795 & (CORE_ADDR) 0xffffffff,
3796 8);
3797 else
3798 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3799 16);
3800 printf_filtered ("%s %s\n",
3801 tmp, SYMBOL_PRINT_NAME (msymbol));
3802 }
3803
3804 /* This is the guts of the commands "info functions", "info types", and
3805 "info variables". It calls search_symbols to find all matches and then
3806 print_[m]symbol_info to print out some useful information about the
3807 matches. */
3808
3809 static void
3810 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3811 {
3812 static const char * const classnames[] =
3813 {"variable", "function", "type"};
3814 struct symbol_search *symbols;
3815 struct symbol_search *p;
3816 struct cleanup *old_chain;
3817 char *last_filename = NULL;
3818 int first = 1;
3819
3820 gdb_assert (kind <= TYPES_DOMAIN);
3821
3822 /* Must make sure that if we're interrupted, symbols gets freed. */
3823 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3824 old_chain = make_cleanup_free_search_symbols (symbols);
3825
3826 if (regexp != NULL)
3827 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3828 classnames[kind], regexp);
3829 else
3830 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3831
3832 for (p = symbols; p != NULL; p = p->next)
3833 {
3834 QUIT;
3835
3836 if (p->msymbol != NULL)
3837 {
3838 if (first)
3839 {
3840 printf_filtered (_("\nNon-debugging symbols:\n"));
3841 first = 0;
3842 }
3843 print_msymbol_info (p->msymbol);
3844 }
3845 else
3846 {
3847 print_symbol_info (kind,
3848 p->symtab,
3849 p->symbol,
3850 p->block,
3851 last_filename);
3852 last_filename = p->symtab->filename;
3853 }
3854 }
3855
3856 do_cleanups (old_chain);
3857 }
3858
3859 static void
3860 variables_info (char *regexp, int from_tty)
3861 {
3862 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3863 }
3864
3865 static void
3866 functions_info (char *regexp, int from_tty)
3867 {
3868 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3869 }
3870
3871
3872 static void
3873 types_info (char *regexp, int from_tty)
3874 {
3875 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3876 }
3877
3878 /* Breakpoint all functions matching regular expression. */
3879
3880 void
3881 rbreak_command_wrapper (char *regexp, int from_tty)
3882 {
3883 rbreak_command (regexp, from_tty);
3884 }
3885
3886 /* A cleanup function that calls end_rbreak_breakpoints. */
3887
3888 static void
3889 do_end_rbreak_breakpoints (void *ignore)
3890 {
3891 end_rbreak_breakpoints ();
3892 }
3893
3894 static void
3895 rbreak_command (char *regexp, int from_tty)
3896 {
3897 struct symbol_search *ss;
3898 struct symbol_search *p;
3899 struct cleanup *old_chain;
3900 char *string = NULL;
3901 int len = 0;
3902 char **files = NULL, *file_name;
3903 int nfiles = 0;
3904
3905 if (regexp)
3906 {
3907 char *colon = strchr (regexp, ':');
3908
3909 if (colon && *(colon + 1) != ':')
3910 {
3911 int colon_index;
3912
3913 colon_index = colon - regexp;
3914 file_name = alloca (colon_index + 1);
3915 memcpy (file_name, regexp, colon_index);
3916 file_name[colon_index--] = 0;
3917 while (isspace (file_name[colon_index]))
3918 file_name[colon_index--] = 0;
3919 files = &file_name;
3920 nfiles = 1;
3921 regexp = colon + 1;
3922 while (isspace (*regexp)) regexp++;
3923 }
3924 }
3925
3926 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3927 old_chain = make_cleanup_free_search_symbols (ss);
3928 make_cleanup (free_current_contents, &string);
3929
3930 start_rbreak_breakpoints ();
3931 make_cleanup (do_end_rbreak_breakpoints, NULL);
3932 for (p = ss; p != NULL; p = p->next)
3933 {
3934 if (p->msymbol == NULL)
3935 {
3936 int newlen = (strlen (p->symtab->filename)
3937 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3938 + 4);
3939
3940 if (newlen > len)
3941 {
3942 string = xrealloc (string, newlen);
3943 len = newlen;
3944 }
3945 strcpy (string, p->symtab->filename);
3946 strcat (string, ":'");
3947 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3948 strcat (string, "'");
3949 break_command (string, from_tty);
3950 print_symbol_info (FUNCTIONS_DOMAIN,
3951 p->symtab,
3952 p->symbol,
3953 p->block,
3954 p->symtab->filename);
3955 }
3956 else
3957 {
3958 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3959
3960 if (newlen > len)
3961 {
3962 string = xrealloc (string, newlen);
3963 len = newlen;
3964 }
3965 strcpy (string, "'");
3966 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3967 strcat (string, "'");
3968
3969 break_command (string, from_tty);
3970 printf_filtered ("<function, no debug info> %s;\n",
3971 SYMBOL_PRINT_NAME (p->msymbol));
3972 }
3973 }
3974
3975 do_cleanups (old_chain);
3976 }
3977 \f
3978
3979 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3980
3981 Either sym_text[sym_text_len] != '(' and then we search for any
3982 symbol starting with SYM_TEXT text.
