]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
gdb: remove TYPE_FIELD_NAME and FIELD_NAME macros
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* Read-only accessor to AUTO_SELECT_MODE. */
292
293 const char *
294 multiple_symbols_select_mode (void)
295 {
296 return multiple_symbols_mode;
297 }
298
299 /* Return the name of a domain_enum. */
300
301 const char *
302 domain_name (domain_enum e)
303 {
304 switch (e)
305 {
306 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
307 case VAR_DOMAIN: return "VAR_DOMAIN";
308 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
309 case MODULE_DOMAIN: return "MODULE_DOMAIN";
310 case LABEL_DOMAIN: return "LABEL_DOMAIN";
311 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
312 default: gdb_assert_not_reached ("bad domain_enum");
313 }
314 }
315
316 /* Return the name of a search_domain . */
317
318 const char *
319 search_domain_name (enum search_domain e)
320 {
321 switch (e)
322 {
323 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
324 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
325 case TYPES_DOMAIN: return "TYPES_DOMAIN";
326 case MODULES_DOMAIN: return "MODULES_DOMAIN";
327 case ALL_DOMAIN: return "ALL_DOMAIN";
328 default: gdb_assert_not_reached ("bad search_domain");
329 }
330 }
331
332 /* See symtab.h. */
333
334 struct symtab *
335 compunit_primary_filetab (const struct compunit_symtab *cust)
336 {
337 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
338
339 /* The primary file symtab is the first one in the list. */
340 return COMPUNIT_FILETABS (cust);
341 }
342
343 /* See symtab.h. */
344
345 enum language
346 compunit_language (const struct compunit_symtab *cust)
347 {
348 struct symtab *symtab = compunit_primary_filetab (cust);
349
350 /* The language of the compunit symtab is the language of its primary
351 source file. */
352 return SYMTAB_LANGUAGE (symtab);
353 }
354
355 /* See symtab.h. */
356
357 bool
358 minimal_symbol::data_p () const
359 {
360 return type == mst_data
361 || type == mst_bss
362 || type == mst_abs
363 || type == mst_file_data
364 || type == mst_file_bss;
365 }
366
367 /* See symtab.h. */
368
369 bool
370 minimal_symbol::text_p () const
371 {
372 return type == mst_text
373 || type == mst_text_gnu_ifunc
374 || type == mst_data_gnu_ifunc
375 || type == mst_slot_got_plt
376 || type == mst_solib_trampoline
377 || type == mst_file_text;
378 }
379
380 /* See whether FILENAME matches SEARCH_NAME using the rule that we
381 advertise to the user. (The manual's description of linespecs
382 describes what we advertise). Returns true if they match, false
383 otherwise. */
384
385 bool
386 compare_filenames_for_search (const char *filename, const char *search_name)
387 {
388 int len = strlen (filename);
389 size_t search_len = strlen (search_name);
390
391 if (len < search_len)
392 return false;
393
394 /* The tail of FILENAME must match. */
395 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
396 return false;
397
398 /* Either the names must completely match, or the character
399 preceding the trailing SEARCH_NAME segment of FILENAME must be a
400 directory separator.
401
402 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
403 cannot match FILENAME "/path//dir/file.c" - as user has requested
404 absolute path. The sama applies for "c:\file.c" possibly
405 incorrectly hypothetically matching "d:\dir\c:\file.c".
406
407 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
408 compatible with SEARCH_NAME "file.c". In such case a compiler had
409 to put the "c:file.c" name into debug info. Such compatibility
410 works only on GDB built for DOS host. */
411 return (len == search_len
412 || (!IS_ABSOLUTE_PATH (search_name)
413 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
414 || (HAS_DRIVE_SPEC (filename)
415 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
416 }
417
418 /* Same as compare_filenames_for_search, but for glob-style patterns.
419 Heads up on the order of the arguments. They match the order of
420 compare_filenames_for_search, but it's the opposite of the order of
421 arguments to gdb_filename_fnmatch. */
422
423 bool
424 compare_glob_filenames_for_search (const char *filename,
425 const char *search_name)
426 {
427 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
428 all /s have to be explicitly specified. */
429 int file_path_elements = count_path_elements (filename);
430 int search_path_elements = count_path_elements (search_name);
431
432 if (search_path_elements > file_path_elements)
433 return false;
434
435 if (IS_ABSOLUTE_PATH (search_name))
436 {
437 return (search_path_elements == file_path_elements
438 && gdb_filename_fnmatch (search_name, filename,
439 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
440 }
441
442 {
443 const char *file_to_compare
444 = strip_leading_path_elements (filename,
445 file_path_elements - search_path_elements);
446
447 return gdb_filename_fnmatch (search_name, file_to_compare,
448 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
449 }
450 }
451
452 /* Check for a symtab of a specific name by searching some symtabs.
453 This is a helper function for callbacks of iterate_over_symtabs.
454
455 If NAME is not absolute, then REAL_PATH is NULL
456 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
457
458 The return value, NAME, REAL_PATH and CALLBACK are identical to the
459 `map_symtabs_matching_filename' method of quick_symbol_functions.
460
461 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
462 Each symtab within the specified compunit symtab is also searched.
463 AFTER_LAST is one past the last compunit symtab to search; NULL means to
464 search until the end of the list. */
465
466 bool
467 iterate_over_some_symtabs (const char *name,
468 const char *real_path,
469 struct compunit_symtab *first,
470 struct compunit_symtab *after_last,
471 gdb::function_view<bool (symtab *)> callback)
472 {
473 struct compunit_symtab *cust;
474 const char* base_name = lbasename (name);
475
476 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
477 {
478 for (symtab *s : compunit_filetabs (cust))
479 {
480 if (compare_filenames_for_search (s->filename, name))
481 {
482 if (callback (s))
483 return true;
484 continue;
485 }
486
487 /* Before we invoke realpath, which can get expensive when many
488 files are involved, do a quick comparison of the basenames. */
489 if (! basenames_may_differ
490 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
491 continue;
492
493 if (compare_filenames_for_search (symtab_to_fullname (s), name))
494 {
495 if (callback (s))
496 return true;
497 continue;
498 }
499
500 /* If the user gave us an absolute path, try to find the file in
501 this symtab and use its absolute path. */
502 if (real_path != NULL)
503 {
504 const char *fullname = symtab_to_fullname (s);
505
506 gdb_assert (IS_ABSOLUTE_PATH (real_path));
507 gdb_assert (IS_ABSOLUTE_PATH (name));
508 gdb::unique_xmalloc_ptr<char> fullname_real_path
509 = gdb_realpath (fullname);
510 fullname = fullname_real_path.get ();
511 if (FILENAME_CMP (real_path, fullname) == 0)
512 {
513 if (callback (s))
514 return true;
515 continue;
516 }
517 }
518 }
519 }
520
521 return false;
522 }
523
524 /* Check for a symtab of a specific name; first in symtabs, then in
525 psymtabs. *If* there is no '/' in the name, a match after a '/'
526 in the symtab filename will also work.
527
528 Calls CALLBACK with each symtab that is found. If CALLBACK returns
529 true, the search stops. */
530
531 void
532 iterate_over_symtabs (const char *name,
533 gdb::function_view<bool (symtab *)> callback)
534 {
535 gdb::unique_xmalloc_ptr<char> real_path;
536
537 /* Here we are interested in canonicalizing an absolute path, not
538 absolutizing a relative path. */
539 if (IS_ABSOLUTE_PATH (name))
540 {
541 real_path = gdb_realpath (name);
542 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
543 }
544
545 for (objfile *objfile : current_program_space->objfiles ())
546 {
547 if (iterate_over_some_symtabs (name, real_path.get (),
548 objfile->compunit_symtabs, NULL,
549 callback))
550 return;
551 }
552
553 /* Same search rules as above apply here, but now we look thru the
554 psymtabs. */
555
556 for (objfile *objfile : current_program_space->objfiles ())
557 {
558 if (objfile->map_symtabs_matching_filename (name, real_path.get (),
559 callback))
560 return;
561 }
562 }
563
564 /* A wrapper for iterate_over_symtabs that returns the first matching
565 symtab, or NULL. */
566
567 struct symtab *
568 lookup_symtab (const char *name)
569 {
570 struct symtab *result = NULL;
571
572 iterate_over_symtabs (name, [&] (symtab *symtab)
573 {
574 result = symtab;
575 return true;
576 });
577
578 return result;
579 }
580
581 \f
582 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
583 full method name, which consist of the class name (from T), the unadorned
584 method name from METHOD_ID, and the signature for the specific overload,
585 specified by SIGNATURE_ID. Note that this function is g++ specific. */
586
587 char *
588 gdb_mangle_name (struct type *type, int method_id, int signature_id)
589 {
590 int mangled_name_len;
591 char *mangled_name;
592 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
593 struct fn_field *method = &f[signature_id];
594 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
595 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
596 const char *newname = type->name ();
597
598 /* Does the form of physname indicate that it is the full mangled name
599 of a constructor (not just the args)? */
600 int is_full_physname_constructor;
601
602 int is_constructor;
603 int is_destructor = is_destructor_name (physname);
604 /* Need a new type prefix. */
605 const char *const_prefix = method->is_const ? "C" : "";
606 const char *volatile_prefix = method->is_volatile ? "V" : "";
607 char buf[20];
608 int len = (newname == NULL ? 0 : strlen (newname));
609
610 /* Nothing to do if physname already contains a fully mangled v3 abi name
611 or an operator name. */
612 if ((physname[0] == '_' && physname[1] == 'Z')
613 || is_operator_name (field_name))
614 return xstrdup (physname);
615
616 is_full_physname_constructor = is_constructor_name (physname);
617
618 is_constructor = is_full_physname_constructor
619 || (newname && strcmp (field_name, newname) == 0);
620
621 if (!is_destructor)
622 is_destructor = (startswith (physname, "__dt"));
623
624 if (is_destructor || is_full_physname_constructor)
625 {
626 mangled_name = (char *) xmalloc (strlen (physname) + 1);
627 strcpy (mangled_name, physname);
628 return mangled_name;
629 }
630
631 if (len == 0)
632 {
633 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
634 }
635 else if (physname[0] == 't' || physname[0] == 'Q')
636 {
637 /* The physname for template and qualified methods already includes
638 the class name. */
639 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
640 newname = NULL;
641 len = 0;
642 }
643 else
644 {
645 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
646 volatile_prefix, len);
647 }
648 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
649 + strlen (buf) + len + strlen (physname) + 1);
650
651 mangled_name = (char *) xmalloc (mangled_name_len);
652 if (is_constructor)
653 mangled_name[0] = '\0';
654 else
655 strcpy (mangled_name, field_name);
656
657 strcat (mangled_name, buf);
658 /* If the class doesn't have a name, i.e. newname NULL, then we just
659 mangle it using 0 for the length of the class. Thus it gets mangled
660 as something starting with `::' rather than `classname::'. */
661 if (newname != NULL)
662 strcat (mangled_name, newname);
663
664 strcat (mangled_name, physname);
665 return (mangled_name);
666 }
667
668 /* See symtab.h. */
669
670 void
671 general_symbol_info::set_demangled_name (const char *name,
672 struct obstack *obstack)
673 {
674 if (language () == language_ada)
675 {
676 if (name == NULL)
677 {
678 ada_mangled = 0;
679 language_specific.obstack = obstack;
680 }
681 else
682 {
683 ada_mangled = 1;
684 language_specific.demangled_name = name;
685 }
686 }
687 else
688 language_specific.demangled_name = name;
689 }
690
691 \f
692 /* Initialize the language dependent portion of a symbol
693 depending upon the language for the symbol. */
694
695 void
696 general_symbol_info::set_language (enum language language,
697 struct obstack *obstack)
698 {
699 m_language = language;
700 if (language == language_cplus
701 || language == language_d
702 || language == language_go
703 || language == language_objc
704 || language == language_fortran)
705 {
706 set_demangled_name (NULL, obstack);
707 }
708 else if (language == language_ada)
709 {
710 gdb_assert (ada_mangled == 0);
711 language_specific.obstack = obstack;
712 }
713 else
714 {
715 memset (&language_specific, 0, sizeof (language_specific));
716 }
717 }
718
719 /* Functions to initialize a symbol's mangled name. */
720
721 /* Objects of this type are stored in the demangled name hash table. */
722 struct demangled_name_entry
723 {
724 demangled_name_entry (gdb::string_view mangled_name)
725 : mangled (mangled_name) {}
726
727 gdb::string_view mangled;
728 enum language language;
729 gdb::unique_xmalloc_ptr<char> demangled;
730 };
731
732 /* Hash function for the demangled name hash. */
733
734 static hashval_t
735 hash_demangled_name_entry (const void *data)
736 {
737 const struct demangled_name_entry *e
738 = (const struct demangled_name_entry *) data;
739
740 return fast_hash (e->mangled.data (), e->mangled.length ());
741 }
742
743 /* Equality function for the demangled name hash. */
744
745 static int
746 eq_demangled_name_entry (const void *a, const void *b)
747 {
748 const struct demangled_name_entry *da
749 = (const struct demangled_name_entry *) a;
750 const struct demangled_name_entry *db
751 = (const struct demangled_name_entry *) b;
752
753 return da->mangled == db->mangled;
754 }
755
756 static void
757 free_demangled_name_entry (void *data)
758 {
759 struct demangled_name_entry *e
760 = (struct demangled_name_entry *) data;
761
762 e->~demangled_name_entry();
763 }
764
765 /* Create the hash table used for demangled names. Each hash entry is
766 a pair of strings; one for the mangled name and one for the demangled
767 name. The entry is hashed via just the mangled name. */
768
769 static void
770 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
771 {
772 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
773 The hash table code will round this up to the next prime number.
774 Choosing a much larger table size wastes memory, and saves only about
775 1% in symbol reading. However, if the minsym count is already
776 initialized (e.g. because symbol name setting was deferred to
777 a background thread) we can initialize the hashtable with a count
778 based on that, because we will almost certainly have at least that
779 many entries. If we have a nonzero number but less than 256,
780 we still stay with 256 to have some space for psymbols, etc. */
781
782 /* htab will expand the table when it is 3/4th full, so we account for that
783 here. +2 to round up. */
784 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
785 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
786
787 per_bfd->demangled_names_hash.reset (htab_create_alloc
788 (count, hash_demangled_name_entry, eq_demangled_name_entry,
789 free_demangled_name_entry, xcalloc, xfree));
790 }
791
792 /* See symtab.h */
793
794 char *
795 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
796 const char *mangled)
797 {
798 char *demangled = NULL;
799 int i;
800
801 if (gsymbol->language () == language_unknown)
802 gsymbol->m_language = language_auto;
803
804 if (gsymbol->language () != language_auto)
805 {
806 const struct language_defn *lang = language_def (gsymbol->language ());
807
808 lang->sniff_from_mangled_name (mangled, &demangled);
809 return demangled;
810 }
811
812 for (i = language_unknown; i < nr_languages; ++i)
813 {
814 enum language l = (enum language) i;
815 const struct language_defn *lang = language_def (l);
816
817 if (lang->sniff_from_mangled_name (mangled, &demangled))
818 {
819 gsymbol->m_language = l;
820 return demangled;
821 }
822 }
823
824 return NULL;
825 }
826
827 /* Set both the mangled and demangled (if any) names for GSYMBOL based
828 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
829 objfile's obstack; but if COPY_NAME is 0 and if NAME is
830 NUL-terminated, then this function assumes that NAME is already
831 correctly saved (either permanently or with a lifetime tied to the
832 objfile), and it will not be copied.
833
834 The hash table corresponding to OBJFILE is used, and the memory
835 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
836 so the pointer can be discarded after calling this function. */
837
838 void
839 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
840 bool copy_name,
841 objfile_per_bfd_storage *per_bfd,
842 gdb::optional<hashval_t> hash)
843 {
844 struct demangled_name_entry **slot;
845
846 if (language () == language_ada)
847 {
848 /* In Ada, we do the symbol lookups using the mangled name, so
849 we can save some space by not storing the demangled name. */
850 if (!copy_name)
851 m_name = linkage_name.data ();
852 else
853 m_name = obstack_strndup (&per_bfd->storage_obstack,
854 linkage_name.data (),
855 linkage_name.length ());
856 set_demangled_name (NULL, &per_bfd->storage_obstack);
857
858 return;
859 }
860
861 if (per_bfd->demangled_names_hash == NULL)
862 create_demangled_names_hash (per_bfd);
863
864 struct demangled_name_entry entry (linkage_name);
865 if (!hash.has_value ())
866 hash = hash_demangled_name_entry (&entry);
867 slot = ((struct demangled_name_entry **)
868 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
869 &entry, *hash, INSERT));
870
871 /* The const_cast is safe because the only reason it is already
872 initialized is if we purposefully set it from a background
873 thread to avoid doing the work here. However, it is still
874 allocated from the heap and needs to be freed by us, just
875 like if we called symbol_find_demangled_name here. If this is
876 nullptr, we call symbol_find_demangled_name below, but we put
877 this smart pointer here to be sure that we don't leak this name. */
878 gdb::unique_xmalloc_ptr<char> demangled_name
879 (const_cast<char *> (language_specific.demangled_name));
880
881 /* If this name is not in the hash table, add it. */
882 if (*slot == NULL
883 /* A C version of the symbol may have already snuck into the table.
884 This happens to, e.g., main.init (__go_init_main). Cope. */
885 || (language () == language_go && (*slot)->demangled == nullptr))
886 {
887 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
888 to true if the string might not be nullterminated. We have to make
889 this copy because demangling needs a nullterminated string. */
890 gdb::string_view linkage_name_copy;
891 if (copy_name)
892 {
893 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
894 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
895 alloc_name[linkage_name.length ()] = '\0';
896
897 linkage_name_copy = gdb::string_view (alloc_name,
898 linkage_name.length ());
899 }
900 else
901 linkage_name_copy = linkage_name;
902
903 if (demangled_name.get () == nullptr)
904 demangled_name.reset
905 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
906
907 /* Suppose we have demangled_name==NULL, copy_name==0, and
908 linkage_name_copy==linkage_name. In this case, we already have the
909 mangled name saved, and we don't have a demangled name. So,
910 you might think we could save a little space by not recording
911 this in the hash table at all.
912
913 It turns out that it is actually important to still save such
914 an entry in the hash table, because storing this name gives
915 us better bcache hit rates for partial symbols. */
916 if (!copy_name)
917 {
918 *slot
919 = ((struct demangled_name_entry *)
920 obstack_alloc (&per_bfd->storage_obstack,
921 sizeof (demangled_name_entry)));
922 new (*slot) demangled_name_entry (linkage_name);
923 }
924 else
925 {
926 /* If we must copy the mangled name, put it directly after
927 the struct so we can have a single allocation. */
928 *slot
929 = ((struct demangled_name_entry *)
930 obstack_alloc (&per_bfd->storage_obstack,
931 sizeof (demangled_name_entry)
932 + linkage_name.length () + 1));
933 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
934 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
935 mangled_ptr [linkage_name.length ()] = '\0';
936 new (*slot) demangled_name_entry
937 (gdb::string_view (mangled_ptr, linkage_name.length ()));
938 }
939 (*slot)->demangled = std::move (demangled_name);
940 (*slot)->language = language ();
941 }
942 else if (language () == language_unknown || language () == language_auto)
943 m_language = (*slot)->language;
944
945 m_name = (*slot)->mangled.data ();
946 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
947 }
948
949 /* See symtab.h. */
950
951 const char *
952 general_symbol_info::natural_name () const
953 {
954 switch (language ())
955 {
956 case language_cplus:
957 case language_d:
958 case language_go:
959 case language_objc:
960 case language_fortran:
961 case language_rust:
962 if (language_specific.demangled_name != nullptr)
963 return language_specific.demangled_name;
964 break;
965 case language_ada:
966 return ada_decode_symbol (this);
967 default:
968 break;
969 }
970 return linkage_name ();
971 }
972
973 /* See symtab.h. */
974
975 const char *
976 general_symbol_info::demangled_name () const
977 {
978 const char *dem_name = NULL;
979
980 switch (language ())
981 {
982 case language_cplus:
983 case language_d:
984 case language_go:
985 case language_objc:
986 case language_fortran:
987 case language_rust:
988 dem_name = language_specific.demangled_name;
989 break;
990 case language_ada:
991 dem_name = ada_decode_symbol (this);
992 break;
993 default:
994 break;
995 }
996 return dem_name;
997 }
998
999 /* See symtab.h. */
1000
1001 const char *
1002 general_symbol_info::search_name () const
1003 {
1004 if (language () == language_ada)
1005 return linkage_name ();
1006 else
1007 return natural_name ();
1008 }
1009
1010 /* See symtab.h. */
1011
1012 struct obj_section *
1013 general_symbol_info::obj_section (const struct objfile *objfile) const
1014 {
1015 if (section_index () >= 0)
1016 return &objfile->sections[section_index ()];
1017 return nullptr;
1018 }
1019
1020 /* See symtab.h. */
1021
1022 bool
1023 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1024 const lookup_name_info &name)
1025 {
1026 symbol_name_matcher_ftype *name_match
1027 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1028 return name_match (gsymbol->search_name (), name, NULL);
1029 }
1030
1031 \f
1032
1033 /* Return true if the two sections are the same, or if they could
1034 plausibly be copies of each other, one in an original object
1035 file and another in a separated debug file. */
1036
1037 bool
1038 matching_obj_sections (struct obj_section *obj_first,
1039 struct obj_section *obj_second)
1040 {
1041 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1042 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1043
1044 /* If they're the same section, then they match. */
1045 if (first == second)
1046 return true;
1047
1048 /* If either is NULL, give up. */
1049 if (first == NULL || second == NULL)
1050 return false;
1051
1052 /* This doesn't apply to absolute symbols. */
1053 if (first->owner == NULL || second->owner == NULL)
1054 return false;
1055
1056 /* If they're in the same object file, they must be different sections. */
1057 if (first->owner == second->owner)
1058 return false;
1059
1060 /* Check whether the two sections are potentially corresponding. They must
1061 have the same size, address, and name. We can't compare section indexes,
1062 which would be more reliable, because some sections may have been
1063 stripped. */
1064 if (bfd_section_size (first) != bfd_section_size (second))
1065 return false;
1066
1067 /* In-memory addresses may start at a different offset, relativize them. */
1068 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1069 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1070 return false;
1071
1072 if (bfd_section_name (first) == NULL
1073 || bfd_section_name (second) == NULL
1074 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1075 return false;
1076
1077 /* Otherwise check that they are in corresponding objfiles. */
1078
1079 struct objfile *obj = NULL;
1080 for (objfile *objfile : current_program_space->objfiles ())
1081 if (objfile->obfd == first->owner)
1082 {
1083 obj = objfile;
1084 break;
1085 }
1086 gdb_assert (obj != NULL);
1087
1088 if (obj->separate_debug_objfile != NULL
1089 && obj->separate_debug_objfile->obfd == second->owner)
1090 return true;
1091 if (obj->separate_debug_objfile_backlink != NULL
1092 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1093 return true;
1094
1095 return false;
1096 }
1097
1098 /* See symtab.h. */
1099
1100 void
1101 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1102 {
1103 struct bound_minimal_symbol msymbol;
1104
1105 /* If we know that this is not a text address, return failure. This is
1106 necessary because we loop based on texthigh and textlow, which do
1107 not include the data ranges. */
1108 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1109 if (msymbol.minsym && msymbol.minsym->data_p ())
1110 return;
1111
1112 for (objfile *objfile : current_program_space->objfiles ())
1113 {
1114 struct compunit_symtab *cust
1115 = objfile->find_pc_sect_compunit_symtab (msymbol, pc, section, 0);
1116 if (cust)
1117 return;
1118 }
1119 }
1120 \f
1121 /* Hash function for the symbol cache. */
1122
1123 static unsigned int
1124 hash_symbol_entry (const struct objfile *objfile_context,
1125 const char *name, domain_enum domain)
1126 {
1127 unsigned int hash = (uintptr_t) objfile_context;
1128
1129 if (name != NULL)
1130 hash += htab_hash_string (name);
1131
1132 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1133 to map to the same slot. */
1134 if (domain == STRUCT_DOMAIN)
1135 hash += VAR_DOMAIN * 7;
1136 else
1137 hash += domain * 7;
1138
1139 return hash;
1140 }
1141
1142 /* Equality function for the symbol cache. */
1143
1144 static int
1145 eq_symbol_entry (const struct symbol_cache_slot *slot,
1146 const struct objfile *objfile_context,
1147 const char *name, domain_enum domain)
1148 {
1149 const char *slot_name;
1150 domain_enum slot_domain;
1151
1152 if (slot->state == SYMBOL_SLOT_UNUSED)
1153 return 0;
1154
1155 if (slot->objfile_context != objfile_context)
1156 return 0;
1157
1158 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1159 {
1160 slot_name = slot->value.not_found.name;
1161 slot_domain = slot->value.not_found.domain;
1162 }
1163 else
1164 {
1165 slot_name = slot->value.found.symbol->search_name ();
1166 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1167 }
1168
1169 /* NULL names match. */
1170 if (slot_name == NULL && name == NULL)
1171 {
1172 /* But there's no point in calling symbol_matches_domain in the
1173 SYMBOL_SLOT_FOUND case. */
1174 if (slot_domain != domain)
1175 return 0;
1176 }
1177 else if (slot_name != NULL && name != NULL)
1178 {
1179 /* It's important that we use the same comparison that was done
1180 the first time through. If the slot records a found symbol,
1181 then this means using the symbol name comparison function of
1182 the symbol's language with symbol->search_name (). See
1183 dictionary.c. It also means using symbol_matches_domain for
1184 found symbols. See block.c.
