]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
* symtab.c (check_field): Now static. Move from...
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2004, 2007-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "call-cmds.h"
31 #include "gdb_regex.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "demangle.h"
35 #include "inferior.h"
36 #include "source.h"
37 #include "filenames.h" /* for FILENAME_CMP */
38 #include "objc-lang.h"
39 #include "d-lang.h"
40 #include "ada-lang.h"
41 #include "go-lang.h"
42 #include "p-lang.h"
43 #include "addrmap.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include "gdb_string.h"
54 #include "gdb_stat.h"
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "psymtab.h"
65 #include "parser-defs.h"
66
67 /* Prototypes for local functions */
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct symbol *lookup_symbol_aux (const char *name,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 int *is_a_field_of_this);
86
87 static
88 struct symbol *lookup_symbol_aux_local (const char *name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static
94 struct symbol *lookup_symbol_aux_symtabs (int block_index,
95 const char *name,
96 const domain_enum domain);
97
98 static
99 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
100 int block_index,
101 const char *name,
102 const domain_enum domain);
103
104 static void print_msymbol_info (struct minimal_symbol *);
105
106 void _initialize_symtab (void);
107
108 /* */
109
110 /* When non-zero, print debugging messages related to symtab creation. */
111 int symtab_create_debug = 0;
112
113 /* Non-zero if a file may be known by two different basenames.
114 This is the uncommon case, and significantly slows down gdb.
115 Default set to "off" to not slow down the common case. */
116 int basenames_may_differ = 0;
117
118 /* Allow the user to configure the debugger behavior with respect
119 to multiple-choice menus when more than one symbol matches during
120 a symbol lookup. */
121
122 const char multiple_symbols_ask[] = "ask";
123 const char multiple_symbols_all[] = "all";
124 const char multiple_symbols_cancel[] = "cancel";
125 static const char *const multiple_symbols_modes[] =
126 {
127 multiple_symbols_ask,
128 multiple_symbols_all,
129 multiple_symbols_cancel,
130 NULL
131 };
132 static const char *multiple_symbols_mode = multiple_symbols_all;
133
134 /* Read-only accessor to AUTO_SELECT_MODE. */
135
136 const char *
137 multiple_symbols_select_mode (void)
138 {
139 return multiple_symbols_mode;
140 }
141
142 /* Block in which the most recently searched-for symbol was found.
143 Might be better to make this a parameter to lookup_symbol and
144 value_of_this. */
145
146 const struct block *block_found;
147
148 /* See whether FILENAME matches SEARCH_NAME using the rule that we
149 advertise to the user. (The manual's description of linespecs
150 describes what we advertise). SEARCH_LEN is the length of
151 SEARCH_NAME. We assume that SEARCH_NAME is a relative path.
152 Returns true if they match, false otherwise. */
153
154 int
155 compare_filenames_for_search (const char *filename, const char *search_name,
156 int search_len)
157 {
158 int len = strlen (filename);
159
160 if (len < search_len)
161 return 0;
162
163 /* The tail of FILENAME must match. */
164 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
165 return 0;
166
167 /* Either the names must completely match, or the character
168 preceding the trailing SEARCH_NAME segment of FILENAME must be a
169 directory separator. */
170 return (len == search_len
171 || IS_DIR_SEPARATOR (filename[len - search_len - 1])
172 || (HAS_DRIVE_SPEC (filename)
173 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
174 }
175
176 /* Check for a symtab of a specific name by searching some symtabs.
177 This is a helper function for callbacks of iterate_over_symtabs.
178
179 The return value, NAME, FULL_PATH, REAL_PATH, CALLBACK, and DATA
180 are identical to the `map_symtabs_matching_filename' method of
181 quick_symbol_functions.
182
183 FIRST and AFTER_LAST indicate the range of symtabs to search.
184 AFTER_LAST is one past the last symtab to search; NULL means to
185 search until the end of the list. */
186
187 int
188 iterate_over_some_symtabs (const char *name,
189 const char *full_path,
190 const char *real_path,
191 int (*callback) (struct symtab *symtab,
192 void *data),
193 void *data,
194 struct symtab *first,
195 struct symtab *after_last)
196 {
197 struct symtab *s = NULL;
198 const char* base_name = lbasename (name);
199 int name_len = strlen (name);
200 int is_abs = IS_ABSOLUTE_PATH (name);
201
202 for (s = first; s != NULL && s != after_last; s = s->next)
203 {
204 /* Exact match is always ok. */
205 if (FILENAME_CMP (name, s->filename) == 0)
206 {
207 if (callback (s, data))
208 return 1;
209 }
210
211 if (!is_abs && compare_filenames_for_search (s->filename, name, name_len))
212 {
213 if (callback (s, data))
214 return 1;
215 }
216
217 /* Before we invoke realpath, which can get expensive when many
218 files are involved, do a quick comparison of the basenames. */
219 if (! basenames_may_differ
220 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
221 continue;
222
223 /* If the user gave us an absolute path, try to find the file in
224 this symtab and use its absolute path. */
225
226 if (full_path != NULL)
227 {
228 const char *fp = symtab_to_fullname (s);
229
230 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
231 {
232 if (callback (s, data))
233 return 1;
234 }
235
236 if (fp != NULL && !is_abs && compare_filenames_for_search (fp, name,
237 name_len))
238 {
239 if (callback (s, data))
240 return 1;
241 }
242 }
243
244 if (real_path != NULL)
245 {
246 const char *fullname = symtab_to_fullname (s);
247
248 if (fullname != NULL)
249 {
250 char *rp = gdb_realpath (fullname);
251
252 make_cleanup (xfree, rp);
253 if (FILENAME_CMP (real_path, rp) == 0)
254 {
255 if (callback (s, data))
256 return 1;
257 }
258
259 if (!is_abs && compare_filenames_for_search (rp, name, name_len))
260 {
261 if (callback (s, data))
262 return 1;
263 }
264 }
265 }
266 }
267
268 return 0;
269 }
270
271 /* Check for a symtab of a specific name; first in symtabs, then in
272 psymtabs. *If* there is no '/' in the name, a match after a '/'
273 in the symtab filename will also work.
274
275 Calls CALLBACK with each symtab that is found and with the supplied
276 DATA. If CALLBACK returns true, the search stops. */
277
278 void
279 iterate_over_symtabs (const char *name,
280 int (*callback) (struct symtab *symtab,
281 void *data),
282 void *data)
283 {
284 struct symtab *s = NULL;
285 struct objfile *objfile;
286 char *real_path = NULL;
287 char *full_path = NULL;
288 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
289
290 /* Here we are interested in canonicalizing an absolute path, not
291 absolutizing a relative path. */
292 if (IS_ABSOLUTE_PATH (name))
293 {
294 full_path = xfullpath (name);
295 make_cleanup (xfree, full_path);
296 real_path = gdb_realpath (name);
297 make_cleanup (xfree, real_path);
298 }
299
300 ALL_OBJFILES (objfile)
301 {
302 if (iterate_over_some_symtabs (name, full_path, real_path, callback, data,
303 objfile->symtabs, NULL))
304 {
305 do_cleanups (cleanups);
306 return;
307 }
308 }
309
310 /* Same search rules as above apply here, but now we look thru the
311 psymtabs. */
312
313 ALL_OBJFILES (objfile)
314 {
315 if (objfile->sf
316 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
317 name,
318 full_path,
319 real_path,
320 callback,
321 data))
322 {
323 do_cleanups (cleanups);
324 return;
325 }
326 }
327
328 do_cleanups (cleanups);
329 }
330
331 /* The callback function used by lookup_symtab. */
332
333 static int
334 lookup_symtab_callback (struct symtab *symtab, void *data)
335 {
336 struct symtab **result_ptr = data;
337
338 *result_ptr = symtab;
339 return 1;
340 }
341
342 /* A wrapper for iterate_over_symtabs that returns the first matching
343 symtab, or NULL. */
344
345 struct symtab *
346 lookup_symtab (const char *name)
347 {
348 struct symtab *result = NULL;
349
350 iterate_over_symtabs (name, lookup_symtab_callback, &result);
351 return result;
352 }
353
354 \f
355 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
356 full method name, which consist of the class name (from T), the unadorned
357 method name from METHOD_ID, and the signature for the specific overload,
358 specified by SIGNATURE_ID. Note that this function is g++ specific. */
359
360 char *
361 gdb_mangle_name (struct type *type, int method_id, int signature_id)
362 {
363 int mangled_name_len;
364 char *mangled_name;
365 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
366 struct fn_field *method = &f[signature_id];
367 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
368 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
369 const char *newname = type_name_no_tag (type);
370
371 /* Does the form of physname indicate that it is the full mangled name
372 of a constructor (not just the args)? */
373 int is_full_physname_constructor;
374
375 int is_constructor;
376 int is_destructor = is_destructor_name (physname);
377 /* Need a new type prefix. */
378 char *const_prefix = method->is_const ? "C" : "";
379 char *volatile_prefix = method->is_volatile ? "V" : "";
380 char buf[20];
381 int len = (newname == NULL ? 0 : strlen (newname));
382
383 /* Nothing to do if physname already contains a fully mangled v3 abi name
384 or an operator name. */
385 if ((physname[0] == '_' && physname[1] == 'Z')
386 || is_operator_name (field_name))
387 return xstrdup (physname);
388
389 is_full_physname_constructor = is_constructor_name (physname);
390
391 is_constructor = is_full_physname_constructor
392 || (newname && strcmp (field_name, newname) == 0);
393
394 if (!is_destructor)
395 is_destructor = (strncmp (physname, "__dt", 4) == 0);
396
397 if (is_destructor || is_full_physname_constructor)
398 {
399 mangled_name = (char *) xmalloc (strlen (physname) + 1);
400 strcpy (mangled_name, physname);
401 return mangled_name;
402 }
403
404 if (len == 0)
405 {
406 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
407 }
408 else if (physname[0] == 't' || physname[0] == 'Q')
409 {
410 /* The physname for template and qualified methods already includes
411 the class name. */
412 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
413 newname = NULL;
414 len = 0;
415 }
416 else
417 {
418 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
419 volatile_prefix, len);
420 }
421 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
422 + strlen (buf) + len + strlen (physname) + 1);
423
424 mangled_name = (char *) xmalloc (mangled_name_len);
425 if (is_constructor)
426 mangled_name[0] = '\0';
427 else
428 strcpy (mangled_name, field_name);
429
430 strcat (mangled_name, buf);
431 /* If the class doesn't have a name, i.e. newname NULL, then we just
432 mangle it using 0 for the length of the class. Thus it gets mangled
433 as something starting with `::' rather than `classname::'. */
434 if (newname != NULL)
435 strcat (mangled_name, newname);
436
437 strcat (mangled_name, physname);
438 return (mangled_name);
439 }
440
441 /* Initialize the cplus_specific structure. 'cplus_specific' should
442 only be allocated for use with cplus symbols. */
443
444 static void
445 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
446 struct objfile *objfile)
447 {
448 /* A language_specific structure should not have been previously
449 initialized. */
450 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
451 gdb_assert (objfile != NULL);
452
453 gsymbol->language_specific.cplus_specific =
454 OBSTACK_ZALLOC (&objfile->objfile_obstack, struct cplus_specific);
455 }
456
457 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
458 correctly allocated. For C++ symbols a cplus_specific struct is
459 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
460 OBJFILE can be NULL. */
461
462 void
463 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
464 char *name,
465 struct objfile *objfile)
466 {
467 if (gsymbol->language == language_cplus)
468 {
469 if (gsymbol->language_specific.cplus_specific == NULL)
470 symbol_init_cplus_specific (gsymbol, objfile);
471
472 gsymbol->language_specific.cplus_specific->demangled_name = name;
473 }
474 else
475 gsymbol->language_specific.mangled_lang.demangled_name = name;
476 }
477
478 /* Return the demangled name of GSYMBOL. */
479
480 const char *
481 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
482 {
483 if (gsymbol->language == language_cplus)
484 {
485 if (gsymbol->language_specific.cplus_specific != NULL)
486 return gsymbol->language_specific.cplus_specific->demangled_name;
487 else
488 return NULL;
489 }
490 else
491 return gsymbol->language_specific.mangled_lang.demangled_name;
492 }
493
494 \f
495 /* Initialize the language dependent portion of a symbol
496 depending upon the language for the symbol. */
497
498 void
499 symbol_set_language (struct general_symbol_info *gsymbol,
500 enum language language)
501 {
502 gsymbol->language = language;
503 if (gsymbol->language == language_d
504 || gsymbol->language == language_go
505 || gsymbol->language == language_java
506 || gsymbol->language == language_objc
507 || gsymbol->language == language_fortran)
508 {
509 symbol_set_demangled_name (gsymbol, NULL, NULL);
510 }
511 else if (gsymbol->language == language_cplus)
512 gsymbol->language_specific.cplus_specific = NULL;
513 else
514 {
515 memset (&gsymbol->language_specific, 0,
516 sizeof (gsymbol->language_specific));
517 }
518 }
519
520 /* Functions to initialize a symbol's mangled name. */
521
522 /* Objects of this type are stored in the demangled name hash table. */
523 struct demangled_name_entry
524 {
525 char *mangled;
526 char demangled[1];
527 };
528
529 /* Hash function for the demangled name hash. */
530
531 static hashval_t
532 hash_demangled_name_entry (const void *data)
533 {
534 const struct demangled_name_entry *e = data;
535
536 return htab_hash_string (e->mangled);
537 }
538
539 /* Equality function for the demangled name hash. */
540
541 static int
542 eq_demangled_name_entry (const void *a, const void *b)
543 {
544 const struct demangled_name_entry *da = a;
545 const struct demangled_name_entry *db = b;
546
547 return strcmp (da->mangled, db->mangled) == 0;
548 }
549
550 /* Create the hash table used for demangled names. Each hash entry is
551 a pair of strings; one for the mangled name and one for the demangled
552 name. The entry is hashed via just the mangled name. */
553
554 static void
555 create_demangled_names_hash (struct objfile *objfile)
556 {
557 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
558 The hash table code will round this up to the next prime number.
559 Choosing a much larger table size wastes memory, and saves only about
560 1% in symbol reading. */
561
562 objfile->demangled_names_hash = htab_create_alloc
563 (256, hash_demangled_name_entry, eq_demangled_name_entry,
564 NULL, xcalloc, xfree);
565 }
566
567 /* Try to determine the demangled name for a symbol, based on the
568 language of that symbol. If the language is set to language_auto,
569 it will attempt to find any demangling algorithm that works and
570 then set the language appropriately. The returned name is allocated
571 by the demangler and should be xfree'd. */
572
573 static char *
574 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
575 const char *mangled)
576 {
577 char *demangled = NULL;
578
579 if (gsymbol->language == language_unknown)
580 gsymbol->language = language_auto;
581
582 if (gsymbol->language == language_objc
583 || gsymbol->language == language_auto)
584 {
585 demangled =
586 objc_demangle (mangled, 0);
587 if (demangled != NULL)
588 {
589 gsymbol->language = language_objc;
590 return demangled;
591 }
592 }
593 if (gsymbol->language == language_cplus
594 || gsymbol->language == language_auto)
595 {
596 demangled =
597 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
598 if (demangled != NULL)
599 {
600 gsymbol->language = language_cplus;
601 return demangled;
602 }
603 }
604 if (gsymbol->language == language_java)
605 {
606 demangled =
607 cplus_demangle (mangled,
608 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
609 if (demangled != NULL)
610 {
611 gsymbol->language = language_java;
612 return demangled;
613 }
614 }
615 if (gsymbol->language == language_d
616 || gsymbol->language == language_auto)
617 {
618 demangled = d_demangle(mangled, 0);
619 if (demangled != NULL)
620 {
621 gsymbol->language = language_d;
622 return demangled;
623 }
624 }
625 /* FIXME(dje): Continually adding languages here is clumsy.
626 Better to just call la_demangle if !auto, and if auto then call
627 a utility routine that tries successive languages in turn and reports
628 which one it finds. I realize the la_demangle options may be different
629 for different languages but there's already a FIXME for that. */
630 if (gsymbol->language == language_go
631 || gsymbol->language == language_auto)
632 {
633 demangled = go_demangle (mangled, 0);
634 if (demangled != NULL)
635 {
636 gsymbol->language = language_go;
637 return demangled;
638 }
639 }
640
641 /* We could support `gsymbol->language == language_fortran' here to provide
642 module namespaces also for inferiors with only minimal symbol table (ELF
643 symbols). Just the mangling standard is not standardized across compilers
644 and there is no DW_AT_producer available for inferiors with only the ELF
645 symbols to check the mangling kind. */
646 return NULL;
647 }
648
649 /* Set both the mangled and demangled (if any) names for GSYMBOL based
650 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
651 objfile's obstack; but if COPY_NAME is 0 and if NAME is
652 NUL-terminated, then this function assumes that NAME is already
653 correctly saved (either permanently or with a lifetime tied to the
654 objfile), and it will not be copied.
655
656 The hash table corresponding to OBJFILE is used, and the memory
657 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
658 so the pointer can be discarded after calling this function. */
659
660 /* We have to be careful when dealing with Java names: when we run
661 into a Java minimal symbol, we don't know it's a Java symbol, so it
662 gets demangled as a C++ name. This is unfortunate, but there's not
663 much we can do about it: but when demangling partial symbols and
664 regular symbols, we'd better not reuse the wrong demangled name.
665 (See PR gdb/1039.) We solve this by putting a distinctive prefix
666 on Java names when storing them in the hash table. */
667
668 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
669 don't mind the Java prefix so much: different languages have
670 different demangling requirements, so it's only natural that we
671 need to keep language data around in our demangling cache. But
672 it's not good that the minimal symbol has the wrong demangled name.
673 Unfortunately, I can't think of any easy solution to that
674 problem. */
675
676 #define JAVA_PREFIX "##JAVA$$"
677 #define JAVA_PREFIX_LEN 8
678
679 void
680 symbol_set_names (struct general_symbol_info *gsymbol,
681 const char *linkage_name, int len, int copy_name,
682 struct objfile *objfile)
683 {
684 struct demangled_name_entry **slot;
685 /* A 0-terminated copy of the linkage name. */
686 const char *linkage_name_copy;
687 /* A copy of the linkage name that might have a special Java prefix
688 added to it, for use when looking names up in the hash table. */
689 const char *lookup_name;
690 /* The length of lookup_name. */
691 int lookup_len;
692 struct demangled_name_entry entry;
693
694 if (gsymbol->language == language_ada)
695 {
696 /* In Ada, we do the symbol lookups using the mangled name, so
697 we can save some space by not storing the demangled name.