3983
3984 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3985 be terminated at that point. Partial symbol tables do not have parameters
3986 information. */
3987
3988 static int
3989 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3990 {
3991 int (*ncmp) (const char *, const char *, size_t);
3992
3993 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3994
3995 if (ncmp (name, sym_text, sym_text_len) != 0)
3996 return 0;
3997
3998 if (sym_text[sym_text_len] == '(')
3999 {
4000 /* User searches for `name(someth...'. Require NAME to be terminated.
4001 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4002 present but accept even parameters presence. In this case this
4003 function is in fact strcmp_iw but whitespace skipping is not supported
4004 for tab completion. */
4005
4006 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4007 return 0;
4008 }
4009
4010 return 1;
4011 }
4012
4013 /* Free any memory associated with a completion list. */
4014
4015 static void
4016 free_completion_list (VEC (char_ptr) **list_ptr)
4017 {
4018 int i;
4019 char *p;
4020
4021 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4022 xfree (p);
4023 VEC_free (char_ptr, *list_ptr);
4024 }
4025
4026 /* Callback for make_cleanup. */
4027
4028 static void
4029 do_free_completion_list (void *list)
4030 {
4031 free_completion_list (list);
4032 }
4033
4034 /* Helper routine for make_symbol_completion_list. */
4035
4036 static VEC (char_ptr) *return_val;
4037
4038 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4039 completion_list_add_name \
4040 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4041
4042 /* Test to see if the symbol specified by SYMNAME (which is already
4043 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4044 characters. If so, add it to the current completion list. */
4045
4046 static void
4047 completion_list_add_name (const char *symname,
4048 const char *sym_text, int sym_text_len,
4049 const char *text, const char *word)
4050 {
4051 int newsize;
4052
4053 /* Clip symbols that cannot match. */
4054 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4055 return;
4056
4057 /* We have a match for a completion, so add SYMNAME to the current list
4058 of matches. Note that the name is moved to freshly malloc'd space. */
4059
4060 {
4061 char *new;
4062
4063 if (word == sym_text)
4064 {
4065 new = xmalloc (strlen (symname) + 5);
4066 strcpy (new, symname);
4067 }
4068 else if (word > sym_text)
4069 {
4070 /* Return some portion of symname. */
4071 new = xmalloc (strlen (symname) + 5);
4072 strcpy (new, symname + (word - sym_text));
4073 }
4074 else
4075 {
4076 /* Return some of SYM_TEXT plus symname. */
4077 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4078 strncpy (new, word, sym_text - word);
4079 new[sym_text - word] = '\0';
4080 strcat (new, symname);
4081 }
4082
4083 VEC_safe_push (char_ptr, return_val, new);
4084 }
4085 }
4086
4087 /* ObjC: In case we are completing on a selector, look as the msymbol
4088 again and feed all the selectors into the mill. */
4089
4090 static void
4091 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4092 const char *sym_text, int sym_text_len,
4093 const char *text, const char *word)
4094 {
4095 static char *tmp = NULL;
4096 static unsigned int tmplen = 0;
4097
4098 const char *method, *category, *selector;
4099 char *tmp2 = NULL;
4100
4101 method = SYMBOL_NATURAL_NAME (msymbol);
4102
4103 /* Is it a method? */
4104 if ((method[0] != '-') && (method[0] != '+'))
4105 return;
4106
4107 if (sym_text[0] == '[')
4108 /* Complete on shortened method method. */
4109 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4110
4111 while ((strlen (method) + 1) >= tmplen)
4112 {
4113 if (tmplen == 0)
4114 tmplen = 1024;
4115 else
4116 tmplen *= 2;
4117 tmp = xrealloc (tmp, tmplen);
4118 }
4119 selector = strchr (method, ' ');
4120 if (selector != NULL)
4121 selector++;
4122
4123 category = strchr (method, '(');
4124
4125 if ((category != NULL) && (selector != NULL))
4126 {
4127 memcpy (tmp, method, (category - method));
4128 tmp[category - method] = ' ';
4129 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4130 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4131 if (sym_text[0] == '[')
4132 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4133 }
4134
4135 if (selector != NULL)
4136 {
4137 /* Complete on selector only. */
4138 strcpy (tmp, selector);
4139 tmp2 = strchr (tmp, ']');
4140 if (tmp2 != NULL)
4141 *tmp2 = '\0';
4142
4143 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4144 }
4145 }
4146
4147 /* Break the non-quoted text based on the characters which are in
4148 symbols. FIXME: This should probably be language-specific. */
4149
4150 static char *
4151 language_search_unquoted_string (char *text, char *p)
4152 {
4153 for (; p > text; --p)
4154 {
4155 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4156 continue;
4157 else
4158 {
4159 if ((current_language->la_language == language_objc))
4160 {
4161 if (p[-1] == ':') /* Might be part of a method name. */
4162 continue;
4163 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4164 p -= 2; /* Beginning of a method name. */
4165 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4166 { /* Might be part of a method name. */
4167 char *t = p;
4168
4169 /* Seeing a ' ' or a '(' is not conclusive evidence
4170 that we are in the middle of a method name. However,
4171 finding "-[" or "+[" should be pretty un-ambiguous.