1185
1186 If the slot records a not-found symbol, then require a precise match.
1187 We could still be lax with whitespace like strcmp_iw though. */
1188
1189 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1190 {
1191 if (strcmp (slot_name, name) != 0)
1192 return 0;
1193 if (slot_domain != domain)
1194 return 0;
1195 }
1196 else
1197 {
1198 struct symbol *sym = slot->value.found.symbol;
1199 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1200
1201 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1202 return 0;
1203
1204 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1205 return 0;
1206 }
1207 }
1208 else
1209 {
1210 /* Only one name is NULL. */
1211 return 0;
1212 }
1213
1214 return 1;
1215 }
1216
1217 /* Given a cache of size SIZE, return the size of the struct (with variable
1218 length array) in bytes. */
1219
1220 static size_t
1221 symbol_cache_byte_size (unsigned int size)
1222 {
1223 return (sizeof (struct block_symbol_cache)
1224 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1225 }
1226
1227 /* Resize CACHE. */
1228
1229 static void
1230 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1231 {
1232 /* If there's no change in size, don't do anything.
1233 All caches have the same size, so we can just compare with the size
1234 of the global symbols cache. */
1235 if ((cache->global_symbols != NULL
1236 && cache->global_symbols->size == new_size)
1237 || (cache->global_symbols == NULL
1238 && new_size == 0))
1239 return;
1240
1241 destroy_block_symbol_cache (cache->global_symbols);
1242 destroy_block_symbol_cache (cache->static_symbols);
1243
1244 if (new_size == 0)
1245 {
1246 cache->global_symbols = NULL;
1247 cache->static_symbols = NULL;
1248 }
1249 else
1250 {
1251 size_t total_size = symbol_cache_byte_size (new_size);
1252
1253 cache->global_symbols
1254 = (struct block_symbol_cache *) xcalloc (1, total_size);
1255 cache->static_symbols
1256 = (struct block_symbol_cache *) xcalloc (1, total_size);
1257 cache->global_symbols->size = new_size;
1258 cache->static_symbols->size = new_size;
1259 }
1260 }
1261
1262 /* Return the symbol cache of PSPACE.
1263 Create one if it doesn't exist yet. */
1264
1265 static struct symbol_cache *
1266 get_symbol_cache (struct program_space *pspace)
1267 {
1268 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1269
1270 if (cache == NULL)
1271 {
1272 cache = symbol_cache_key.emplace (pspace);
1273 resize_symbol_cache (cache, symbol_cache_size);
1274 }
1275
1276 return cache;
1277 }
1278
1279 /* Set the size of the symbol cache in all program spaces. */
1280
1281 static void
1282 set_symbol_cache_size (unsigned int new_size)
1283 {
1284 for (struct program_space *pspace : program_spaces)
1285 {
1286 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1287
1288 /* The pspace could have been created but not have a cache yet. */
1289 if (cache != NULL)
1290 resize_symbol_cache (cache, new_size);
1291 }
1292 }
1293
1294 /* Called when symbol-cache-size is set. */
1295
1296 static void
1297 set_symbol_cache_size_handler (const char *args, int from_tty,
1298 struct cmd_list_element *c)
1299 {
1300 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1301 {
1302 /* Restore the previous value.
1303 This is the value the "show" command prints. */
1304 new_symbol_cache_size = symbol_cache_size;
1305
1306 error (_("Symbol cache size is too large, max is %u."),
1307 MAX_SYMBOL_CACHE_SIZE);
1308 }
1309 symbol_cache_size = new_symbol_cache_size;
1310
1311 set_symbol_cache_size (symbol_cache_size);
1312 }
1313
1314 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1315 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1316 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1317 failed (and thus this one will too), or NULL if the symbol is not present
1318 in the cache.
1319 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1320 can be used to save the result of a full lookup attempt. */
1321
1322 static struct block_symbol
1323 symbol_cache_lookup (struct symbol_cache *cache,
1324 struct objfile *objfile_context, enum block_enum block,
1325 const char *name, domain_enum domain,
1326 struct block_symbol_cache **bsc_ptr,
1327 struct symbol_cache_slot **slot_ptr)
1328 {
1329 struct block_symbol_cache *bsc;
1330 unsigned int hash;
1331 struct symbol_cache_slot *slot;
1332
1333 if (block == GLOBAL_BLOCK)
1334 bsc = cache->global_symbols;
1335 else
1336 bsc = cache->static_symbols;
1337 if (bsc == NULL)
1338 {
1339 *bsc_ptr = NULL;
1340 *slot_ptr = NULL;
1341 return {};
1342 }
1343
1344 hash = hash_symbol_entry (objfile_context, name, domain);
1345 slot = bsc->symbols + hash % bsc->size;
1346
1347 *bsc_ptr = bsc;
1348 *slot_ptr = slot;
1349
1350 if (eq_symbol_entry (slot, objfile_context, name, domain))
1351 {
1352 if (symbol_lookup_debug)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "%s block symbol cache hit%s for %s, %s\n",
1355 block == GLOBAL_BLOCK ? "Global" : "Static",
1356 slot->state == SYMBOL_SLOT_NOT_FOUND
1357 ? " (not found)" : "",
1358 name, domain_name (domain));
1359 ++bsc->hits;
1360 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1361 return SYMBOL_LOOKUP_FAILED;
1362 return slot->value.found;
1363 }
1364
1365 /* Symbol is not present in the cache. */
1366
1367 if (symbol_lookup_debug)
1368 {
1369 fprintf_unfiltered (gdb_stdlog,
1370 "%s block symbol cache miss for %s, %s\n",
1371 block == GLOBAL_BLOCK ? "Global" : "Static",
1372 name, domain_name (domain));
1373 }
1374 ++bsc->misses;
1375 return {};
1376 }
1377
1378 /* Mark SYMBOL as found in SLOT.
1379 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1380 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1381 necessarily the objfile the symbol was found in. */
1382
1383 static void
1384 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1385 struct symbol_cache_slot *slot,
1386 struct objfile *objfile_context,
1387 struct symbol *symbol,
1388 const struct block *block)
1389 {
1390 if (bsc == NULL)
1391 return;
1392 if (slot->state != SYMBOL_SLOT_UNUSED)
1393 {
1394 ++bsc->collisions;
1395 symbol_cache_clear_slot (slot);
1396 }
1397 slot->state = SYMBOL_SLOT_FOUND;
1398 slot->objfile_context = objfile_context;
1399 slot->value.found.symbol = symbol;
1400 slot->value.found.block = block;
1401 }
1402
1403 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1404 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1405 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1406
1407 static void
1408 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1409 struct symbol_cache_slot *slot,
1410 struct objfile *objfile_context,
1411 const char *name, domain_enum domain)
1412 {
1413 if (bsc == NULL)
1414 return;
1415 if (slot->state != SYMBOL_SLOT_UNUSED)
1416 {
1417 ++bsc->collisions;
1418 symbol_cache_clear_slot (slot);
1419 }
1420 slot->state = SYMBOL_SLOT_NOT_FOUND;
1421 slot->objfile_context = objfile_context;
1422 slot->value.not_found.name = xstrdup (name);
1423 slot->value.not_found.domain = domain;
1424 }
1425
1426 /* Flush the symbol cache of PSPACE. */
1427
1428 static void
1429 symbol_cache_flush (struct program_space *pspace)
1430 {
1431 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1432 int pass;
1433
1434 if (cache == NULL)
1435 return;
1436 if (cache->global_symbols == NULL)
1437 {
1438 gdb_assert (symbol_cache_size == 0);
1439 gdb_assert (cache->static_symbols == NULL);
1440 return;
1441 }
1442
1443 /* If the cache is untouched since the last flush, early exit.
1444 This is important for performance during the startup of a program linked
1445 with 100s (or 1000s) of shared libraries. */
1446 if (cache->global_symbols->misses == 0
1447 && cache->static_symbols->misses == 0)
1448 return;
1449
1450 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1451 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1452
1453 for (pass = 0; pass < 2; ++pass)
1454 {
1455 struct block_symbol_cache *bsc
1456 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1457 unsigned int i;
1458
1459 for (i = 0; i < bsc->size; ++i)
1460 symbol_cache_clear_slot (&bsc->symbols[i]);
1461 }
1462
1463 cache->global_symbols->hits = 0;
1464 cache->global_symbols->misses = 0;
1465 cache->global_symbols->collisions = 0;
1466 cache->static_symbols->hits = 0;
1467 cache->static_symbols->misses = 0;
1468 cache->static_symbols->collisions = 0;
1469 }
1470
1471 /* Dump CACHE. */
1472
1473 static void
1474 symbol_cache_dump (const struct symbol_cache *cache)
1475 {
1476 int pass;
1477
1478 if (cache->global_symbols == NULL)
1479 {
1480 printf_filtered (" <disabled>\n");
1481 return;
1482 }
1483
1484 for (pass = 0; pass < 2; ++pass)
1485 {
1486 const struct block_symbol_cache *bsc
1487 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1488 unsigned int i;
1489
1490 if (pass == 0)
1491 printf_filtered ("Global symbols:\n");
1492 else
1493 printf_filtered ("Static symbols:\n");
1494
1495 for (i = 0; i < bsc->size; ++i)
1496 {
1497 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1498
1499 QUIT;
1500
1501 switch (slot->state)
1502 {
1503 case SYMBOL_SLOT_UNUSED:
1504 break;
1505 case SYMBOL_SLOT_NOT_FOUND:
1506 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1507 host_address_to_string (slot->objfile_context),
1508 slot->value.not_found.name,
1509 domain_name (slot->value.not_found.domain));
1510 break;
1511 case SYMBOL_SLOT_FOUND:
1512 {
1513 struct symbol *found = slot->value.found.symbol;
1514 const struct objfile *context = slot->objfile_context;
1515
1516 printf_filtered (" [%4u] = %s, %s %s\n", i,
1517 host_address_to_string (context),
1518 found->print_name (),
1519 domain_name (SYMBOL_DOMAIN (found)));
1520 break;
1521 }
1522 }
1523 }
1524 }
1525 }
1526
1527 /* The "mt print symbol-cache" command. */
1528
1529 static void
1530 maintenance_print_symbol_cache (const char *args, int from_tty)
1531 {
1532 for (struct program_space *pspace : program_spaces)
1533 {
1534 struct symbol_cache *cache;
1535
1536 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1537 pspace->num,
1538 pspace->symfile_object_file != NULL
1539 ? objfile_name (pspace->symfile_object_file)
1540 : "(no object file)");
1541
1542 /* If the cache hasn't been created yet, avoid creating one. */
1543 cache = symbol_cache_key.get (pspace);
1544 if (cache == NULL)
1545 printf_filtered (" <empty>\n");
1546 else
1547 symbol_cache_dump (cache);
1548 }
1549 }
1550
1551 /* The "mt flush-symbol-cache" command. */
1552
1553 static void
1554 maintenance_flush_symbol_cache (const char *args, int from_tty)
1555 {
1556 for (struct program_space *pspace : program_spaces)
1557 {
1558 symbol_cache_flush (pspace);
1559 }
1560 }
1561
1562 /* Print usage statistics of CACHE. */
1563
1564 static void
1565 symbol_cache_stats (struct symbol_cache *cache)
1566 {
1567 int pass;
1568
1569 if (cache->global_symbols == NULL)
1570 {
1571 printf_filtered (" <disabled>\n");
1572 return;
1573 }
1574
1575 for (pass = 0; pass < 2; ++pass)
1576 {
1577 const struct block_symbol_cache *bsc
1578 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1579
1580 QUIT;
1581
1582 if (pass == 0)
1583 printf_filtered ("Global block cache stats:\n");
1584 else
1585 printf_filtered ("Static block cache stats:\n");
1586
1587 printf_filtered (" size: %u\n", bsc->size);
1588 printf_filtered (" hits: %u\n", bsc->hits);
1589 printf_filtered (" misses: %u\n", bsc->misses);
1590 printf_filtered (" collisions: %u\n", bsc->collisions);
1591 }
1592 }
1593
1594 /* The "mt print symbol-cache-statistics" command. */
1595
1596 static void
1597 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1598 {
1599 for (struct program_space *pspace : program_spaces)
1600 {
1601 struct symbol_cache *cache;
1602
1603 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1604 pspace->num,
1605 pspace->symfile_object_file != NULL
1606 ? objfile_name (pspace->symfile_object_file)
1607 : "(no object file)");
1608
1609 /* If the cache hasn't been created yet, avoid creating one. */
1610 cache = symbol_cache_key.get (pspace);
1611 if (cache == NULL)
1612 printf_filtered (" empty, no stats available\n");
1613 else
1614 symbol_cache_stats (cache);
1615 }
1616 }
1617
1618 /* This module's 'new_objfile' observer. */
1619
1620 static void
1621 symtab_new_objfile_observer (struct objfile *objfile)
1622 {
1623 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1624 symbol_cache_flush (current_program_space);
1625 }
1626
1627 /* This module's 'free_objfile' observer. */
1628
1629 static void
1630 symtab_free_objfile_observer (struct objfile *objfile)
1631 {
1632 symbol_cache_flush (objfile->pspace);
1633 }
1634 \f
1635 /* Debug symbols usually don't have section information. We need to dig that
1636 out of the minimal symbols and stash that in the debug symbol. */
1637
1638 void
1639 fixup_section (struct general_symbol_info *ginfo,
1640 CORE_ADDR addr, struct objfile *objfile)
1641 {
1642 struct minimal_symbol *msym;
1643
1644 /* First, check whether a minimal symbol with the same name exists
1645 and points to the same address. The address check is required
1646 e.g. on PowerPC64, where the minimal symbol for a function will
1647 point to the function descriptor, while the debug symbol will
1648 point to the actual function code. */
1649 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1650 objfile);
1651 if (msym)
1652 ginfo->set_section_index (msym->section_index ());
1653 else
1654 {
1655 /* Static, function-local variables do appear in the linker
1656 (minimal) symbols, but are frequently given names that won't
1657 be found via lookup_minimal_symbol(). E.g., it has been
1658 observed in frv-uclinux (ELF) executables that a static,
1659 function-local variable named "foo" might appear in the
1660 linker symbols as "foo.6" or "foo.3". Thus, there is no
1661 point in attempting to extend the lookup-by-name mechanism to
1662 handle this case due to the fact that there can be multiple
1663 names.
1664
1665 So, instead, search the section table when lookup by name has
1666 failed. The ``addr'' and ``endaddr'' fields may have already
1667 been relocated. If so, the relocation offset needs to be
1668 subtracted from these values when performing the comparison.
1669 We unconditionally subtract it, because, when no relocation
1670 has been performed, the value will simply be zero.
1671
1672 The address of the symbol whose section we're fixing up HAS
1673 NOT BEEN adjusted (relocated) yet. It can't have been since
1674 the section isn't yet known and knowing the section is
1675 necessary in order to add the correct relocation value. In
1676 other words, we wouldn't even be in this function (attempting
1677 to compute the section) if it were already known.
1678
1679 Note that it is possible to search the minimal symbols
1680 (subtracting the relocation value if necessary) to find the
1681 matching minimal symbol, but this is overkill and much less
1682 efficient. It is not necessary to find the matching minimal
1683 symbol, only its section.
1684
1685 Note that this technique (of doing a section table search)
1686 can fail when unrelocated section addresses overlap. For
1687 this reason, we still attempt a lookup by name prior to doing
1688 a search of the section table. */
1689
1690 struct obj_section *s;
1691 int fallback = -1;
1692
1693 ALL_OBJFILE_OSECTIONS (objfile, s)
1694 {
1695 int idx = s - objfile->sections;
1696 CORE_ADDR offset = objfile->section_offsets[idx];
1697
1698 if (fallback == -1)
1699 fallback = idx;
1700
1701 if (s->addr () - offset <= addr && addr < s->endaddr () - offset)
1702 {
1703 ginfo->set_section_index (idx);
1704 return;
1705 }
1706 }
1707
1708 /* If we didn't find the section, assume it is in the first
1709 section. If there is no allocated section, then it hardly
1710 matters what we pick, so just pick zero. */
1711 if (fallback == -1)
1712 ginfo->set_section_index (0);
1713 else
1714 ginfo->set_section_index (fallback);
1715 }
1716 }
1717
1718 struct symbol *
1719 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1720 {
1721 CORE_ADDR addr;
1722
1723 if (!sym)
1724 return NULL;
1725
1726 if (!SYMBOL_OBJFILE_OWNED (sym))
1727 return sym;
1728
1729 /* We either have an OBJFILE, or we can get at it from the sym's
1730 symtab. Anything else is a bug. */
1731 gdb_assert (objfile || symbol_symtab (sym));
1732
1733 if (objfile == NULL)
1734 objfile = symbol_objfile (sym);
1735
1736 if (sym->obj_section (objfile) != nullptr)
1737 return sym;
1738
1739 /* We should have an objfile by now. */
1740 gdb_assert (objfile);
1741
1742 switch (SYMBOL_CLASS (sym))
1743 {
1744 case LOC_STATIC:
1745 case LOC_LABEL:
1746 addr = SYMBOL_VALUE_ADDRESS (sym);
1747 break;
1748 case LOC_BLOCK:
1749 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1750 break;
1751
1752 default:
1753 /* Nothing else will be listed in the minsyms -- no use looking
1754 it up. */
1755 return sym;
1756 }
1757
1758 fixup_section (sym, addr, objfile);
1759
1760 return sym;
1761 }
1762
1763 /* See symtab.h. */
1764
1765 demangle_for_lookup_info::demangle_for_lookup_info
1766 (const lookup_name_info &lookup_name, language lang)
1767 {
1768 demangle_result_storage storage;
1769
1770 if (lookup_name.ignore_parameters () && lang == language_cplus)
1771 {
1772 gdb::unique_xmalloc_ptr<char> without_params
1773 = cp_remove_params_if_any (lookup_name.c_str (),
1774 lookup_name.completion_mode ());
1775
1776 if (without_params != NULL)
1777 {
1778 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1779 m_demangled_name = demangle_for_lookup (without_params.get (),
1780 lang, storage);
1781 return;
1782 }
1783 }
1784
1785 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1786 m_demangled_name = lookup_name.c_str ();
1787 else
1788 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1789 lang, storage);
1790 }
1791
1792 /* See symtab.h. */
1793
1794 const lookup_name_info &
1795 lookup_name_info::match_any ()
1796 {
1797 /* Lookup any symbol that "" would complete. I.e., this matches all
1798 symbol names. */
1799 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1800 true);
1801
1802 return lookup_name;
1803 }
1804
1805 /* Compute the demangled form of NAME as used by the various symbol
1806 lookup functions. The result can either be the input NAME
1807 directly, or a pointer to a buffer owned by the STORAGE object.