698
699 As a side note, we have also observed some overlap between
700 the C++ mangling and Ada mangling, similarly to what has
701 been observed with Java. Because we don't store the demangled
702 name with the symbol, we don't need to use the same trick
703 as Java. */
704 if (!copy_name)
705 gsymbol->name = linkage_name;
706 else
707 {
708 char *name = obstack_alloc (&objfile->objfile_obstack, len + 1);
709
710 memcpy (name, linkage_name, len);
711 name[len] = '\0';
712 gsymbol->name = name;
713 }
714 symbol_set_demangled_name (gsymbol, NULL, NULL);
715
716 return;
717 }
718
719 if (objfile->demangled_names_hash == NULL)
720 create_demangled_names_hash (objfile);
721
722 /* The stabs reader generally provides names that are not
723 NUL-terminated; most of the other readers don't do this, so we
724 can just use the given copy, unless we're in the Java case. */
725 if (gsymbol->language == language_java)
726 {
727 char *alloc_name;
728
729 lookup_len = len + JAVA_PREFIX_LEN;
730 alloc_name = alloca (lookup_len + 1);
731 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
732 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
733 alloc_name[lookup_len] = '\0';
734
735 lookup_name = alloc_name;
736 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
737 }
738 else if (linkage_name[len] != '\0')
739 {
740 char *alloc_name;
741
742 lookup_len = len;
743 alloc_name = alloca (lookup_len + 1);
744 memcpy (alloc_name, linkage_name, len);
745 alloc_name[lookup_len] = '\0';
746
747 lookup_name = alloc_name;
748 linkage_name_copy = alloc_name;
749 }
750 else
751 {
752 lookup_len = len;
753 lookup_name = linkage_name;
754 linkage_name_copy = linkage_name;
755 }
756
757 entry.mangled = (char *) lookup_name;
758 slot = ((struct demangled_name_entry **)
759 htab_find_slot (objfile->demangled_names_hash,
760 &entry, INSERT));
761
762 /* If this name is not in the hash table, add it. */
763 if (*slot == NULL
764 /* A C version of the symbol may have already snuck into the table.
765 This happens to, e.g., main.init (__go_init_main). Cope. */
766 || (gsymbol->language == language_go
767 && (*slot)->demangled[0] == '\0'))
768 {
769 char *demangled_name = symbol_find_demangled_name (gsymbol,
770 linkage_name_copy);
771 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
772
773 /* Suppose we have demangled_name==NULL, copy_name==0, and
774 lookup_name==linkage_name. In this case, we already have the
775 mangled name saved, and we don't have a demangled name. So,
776 you might think we could save a little space by not recording
777 this in the hash table at all.
778
779 It turns out that it is actually important to still save such
780 an entry in the hash table, because storing this name gives
781 us better bcache hit rates for partial symbols. */
782 if (!copy_name && lookup_name == linkage_name)
783 {
784 *slot = obstack_alloc (&objfile->objfile_obstack,
785 offsetof (struct demangled_name_entry,
786 demangled)
787 + demangled_len + 1);
788 (*slot)->mangled = (char *) lookup_name;
789 }
790 else
791 {
792 /* If we must copy the mangled name, put it directly after
793 the demangled name so we can have a single
794 allocation. */
795 *slot = obstack_alloc (&objfile->objfile_obstack,
796 offsetof (struct demangled_name_entry,
797 demangled)
798 + lookup_len + demangled_len + 2);
799 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
800 strcpy ((*slot)->mangled, lookup_name);
801 }
802
803 if (demangled_name != NULL)
804 {
805 strcpy ((*slot)->demangled, demangled_name);
806 xfree (demangled_name);
807 }
808 else
809 (*slot)->demangled[0] = '\0';
810 }
811
812 gsymbol->name = (*slot)->mangled + lookup_len - len;
813 if ((*slot)->demangled[0] != '\0')
814 symbol_set_demangled_name (gsymbol, (*slot)->demangled, objfile);
815 else
816 symbol_set_demangled_name (gsymbol, NULL, objfile);
817 }
818
819 /* Return the source code name of a symbol. In languages where
820 demangling is necessary, this is the demangled name. */
821
822 const char *
823 symbol_natural_name (const struct general_symbol_info *gsymbol)
824 {
825 switch (gsymbol->language)
826 {
827 case language_cplus:
828 case language_d:
829 case language_go:
830 case language_java:
831 case language_objc:
832 case language_fortran:
833 if (symbol_get_demangled_name (gsymbol) != NULL)
834 return symbol_get_demangled_name (gsymbol);
835 break;
836 case language_ada:
837 if (symbol_get_demangled_name (gsymbol) != NULL)
838 return symbol_get_demangled_name (gsymbol);
839 else
840 return ada_decode_symbol (gsymbol);
841 break;
842 default:
843 break;
844 }
845 return gsymbol->name;
846 }
847
848 /* Return the demangled name for a symbol based on the language for
849 that symbol. If no demangled name exists, return NULL. */
850
851 const char *
852 symbol_demangled_name (const struct general_symbol_info *gsymbol)
853 {
854 const char *dem_name = NULL;
855
856 switch (gsymbol->language)
857 {
858 case language_cplus:
859 case language_d:
860 case language_go:
861 case language_java:
862 case language_objc:
863 case language_fortran:
864 dem_name = symbol_get_demangled_name (gsymbol);
865 break;
866 case language_ada:
867 dem_name = symbol_get_demangled_name (gsymbol);
868 if (dem_name == NULL)
869 dem_name = ada_decode_symbol (gsymbol);
870 break;
871 default:
872 break;
873 }
874 return dem_name;
875 }
876
877 /* Return the search name of a symbol---generally the demangled or
878 linkage name of the symbol, depending on how it will be searched for.
879 If there is no distinct demangled name, then returns the same value
880 (same pointer) as SYMBOL_LINKAGE_NAME. */
881
882 const char *
883 symbol_search_name (const struct general_symbol_info *gsymbol)
884 {
885 if (gsymbol->language == language_ada)
886 return gsymbol->name;
887 else
888 return symbol_natural_name (gsymbol);
889 }
890
891 /* Initialize the structure fields to zero values. */
892
893 void
894 init_sal (struct symtab_and_line *sal)
895 {
896 sal->pspace = NULL;
897 sal->symtab = 0;
898 sal->section = 0;
899 sal->line = 0;
900 sal->pc = 0;
901 sal->end = 0;
902 sal->explicit_pc = 0;
903 sal->explicit_line = 0;
904 sal->probe = NULL;
905 }
906 \f
907
908 /* Return 1 if the two sections are the same, or if they could
909 plausibly be copies of each other, one in an original object
910 file and another in a separated debug file. */
911
912 int
913 matching_obj_sections (struct obj_section *obj_first,
914 struct obj_section *obj_second)
915 {
916 asection *first = obj_first? obj_first->the_bfd_section : NULL;
917 asection *second = obj_second? obj_second->the_bfd_section : NULL;
918 struct objfile *obj;
919
920 /* If they're the same section, then they match. */
921 if (first == second)
922 return 1;
923
924 /* If either is NULL, give up. */
925 if (first == NULL || second == NULL)
926 return 0;
927
928 /* This doesn't apply to absolute symbols. */
929 if (first->owner == NULL || second->owner == NULL)
930 return 0;
931
932 /* If they're in the same object file, they must be different sections. */
933 if (first->owner == second->owner)
934 return 0;
935
936 /* Check whether the two sections are potentially corresponding. They must
937 have the same size, address, and name. We can't compare section indexes,
938 which would be more reliable, because some sections may have been
939 stripped. */
940 if (bfd_get_section_size (first) != bfd_get_section_size (second))
941 return 0;
942
943 /* In-memory addresses may start at a different offset, relativize them. */
944 if (bfd_get_section_vma (first->owner, first)
945 - bfd_get_start_address (first->owner)
946 != bfd_get_section_vma (second->owner, second)
947 - bfd_get_start_address (second->owner))
948 return 0;
949
950 if (bfd_get_section_name (first->owner, first) == NULL
951 || bfd_get_section_name (second->owner, second) == NULL
952 || strcmp (bfd_get_section_name (first->owner, first),
953 bfd_get_section_name (second->owner, second)) != 0)
954 return 0;
955
956 /* Otherwise check that they are in corresponding objfiles. */
957
958 ALL_OBJFILES (obj)
959 if (obj->obfd == first->owner)
960 break;
961 gdb_assert (obj != NULL);
962
963 if (obj->separate_debug_objfile != NULL
964 && obj->separate_debug_objfile->obfd == second->owner)
965 return 1;
966 if (obj->separate_debug_objfile_backlink != NULL
967 && obj->separate_debug_objfile_backlink->obfd == second->owner)
968 return 1;
969
970 return 0;
971 }
972
973 struct symtab *
974 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
975 {
976 struct objfile *objfile;
977 struct minimal_symbol *msymbol;
978
979 /* If we know that this is not a text address, return failure. This is
980 necessary because we loop based on texthigh and textlow, which do
981 not include the data ranges. */
982 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
983 if (msymbol
984 && (MSYMBOL_TYPE (msymbol) == mst_data
985 || MSYMBOL_TYPE (msymbol) == mst_bss
986 || MSYMBOL_TYPE (msymbol) == mst_abs
987 || MSYMBOL_TYPE (msymbol) == mst_file_data
988 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
989 return NULL;
990
991 ALL_OBJFILES (objfile)
992 {
993 struct symtab *result = NULL;
994
995 if (objfile->sf)
996 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
997 pc, section, 0);
998 if (result)
999 return result;
1000 }
1001
1002 return NULL;
1003 }
1004 \f
1005 /* Debug symbols usually don't have section information. We need to dig that
1006 out of the minimal symbols and stash that in the debug symbol. */
1007
1008 void
1009 fixup_section (struct general_symbol_info *ginfo,
1010 CORE_ADDR addr, struct objfile *objfile)
1011 {
1012 struct minimal_symbol *msym;
1013
1014 /* First, check whether a minimal symbol with the same name exists
1015 and points to the same address. The address check is required
1016 e.g. on PowerPC64, where the minimal symbol for a function will
1017 point to the function descriptor, while the debug symbol will
1018 point to the actual function code. */
1019 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1020 if (msym)
1021 {
1022 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1023 ginfo->section = SYMBOL_SECTION (msym);
1024 }
1025 else
1026 {
1027 /* Static, function-local variables do appear in the linker
1028 (minimal) symbols, but are frequently given names that won't
1029 be found via lookup_minimal_symbol(). E.g., it has been
1030 observed in frv-uclinux (ELF) executables that a static,
1031 function-local variable named "foo" might appear in the
1032 linker symbols as "foo.6" or "foo.3". Thus, there is no
1033 point in attempting to extend the lookup-by-name mechanism to
1034 handle this case due to the fact that there can be multiple
1035 names.
1036
1037 So, instead, search the section table when lookup by name has
1038 failed. The ``addr'' and ``endaddr'' fields may have already
1039 been relocated. If so, the relocation offset (i.e. the
1040 ANOFFSET value) needs to be subtracted from these values when
1041 performing the comparison. We unconditionally subtract it,
1042 because, when no relocation has been performed, the ANOFFSET
1043 value will simply be zero.
1044
1045 The address of the symbol whose section we're fixing up HAS
1046 NOT BEEN adjusted (relocated) yet. It can't have been since
1047 the section isn't yet known and knowing the section is
1048 necessary in order to add the correct relocation value. In
1049 other words, we wouldn't even be in this function (attempting
1050 to compute the section) if it were already known.
1051
1052 Note that it is possible to search the minimal symbols
1053 (subtracting the relocation value if necessary) to find the
1054 matching minimal symbol, but this is overkill and much less
1055 efficient. It is not necessary to find the matching minimal
1056 symbol, only its section.
1057
1058 Note that this technique (of doing a section table search)
1059 can fail when unrelocated section addresses overlap. For
1060 this reason, we still attempt a lookup by name prior to doing
1061 a search of the section table. */
1062
1063 struct obj_section *s;
1064
1065 ALL_OBJFILE_OSECTIONS (objfile, s)
1066 {
1067 int idx = s->the_bfd_section->index;
1068 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1069
1070 if (obj_section_addr (s) - offset <= addr
1071 && addr < obj_section_endaddr (s) - offset)
1072 {
1073 ginfo->obj_section = s;
1074 ginfo->section = idx;
1075 return;
1076 }
1077 }
1078 }
1079 }
1080
1081 struct symbol *
1082 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1083 {
1084 CORE_ADDR addr;
1085
1086 if (!sym)
1087 return NULL;
1088
1089 if (SYMBOL_OBJ_SECTION (sym))
1090 return sym;
1091
1092 /* We either have an OBJFILE, or we can get at it from the sym's
1093 symtab. Anything else is a bug. */
1094 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1095
1096 if (objfile == NULL)
1097 objfile = SYMBOL_SYMTAB (sym)->objfile;
1098
1099 /* We should have an objfile by now. */
1100 gdb_assert (objfile);
1101
1102 switch (SYMBOL_CLASS (sym))
1103 {
1104 case LOC_STATIC:
1105 case LOC_LABEL:
1106 addr = SYMBOL_VALUE_ADDRESS (sym);
1107 break;
1108 case LOC_BLOCK:
1109 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1110 break;
1111
1112 default:
1113 /* Nothing else will be listed in the minsyms -- no use looking
1114 it up. */
1115 return sym;
1116 }
1117
1118 fixup_section (&sym->ginfo, addr, objfile);
1119
1120 return sym;
1121 }
1122
1123 /* Compute the demangled form of NAME as used by the various symbol
1124 lookup functions. The result is stored in *RESULT_NAME. Returns a
1125 cleanup which can be used to clean up the result.
1126
1127 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1128 Normally, Ada symbol lookups are performed using the encoded name
1129 rather than the demangled name, and so it might seem to make sense
1130 for this function to return an encoded version of NAME.
1131 Unfortunately, we cannot do this, because this function is used in
1132 circumstances where it is not appropriate to try to encode NAME.
1133 For instance, when displaying the frame info, we demangle the name
1134 of each parameter, and then perform a symbol lookup inside our
1135 function using that demangled name. In Ada, certain functions
1136 have internally-generated parameters whose name contain uppercase
1137 characters. Encoding those name would result in those uppercase
1138 characters to become lowercase, and thus cause the symbol lookup
1139 to fail. */
1140
1141 struct cleanup *
1142 demangle_for_lookup (const char *name, enum language lang,
1143 const char **result_name)
1144 {
1145 char *demangled_name = NULL;
1146 const char *modified_name = NULL;
1147 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1148
1149 modified_name = name;
1150
1151 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1152 lookup, so we can always binary search. */
1153 if (lang == language_cplus)
1154 {
1155 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1156 if (demangled_name)
1157 {
1158 modified_name = demangled_name;
1159 make_cleanup (xfree, demangled_name);
1160 }
1161 else
1162 {
1163 /* If we were given a non-mangled name, canonicalize it
1164 according to the language (so far only for C++). */
1165 demangled_name = cp_canonicalize_string (name);
1166 if (demangled_name)
1167 {
1168 modified_name = demangled_name;
1169 make_cleanup (xfree, demangled_name);
1170 }
1171 }
1172 }
1173 else if (lang == language_java)
1174 {
1175 demangled_name = cplus_demangle (name,
1176 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1177 if (demangled_name)
1178 {
1179 modified_name = demangled_name;
1180 make_cleanup (xfree, demangled_name);
1181 }
1182 }
1183 else if (lang == language_d)
1184 {
1185 demangled_name = d_demangle (name, 0);
1186 if (demangled_name)
1187 {
1188 modified_name = demangled_name;
1189 make_cleanup (xfree, demangled_name);
1190 }
1191 }
1192 else if (lang == language_go)
1193 {
1194 demangled_name = go_demangle (name, 0);
1195 if (demangled_name)
1196 {
1197 modified_name = demangled_name;
1198 make_cleanup (xfree, demangled_name);
1199 }
1200 }
1201
1202 *result_name = modified_name;
1203 return cleanup;
1204 }
1205
1206 /* Find the definition for a specified symbol name NAME
1207 in domain DOMAIN, visible from lexical block BLOCK.
1208 Returns the struct symbol pointer, or zero if no symbol is found.
1209 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1210 NAME is a field of the current implied argument `this'. If so set
1211 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1212 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1213 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1214
1215 /* This function (or rather its subordinates) have a bunch of loops and
1216 it would seem to be attractive to put in some QUIT's (though I'm not really
1217 sure whether it can run long enough to be really important). But there
1218 are a few calls for which it would appear to be bad news to quit
1219 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1220 that there is C++ code below which can error(), but that probably
1221 doesn't affect these calls since they are looking for a known
1222 variable and thus can probably assume it will never hit the C++
1223 code). */
1224
1225 struct symbol *
1226 lookup_symbol_in_language (const char *name, const struct block *block,
1227 const domain_enum domain, enum language lang,
1228 int *is_a_field_of_this)
1229 {
1230 const char *modified_name;
1231 struct symbol *returnval;
1232 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1233
1234 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1235 is_a_field_of_this);
1236 do_cleanups (cleanup);
1237
1238 return returnval;
1239 }
1240
1241 /* Behave like lookup_symbol_in_language, but performed with the
1242 current language. */
1243
1244 struct symbol *
1245 lookup_symbol (const char *name, const struct block *block,
1246 domain_enum domain, int *is_a_field_of_this)
1247 {
1248 return lookup_symbol_in_language (name, block, domain,
1249 current_language->la_language,
1250 is_a_field_of_this);
1251 }
1252
1253 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1254 found, or NULL if not found. */
1255
1256 struct symbol *
1257 lookup_language_this (const struct language_defn *lang,
1258 const struct block *block)
1259 {
1260 if (lang->la_name_of_this == NULL || block == NULL)
1261 return NULL;
1262
1263 while (block)
1264 {
1265 struct symbol *sym;
1266
1267 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1268 if (sym != NULL)
1269 {
1270 block_found = block;
1271 return sym;
1272 }
1273 if (BLOCK_FUNCTION (block))
1274 break;
1275 block = BLOCK_SUPERBLOCK (block);
1276 }
1277
1278 return NULL;
1279 }
1280
1281 /* Given TYPE, a structure/union,
1282 return 1 if the component named NAME from the ultimate target
1283 structure/union is defined, otherwise, return 0. */
1284
1285 static int
1286 check_field (struct type *type, const char *name)
1287 {
1288 int i;
1289
1290 /* The type may be a stub. */
1291 CHECK_TYPEDEF (type);
1292
1293 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1294 {
1295 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1296
1297 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1298 return 1;
1299 }
1300
1301 /* C++: If it was not found as a data field, then try to return it
1302 as a pointer to a method. */
1303
1304 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1305 {
1306 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1307 return 1;
1308 }
1309
1310 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1311 if (check_field (TYPE_BASECLASS (type, i), name))
1312 return 1;
1313
1314 return 0;
1315 }
1316
1317 /* Behave like lookup_symbol except that NAME is the natural name
1318 (e.g., demangled name) of the symbol that we're looking for. */
1319
1320 static struct symbol *
1321 lookup_symbol_aux (const char *name, const struct block *block,
1322 const domain_enum domain, enum language language,
1323 int *is_a_field_of_this)
1324 {
1325 struct symbol *sym;
1326 const struct language_defn *langdef;
1327
1328 /* Make sure we do something sensible with is_a_field_of_this, since
1329 the callers that set this parameter to some non-null value will
1330 certainly use it later and expect it to be either 0 or 1.