4172 Unfortunately we have to find it now to decide. */
4173
4174 while (t > text)
4175 if (isalnum (t[-1]) || t[-1] == '_' ||
4176 t[-1] == ' ' || t[-1] == ':' ||
4177 t[-1] == '(' || t[-1] == ')')
4178 --t;
4179 else
4180 break;
4181
4182 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4183 p = t - 2; /* Method name detected. */
4184 /* Else we leave with p unchanged. */
4185 }
4186 }
4187 break;
4188 }
4189 }
4190 return p;
4191 }
4192
4193 static void
4194 completion_list_add_fields (struct symbol *sym, char *sym_text,
4195 int sym_text_len, char *text, char *word)
4196 {
4197 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4198 {
4199 struct type *t = SYMBOL_TYPE (sym);
4200 enum type_code c = TYPE_CODE (t);
4201 int j;
4202
4203 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4204 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4205 if (TYPE_FIELD_NAME (t, j))
4206 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4207 sym_text, sym_text_len, text, word);
4208 }
4209 }
4210
4211 /* Type of the user_data argument passed to add_macro_name or
4212 expand_partial_symbol_name. The contents are simply whatever is
4213 needed by completion_list_add_name. */
4214 struct add_name_data
4215 {
4216 char *sym_text;
4217 int sym_text_len;
4218 char *text;
4219 char *word;
4220 };
4221
4222 /* A callback used with macro_for_each and macro_for_each_in_scope.
4223 This adds a macro's name to the current completion list. */
4224
4225 static void
4226 add_macro_name (const char *name, const struct macro_definition *ignore,
4227 struct macro_source_file *ignore2, int ignore3,
4228 void *user_data)
4229 {
4230 struct add_name_data *datum = (struct add_name_data *) user_data;
4231
4232 completion_list_add_name ((char *) name,
4233 datum->sym_text, datum->sym_text_len,
4234 datum->text, datum->word);
4235 }
4236
4237 /* A callback for expand_partial_symbol_names. */
4238
4239 static int
4240 expand_partial_symbol_name (const char *name, void *user_data)
4241 {
4242 struct add_name_data *datum = (struct add_name_data *) user_data;
4243
4244 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4245 }
4246
4247 VEC (char_ptr) *
4248 default_make_symbol_completion_list_break_on (char *text, char *word,
4249 const char *break_on,
4250 enum type_code code)
4251 {
4252 /* Problem: All of the symbols have to be copied because readline
4253 frees them. I'm not going to worry about this; hopefully there
4254 won't be that many. */
4255
4256 struct symbol *sym;
4257 struct symtab *s;
4258 struct minimal_symbol *msymbol;
4259 struct objfile *objfile;
4260 struct block *b;
4261 const struct block *surrounding_static_block, *surrounding_global_block;
4262 struct block_iterator iter;
4263 /* The symbol we are completing on. Points in same buffer as text. */
4264 char *sym_text;
4265 /* Length of sym_text. */
4266 int sym_text_len;
4267 struct add_name_data datum;
4268 struct cleanup *back_to;
4269
4270 /* Now look for the symbol we are supposed to complete on. */
4271 {
4272 char *p;
4273 char quote_found;
4274 char *quote_pos = NULL;
4275
4276 /* First see if this is a quoted string. */
4277 quote_found = '\0';
4278 for (p = text; *p != '\0'; ++p)
4279 {
4280 if (quote_found != '\0')
4281 {
4282 if (*p == quote_found)
4283 /* Found close quote. */
4284 quote_found = '\0';
4285 else if (*p == '\\' && p[1] == quote_found)
4286 /* A backslash followed by the quote character
4287 doesn't end the string. */
4288 ++p;
4289 }
4290 else if (*p == '\'' || *p == '"')
4291 {
4292 quote_found = *p;
4293 quote_pos = p;
4294 }
4295 }
4296 if (quote_found == '\'')
4297 /* A string within single quotes can be a symbol, so complete on it. */
4298 sym_text = quote_pos + 1;
4299 else if (quote_found == '"')
4300 /* A double-quoted string is never a symbol, nor does it make sense
4301 to complete it any other way. */
4302 {
4303 return NULL;
4304 }
4305 else
4306 {
4307 /* It is not a quoted string. Break it based on the characters
4308 which are in symbols. */
4309 while (p > text)
4310 {
4311 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4312 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4313 --p;
4314 else
4315 break;
4316 }
4317 sym_text = p;
4318 }
4319 }
4320
4321 sym_text_len = strlen (sym_text);
4322
4323 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4324
4325 if (current_language->la_language == language_cplus
4326 || current_language->la_language == language_java
4327 || current_language->la_language == language_fortran)
4328 {
4329 /* These languages may have parameters entered by user but they are never
4330 present in the partial symbol tables. */
4331
4332 const char *cs = memchr (sym_text, '(', sym_text_len);
4333
4334 if (cs)
4335 sym_text_len = cs - sym_text;
4336 }
4337 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4338
4339 return_val = NULL;
4340 back_to = make_cleanup (do_free_completion_list, &return_val);
4341
4342 datum.sym_text = sym_text;
4343 datum.sym_text_len = sym_text_len;
4344 datum.text = text;
4345 datum.word = word;
4346
4347 /* Look through the partial symtabs for all symbols which begin
4348 by matching SYM_TEXT. Expand all CUs that you find to the list.