1808
1809 For Ada, this function just returns NAME, unmodified.
1810 Normally, Ada symbol lookups are performed using the encoded name
1811 rather than the demangled name, and so it might seem to make sense
1812 for this function to return an encoded version of NAME.
1813 Unfortunately, we cannot do this, because this function is used in
1814 circumstances where it is not appropriate to try to encode NAME.
1815 For instance, when displaying the frame info, we demangle the name
1816 of each parameter, and then perform a symbol lookup inside our
1817 function using that demangled name. In Ada, certain functions
1818 have internally-generated parameters whose name contain uppercase
1819 characters. Encoding those name would result in those uppercase
1820 characters to become lowercase, and thus cause the symbol lookup
1821 to fail. */
1822
1823 const char *
1824 demangle_for_lookup (const char *name, enum language lang,
1825 demangle_result_storage &storage)
1826 {
1827 /* If we are using C++, D, or Go, demangle the name before doing a
1828 lookup, so we can always binary search. */
1829 if (lang == language_cplus)
1830 {
1831 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1832 if (demangled_name != NULL)
1833 return storage.set_malloc_ptr (demangled_name);
1834
1835 /* If we were given a non-mangled name, canonicalize it
1836 according to the language (so far only for C++). */
1837 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1838 if (canon != nullptr)
1839 return storage.set_malloc_ptr (std::move (canon));
1840 }
1841 else if (lang == language_d)
1842 {
1843 char *demangled_name = d_demangle (name, 0);
1844 if (demangled_name != NULL)
1845 return storage.set_malloc_ptr (demangled_name);
1846 }
1847 else if (lang == language_go)
1848 {
1849 char *demangled_name
1850 = language_def (language_go)->demangle_symbol (name, 0);
1851 if (demangled_name != NULL)
1852 return storage.set_malloc_ptr (demangled_name);
1853 }
1854
1855 return name;
1856 }
1857
1858 /* See symtab.h. */
1859
1860 unsigned int
1861 search_name_hash (enum language language, const char *search_name)
1862 {
1863 return language_def (language)->search_name_hash (search_name);
1864 }
1865
1866 /* See symtab.h.
1867
1868 This function (or rather its subordinates) have a bunch of loops and
1869 it would seem to be attractive to put in some QUIT's (though I'm not really
1870 sure whether it can run long enough to be really important). But there
1871 are a few calls for which it would appear to be bad news to quit
1872 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1873 that there is C++ code below which can error(), but that probably
1874 doesn't affect these calls since they are looking for a known
1875 variable and thus can probably assume it will never hit the C++
1876 code). */
1877
1878 struct block_symbol
1879 lookup_symbol_in_language (const char *name, const struct block *block,
1880 const domain_enum domain, enum language lang,
1881 struct field_of_this_result *is_a_field_of_this)
1882 {
1883 demangle_result_storage storage;
1884 const char *modified_name = demangle_for_lookup (name, lang, storage);
1885
1886 return lookup_symbol_aux (modified_name,
1887 symbol_name_match_type::FULL,
1888 block, domain, lang,
1889 is_a_field_of_this);
1890 }
1891
1892 /* See symtab.h. */
1893
1894 struct block_symbol
1895 lookup_symbol (const char *name, const struct block *block,
1896 domain_enum domain,
1897 struct field_of_this_result *is_a_field_of_this)
1898 {
1899 return lookup_symbol_in_language (name, block, domain,
1900 current_language->la_language,
1901 is_a_field_of_this);
1902 }
1903
1904 /* See symtab.h. */
1905
1906 struct block_symbol
1907 lookup_symbol_search_name (const char *search_name, const struct block *block,
1908 domain_enum domain)
1909 {
1910 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1911 block, domain, language_asm, NULL);
1912 }
1913
1914 /* See symtab.h. */
1915
1916 struct block_symbol
1917 lookup_language_this (const struct language_defn *lang,
1918 const struct block *block)
1919 {
1920 if (lang->name_of_this () == NULL || block == NULL)
1921 return {};
1922
1923 if (symbol_lookup_debug > 1)
1924 {
1925 struct objfile *objfile = block_objfile (block);
1926
1927 fprintf_unfiltered (gdb_stdlog,
1928 "lookup_language_this (%s, %s (objfile %s))",
1929 lang->name (), host_address_to_string (block),
1930 objfile_debug_name (objfile));
1931 }
1932
1933 while (block)
1934 {
1935 struct symbol *sym;
1936
1937 sym = block_lookup_symbol (block, lang->name_of_this (),
1938 symbol_name_match_type::SEARCH_NAME,
1939 VAR_DOMAIN);
1940 if (sym != NULL)
1941 {
1942 if (symbol_lookup_debug > 1)
1943 {
1944 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1945 sym->print_name (),
1946 host_address_to_string (sym),
1947 host_address_to_string (block));
1948 }
1949 return (struct block_symbol) {sym, block};
1950 }
1951 if (BLOCK_FUNCTION (block))
1952 break;
1953 block = BLOCK_SUPERBLOCK (block);
1954 }
1955
1956 if (symbol_lookup_debug > 1)
1957 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1958 return {};
1959 }
1960
1961 /* Given TYPE, a structure/union,
1962 return 1 if the component named NAME from the ultimate target
1963 structure/union is defined, otherwise, return 0. */
1964
1965 static int
1966 check_field (struct type *type, const char *name,
1967 struct field_of_this_result *is_a_field_of_this)
1968 {
1969 int i;
1970
1971 /* The type may be a stub. */
1972 type = check_typedef (type);
1973
1974 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1975 {
1976 const char *t_field_name = type->field (i).name ();
1977
1978 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1979 {
1980 is_a_field_of_this->type = type;
1981 is_a_field_of_this->field = &type->field (i);
1982 return 1;
1983 }
1984 }
1985
1986 /* C++: If it was not found as a data field, then try to return it
1987 as a pointer to a method. */
1988
1989 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1990 {
1991 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1992 {
1993 is_a_field_of_this->type = type;
1994 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1995 return 1;
1996 }
1997 }
1998
1999 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2000 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2001 return 1;
2002
2003 return 0;
2004 }
2005
2006 /* Behave like lookup_symbol except that NAME is the natural name
2007 (e.g., demangled name) of the symbol that we're looking for. */
2008
2009 static struct block_symbol
2010 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2011 const struct block *block,
2012 const domain_enum domain, enum language language,
2013 struct field_of_this_result *is_a_field_of_this)
2014 {
2015 struct block_symbol result;
2016 const struct language_defn *langdef;
2017
2018 if (symbol_lookup_debug)
2019 {
2020 struct objfile *objfile = (block == nullptr
2021 ? nullptr : block_objfile (block));
2022
2023 fprintf_unfiltered (gdb_stdlog,
2024 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2025 name, host_address_to_string (block),
2026 objfile != NULL
2027 ? objfile_debug_name (objfile) : "NULL",
2028 domain_name (domain), language_str (language));
2029 }
2030
2031 /* Make sure we do something sensible with is_a_field_of_this, since
2032 the callers that set this parameter to some non-null value will
2033 certainly use it later. If we don't set it, the contents of
2034 is_a_field_of_this are undefined. */
2035 if (is_a_field_of_this != NULL)
2036 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2037
2038 /* Search specified block and its superiors. Don't search
2039 STATIC_BLOCK or GLOBAL_BLOCK. */
2040
2041 result = lookup_local_symbol (name, match_type, block, domain, language);
2042 if (result.symbol != NULL)
2043 {
2044 if (symbol_lookup_debug)
2045 {
2046 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2047 host_address_to_string (result.symbol));
2048 }
2049 return result;
2050 }
2051
2052 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2053 check to see if NAME is a field of `this'. */
2054
2055 langdef = language_def (language);
2056
2057 /* Don't do this check if we are searching for a struct. It will
2058 not be found by check_field, but will be found by other
2059 means. */
2060 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2061 {
2062 result = lookup_language_this (langdef, block);
2063
2064 if (result.symbol)
2065 {
2066 struct type *t = result.symbol->type;
2067
2068 /* I'm not really sure that type of this can ever
2069 be typedefed; just be safe. */
2070 t = check_typedef (t);
2071 if (t->is_pointer_or_reference ())
2072 t = TYPE_TARGET_TYPE (t);
2073
2074 if (t->code () != TYPE_CODE_STRUCT
2075 && t->code () != TYPE_CODE_UNION)
2076 error (_("Internal error: `%s' is not an aggregate"),
2077 langdef->name_of_this ());
2078
2079 if (check_field (t, name, is_a_field_of_this))
2080 {
2081 if (symbol_lookup_debug)
2082 {
2083 fprintf_unfiltered (gdb_stdlog,
2084 "lookup_symbol_aux (...) = NULL\n");
2085 }
2086 return {};
2087 }
2088 }
2089 }
2090
2091 /* Now do whatever is appropriate for LANGUAGE to look
2092 up static and global variables. */
2093
2094 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2095 if (result.symbol != NULL)
2096 {
2097 if (symbol_lookup_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2100 host_address_to_string (result.symbol));
2101 }
2102 return result;
2103 }
2104
2105 /* Now search all static file-level symbols. Not strictly correct,
2106 but more useful than an error. */
2107
2108 result = lookup_static_symbol (name, domain);
2109 if (symbol_lookup_debug)
2110 {
2111 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2112 result.symbol != NULL
2113 ? host_address_to_string (result.symbol)
2114 : "NULL");
2115 }
2116 return result;
2117 }
2118
2119 /* Check to see if the symbol is defined in BLOCK or its superiors.
2120 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2121
2122 static struct block_symbol
2123 lookup_local_symbol (const char *name,
2124 symbol_name_match_type match_type,
2125 const struct block *block,
2126 const domain_enum domain,
2127 enum language language)
2128 {
2129 struct symbol *sym;
2130 const struct block *static_block = block_static_block (block);
2131 const char *scope = block_scope (block);
2132
2133 /* Check if either no block is specified or it's a global block. */
2134
2135 if (static_block == NULL)
2136 return {};
2137
2138 while (block != static_block)
2139 {
2140 sym = lookup_symbol_in_block (name, match_type, block, domain);
2141 if (sym != NULL)
2142 return (struct block_symbol) {sym, block};
2143
2144 if (language == language_cplus || language == language_fortran)
2145 {
2146 struct block_symbol blocksym
2147 = cp_lookup_symbol_imports_or_template (scope, name, block,
2148 domain);
2149
2150 if (blocksym.symbol != NULL)
2151 return blocksym;
2152 }
2153
2154 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2155 break;
2156 block = BLOCK_SUPERBLOCK (block);
2157 }
2158
2159 /* We've reached the end of the function without finding a result. */
2160
2161 return {};
2162 }
2163
2164 /* See symtab.h. */
2165
2166 struct symbol *
2167 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2168 const struct block *block,
2169 const domain_enum domain)
2170 {
2171 struct symbol *sym;
2172
2173 if (symbol_lookup_debug > 1)
2174 {
2175 struct objfile *objfile = (block == nullptr
2176 ? nullptr : block_objfile (block));
2177
2178 fprintf_unfiltered (gdb_stdlog,
2179 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2180 name, host_address_to_string (block),
2181 objfile_debug_name (objfile),
2182 domain_name (domain));
2183 }
2184
2185 sym = block_lookup_symbol (block, name, match_type, domain);
2186 if (sym)
2187 {
2188 if (symbol_lookup_debug > 1)
2189 {
2190 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2191 host_address_to_string (sym));
2192 }
2193 return fixup_symbol_section (sym, NULL);
2194 }
2195
2196 if (symbol_lookup_debug > 1)
2197 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2198 return NULL;
2199 }
2200
2201 /* See symtab.h. */
2202
2203 struct block_symbol
2204 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2205 enum block_enum block_index,
2206 const char *name,
2207 const domain_enum domain)
2208 {
2209 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2210
2211 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2212 {
2213 struct block_symbol result
2214 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2215
2216 if (result.symbol != nullptr)
2217 return result;
2218 }
2219
2220 return {};
2221 }
2222
2223 /* Check to see if the symbol is defined in one of the OBJFILE's
2224 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2225 depending on whether or not we want to search global symbols or
2226 static symbols. */
2227
2228 static struct block_symbol
2229 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2230 enum block_enum block_index, const char *name,
2231 const domain_enum domain)
2232 {
2233 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2234
2235 if (symbol_lookup_debug > 1)
2236 {
2237 fprintf_unfiltered (gdb_stdlog,
2238 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2239 objfile_debug_name (objfile),
2240 block_index == GLOBAL_BLOCK
2241 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2242 name, domain_name (domain));
2243 }
2244
2245 struct block_symbol other;
2246 other.symbol = NULL;
2247 for (compunit_symtab *cust : objfile->compunits ())
2248 {
2249 const struct blockvector *bv;
2250 const struct block *block;
2251 struct block_symbol result;
2252
2253 bv = COMPUNIT_BLOCKVECTOR (cust);
2254 block = BLOCKVECTOR_BLOCK (bv, block_index);
2255 result.symbol = block_lookup_symbol_primary (block, name, domain);
2256 result.block = block;
2257 if (result.symbol == NULL)
2258 continue;
2259 if (best_symbol (result.symbol, domain))
2260 {
2261 other = result;
2262 break;
2263 }
2264 if (symbol_matches_domain (result.symbol->language (),
2265 SYMBOL_DOMAIN (result.symbol), domain))
2266 {
2267 struct symbol *better
2268 = better_symbol (other.symbol, result.symbol, domain);
2269 if (better != other.symbol)
2270 {
2271 other.symbol = better;
2272 other.block = block;
2273 }
2274 }
2275 }
2276
2277 if (other.symbol != NULL)
2278 {
2279 if (symbol_lookup_debug > 1)
2280 {
2281 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2282 host_address_to_string (other.symbol),
2283 host_address_to_string (other.block));
2284 }
2285 other.symbol = fixup_symbol_section (other.symbol, objfile);
2286 return other;
2287 }
2288
2289 if (symbol_lookup_debug > 1)
2290 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2291 return {};
2292 }
2293
2294 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2295 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2296 and all associated separate debug objfiles.
2297
2298 Normally we only look in OBJFILE, and not any separate debug objfiles
2299 because the outer loop will cause them to be searched too. This case is
2300 different. Here we're called from search_symbols where it will only
2301 call us for the objfile that contains a matching minsym. */
2302
2303 static struct block_symbol
2304 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2305 const char *linkage_name,
2306 domain_enum domain)
2307 {
2308 enum language lang = current_language->la_language;
2309 struct objfile *main_objfile;
2310
2311 demangle_result_storage storage;
2312 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2313
2314 if (objfile->separate_debug_objfile_backlink)
2315 main_objfile = objfile->separate_debug_objfile_backlink;
2316 else
2317 main_objfile = objfile;
2318
2319 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2320 {
2321 struct block_symbol result;
2322
2323 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2324 modified_name, domain);
2325 if (result.symbol == NULL)
2326 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2327 modified_name, domain);
2328 if (result.symbol != NULL)
2329 return result;
2330 }
2331
2332 return {};
2333 }
2334
2335 /* A helper function that throws an exception when a symbol was found
2336 in a psymtab but not in a symtab. */
2337
2338 static void ATTRIBUTE_NORETURN
2339 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2340 struct compunit_symtab *cust)
2341 {
2342 error (_("\
2343 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2344 %s may be an inlined function, or may be a template function\n \
2345 (if a template, try specifying an instantiation: %s<type>)."),
2346 block_index == GLOBAL_BLOCK ? "global" : "static",
2347 name,
2348 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2349 name, name);
2350 }
2351
2352 /* A helper function for various lookup routines that interfaces with
2353 the "quick" symbol table functions. */
2354
2355 static struct block_symbol
2356 lookup_symbol_via_quick_fns (struct objfile *objfile,
2357 enum block_enum block_index, const char *name,
2358 const domain_enum domain)
2359 {
2360 struct compunit_symtab *cust;
2361 const struct blockvector *bv;
2362 const struct block *block;
2363 struct block_symbol result;
2364
2365 if (symbol_lookup_debug > 1)
2366 {
2367 fprintf_unfiltered (gdb_stdlog,
2368 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2369 objfile_debug_name (objfile),
2370 block_index == GLOBAL_BLOCK
2371 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2372 name, domain_name (domain));
2373 }
2374
2375 cust = objfile->lookup_symbol (block_index, name, domain);
2376 if (cust == NULL)
2377 {
2378 if (symbol_lookup_debug > 1)
2379 {
2380 fprintf_unfiltered (gdb_stdlog,
2381 "lookup_symbol_via_quick_fns (...) = NULL\n");
2382 }
2383 return {};
2384 }
2385
2386 bv = COMPUNIT_BLOCKVECTOR (cust);
2387 block = BLOCKVECTOR_BLOCK (bv, block_index);
2388 result.symbol = block_lookup_symbol (block, name,
2389 symbol_name_match_type::FULL, domain);
2390 if (result.symbol == NULL)
2391 error_in_psymtab_expansion (block_index, name, cust);
2392
2393 if (symbol_lookup_debug > 1)
2394 {
2395 fprintf_unfiltered (gdb_stdlog,
2396 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2397 host_address_to_string (result.symbol),
2398 host_address_to_string (block));
2399 }
2400
2401 result.symbol = fixup_symbol_section (result.symbol, objfile);
2402 result.block = block;
2403 return result;
2404 }
2405
2406 /* See language.h. */
2407
2408 struct block_symbol
2409 language_defn::lookup_symbol_nonlocal (const char *name,
2410 const struct block *block,
2411 const domain_enum domain) const
2412 {
2413 struct block_symbol result;
2414
2415 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2416 the current objfile. Searching the current objfile first is useful
2417 for both matching user expectations as well as performance. */
2418
2419 result = lookup_symbol_in_static_block (name, block, domain);
2420 if (result.symbol != NULL)
2421 return result;
2422
2423 /* If we didn't find a definition for a builtin type in the static block,
2424 search for it now. This is actually the right thing to do and can be
2425 a massive performance win. E.g., when debugging a program with lots of
2426 shared libraries we could search all of them only to find out the
2427 builtin type isn't defined in any of them. This is common for types
2428 like "void". */
2429 if (domain == VAR_DOMAIN)
2430 {
2431 struct gdbarch *gdbarch;
2432
2433 if (block == NULL)
2434 gdbarch = target_gdbarch ();
2435 else
2436 gdbarch = block_gdbarch (block);
2437 result.symbol = language_lookup_primitive_type_as_symbol (this,
2438 gdbarch, name);
2439 result.block = NULL;
2440 if (result.symbol != NULL)
2441 return result;
2442 }
2443
2444 return lookup_global_symbol (name, block, domain);
2445 }
2446
2447 /* See symtab.h. */
2448
2449 struct block_symbol
2450 lookup_symbol_in_static_block (const char *name,
2451 const struct block *block,
2452 const domain_enum domain)
2453 {
2454 const struct block *static_block = block_static_block (block);
2455 struct symbol *sym;
2456
2457 if (static_block == NULL)
2458 return {};
2459
2460 if (symbol_lookup_debug)
2461 {
2462 struct objfile *objfile = (block == nullptr
2463 ? nullptr : block_objfile (block));
2464
2465 fprintf_unfiltered (gdb_stdlog,
2466 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2467 " %s)\n",
2468 name,
2469 host_address_to_string (block),
2470 objfile_debug_name (objfile),
2471 domain_name (domain));
2472 }
2473
2474 sym = lookup_symbol_in_block (name,
2475 symbol_name_match_type::FULL,
2476 static_block, domain);
2477 if (symbol_lookup_debug)
2478 {
2479 fprintf_unfiltered (gdb_stdlog,
2480 "lookup_symbol_in_static_block (...) = %s\n",
2481 sym != NULL ? host_address_to_string (sym) : "NULL");
2482 }
2483 return (struct block_symbol) {sym, static_block};
2484 }
2485
2486 /* Perform the standard symbol lookup of NAME in OBJFILE:
2487 1) First search expanded symtabs, and if not found
2488 2) Search the "quick" symtabs (partial or .gdb_index).
2489 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2490
2491 static struct block_symbol
2492 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2493 const char *name, const domain_enum domain)
2494 {
2495 struct block_symbol result;
2496
2497 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2498
2499 if (symbol_lookup_debug)
2500 {
2501 fprintf_unfiltered (gdb_stdlog,
2502 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2503 objfile_debug_name (objfile),
2504 block_index == GLOBAL_BLOCK
2505 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2506 name, domain_name (domain));
2507 }
2508
2509 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2510 name, domain);
2511 if (result.symbol != NULL)
2512 {
2513 if (symbol_lookup_debug)
2514 {
2515 fprintf_unfiltered (gdb_stdlog,
2516 "lookup_symbol_in_objfile (...) = %s"
2517 " (in symtabs)\n",
2518 host_address_to_string (result.symbol));
2519 }
2520 return result;
2521 }
2522
2523 result = lookup_symbol_via_quick_fns (objfile, block_index,
2524 name, domain);
2525 if (symbol_lookup_debug)
2526 {
2527 fprintf_unfiltered (gdb_stdlog,
2528 "lookup_symbol_in_objfile (...) = %s%s\n",
2529 result.symbol != NULL
2530 ? host_address_to_string (result.symbol)
2531 : "NULL",
2532 result.symbol != NULL ? " (via quick fns)" : "");
2533 }
2534 return result;
2535 }
2536
2537 /* Find the language for partial symbol with NAME. */
2538
2539 static enum language
2540 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2541 {
2542 for (objfile *objfile : current_program_space->objfiles ())
2543 {
2544 bool symbol_found_p;
2545 enum language lang
2546 = objfile->lookup_global_symbol_language (name, domain, &symbol_found_p);
2547 if (symbol_found_p)
2548 return lang;
2549 }
2550
2551 return language_unknown;
2552 }
2553
2554 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2555
2556 struct global_or_static_sym_lookup_data
2557 {
2558 /* The name of the symbol we are searching for. */
2559 const char *name;
2560
2561 /* The domain to use for our search. */
2562 domain_enum domain;
2563
2564 /* The block index in which to search. */
2565 enum block_enum block_index;
2566
2567 /* The field where the callback should store the symbol if found.