1331 If we don't set it, the contents of is_a_field_of_this are
1332 undefined. */
1333 if (is_a_field_of_this != NULL)
1334 *is_a_field_of_this = 0;
1335
1336 /* Search specified block and its superiors. Don't search
1337 STATIC_BLOCK or GLOBAL_BLOCK. */
1338
1339 sym = lookup_symbol_aux_local (name, block, domain, language);
1340 if (sym != NULL)
1341 return sym;
1342
1343 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1344 check to see if NAME is a field of `this'. */
1345
1346 langdef = language_def (language);
1347
1348 if (is_a_field_of_this != NULL)
1349 {
1350 struct symbol *sym = lookup_language_this (langdef, block);
1351
1352 if (sym)
1353 {
1354 struct type *t = sym->type;
1355
1356 /* I'm not really sure that type of this can ever
1357 be typedefed; just be safe. */
1358 CHECK_TYPEDEF (t);
1359 if (TYPE_CODE (t) == TYPE_CODE_PTR
1360 || TYPE_CODE (t) == TYPE_CODE_REF)
1361 t = TYPE_TARGET_TYPE (t);
1362
1363 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1364 && TYPE_CODE (t) != TYPE_CODE_UNION)
1365 error (_("Internal error: `%s' is not an aggregate"),
1366 langdef->la_name_of_this);
1367
1368 if (check_field (t, name))
1369 {
1370 *is_a_field_of_this = 1;
1371 return NULL;
1372 }
1373 }
1374 }
1375
1376 /* Now do whatever is appropriate for LANGUAGE to look
1377 up static and global variables. */
1378
1379 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1380 if (sym != NULL)
1381 return sym;
1382
1383 /* Now search all static file-level symbols. Not strictly correct,
1384 but more useful than an error. */
1385
1386 return lookup_static_symbol_aux (name, domain);
1387 }
1388
1389 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1390 first, then check the psymtabs. If a psymtab indicates the existence of the
1391 desired name as a file-level static, then do psymtab-to-symtab conversion on
1392 the fly and return the found symbol. */
1393
1394 struct symbol *
1395 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1396 {
1397 struct objfile *objfile;
1398 struct symbol *sym;
1399
1400 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1401 if (sym != NULL)
1402 return sym;
1403
1404 ALL_OBJFILES (objfile)
1405 {
1406 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1407 if (sym != NULL)
1408 return sym;
1409 }
1410
1411 return NULL;
1412 }
1413
1414 /* Check to see if the symbol is defined in BLOCK or its superiors.
1415 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1416
1417 static struct symbol *
1418 lookup_symbol_aux_local (const char *name, const struct block *block,
1419 const domain_enum domain,
1420 enum language language)
1421 {
1422 struct symbol *sym;
1423 const struct block *static_block = block_static_block (block);
1424 const char *scope = block_scope (block);
1425
1426 /* Check if either no block is specified or it's a global block. */
1427
1428 if (static_block == NULL)
1429 return NULL;
1430
1431 while (block != static_block)
1432 {
1433 sym = lookup_symbol_aux_block (name, block, domain);
1434 if (sym != NULL)
1435 return sym;
1436
1437 if (language == language_cplus || language == language_fortran)
1438 {
1439 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1440 domain);
1441 if (sym != NULL)
1442 return sym;
1443 }
1444
1445 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1446 break;
1447 block = BLOCK_SUPERBLOCK (block);
1448 }
1449
1450 /* We've reached the edge of the function without finding a result. */
1451
1452 return NULL;
1453 }
1454
1455 /* Look up OBJFILE to BLOCK. */
1456
1457 struct objfile *
1458 lookup_objfile_from_block (const struct block *block)
1459 {
1460 struct objfile *obj;
1461 struct symtab *s;
1462
1463 if (block == NULL)
1464 return NULL;
1465
1466 block = block_global_block (block);
1467 /* Go through SYMTABS. */
1468 ALL_SYMTABS (obj, s)
1469 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1470 {
1471 if (obj->separate_debug_objfile_backlink)
1472 obj = obj->separate_debug_objfile_backlink;
1473
1474 return obj;
1475 }
1476
1477 return NULL;
1478 }
1479
1480 /* Look up a symbol in a block; if found, fixup the symbol, and set
1481 block_found appropriately. */
1482
1483 struct symbol *
1484 lookup_symbol_aux_block (const char *name, const struct block *block,
1485 const domain_enum domain)
1486 {
1487 struct symbol *sym;
1488
1489 sym = lookup_block_symbol (block, name, domain);
1490 if (sym)
1491 {
1492 block_found = block;
1493 return fixup_symbol_section (sym, NULL);
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check all global symbols in OBJFILE in symtabs and
1500 psymtabs. */
1501
1502 struct symbol *
1503 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1504 const char *name,
1505 const domain_enum domain)
1506 {
1507 const struct objfile *objfile;
1508 struct symbol *sym;
1509 struct blockvector *bv;
1510 const struct block *block;
1511 struct symtab *s;
1512
1513 for (objfile = main_objfile;
1514 objfile;
1515 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1516 {
1517 /* Go through symtabs. */
1518 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1519 {
1520 bv = BLOCKVECTOR (s);
1521 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1522 sym = lookup_block_symbol (block, name, domain);
1523 if (sym)
1524 {
1525 block_found = block;
1526 return fixup_symbol_section (sym, (struct objfile *)objfile);
1527 }
1528 }
1529
1530 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1531 name, domain);
1532 if (sym)
1533 return sym;
1534 }
1535
1536 return NULL;
1537 }
1538
1539 /* Check to see if the symbol is defined in one of the OBJFILE's
1540 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1541 depending on whether or not we want to search global symbols or
1542 static symbols. */
1543
1544 static struct symbol *
1545 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1546 const char *name, const domain_enum domain)
1547 {
1548 struct symbol *sym = NULL;
1549 struct blockvector *bv;
1550 const struct block *block;
1551 struct symtab *s;
1552
1553 if (objfile->sf)
1554 objfile->sf->qf->pre_expand_symtabs_matching (objfile, block_index,
1555 name, domain);
1556
1557 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1558 {
1559 bv = BLOCKVECTOR (s);
1560 block = BLOCKVECTOR_BLOCK (bv, block_index);
1561 sym = lookup_block_symbol (block, name, domain);
1562 if (sym)
1563 {
1564 block_found = block;
1565 return fixup_symbol_section (sym, objfile);
1566 }
1567 }
1568
1569 return NULL;
1570 }
1571
1572 /* Same as lookup_symbol_aux_objfile, except that it searches all
1573 objfiles. Return the first match found. */
1574
1575 static struct symbol *
1576 lookup_symbol_aux_symtabs (int block_index, const char *name,
1577 const domain_enum domain)
1578 {
1579 struct symbol *sym;
1580 struct objfile *objfile;
1581
1582 ALL_OBJFILES (objfile)
1583 {
1584 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1585 if (sym)
1586 return sym;
1587 }
1588
1589 return NULL;
1590 }
1591
1592 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1593 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1594 and all related objfiles. */
1595
1596 static struct symbol *
1597 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1598 const char *linkage_name,
1599 domain_enum domain)
1600 {
1601 enum language lang = current_language->la_language;
1602 const char *modified_name;
1603 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1604 &modified_name);
1605 struct objfile *main_objfile, *cur_objfile;
1606
1607 if (objfile->separate_debug_objfile_backlink)
1608 main_objfile = objfile->separate_debug_objfile_backlink;
1609 else
1610 main_objfile = objfile;
1611
1612 for (cur_objfile = main_objfile;
1613 cur_objfile;
1614 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1615 {
1616 struct symbol *sym;
1617
1618 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1619 modified_name, domain);
1620 if (sym == NULL)
1621 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1622 modified_name, domain);
1623 if (sym != NULL)
1624 {
1625 do_cleanups (cleanup);
1626 return sym;
1627 }
1628 }
1629
1630 do_cleanups (cleanup);
1631 return NULL;
1632 }
1633
1634 /* A helper function for lookup_symbol_aux that interfaces with the
1635 "quick" symbol table functions. */
1636
1637 static struct symbol *
1638 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1639 const char *name, const domain_enum domain)
1640 {
1641 struct symtab *symtab;
1642 struct blockvector *bv;
1643 const struct block *block;
1644 struct symbol *sym;
1645
1646 if (!objfile->sf)
1647 return NULL;
1648 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1649 if (!symtab)
1650 return NULL;
1651
1652 bv = BLOCKVECTOR (symtab);
1653 block = BLOCKVECTOR_BLOCK (bv, kind);
1654 sym = lookup_block_symbol (block, name, domain);
1655 if (!sym)
1656 {
1657 /* This shouldn't be necessary, but as a last resort try
1658 looking in the statics even though the psymtab claimed
1659 the symbol was global, or vice-versa. It's possible
1660 that the psymtab gets it wrong in some cases. */
1661
1662 /* FIXME: carlton/2002-09-30: Should we really do that?
1663 If that happens, isn't it likely to be a GDB error, in
1664 which case we should fix the GDB error rather than
1665 silently dealing with it here? So I'd vote for
1666 removing the check for the symbol in the other
1667 block. */
1668 block = BLOCKVECTOR_BLOCK (bv,
1669 kind == GLOBAL_BLOCK ?
1670 STATIC_BLOCK : GLOBAL_BLOCK);
1671 sym = lookup_block_symbol (block, name, domain);
1672 if (!sym)
1673 error (_("\
1674 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1675 %s may be an inlined function, or may be a template function\n\
1676 (if a template, try specifying an instantiation: %s<type>)."),
1677 kind == GLOBAL_BLOCK ? "global" : "static",
1678 name, symtab->filename, name, name);
1679 }
1680 return fixup_symbol_section (sym, objfile);
1681 }
1682
1683 /* A default version of lookup_symbol_nonlocal for use by languages
1684 that can't think of anything better to do. This implements the C
1685 lookup rules. */
1686
1687 struct symbol *
1688 basic_lookup_symbol_nonlocal (const char *name,
1689 const struct block *block,
1690 const domain_enum domain)
1691 {
1692 struct symbol *sym;
1693
1694 /* NOTE: carlton/2003-05-19: The comments below were written when
1695 this (or what turned into this) was part of lookup_symbol_aux;
1696 I'm much less worried about these questions now, since these
1697 decisions have turned out well, but I leave these comments here
1698 for posterity. */
1699
1700 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1701 not it would be appropriate to search the current global block
1702 here as well. (That's what this code used to do before the
1703 is_a_field_of_this check was moved up.) On the one hand, it's
1704 redundant with the lookup_symbol_aux_symtabs search that happens
1705 next. On the other hand, if decode_line_1 is passed an argument
1706 like filename:var, then the user presumably wants 'var' to be
1707 searched for in filename. On the third hand, there shouldn't be
1708 multiple global variables all of which are named 'var', and it's
1709 not like decode_line_1 has ever restricted its search to only
1710 global variables in a single filename. All in all, only
1711 searching the static block here seems best: it's correct and it's
1712 cleanest. */
1713
1714 /* NOTE: carlton/2002-12-05: There's also a possible performance
1715 issue here: if you usually search for global symbols in the
1716 current file, then it would be slightly better to search the
1717 current global block before searching all the symtabs. But there
1718 are other factors that have a much greater effect on performance
1719 than that one, so I don't think we should worry about that for
1720 now. */
1721
1722 sym = lookup_symbol_static (name, block, domain);
1723 if (sym != NULL)
1724 return sym;
1725
1726 return lookup_symbol_global (name, block, domain);
1727 }
1728
1729 /* Lookup a symbol in the static block associated to BLOCK, if there
1730 is one; do nothing if BLOCK is NULL or a global block. */
1731
1732 struct symbol *
1733 lookup_symbol_static (const char *name,
1734 const struct block *block,
1735 const domain_enum domain)
1736 {
1737 const struct block *static_block = block_static_block (block);
1738
1739 if (static_block != NULL)
1740 return lookup_symbol_aux_block (name, static_block, domain);
1741 else
1742 return NULL;
1743 }
1744
1745 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1746
1747 struct global_sym_lookup_data
1748 {
1749 /* The name of the symbol we are searching for. */
1750 const char *name;
1751
1752 /* The domain to use for our search. */
1753 domain_enum domain;
1754
1755 /* The field where the callback should store the symbol if found.
1756 It should be initialized to NULL before the search is started. */
1757 struct symbol *result;
1758 };
1759
1760 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1761 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1762 OBJFILE. The arguments for the search are passed via CB_DATA,
1763 which in reality is a pointer to struct global_sym_lookup_data. */
1764
1765 static int
1766 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1767 void *cb_data)
1768 {
1769 struct global_sym_lookup_data *data =
1770 (struct global_sym_lookup_data *) cb_data;
1771
1772 gdb_assert (data->result == NULL);
1773
1774 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1775 data->name, data->domain);
1776 if (data->result == NULL)
1777 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1778 data->name, data->domain);
1779
1780 /* If we found a match, tell the iterator to stop. Otherwise,
1781 keep going. */
1782 return (data->result != NULL);
1783 }
1784
1785 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1786 necessary). */
1787
1788 struct symbol *
1789 lookup_symbol_global (const char *name,
1790 const struct block *block,
1791 const domain_enum domain)
1792 {
1793 struct symbol *sym = NULL;
1794 struct objfile *objfile = NULL;
1795 struct global_sym_lookup_data lookup_data;
1796
1797 /* Call library-specific lookup procedure. */
1798 objfile = lookup_objfile_from_block (block);
1799 if (objfile != NULL)
1800 sym = solib_global_lookup (objfile, name, domain);
1801 if (sym != NULL)
1802 return sym;
1803
1804 memset (&lookup_data, 0, sizeof (lookup_data));
1805 lookup_data.name = name;
1806 lookup_data.domain = domain;
1807 gdbarch_iterate_over_objfiles_in_search_order
1808 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1809 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1810
1811 return lookup_data.result;
1812 }
1813
1814 int
1815 symbol_matches_domain (enum language symbol_language,
1816 domain_enum symbol_domain,
1817 domain_enum domain)
1818 {
1819 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1820 A Java class declaration also defines a typedef for the class.
1821 Similarly, any Ada type declaration implicitly defines a typedef. */
1822 if (symbol_language == language_cplus
1823 || symbol_language == language_d
1824 || symbol_language == language_java
1825 || symbol_language == language_ada)
1826 {
1827 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1828 && symbol_domain == STRUCT_DOMAIN)
1829 return 1;
1830 }
1831 /* For all other languages, strict match is required. */
1832 return (symbol_domain == domain);
1833 }
1834
1835 /* Look up a type named NAME in the struct_domain. The type returned
1836 must not be opaque -- i.e., must have at least one field
1837 defined. */
1838
1839 struct type *
1840 lookup_transparent_type (const char *name)
1841 {
1842 return current_language->la_lookup_transparent_type (name);
1843 }
1844
1845 /* A helper for basic_lookup_transparent_type that interfaces with the
1846 "quick" symbol table functions. */
1847
1848 static struct type *
1849 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1850 const char *name)
1851 {
1852 struct symtab *symtab;
1853 struct blockvector *bv;
1854 struct block *block;
1855 struct symbol *sym;
1856
1857 if (!objfile->sf)
1858 return NULL;
1859 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1860 if (!symtab)
1861 return NULL;
1862
1863 bv = BLOCKVECTOR (symtab);
1864 block = BLOCKVECTOR_BLOCK (bv, kind);
1865 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1866 if (!sym)
1867 {
1868 int other_kind = kind == GLOBAL_BLOCK ? STATIC_BLOCK : GLOBAL_BLOCK;
1869
1870 /* This shouldn't be necessary, but as a last resort
1871 * try looking in the 'other kind' even though the psymtab
1872 * claimed the symbol was one thing. It's possible that
1873 * the psymtab gets it wrong in some cases.
1874 */
1875 block = BLOCKVECTOR_BLOCK (bv, other_kind);
1876 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1877 if (!sym)
1878 /* FIXME; error is wrong in one case. */
1879 error (_("\
1880 Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1881 %s may be an inlined function, or may be a template function\n\
1882 (if a template, try specifying an instantiation: %s<type>)."),
1883 name, symtab->filename, name, name);
1884 }
1885 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1886 return SYMBOL_TYPE (sym);
1887
1888 return NULL;
1889 }
1890
1891 /* The standard implementation of lookup_transparent_type. This code
1892 was modeled on lookup_symbol -- the parts not relevant to looking
1893 up types were just left out. In particular it's assumed here that
1894 types are available in struct_domain and only at file-static or
1895 global blocks. */
1896
1897 struct type *
1898 basic_lookup_transparent_type (const char *name)
1899 {
1900 struct symbol *sym;
1901 struct symtab *s = NULL;
1902 struct blockvector *bv;
1903 struct objfile *objfile;
1904 struct block *block;
1905 struct type *t;
1906
1907 /* Now search all the global symbols. Do the symtab's first, then
1908 check the psymtab's. If a psymtab indicates the existence
1909 of the desired name as a global, then do psymtab-to-symtab
1910 conversion on the fly and return the found symbol. */
1911
1912 ALL_OBJFILES (objfile)
1913 {
1914 if (objfile->sf)
1915 objfile->sf->qf->pre_expand_symtabs_matching (objfile,
1916 GLOBAL_BLOCK,
1917 name, STRUCT_DOMAIN);
1918
1919 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1920 {
1921 bv = BLOCKVECTOR (s);
1922 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1923 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1924 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1925 {
1926 return SYMBOL_TYPE (sym);
1927 }
1928 }
1929 }
1930
1931 ALL_OBJFILES (objfile)
1932 {
1933 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1934 if (t)
1935 return t;
1936 }
1937
1938 /* Now search the static file-level symbols.
1939 Not strictly correct, but more useful than an error.
1940 Do the symtab's first, then
1941 check the psymtab's. If a psymtab indicates the existence
1942 of the desired name as a file-level static, then do psymtab-to-symtab
1943 conversion on the fly and return the found symbol. */
1944
1945 ALL_OBJFILES (objfile)
1946 {
1947 if (objfile->sf)
1948 objfile->sf->qf->pre_expand_symtabs_matching (objfile, STATIC_BLOCK,
1949 name, STRUCT_DOMAIN);
1950
1951 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1952 {
1953 bv = BLOCKVECTOR (s);
1954 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1955 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1956 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1957 {
1958 return SYMBOL_TYPE (sym);
1959 }
1960 }
1961 }
1962
1963 ALL_OBJFILES (objfile)
1964 {
1965 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1966 if (t)
1967 return t;
1968 }
1969
1970 return (struct type *) 0;
1971 }
1972
1973 /* Find the name of the file containing main(). */
1974 /* FIXME: What about languages without main() or specially linked
1975 executables that have no main() ? */
1976
1977 const char *
1978 find_main_filename (void)
1979 {
1980 struct objfile *objfile;
1981 char *name = main_name ();
1982
1983 ALL_OBJFILES (objfile)
1984 {
1985 const char *result;
1986
1987 if (!objfile->sf)
1988 continue;
1989 result = objfile->sf->qf->find_symbol_file (objfile, name);
1990 if (result)
1991 return result;
1992 }
1993 return (NULL);
1994 }
1995
1996 /* Search BLOCK for symbol NAME in DOMAIN.