4349 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4350 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4351
4352 /* At this point scan through the misc symbol vectors and add each
4353 symbol you find to the list. Eventually we want to ignore
4354 anything that isn't a text symbol (everything else will be
4355 handled by the psymtab code above). */
4356
4357 if (code == TYPE_CODE_UNDEF)
4358 {
4359 ALL_MSYMBOLS (objfile, msymbol)
4360 {
4361 QUIT;
4362 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4363 word);
4364
4365 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4366 word);
4367 }
4368 }
4369
4370 /* Search upwards from currently selected frame (so that we can
4371 complete on local vars). Also catch fields of types defined in
4372 this places which match our text string. Only complete on types
4373 visible from current context. */
4374
4375 b = get_selected_block (0);
4376 surrounding_static_block = block_static_block (b);
4377 surrounding_global_block = block_global_block (b);
4378 if (surrounding_static_block != NULL)
4379 while (b != surrounding_static_block)
4380 {
4381 QUIT;
4382
4383 ALL_BLOCK_SYMBOLS (b, iter, sym)
4384 {
4385 if (code == TYPE_CODE_UNDEF)
4386 {
4387 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4388 word);
4389 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4390 word);
4391 }
4392 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4393 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4394 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4395 word);
4396 }
4397
4398 /* Stop when we encounter an enclosing function. Do not stop for
4399 non-inlined functions - the locals of the enclosing function
4400 are in scope for a nested function. */
4401 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4402 break;
4403 b = BLOCK_SUPERBLOCK (b);
4404 }
4405
4406 /* Add fields from the file's types; symbols will be added below. */
4407
4408 if (code == TYPE_CODE_UNDEF)
4409 {
4410 if (surrounding_static_block != NULL)
4411 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4412 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4413
4414 if (surrounding_global_block != NULL)
4415 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4416 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4417 }
4418
4419 /* Go through the symtabs and check the externs and statics for
4420 symbols which match. */
4421
4422 ALL_PRIMARY_SYMTABS (objfile, s)
4423 {
4424 QUIT;
4425 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4426 ALL_BLOCK_SYMBOLS (b, iter, sym)
4427 {
4428 if (code == TYPE_CODE_UNDEF
4429 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4430 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4431 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4432 }
4433 }
4434
4435 ALL_PRIMARY_SYMTABS (objfile, s)
4436 {
4437 QUIT;
4438 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4439 ALL_BLOCK_SYMBOLS (b, iter, sym)
4440 {
4441 if (code == TYPE_CODE_UNDEF
4442 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4443 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4444 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4445 }
4446 }
4447
4448 /* Skip macros if we are completing a struct tag -- arguable but
4449 usually what is expected. */
4450 if (current_language->la_macro_expansion == macro_expansion_c
4451 && code == TYPE_CODE_UNDEF)
4452 {
4453 struct macro_scope *scope;
4454
4455 /* Add any macros visible in the default scope. Note that this
4456 may yield the occasional wrong result, because an expression
4457 might be evaluated in a scope other than the default. For
4458 example, if the user types "break file:line if <TAB>", the
4459 resulting expression will be evaluated at "file:line" -- but
4460 at there does not seem to be a way to detect this at
4461 completion time. */
4462 scope = default_macro_scope ();
4463 if (scope)
4464 {
4465 macro_for_each_in_scope (scope->file, scope->line,
4466 add_macro_name, &datum);
4467 xfree (scope);
4468 }
4469
4470 /* User-defined macros are always visible. */
4471 macro_for_each (macro_user_macros, add_macro_name, &datum);
4472 }
4473
4474 discard_cleanups (back_to);
4475 return (return_val);
4476 }
4477
4478 VEC (char_ptr) *
4479 default_make_symbol_completion_list (char *text, char *word,
4480 enum type_code code)
4481 {
4482 return default_make_symbol_completion_list_break_on (text, word, "", code);
4483 }
4484
4485 /* Return a vector of all symbols (regardless of class) which begin by
4486 matching TEXT. If the answer is no symbols, then the return value
4487 is NULL. */
4488
4489 VEC (char_ptr) *
4490 make_symbol_completion_list (char *text, char *word)
4491 {
4492 return current_language->la_make_symbol_completion_list (text, word,
4493 TYPE_CODE_UNDEF);
4494 }
4495
4496 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4497 symbols whose type code is CODE. */
4498
4499 VEC (char_ptr) *
4500 make_symbol_completion_type (char *text, char *word, enum type_code code)
4501 {
4502 gdb_assert (code == TYPE_CODE_UNION
4503 || code == TYPE_CODE_STRUCT
4504 || code == TYPE_CODE_CLASS
4505 || code == TYPE_CODE_ENUM);
4506 return current_language->la_make_symbol_completion_list (text, word, code);
4507 }
4508
4509 /* Like make_symbol_completion_list, but suitable for use as a
4510 completion function. */
4511
4512 VEC (char_ptr) *
4513 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4514 char *text, char *word)
4515 {
4516 return make_symbol_completion_list (text, word);
4517 }
4518
4519 /* Like make_symbol_completion_list, but returns a list of symbols
4520 defined in a source file FILE. */
4521
4522 VEC (char_ptr) *
4523 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4524 {
4525 struct symbol *sym;
4526 struct symtab *s;
4527 struct block *b;
4528 struct block_iterator iter;
4529 /* The symbol we are completing on. Points in same buffer as text. */
4530 char *sym_text;
4531 /* Length of sym_text. */
4532 int sym_text_len;
4533
4534 /* Now look for the symbol we are supposed to complete on.