2568 It should be initialized to {NULL, NULL} before the search is started. */
2569 struct block_symbol result;
2570 };
2571
2572 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2573 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2574 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2575 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2576
2577 static int
2578 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2579 void *cb_data)
2580 {
2581 struct global_or_static_sym_lookup_data *data =
2582 (struct global_or_static_sym_lookup_data *) cb_data;
2583
2584 gdb_assert (data->result.symbol == NULL
2585 && data->result.block == NULL);
2586
2587 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2588 data->name, data->domain);
2589
2590 /* If we found a match, tell the iterator to stop. Otherwise,
2591 keep going. */
2592 return (data->result.symbol != NULL);
2593 }
2594
2595 /* This function contains the common code of lookup_{global,static}_symbol.
2596 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2597 the objfile to start the lookup in. */
2598
2599 static struct block_symbol
2600 lookup_global_or_static_symbol (const char *name,
2601 enum block_enum block_index,
2602 struct objfile *objfile,
2603 const domain_enum domain)
2604 {
2605 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2606 struct block_symbol result;
2607 struct global_or_static_sym_lookup_data lookup_data;
2608 struct block_symbol_cache *bsc;
2609 struct symbol_cache_slot *slot;
2610
2611 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2612 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2613
2614 /* First see if we can find the symbol in the cache.
2615 This works because we use the current objfile to qualify the lookup. */
2616 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2617 &bsc, &slot);
2618 if (result.symbol != NULL)
2619 {
2620 if (SYMBOL_LOOKUP_FAILED_P (result))
2621 return {};
2622 return result;
2623 }
2624
2625 /* Do a global search (of global blocks, heh). */
2626 if (result.symbol == NULL)
2627 {
2628 memset (&lookup_data, 0, sizeof (lookup_data));
2629 lookup_data.name = name;
2630 lookup_data.block_index = block_index;
2631 lookup_data.domain = domain;
2632 gdbarch_iterate_over_objfiles_in_search_order
2633 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2634 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2635 result = lookup_data.result;
2636 }
2637
2638 if (result.symbol != NULL)
2639 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2640 else
2641 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2642
2643 return result;
2644 }
2645
2646 /* See symtab.h. */
2647
2648 struct block_symbol
2649 lookup_static_symbol (const char *name, const domain_enum domain)
2650 {
2651 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2652 }
2653
2654 /* See symtab.h. */
2655
2656 struct block_symbol
2657 lookup_global_symbol (const char *name,
2658 const struct block *block,
2659 const domain_enum domain)
2660 {
2661 /* If a block was passed in, we want to search the corresponding
2662 global block first. This yields "more expected" behavior, and is
2663 needed to support 'FILENAME'::VARIABLE lookups. */
2664 const struct block *global_block = block_global_block (block);
2665 symbol *sym = NULL;
2666 if (global_block != nullptr)
2667 {
2668 sym = lookup_symbol_in_block (name,
2669 symbol_name_match_type::FULL,
2670 global_block, domain);
2671 if (sym != NULL && best_symbol (sym, domain))
2672 return { sym, global_block };
2673 }
2674
2675 struct objfile *objfile = nullptr;
2676 if (block != nullptr)
2677 {
2678 objfile = block_objfile (block);
2679 if (objfile->separate_debug_objfile_backlink != nullptr)
2680 objfile = objfile->separate_debug_objfile_backlink;
2681 }
2682
2683 block_symbol bs
2684 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2685 if (better_symbol (sym, bs.symbol, domain) == sym)
2686 return { sym, global_block };
2687 else
2688 return bs;
2689 }
2690
2691 bool
2692 symbol_matches_domain (enum language symbol_language,
2693 domain_enum symbol_domain,
2694 domain_enum domain)
2695 {
2696 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2697 Similarly, any Ada type declaration implicitly defines a typedef. */
2698 if (symbol_language == language_cplus
2699 || symbol_language == language_d
2700 || symbol_language == language_ada
2701 || symbol_language == language_rust)
2702 {
2703 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2704 && symbol_domain == STRUCT_DOMAIN)
2705 return true;
2706 }
2707 /* For all other languages, strict match is required. */
2708 return (symbol_domain == domain);
2709 }
2710
2711 /* See symtab.h. */
2712
2713 struct type *
2714 lookup_transparent_type (const char *name)
2715 {
2716 return current_language->lookup_transparent_type (name);
2717 }
2718
2719 /* A helper for basic_lookup_transparent_type that interfaces with the
2720 "quick" symbol table functions. */
2721
2722 static struct type *
2723 basic_lookup_transparent_type_quick (struct objfile *objfile,
2724 enum block_enum block_index,
2725 const char *name)
2726 {
2727 struct compunit_symtab *cust;
2728 const struct blockvector *bv;
2729 const struct block *block;
2730 struct symbol *sym;
2731
2732 cust = objfile->lookup_symbol (block_index, name, STRUCT_DOMAIN);
2733 if (cust == NULL)
2734 return NULL;
2735
2736 bv = COMPUNIT_BLOCKVECTOR (cust);
2737 block = BLOCKVECTOR_BLOCK (bv, block_index);
2738 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2739 block_find_non_opaque_type, NULL);
2740 if (sym == NULL)
2741 error_in_psymtab_expansion (block_index, name, cust);
2742 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2743 return SYMBOL_TYPE (sym);
2744 }
2745
2746 /* Subroutine of basic_lookup_transparent_type to simplify it.
2747 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2748 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2749
2750 static struct type *
2751 basic_lookup_transparent_type_1 (struct objfile *objfile,
2752 enum block_enum block_index,
2753 const char *name)
2754 {
2755 const struct blockvector *bv;
2756 const struct block *block;
2757 const struct symbol *sym;
2758
2759 for (compunit_symtab *cust : objfile->compunits ())
2760 {
2761 bv = COMPUNIT_BLOCKVECTOR (cust);
2762 block = BLOCKVECTOR_BLOCK (bv, block_index);
2763 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2764 block_find_non_opaque_type, NULL);
2765 if (sym != NULL)
2766 {
2767 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2768 return SYMBOL_TYPE (sym);
2769 }
2770 }
2771
2772 return NULL;
2773 }
2774
2775 /* The standard implementation of lookup_transparent_type. This code
2776 was modeled on lookup_symbol -- the parts not relevant to looking
2777 up types were just left out. In particular it's assumed here that
2778 types are available in STRUCT_DOMAIN and only in file-static or
2779 global blocks. */
2780
2781 struct type *
2782 basic_lookup_transparent_type (const char *name)
2783 {
2784 struct type *t;
2785
2786 /* Now search all the global symbols. Do the symtab's first, then
2787 check the psymtab's. If a psymtab indicates the existence
2788 of the desired name as a global, then do psymtab-to-symtab
2789 conversion on the fly and return the found symbol. */
2790
2791 for (objfile *objfile : current_program_space->objfiles ())
2792 {
2793 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2794 if (t)
2795 return t;
2796 }
2797
2798 for (objfile *objfile : current_program_space->objfiles ())
2799 {
2800 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2801 if (t)
2802 return t;
2803 }
2804
2805 /* Now search the static file-level symbols.
2806 Not strictly correct, but more useful than an error.
2807 Do the symtab's first, then
2808 check the psymtab's. If a psymtab indicates the existence
2809 of the desired name as a file-level static, then do psymtab-to-symtab
2810 conversion on the fly and return the found symbol. */
2811
2812 for (objfile *objfile : current_program_space->objfiles ())
2813 {
2814 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2815 if (t)
2816 return t;
2817 }
2818
2819 for (objfile *objfile : current_program_space->objfiles ())
2820 {
2821 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2822 if (t)
2823 return t;
2824 }
2825
2826 return (struct type *) 0;
2827 }
2828
2829 /* See symtab.h. */
2830
2831 bool
2832 iterate_over_symbols (const struct block *block,
2833 const lookup_name_info &name,
2834 const domain_enum domain,
2835 gdb::function_view<symbol_found_callback_ftype> callback)
2836 {
2837 struct block_iterator iter;
2838 struct symbol *sym;
2839
2840 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2841 {
2842 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2843 {
2844 struct block_symbol block_sym = {sym, block};
2845
2846 if (!callback (&block_sym))
2847 return false;
2848 }
2849 }
2850 return true;
2851 }
2852
2853 /* See symtab.h. */
2854
2855 bool
2856 iterate_over_symbols_terminated
2857 (const struct block *block,
2858 const lookup_name_info &name,
2859 const domain_enum domain,
2860 gdb::function_view<symbol_found_callback_ftype> callback)
2861 {
2862 if (!iterate_over_symbols (block, name, domain, callback))
2863 return false;
2864 struct block_symbol block_sym = {nullptr, block};
2865 return callback (&block_sym);
2866 }
2867
2868 /* Find the compunit symtab associated with PC and SECTION.
2869 This will read in debug info as necessary. */
2870
2871 struct compunit_symtab *
2872 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2873 {
2874 struct compunit_symtab *best_cust = NULL;
2875 CORE_ADDR best_cust_range = 0;
2876 struct bound_minimal_symbol msymbol;
2877
2878 /* If we know that this is not a text address, return failure. This is
2879 necessary because we loop based on the block's high and low code
2880 addresses, which do not include the data ranges, and because
2881 we call find_pc_sect_psymtab which has a similar restriction based
2882 on the partial_symtab's texthigh and textlow. */
2883 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2884 if (msymbol.minsym && msymbol.minsym->data_p ())
2885 return NULL;
2886
2887 /* Search all symtabs for the one whose file contains our address, and which
2888 is the smallest of all the ones containing the address. This is designed
2889 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2890 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2891 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2892
2893 This happens for native ecoff format, where code from included files
2894 gets its own symtab. The symtab for the included file should have
2895 been read in already via the dependency mechanism.
2896 It might be swifter to create several symtabs with the same name
2897 like xcoff does (I'm not sure).
2898
2899 It also happens for objfiles that have their functions reordered.
2900 For these, the symtab we are looking for is not necessarily read in. */
2901
2902 for (objfile *obj_file : current_program_space->objfiles ())
2903 {
2904 for (compunit_symtab *cust : obj_file->compunits ())
2905 {
2906 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
2907 const struct block *global_block
2908 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2909 CORE_ADDR start = BLOCK_START (global_block);
2910 CORE_ADDR end = BLOCK_END (global_block);
2911 bool in_range_p = start <= pc && pc < end;
2912 if (!in_range_p)
2913 continue;
2914
2915 if (BLOCKVECTOR_MAP (bv))
2916 {
2917 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2918 continue;
2919
2920 return cust;
2921 }
2922
2923 CORE_ADDR range = end - start;
2924 if (best_cust != nullptr
2925 && range >= best_cust_range)
2926 /* Cust doesn't have a smaller range than best_cust, skip it. */
2927 continue;
2928
2929 /* For an objfile that has its functions reordered,
2930 find_pc_psymtab will find the proper partial symbol table
2931 and we simply return its corresponding symtab. */
2932 /* In order to better support objfiles that contain both
2933 stabs and coff debugging info, we continue on if a psymtab
2934 can't be found. */
2935 if ((obj_file->flags & OBJF_REORDERED) != 0)
2936 {
2937 struct compunit_symtab *result;
2938
2939 result
2940 = obj_file->find_pc_sect_compunit_symtab (msymbol,
2941 pc,
2942 section,
2943 0);
2944 if (result != NULL)
2945 return result;
2946 }
2947
2948 if (section != 0)
2949 {
2950 struct symbol *sym = NULL;
2951 struct block_iterator iter;
2952
2953 for (int b_index = GLOBAL_BLOCK;
2954 b_index <= STATIC_BLOCK && sym == NULL;
2955 ++b_index)
2956 {
2957 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
2958 ALL_BLOCK_SYMBOLS (b, iter, sym)
2959 {
2960 fixup_symbol_section (sym, obj_file);
2961 if (matching_obj_sections (sym->obj_section (obj_file),
2962 section))
2963 break;
2964 }
2965 }
2966 if (sym == NULL)
2967 continue; /* No symbol in this symtab matches
2968 section. */
2969 }
2970
2971 /* Cust is best found sofar, save it. */
2972 best_cust = cust;
2973 best_cust_range = range;
2974 }
2975 }
2976
2977 if (best_cust != NULL)
2978 return best_cust;
2979
2980 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2981
2982 for (objfile *objf : current_program_space->objfiles ())
2983 {
2984 struct compunit_symtab *result
2985 = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1);
2986 if (result != NULL)
2987 return result;
2988 }
2989
2990 return NULL;
2991 }
2992
2993 /* Find the compunit symtab associated with PC.
2994 This will read in debug info as necessary.
2995 Backward compatibility, no section. */
2996
2997 struct compunit_symtab *
2998 find_pc_compunit_symtab (CORE_ADDR pc)
2999 {
3000 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3001 }
3002
3003 /* See symtab.h. */
3004
3005 struct symbol *
3006 find_symbol_at_address (CORE_ADDR address)
3007 {
3008 /* A helper function to search a given symtab for a symbol matching
3009 ADDR. */
3010 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3011 {
3012 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3013
3014 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3015 {
3016 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3017 struct block_iterator iter;
3018 struct symbol *sym;
3019
3020 ALL_BLOCK_SYMBOLS (b, iter, sym)
3021 {
3022 if (SYMBOL_CLASS (sym) == LOC_STATIC
3023 && SYMBOL_VALUE_ADDRESS (sym) == addr)
3024 return sym;
3025 }
3026 }
3027 return nullptr;
3028 };
3029
3030 for (objfile *objfile : current_program_space->objfiles ())
3031 {
3032 /* If this objfile was read with -readnow, then we need to
3033 search the symtabs directly. */
3034 if ((objfile->flags & OBJF_READNOW) != 0)
3035 {
3036 for (compunit_symtab *symtab : objfile->compunits ())
3037 {
3038 struct symbol *sym = search_symtab (symtab, address);
3039 if (sym != nullptr)
3040 return sym;
3041 }
3042 }
3043 else
3044 {
3045 struct compunit_symtab *symtab
3046 = objfile->find_compunit_symtab_by_address (address);
3047 if (symtab != NULL)
3048 {
3049 struct symbol *sym = search_symtab (symtab, address);
3050 if (sym != nullptr)
3051 return sym;
3052 }
3053 }
3054 }
3055
3056 return NULL;
3057 }
3058
3059 \f
3060
3061 /* Find the source file and line number for a given PC value and SECTION.
3062 Return a structure containing a symtab pointer, a line number,
3063 and a pc range for the entire source line.
3064 The value's .pc field is NOT the specified pc.
3065 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3066 use the line that ends there. Otherwise, in that case, the line
3067 that begins there is used. */
3068
3069 /* The big complication here is that a line may start in one file, and end just
3070 before the start of another file. This usually occurs when you #include
3071 code in the middle of a subroutine. To properly find the end of a line's PC
3072 range, we must search all symtabs associated with this compilation unit, and
3073 find the one whose first PC is closer than that of the next line in this
3074 symtab. */
3075
3076 struct symtab_and_line
3077 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3078 {
3079 struct compunit_symtab *cust;
3080 struct linetable *l;
3081 int len;
3082 struct linetable_entry *item;
3083 const struct blockvector *bv;
3084 struct bound_minimal_symbol msymbol;
3085
3086 /* Info on best line seen so far, and where it starts, and its file. */
3087
3088 struct linetable_entry *best = NULL;
3089 CORE_ADDR best_end = 0;
3090 struct symtab *best_symtab = 0;
3091
3092 /* Store here the first line number
3093 of a file which contains the line at the smallest pc after PC.
3094 If we don't find a line whose range contains PC,
3095 we will use a line one less than this,
3096 with a range from the start of that file to the first line's pc. */
3097 struct linetable_entry *alt = NULL;
3098
3099 /* Info on best line seen in this file. */
3100
3101 struct linetable_entry *prev;
3102
3103 /* If this pc is not from the current frame,
3104 it is the address of the end of a call instruction.
3105 Quite likely that is the start of the following statement.
3106 But what we want is the statement containing the instruction.
3107 Fudge the pc to make sure we get that. */
3108
3109 /* It's tempting to assume that, if we can't find debugging info for
3110 any function enclosing PC, that we shouldn't search for line
3111 number info, either. However, GAS can emit line number info for
3112 assembly files --- very helpful when debugging hand-written
3113 assembly code. In such a case, we'd have no debug info for the
3114 function, but we would have line info. */
3115
3116 if (notcurrent)
3117 pc -= 1;
3118
3119 /* elz: added this because this function returned the wrong
3120 information if the pc belongs to a stub (import/export)
3121 to call a shlib function. This stub would be anywhere between
3122 two functions in the target, and the line info was erroneously
3123 taken to be the one of the line before the pc. */
3124
3125 /* RT: Further explanation:
3126
3127 * We have stubs (trampolines) inserted between procedures.
3128 *
3129 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3130 * exists in the main image.
3131 *
3132 * In the minimal symbol table, we have a bunch of symbols
3133 * sorted by start address. The stubs are marked as "trampoline",
3134 * the others appear as text. E.g.:
3135 *
3136 * Minimal symbol table for main image
3137 * main: code for main (text symbol)
3138 * shr1: stub (trampoline symbol)
3139 * foo: code for foo (text symbol)
3140 * ...
3141 * Minimal symbol table for "shr1" image:
3142 * ...
3143 * shr1: code for shr1 (text symbol)
3144 * ...
3145 *
3146 * So the code below is trying to detect if we are in the stub
3147 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3148 * and if found, do the symbolization from the real-code address
3149 * rather than the stub address.
3150 *
3151 * Assumptions being made about the minimal symbol table:
3152 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3153 * if we're really in the trampoline.s If we're beyond it (say
3154 * we're in "foo" in the above example), it'll have a closer
3155 * symbol (the "foo" text symbol for example) and will not
3156 * return the trampoline.
3157 * 2. lookup_minimal_symbol_text() will find a real text symbol
3158 * corresponding to the trampoline, and whose address will
3159 * be different than the trampoline address. I put in a sanity
3160 * check for the address being the same, to avoid an
3161 * infinite recursion.
3162 */
3163 msymbol = lookup_minimal_symbol_by_pc (pc);
3164 if (msymbol.minsym != NULL)
3165 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3166 {
3167 struct bound_minimal_symbol mfunsym
3168 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3169 NULL);
3170
3171 if (mfunsym.minsym == NULL)
3172 /* I eliminated this warning since it is coming out
3173 * in the following situation:
3174 * gdb shmain // test program with shared libraries
3175 * (gdb) break shr1 // function in shared lib
3176 * Warning: In stub for ...
3177 * In the above situation, the shared lib is not loaded yet,
3178 * so of course we can't find the real func/line info,
3179 * but the "break" still works, and the warning is annoying.
3180 * So I commented out the warning. RT */
3181 /* warning ("In stub for %s; unable to find real function/line info",
3182 msymbol->linkage_name ()); */
3183 ;
3184 /* fall through */
3185 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3186 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3187 /* Avoid infinite recursion */
3188 /* See above comment about why warning is commented out. */
3189 /* warning ("In stub for %s; unable to find real function/line info",
3190 msymbol->linkage_name ()); */
3191 ;
3192 /* fall through */
3193 else
3194 {
3195 /* Detect an obvious case of infinite recursion. If this
3196 should occur, we'd like to know about it, so error out,
3197 fatally. */
3198 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3199 internal_error (__FILE__, __LINE__,
3200 _("Infinite recursion detected in find_pc_sect_line;"
3201 "please file a bug report"));
3202
3203 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3204 }
3205 }
3206
3207 symtab_and_line val;
3208 val.pspace = current_program_space;
3209
3210 cust = find_pc_sect_compunit_symtab (pc, section);
3211 if (cust == NULL)
3212 {
3213 /* If no symbol information, return previous pc. */
3214 if (notcurrent)
3215 pc++;
3216 val.pc = pc;
3217 return val;
3218 }
3219
3220 bv = COMPUNIT_BLOCKVECTOR (cust);
3221
3222 /* Look at all the symtabs that share this blockvector.
3223 They all have the same apriori range, that we found was right;
3224 but they have different line tables. */
3225
3226 for (symtab *iter_s : compunit_filetabs (cust))
3227 {
3228 /* Find the best line in this symtab. */
3229 l = SYMTAB_LINETABLE (iter_s);
3230 if (!l)
3231 continue;
3232 len = l->nitems;
3233 if (len <= 0)
3234 {
3235 /* I think len can be zero if the symtab lacks line numbers
3236 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3237 I'm not sure which, and maybe it depends on the symbol
3238 reader). */
3239 continue;
3240 }
3241
3242 prev = NULL;
3243 item = l->item; /* Get first line info. */
3244
3245 /* Is this file's first line closer than the first lines of other files?
3246 If so, record this file, and its first line, as best alternate. */
3247 if (item->pc > pc && (!alt || item->pc < alt->pc))
3248 alt = item;
3249
3250 auto pc_compare = [](const CORE_ADDR & comp_pc,
3251 const struct linetable_entry & lhs)->bool
3252 {
3253 return comp_pc < lhs.pc;
3254 };
3255
3256 struct linetable_entry *first = item;
3257 struct linetable_entry *last = item + len;
3258 item = std::upper_bound (first, last, pc, pc_compare);
3259 if (item != first)
3260 prev = item - 1; /* Found a matching item. */
3261
3262 /* At this point, prev points at the line whose start addr is <= pc, and
3263 item points at the next line. If we ran off the end of the linetable
3264 (pc >= start of the last line), then prev == item. If pc < start of
3265 the first line, prev will not be set. */
3266
3267 /* Is this file's best line closer than the best in the other files?