1997
1998 Note that if NAME is the demangled form of a C++ symbol, we will fail
1999 to find a match during the binary search of the non-encoded names, but
2000 for now we don't worry about the slight inefficiency of looking for
2001 a match we'll never find, since it will go pretty quick. Once the
2002 binary search terminates, we drop through and do a straight linear
2003 search on the symbols. Each symbol which is marked as being a ObjC/C++
2004 symbol (language_cplus or language_objc set) has both the encoded and
2005 non-encoded names tested for a match. */
2006
2007 struct symbol *
2008 lookup_block_symbol (const struct block *block, const char *name,
2009 const domain_enum domain)
2010 {
2011 struct block_iterator iter;
2012 struct symbol *sym;
2013
2014 if (!BLOCK_FUNCTION (block))
2015 {
2016 for (sym = block_iter_name_first (block, name, &iter);
2017 sym != NULL;
2018 sym = block_iter_name_next (name, &iter))
2019 {
2020 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2021 SYMBOL_DOMAIN (sym), domain))
2022 return sym;
2023 }
2024 return NULL;
2025 }
2026 else
2027 {
2028 /* Note that parameter symbols do not always show up last in the
2029 list; this loop makes sure to take anything else other than
2030 parameter symbols first; it only uses parameter symbols as a
2031 last resort. Note that this only takes up extra computation
2032 time on a match. */
2033
2034 struct symbol *sym_found = NULL;
2035
2036 for (sym = block_iter_name_first (block, name, &iter);
2037 sym != NULL;
2038 sym = block_iter_name_next (name, &iter))
2039 {
2040 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2041 SYMBOL_DOMAIN (sym), domain))
2042 {
2043 sym_found = sym;
2044 if (!SYMBOL_IS_ARGUMENT (sym))
2045 {
2046 break;
2047 }
2048 }
2049 }
2050 return (sym_found); /* Will be NULL if not found. */
2051 }
2052 }
2053
2054 /* Iterate over the symbols named NAME, matching DOMAIN, starting with
2055 BLOCK.
2056
2057 For each symbol that matches, CALLBACK is called. The symbol and
2058 DATA are passed to the callback.
2059
2060 If CALLBACK returns zero, the iteration ends. Otherwise, the
2061 search continues. This function iterates upward through blocks.
2062 When the outermost block has been finished, the function
2063 returns. */
2064
2065 void
2066 iterate_over_symbols (const struct block *block, const char *name,
2067 const domain_enum domain,
2068 symbol_found_callback_ftype *callback,
2069 void *data)
2070 {
2071 while (block)
2072 {
2073 struct block_iterator iter;
2074 struct symbol *sym;
2075
2076 for (sym = block_iter_name_first (block, name, &iter);
2077 sym != NULL;
2078 sym = block_iter_name_next (name, &iter))
2079 {
2080 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2081 SYMBOL_DOMAIN (sym), domain))
2082 {
2083 if (!callback (sym, data))
2084 return;
2085 }
2086 }
2087
2088 block = BLOCK_SUPERBLOCK (block);
2089 }
2090 }
2091
2092 /* Find the symtab associated with PC and SECTION. Look through the
2093 psymtabs and read in another symtab if necessary. */
2094
2095 struct symtab *
2096 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2097 {
2098 struct block *b;
2099 struct blockvector *bv;
2100 struct symtab *s = NULL;
2101 struct symtab *best_s = NULL;
2102 struct objfile *objfile;
2103 struct program_space *pspace;
2104 CORE_ADDR distance = 0;
2105 struct minimal_symbol *msymbol;
2106
2107 pspace = current_program_space;
2108
2109 /* If we know that this is not a text address, return failure. This is
2110 necessary because we loop based on the block's high and low code
2111 addresses, which do not include the data ranges, and because
2112 we call find_pc_sect_psymtab which has a similar restriction based
2113 on the partial_symtab's texthigh and textlow. */
2114 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2115 if (msymbol
2116 && (MSYMBOL_TYPE (msymbol) == mst_data
2117 || MSYMBOL_TYPE (msymbol) == mst_bss
2118 || MSYMBOL_TYPE (msymbol) == mst_abs
2119 || MSYMBOL_TYPE (msymbol) == mst_file_data
2120 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2121 return NULL;
2122
2123 /* Search all symtabs for the one whose file contains our address, and which
2124 is the smallest of all the ones containing the address. This is designed
2125 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2126 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2127 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2128
2129 This happens for native ecoff format, where code from included files
2130 gets its own symtab. The symtab for the included file should have
2131 been read in already via the dependency mechanism.
2132 It might be swifter to create several symtabs with the same name
2133 like xcoff does (I'm not sure).
2134
2135 It also happens for objfiles that have their functions reordered.
2136 For these, the symtab we are looking for is not necessarily read in. */
2137
2138 ALL_PRIMARY_SYMTABS (objfile, s)
2139 {
2140 bv = BLOCKVECTOR (s);
2141 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2142
2143 if (BLOCK_START (b) <= pc
2144 && BLOCK_END (b) > pc
2145 && (distance == 0
2146 || BLOCK_END (b) - BLOCK_START (b) < distance))
2147 {
2148 /* For an objfile that has its functions reordered,
2149 find_pc_psymtab will find the proper partial symbol table
2150 and we simply return its corresponding symtab. */
2151 /* In order to better support objfiles that contain both
2152 stabs and coff debugging info, we continue on if a psymtab
2153 can't be found. */
2154 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2155 {
2156 struct symtab *result;
2157
2158 result
2159 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2160 msymbol,
2161 pc, section,
2162 0);
2163 if (result)
2164 return result;
2165 }
2166 if (section != 0)
2167 {
2168 struct block_iterator iter;
2169 struct symbol *sym = NULL;
2170
2171 ALL_BLOCK_SYMBOLS (b, iter, sym)
2172 {
2173 fixup_symbol_section (sym, objfile);
2174 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2175 break;
2176 }
2177 if (sym == NULL)
2178 continue; /* No symbol in this symtab matches
2179 section. */
2180 }
2181 distance = BLOCK_END (b) - BLOCK_START (b);
2182 best_s = s;
2183 }
2184 }
2185
2186 if (best_s != NULL)
2187 return (best_s);
2188
2189 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2190
2191 ALL_OBJFILES (objfile)
2192 {
2193 struct symtab *result;
2194
2195 if (!objfile->sf)
2196 continue;
2197 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2198 msymbol,
2199 pc, section,
2200 1);
2201 if (result)
2202 return result;
2203 }
2204
2205 return NULL;
2206 }
2207
2208 /* Find the symtab associated with PC. Look through the psymtabs and read
2209 in another symtab if necessary. Backward compatibility, no section. */
2210
2211 struct symtab *
2212 find_pc_symtab (CORE_ADDR pc)
2213 {
2214 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2215 }
2216 \f
2217
2218 /* Find the source file and line number for a given PC value and SECTION.
2219 Return a structure containing a symtab pointer, a line number,
2220 and a pc range for the entire source line.
2221 The value's .pc field is NOT the specified pc.
2222 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2223 use the line that ends there. Otherwise, in that case, the line
2224 that begins there is used. */
2225
2226 /* The big complication here is that a line may start in one file, and end just
2227 before the start of another file. This usually occurs when you #include
2228 code in the middle of a subroutine. To properly find the end of a line's PC
2229 range, we must search all symtabs associated with this compilation unit, and
2230 find the one whose first PC is closer than that of the next line in this
2231 symtab. */
2232
2233 /* If it's worth the effort, we could be using a binary search. */
2234
2235 struct symtab_and_line
2236 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2237 {
2238 struct symtab *s;
2239 struct linetable *l;
2240 int len;
2241 int i;
2242 struct linetable_entry *item;
2243 struct symtab_and_line val;
2244 struct blockvector *bv;
2245 struct minimal_symbol *msymbol;
2246 struct minimal_symbol *mfunsym;
2247 struct objfile *objfile;
2248
2249 /* Info on best line seen so far, and where it starts, and its file. */
2250
2251 struct linetable_entry *best = NULL;
2252 CORE_ADDR best_end = 0;
2253 struct symtab *best_symtab = 0;
2254
2255 /* Store here the first line number
2256 of a file which contains the line at the smallest pc after PC.
2257 If we don't find a line whose range contains PC,
2258 we will use a line one less than this,
2259 with a range from the start of that file to the first line's pc. */
2260 struct linetable_entry *alt = NULL;
2261 struct symtab *alt_symtab = 0;
2262
2263 /* Info on best line seen in this file. */
2264
2265 struct linetable_entry *prev;
2266
2267 /* If this pc is not from the current frame,
2268 it is the address of the end of a call instruction.
2269 Quite likely that is the start of the following statement.
2270 But what we want is the statement containing the instruction.
2271 Fudge the pc to make sure we get that. */
2272
2273 init_sal (&val); /* initialize to zeroes */
2274
2275 val.pspace = current_program_space;
2276
2277 /* It's tempting to assume that, if we can't find debugging info for
2278 any function enclosing PC, that we shouldn't search for line
2279 number info, either. However, GAS can emit line number info for
2280 assembly files --- very helpful when debugging hand-written
2281 assembly code. In such a case, we'd have no debug info for the
2282 function, but we would have line info. */
2283
2284 if (notcurrent)
2285 pc -= 1;
2286
2287 /* elz: added this because this function returned the wrong
2288 information if the pc belongs to a stub (import/export)
2289 to call a shlib function. This stub would be anywhere between
2290 two functions in the target, and the line info was erroneously
2291 taken to be the one of the line before the pc. */
2292
2293 /* RT: Further explanation:
2294
2295 * We have stubs (trampolines) inserted between procedures.
2296 *
2297 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2298 * exists in the main image.
2299 *
2300 * In the minimal symbol table, we have a bunch of symbols
2301 * sorted by start address. The stubs are marked as "trampoline",
2302 * the others appear as text. E.g.:
2303 *
2304 * Minimal symbol table for main image
2305 * main: code for main (text symbol)
2306 * shr1: stub (trampoline symbol)
2307 * foo: code for foo (text symbol)
2308 * ...
2309 * Minimal symbol table for "shr1" image:
2310 * ...
2311 * shr1: code for shr1 (text symbol)
2312 * ...
2313 *
2314 * So the code below is trying to detect if we are in the stub
2315 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2316 * and if found, do the symbolization from the real-code address
2317 * rather than the stub address.
2318 *
2319 * Assumptions being made about the minimal symbol table:
2320 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2321 * if we're really in the trampoline.s If we're beyond it (say
2322 * we're in "foo" in the above example), it'll have a closer
2323 * symbol (the "foo" text symbol for example) and will not
2324 * return the trampoline.
2325 * 2. lookup_minimal_symbol_text() will find a real text symbol
2326 * corresponding to the trampoline, and whose address will
2327 * be different than the trampoline address. I put in a sanity
2328 * check for the address being the same, to avoid an
2329 * infinite recursion.
2330 */
2331 msymbol = lookup_minimal_symbol_by_pc (pc);
2332 if (msymbol != NULL)
2333 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2334 {
2335 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2336 NULL);
2337 if (mfunsym == NULL)
2338 /* I eliminated this warning since it is coming out
2339 * in the following situation:
2340 * gdb shmain // test program with shared libraries
2341 * (gdb) break shr1 // function in shared lib
2342 * Warning: In stub for ...
2343 * In the above situation, the shared lib is not loaded yet,
2344 * so of course we can't find the real func/line info,
2345 * but the "break" still works, and the warning is annoying.
2346 * So I commented out the warning. RT */
2347 /* warning ("In stub for %s; unable to find real function/line info",
2348 SYMBOL_LINKAGE_NAME (msymbol)); */
2349 ;
2350 /* fall through */
2351 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2352 == SYMBOL_VALUE_ADDRESS (msymbol))
2353 /* Avoid infinite recursion */
2354 /* See above comment about why warning is commented out. */
2355 /* warning ("In stub for %s; unable to find real function/line info",
2356 SYMBOL_LINKAGE_NAME (msymbol)); */
2357 ;
2358 /* fall through */
2359 else
2360 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2361 }
2362
2363
2364 s = find_pc_sect_symtab (pc, section);
2365 if (!s)
2366 {
2367 /* If no symbol information, return previous pc. */
2368 if (notcurrent)
2369 pc++;
2370 val.pc = pc;
2371 return val;
2372 }
2373
2374 bv = BLOCKVECTOR (s);
2375 objfile = s->objfile;
2376
2377 /* Look at all the symtabs that share this blockvector.
2378 They all have the same apriori range, that we found was right;
2379 but they have different line tables. */
2380
2381 ALL_OBJFILE_SYMTABS (objfile, s)
2382 {
2383 if (BLOCKVECTOR (s) != bv)
2384 continue;
2385
2386 /* Find the best line in this symtab. */
2387 l = LINETABLE (s);
2388 if (!l)
2389 continue;
2390 len = l->nitems;
2391 if (len <= 0)
2392 {
2393 /* I think len can be zero if the symtab lacks line numbers
2394 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2395 I'm not sure which, and maybe it depends on the symbol
2396 reader). */
2397 continue;
2398 }
2399
2400 prev = NULL;
2401 item = l->item; /* Get first line info. */
2402
2403 /* Is this file's first line closer than the first lines of other files?
2404 If so, record this file, and its first line, as best alternate. */
2405 if (item->pc > pc && (!alt || item->pc < alt->pc))
2406 {
2407 alt = item;
2408 alt_symtab = s;
2409 }
2410
2411 for (i = 0; i < len; i++, item++)
2412 {
2413 /* Leave prev pointing to the linetable entry for the last line
2414 that started at or before PC. */
2415 if (item->pc > pc)
2416 break;
2417
2418 prev = item;
2419 }
2420
2421 /* At this point, prev points at the line whose start addr is <= pc, and
2422 item points at the next line. If we ran off the end of the linetable
2423 (pc >= start of the last line), then prev == item. If pc < start of
2424 the first line, prev will not be set. */
2425
2426 /* Is this file's best line closer than the best in the other files?
2427 If so, record this file, and its best line, as best so far. Don't
2428 save prev if it represents the end of a function (i.e. line number
2429 0) instead of a real line. */
2430
2431 if (prev && prev->line && (!best || prev->pc > best->pc))
2432 {
2433 best = prev;
2434 best_symtab = s;
2435
2436 /* Discard BEST_END if it's before the PC of the current BEST. */
2437 if (best_end <= best->pc)
2438 best_end = 0;
2439 }
2440
2441 /* If another line (denoted by ITEM) is in the linetable and its
2442 PC is after BEST's PC, but before the current BEST_END, then
2443 use ITEM's PC as the new best_end. */
2444 if (best && i < len && item->pc > best->pc
2445 && (best_end == 0 || best_end > item->pc))
2446 best_end = item->pc;
2447 }
2448
2449 if (!best_symtab)
2450 {
2451 /* If we didn't find any line number info, just return zeros.
2452 We used to return alt->line - 1 here, but that could be
2453 anywhere; if we don't have line number info for this PC,
2454 don't make some up. */
2455 val.pc = pc;
2456 }
2457 else if (best->line == 0)
2458 {
2459 /* If our best fit is in a range of PC's for which no line
2460 number info is available (line number is zero) then we didn't
2461 find any valid line information. */
2462 val.pc = pc;
2463 }
2464 else
2465 {
2466 val.symtab = best_symtab;
2467 val.line = best->line;
2468 val.pc = best->pc;
2469 if (best_end && (!alt || best_end < alt->pc))
2470 val.end = best_end;
2471 else if (alt)
2472 val.end = alt->pc;
2473 else
2474 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2475 }
2476 val.section = section;
2477 return val;
2478 }
2479
2480 /* Backward compatibility (no section). */
2481
2482 struct symtab_and_line
2483 find_pc_line (CORE_ADDR pc, int notcurrent)
2484 {
2485 struct obj_section *section;
2486
2487 section = find_pc_overlay (pc);
2488 if (pc_in_unmapped_range (pc, section))
2489 pc = overlay_mapped_address (pc, section);
2490 return find_pc_sect_line (pc, section, notcurrent);
2491 }
2492 \f
2493 /* Find line number LINE in any symtab whose name is the same as
2494 SYMTAB.
2495
2496 If found, return the symtab that contains the linetable in which it was
2497 found, set *INDEX to the index in the linetable of the best entry
2498 found, and set *EXACT_MATCH nonzero if the value returned is an
2499 exact match.
2500
2501 If not found, return NULL. */
2502
2503 struct symtab *
2504 find_line_symtab (struct symtab *symtab, int line,
2505 int *index, int *exact_match)
2506 {
2507 int exact = 0; /* Initialized here to avoid a compiler warning. */
2508
2509 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2510 so far seen. */
2511
2512 int best_index;
2513 struct linetable *best_linetable;
2514 struct symtab *best_symtab;
2515
2516 /* First try looking it up in the given symtab. */
2517 best_linetable = LINETABLE (symtab);
2518 best_symtab = symtab;
2519 best_index = find_line_common (best_linetable, line, &exact, 0);
2520 if (best_index < 0 || !exact)
2521 {
2522 /* Didn't find an exact match. So we better keep looking for
2523 another symtab with the same name. In the case of xcoff,
2524 multiple csects for one source file (produced by IBM's FORTRAN
2525 compiler) produce multiple symtabs (this is unavoidable
2526 assuming csects can be at arbitrary places in memory and that
2527 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2528
2529 /* BEST is the smallest linenumber > LINE so far seen,
2530 or 0 if none has been seen so far.