4535 FIXME: This should be language-specific. */
4536 {
4537 char *p;
4538 char quote_found;
4539 char *quote_pos = NULL;
4540
4541 /* First see if this is a quoted string. */
4542 quote_found = '\0';
4543 for (p = text; *p != '\0'; ++p)
4544 {
4545 if (quote_found != '\0')
4546 {
4547 if (*p == quote_found)
4548 /* Found close quote. */
4549 quote_found = '\0';
4550 else if (*p == '\\' && p[1] == quote_found)
4551 /* A backslash followed by the quote character
4552 doesn't end the string. */
4553 ++p;
4554 }
4555 else if (*p == '\'' || *p == '"')
4556 {
4557 quote_found = *p;
4558 quote_pos = p;
4559 }
4560 }
4561 if (quote_found == '\'')
4562 /* A string within single quotes can be a symbol, so complete on it. */
4563 sym_text = quote_pos + 1;
4564 else if (quote_found == '"')
4565 /* A double-quoted string is never a symbol, nor does it make sense
4566 to complete it any other way. */
4567 {
4568 return NULL;
4569 }
4570 else
4571 {
4572 /* Not a quoted string. */
4573 sym_text = language_search_unquoted_string (text, p);
4574 }
4575 }
4576
4577 sym_text_len = strlen (sym_text);
4578
4579 return_val = NULL;
4580
4581 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4582 in). */
4583 s = lookup_symtab (srcfile);
4584 if (s == NULL)
4585 {
4586 /* Maybe they typed the file with leading directories, while the
4587 symbol tables record only its basename. */
4588 const char *tail = lbasename (srcfile);
4589
4590 if (tail > srcfile)
4591 s = lookup_symtab (tail);
4592 }
4593
4594 /* If we have no symtab for that file, return an empty list. */
4595 if (s == NULL)
4596 return (return_val);
4597
4598 /* Go through this symtab and check the externs and statics for
4599 symbols which match. */
4600
4601 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4602 ALL_BLOCK_SYMBOLS (b, iter, sym)
4603 {
4604 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4605 }
4606
4607 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4608 ALL_BLOCK_SYMBOLS (b, iter, sym)
4609 {
4610 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4611 }
4612
4613 return (return_val);
4614 }
4615
4616 /* A helper function for make_source_files_completion_list. It adds
4617 another file name to a list of possible completions, growing the
4618 list as necessary. */
4619
4620 static void
4621 add_filename_to_list (const char *fname, char *text, char *word,
4622 VEC (char_ptr) **list)
4623 {
4624 char *new;
4625 size_t fnlen = strlen (fname);
4626
4627 if (word == text)
4628 {
4629 /* Return exactly fname. */
4630 new = xmalloc (fnlen + 5);
4631 strcpy (new, fname);
4632 }
4633 else if (word > text)
4634 {
4635 /* Return some portion of fname. */
4636 new = xmalloc (fnlen + 5);
4637 strcpy (new, fname + (word - text));
4638 }
4639 else
4640 {
4641 /* Return some of TEXT plus fname. */
4642 new = xmalloc (fnlen + (text - word) + 5);
4643 strncpy (new, word, text - word);
4644 new[text - word] = '\0';
4645 strcat (new, fname);
4646 }
4647 VEC_safe_push (char_ptr, *list, new);
4648 }
4649
4650 static int
4651 not_interesting_fname (const char *fname)
4652 {
4653 static const char *illegal_aliens[] = {
4654 "_globals_", /* inserted by coff_symtab_read */
4655 NULL
4656 };
4657 int i;
4658
4659 for (i = 0; illegal_aliens[i]; i++)
4660 {
4661 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4662 return 1;
4663 }
4664 return 0;
4665 }
4666
4667 /* An object of this type is passed as the user_data argument to
4668 map_partial_symbol_filenames. */
4669 struct add_partial_filename_data
4670 {
4671 struct filename_seen_cache *filename_seen_cache;
4672 char *text;
4673 char *word;
4674 int text_len;
4675 VEC (char_ptr) **list;
4676 };
4677
4678 /* A callback for map_partial_symbol_filenames. */
4679
4680 static void
4681 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4682 void *user_data)
4683 {
4684 struct add_partial_filename_data *data = user_data;
4685
4686 if (not_interesting_fname (filename))
4687 return;
4688 if (!filename_seen (data->filename_seen_cache, filename, 1)
4689 && filename_ncmp (filename, data->text, data->text_len) == 0)
4690 {
4691 /* This file matches for a completion; add it to the
4692 current list of matches. */
4693 add_filename_to_list (filename, data->text, data->word, data->list);
4694 }
4695 else
4696 {
4697 const char *base_name = lbasename (filename);
4698
4699 if (base_name != filename
4700 && !filename_seen (data->filename_seen_cache, base_name, 1)
4701 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4702 add_filename_to_list (base_name, data->text, data->word, data->list);