3268 If so, record this file, and its best line, as best so far. Don't
3269 save prev if it represents the end of a function (i.e. line number
3270 0) instead of a real line. */
3271
3272 if (prev && prev->line && (!best || prev->pc > best->pc))
3273 {
3274 best = prev;
3275 best_symtab = iter_s;
3276
3277 /* If during the binary search we land on a non-statement entry,
3278 scan backward through entries at the same address to see if
3279 there is an entry marked as is-statement. In theory this
3280 duplication should have been removed from the line table
3281 during construction, this is just a double check. If the line
3282 table has had the duplication removed then this should be
3283 pretty cheap. */
3284 if (!best->is_stmt)
3285 {
3286 struct linetable_entry *tmp = best;
3287 while (tmp > first && (tmp - 1)->pc == tmp->pc
3288 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3289 --tmp;
3290 if (tmp->is_stmt)
3291 best = tmp;
3292 }
3293
3294 /* Discard BEST_END if it's before the PC of the current BEST. */
3295 if (best_end <= best->pc)
3296 best_end = 0;
3297 }
3298
3299 /* If another line (denoted by ITEM) is in the linetable and its
3300 PC is after BEST's PC, but before the current BEST_END, then
3301 use ITEM's PC as the new best_end. */
3302 if (best && item < last && item->pc > best->pc
3303 && (best_end == 0 || best_end > item->pc))
3304 best_end = item->pc;
3305 }
3306
3307 if (!best_symtab)
3308 {
3309 /* If we didn't find any line number info, just return zeros.
3310 We used to return alt->line - 1 here, but that could be
3311 anywhere; if we don't have line number info for this PC,
3312 don't make some up. */
3313 val.pc = pc;
3314 }
3315 else if (best->line == 0)
3316 {
3317 /* If our best fit is in a range of PC's for which no line
3318 number info is available (line number is zero) then we didn't
3319 find any valid line information. */
3320 val.pc = pc;
3321 }
3322 else
3323 {
3324 val.is_stmt = best->is_stmt;
3325 val.symtab = best_symtab;
3326 val.line = best->line;
3327 val.pc = best->pc;
3328 if (best_end && (!alt || best_end < alt->pc))
3329 val.end = best_end;
3330 else if (alt)
3331 val.end = alt->pc;
3332 else
3333 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3334 }
3335 val.section = section;
3336 return val;
3337 }
3338
3339 /* Backward compatibility (no section). */
3340
3341 struct symtab_and_line
3342 find_pc_line (CORE_ADDR pc, int notcurrent)
3343 {
3344 struct obj_section *section;
3345
3346 section = find_pc_overlay (pc);
3347 if (!pc_in_unmapped_range (pc, section))
3348 return find_pc_sect_line (pc, section, notcurrent);
3349
3350 /* If the original PC was an unmapped address then we translate this to a
3351 mapped address in order to lookup the sal. However, as the user
3352 passed us an unmapped address it makes more sense to return a result
3353 that has the pc and end fields translated to unmapped addresses. */
3354 pc = overlay_mapped_address (pc, section);
3355 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3356 sal.pc = overlay_unmapped_address (sal.pc, section);
3357 sal.end = overlay_unmapped_address (sal.end, section);
3358 return sal;
3359 }
3360
3361 /* See symtab.h. */
3362
3363 struct symtab *
3364 find_pc_line_symtab (CORE_ADDR pc)
3365 {
3366 struct symtab_and_line sal;
3367
3368 /* This always passes zero for NOTCURRENT to find_pc_line.
3369 There are currently no callers that ever pass non-zero. */
3370 sal = find_pc_line (pc, 0);
3371 return sal.symtab;
3372 }
3373 \f
3374 /* Find line number LINE in any symtab whose name is the same as
3375 SYMTAB.
3376
3377 If found, return the symtab that contains the linetable in which it was
3378 found, set *INDEX to the index in the linetable of the best entry
3379 found, and set *EXACT_MATCH to true if the value returned is an
3380 exact match.
3381
3382 If not found, return NULL. */
3383
3384 struct symtab *
3385 find_line_symtab (struct symtab *sym_tab, int line,
3386 int *index, bool *exact_match)
3387 {
3388 int exact = 0; /* Initialized here to avoid a compiler warning. */
3389
3390 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3391 so far seen. */
3392
3393 int best_index;
3394 struct linetable *best_linetable;
3395 struct symtab *best_symtab;
3396
3397 /* First try looking it up in the given symtab. */
3398 best_linetable = SYMTAB_LINETABLE (sym_tab);
3399 best_symtab = sym_tab;
3400 best_index = find_line_common (best_linetable, line, &exact, 0);
3401 if (best_index < 0 || !exact)
3402 {
3403 /* Didn't find an exact match. So we better keep looking for
3404 another symtab with the same name. In the case of xcoff,
3405 multiple csects for one source file (produced by IBM's FORTRAN
3406 compiler) produce multiple symtabs (this is unavoidable
3407 assuming csects can be at arbitrary places in memory and that
3408 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3409
3410 /* BEST is the smallest linenumber > LINE so far seen,
3411 or 0 if none has been seen so far.
3412 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3413 int best;
3414
3415 if (best_index >= 0)
3416 best = best_linetable->item[best_index].line;
3417 else
3418 best = 0;
3419
3420 for (objfile *objfile : current_program_space->objfiles ())
3421 objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab));
3422
3423 for (objfile *objfile : current_program_space->objfiles ())
3424 {
3425 for (compunit_symtab *cu : objfile->compunits ())
3426 {
3427 for (symtab *s : compunit_filetabs (cu))
3428 {
3429 struct linetable *l;
3430 int ind;
3431
3432 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3433 continue;
3434 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3435 symtab_to_fullname (s)) != 0)
3436 continue;
3437 l = SYMTAB_LINETABLE (s);
3438 ind = find_line_common (l, line, &exact, 0);
3439 if (ind >= 0)
3440 {
3441 if (exact)
3442 {
3443 best_index = ind;
3444 best_linetable = l;
3445 best_symtab = s;
3446 goto done;
3447 }
3448 if (best == 0 || l->item[ind].line < best)
3449 {
3450 best = l->item[ind].line;
3451 best_index = ind;
3452 best_linetable = l;
3453 best_symtab = s;
3454 }
3455 }
3456 }
3457 }
3458 }
3459 }
3460 done:
3461 if (best_index < 0)
3462 return NULL;
3463
3464 if (index)
3465 *index = best_index;
3466 if (exact_match)
3467 *exact_match = (exact != 0);
3468
3469 return best_symtab;
3470 }
3471
3472 /* Given SYMTAB, returns all the PCs function in the symtab that
3473 exactly match LINE. Returns an empty vector if there are no exact
3474 matches, but updates BEST_ITEM in this case. */
3475
3476 std::vector<CORE_ADDR>
3477 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3478 struct linetable_entry **best_item)
3479 {
3480 int start = 0;
3481 std::vector<CORE_ADDR> result;
3482
3483 /* First, collect all the PCs that are at this line. */
3484 while (1)
3485 {
3486 int was_exact;
3487 int idx;
3488
3489 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3490 start);
3491 if (idx < 0)
3492 break;
3493
3494 if (!was_exact)
3495 {
3496 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3497
3498 if (*best_item == NULL
3499 || (item->line < (*best_item)->line && item->is_stmt))
3500 *best_item = item;
3501
3502 break;
3503 }
3504
3505 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3506 start = idx + 1;
3507 }
3508
3509 return result;
3510 }
3511
3512 \f
3513 /* Set the PC value for a given source file and line number and return true.
3514 Returns false for invalid line number (and sets the PC to 0).
3515 The source file is specified with a struct symtab. */
3516
3517 bool
3518 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3519 {
3520 struct linetable *l;
3521 int ind;
3522
3523 *pc = 0;
3524 if (symtab == 0)
3525 return false;
3526
3527 symtab = find_line_symtab (symtab, line, &ind, NULL);
3528 if (symtab != NULL)
3529 {
3530 l = SYMTAB_LINETABLE (symtab);
3531 *pc = l->item[ind].pc;
3532 return true;
3533 }
3534 else
3535 return false;
3536 }
3537
3538 /* Find the range of pc values in a line.
3539 Store the starting pc of the line into *STARTPTR
3540 and the ending pc (start of next line) into *ENDPTR.
3541 Returns true to indicate success.
3542 Returns false if could not find the specified line. */
3543
3544 bool
3545 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3546 CORE_ADDR *endptr)
3547 {
3548 CORE_ADDR startaddr;
3549 struct symtab_and_line found_sal;
3550
3551 startaddr = sal.pc;
3552 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3553 return false;
3554
3555 /* This whole function is based on address. For example, if line 10 has
3556 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3557 "info line *0x123" should say the line goes from 0x100 to 0x200
3558 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3559 This also insures that we never give a range like "starts at 0x134
3560 and ends at 0x12c". */
3561
3562 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3563 if (found_sal.line != sal.line)
3564 {
3565 /* The specified line (sal) has zero bytes. */
3566 *startptr = found_sal.pc;
3567 *endptr = found_sal.pc;
3568 }
3569 else
3570 {
3571 *startptr = found_sal.pc;
3572 *endptr = found_sal.end;
3573 }
3574 return true;
3575 }
3576
3577 /* Given a line table and a line number, return the index into the line
3578 table for the pc of the nearest line whose number is >= the specified one.
3579 Return -1 if none is found. The value is >= 0 if it is an index.
3580 START is the index at which to start searching the line table.
3581
3582 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3583
3584 static int
3585 find_line_common (struct linetable *l, int lineno,
3586 int *exact_match, int start)
3587 {
3588 int i;
3589 int len;
3590
3591 /* BEST is the smallest linenumber > LINENO so far seen,
3592 or 0 if none has been seen so far.
3593 BEST_INDEX identifies the item for it. */
3594
3595 int best_index = -1;
3596 int best = 0;
3597
3598 *exact_match = 0;
3599
3600 if (lineno <= 0)
3601 return -1;
3602 if (l == 0)
3603 return -1;
3604
3605 len = l->nitems;
3606 for (i = start; i < len; i++)
3607 {
3608 struct linetable_entry *item = &(l->item[i]);
3609
3610 /* Ignore non-statements. */
3611 if (!item->is_stmt)
3612 continue;
3613
3614 if (item->line == lineno)
3615 {
3616 /* Return the first (lowest address) entry which matches. */
3617 *exact_match = 1;
3618 return i;
3619 }
3620
3621 if (item->line > lineno && (best == 0 || item->line < best))
3622 {
3623 best = item->line;
3624 best_index = i;
3625 }
3626 }
3627
3628 /* If we got here, we didn't get an exact match. */
3629 return best_index;
3630 }
3631
3632 bool
3633 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3634 {
3635 struct symtab_and_line sal;
3636
3637 sal = find_pc_line (pc, 0);
3638 *startptr = sal.pc;
3639 *endptr = sal.end;
3640 return sal.symtab != 0;
3641 }
3642
3643 /* Helper for find_function_start_sal. Does most of the work, except
3644 setting the sal's symbol. */
3645
3646 static symtab_and_line
3647 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3648 bool funfirstline)
3649 {
3650 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3651
3652 if (funfirstline && sal.symtab != NULL
3653 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3654 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3655 {
3656 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3657
3658 sal.pc = func_addr;
3659 if (gdbarch_skip_entrypoint_p (gdbarch))
3660 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3661 return sal;
3662 }
3663
3664 /* We always should have a line for the function start address.
3665 If we don't, something is odd. Create a plain SAL referring
3666 just the PC and hope that skip_prologue_sal (if requested)
3667 can find a line number for after the prologue. */
3668 if (sal.pc < func_addr)
3669 {
3670 sal = {};
3671 sal.pspace = current_program_space;
3672 sal.pc = func_addr;
3673 sal.section = section;
3674 }
3675
3676 if (funfirstline)
3677 skip_prologue_sal (&sal);
3678
3679 return sal;
3680 }
3681
3682 /* See symtab.h. */
3683
3684 symtab_and_line
3685 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3686 bool funfirstline)
3687 {
3688 symtab_and_line sal
3689 = find_function_start_sal_1 (func_addr, section, funfirstline);
3690
3691 /* find_function_start_sal_1 does a linetable search, so it finds
3692 the symtab and linenumber, but not a symbol. Fill in the
3693 function symbol too. */
3694 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3695
3696 return sal;
3697 }
3698
3699 /* See symtab.h. */
3700
3701 symtab_and_line
3702 find_function_start_sal (symbol *sym, bool funfirstline)
3703 {
3704 fixup_symbol_section (sym, NULL);
3705 symtab_and_line sal
3706 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3707 sym->obj_section (symbol_objfile (sym)),
3708 funfirstline);
3709 sal.symbol = sym;
3710 return sal;
3711 }
3712
3713
3714 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3715 address for that function that has an entry in SYMTAB's line info
3716 table. If such an entry cannot be found, return FUNC_ADDR
3717 unaltered. */
3718
3719 static CORE_ADDR
3720 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3721 {
3722 CORE_ADDR func_start, func_end;
3723 struct linetable *l;
3724 int i;
3725
3726 /* Give up if this symbol has no lineinfo table. */
3727 l = SYMTAB_LINETABLE (symtab);
3728 if (l == NULL)
3729 return func_addr;
3730
3731 /* Get the range for the function's PC values, or give up if we
3732 cannot, for some reason. */
3733 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3734 return func_addr;
3735
3736 /* Linetable entries are ordered by PC values, see the commentary in
3737 symtab.h where `struct linetable' is defined. Thus, the first
3738 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3739 address we are looking for. */
3740 for (i = 0; i < l->nitems; i++)
3741 {
3742 struct linetable_entry *item = &(l->item[i]);
3743
3744 /* Don't use line numbers of zero, they mark special entries in
3745 the table. See the commentary on symtab.h before the
3746 definition of struct linetable. */
3747 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3748 return item->pc;
3749 }
3750
3751 return func_addr;
3752 }
3753
3754 /* Adjust SAL to the first instruction past the function prologue.
3755 If the PC was explicitly specified, the SAL is not changed.
3756 If the line number was explicitly specified then the SAL can still be
3757 updated, unless the language for SAL is assembler, in which case the SAL
3758 will be left unchanged.
3759 If SAL is already past the prologue, then do nothing. */
3760
3761 void
3762 skip_prologue_sal (struct symtab_and_line *sal)
3763 {
3764 struct symbol *sym;
3765 struct symtab_and_line start_sal;
3766 CORE_ADDR pc, saved_pc;
3767 struct obj_section *section;
3768 const char *name;
3769 struct objfile *objfile;
3770 struct gdbarch *gdbarch;
3771 const struct block *b, *function_block;
3772 int force_skip, skip;
3773
3774 /* Do not change the SAL if PC was specified explicitly. */
3775 if (sal->explicit_pc)
3776 return;
3777
3778 /* In assembly code, if the user asks for a specific line then we should
3779 not adjust the SAL. The user already has instruction level
3780 visibility in this case, so selecting a line other than one requested
3781 is likely to be the wrong choice. */
3782 if (sal->symtab != nullptr
3783 && sal->explicit_line
3784 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3785 return;
3786
3787 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3788
3789 switch_to_program_space_and_thread (sal->pspace);
3790
3791 sym = find_pc_sect_function (sal->pc, sal->section);
3792 if (sym != NULL)
3793 {
3794 fixup_symbol_section (sym, NULL);
3795
3796 objfile = symbol_objfile (sym);
3797 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3798 section = sym->obj_section (objfile);
3799 name = sym->linkage_name ();
3800 }
3801 else
3802 {
3803 struct bound_minimal_symbol msymbol
3804 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3805
3806 if (msymbol.minsym == NULL)
3807 return;
3808
3809 objfile = msymbol.objfile;
3810 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3811 section = msymbol.minsym->obj_section (objfile);
3812 name = msymbol.minsym->linkage_name ();
3813 }
3814
3815 gdbarch = objfile->arch ();
3816
3817 /* Process the prologue in two passes. In the first pass try to skip the
3818 prologue (SKIP is true) and verify there is a real need for it (indicated
3819 by FORCE_SKIP). If no such reason was found run a second pass where the
3820 prologue is not skipped (SKIP is false). */
3821
3822 skip = 1;
3823 force_skip = 1;
3824
3825 /* Be conservative - allow direct PC (without skipping prologue) only if we
3826 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3827 have to be set by the caller so we use SYM instead. */
3828 if (sym != NULL
3829 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3830 force_skip = 0;
3831
3832 saved_pc = pc;
3833 do
3834 {
3835 pc = saved_pc;
3836
3837 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3838 so that gdbarch_skip_prologue has something unique to work on. */
3839 if (section_is_overlay (section) && !section_is_mapped (section))
3840 pc = overlay_unmapped_address (pc, section);
3841
3842 /* Skip "first line" of function (which is actually its prologue). */
3843 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3844 if (gdbarch_skip_entrypoint_p (gdbarch))
3845 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3846 if (skip)
3847 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3848
3849 /* For overlays, map pc back into its mapped VMA range. */
3850 pc = overlay_mapped_address (pc, section);
3851
3852 /* Calculate line number. */
3853 start_sal = find_pc_sect_line (pc, section, 0);
3854
3855 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3856 line is still part of the same function. */
3857 if (skip && start_sal.pc != pc
3858 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3859 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3860 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3861 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3862 {
3863 /* First pc of next line */
3864 pc = start_sal.end;
3865 /* Recalculate the line number (might not be N+1). */
3866 start_sal = find_pc_sect_line (pc, section, 0);
3867 }
3868
3869 /* On targets with executable formats that don't have a concept of
3870 constructors (ELF with .init has, PE doesn't), gcc emits a call
3871 to `__main' in `main' between the prologue and before user
3872 code. */
3873 if (gdbarch_skip_main_prologue_p (gdbarch)
3874 && name && strcmp_iw (name, "main") == 0)
3875 {
3876 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3877 /* Recalculate the line number (might not be N+1). */
3878 start_sal = find_pc_sect_line (pc, section, 0);
3879 force_skip = 1;
3880 }
3881 }
3882 while (!force_skip && skip--);
3883
3884 /* If we still don't have a valid source line, try to find the first
3885 PC in the lineinfo table that belongs to the same function. This
3886 happens with COFF debug info, which does not seem to have an
3887 entry in lineinfo table for the code after the prologue which has
3888 no direct relation to source. For example, this was found to be
3889 the case with the DJGPP target using "gcc -gcoff" when the
3890 compiler inserted code after the prologue to make sure the stack
3891 is aligned. */
3892 if (!force_skip && sym && start_sal.symtab == NULL)
3893 {
3894 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3895 /* Recalculate the line number. */
3896 start_sal = find_pc_sect_line (pc, section, 0);
3897 }
3898
3899 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3900 forward SAL to the end of the prologue. */
3901 if (sal->pc >= pc)
3902 return;
3903
3904 sal->pc = pc;
3905 sal->section = section;
3906 sal->symtab = start_sal.symtab;
3907 sal->line = start_sal.line;
3908 sal->end = start_sal.end;
3909
3910 /* Check if we are now inside an inlined function. If we can,
3911 use the call site of the function instead. */
3912 b = block_for_pc_sect (sal->pc, sal->section);
3913 function_block = NULL;
3914 while (b != NULL)
3915 {
3916 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3917 function_block = b;
3918 else if (BLOCK_FUNCTION (b) != NULL)
3919 break;
3920 b = BLOCK_SUPERBLOCK (b);
3921 }
3922 if (function_block != NULL
3923 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3924 {
3925 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3926 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3927 }
3928 }
3929
3930 /* Given PC at the function's start address, attempt to find the
3931 prologue end using SAL information. Return zero if the skip fails.
3932
3933 A non-optimized prologue traditionally has one SAL for the function
3934 and a second for the function body. A single line function has
3935 them both pointing at the same line.
3936
3937 An optimized prologue is similar but the prologue may contain
3938 instructions (SALs) from the instruction body. Need to skip those
3939 while not getting into the function body.
3940
3941 The functions end point and an increasing SAL line are used as
3942 indicators of the prologue's endpoint.
3943
3944 This code is based on the function refine_prologue_limit
3945 (found in ia64). */
3946
3947 CORE_ADDR
3948 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3949 {
3950 struct symtab_and_line prologue_sal;
3951 CORE_ADDR start_pc;
3952 CORE_ADDR end_pc;
3953 const struct block *bl;
3954
3955 /* Get an initial range for the function. */
3956 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3957 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3958
3959 prologue_sal = find_pc_line (start_pc, 0);
3960 if (prologue_sal.line != 0)
3961 {
3962 /* For languages other than assembly, treat two consecutive line
3963 entries at the same address as a zero-instruction prologue.