2531 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2532 int best;
2533
2534 struct objfile *objfile;
2535 struct symtab *s;
2536
2537 if (best_index >= 0)
2538 best = best_linetable->item[best_index].line;
2539 else
2540 best = 0;
2541
2542 ALL_OBJFILES (objfile)
2543 {
2544 if (objfile->sf)
2545 objfile->sf->qf->expand_symtabs_with_filename (objfile,
2546 symtab->filename);
2547 }
2548
2549 /* Get symbol full file name if possible. */
2550 symtab_to_fullname (symtab);
2551
2552 ALL_SYMTABS (objfile, s)
2553 {
2554 struct linetable *l;
2555 int ind;
2556
2557 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2558 continue;
2559 if (symtab->fullname != NULL
2560 && symtab_to_fullname (s) != NULL
2561 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2562 continue;
2563 l = LINETABLE (s);
2564 ind = find_line_common (l, line, &exact, 0);
2565 if (ind >= 0)
2566 {
2567 if (exact)
2568 {
2569 best_index = ind;
2570 best_linetable = l;
2571 best_symtab = s;
2572 goto done;
2573 }
2574 if (best == 0 || l->item[ind].line < best)
2575 {
2576 best = l->item[ind].line;
2577 best_index = ind;
2578 best_linetable = l;
2579 best_symtab = s;
2580 }
2581 }
2582 }
2583 }
2584 done:
2585 if (best_index < 0)
2586 return NULL;
2587
2588 if (index)
2589 *index = best_index;
2590 if (exact_match)
2591 *exact_match = exact;
2592
2593 return best_symtab;
2594 }
2595
2596 /* Given SYMTAB, returns all the PCs function in the symtab that
2597 exactly match LINE. Returns NULL if there are no exact matches,
2598 but updates BEST_ITEM in this case. */
2599
2600 VEC (CORE_ADDR) *
2601 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2602 struct linetable_entry **best_item)
2603 {
2604 int start = 0, ix;
2605 struct symbol *previous_function = NULL;
2606 VEC (CORE_ADDR) *result = NULL;
2607
2608 /* First, collect all the PCs that are at this line. */
2609 while (1)
2610 {
2611 int was_exact;
2612 int idx;
2613
2614 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2615 if (idx < 0)
2616 break;
2617
2618 if (!was_exact)
2619 {
2620 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2621
2622 if (*best_item == NULL || item->line < (*best_item)->line)
2623 *best_item = item;
2624
2625 break;
2626 }
2627
2628 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2629 start = idx + 1;
2630 }
2631
2632 return result;
2633 }
2634
2635 \f
2636 /* Set the PC value for a given source file and line number and return true.
2637 Returns zero for invalid line number (and sets the PC to 0).
2638 The source file is specified with a struct symtab. */
2639
2640 int
2641 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2642 {
2643 struct linetable *l;
2644 int ind;
2645
2646 *pc = 0;
2647 if (symtab == 0)
2648 return 0;
2649
2650 symtab = find_line_symtab (symtab, line, &ind, NULL);
2651 if (symtab != NULL)
2652 {
2653 l = LINETABLE (symtab);
2654 *pc = l->item[ind].pc;
2655 return 1;
2656 }
2657 else
2658 return 0;
2659 }
2660
2661 /* Find the range of pc values in a line.
2662 Store the starting pc of the line into *STARTPTR
2663 and the ending pc (start of next line) into *ENDPTR.
2664 Returns 1 to indicate success.
2665 Returns 0 if could not find the specified line. */
2666
2667 int
2668 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2669 CORE_ADDR *endptr)
2670 {
2671 CORE_ADDR startaddr;
2672 struct symtab_and_line found_sal;
2673
2674 startaddr = sal.pc;
2675 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2676 return 0;
2677
2678 /* This whole function is based on address. For example, if line 10 has
2679 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2680 "info line *0x123" should say the line goes from 0x100 to 0x200
2681 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2682 This also insures that we never give a range like "starts at 0x134
2683 and ends at 0x12c". */
2684
2685 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2686 if (found_sal.line != sal.line)
2687 {
2688 /* The specified line (sal) has zero bytes. */
2689 *startptr = found_sal.pc;
2690 *endptr = found_sal.pc;
2691 }
2692 else
2693 {
2694 *startptr = found_sal.pc;
2695 *endptr = found_sal.end;
2696 }
2697 return 1;
2698 }
2699
2700 /* Given a line table and a line number, return the index into the line
2701 table for the pc of the nearest line whose number is >= the specified one.
2702 Return -1 if none is found. The value is >= 0 if it is an index.
2703 START is the index at which to start searching the line table.
2704
2705 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2706
2707 static int
2708 find_line_common (struct linetable *l, int lineno,
2709 int *exact_match, int start)
2710 {
2711 int i;
2712 int len;
2713
2714 /* BEST is the smallest linenumber > LINENO so far seen,
2715 or 0 if none has been seen so far.
2716 BEST_INDEX identifies the item for it. */
2717
2718 int best_index = -1;
2719 int best = 0;
2720
2721 *exact_match = 0;
2722
2723 if (lineno <= 0)
2724 return -1;
2725 if (l == 0)
2726 return -1;
2727
2728 len = l->nitems;
2729 for (i = start; i < len; i++)
2730 {
2731 struct linetable_entry *item = &(l->item[i]);
2732
2733 if (item->line == lineno)
2734 {
2735 /* Return the first (lowest address) entry which matches. */
2736 *exact_match = 1;
2737 return i;
2738 }
2739
2740 if (item->line > lineno && (best == 0 || item->line < best))
2741 {
2742 best = item->line;
2743 best_index = i;
2744 }
2745 }
2746
2747 /* If we got here, we didn't get an exact match. */
2748 return best_index;
2749 }
2750
2751 int
2752 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2753 {
2754 struct symtab_and_line sal;
2755
2756 sal = find_pc_line (pc, 0);
2757 *startptr = sal.pc;
2758 *endptr = sal.end;
2759 return sal.symtab != 0;
2760 }
2761
2762 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2763 address for that function that has an entry in SYMTAB's line info
2764 table. If such an entry cannot be found, return FUNC_ADDR
2765 unaltered. */
2766
2767 static CORE_ADDR
2768 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2769 {
2770 CORE_ADDR func_start, func_end;
2771 struct linetable *l;
2772 int i;
2773
2774 /* Give up if this symbol has no lineinfo table. */
2775 l = LINETABLE (symtab);
2776 if (l == NULL)
2777 return func_addr;
2778
2779 /* Get the range for the function's PC values, or give up if we
2780 cannot, for some reason. */
2781 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2782 return func_addr;
2783
2784 /* Linetable entries are ordered by PC values, see the commentary in
2785 symtab.h where `struct linetable' is defined. Thus, the first
2786 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2787 address we are looking for. */
2788 for (i = 0; i < l->nitems; i++)
2789 {
2790 struct linetable_entry *item = &(l->item[i]);
2791
2792 /* Don't use line numbers of zero, they mark special entries in
2793 the table. See the commentary on symtab.h before the
2794 definition of struct linetable. */
2795 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2796 return item->pc;
2797 }
2798
2799 return func_addr;
2800 }
2801
2802 /* Given a function symbol SYM, find the symtab and line for the start
2803 of the function.
2804 If the argument FUNFIRSTLINE is nonzero, we want the first line
2805 of real code inside the function. */
2806
2807 struct symtab_and_line
2808 find_function_start_sal (struct symbol *sym, int funfirstline)
2809 {
2810 struct symtab_and_line sal;
2811
2812 fixup_symbol_section (sym, NULL);
2813 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2814 SYMBOL_OBJ_SECTION (sym), 0);
2815
2816 /* We always should have a line for the function start address.
2817 If we don't, something is odd. Create a plain SAL refering
2818 just the PC and hope that skip_prologue_sal (if requested)
2819 can find a line number for after the prologue. */
2820 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2821 {
2822 init_sal (&sal);
2823 sal.pspace = current_program_space;
2824 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2825 sal.section = SYMBOL_OBJ_SECTION (sym);
2826 }
2827
2828 if (funfirstline)
2829 skip_prologue_sal (&sal);
2830
2831 return sal;
2832 }
2833
2834 /* Adjust SAL to the first instruction past the function prologue.
2835 If the PC was explicitly specified, the SAL is not changed.
2836 If the line number was explicitly specified, at most the SAL's PC
2837 is updated. If SAL is already past the prologue, then do nothing. */
2838
2839 void
2840 skip_prologue_sal (struct symtab_and_line *sal)
2841 {
2842 struct symbol *sym;
2843 struct symtab_and_line start_sal;
2844 struct cleanup *old_chain;
2845 CORE_ADDR pc, saved_pc;
2846 struct obj_section *section;
2847 const char *name;
2848 struct objfile *objfile;
2849 struct gdbarch *gdbarch;
2850 struct block *b, *function_block;
2851 int force_skip, skip;
2852
2853 /* Do not change the SAL if PC was specified explicitly. */
2854 if (sal->explicit_pc)
2855 return;
2856
2857 old_chain = save_current_space_and_thread ();
2858 switch_to_program_space_and_thread (sal->pspace);
2859
2860 sym = find_pc_sect_function (sal->pc, sal->section);
2861 if (sym != NULL)
2862 {
2863 fixup_symbol_section (sym, NULL);
2864
2865 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2866 section = SYMBOL_OBJ_SECTION (sym);
2867 name = SYMBOL_LINKAGE_NAME (sym);
2868 objfile = SYMBOL_SYMTAB (sym)->objfile;
2869 }
2870 else
2871 {
2872 struct minimal_symbol *msymbol
2873 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2874
2875 if (msymbol == NULL)
2876 {
2877 do_cleanups (old_chain);
2878 return;
2879 }
2880
2881 pc = SYMBOL_VALUE_ADDRESS (msymbol);
2882 section = SYMBOL_OBJ_SECTION (msymbol);
2883 name = SYMBOL_LINKAGE_NAME (msymbol);
2884 objfile = msymbol_objfile (msymbol);
2885 }
2886
2887 gdbarch = get_objfile_arch (objfile);
2888
2889 /* Process the prologue in two passes. In the first pass try to skip the
2890 prologue (SKIP is true) and verify there is a real need for it (indicated
2891 by FORCE_SKIP). If no such reason was found run a second pass where the
2892 prologue is not skipped (SKIP is false). */
2893
2894 skip = 1;
2895 force_skip = 1;
2896
2897 /* Be conservative - allow direct PC (without skipping prologue) only if we
2898 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2899 have to be set by the caller so we use SYM instead. */
2900 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2901 force_skip = 0;
2902
2903 saved_pc = pc;
2904 do
2905 {
2906 pc = saved_pc;
2907
2908 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2909 so that gdbarch_skip_prologue has something unique to work on. */
2910 if (section_is_overlay (section) && !section_is_mapped (section))
2911 pc = overlay_unmapped_address (pc, section);
2912
2913 /* Skip "first line" of function (which is actually its prologue). */
2914 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2915 if (skip)
2916 pc = gdbarch_skip_prologue (gdbarch, pc);
2917
2918 /* For overlays, map pc back into its mapped VMA range. */
2919 pc = overlay_mapped_address (pc, section);
2920
2921 /* Calculate line number. */
2922 start_sal = find_pc_sect_line (pc, section, 0);
2923
2924 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2925 line is still part of the same function. */
2926 if (skip && start_sal.pc != pc
2927 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2928 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2929 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section)
2930 == lookup_minimal_symbol_by_pc_section (pc, section))))
2931 {
2932 /* First pc of next line */
2933 pc = start_sal.end;
2934 /* Recalculate the line number (might not be N+1). */
2935 start_sal = find_pc_sect_line (pc, section, 0);
2936 }
2937
2938 /* On targets with executable formats that don't have a concept of
2939 constructors (ELF with .init has, PE doesn't), gcc emits a call
2940 to `__main' in `main' between the prologue and before user
2941 code. */
2942 if (gdbarch_skip_main_prologue_p (gdbarch)
2943 && name && strcmp_iw (name, "main") == 0)
2944 {
2945 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2946 /* Recalculate the line number (might not be N+1). */
2947 start_sal = find_pc_sect_line (pc, section, 0);
2948 force_skip = 1;
2949 }
2950 }
2951 while (!force_skip && skip--);
2952
2953 /* If we still don't have a valid source line, try to find the first
2954 PC in the lineinfo table that belongs to the same function. This
2955 happens with COFF debug info, which does not seem to have an
2956 entry in lineinfo table for the code after the prologue which has
2957 no direct relation to source. For example, this was found to be
2958 the case with the DJGPP target using "gcc -gcoff" when the
2959 compiler inserted code after the prologue to make sure the stack
2960 is aligned. */
2961 if (!force_skip && sym && start_sal.symtab == NULL)
2962 {
2963 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2964 /* Recalculate the line number. */
2965 start_sal = find_pc_sect_line (pc, section, 0);
2966 }
2967
2968 do_cleanups (old_chain);
2969
2970 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2971 forward SAL to the end of the prologue. */
2972 if (sal->pc >= pc)
2973 return;
2974
2975 sal->pc = pc;
2976 sal->section = section;
2977
2978 /* Unless the explicit_line flag was set, update the SAL line
2979 and symtab to correspond to the modified PC location. */
2980 if (sal->explicit_line)
2981 return;
2982
2983 sal->symtab = start_sal.symtab;
2984 sal->line = start_sal.line;
2985 sal->end = start_sal.end;
2986
2987 /* Check if we are now inside an inlined function. If we can,
2988 use the call site of the function instead. */
2989 b = block_for_pc_sect (sal->pc, sal->section);
2990 function_block = NULL;
2991 while (b != NULL)
2992 {
2993 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2994 function_block = b;
2995 else if (BLOCK_FUNCTION (b) != NULL)
2996 break;
2997 b = BLOCK_SUPERBLOCK (b);
2998 }
2999 if (function_block != NULL
3000 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3001 {
3002 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3003 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3004 }
3005 }
3006
3007 /* If P is of the form "operator[ \t]+..." where `...' is
3008 some legitimate operator text, return a pointer to the
3009 beginning of the substring of the operator text.
3010 Otherwise, return "". */
3011
3012 static char *
3013 operator_chars (char *p, char **end)
3014 {
3015 *end = "";
3016 if (strncmp (p, "operator", 8))
3017 return *end;
3018 p += 8;
3019
3020 /* Don't get faked out by `operator' being part of a longer
3021 identifier. */
3022 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3023 return *end;
3024
3025 /* Allow some whitespace between `operator' and the operator symbol. */
3026 while (*p == ' ' || *p == '\t')
3027 p++;
3028
3029 /* Recognize 'operator TYPENAME'. */
3030
3031 if (isalpha (*p) || *p == '_' || *p == '$')
3032 {
3033 char *q = p + 1;
3034
3035 while (isalnum (*q) || *q == '_' || *q == '$')
3036 q++;
3037 *end = q;
3038 return p;
3039 }
3040
3041 while (*p)
3042 switch (*p)
3043 {
3044 case '\\': /* regexp quoting */
3045 if (p[1] == '*')
3046 {
3047 if (p[2] == '=') /* 'operator\*=' */
3048 *end = p + 3;
3049 else /* 'operator\*' */
3050 *end = p + 2;
3051 return p;
3052 }
3053 else if (p[1] == '[')
3054 {
3055 if (p[2] == ']')
3056 error (_("mismatched quoting on brackets, "
3057 "try 'operator\\[\\]'"));
3058 else if (p[2] == '\\' && p[3] == ']')
3059 {
3060 *end = p + 4; /* 'operator\[\]' */
3061 return p;
3062 }
3063 else
3064 error (_("nothing is allowed between '[' and ']'"));
3065 }
3066 else
3067 {
3068 /* Gratuitous qoute: skip it and move on. */
3069 p++;
3070 continue;
3071 }
3072 break;
3073 case '!':
3074 case '=':
3075 case '*':
3076 case '/':
3077 case '%':
3078 case '^':
3079 if (p[1] == '=')
3080 *end = p + 2;
3081 else
3082 *end = p + 1;
3083 return p;
3084 case '<':
3085 case '>':
3086 case '+':
3087 case '-':
3088 case '&':
3089 case '|':
3090 if (p[0] == '-' && p[1] == '>')
3091 {
3092 /* Struct pointer member operator 'operator->'. */
3093 if (p[2] == '*')
3094 {
3095 *end = p + 3; /* 'operator->*' */
3096 return p;
3097 }
3098 else if (p[2] == '\\')
3099 {
3100 *end = p + 4; /* Hopefully 'operator->\*' */
3101 return p;
3102 }
3103 else
3104 {
3105 *end = p + 2; /* 'operator->' */
3106 return p;
3107 }
3108 }
3109 if (p[1] == '=' || p[1] == p[0])
3110 *end = p + 2;
3111 else
3112 *end = p + 1;
3113 return p;
3114 case '~':
3115 case ',':
3116 *end = p + 1;
3117 return p;
3118 case '(':
3119 if (p[1] != ')')
3120 error (_("`operator ()' must be specified "
3121 "without whitespace in `()'"));
3122 *end = p + 2;
3123 return p;
3124 case '?':
3125 if (p[1] != ':')
3126 error (_("`operator ?:' must be specified "
3127 "without whitespace in `?:'"));
3128 *end = p + 2;
3129 return p;
3130 case '[':
3131 if (p[1] != ']')
3132 error (_("`operator []' must be specified "
3133 "without whitespace in `[]'"));
3134 *end = p + 2;
3135 return p;
3136 default:
3137 error (_("`operator %s' not supported"), p);
3138 break;
3139 }
3140
3141 *end = "";
3142 return *end;
3143 }
3144 \f
3145
3146 /* Cache to watch for file names already seen by filename_seen. */
3147
3148 struct filename_seen_cache
3149 {
3150 /* Table of files seen so far. */
3151 htab_t tab;
3152 /* Initial size of the table. It automagically grows from here. */
3153 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3154 };
3155
3156 /* filename_seen_cache constructor. */
3157
3158 static struct filename_seen_cache *
3159 create_filename_seen_cache (void)
3160 {
3161 struct filename_seen_cache *cache;
3162
3163 cache = XNEW (struct filename_seen_cache);
3164 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3165 filename_hash, filename_eq,
3166 NULL, xcalloc, xfree);
3167
3168 return cache;
3169 }
3170
3171 /* Empty the cache, but do not delete it. */
3172
3173 static void
3174 clear_filename_seen_cache (struct filename_seen_cache *cache)
3175 {
3176 htab_empty (cache->tab);
3177 }
3178
3179 /* filename_seen_cache destructor.
3180 This takes a void * argument as it is generally used as a cleanup. */
3181
3182 static void
3183 delete_filename_seen_cache (void *ptr)
3184 {
3185 struct filename_seen_cache *cache = ptr;
3186
3187 htab_delete (cache->tab);
3188 xfree (cache);
3189 }
3190
3191 /* If FILE is not already in the table of files in CACHE, return zero;
3192 otherwise return non-zero. Optionally add FILE to the table if ADD
3193 is non-zero.
3194
3195 NOTE: We don't manage space for FILE, we assume FILE lives as long
3196 as the caller needs. */
3197
3198 static int
3199 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3200 {
3201 void **slot;
3202
3203 /* Is FILE in tab? */
3204 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3205 if (*slot != NULL)
3206 return 1;
3207
3208 /* No; maybe add it to tab. */
3209 if (add)
3210 *slot = (char *) file;
3211
3212 return 0;
3213 }
3214
3215 /* Data structure to maintain printing state for output_source_filename. */
3216
3217 struct output_source_filename_data
3218 {
3219 /* Cache of what we've seen so far. */
3220 struct filename_seen_cache *filename_seen_cache;
3221
3222 /* Flag of whether we're printing the first one. */
3223 int first;
3224 };
3225
3226 /* Slave routine for sources_info. Force line breaks at ,'s.