4703 }
4704 }
4705
4706 /* Return a vector of all source files whose names begin with matching
4707 TEXT. The file names are looked up in the symbol tables of this
4708 program. If the answer is no matchess, then the return value is
4709 NULL. */
4710
4711 VEC (char_ptr) *
4712 make_source_files_completion_list (char *text, char *word)
4713 {
4714 struct symtab *s;
4715 struct objfile *objfile;
4716 size_t text_len = strlen (text);
4717 VEC (char_ptr) *list = NULL;
4718 const char *base_name;
4719 struct add_partial_filename_data datum;
4720 struct filename_seen_cache *filename_seen_cache;
4721 struct cleanup *back_to, *cache_cleanup;
4722
4723 if (!have_full_symbols () && !have_partial_symbols ())
4724 return list;
4725
4726 back_to = make_cleanup (do_free_completion_list, &list);
4727
4728 filename_seen_cache = create_filename_seen_cache ();
4729 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4730 filename_seen_cache);
4731
4732 ALL_SYMTABS (objfile, s)
4733 {
4734 if (not_interesting_fname (s->filename))
4735 continue;
4736 if (!filename_seen (filename_seen_cache, s->filename, 1)
4737 && filename_ncmp (s->filename, text, text_len) == 0)
4738 {
4739 /* This file matches for a completion; add it to the current
4740 list of matches. */
4741 add_filename_to_list (s->filename, text, word, &list);
4742 }
4743 else
4744 {
4745 /* NOTE: We allow the user to type a base name when the
4746 debug info records leading directories, but not the other
4747 way around. This is what subroutines of breakpoint
4748 command do when they parse file names. */
4749 base_name = lbasename (s->filename);
4750 if (base_name != s->filename
4751 && !filename_seen (filename_seen_cache, base_name, 1)
4752 && filename_ncmp (base_name, text, text_len) == 0)
4753 add_filename_to_list (base_name, text, word, &list);
4754 }
4755 }
4756
4757 datum.filename_seen_cache = filename_seen_cache;
4758 datum.text = text;
4759 datum.word = word;
4760 datum.text_len = text_len;
4761 datum.list = &list;
4762 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4763 0 /*need_fullname*/);
4764
4765 do_cleanups (cache_cleanup);
4766 discard_cleanups (back_to);
4767
4768 return list;
4769 }
4770
4771 /* Determine if PC is in the prologue of a function. The prologue is the area
4772 between the first instruction of a function, and the first executable line.
4773 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4774
4775 If non-zero, func_start is where we think the prologue starts, possibly
4776 by previous examination of symbol table information. */
4777
4778 int
4779 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4780 {
4781 struct symtab_and_line sal;
4782 CORE_ADDR func_addr, func_end;
4783
4784 /* We have several sources of information we can consult to figure
4785 this out.
4786 - Compilers usually emit line number info that marks the prologue
4787 as its own "source line". So the ending address of that "line"
4788 is the end of the prologue. If available, this is the most
4789 reliable method.
4790 - The minimal symbols and partial symbols, which can usually tell
4791 us the starting and ending addresses of a function.
4792 - If we know the function's start address, we can call the
4793 architecture-defined gdbarch_skip_prologue function to analyze the
4794 instruction stream and guess where the prologue ends.
4795 - Our `func_start' argument; if non-zero, this is the caller's
4796 best guess as to the function's entry point. At the time of
4797 this writing, handle_inferior_event doesn't get this right, so
4798 it should be our last resort. */
4799
4800 /* Consult the partial symbol table, to find which function
4801 the PC is in. */
4802 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4803 {
4804 CORE_ADDR prologue_end;
4805
4806 /* We don't even have minsym information, so fall back to using
4807 func_start, if given. */
4808 if (! func_start)
4809 return 1; /* We *might* be in a prologue. */
4810
4811 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4812
4813 return func_start <= pc && pc < prologue_end;
4814 }
4815
4816 /* If we have line number information for the function, that's
4817 usually pretty reliable. */
4818 sal = find_pc_line (func_addr, 0);
4819
4820 /* Now sal describes the source line at the function's entry point,
4821 which (by convention) is the prologue. The end of that "line",
4822 sal.end, is the end of the prologue.
4823
4824 Note that, for functions whose source code is all on a single
4825 line, the line number information doesn't always end up this way.