3964 The GNU assembler emits separate line notes for each instruction
3965 in a multi-instruction macro, but compilers generally will not
3966 do this. */
3967 if (prologue_sal.symtab->language != language_asm)
3968 {
3969 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3970 int idx = 0;
3971
3972 /* Skip any earlier lines, and any end-of-sequence marker
3973 from a previous function. */
3974 while (linetable->item[idx].pc != prologue_sal.pc
3975 || linetable->item[idx].line == 0)
3976 idx++;
3977
3978 if (idx+1 < linetable->nitems
3979 && linetable->item[idx+1].line != 0
3980 && linetable->item[idx+1].pc == start_pc)
3981 return start_pc;
3982 }
3983
3984 /* If there is only one sal that covers the entire function,
3985 then it is probably a single line function, like
3986 "foo(){}". */
3987 if (prologue_sal.end >= end_pc)
3988 return 0;
3989
3990 while (prologue_sal.end < end_pc)
3991 {
3992 struct symtab_and_line sal;
3993
3994 sal = find_pc_line (prologue_sal.end, 0);
3995 if (sal.line == 0)
3996 break;
3997 /* Assume that a consecutive SAL for the same (or larger)
3998 line mark the prologue -> body transition. */
3999 if (sal.line >= prologue_sal.line)
4000 break;
4001 /* Likewise if we are in a different symtab altogether
4002 (e.g. within a file included via #include).  */
4003 if (sal.symtab != prologue_sal.symtab)
4004 break;
4005
4006 /* The line number is smaller. Check that it's from the
4007 same function, not something inlined. If it's inlined,
4008 then there is no point comparing the line numbers. */
4009 bl = block_for_pc (prologue_sal.end);
4010 while (bl)
4011 {
4012 if (block_inlined_p (bl))
4013 break;
4014 if (BLOCK_FUNCTION (bl))
4015 {
4016 bl = NULL;
4017 break;
4018 }
4019 bl = BLOCK_SUPERBLOCK (bl);
4020 }
4021 if (bl != NULL)
4022 break;
4023
4024 /* The case in which compiler's optimizer/scheduler has
4025 moved instructions into the prologue. We look ahead in
4026 the function looking for address ranges whose
4027 corresponding line number is less the first one that we
4028 found for the function. This is more conservative then
4029 refine_prologue_limit which scans a large number of SALs
4030 looking for any in the prologue. */
4031 prologue_sal = sal;
4032 }
4033 }
4034
4035 if (prologue_sal.end < end_pc)
4036 /* Return the end of this line, or zero if we could not find a
4037 line. */
4038 return prologue_sal.end;
4039 else
4040 /* Don't return END_PC, which is past the end of the function. */
4041 return prologue_sal.pc;
4042 }
4043
4044 /* See symtab.h. */
4045
4046 symbol *
4047 find_function_alias_target (bound_minimal_symbol msymbol)
4048 {
4049 CORE_ADDR func_addr;
4050 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4051 return NULL;
4052
4053 symbol *sym = find_pc_function (func_addr);
4054 if (sym != NULL
4055 && SYMBOL_CLASS (sym) == LOC_BLOCK
4056 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4057 return sym;
4058
4059 return NULL;
4060 }
4061
4062 \f
4063 /* If P is of the form "operator[ \t]+..." where `...' is
4064 some legitimate operator text, return a pointer to the
4065 beginning of the substring of the operator text.
4066 Otherwise, return "". */
4067
4068 static const char *
4069 operator_chars (const char *p, const char **end)
4070 {
4071 *end = "";
4072 if (!startswith (p, CP_OPERATOR_STR))
4073 return *end;
4074 p += CP_OPERATOR_LEN;
4075
4076 /* Don't get faked out by `operator' being part of a longer
4077 identifier. */
4078 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4079 return *end;
4080
4081 /* Allow some whitespace between `operator' and the operator symbol. */
4082 while (*p == ' ' || *p == '\t')
4083 p++;
4084
4085 /* Recognize 'operator TYPENAME'. */
4086
4087 if (isalpha (*p) || *p == '_' || *p == '$')
4088 {
4089 const char *q = p + 1;
4090
4091 while (isalnum (*q) || *q == '_' || *q == '$')
4092 q++;
4093 *end = q;
4094 return p;
4095 }
4096
4097 while (*p)
4098 switch (*p)
4099 {
4100 case '\\': /* regexp quoting */
4101 if (p[1] == '*')
4102 {
4103 if (p[2] == '=') /* 'operator\*=' */
4104 *end = p + 3;
4105 else /* 'operator\*' */
4106 *end = p + 2;
4107 return p;
4108 }
4109 else if (p[1] == '[')
4110 {
4111 if (p[2] == ']')
4112 error (_("mismatched quoting on brackets, "
4113 "try 'operator\\[\\]'"));
4114 else if (p[2] == '\\' && p[3] == ']')
4115 {
4116 *end = p + 4; /* 'operator\[\]' */
4117 return p;
4118 }
4119 else
4120 error (_("nothing is allowed between '[' and ']'"));
4121 }
4122 else
4123 {
4124 /* Gratuitous quote: skip it and move on. */
4125 p++;
4126 continue;
4127 }
4128 break;
4129 case '!':
4130 case '=':
4131 case '*':
4132 case '/':
4133 case '%':
4134 case '^':
4135 if (p[1] == '=')
4136 *end = p + 2;
4137 else
4138 *end = p + 1;
4139 return p;
4140 case '<':
4141 case '>':
4142 case '+':
4143 case '-':
4144 case '&':
4145 case '|':
4146 if (p[0] == '-' && p[1] == '>')
4147 {
4148 /* Struct pointer member operator 'operator->'. */
4149 if (p[2] == '*')
4150 {
4151 *end = p + 3; /* 'operator->*' */
4152 return p;
4153 }
4154 else if (p[2] == '\\')
4155 {
4156 *end = p + 4; /* Hopefully 'operator->\*' */
4157 return p;
4158 }
4159 else
4160 {
4161 *end = p + 2; /* 'operator->' */
4162 return p;
4163 }
4164 }
4165 if (p[1] == '=' || p[1] == p[0])
4166 *end = p + 2;
4167 else
4168 *end = p + 1;
4169 return p;
4170 case '~':
4171 case ',':
4172 *end = p + 1;
4173 return p;
4174 case '(':
4175 if (p[1] != ')')
4176 error (_("`operator ()' must be specified "
4177 "without whitespace in `()'"));
4178 *end = p + 2;
4179 return p;
4180 case '?':
4181 if (p[1] != ':')
4182 error (_("`operator ?:' must be specified "
4183 "without whitespace in `?:'"));
4184 *end = p + 2;
4185 return p;
4186 case '[':
4187 if (p[1] != ']')
4188 error (_("`operator []' must be specified "
4189 "without whitespace in `[]'"));
4190 *end = p + 2;
4191 return p;
4192 default:
4193 error (_("`operator %s' not supported"), p);
4194 break;
4195 }
4196
4197 *end = "";
4198 return *end;
4199 }
4200 \f
4201
4202 /* See class declaration. */
4203
4204 info_sources_filter::info_sources_filter (match_on match_type,
4205 const char *regexp)
4206 : m_match_type (match_type),
4207 m_regexp (regexp)
4208 {
4209 /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */
4210 if (m_regexp != nullptr && *m_regexp != '\0')
4211 {
4212 gdb_assert (m_regexp != nullptr);
4213
4214 int cflags = REG_NOSUB;
4215 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4216 cflags |= REG_ICASE;
4217 #endif
4218 m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp"));
4219 }
4220 }
4221
4222 /* See class declaration. */
4223
4224 bool
4225 info_sources_filter::matches (const char *fullname) const
4226 {
4227 /* Does it match regexp? */
4228 if (m_c_regexp.has_value ())
4229 {
4230 const char *to_match;
4231 std::string dirname;
4232
4233 switch (m_match_type)
4234 {
4235 case match_on::DIRNAME:
4236 dirname = ldirname (fullname);
4237 to_match = dirname.c_str ();
4238 break;
4239 case match_on::BASENAME:
4240 to_match = lbasename (fullname);
4241 break;
4242 case match_on::FULLNAME:
4243 to_match = fullname;
4244 break;
4245 default:
4246 gdb_assert_not_reached ("bad m_match_type");
4247 }
4248
4249 if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0)
4250 return false;
4251 }
4252
4253 return true;
4254 }
4255
4256 /* Data structure to maintain the state used for printing the results of
4257 the 'info sources' command. */
4258
4259 struct output_source_filename_data
4260 {
4261 /* Create an object for displaying the results of the 'info sources'
4262 command to UIOUT. FILTER must remain valid and unchanged for the
4263 lifetime of this object as this object retains a reference to FILTER. */
4264 output_source_filename_data (struct ui_out *uiout,
4265 const info_sources_filter &filter)
4266 : m_filter (filter),
4267 m_uiout (uiout)
4268 { /* Nothing. */ }
4269
4270 DISABLE_COPY_AND_ASSIGN (output_source_filename_data);
4271
4272 /* Reset enough state of this object so we can match against a new set of
4273 files. The existing regular expression is retained though. */
4274 void reset_output ()
4275 {
4276 m_first = true;
4277 m_filename_seen_cache.clear ();
4278 }
4279
4280 /* Worker for sources_info, outputs the file name formatted for either
4281 cli or mi (based on the current_uiout). In cli mode displays
4282 FULLNAME with a comma separating this name from any previously
4283 printed name (line breaks are added at the comma). In MI mode
4284 outputs a tuple containing DISP_NAME (the files display name),
4285 FULLNAME, and EXPANDED_P (true when this file is from a fully
4286 expanded symtab, otherwise false). */
4287 void output (const char *disp_name, const char *fullname, bool expanded_p);
4288
4289 /* An overload suitable for use as a callback to
4290 quick_symbol_functions::map_symbol_filenames. */
4291 void operator() (const char *filename, const char *fullname)
4292 {
4293 /* The false here indicates that this file is from an unexpanded
4294 symtab. */
4295 output (filename, fullname, false);
4296 }
4297
4298 /* Return true if at least one filename has been printed (after a call to
4299 output) since either this object was created, or the last call to
4300 reset_output. */
4301 bool printed_filename_p () const
4302 {
4303 return !m_first;
4304 }
4305
4306 private:
4307
4308 /* Flag of whether we're printing the first one. */
4309 bool m_first = true;
4310
4311 /* Cache of what we've seen so far. */
4312 filename_seen_cache m_filename_seen_cache;
4313
4314 /* How source filename should be filtered. */
4315 const info_sources_filter &m_filter;
4316
4317 /* The object to which output is sent. */
4318 struct ui_out *m_uiout;
4319 };
4320
4321 /* See comment in class declaration above. */
4322
4323 void
4324 output_source_filename_data::output (const char *disp_name,
4325 const char *fullname,
4326 bool expanded_p)
4327 {
4328 /* Since a single source file can result in several partial symbol
4329 tables, we need to avoid printing it more than once. Note: if
4330 some of the psymtabs are read in and some are not, it gets
4331 printed both under "Source files for which symbols have been
4332 read" and "Source files for which symbols will be read in on
4333 demand". I consider this a reasonable way to deal with the
4334 situation. I'm not sure whether this can also happen for
4335 symtabs; it doesn't hurt to check. */
4336
4337 /* Was NAME already seen? If so, then don't print it again. */
4338 if (m_filename_seen_cache.seen (fullname))
4339 return;
4340
4341 /* If the filter rejects this file then don't print it. */
4342 if (!m_filter.matches (fullname))
4343 return;
4344
4345 ui_out_emit_tuple ui_emitter (m_uiout, nullptr);
4346
4347 /* Print it and reset *FIRST. */
4348 if (!m_first)
4349 m_uiout->text (", ");
4350 m_first = false;
4351
4352 wrap_here ("");
4353 if (m_uiout->is_mi_like_p ())
4354 {
4355 m_uiout->field_string ("file", disp_name, file_name_style.style ());
4356 if (fullname != nullptr)
4357 m_uiout->field_string ("fullname", fullname,
4358 file_name_style.style ());
4359 m_uiout->field_string ("debug-fully-read",
4360 (expanded_p ? "true" : "false"));
4361 }
4362 else
4363 {
4364 if (fullname == nullptr)
4365 fullname = disp_name;
4366 m_uiout->field_string ("fullname", fullname,
4367 file_name_style.style ());
4368 }
4369 }
4370
4371 /* For the 'info sources' command, what part of the file names should we be
4372 matching the user supplied regular expression against? */
4373
4374 struct filename_partial_match_opts
4375 {
4376 /* Only match the directory name part. */
4377 bool dirname = false;
4378
4379 /* Only match the basename part. */
4380 bool basename = false;
4381 };
4382
4383 using isrc_flag_option_def
4384 = gdb::option::flag_option_def<filename_partial_match_opts>;
4385
4386 static const gdb::option::option_def info_sources_option_defs[] = {
4387
4388 isrc_flag_option_def {
4389 "dirname",
4390 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4391 N_("Show only the files having a dirname matching REGEXP."),
4392 },
4393
4394 isrc_flag_option_def {
4395 "basename",
4396 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4397 N_("Show only the files having a basename matching REGEXP."),
4398 },
4399
4400 };
4401
4402 /* Create an option_def_group for the "info sources" options, with
4403 ISRC_OPTS as context. */
4404
4405 static inline gdb::option::option_def_group
4406 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4407 {
4408 return {{info_sources_option_defs}, isrc_opts};
4409 }
4410
4411 /* Completer for "info sources". */
4412
4413 static void
4414 info_sources_command_completer (cmd_list_element *ignore,
4415 completion_tracker &tracker,
4416 const char *text, const char *word)
4417 {
4418 const auto group = make_info_sources_options_def_group (nullptr);
4419 if (gdb::option::complete_options
4420 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4421 return;
4422 }
4423
4424 /* See symtab.h. */
4425
4426 void
4427 info_sources_worker (struct ui_out *uiout,
4428 bool group_by_objfile,
4429 const info_sources_filter &filter)
4430 {
4431 output_source_filename_data data (uiout, filter);
4432
4433 ui_out_emit_list results_emitter (uiout, "files");
4434 gdb::optional<ui_out_emit_tuple> output_tuple;
4435 gdb::optional<ui_out_emit_list> sources_list;
4436
4437 gdb_assert (group_by_objfile || uiout->is_mi_like_p ());
4438
4439 for (objfile *objfile : current_program_space->objfiles ())
4440 {
4441 if (group_by_objfile)
4442 {
4443 output_tuple.emplace (uiout, nullptr);
4444 uiout->field_string ("filename", objfile_name (objfile));
4445 uiout->text (":\n");
4446 bool debug_fully_readin = !objfile->has_unexpanded_symtabs ();
4447 if (uiout->is_mi_like_p ())
4448 {
4449 const char *debug_info_state;
4450 if (objfile_has_symbols (objfile))
4451 {
4452 if (debug_fully_readin)
4453 debug_info_state = "fully-read";
4454 else
4455 debug_info_state = "partially-read";
4456 }
4457 else
4458 debug_info_state = "none";
4459 current_uiout->field_string ("debug-info", debug_info_state);
4460 }
4461 else
4462 {
4463 if (!debug_fully_readin)
4464 uiout->text ("(Full debug information has not yet been read "
4465 "for this file.)\n");
4466 if (!objfile_has_symbols (objfile))
4467 uiout->text ("(Objfile has no debug information.)\n");
4468 uiout->text ("\n");
4469 }
4470 sources_list.emplace (uiout, "sources");
4471 }
4472
4473 for (compunit_symtab *cu : objfile->compunits ())
4474 {
4475 for (symtab *s : compunit_filetabs (cu))
4476 {
4477 const char *file = symtab_to_filename_for_display (s);
4478 const char *fullname = symtab_to_fullname (s);
4479 data.output (file, fullname, true);
4480 }
4481 }
4482
4483 if (group_by_objfile)
4484 {
4485 objfile->map_symbol_filenames (data, true /* need_fullname */);
4486 if (data.printed_filename_p ())
4487 uiout->text ("\n\n");
4488 data.reset_output ();
4489 sources_list.reset ();
4490 output_tuple.reset ();
4491 }
4492 }
4493
4494 if (!group_by_objfile)
4495 {
4496 data.reset_output ();
4497 map_symbol_filenames (data, true /*need_fullname*/);
4498 }
4499 }
4500
4501 /* Implement the 'info sources' command. */
4502
4503 static void
4504 info_sources_command (const char *args, int from_tty)
4505 {
4506 if (!have_full_symbols () && !have_partial_symbols ())
4507 error (_("No symbol table is loaded. Use the \"file\" command."));
4508
4509 filename_partial_match_opts match_opts;
4510 auto group = make_info_sources_options_def_group (&match_opts);
4511 gdb::option::process_options
4512 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4513
4514 if (match_opts.dirname && match_opts.basename)
4515 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4516
4517 const char *regex = nullptr;
4518 if (args != NULL && *args != '\000')
4519 regex = args;
4520
4521 if ((match_opts.dirname || match_opts.basename) && regex == nullptr)
4522 error (_("Missing REGEXP for 'info sources'."));
4523
4524 info_sources_filter::match_on match_type;
4525 if (match_opts.dirname)
4526 match_type = info_sources_filter::match_on::DIRNAME;
4527 else if (match_opts.basename)
4528 match_type = info_sources_filter::match_on::BASENAME;
4529 else
4530 match_type = info_sources_filter::match_on::FULLNAME;
4531
4532 info_sources_filter filter (match_type, regex);
4533 info_sources_worker (current_uiout, true, filter);
4534 }
4535
4536 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4537 true compare only lbasename of FILENAMES. */
4538
4539 static bool
4540 file_matches (const char *file, const std::vector<const char *> &filenames,
4541 bool basenames)
4542 {
4543 if (filenames.empty ())
4544 return true;
4545
4546 for (const char *name : filenames)
4547 {
4548 name = (basenames ? lbasename (name) : name);
4549 if (compare_filenames_for_search (file, name))
4550 return true;
4551 }
4552
4553 return false;
4554 }
4555
4556 /* Helper function for std::sort on symbol_search objects. Can only sort
4557 symbols, not minimal symbols. */
4558
4559 int
4560 symbol_search::compare_search_syms (const symbol_search &sym_a,
4561 const symbol_search &sym_b)
4562 {
4563 int c;
4564
4565 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4566 symbol_symtab (sym_b.symbol)->filename);
4567 if (c != 0)
4568 return c;
4569
4570 if (sym_a.block != sym_b.block)
4571 return sym_a.block - sym_b.block;
4572
4573 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4574 }
4575
4576 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4577 If SYM has no symbol_type or symbol_name, returns false. */
4578
4579 bool
4580 treg_matches_sym_type_name (const compiled_regex &treg,
4581 const struct symbol *sym)
4582 {
4583 struct type *sym_type;
4584 std::string printed_sym_type_name;
4585
4586 if (symbol_lookup_debug > 1)
4587 {
4588 fprintf_unfiltered (gdb_stdlog,
4589 "treg_matches_sym_type_name\n sym %s\n",
4590 sym->natural_name ());
4591 }
4592
4593 sym_type = SYMBOL_TYPE (sym);
4594 if (sym_type == NULL)
4595 return false;
4596
4597 {
4598 scoped_switch_to_sym_language_if_auto l (sym);
4599
4600 printed_sym_type_name = type_to_string (sym_type);
4601 }
4602
4603
4604 if (symbol_lookup_debug > 1)
4605 {
4606 fprintf_unfiltered (gdb_stdlog,
4607 " sym_type_name %s\n",
4608 printed_sym_type_name.c_str ());
4609 }
4610
4611
4612 if (printed_sym_type_name.empty ())
4613 return false;
4614
4615 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4616 }
4617
4618 /* See symtab.h. */
4619
4620 bool
4621 global_symbol_searcher::is_suitable_msymbol
4622 (const enum search_domain kind, const minimal_symbol *msymbol)
4623 {
4624 switch (MSYMBOL_TYPE (msymbol))
4625 {
4626 case mst_data:
4627 case mst_bss:
4628 case mst_file_data:
4629 case mst_file_bss:
4630 return kind == VARIABLES_DOMAIN;
4631 case mst_text:
4632 case mst_file_text:
4633 case mst_solib_trampoline:
4634 case mst_text_gnu_ifunc:
4635 return kind == FUNCTIONS_DOMAIN;
4636 default:
4637 return false;
4638 }
4639 }
4640
4641 /* See symtab.h. */
4642
4643 bool
4644 global_symbol_searcher::expand_symtabs
4645 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4646 {
4647 enum search_domain kind = m_kind;
4648 bool found_msymbol = false;
4649
4650 objfile->expand_symtabs_matching
4651 ([&] (const char *filename, bool basenames)
4652 {
4653 return file_matches (filename, filenames, basenames);
4654 },
4655 &lookup_name_info::match_any (),
4656 [&] (const char *symname)
4657 {
4658 return (!preg.has_value ()
4659 || preg->exec (symname, 0, NULL, 0) == 0);
4660 },
4661 NULL,
4662 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
4663 UNDEF_DOMAIN,
4664 kind);
4665
4666 /* Here, we search through the minimal symbol tables for functions and
4667 variables that match, and force their symbols to be read. This is in
4668 particular necessary for demangled variable names, which are no longer
4669 put into the partial symbol tables. The symbol will then be found
4670 during the scan of symtabs later.
4671
4672 For functions, find_pc_symtab should succeed if we have debug info for
4673 the function, for variables we have to call
4674 lookup_symbol_in_objfile_from_linkage_name to determine if the
4675 variable has debug info. If the lookup fails, set found_msymbol so
4676 that we will rescan to print any matching symbols without debug info.