3227 NAME is the name to print.
3228 DATA contains the state for printing and watching for duplicates. */
3229
3230 static void
3231 output_source_filename (const char *name,
3232 struct output_source_filename_data *data)
3233 {
3234 /* Since a single source file can result in several partial symbol
3235 tables, we need to avoid printing it more than once. Note: if
3236 some of the psymtabs are read in and some are not, it gets
3237 printed both under "Source files for which symbols have been
3238 read" and "Source files for which symbols will be read in on
3239 demand". I consider this a reasonable way to deal with the
3240 situation. I'm not sure whether this can also happen for
3241 symtabs; it doesn't hurt to check. */
3242
3243 /* Was NAME already seen? */
3244 if (filename_seen (data->filename_seen_cache, name, 1))
3245 {
3246 /* Yes; don't print it again. */
3247 return;
3248 }
3249
3250 /* No; print it and reset *FIRST. */
3251 if (! data->first)
3252 printf_filtered (", ");
3253 data->first = 0;
3254
3255 wrap_here ("");
3256 fputs_filtered (name, gdb_stdout);
3257 }
3258
3259 /* A callback for map_partial_symbol_filenames. */
3260
3261 static void
3262 output_partial_symbol_filename (const char *filename, const char *fullname,
3263 void *data)
3264 {
3265 output_source_filename (fullname ? fullname : filename, data);
3266 }
3267
3268 static void
3269 sources_info (char *ignore, int from_tty)
3270 {
3271 struct symtab *s;
3272 struct objfile *objfile;
3273 struct output_source_filename_data data;
3274 struct cleanup *cleanups;
3275
3276 if (!have_full_symbols () && !have_partial_symbols ())
3277 {
3278 error (_("No symbol table is loaded. Use the \"file\" command."));
3279 }
3280
3281 data.filename_seen_cache = create_filename_seen_cache ();
3282 cleanups = make_cleanup (delete_filename_seen_cache,
3283 data.filename_seen_cache);
3284
3285 printf_filtered ("Source files for which symbols have been read in:\n\n");
3286
3287 data.first = 1;
3288 ALL_SYMTABS (objfile, s)
3289 {
3290 const char *fullname = symtab_to_fullname (s);
3291
3292 output_source_filename (fullname ? fullname : s->filename, &data);
3293 }
3294 printf_filtered ("\n\n");
3295
3296 printf_filtered ("Source files for which symbols "
3297 "will be read in on demand:\n\n");
3298
3299 clear_filename_seen_cache (data.filename_seen_cache);
3300 data.first = 1;
3301 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3302 1 /*need_fullname*/);
3303 printf_filtered ("\n");
3304
3305 do_cleanups (cleanups);
3306 }
3307
3308 static int
3309 file_matches (const char *file, char *files[], int nfiles)
3310 {
3311 int i;
3312
3313 if (file != NULL && nfiles != 0)
3314 {
3315 for (i = 0; i < nfiles; i++)
3316 {
3317 if (filename_cmp (files[i], lbasename (file)) == 0)
3318 return 1;
3319 }
3320 }
3321 else if (nfiles == 0)
3322 return 1;
3323 return 0;
3324 }
3325
3326 /* Free any memory associated with a search. */
3327
3328 void
3329 free_search_symbols (struct symbol_search *symbols)
3330 {
3331 struct symbol_search *p;
3332 struct symbol_search *next;
3333
3334 for (p = symbols; p != NULL; p = next)
3335 {
3336 next = p->next;
3337 xfree (p);
3338 }
3339 }
3340
3341 static void
3342 do_free_search_symbols_cleanup (void *symbols)
3343 {
3344 free_search_symbols (symbols);
3345 }
3346
3347 struct cleanup *
3348 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3349 {
3350 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3351 }
3352
3353 /* Helper function for sort_search_symbols and qsort. Can only
3354 sort symbols, not minimal symbols. */
3355
3356 static int
3357 compare_search_syms (const void *sa, const void *sb)
3358 {
3359 struct symbol_search **sym_a = (struct symbol_search **) sa;
3360 struct symbol_search **sym_b = (struct symbol_search **) sb;
3361
3362 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3363 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3364 }
3365
3366 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3367 prevtail where it is, but update its next pointer to point to
3368 the first of the sorted symbols. */
3369
3370 static struct symbol_search *
3371 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3372 {
3373 struct symbol_search **symbols, *symp, *old_next;
3374 int i;
3375
3376 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3377 * nfound);
3378 symp = prevtail->next;
3379 for (i = 0; i < nfound; i++)
3380 {
3381 symbols[i] = symp;
3382 symp = symp->next;
3383 }
3384 /* Generally NULL. */
3385 old_next = symp;
3386
3387 qsort (symbols, nfound, sizeof (struct symbol_search *),
3388 compare_search_syms);
3389
3390 symp = prevtail;
3391 for (i = 0; i < nfound; i++)
3392 {
3393 symp->next = symbols[i];
3394 symp = symp->next;
3395 }
3396 symp->next = old_next;
3397
3398 xfree (symbols);
3399 return symp;
3400 }
3401
3402 /* An object of this type is passed as the user_data to the
3403 expand_symtabs_matching method. */
3404 struct search_symbols_data
3405 {
3406 int nfiles;
3407 char **files;
3408
3409 /* It is true if PREG contains valid data, false otherwise. */
3410 unsigned preg_p : 1;
3411 regex_t preg;
3412 };
3413
3414 /* A callback for expand_symtabs_matching. */
3415
3416 static int
3417 search_symbols_file_matches (const char *filename, void *user_data)
3418 {
3419 struct search_symbols_data *data = user_data;
3420
3421 return file_matches (filename, data->files, data->nfiles);
3422 }
3423
3424 /* A callback for expand_symtabs_matching. */
3425
3426 static int
3427 search_symbols_name_matches (const char *symname, void *user_data)
3428 {
3429 struct search_symbols_data *data = user_data;
3430
3431 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3432 }
3433
3434 /* Search the symbol table for matches to the regular expression REGEXP,
3435 returning the results in *MATCHES.
3436
3437 Only symbols of KIND are searched:
3438 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3439 and constants (enums)
3440 FUNCTIONS_DOMAIN - search all functions
3441 TYPES_DOMAIN - search all type names
3442 ALL_DOMAIN - an internal error for this function
3443
3444 free_search_symbols should be called when *MATCHES is no longer needed.
3445
3446 The results are sorted locally; each symtab's global and static blocks are
3447 separately alphabetized. */
3448
3449 void
3450 search_symbols (char *regexp, enum search_domain kind,
3451 int nfiles, char *files[],
3452 struct symbol_search **matches)
3453 {
3454 struct symtab *s;
3455 struct blockvector *bv;
3456 struct block *b;
3457 int i = 0;
3458 struct block_iterator iter;
3459 struct symbol *sym;
3460 struct objfile *objfile;
3461 struct minimal_symbol *msymbol;
3462 int found_misc = 0;
3463 static const enum minimal_symbol_type types[]
3464 = {mst_data, mst_text, mst_abs};
3465 static const enum minimal_symbol_type types2[]
3466 = {mst_bss, mst_file_text, mst_abs};
3467 static const enum minimal_symbol_type types3[]
3468 = {mst_file_data, mst_solib_trampoline, mst_abs};
3469 static const enum minimal_symbol_type types4[]
3470 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3471 enum minimal_symbol_type ourtype;
3472 enum minimal_symbol_type ourtype2;
3473 enum minimal_symbol_type ourtype3;
3474 enum minimal_symbol_type ourtype4;
3475 struct symbol_search *sr;
3476 struct symbol_search *psr;
3477 struct symbol_search *tail;
3478 struct search_symbols_data datum;
3479
3480 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3481 CLEANUP_CHAIN is freed only in the case of an error. */
3482 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3483 struct cleanup *retval_chain;
3484
3485 gdb_assert (kind <= TYPES_DOMAIN);
3486
3487 ourtype = types[kind];
3488 ourtype2 = types2[kind];
3489 ourtype3 = types3[kind];
3490 ourtype4 = types4[kind];
3491
3492 sr = *matches = NULL;
3493 tail = NULL;
3494 datum.preg_p = 0;
3495
3496 if (regexp != NULL)
3497 {
3498 /* Make sure spacing is right for C++ operators.
3499 This is just a courtesy to make the matching less sensitive
3500 to how many spaces the user leaves between 'operator'
3501 and <TYPENAME> or <OPERATOR>. */
3502 char *opend;
3503 char *opname = operator_chars (regexp, &opend);
3504 int errcode;
3505
3506 if (*opname)
3507 {
3508 int fix = -1; /* -1 means ok; otherwise number of
3509 spaces needed. */
3510
3511 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3512 {
3513 /* There should 1 space between 'operator' and 'TYPENAME'. */
3514 if (opname[-1] != ' ' || opname[-2] == ' ')
3515 fix = 1;
3516 }
3517 else
3518 {
3519 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3520 if (opname[-1] == ' ')
3521 fix = 0;
3522 }
3523 /* If wrong number of spaces, fix it. */
3524 if (fix >= 0)
3525 {
3526 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3527
3528 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3529 regexp = tmp;
3530 }
3531 }
3532
3533 errcode = regcomp (&datum.preg, regexp,
3534 REG_NOSUB | (case_sensitivity == case_sensitive_off
3535 ? REG_ICASE : 0));
3536 if (errcode != 0)
3537 {
3538 char *err = get_regcomp_error (errcode, &datum.preg);
3539
3540 make_cleanup (xfree, err);
3541 error (_("Invalid regexp (%s): %s"), err, regexp);
3542 }
3543 datum.preg_p = 1;
3544 make_regfree_cleanup (&datum.preg);
3545 }
3546
3547 /* Search through the partial symtabs *first* for all symbols
3548 matching the regexp. That way we don't have to reproduce all of
3549 the machinery below. */
3550
3551 datum.nfiles = nfiles;
3552 datum.files = files;
3553 ALL_OBJFILES (objfile)
3554 {
3555 if (objfile->sf)
3556 objfile->sf->qf->expand_symtabs_matching (objfile,
3557 (nfiles == 0
3558 ? NULL
3559 : search_symbols_file_matches),
3560 search_symbols_name_matches,
3561 kind,
3562 &datum);
3563 }
3564
3565 retval_chain = old_chain;
3566
3567 /* Here, we search through the minimal symbol tables for functions
3568 and variables that match, and force their symbols to be read.
3569 This is in particular necessary for demangled variable names,
3570 which are no longer put into the partial symbol tables.
3571 The symbol will then be found during the scan of symtabs below.
3572
3573 For functions, find_pc_symtab should succeed if we have debug info
3574 for the function, for variables we have to call
3575 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3576 has debug info.
3577 If the lookup fails, set found_misc so that we will rescan to print
3578 any matching symbols without debug info.
3579 We only search the objfile the msymbol came from, we no longer search
3580 all objfiles. In large programs (1000s of shared libs) searching all
3581 objfiles is not worth the pain. */
3582
3583 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3584 {
3585 ALL_MSYMBOLS (objfile, msymbol)
3586 {
3587 QUIT;
3588
3589 if (msymbol->created_by_gdb)
3590 continue;
3591
3592 if (MSYMBOL_TYPE (msymbol) == ourtype
3593 || MSYMBOL_TYPE (msymbol) == ourtype2
3594 || MSYMBOL_TYPE (msymbol) == ourtype3
3595 || MSYMBOL_TYPE (msymbol) == ourtype4)
3596 {
3597 if (!datum.preg_p
3598 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3599 NULL, 0) == 0)
3600 {
3601 /* Note: An important side-effect of these lookup functions
3602 is to expand the symbol table if msymbol is found, for the
3603 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3604 if (kind == FUNCTIONS_DOMAIN
3605 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3606 : (lookup_symbol_in_objfile_from_linkage_name
3607 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3608 == NULL))
3609 found_misc = 1;
3610 }
3611 }
3612 }
3613 }
3614
3615 ALL_PRIMARY_SYMTABS (objfile, s)
3616 {
3617 bv = BLOCKVECTOR (s);
3618 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3619 {
3620 struct symbol_search *prevtail = tail;
3621 int nfound = 0;
3622
3623 b = BLOCKVECTOR_BLOCK (bv, i);
3624 ALL_BLOCK_SYMBOLS (b, iter, sym)
3625 {
3626 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3627
3628 QUIT;
3629
3630 if (file_matches (real_symtab->filename, files, nfiles)
3631 && ((!datum.preg_p
3632 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3633 NULL, 0) == 0)
3634 && ((kind == VARIABLES_DOMAIN
3635 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3636 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3637 && SYMBOL_CLASS (sym) != LOC_BLOCK
3638 /* LOC_CONST can be used for more than just enums,
3639 e.g., c++ static const members.
3640 We only want to skip enums here. */
3641 && !(SYMBOL_CLASS (sym) == LOC_CONST
3642 && TYPE_CODE (SYMBOL_TYPE (sym))
3643 == TYPE_CODE_ENUM))
3644 || (kind == FUNCTIONS_DOMAIN
3645 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3646 || (kind == TYPES_DOMAIN
3647 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3648 {
3649 /* match */
3650 psr = (struct symbol_search *)
3651 xmalloc (sizeof (struct symbol_search));
3652 psr->block = i;
3653 psr->symtab = real_symtab;
3654 psr->symbol = sym;
3655 psr->msymbol = NULL;
3656 psr->next = NULL;
3657 if (tail == NULL)
3658 sr = psr;
3659 else
3660 tail->next = psr;
3661 tail = psr;
3662 nfound ++;
3663 }
3664 }
3665 if (nfound > 0)
3666 {
3667 if (prevtail == NULL)
3668 {
3669 struct symbol_search dummy;
3670
3671 dummy.next = sr;
3672 tail = sort_search_symbols (&dummy, nfound);
3673 sr = dummy.next;
3674
3675 make_cleanup_free_search_symbols (sr);
3676 }
3677 else
3678 tail = sort_search_symbols (prevtail, nfound);
3679 }
3680 }
3681 }
3682
3683 /* If there are no eyes, avoid all contact. I mean, if there are
3684 no debug symbols, then print directly from the msymbol_vector. */
3685
3686 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3687 {
3688 ALL_MSYMBOLS (objfile, msymbol)
3689 {
3690 QUIT;
3691
3692 if (msymbol->created_by_gdb)
3693 continue;
3694
3695 if (MSYMBOL_TYPE (msymbol) == ourtype
3696 || MSYMBOL_TYPE (msymbol) == ourtype2
3697 || MSYMBOL_TYPE (msymbol) == ourtype3
3698 || MSYMBOL_TYPE (msymbol) == ourtype4)
3699 {
3700 if (!datum.preg_p
3701 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3702 NULL, 0) == 0)
3703 {
3704 /* For functions we can do a quick check of whether the
3705 symbol might be found via find_pc_symtab. */
3706 if (kind != FUNCTIONS_DOMAIN
3707 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3708 {
3709 if (lookup_symbol_in_objfile_from_linkage_name
3710 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3711 == NULL)
3712 {
3713 /* match */
3714 psr = (struct symbol_search *)
3715 xmalloc (sizeof (struct symbol_search));
3716 psr->block = i;
3717 psr->msymbol = msymbol;
3718 psr->symtab = NULL;
3719 psr->symbol = NULL;
3720 psr->next = NULL;
3721 if (tail == NULL)
3722 {
3723 sr = psr;
3724 make_cleanup_free_search_symbols (sr);
3725 }
3726 else
3727 tail->next = psr;
3728 tail = psr;
3729 }
3730 }
3731 }
3732 }
3733 }
3734 }
3735
3736 discard_cleanups (retval_chain);
3737 do_cleanups (old_chain);
3738 *matches = sr;
3739 }
3740
3741 /* Helper function for symtab_symbol_info, this function uses
3742 the data returned from search_symbols() to print information
3743 regarding the match to gdb_stdout. */
3744
3745 static void
3746 print_symbol_info (enum search_domain kind,
3747 struct symtab *s, struct symbol *sym,
3748 int block, char *last)
3749 {
3750 if (last == NULL || filename_cmp (last, s->filename) != 0)
3751 {
3752 fputs_filtered ("\nFile ", gdb_stdout);
3753 fputs_filtered (s->filename, gdb_stdout);
3754 fputs_filtered (":\n", gdb_stdout);
3755 }
3756
3757 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3758 printf_filtered ("static ");
3759
3760 /* Typedef that is not a C++ class. */
3761 if (kind == TYPES_DOMAIN
3762 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3763 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3764 /* variable, func, or typedef-that-is-c++-class. */
3765 else if (kind < TYPES_DOMAIN
3766 || (kind == TYPES_DOMAIN
3767 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3768 {
3769 type_print (SYMBOL_TYPE (sym),
3770 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3771 ? "" : SYMBOL_PRINT_NAME (sym)),
3772 gdb_stdout, 0);
3773
3774 printf_filtered (";\n");
3775 }
3776 }
3777
3778 /* This help function for symtab_symbol_info() prints information
3779 for non-debugging symbols to gdb_stdout. */
3780
3781 static void
3782 print_msymbol_info (struct minimal_symbol *msymbol)
3783 {
3784 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3785 char *tmp;
3786
3787 if (gdbarch_addr_bit (gdbarch) <= 32)
3788 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3789 & (CORE_ADDR) 0xffffffff,
3790 8);
3791 else
3792 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3793 16);
3794 printf_filtered ("%s %s\n",
3795 tmp, SYMBOL_PRINT_NAME (msymbol));
3796 }
3797
3798 /* This is the guts of the commands "info functions", "info types", and
3799 "info variables". It calls search_symbols to find all matches and then
3800 print_[m]symbol_info to print out some useful information about the
3801 matches. */
3802
3803 static void
3804 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3805 {
3806 static const char * const classnames[] =
3807 {"variable", "function", "type"};
3808 struct symbol_search *symbols;
3809 struct symbol_search *p;
3810 struct cleanup *old_chain;
3811 char *last_filename = NULL;
3812 int first = 1;
3813
3814 gdb_assert (kind <= TYPES_DOMAIN);
3815
3816 /* Must make sure that if we're interrupted, symbols gets freed. */
3817 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3818 old_chain = make_cleanup_free_search_symbols (symbols);
3819
3820 if (regexp != NULL)
3821 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3822 classnames[kind], regexp);
3823 else
3824 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3825
3826 for (p = symbols; p != NULL; p = p->next)
3827 {
3828 QUIT;
3829
3830 if (p->msymbol != NULL)
3831 {
3832 if (first)
3833 {
3834 printf_filtered (_("\nNon-debugging symbols:\n"));
3835 first = 0;
3836 }
3837 print_msymbol_info (p->msymbol);
3838 }
3839 else
3840 {
3841 print_symbol_info (kind,
3842 p->symtab,
3843 p->symbol,
3844 p->block,
3845 last_filename);
3846 last_filename = p->symtab->filename;
3847 }
3848 }
3849
3850 do_cleanups (old_chain);
3851 }
3852
3853 static void
3854 variables_info (char *regexp, int from_tty)
3855 {
3856 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3857 }
3858
3859 static void
3860 functions_info (char *regexp, int from_tty)
3861 {
3862 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3863 }
3864
3865
3866 static void
3867 types_info (char *regexp, int from_tty)
3868 {
3869 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3870 }
3871
3872 /* Breakpoint all functions matching regular expression. */
3873
3874 void
3875 rbreak_command_wrapper (char *regexp, int from_tty)
3876 {
3877 rbreak_command (regexp, from_tty);
3878 }
3879
3880 /* A cleanup function that calls end_rbreak_breakpoints. */
3881
3882 static void
3883 do_end_rbreak_breakpoints (void *ignore)
3884 {
3885 end_rbreak_breakpoints ();
3886 }
3887
3888 static void
3889 rbreak_command (char *regexp, int from_tty)
3890 {
3891 struct symbol_search *ss;
3892 struct symbol_search *p;
3893 struct cleanup *old_chain;
3894 char *string = NULL;
3895 int len = 0;
3896 char **files = NULL, *file_name;
3897 int nfiles = 0;
3898
3899 if (regexp)
3900 {
3901 char *colon = strchr (regexp, ':');
3902
3903 if (colon && *(colon + 1) != ':')
3904 {
3905 int colon_index;
3906
3907 colon_index = colon - regexp;
3908 file_name = alloca (colon_index + 1);
3909 memcpy (file_name, regexp, colon_index);
3910 file_name[colon_index--] = 0;
3911 while (isspace (file_name[colon_index]))
3912 file_name[colon_index--] = 0;
3913 files = &file_name;
3914 nfiles = 1;
3915 regexp = colon + 1;
3916 while (isspace (*regexp)) regexp++;
3917 }
3918 }
3919
3920 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3921 old_chain = make_cleanup_free_search_symbols (ss);
3922 make_cleanup (free_current_contents, &string);
3923
3924 start_rbreak_breakpoints ();
3925 make_cleanup (do_end_rbreak_breakpoints, NULL);
3926 for (p = ss; p != NULL; p = p->next)
3927 {
3928 if (p->msymbol == NULL)
3929 {
3930 int newlen = (strlen (p->symtab->filename)
3931 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3932 + 4);
3933
3934 if (newlen > len)
3935 {
3936 string = xrealloc (string, newlen);
3937 len = newlen;
3938 }
3939 strcpy (string, p->symtab->filename);
3940 strcat (string, ":'");
3941 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3942 strcat (string, "'");
3943 break_command (string, from_tty);
3944 print_symbol_info (FUNCTIONS_DOMAIN,
3945 p->symtab,
3946 p->symbol,
3947 p->block,
3948 p->symtab->filename);
3949 }
3950 else
3951 {
3952 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol)) + 3);
3953
3954 if (newlen > len)
3955 {
3956 string = xrealloc (string, newlen);
3957 len = newlen;
3958 }
3959 strcpy (string, "'");
3960 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3961 strcat (string, "'");
3962
3963 break_command (string, from_tty);
3964 printf_filtered ("<function, no debug info> %s;\n",
3965 SYMBOL_PRINT_NAME (p->msymbol));
3966 }
3967 }
3968
3969 do_cleanups (old_chain);
3970 }
3971 \f
3972
3973 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
3974
3975 Either sym_text[sym_text_len] != '(' and then we search for any
3976 symbol starting with SYM_TEXT text.