4826 So we must verify that our purported end-of-prologue address is
4827 *within* the function, not at its start or end. */
4828 if (sal.line == 0
4829 || sal.end <= func_addr
4830 || func_end <= sal.end)
4831 {
4832 /* We don't have any good line number info, so use the minsym
4833 information, together with the architecture-specific prologue
4834 scanning code. */
4835 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4836
4837 return func_addr <= pc && pc < prologue_end;
4838 }
4839
4840 /* We have line number info, and it looks good. */
4841 return func_addr <= pc && pc < sal.end;
4842 }
4843
4844 /* Given PC at the function's start address, attempt to find the
4845 prologue end using SAL information. Return zero if the skip fails.
4846
4847 A non-optimized prologue traditionally has one SAL for the function
4848 and a second for the function body. A single line function has
4849 them both pointing at the same line.
4850
4851 An optimized prologue is similar but the prologue may contain
4852 instructions (SALs) from the instruction body. Need to skip those
4853 while not getting into the function body.
4854
4855 The functions end point and an increasing SAL line are used as
4856 indicators of the prologue's endpoint.
4857
4858 This code is based on the function refine_prologue_limit
4859 (found in ia64). */
4860
4861 CORE_ADDR
4862 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4863 {
4864 struct symtab_and_line prologue_sal;
4865 CORE_ADDR start_pc;
4866 CORE_ADDR end_pc;
4867 struct block *bl;
4868
4869 /* Get an initial range for the function. */
4870 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4871 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4872
4873 prologue_sal = find_pc_line (start_pc, 0);
4874 if (prologue_sal.line != 0)
4875 {
4876 /* For languages other than assembly, treat two consecutive line
4877 entries at the same address as a zero-instruction prologue.
4878 The GNU assembler emits separate line notes for each instruction
4879 in a multi-instruction macro, but compilers generally will not
4880 do this. */
4881 if (prologue_sal.symtab->language != language_asm)
4882 {
4883 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4884 int idx = 0;
4885
4886 /* Skip any earlier lines, and any end-of-sequence marker
4887 from a previous function. */
4888 while (linetable->item[idx].pc != prologue_sal.pc
4889 || linetable->item[idx].line == 0)
4890 idx++;
4891
4892 if (idx+1 < linetable->nitems
4893 && linetable->item[idx+1].line != 0
4894 && linetable->item[idx+1].pc == start_pc)
4895 return start_pc;
4896 }
4897
4898 /* If there is only one sal that covers the entire function,
4899 then it is probably a single line function, like
4900 "foo(){}". */
4901 if (prologue_sal.end >= end_pc)
4902 return 0;
4903
4904 while (prologue_sal.end < end_pc)
4905 {
4906 struct symtab_and_line sal;
4907
4908 sal = find_pc_line (prologue_sal.end, 0);
4909 if (sal.line == 0)
4910 break;
4911 /* Assume that a consecutive SAL for the same (or larger)
4912 line mark the prologue -> body transition. */
4913 if (sal.line >= prologue_sal.line)
4914 break;
4915
4916 /* The line number is smaller. Check that it's from the
4917 same function, not something inlined. If it's inlined,
4918 then there is no point comparing the line numbers. */
4919 bl = block_for_pc (prologue_sal.end);
4920 while (bl)
4921 {
4922 if (block_inlined_p (bl))
4923 break;
4924 if (BLOCK_FUNCTION (bl))
4925 {
4926 bl = NULL;
4927 break;
4928 }
4929 bl = BLOCK_SUPERBLOCK (bl);
4930 }
4931 if (bl != NULL)
4932 break;
4933
4934 /* The case in which compiler's optimizer/scheduler has
4935 moved instructions into the prologue. We look ahead in
4936 the function looking for address ranges whose
4937 corresponding line number is less the first one that we
4938 found for the function. This is more conservative then
4939 refine_prologue_limit which scans a large number of SALs
4940 looking for any in the prologue. */
4941 prologue_sal = sal;
4942 }
4943 }
4944
4945 if (prologue_sal.end < end_pc)
4946 /* Return the end of this line, or zero if we could not find a
4947 line. */
4948 return prologue_sal.end;
4949 else
4950 /* Don't return END_PC, which is past the end of the function. */
4951 return prologue_sal.pc;
4952 }
4953 \f
4954 /* Track MAIN */
4955 static char *name_of_main;
4956 enum language language_of_main = language_unknown;
4957
4958 void
4959 set_main_name (const char *name)
4960 {
4961 if (name_of_main != NULL)
4962 {
4963 xfree (name_of_main);
4964 name_of_main = NULL;
4965 language_of_main = language_unknown;
4966 }
4967 if (name != NULL)
4968 {
4969 name_of_main = xstrdup (name);
4970 language_of_main = language_unknown;
4971 }
4972 }
4973
4974 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4975 accordingly. */
4976
4977 static void
4978 find_main_name (void)
4979 {
4980 const char *new_main_name;
4981
4982 /* Try to see if the main procedure is in Ada. */
4983 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4984 be to add a new method in the language vector, and call this
4985 method for each language until one of them returns a non-empty
4986 name. This would allow us to remove this hard-coded call to
4987 an Ada function. It is not clear that this is a better approach
4988 at this point, because all methods need to be written in a way
4989 such that false positives never be returned. For instance, it is
4990 important that a method does not return a wrong name for the main
4991 procedure if the main procedure is actually written in a different
4992 language. It is easy to guaranty this with Ada, since we use a
4993 special symbol generated only when the main in Ada to find the name
4994 of the main procedure. It is difficult however to see how this can
4995 be guarantied for languages such as C, for instance. This suggests
4996 that order of call for these methods becomes important, which means
4997 a more complicated approach. */
4998 new_main_name = ada_main_name ();
4999 if (new_main_name != NULL)
5000 {
5001 set_main_name (new_main_name);
5002 return;
5003 }
5004
5005 new_main_name = go_main_name ();
5006 if (new_main_name != NULL)
5007 {
5008 set_main_name (new_main_name);
5009 return;
5010 }
5011
5012 new_main_name = pascal_main_name ();
5013 if (new_main_name != NULL)
5014 {
5015 set_main_name (new_main_name);
5016 return;
5017 }
5018
5019 /* The languages above didn't identify the name of the main procedure.