4677 We only search the objfile the msymbol came from, we no longer search
4678 all objfiles. In large programs (1000s of shared libs) searching all
4679 objfiles is not worth the pain. */
4680 if (filenames.empty ()
4681 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4682 {
4683 for (minimal_symbol *msymbol : objfile->msymbols ())
4684 {
4685 QUIT;
4686
4687 if (msymbol->created_by_gdb)
4688 continue;
4689
4690 if (is_suitable_msymbol (kind, msymbol))
4691 {
4692 if (!preg.has_value ()
4693 || preg->exec (msymbol->natural_name (), 0,
4694 NULL, 0) == 0)
4695 {
4696 /* An important side-effect of these lookup functions is
4697 to expand the symbol table if msymbol is found, later
4698 in the process we will add matching symbols or
4699 msymbols to the results list, and that requires that
4700 the symbols tables are expanded. */
4701 if (kind == FUNCTIONS_DOMAIN
4702 ? (find_pc_compunit_symtab
4703 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4704 == NULL)
4705 : (lookup_symbol_in_objfile_from_linkage_name
4706 (objfile, msymbol->linkage_name (),
4707 VAR_DOMAIN)
4708 .symbol == NULL))
4709 found_msymbol = true;
4710 }
4711 }
4712 }
4713 }
4714
4715 return found_msymbol;
4716 }
4717
4718 /* See symtab.h. */
4719
4720 bool
4721 global_symbol_searcher::add_matching_symbols
4722 (objfile *objfile,
4723 const gdb::optional<compiled_regex> &preg,
4724 const gdb::optional<compiled_regex> &treg,
4725 std::set<symbol_search> *result_set) const
4726 {
4727 enum search_domain kind = m_kind;
4728
4729 /* Add matching symbols (if not already present). */
4730 for (compunit_symtab *cust : objfile->compunits ())
4731 {
4732 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4733
4734 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4735 {
4736 struct block_iterator iter;
4737 struct symbol *sym;
4738 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4739
4740 ALL_BLOCK_SYMBOLS (b, iter, sym)
4741 {
4742 struct symtab *real_symtab = symbol_symtab (sym);
4743
4744 QUIT;
4745
4746 /* Check first sole REAL_SYMTAB->FILENAME. It does
4747 not need to be a substring of symtab_to_fullname as
4748 it may contain "./" etc. */
4749 if ((file_matches (real_symtab->filename, filenames, false)
4750 || ((basenames_may_differ
4751 || file_matches (lbasename (real_symtab->filename),
4752 filenames, true))
4753 && file_matches (symtab_to_fullname (real_symtab),
4754 filenames, false)))
4755 && ((!preg.has_value ()
4756 || preg->exec (sym->natural_name (), 0,
4757 NULL, 0) == 0)
4758 && ((kind == VARIABLES_DOMAIN
4759 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4760 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4761 && SYMBOL_CLASS (sym) != LOC_BLOCK
4762 /* LOC_CONST can be used for more than
4763 just enums, e.g., c++ static const
4764 members. We only want to skip enums
4765 here. */
4766 && !(SYMBOL_CLASS (sym) == LOC_CONST
4767 && (SYMBOL_TYPE (sym)->code ()
4768 == TYPE_CODE_ENUM))
4769 && (!treg.has_value ()
4770 || treg_matches_sym_type_name (*treg, sym)))
4771 || (kind == FUNCTIONS_DOMAIN
4772 && SYMBOL_CLASS (sym) == LOC_BLOCK
4773 && (!treg.has_value ()
4774 || treg_matches_sym_type_name (*treg,
4775 sym)))
4776 || (kind == TYPES_DOMAIN
4777 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4778 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4779 || (kind == MODULES_DOMAIN
4780 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4781 && SYMBOL_LINE (sym) != 0))))
4782 {
4783 if (result_set->size () < m_max_search_results)
4784 {
4785 /* Match, insert if not already in the results. */
4786 symbol_search ss (block, sym);
4787 if (result_set->find (ss) == result_set->end ())
4788 result_set->insert (ss);
4789 }
4790 else
4791 return false;
4792 }
4793 }
4794 }
4795 }
4796
4797 return true;
4798 }
4799
4800 /* See symtab.h. */
4801
4802 bool
4803 global_symbol_searcher::add_matching_msymbols
4804 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4805 std::vector<symbol_search> *results) const
4806 {
4807 enum search_domain kind = m_kind;
4808
4809 for (minimal_symbol *msymbol : objfile->msymbols ())
4810 {
4811 QUIT;
4812
4813 if (msymbol->created_by_gdb)
4814 continue;
4815
4816 if (is_suitable_msymbol (kind, msymbol))
4817 {
4818 if (!preg.has_value ()
4819 || preg->exec (msymbol->natural_name (), 0,
4820 NULL, 0) == 0)
4821 {
4822 /* For functions we can do a quick check of whether the
4823 symbol might be found via find_pc_symtab. */
4824 if (kind != FUNCTIONS_DOMAIN
4825 || (find_pc_compunit_symtab
4826 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4827 == NULL))
4828 {
4829 if (lookup_symbol_in_objfile_from_linkage_name
4830 (objfile, msymbol->linkage_name (),
4831 VAR_DOMAIN).symbol == NULL)
4832 {
4833 /* Matching msymbol, add it to the results list. */
4834 if (results->size () < m_max_search_results)
4835 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4836 else
4837 return false;
4838 }
4839 }
4840 }
4841 }
4842 }
4843
4844 return true;
4845 }
4846
4847 /* See symtab.h. */
4848
4849 std::vector<symbol_search>
4850 global_symbol_searcher::search () const
4851 {
4852 gdb::optional<compiled_regex> preg;
4853 gdb::optional<compiled_regex> treg;
4854
4855 gdb_assert (m_kind != ALL_DOMAIN);
4856
4857 if (m_symbol_name_regexp != NULL)
4858 {
4859 const char *symbol_name_regexp = m_symbol_name_regexp;
4860
4861 /* Make sure spacing is right for C++ operators.
4862 This is just a courtesy to make the matching less sensitive
4863 to how many spaces the user leaves between 'operator'
4864 and <TYPENAME> or <OPERATOR>. */
4865 const char *opend;
4866 const char *opname = operator_chars (symbol_name_regexp, &opend);
4867
4868 if (*opname)
4869 {
4870 int fix = -1; /* -1 means ok; otherwise number of
4871 spaces needed. */
4872
4873 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4874 {
4875 /* There should 1 space between 'operator' and 'TYPENAME'. */
4876 if (opname[-1] != ' ' || opname[-2] == ' ')
4877 fix = 1;
4878 }
4879 else
4880 {
4881 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4882 if (opname[-1] == ' ')
4883 fix = 0;
4884 }
4885 /* If wrong number of spaces, fix it. */
4886 if (fix >= 0)
4887 {
4888 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4889
4890 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4891 symbol_name_regexp = tmp;
4892 }
4893 }
4894
4895 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4896 ? REG_ICASE : 0);
4897 preg.emplace (symbol_name_regexp, cflags,
4898 _("Invalid regexp"));
4899 }
4900
4901 if (m_symbol_type_regexp != NULL)
4902 {
4903 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4904 ? REG_ICASE : 0);
4905 treg.emplace (m_symbol_type_regexp, cflags,
4906 _("Invalid regexp"));
4907 }
4908
4909 bool found_msymbol = false;
4910 std::set<symbol_search> result_set;
4911 for (objfile *objfile : current_program_space->objfiles ())
4912 {
4913 /* Expand symtabs within objfile that possibly contain matching
4914 symbols. */
4915 found_msymbol |= expand_symtabs (objfile, preg);
4916
4917 /* Find matching symbols within OBJFILE and add them in to the
4918 RESULT_SET set. Use a set here so that we can easily detect
4919 duplicates as we go, and can therefore track how many unique
4920 matches we have found so far. */
4921 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4922 break;
4923 }
4924
4925 /* Convert the result set into a sorted result list, as std::set is
4926 defined to be sorted then no explicit call to std::sort is needed. */
4927 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4928
4929 /* If there are no debug symbols, then add matching minsyms. But if the
4930 user wants to see symbols matching a type regexp, then never give a
4931 minimal symbol, as we assume that a minimal symbol does not have a
4932 type. */
4933 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4934 && !m_exclude_minsyms
4935 && !treg.has_value ())
4936 {
4937 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4938 for (objfile *objfile : current_program_space->objfiles ())
4939 if (!add_matching_msymbols (objfile, preg, &result))
4940 break;
4941 }
4942
4943 return result;
4944 }
4945
4946 /* See symtab.h. */
4947
4948 std::string
4949 symbol_to_info_string (struct symbol *sym, int block,
4950 enum search_domain kind)
4951 {
4952 std::string str;
4953
4954 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4955
4956 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4957 str += "static ";
4958
4959 /* Typedef that is not a C++ class. */
4960 if (kind == TYPES_DOMAIN
4961 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4962 {
4963 string_file tmp_stream;
4964
4965 /* FIXME: For C (and C++) we end up with a difference in output here
4966 between how a typedef is printed, and non-typedefs are printed.
4967 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4968 appear C-like, while TYPE_PRINT doesn't.
4969
4970 For the struct printing case below, things are worse, we force
4971 printing of the ";" in this function, which is going to be wrong
4972 for languages that don't require a ";" between statements. */
4973 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4974 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4975 else
4976 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4977 str += tmp_stream.string ();
4978 }
4979 /* variable, func, or typedef-that-is-c++-class. */
4980 else if (kind < TYPES_DOMAIN
4981 || (kind == TYPES_DOMAIN
4982 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4983 {
4984 string_file tmp_stream;
4985
4986 type_print (SYMBOL_TYPE (sym),
4987 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4988 ? "" : sym->print_name ()),
4989 &tmp_stream, 0);
4990
4991 str += tmp_stream.string ();
4992 str += ";";
4993 }
4994 /* Printing of modules is currently done here, maybe at some future
4995 point we might want a language specific method to print the module
4996 symbol so that we can customise the output more. */
4997 else if (kind == MODULES_DOMAIN)
4998 str += sym->print_name ();
4999
5000 return str;
5001 }
5002
5003 /* Helper function for symbol info commands, for example 'info functions',
5004 'info variables', etc. KIND is the kind of symbol we searched for, and
5005 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
5006 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
5007 print file and line number information for the symbol as well. Skip
5008 printing the filename if it matches LAST. */
5009
5010 static void
5011 print_symbol_info (enum search_domain kind,
5012 struct symbol *sym,
5013 int block, const char *last)
5014 {
5015 scoped_switch_to_sym_language_if_auto l (sym);
5016 struct symtab *s = symbol_symtab (sym);
5017
5018 if (last != NULL)
5019 {
5020 const char *s_filename = symtab_to_filename_for_display (s);
5021
5022 if (filename_cmp (last, s_filename) != 0)
5023 {
5024 printf_filtered (_("\nFile %ps:\n"),
5025 styled_string (file_name_style.style (),
5026 s_filename));
5027 }
5028
5029 if (SYMBOL_LINE (sym) != 0)
5030 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
5031 else
5032 puts_filtered ("\t");
5033 }
5034
5035 std::string str = symbol_to_info_string (sym, block, kind);
5036 printf_filtered ("%s\n", str.c_str ());
5037 }
5038
5039 /* This help function for symtab_symbol_info() prints information
5040 for non-debugging symbols to gdb_stdout. */
5041
5042 static void
5043 print_msymbol_info (struct bound_minimal_symbol msymbol)
5044 {
5045 struct gdbarch *gdbarch = msymbol.objfile->arch ();
5046 char *tmp;
5047
5048 if (gdbarch_addr_bit (gdbarch) <= 32)
5049 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
5050 & (CORE_ADDR) 0xffffffff,
5051 8);
5052 else
5053 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
5054 16);
5055
5056 ui_file_style sym_style = (msymbol.minsym->text_p ()
5057 ? function_name_style.style ()
5058 : ui_file_style ());
5059
5060 printf_filtered (_("%ps %ps\n"),
5061 styled_string (address_style.style (), tmp),
5062 styled_string (sym_style, msymbol.minsym->print_name ()));
5063 }
5064
5065 /* This is the guts of the commands "info functions", "info types", and
5066 "info variables". It calls search_symbols to find all matches and then
5067 print_[m]symbol_info to print out some useful information about the
5068 matches. */
5069
5070 static void
5071 symtab_symbol_info (bool quiet, bool exclude_minsyms,
5072 const char *regexp, enum search_domain kind,
5073 const char *t_regexp, int from_tty)
5074 {
5075 static const char * const classnames[] =
5076 {"variable", "function", "type", "module"};
5077 const char *last_filename = "";
5078 int first = 1;
5079
5080 gdb_assert (kind != ALL_DOMAIN);
5081
5082 if (regexp != nullptr && *regexp == '\0')
5083 regexp = nullptr;
5084
5085 global_symbol_searcher spec (kind, regexp);
5086 spec.set_symbol_type_regexp (t_regexp);
5087 spec.set_exclude_minsyms (exclude_minsyms);
5088 std::vector<symbol_search> symbols = spec.search ();
5089
5090 if (!quiet)
5091 {
5092 if (regexp != NULL)
5093 {
5094 if (t_regexp != NULL)
5095 printf_filtered
5096 (_("All %ss matching regular expression \"%s\""
5097 " with type matching regular expression \"%s\":\n"),
5098 classnames[kind], regexp, t_regexp);
5099 else
5100 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5101 classnames[kind], regexp);
5102 }
5103 else
5104 {
5105 if (t_regexp != NULL)
5106 printf_filtered
5107 (_("All defined %ss"
5108 " with type matching regular expression \"%s\" :\n"),
5109 classnames[kind], t_regexp);
5110 else
5111 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5112 }
5113 }
5114
5115 for (const symbol_search &p : symbols)
5116 {
5117 QUIT;
5118
5119 if (p.msymbol.minsym != NULL)
5120 {
5121 if (first)
5122 {
5123 if (!quiet)
5124 printf_filtered (_("\nNon-debugging symbols:\n"));
5125 first = 0;
5126 }
5127 print_msymbol_info (p.msymbol);
5128 }
5129 else
5130 {
5131 print_symbol_info (kind,
5132 p.symbol,
5133 p.block,
5134 last_filename);
5135 last_filename
5136 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5137 }
5138 }
5139 }
5140
5141 /* Structure to hold the values of the options used by the 'info variables'
5142 and 'info functions' commands. These correspond to the -q, -t, and -n
5143 options. */
5144
5145 struct info_vars_funcs_options
5146 {
5147 bool quiet = false;
5148 bool exclude_minsyms = false;
5149 char *type_regexp = nullptr;
5150
5151 ~info_vars_funcs_options ()
5152 {
5153 xfree (type_regexp);
5154 }
5155 };
5156
5157 /* The options used by the 'info variables' and 'info functions'
5158 commands. */
5159
5160 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5161 gdb::option::boolean_option_def<info_vars_funcs_options> {
5162 "q",
5163 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5164 nullptr, /* show_cmd_cb */
5165 nullptr /* set_doc */
5166 },
5167
5168 gdb::option::boolean_option_def<info_vars_funcs_options> {
5169 "n",
5170 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5171 nullptr, /* show_cmd_cb */
5172 nullptr /* set_doc */
5173 },
5174
5175 gdb::option::string_option_def<info_vars_funcs_options> {
5176 "t",
5177 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5178 },
5179 nullptr, /* show_cmd_cb */
5180 nullptr /* set_doc */
5181 }
5182 };
5183
5184 /* Returns the option group used by 'info variables' and 'info
5185 functions'. */
5186
5187 static gdb::option::option_def_group
5188 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5189 {
5190 return {{info_vars_funcs_options_defs}, opts};
5191 }
5192
5193 /* Command completer for 'info variables' and 'info functions'. */
5194
5195 static void
5196 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5197 completion_tracker &tracker,
5198 const char *text, const char * /* word */)
5199 {
5200 const auto group
5201 = make_info_vars_funcs_options_def_group (nullptr);
5202 if (gdb::option::complete_options
5203 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5204 return;
5205
5206 const char *word = advance_to_expression_complete_word_point (tracker, text);
5207 symbol_completer (ignore, tracker, text, word);
5208 }
5209
5210 /* Implement the 'info variables' command. */
5211
5212 static void
5213 info_variables_command (const char *args, int from_tty)
5214 {
5215 info_vars_funcs_options opts;
5216 auto grp = make_info_vars_funcs_options_def_group (&opts);
5217 gdb::option::process_options
5218 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5219 if (args != nullptr && *args == '\0')
5220 args = nullptr;
5221
5222 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5223 opts.type_regexp, from_tty);
5224 }
5225
5226 /* Implement the 'info functions' command. */
5227
5228 static void
5229 info_functions_command (const char *args, int from_tty)
5230 {
5231 info_vars_funcs_options opts;
5232
5233 auto grp = make_info_vars_funcs_options_def_group (&opts);
5234 gdb::option::process_options
5235 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5236 if (args != nullptr && *args == '\0')
5237 args = nullptr;
5238
5239 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5240 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5241 }
5242
5243 /* Holds the -q option for the 'info types' command. */
5244
5245 struct info_types_options
5246 {
5247 bool quiet = false;
5248 };
5249
5250 /* The options used by the 'info types' command. */
5251
5252 static const gdb::option::option_def info_types_options_defs[] = {
5253 gdb::option::boolean_option_def<info_types_options> {
5254 "q",
5255 [] (info_types_options *opt) { return &opt->quiet; },
5256 nullptr, /* show_cmd_cb */
5257 nullptr /* set_doc */
5258 }
5259 };
5260
5261 /* Returns the option group used by 'info types'. */
5262
5263 static gdb::option::option_def_group
5264 make_info_types_options_def_group (info_types_options *opts)
5265 {
5266 return {{info_types_options_defs}, opts};
5267 }
5268
5269 /* Implement the 'info types' command. */
5270
5271 static void
5272 info_types_command (const char *args, int from_tty)
5273 {
5274 info_types_options opts;
5275
5276 auto grp = make_info_types_options_def_group (&opts);
5277 gdb::option::process_options
5278 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5279 if (args != nullptr && *args == '\0')
5280 args = nullptr;
5281 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5282 }
5283
5284 /* Command completer for 'info types' command. */
5285
5286 static void
5287 info_types_command_completer (struct cmd_list_element *ignore,
5288 completion_tracker &tracker,
5289 const char *text, const char * /* word */)
5290 {
5291 const auto group
5292 = make_info_types_options_def_group (nullptr);
5293 if (gdb::option::complete_options
5294 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5295 return;
5296
5297 const char *word = advance_to_expression_complete_word_point (tracker, text);
5298 symbol_completer (ignore, tracker, text, word);
5299 }
5300
5301 /* Implement the 'info modules' command. */
5302
5303 static void
5304 info_modules_command (const char *args, int from_tty)
5305 {
5306 info_types_options opts;
5307
5308 auto grp = make_info_types_options_def_group (&opts);
5309 gdb::option::process_options
5310 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5311 if (args != nullptr && *args == '\0')
5312 args = nullptr;
5313 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5314 from_tty);
5315 }
5316
5317 static void
5318 rbreak_command (const char *regexp, int from_tty)
5319 {
5320 std::string string;
5321 const char *file_name = nullptr;
5322
5323 if (regexp != nullptr)
5324 {
5325 const char *colon = strchr (regexp, ':');
5326
5327 /* Ignore the colon if it is part of a Windows drive. */
5328 if (HAS_DRIVE_SPEC (regexp)
5329 && (regexp[2] == '/' || regexp[2] == '\\'))
5330 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5331
5332 if (colon && *(colon + 1) != ':')
5333 {
5334 int colon_index;
5335 char *local_name;
5336
5337 colon_index = colon - regexp;
5338 local_name = (char *) alloca (colon_index + 1);
5339 memcpy (local_name, regexp, colon_index);
5340 local_name[colon_index--] = 0;
5341 while (isspace (local_name[colon_index]))
5342 local_name[colon_index--] = 0;
5343 file_name = local_name;
5344 regexp = skip_spaces (colon + 1);
5345 }
5346 }
5347
5348 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5349 if (file_name != nullptr)
5350 spec.filenames.push_back (file_name);
5351 std::vector<symbol_search> symbols = spec.search ();
5352
5353 scoped_rbreak_breakpoints finalize;
5354 for (const symbol_search &p : symbols)
5355 {
5356 if (p.msymbol.minsym == NULL)
5357 {
5358 struct symtab *symtab = symbol_symtab (p.symbol);
5359 const char *fullname = symtab_to_fullname (symtab);
5360
5361 string = string_printf ("%s:'%s'", fullname,
5362 p.symbol->linkage_name ());
5363 break_command (&string[0], from_tty);
5364 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5365 }
5366 else
5367 {
5368 string = string_printf ("'%s'",
5369 p.msymbol.minsym->linkage_name ());
5370
5371 break_command (&string[0], from_tty);
5372 printf_filtered ("<function, no debug info> %s;\n",
5373 p.msymbol.minsym->print_name ());
5374 }
5375 }
5376 }
5377 \f
5378
5379 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5380
5381 static int
5382 compare_symbol_name (const char *symbol_name, language symbol_language,
5383 const lookup_name_info &lookup_name,
5384 completion_match_result &match_res)
5385 {
5386 const language_defn *lang = language_def (symbol_language);
5387
5388 symbol_name_matcher_ftype *name_match
5389 = lang->get_symbol_name_matcher (lookup_name);
5390
5391 return name_match (symbol_name, lookup_name, &match_res);
5392 }
5393
5394 /* See symtab.h. */
5395
5396 bool
5397 completion_list_add_name (completion_tracker &tracker,
5398 language symbol_language,
5399 const char *symname,
5400 const lookup_name_info &lookup_name,
5401 const char *text, const char *word)
5402 {
5403 completion_match_result &match_res
5404 = tracker.reset_completion_match_result ();
5405
5406 /* Clip symbols that cannot match. */
5407 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5408 return false;
5409
5410 /* Refresh SYMNAME from the match string. It's potentially
5411 different depending on language. (E.g., on Ada, the match may be
5412 the encoded symbol name wrapped in "<>"). */
5413 symname = match_res.match.match ();
5414 gdb_assert (symname != NULL);
5415
5416 /* We have a match for a completion, so add SYMNAME to the current list
5417 of matches. Note that the name is moved to freshly malloc'd space. */
5418
5419 {
5420 gdb::unique_xmalloc_ptr<char> completion
5421 = make_completion_match_str (symname, text, word);
5422
5423 /* Here we pass the match-for-lcd object to add_completion. Some
5424 languages match the user text against substrings of symbol
5425 names in some cases. E.g., in C++, "b push_ba" completes to
5426 "std::vector::push_back", "std::string::push_back", etc., and
5427 in this case we want the completion lowest common denominator
5428 to be "push_back" instead of "std::". */
5429 tracker.add_completion (std::move (completion),
5430 &match_res.match_for_lcd, text, word);
5431 }
5432
5433 return true;
5434 }
5435
5436 /* completion_list_add_name wrapper for struct symbol. */
5437
5438 static void
5439 completion_list_add_symbol (completion_tracker &tracker,
5440 symbol *sym,
5441 const lookup_name_info &lookup_name,
5442 const char *text, const char *word)
5443 {
5444 if (!completion_list_add_name (tracker, sym->language (),
5445 sym->natural_name (),
5446 lookup_name, text, word))
5447 return;
5448
5449 /* C++ function symbols include the parameters within both the msymbol
5450 name and the symbol name. The problem is that the msymbol name will
5451 describe the parameters in the most basic way, with typedefs stripped
5452 out, while the symbol name will represent the types as they appear in
5453 the program. This means we will see duplicate entries in the
5454 completion tracker. The following converts the symbol name back to
5455 the msymbol name and removes the msymbol name from the completion
5456 tracker. */
5457 if (sym->language () == language_cplus
5458 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5459 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5460 {
5461 /* The call to canonicalize returns the empty string if the input
5462 string is already in canonical form, thanks to this we don't
5463 remove the symbol we just added above. */
5464 gdb::unique_xmalloc_ptr<char> str
5465 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5466 if (str != nullptr)
5467 tracker.remove_completion (str.get ());
5468 }
5469 }
5470
5471 /* completion_list_add_name wrapper for struct minimal_symbol. */
5472
5473 static void
5474 completion_list_add_msymbol (completion_tracker &tracker,
5475 minimal_symbol *sym,
5476 const lookup_name_info &lookup_name,
5477 const char *text, const char *word)
5478 {
5479 completion_list_add_name (tracker, sym->language (),
5480 sym->natural_name (),
5481 lookup_name, text, word);
5482 }
5483
5484
5485 /* ObjC: In case we are completing on a selector, look as the msymbol
5486 again and feed all the selectors into the mill. */
5487
5488 static void
5489 completion_list_objc_symbol (completion_tracker &tracker,
5490 struct minimal_symbol *msymbol,
5491 const lookup_name_info &lookup_name,
5492 const char *text, const char *word)
5493 {
5494 static char *tmp = NULL;
5495 static unsigned int tmplen = 0;
5496
5497 const char *method, *category, *selector;
5498 char *tmp2 = NULL;
5499
5500 method = msymbol->natural_name ();
5501
5502 /* Is it a method? */
5503 if ((method[0] != '-') && (method[0] != '+'))
5504 return;
5505
5506 if (text[0] == '[')
5507 /* Complete on shortened method method. */
5508 completion_list_add_name (tracker, language_objc,
5509 method + 1,
5510 lookup_name,
5511 text, word);
5512
5513 while ((strlen (method) + 1) >= tmplen)
5514 {
5515 if (tmplen == 0)
5516 tmplen = 1024;
5517 else
5518 tmplen *= 2;
5519 tmp = (char *) xrealloc (tmp, tmplen);
5520 }
5521 selector = strchr (method, ' ');
5522 if (selector != NULL)
5523 selector++;
5524
5525 category = strchr (method, '(');
5526
5527 if ((category != NULL) && (selector != NULL))
5528 {
5529 memcpy (tmp, method, (category - method));
5530 tmp[category - method] = ' ';
5531 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5532 completion_list_add_name (tracker, language_objc, tmp,
5533 lookup_name, text, word);
5534 if (text[0] == '[')
5535 completion_list_add_name (tracker, language_objc, tmp + 1,
5536 lookup_name, text, word);
5537 }
5538
5539 if (selector != NULL)
5540 {
5541 /* Complete on selector only. */
5542 strcpy (tmp, selector);
5543 tmp2 = strchr (tmp, ']');
5544 if (tmp2 != NULL)
5545 *tmp2 = '\0';
5546
5547 completion_list_add_name (tracker, language_objc, tmp,
5548 lookup_name, text, word);
5549 }
5550 }
5551
5552 /* Break the non-quoted text based on the characters which are in
5553 symbols. FIXME: This should probably be language-specific. */
5554
5555 static const char *
5556 language_search_unquoted_string (const char *text, const char *p)
5557 {
5558 for (; p > text; --p)
5559 {
5560 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5561 continue;
5562 else
5563 {
5564 if ((current_language->la_language == language_objc))
5565 {
5566 if (p[-1] == ':') /* Might be part of a method name. */
5567 continue;
5568 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5569 p -= 2; /* Beginning of a method name. */
5570 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5571 { /* Might be part of a method name. */
5572 const char *t = p;
5573
5574 /* Seeing a ' ' or a '(' is not conclusive evidence
5575 that we are in the middle of a method name. However,
5576 finding "-[" or "+[" should be pretty un-ambiguous.