3977
3978 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
3979 be terminated at that point. Partial symbol tables do not have parameters
3980 information. */
3981
3982 static int
3983 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
3984 {
3985 int (*ncmp) (const char *, const char *, size_t);
3986
3987 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
3988
3989 if (ncmp (name, sym_text, sym_text_len) != 0)
3990 return 0;
3991
3992 if (sym_text[sym_text_len] == '(')
3993 {
3994 /* User searches for `name(someth...'. Require NAME to be terminated.
3995 Normally psymtabs and gdbindex have no parameter types so '\0' will be
3996 present but accept even parameters presence. In this case this
3997 function is in fact strcmp_iw but whitespace skipping is not supported
3998 for tab completion. */
3999
4000 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4001 return 0;
4002 }
4003
4004 return 1;
4005 }
4006
4007 /* Free any memory associated with a completion list. */
4008
4009 static void
4010 free_completion_list (VEC (char_ptr) **list_ptr)
4011 {
4012 int i;
4013 char *p;
4014
4015 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4016 xfree (p);
4017 VEC_free (char_ptr, *list_ptr);
4018 }
4019
4020 /* Callback for make_cleanup. */
4021
4022 static void
4023 do_free_completion_list (void *list)
4024 {
4025 free_completion_list (list);
4026 }
4027
4028 /* Helper routine for make_symbol_completion_list. */
4029
4030 static VEC (char_ptr) *return_val;
4031
4032 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4033 completion_list_add_name \
4034 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4035
4036 /* Test to see if the symbol specified by SYMNAME (which is already
4037 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4038 characters. If so, add it to the current completion list. */
4039
4040 static void
4041 completion_list_add_name (const char *symname,
4042 const char *sym_text, int sym_text_len,
4043 const char *text, const char *word)
4044 {
4045 int newsize;
4046
4047 /* Clip symbols that cannot match. */
4048 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4049 return;
4050
4051 /* We have a match for a completion, so add SYMNAME to the current list
4052 of matches. Note that the name is moved to freshly malloc'd space. */
4053
4054 {
4055 char *new;
4056
4057 if (word == sym_text)
4058 {
4059 new = xmalloc (strlen (symname) + 5);
4060 strcpy (new, symname);
4061 }
4062 else if (word > sym_text)
4063 {
4064 /* Return some portion of symname. */
4065 new = xmalloc (strlen (symname) + 5);
4066 strcpy (new, symname + (word - sym_text));
4067 }
4068 else
4069 {
4070 /* Return some of SYM_TEXT plus symname. */
4071 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4072 strncpy (new, word, sym_text - word);
4073 new[sym_text - word] = '\0';
4074 strcat (new, symname);
4075 }
4076
4077 VEC_safe_push (char_ptr, return_val, new);
4078 }
4079 }
4080
4081 /* ObjC: In case we are completing on a selector, look as the msymbol
4082 again and feed all the selectors into the mill. */
4083
4084 static void
4085 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4086 const char *sym_text, int sym_text_len,
4087 const char *text, const char *word)
4088 {
4089 static char *tmp = NULL;
4090 static unsigned int tmplen = 0;
4091
4092 const char *method, *category, *selector;
4093 char *tmp2 = NULL;
4094
4095 method = SYMBOL_NATURAL_NAME (msymbol);
4096
4097 /* Is it a method? */
4098 if ((method[0] != '-') && (method[0] != '+'))
4099 return;
4100
4101 if (sym_text[0] == '[')
4102 /* Complete on shortened method method. */
4103 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4104
4105 while ((strlen (method) + 1) >= tmplen)
4106 {
4107 if (tmplen == 0)
4108 tmplen = 1024;
4109 else
4110 tmplen *= 2;
4111 tmp = xrealloc (tmp, tmplen);
4112 }
4113 selector = strchr (method, ' ');
4114 if (selector != NULL)
4115 selector++;
4116
4117 category = strchr (method, '(');
4118
4119 if ((category != NULL) && (selector != NULL))
4120 {
4121 memcpy (tmp, method, (category - method));
4122 tmp[category - method] = ' ';
4123 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4124 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4125 if (sym_text[0] == '[')
4126 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4127 }
4128
4129 if (selector != NULL)
4130 {
4131 /* Complete on selector only. */
4132 strcpy (tmp, selector);
4133 tmp2 = strchr (tmp, ']');
4134 if (tmp2 != NULL)
4135 *tmp2 = '\0';
4136
4137 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4138 }
4139 }
4140
4141 /* Break the non-quoted text based on the characters which are in
4142 symbols. FIXME: This should probably be language-specific. */
4143
4144 static char *
4145 language_search_unquoted_string (char *text, char *p)
4146 {
4147 for (; p > text; --p)
4148 {
4149 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4150 continue;
4151 else
4152 {
4153 if ((current_language->la_language == language_objc))
4154 {
4155 if (p[-1] == ':') /* Might be part of a method name. */
4156 continue;
4157 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4158 p -= 2; /* Beginning of a method name. */
4159 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4160 { /* Might be part of a method name. */
4161 char *t = p;
4162
4163 /* Seeing a ' ' or a '(' is not conclusive evidence
4164 that we are in the middle of a method name. However,
4165 finding "-[" or "+[" should be pretty un-ambiguous.
4166 Unfortunately we have to find it now to decide. */
4167
4168 while (t > text)
4169 if (isalnum (t[-1]) || t[-1] == '_' ||
4170 t[-1] == ' ' || t[-1] == ':' ||
4171 t[-1] == '(' || t[-1] == ')')
4172 --t;
4173 else
4174 break;
4175
4176 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4177 p = t - 2; /* Method name detected. */
4178 /* Else we leave with p unchanged. */
4179 }
4180 }
4181 break;
4182 }
4183 }
4184 return p;
4185 }
4186
4187 static void
4188 completion_list_add_fields (struct symbol *sym, char *sym_text,
4189 int sym_text_len, char *text, char *word)
4190 {
4191 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4192 {
4193 struct type *t = SYMBOL_TYPE (sym);
4194 enum type_code c = TYPE_CODE (t);
4195 int j;
4196
4197 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4198 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4199 if (TYPE_FIELD_NAME (t, j))
4200 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4201 sym_text, sym_text_len, text, word);
4202 }
4203 }
4204
4205 /* Type of the user_data argument passed to add_macro_name or
4206 expand_partial_symbol_name. The contents are simply whatever is
4207 needed by completion_list_add_name. */
4208 struct add_name_data
4209 {
4210 char *sym_text;
4211 int sym_text_len;
4212 char *text;
4213 char *word;
4214 };
4215
4216 /* A callback used with macro_for_each and macro_for_each_in_scope.
4217 This adds a macro's name to the current completion list. */
4218
4219 static void
4220 add_macro_name (const char *name, const struct macro_definition *ignore,
4221 struct macro_source_file *ignore2, int ignore3,
4222 void *user_data)
4223 {
4224 struct add_name_data *datum = (struct add_name_data *) user_data;
4225
4226 completion_list_add_name ((char *) name,
4227 datum->sym_text, datum->sym_text_len,
4228 datum->text, datum->word);
4229 }
4230
4231 /* A callback for expand_partial_symbol_names. */
4232
4233 static int
4234 expand_partial_symbol_name (const char *name, void *user_data)
4235 {
4236 struct add_name_data *datum = (struct add_name_data *) user_data;
4237
4238 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4239 }
4240
4241 VEC (char_ptr) *
4242 default_make_symbol_completion_list_break_on (char *text, char *word,
4243 const char *break_on,
4244 enum type_code code)
4245 {
4246 /* Problem: All of the symbols have to be copied because readline
4247 frees them. I'm not going to worry about this; hopefully there
4248 won't be that many. */
4249
4250 struct symbol *sym;
4251 struct symtab *s;
4252 struct minimal_symbol *msymbol;
4253 struct objfile *objfile;
4254 struct block *b;
4255 const struct block *surrounding_static_block, *surrounding_global_block;
4256 struct block_iterator iter;
4257 /* The symbol we are completing on. Points in same buffer as text. */
4258 char *sym_text;
4259 /* Length of sym_text. */
4260 int sym_text_len;
4261 struct add_name_data datum;
4262 struct cleanup *back_to;
4263
4264 /* Now look for the symbol we are supposed to complete on. */
4265 {
4266 char *p;
4267 char quote_found;
4268 char *quote_pos = NULL;
4269
4270 /* First see if this is a quoted string. */
4271 quote_found = '\0';
4272 for (p = text; *p != '\0'; ++p)
4273 {
4274 if (quote_found != '\0')
4275 {
4276 if (*p == quote_found)
4277 /* Found close quote. */
4278 quote_found = '\0';
4279 else if (*p == '\\' && p[1] == quote_found)
4280 /* A backslash followed by the quote character
4281 doesn't end the string. */
4282 ++p;
4283 }
4284 else if (*p == '\'' || *p == '"')
4285 {
4286 quote_found = *p;
4287 quote_pos = p;
4288 }
4289 }
4290 if (quote_found == '\'')
4291 /* A string within single quotes can be a symbol, so complete on it. */
4292 sym_text = quote_pos + 1;
4293 else if (quote_found == '"')
4294 /* A double-quoted string is never a symbol, nor does it make sense
4295 to complete it any other way. */
4296 {
4297 return NULL;
4298 }
4299 else
4300 {
4301 /* It is not a quoted string. Break it based on the characters
4302 which are in symbols. */
4303 while (p > text)
4304 {
4305 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4306 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4307 --p;
4308 else
4309 break;
4310 }
4311 sym_text = p;
4312 }
4313 }
4314
4315 sym_text_len = strlen (sym_text);
4316
4317 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4318
4319 if (current_language->la_language == language_cplus
4320 || current_language->la_language == language_java
4321 || current_language->la_language == language_fortran)
4322 {
4323 /* These languages may have parameters entered by user but they are never
4324 present in the partial symbol tables. */
4325
4326 const char *cs = memchr (sym_text, '(', sym_text_len);
4327
4328 if (cs)
4329 sym_text_len = cs - sym_text;
4330 }
4331 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4332
4333 return_val = NULL;
4334 back_to = make_cleanup (do_free_completion_list, &return_val);
4335
4336 datum.sym_text = sym_text;
4337 datum.sym_text_len = sym_text_len;
4338 datum.text = text;
4339 datum.word = word;
4340
4341 /* Look through the partial symtabs for all symbols which begin
4342 by matching SYM_TEXT. Expand all CUs that you find to the list.
4343 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4344 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4345
4346 /* At this point scan through the misc symbol vectors and add each
4347 symbol you find to the list. Eventually we want to ignore
4348 anything that isn't a text symbol (everything else will be
4349 handled by the psymtab code above). */
4350
4351 if (code == TYPE_CODE_UNDEF)
4352 {
4353 ALL_MSYMBOLS (objfile, msymbol)
4354 {
4355 QUIT;
4356 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4357 word);
4358
4359 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4360 word);
4361 }
4362 }
4363
4364 /* Search upwards from currently selected frame (so that we can
4365 complete on local vars). Also catch fields of types defined in
4366 this places which match our text string. Only complete on types
4367 visible from current context. */
4368
4369 b = get_selected_block (0);
4370 surrounding_static_block = block_static_block (b);
4371 surrounding_global_block = block_global_block (b);
4372 if (surrounding_static_block != NULL)
4373 while (b != surrounding_static_block)
4374 {
4375 QUIT;
4376
4377 ALL_BLOCK_SYMBOLS (b, iter, sym)
4378 {
4379 if (code == TYPE_CODE_UNDEF)
4380 {
4381 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4382 word);
4383 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4384 word);
4385 }
4386 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4387 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4388 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4389 word);
4390 }
4391
4392 /* Stop when we encounter an enclosing function. Do not stop for
4393 non-inlined functions - the locals of the enclosing function
4394 are in scope for a nested function. */
4395 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4396 break;
4397 b = BLOCK_SUPERBLOCK (b);
4398 }
4399
4400 /* Add fields from the file's types; symbols will be added below. */
4401
4402 if (code == TYPE_CODE_UNDEF)
4403 {
4404 if (surrounding_static_block != NULL)
4405 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4406 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4407
4408 if (surrounding_global_block != NULL)
4409 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4410 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4411 }
4412
4413 /* Go through the symtabs and check the externs and statics for
4414 symbols which match. */
4415
4416 ALL_PRIMARY_SYMTABS (objfile, s)
4417 {
4418 QUIT;
4419 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4420 ALL_BLOCK_SYMBOLS (b, iter, sym)
4421 {
4422 if (code == TYPE_CODE_UNDEF
4423 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4424 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4425 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4426 }
4427 }
4428
4429 ALL_PRIMARY_SYMTABS (objfile, s)
4430 {
4431 QUIT;
4432 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4433 ALL_BLOCK_SYMBOLS (b, iter, sym)
4434 {
4435 if (code == TYPE_CODE_UNDEF
4436 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4437 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4438 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4439 }
4440 }
4441
4442 /* Skip macros if we are completing a struct tag -- arguable but
4443 usually what is expected. */
4444 if (current_language->la_macro_expansion == macro_expansion_c
4445 && code == TYPE_CODE_UNDEF)
4446 {
4447 struct macro_scope *scope;
4448
4449 /* Add any macros visible in the default scope. Note that this
4450 may yield the occasional wrong result, because an expression
4451 might be evaluated in a scope other than the default. For
4452 example, if the user types "break file:line if <TAB>", the
4453 resulting expression will be evaluated at "file:line" -- but
4454 at there does not seem to be a way to detect this at
4455 completion time. */
4456 scope = default_macro_scope ();
4457 if (scope)
4458 {
4459 macro_for_each_in_scope (scope->file, scope->line,
4460 add_macro_name, &datum);
4461 xfree (scope);
4462 }
4463
4464 /* User-defined macros are always visible. */
4465 macro_for_each (macro_user_macros, add_macro_name, &datum);
4466 }
4467
4468 discard_cleanups (back_to);
4469 return (return_val);
4470 }
4471
4472 VEC (char_ptr) *
4473 default_make_symbol_completion_list (char *text, char *word,
4474 enum type_code code)
4475 {
4476 return default_make_symbol_completion_list_break_on (text, word, "", code);
4477 }
4478
4479 /* Return a vector of all symbols (regardless of class) which begin by
4480 matching TEXT. If the answer is no symbols, then the return value
4481 is NULL. */
4482
4483 VEC (char_ptr) *
4484 make_symbol_completion_list (char *text, char *word)
4485 {
4486 return current_language->la_make_symbol_completion_list (text, word,
4487 TYPE_CODE_UNDEF);
4488 }
4489
4490 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4491 symbols whose type code is CODE. */
4492
4493 VEC (char_ptr) *
4494 make_symbol_completion_type (char *text, char *word, enum type_code code)
4495 {
4496 gdb_assert (code == TYPE_CODE_UNION
4497 || code == TYPE_CODE_STRUCT
4498 || code == TYPE_CODE_CLASS
4499 || code == TYPE_CODE_ENUM);
4500 return current_language->la_make_symbol_completion_list (text, word, code);
4501 }
4502
4503 /* Like make_symbol_completion_list, but suitable for use as a
4504 completion function. */
4505
4506 VEC (char_ptr) *
4507 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4508 char *text, char *word)
4509 {
4510 return make_symbol_completion_list (text, word);
4511 }
4512
4513 /* Like make_symbol_completion_list, but returns a list of symbols
4514 defined in a source file FILE. */
4515
4516 VEC (char_ptr) *
4517 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4518 {
4519 struct symbol *sym;
4520 struct symtab *s;
4521 struct block *b;
4522 struct block_iterator iter;
4523 /* The symbol we are completing on. Points in same buffer as text. */
4524 char *sym_text;
4525 /* Length of sym_text. */
4526 int sym_text_len;
4527
4528 /* Now look for the symbol we are supposed to complete on.