5020 Fallback to "main". */
5021 set_main_name ("main");
5022 }
5023
5024 char *
5025 main_name (void)
5026 {
5027 if (name_of_main == NULL)
5028 find_main_name ();
5029
5030 return name_of_main;
5031 }
5032
5033 /* Handle ``executable_changed'' events for the symtab module. */
5034
5035 static void
5036 symtab_observer_executable_changed (void)
5037 {
5038 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5039 set_main_name (NULL);
5040 }
5041
5042 /* Return 1 if the supplied producer string matches the ARM RealView
5043 compiler (armcc). */
5044
5045 int
5046 producer_is_realview (const char *producer)
5047 {
5048 static const char *const arm_idents[] = {
5049 "ARM C Compiler, ADS",
5050 "Thumb C Compiler, ADS",
5051 "ARM C++ Compiler, ADS",
5052 "Thumb C++ Compiler, ADS",
5053 "ARM/Thumb C/C++ Compiler, RVCT",
5054 "ARM C/C++ Compiler, RVCT"
5055 };
5056 int i;
5057
5058 if (producer == NULL)
5059 return 0;
5060
5061 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5062 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5063 return 1;
5064
5065 return 0;
5066 }
5067
5068 void
5069 _initialize_symtab (void)
5070 {
5071 add_info ("variables", variables_info, _("\
5072 All global and static variable names, or those matching REGEXP."));
5073 if (dbx_commands)
5074 add_com ("whereis", class_info, variables_info, _("\
5075 All global and static variable names, or those matching REGEXP."));
5076
5077 add_info ("functions", functions_info,
5078 _("All function names, or those matching REGEXP."));
5079
5080 /* FIXME: This command has at least the following problems:
5081 1. It prints builtin types (in a very strange and confusing fashion).
5082 2. It doesn't print right, e.g. with
5083 typedef struct foo *FOO
5084 type_print prints "FOO" when we want to make it (in this situation)
5085 print "struct foo *".
5086 I also think "ptype" or "whatis" is more likely to be useful (but if
5087 there is much disagreement "info types" can be fixed). */
5088 add_info ("types", types_info,
5089 _("All type names, or those matching REGEXP."));
5090
5091 add_info ("sources", sources_info,
5092 _("Source files in the program."));
5093
5094 add_com ("rbreak", class_breakpoint, rbreak_command,
5095 _("Set a breakpoint for all functions matching REGEXP."));
5096
5097 if (xdb_commands)
5098 {
5099 add_com ("lf", class_info, sources_info,
5100 _("Source files in the program"));
5101 add_com ("lg", class_info, variables_info, _("\
5102 All global and static variable names, or those matching REGEXP."));
5103 }
5104
5105 add_setshow_enum_cmd ("multiple-symbols", no_class,
5106 multiple_symbols_modes, &multiple_symbols_mode,
5107 _("\
5108 Set the debugger behavior when more than one symbol are possible matches\n\
5109 in an expression."), _("\
5110 Show how the debugger handles ambiguities in expressions."), _("\
5111 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5112 NULL, NULL, &setlist, &showlist);
5113
5114 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5115 &basenames_may_differ, _("\
5116 Set whether a source file may have multiple base names."), _("\
5117 Show whether a source file may have multiple base names."), _("\
5118 (A \"base name\" is the name of a file with the directory part removed.\n\
5119 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5120 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5121 before comparing them. Canonicalization is an expensive operation,\n\
5122 but it allows the same file be known by more than one base name.\n\
5123 If not set (the default), all source files are assumed to have just\n\
5124 one base name, and gdb will do file name comparisons more efficiently."),
5125 NULL, NULL,
5126 &setlist, &showlist);
5127
5128 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5129 _("Set debugging of symbol table creation."),
5130 _("Show debugging of symbol table creation."), _("\
5131 When enabled, debugging messages are printed when building symbol tables."),
5132 NULL,
5133 NULL,
5134 &setdebuglist, &showdebuglist);
5135
5136 observer_attach_executable_changed (symtab_observer_executable_changed);
5137 }