4529 FIXME: This should be language-specific. */
4530 {
4531 char *p;
4532 char quote_found;
4533 char *quote_pos = NULL;
4534
4535 /* First see if this is a quoted string. */
4536 quote_found = '\0';
4537 for (p = text; *p != '\0'; ++p)
4538 {
4539 if (quote_found != '\0')
4540 {
4541 if (*p == quote_found)
4542 /* Found close quote. */
4543 quote_found = '\0';
4544 else if (*p == '\\' && p[1] == quote_found)
4545 /* A backslash followed by the quote character
4546 doesn't end the string. */
4547 ++p;
4548 }
4549 else if (*p == '\'' || *p == '"')
4550 {
4551 quote_found = *p;
4552 quote_pos = p;
4553 }
4554 }
4555 if (quote_found == '\'')
4556 /* A string within single quotes can be a symbol, so complete on it. */
4557 sym_text = quote_pos + 1;
4558 else if (quote_found == '"')
4559 /* A double-quoted string is never a symbol, nor does it make sense
4560 to complete it any other way. */
4561 {
4562 return NULL;
4563 }
4564 else
4565 {
4566 /* Not a quoted string. */
4567 sym_text = language_search_unquoted_string (text, p);
4568 }
4569 }
4570
4571 sym_text_len = strlen (sym_text);
4572
4573 return_val = NULL;
4574
4575 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4576 in). */
4577 s = lookup_symtab (srcfile);
4578 if (s == NULL)
4579 {
4580 /* Maybe they typed the file with leading directories, while the
4581 symbol tables record only its basename. */
4582 const char *tail = lbasename (srcfile);
4583
4584 if (tail > srcfile)
4585 s = lookup_symtab (tail);
4586 }
4587
4588 /* If we have no symtab for that file, return an empty list. */
4589 if (s == NULL)
4590 return (return_val);
4591
4592 /* Go through this symtab and check the externs and statics for
4593 symbols which match. */
4594
4595 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4596 ALL_BLOCK_SYMBOLS (b, iter, sym)
4597 {
4598 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4599 }
4600
4601 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4602 ALL_BLOCK_SYMBOLS (b, iter, sym)
4603 {
4604 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4605 }
4606
4607 return (return_val);
4608 }
4609
4610 /* A helper function for make_source_files_completion_list. It adds
4611 another file name to a list of possible completions, growing the
4612 list as necessary. */
4613
4614 static void
4615 add_filename_to_list (const char *fname, char *text, char *word,
4616 VEC (char_ptr) **list)
4617 {
4618 char *new;
4619 size_t fnlen = strlen (fname);
4620
4621 if (word == text)
4622 {
4623 /* Return exactly fname. */
4624 new = xmalloc (fnlen + 5);
4625 strcpy (new, fname);
4626 }
4627 else if (word > text)
4628 {
4629 /* Return some portion of fname. */
4630 new = xmalloc (fnlen + 5);
4631 strcpy (new, fname + (word - text));
4632 }
4633 else
4634 {
4635 /* Return some of TEXT plus fname. */
4636 new = xmalloc (fnlen + (text - word) + 5);
4637 strncpy (new, word, text - word);
4638 new[text - word] = '\0';
4639 strcat (new, fname);
4640 }
4641 VEC_safe_push (char_ptr, *list, new);
4642 }
4643
4644 static int
4645 not_interesting_fname (const char *fname)
4646 {
4647 static const char *illegal_aliens[] = {
4648 "_globals_", /* inserted by coff_symtab_read */
4649 NULL
4650 };
4651 int i;
4652
4653 for (i = 0; illegal_aliens[i]; i++)
4654 {
4655 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4656 return 1;
4657 }
4658 return 0;
4659 }
4660
4661 /* An object of this type is passed as the user_data argument to
4662 map_partial_symbol_filenames. */
4663 struct add_partial_filename_data
4664 {
4665 struct filename_seen_cache *filename_seen_cache;
4666 char *text;
4667 char *word;
4668 int text_len;
4669 VEC (char_ptr) **list;
4670 };
4671
4672 /* A callback for map_partial_symbol_filenames. */
4673
4674 static void
4675 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4676 void *user_data)
4677 {
4678 struct add_partial_filename_data *data = user_data;
4679
4680 if (not_interesting_fname (filename))
4681 return;
4682 if (!filename_seen (data->filename_seen_cache, filename, 1)
4683 && filename_ncmp (filename, data->text, data->text_len) == 0)
4684 {
4685 /* This file matches for a completion; add it to the
4686 current list of matches. */
4687 add_filename_to_list (filename, data->text, data->word, data->list);
4688 }
4689 else
4690 {
4691 const char *base_name = lbasename (filename);
4692
4693 if (base_name != filename
4694 && !filename_seen (data->filename_seen_cache, base_name, 1)
4695 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4696 add_filename_to_list (base_name, data->text, data->word, data->list);
4697 }
4698 }
4699
4700 /* Return a vector of all source files whose names begin with matching
4701 TEXT. The file names are looked up in the symbol tables of this
4702 program. If the answer is no matchess, then the return value is
4703 NULL. */
4704
4705 VEC (char_ptr) *
4706 make_source_files_completion_list (char *text, char *word)
4707 {
4708 struct symtab *s;
4709 struct objfile *objfile;
4710 size_t text_len = strlen (text);
4711 VEC (char_ptr) *list = NULL;
4712 const char *base_name;
4713 struct add_partial_filename_data datum;
4714 struct filename_seen_cache *filename_seen_cache;
4715 struct cleanup *back_to, *cache_cleanup;
4716
4717 if (!have_full_symbols () && !have_partial_symbols ())
4718 return list;
4719
4720 back_to = make_cleanup (do_free_completion_list, &list);
4721
4722 filename_seen_cache = create_filename_seen_cache ();
4723 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4724 filename_seen_cache);
4725
4726 ALL_SYMTABS (objfile, s)
4727 {
4728 if (not_interesting_fname (s->filename))
4729 continue;
4730 if (!filename_seen (filename_seen_cache, s->filename, 1)
4731 && filename_ncmp (s->filename, text, text_len) == 0)
4732 {
4733 /* This file matches for a completion; add it to the current
4734 list of matches. */
4735 add_filename_to_list (s->filename, text, word, &list);
4736 }
4737 else
4738 {
4739 /* NOTE: We allow the user to type a base name when the
4740 debug info records leading directories, but not the other
4741 way around. This is what subroutines of breakpoint
4742 command do when they parse file names. */
4743 base_name = lbasename (s->filename);
4744 if (base_name != s->filename
4745 && !filename_seen (filename_seen_cache, base_name, 1)
4746 && filename_ncmp (base_name, text, text_len) == 0)
4747 add_filename_to_list (base_name, text, word, &list);
4748 }
4749 }
4750
4751 datum.filename_seen_cache = filename_seen_cache;
4752 datum.text = text;
4753 datum.word = word;
4754 datum.text_len = text_len;
4755 datum.list = &list;
4756 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4757 0 /*need_fullname*/);
4758
4759 do_cleanups (cache_cleanup);
4760 discard_cleanups (back_to);
4761
4762 return list;
4763 }
4764
4765 /* Determine if PC is in the prologue of a function. The prologue is the area
4766 between the first instruction of a function, and the first executable line.
4767 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4768
4769 If non-zero, func_start is where we think the prologue starts, possibly
4770 by previous examination of symbol table information. */
4771
4772 int
4773 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4774 {
4775 struct symtab_and_line sal;
4776 CORE_ADDR func_addr, func_end;
4777
4778 /* We have several sources of information we can consult to figure
4779 this out.
4780 - Compilers usually emit line number info that marks the prologue
4781 as its own "source line". So the ending address of that "line"
4782 is the end of the prologue. If available, this is the most
4783 reliable method.
4784 - The minimal symbols and partial symbols, which can usually tell
4785 us the starting and ending addresses of a function.
4786 - If we know the function's start address, we can call the
4787 architecture-defined gdbarch_skip_prologue function to analyze the
4788 instruction stream and guess where the prologue ends.
4789 - Our `func_start' argument; if non-zero, this is the caller's
4790 best guess as to the function's entry point. At the time of
4791 this writing, handle_inferior_event doesn't get this right, so
4792 it should be our last resort. */
4793
4794 /* Consult the partial symbol table, to find which function
4795 the PC is in. */
4796 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4797 {
4798 CORE_ADDR prologue_end;
4799
4800 /* We don't even have minsym information, so fall back to using
4801 func_start, if given. */
4802 if (! func_start)
4803 return 1; /* We *might* be in a prologue. */
4804
4805 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4806
4807 return func_start <= pc && pc < prologue_end;
4808 }
4809
4810 /* If we have line number information for the function, that's
4811 usually pretty reliable. */
4812 sal = find_pc_line (func_addr, 0);
4813
4814 /* Now sal describes the source line at the function's entry point,
4815 which (by convention) is the prologue. The end of that "line",
4816 sal.end, is the end of the prologue.
4817
4818 Note that, for functions whose source code is all on a single
4819 line, the line number information doesn't always end up this way.
4820 So we must verify that our purported end-of-prologue address is
4821 *within* the function, not at its start or end. */
4822 if (sal.line == 0
4823 || sal.end <= func_addr
4824 || func_end <= sal.end)
4825 {
4826 /* We don't have any good line number info, so use the minsym
4827 information, together with the architecture-specific prologue
4828 scanning code. */
4829 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4830
4831 return func_addr <= pc && pc < prologue_end;
4832 }
4833
4834 /* We have line number info, and it looks good. */
4835 return func_addr <= pc && pc < sal.end;
4836 }
4837
4838 /* Given PC at the function's start address, attempt to find the
4839 prologue end using SAL information. Return zero if the skip fails.
4840
4841 A non-optimized prologue traditionally has one SAL for the function
4842 and a second for the function body. A single line function has
4843 them both pointing at the same line.
4844
4845 An optimized prologue is similar but the prologue may contain
4846 instructions (SALs) from the instruction body. Need to skip those
4847 while not getting into the function body.
4848
4849 The functions end point and an increasing SAL line are used as
4850 indicators of the prologue's endpoint.
4851
4852 This code is based on the function refine_prologue_limit
4853 (found in ia64). */
4854
4855 CORE_ADDR
4856 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4857 {
4858 struct symtab_and_line prologue_sal;
4859 CORE_ADDR start_pc;
4860 CORE_ADDR end_pc;
4861 struct block *bl;
4862
4863 /* Get an initial range for the function. */
4864 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4865 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4866
4867 prologue_sal = find_pc_line (start_pc, 0);
4868 if (prologue_sal.line != 0)
4869 {
4870 /* For languages other than assembly, treat two consecutive line
4871 entries at the same address as a zero-instruction prologue.
4872 The GNU assembler emits separate line notes for each instruction
4873 in a multi-instruction macro, but compilers generally will not
4874 do this. */
4875 if (prologue_sal.symtab->language != language_asm)
4876 {
4877 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4878 int idx = 0;
4879
4880 /* Skip any earlier lines, and any end-of-sequence marker
4881 from a previous function. */
4882 while (linetable->item[idx].pc != prologue_sal.pc
4883 || linetable->item[idx].line == 0)
4884 idx++;
4885
4886 if (idx+1 < linetable->nitems
4887 && linetable->item[idx+1].line != 0
4888 && linetable->item[idx+1].pc == start_pc)
4889 return start_pc;
4890 }
4891
4892 /* If there is only one sal that covers the entire function,
4893 then it is probably a single line function, like
4894 "foo(){}". */
4895 if (prologue_sal.end >= end_pc)
4896 return 0;
4897
4898 while (prologue_sal.end < end_pc)
4899 {
4900 struct symtab_and_line sal;
4901
4902 sal = find_pc_line (prologue_sal.end, 0);
4903 if (sal.line == 0)
4904 break;
4905 /* Assume that a consecutive SAL for the same (or larger)
4906 line mark the prologue -> body transition. */
4907 if (sal.line >= prologue_sal.line)
4908 break;
4909
4910 /* The line number is smaller. Check that it's from the
4911 same function, not something inlined. If it's inlined,
4912 then there is no point comparing the line numbers. */
4913 bl = block_for_pc (prologue_sal.end);
4914 while (bl)
4915 {
4916 if (block_inlined_p (bl))
4917 break;
4918 if (BLOCK_FUNCTION (bl))
4919 {
4920 bl = NULL;
4921 break;
4922 }
4923 bl = BLOCK_SUPERBLOCK (bl);
4924 }
4925 if (bl != NULL)
4926 break;
4927
4928 /* The case in which compiler's optimizer/scheduler has
4929 moved instructions into the prologue. We look ahead in
4930 the function looking for address ranges whose
4931 corresponding line number is less the first one that we
4932 found for the function. This is more conservative then
4933 refine_prologue_limit which scans a large number of SALs
4934 looking for any in the prologue. */
4935 prologue_sal = sal;
4936 }
4937 }
4938
4939 if (prologue_sal.end < end_pc)
4940 /* Return the end of this line, or zero if we could not find a
4941 line. */
4942 return prologue_sal.end;
4943 else
4944 /* Don't return END_PC, which is past the end of the function. */
4945 return prologue_sal.pc;
4946 }
4947 \f
4948 /* Track MAIN */
4949 static char *name_of_main;
4950 enum language language_of_main = language_unknown;
4951
4952 void
4953 set_main_name (const char *name)
4954 {
4955 if (name_of_main != NULL)
4956 {
4957 xfree (name_of_main);
4958 name_of_main = NULL;
4959 language_of_main = language_unknown;
4960 }
4961 if (name != NULL)
4962 {
4963 name_of_main = xstrdup (name);
4964 language_of_main = language_unknown;
4965 }
4966 }
4967
4968 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4969 accordingly. */
4970
4971 static void
4972 find_main_name (void)
4973 {
4974 const char *new_main_name;
4975
4976 /* Try to see if the main procedure is in Ada. */
4977 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4978 be to add a new method in the language vector, and call this
4979 method for each language until one of them returns a non-empty
4980 name. This would allow us to remove this hard-coded call to
4981 an Ada function. It is not clear that this is a better approach
4982 at this point, because all methods need to be written in a way
4983 such that false positives never be returned. For instance, it is
4984 important that a method does not return a wrong name for the main
4985 procedure if the main procedure is actually written in a different
4986 language. It is easy to guaranty this with Ada, since we use a
4987 special symbol generated only when the main in Ada to find the name
4988 of the main procedure. It is difficult however to see how this can
4989 be guarantied for languages such as C, for instance. This suggests
4990 that order of call for these methods becomes important, which means
4991 a more complicated approach. */
4992 new_main_name = ada_main_name ();
4993 if (new_main_name != NULL)
4994 {
4995 set_main_name (new_main_name);
4996 return;
4997 }
4998
4999 new_main_name = go_main_name ();
5000 if (new_main_name != NULL)
5001 {
5002 set_main_name (new_main_name);
5003 return;
5004 }
5005
5006 new_main_name = pascal_main_name ();
5007 if (new_main_name != NULL)
5008 {
5009 set_main_name (new_main_name);
5010 return;
5011 }
5012
5013 /* The languages above didn't identify the name of the main procedure.
5014 Fallback to "main". */
5015 set_main_name ("main");
5016 }
5017
5018 char *
5019 main_name (void)
5020 {
5021 if (name_of_main == NULL)
5022 find_main_name ();
5023
5024 return name_of_main;
5025 }
5026
5027 /* Handle ``executable_changed'' events for the symtab module. */
5028
5029 static void
5030 symtab_observer_executable_changed (void)
5031 {
5032 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5033 set_main_name (NULL);
5034 }
5035
5036 /* Return 1 if the supplied producer string matches the ARM RealView
5037 compiler (armcc). */
5038
5039 int
5040 producer_is_realview (const char *producer)
5041 {
5042 static const char *const arm_idents[] = {
5043 "ARM C Compiler, ADS",
5044 "Thumb C Compiler, ADS",
5045 "ARM C++ Compiler, ADS",
5046 "Thumb C++ Compiler, ADS",
5047 "ARM/Thumb C/C++ Compiler, RVCT",
5048 "ARM C/C++ Compiler, RVCT"
5049 };
5050 int i;
5051
5052 if (producer == NULL)
5053 return 0;
5054
5055 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5056 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5057 return 1;
5058
5059 return 0;
5060 }
5061
5062 void
5063 _initialize_symtab (void)
5064 {
5065 add_info ("variables", variables_info, _("\
5066 All global and static variable names, or those matching REGEXP."));
5067 if (dbx_commands)
5068 add_com ("whereis", class_info, variables_info, _("\
5069 All global and static variable names, or those matching REGEXP."));
5070
5071 add_info ("functions", functions_info,
5072 _("All function names, or those matching REGEXP."));
5073
5074 /* FIXME: This command has at least the following problems:
5075 1. It prints builtin types (in a very strange and confusing fashion).
5076 2. It doesn't print right, e.g. with
5077 typedef struct foo *FOO
5078 type_print prints "FOO" when we want to make it (in this situation)
5079 print "struct foo *".
5080 I also think "ptype" or "whatis" is more likely to be useful (but if
5081 there is much disagreement "info types" can be fixed). */
5082 add_info ("types", types_info,
5083 _("All type names, or those matching REGEXP."));
5084
5085 add_info ("sources", sources_info,
5086 _("Source files in the program."));
5087
5088 add_com ("rbreak", class_breakpoint, rbreak_command,
5089 _("Set a breakpoint for all functions matching REGEXP."));
5090
5091 if (xdb_commands)
5092 {
5093 add_com ("lf", class_info, sources_info,
5094 _("Source files in the program"));
5095 add_com ("lg", class_info, variables_info, _("\
5096 All global and static variable names, or those matching REGEXP."));
5097 }
5098
5099 add_setshow_enum_cmd ("multiple-symbols", no_class,
5100 multiple_symbols_modes, &multiple_symbols_mode,
5101 _("\
5102 Set the debugger behavior when more than one symbol are possible matches\n\
5103 in an expression."), _("\
5104 Show how the debugger handles ambiguities in expressions."), _("\
5105 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5106 NULL, NULL, &setlist, &showlist);
5107
5108 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5109 &basenames_may_differ, _("\
5110 Set whether a source file may have multiple base names."), _("\
5111 Show whether a source file may have multiple base names."), _("\
5112 (A \"base name\" is the name of a file with the directory part removed.\n\
5113 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5114 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5115 before comparing them. Canonicalization is an expensive operation,\n\
5116 but it allows the same file be known by more than one base name.\n\
5117 If not set (the default), all source files are assumed to have just\n\
5118 one base name, and gdb will do file name comparisons more efficiently."),
5119 NULL, NULL,
5120 &setlist, &showlist);
5121
5122 add_setshow_boolean_cmd ("symtab-create", no_class, &symtab_create_debug,
5123 _("Set debugging of symbol table creation."),
5124 _("Show debugging of symbol table creation."), _("\
5125 When enabled, debugging messages are printed when building symbol tables."),
5126 NULL,
5127 NULL,
5128 &setdebuglist, &showdebuglist);
5129
5130 observer_attach_executable_changed (symtab_observer_executable_changed);
5131 }