5577 Unfortunately we have to find it now to decide. */
5578
5579 while (t > text)
5580 if (isalnum (t[-1]) || t[-1] == '_' ||
5581 t[-1] == ' ' || t[-1] == ':' ||
5582 t[-1] == '(' || t[-1] == ')')
5583 --t;
5584 else
5585 break;
5586
5587 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5588 p = t - 2; /* Method name detected. */
5589 /* Else we leave with p unchanged. */
5590 }
5591 }
5592 break;
5593 }
5594 }
5595 return p;
5596 }
5597
5598 static void
5599 completion_list_add_fields (completion_tracker &tracker,
5600 struct symbol *sym,
5601 const lookup_name_info &lookup_name,
5602 const char *text, const char *word)
5603 {
5604 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5605 {
5606 struct type *t = SYMBOL_TYPE (sym);
5607 enum type_code c = t->code ();
5608 int j;
5609
5610 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5611 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5612 if (t->field (j).name ())
5613 completion_list_add_name (tracker, sym->language (),
5614 t->field (j).name (),
5615 lookup_name, text, word);
5616 }
5617 }
5618
5619 /* See symtab.h. */
5620
5621 bool
5622 symbol_is_function_or_method (symbol *sym)
5623 {
5624 switch (SYMBOL_TYPE (sym)->code ())
5625 {
5626 case TYPE_CODE_FUNC:
5627 case TYPE_CODE_METHOD:
5628 return true;
5629 default:
5630 return false;
5631 }
5632 }
5633
5634 /* See symtab.h. */
5635
5636 bool
5637 symbol_is_function_or_method (minimal_symbol *msymbol)
5638 {
5639 switch (MSYMBOL_TYPE (msymbol))
5640 {
5641 case mst_text:
5642 case mst_text_gnu_ifunc:
5643 case mst_solib_trampoline:
5644 case mst_file_text:
5645 return true;
5646 default:
5647 return false;
5648 }
5649 }
5650
5651 /* See symtab.h. */
5652
5653 bound_minimal_symbol
5654 find_gnu_ifunc (const symbol *sym)
5655 {
5656 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5657 return {};
5658
5659 lookup_name_info lookup_name (sym->search_name (),
5660 symbol_name_match_type::SEARCH_NAME);
5661 struct objfile *objfile = symbol_objfile (sym);
5662
5663 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5664 minimal_symbol *ifunc = NULL;
5665
5666 iterate_over_minimal_symbols (objfile, lookup_name,
5667 [&] (minimal_symbol *minsym)
5668 {
5669 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5670 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5671 {
5672 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5673 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5674 {
5675 struct gdbarch *gdbarch = objfile->arch ();
5676 msym_addr = gdbarch_convert_from_func_ptr_addr
5677 (gdbarch, msym_addr, current_inferior ()->top_target ());
5678 }
5679 if (msym_addr == address)
5680 {
5681 ifunc = minsym;
5682 return true;
5683 }
5684 }
5685 return false;
5686 });
5687
5688 if (ifunc != NULL)
5689 return {ifunc, objfile};
5690 return {};
5691 }
5692
5693 /* Add matching symbols from SYMTAB to the current completion list. */
5694
5695 static void
5696 add_symtab_completions (struct compunit_symtab *cust,
5697 completion_tracker &tracker,
5698 complete_symbol_mode mode,
5699 const lookup_name_info &lookup_name,
5700 const char *text, const char *word,
5701 enum type_code code)
5702 {
5703 struct symbol *sym;
5704 const struct block *b;
5705 struct block_iterator iter;
5706 int i;
5707
5708 if (cust == NULL)
5709 return;
5710
5711 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5712 {
5713 QUIT;
5714 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5715 ALL_BLOCK_SYMBOLS (b, iter, sym)
5716 {
5717 if (completion_skip_symbol (mode, sym))
5718 continue;
5719
5720 if (code == TYPE_CODE_UNDEF
5721 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5722 && SYMBOL_TYPE (sym)->code () == code))
5723 completion_list_add_symbol (tracker, sym,
5724 lookup_name,
5725 text, word);
5726 }
5727 }
5728 }
5729
5730 void
5731 default_collect_symbol_completion_matches_break_on
5732 (completion_tracker &tracker, complete_symbol_mode mode,
5733 symbol_name_match_type name_match_type,
5734 const char *text, const char *word,
5735 const char *break_on, enum type_code code)
5736 {
5737 /* Problem: All of the symbols have to be copied because readline
5738 frees them. I'm not going to worry about this; hopefully there
5739 won't be that many. */
5740
5741 struct symbol *sym;
5742 const struct block *b;
5743 const struct block *surrounding_static_block, *surrounding_global_block;
5744 struct block_iterator iter;
5745 /* The symbol we are completing on. Points in same buffer as text. */
5746 const char *sym_text;
5747
5748 /* Now look for the symbol we are supposed to complete on. */
5749 if (mode == complete_symbol_mode::LINESPEC)
5750 sym_text = text;
5751 else
5752 {
5753 const char *p;
5754 char quote_found;
5755 const char *quote_pos = NULL;
5756
5757 /* First see if this is a quoted string. */
5758 quote_found = '\0';
5759 for (p = text; *p != '\0'; ++p)
5760 {
5761 if (quote_found != '\0')
5762 {
5763 if (*p == quote_found)
5764 /* Found close quote. */
5765 quote_found = '\0';
5766 else if (*p == '\\' && p[1] == quote_found)
5767 /* A backslash followed by the quote character
5768 doesn't end the string. */
5769 ++p;
5770 }
5771 else if (*p == '\'' || *p == '"')
5772 {
5773 quote_found = *p;
5774 quote_pos = p;
5775 }
5776 }
5777 if (quote_found == '\'')
5778 /* A string within single quotes can be a symbol, so complete on it. */
5779 sym_text = quote_pos + 1;
5780 else if (quote_found == '"')
5781 /* A double-quoted string is never a symbol, nor does it make sense
5782 to complete it any other way. */
5783 {
5784 return;
5785 }
5786 else
5787 {
5788 /* It is not a quoted string. Break it based on the characters
5789 which are in symbols. */
5790 while (p > text)
5791 {
5792 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5793 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5794 --p;
5795 else
5796 break;
5797 }
5798 sym_text = p;
5799 }
5800 }
5801
5802 lookup_name_info lookup_name (sym_text, name_match_type, true);
5803
5804 /* At this point scan through the misc symbol vectors and add each
5805 symbol you find to the list. Eventually we want to ignore
5806 anything that isn't a text symbol (everything else will be
5807 handled by the psymtab code below). */
5808
5809 if (code == TYPE_CODE_UNDEF)
5810 {
5811 for (objfile *objfile : current_program_space->objfiles ())
5812 {
5813 for (minimal_symbol *msymbol : objfile->msymbols ())
5814 {
5815 QUIT;
5816
5817 if (completion_skip_symbol (mode, msymbol))
5818 continue;
5819
5820 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5821 sym_text, word);
5822
5823 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5824 sym_text, word);
5825 }
5826 }
5827 }
5828
5829 /* Add completions for all currently loaded symbol tables. */
5830 for (objfile *objfile : current_program_space->objfiles ())
5831 {
5832 for (compunit_symtab *cust : objfile->compunits ())
5833 add_symtab_completions (cust, tracker, mode, lookup_name,
5834 sym_text, word, code);
5835 }
5836
5837 /* Look through the partial symtabs for all symbols which begin by
5838 matching SYM_TEXT. Expand all CUs that you find to the list. */
5839 expand_symtabs_matching (NULL,
5840 lookup_name,
5841 NULL,
5842 [&] (compunit_symtab *symtab) /* expansion notify */
5843 {
5844 add_symtab_completions (symtab,
5845 tracker, mode, lookup_name,
5846 sym_text, word, code);
5847 return true;
5848 },
5849 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
5850 ALL_DOMAIN);
5851
5852 /* Search upwards from currently selected frame (so that we can
5853 complete on local vars). Also catch fields of types defined in
5854 this places which match our text string. Only complete on types
5855 visible from current context. */
5856
5857 b = get_selected_block (0);
5858 surrounding_static_block = block_static_block (b);
5859 surrounding_global_block = block_global_block (b);
5860 if (surrounding_static_block != NULL)
5861 while (b != surrounding_static_block)
5862 {
5863 QUIT;
5864
5865 ALL_BLOCK_SYMBOLS (b, iter, sym)
5866 {
5867 if (code == TYPE_CODE_UNDEF)
5868 {
5869 completion_list_add_symbol (tracker, sym, lookup_name,
5870 sym_text, word);
5871 completion_list_add_fields (tracker, sym, lookup_name,
5872 sym_text, word);
5873 }
5874 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5875 && SYMBOL_TYPE (sym)->code () == code)
5876 completion_list_add_symbol (tracker, sym, lookup_name,
5877 sym_text, word);
5878 }
5879
5880 /* Stop when we encounter an enclosing function. Do not stop for
5881 non-inlined functions - the locals of the enclosing function
5882 are in scope for a nested function. */
5883 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5884 break;
5885 b = BLOCK_SUPERBLOCK (b);
5886 }
5887
5888 /* Add fields from the file's types; symbols will be added below. */
5889
5890 if (code == TYPE_CODE_UNDEF)
5891 {
5892 if (surrounding_static_block != NULL)
5893 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5894 completion_list_add_fields (tracker, sym, lookup_name,
5895 sym_text, word);
5896
5897 if (surrounding_global_block != NULL)
5898 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5899 completion_list_add_fields (tracker, sym, lookup_name,
5900 sym_text, word);
5901 }
5902
5903 /* Skip macros if we are completing a struct tag -- arguable but
5904 usually what is expected. */
5905 if (current_language->macro_expansion () == macro_expansion_c
5906 && code == TYPE_CODE_UNDEF)
5907 {
5908 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5909
5910 /* This adds a macro's name to the current completion list. */
5911 auto add_macro_name = [&] (const char *macro_name,
5912 const macro_definition *,
5913 macro_source_file *,
5914 int)
5915 {
5916 completion_list_add_name (tracker, language_c, macro_name,
5917 lookup_name, sym_text, word);
5918 };
5919
5920 /* Add any macros visible in the default scope. Note that this
5921 may yield the occasional wrong result, because an expression
5922 might be evaluated in a scope other than the default. For
5923 example, if the user types "break file:line if <TAB>", the
5924 resulting expression will be evaluated at "file:line" -- but
5925 at there does not seem to be a way to detect this at
5926 completion time. */
5927 scope = default_macro_scope ();
5928 if (scope)
5929 macro_for_each_in_scope (scope->file, scope->line,
5930 add_macro_name);
5931
5932 /* User-defined macros are always visible. */
5933 macro_for_each (macro_user_macros, add_macro_name);
5934 }
5935 }
5936
5937 /* Collect all symbols (regardless of class) which begin by matching
5938 TEXT. */
5939
5940 void
5941 collect_symbol_completion_matches (completion_tracker &tracker,
5942 complete_symbol_mode mode,
5943 symbol_name_match_type name_match_type,
5944 const char *text, const char *word)
5945 {
5946 current_language->collect_symbol_completion_matches (tracker, mode,
5947 name_match_type,
5948 text, word,
5949 TYPE_CODE_UNDEF);
5950 }
5951
5952 /* Like collect_symbol_completion_matches, but only collect
5953 STRUCT_DOMAIN symbols whose type code is CODE. */
5954
5955 void
5956 collect_symbol_completion_matches_type (completion_tracker &tracker,
5957 const char *text, const char *word,
5958 enum type_code code)
5959 {
5960 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5961 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5962
5963 gdb_assert (code == TYPE_CODE_UNION
5964 || code == TYPE_CODE_STRUCT
5965 || code == TYPE_CODE_ENUM);
5966 current_language->collect_symbol_completion_matches (tracker, mode,
5967 name_match_type,
5968 text, word, code);
5969 }
5970
5971 /* Like collect_symbol_completion_matches, but collects a list of
5972 symbols defined in all source files named SRCFILE. */
5973
5974 void
5975 collect_file_symbol_completion_matches (completion_tracker &tracker,
5976 complete_symbol_mode mode,
5977 symbol_name_match_type name_match_type,
5978 const char *text, const char *word,
5979 const char *srcfile)
5980 {
5981 /* The symbol we are completing on. Points in same buffer as text. */
5982 const char *sym_text;
5983
5984 /* Now look for the symbol we are supposed to complete on.
5985 FIXME: This should be language-specific. */
5986 if (mode == complete_symbol_mode::LINESPEC)
5987 sym_text = text;
5988 else
5989 {
5990 const char *p;
5991 char quote_found;
5992 const char *quote_pos = NULL;
5993
5994 /* First see if this is a quoted string. */
5995 quote_found = '\0';
5996 for (p = text; *p != '\0'; ++p)
5997 {
5998 if (quote_found != '\0')
5999 {
6000 if (*p == quote_found)
6001 /* Found close quote. */
6002 quote_found = '\0';
6003 else if (*p == '\\' && p[1] == quote_found)
6004 /* A backslash followed by the quote character
6005 doesn't end the string. */
6006 ++p;
6007 }
6008 else if (*p == '\'' || *p == '"')
6009 {
6010 quote_found = *p;
6011 quote_pos = p;
6012 }
6013 }
6014 if (quote_found == '\'')
6015 /* A string within single quotes can be a symbol, so complete on it. */
6016 sym_text = quote_pos + 1;
6017 else if (quote_found == '"')
6018 /* A double-quoted string is never a symbol, nor does it make sense
6019 to complete it any other way. */
6020 {
6021 return;
6022 }
6023 else
6024 {
6025 /* Not a quoted string. */
6026 sym_text = language_search_unquoted_string (text, p);
6027 }
6028 }
6029
6030 lookup_name_info lookup_name (sym_text, name_match_type, true);
6031
6032 /* Go through symtabs for SRCFILE and check the externs and statics
6033 for symbols which match. */
6034 iterate_over_symtabs (srcfile, [&] (symtab *s)
6035 {
6036 add_symtab_completions (SYMTAB_COMPUNIT (s),
6037 tracker, mode, lookup_name,
6038 sym_text, word, TYPE_CODE_UNDEF);
6039 return false;
6040 });
6041 }
6042
6043 /* A helper function for make_source_files_completion_list. It adds
6044 another file name to a list of possible completions, growing the
6045 list as necessary. */
6046
6047 static void
6048 add_filename_to_list (const char *fname, const char *text, const char *word,
6049 completion_list *list)
6050 {
6051 list->emplace_back (make_completion_match_str (fname, text, word));
6052 }
6053
6054 static int
6055 not_interesting_fname (const char *fname)
6056 {
6057 static const char *illegal_aliens[] = {
6058 "_globals_", /* inserted by coff_symtab_read */
6059 NULL
6060 };
6061 int i;
6062
6063 for (i = 0; illegal_aliens[i]; i++)
6064 {
6065 if (filename_cmp (fname, illegal_aliens[i]) == 0)
6066 return 1;
6067 }
6068 return 0;
6069 }
6070
6071 /* An object of this type is passed as the callback argument to
6072 map_partial_symbol_filenames. */
6073 struct add_partial_filename_data
6074 {
6075 struct filename_seen_cache *filename_seen_cache;
6076 const char *text;
6077 const char *word;
6078 int text_len;
6079 completion_list *list;
6080
6081 void operator() (const char *filename, const char *fullname);
6082 };
6083
6084 /* A callback for map_partial_symbol_filenames. */
6085
6086 void
6087 add_partial_filename_data::operator() (const char *filename,
6088 const char *fullname)
6089 {
6090 if (not_interesting_fname (filename))
6091 return;
6092 if (!filename_seen_cache->seen (filename)
6093 && filename_ncmp (filename, text, text_len) == 0)
6094 {
6095 /* This file matches for a completion; add it to the
6096 current list of matches. */
6097 add_filename_to_list (filename, text, word, list);
6098 }
6099 else
6100 {
6101 const char *base_name = lbasename (filename);
6102
6103 if (base_name != filename
6104 && !filename_seen_cache->seen (base_name)
6105 && filename_ncmp (base_name, text, text_len) == 0)
6106 add_filename_to_list (base_name, text, word, list);
6107 }
6108 }
6109
6110 /* Return a list of all source files whose names begin with matching
6111 TEXT. The file names are looked up in the symbol tables of this
6112 program. */
6113
6114 completion_list
6115 make_source_files_completion_list (const char *text, const char *word)
6116 {
6117 size_t text_len = strlen (text);
6118 completion_list list;
6119 const char *base_name;
6120 struct add_partial_filename_data datum;
6121
6122 if (!have_full_symbols () && !have_partial_symbols ())
6123 return list;
6124
6125 filename_seen_cache filenames_seen;
6126
6127 for (objfile *objfile : current_program_space->objfiles ())
6128 {
6129 for (compunit_symtab *cu : objfile->compunits ())
6130 {
6131 for (symtab *s : compunit_filetabs (cu))
6132 {
6133 if (not_interesting_fname (s->filename))
6134 continue;
6135 if (!filenames_seen.seen (s->filename)
6136 && filename_ncmp (s->filename, text, text_len) == 0)
6137 {
6138 /* This file matches for a completion; add it to the current
6139 list of matches. */
6140 add_filename_to_list (s->filename, text, word, &list);
6141 }
6142 else
6143 {
6144 /* NOTE: We allow the user to type a base name when the
6145 debug info records leading directories, but not the other
6146 way around. This is what subroutines of breakpoint
6147 command do when they parse file names. */
6148 base_name = lbasename (s->filename);
6149 if (base_name != s->filename
6150 && !filenames_seen.seen (base_name)
6151 && filename_ncmp (base_name, text, text_len) == 0)
6152 add_filename_to_list (base_name, text, word, &list);
6153 }
6154 }
6155 }
6156 }
6157
6158 datum.filename_seen_cache = &filenames_seen;
6159 datum.text = text;
6160 datum.word = word;
6161 datum.text_len = text_len;
6162 datum.list = &list;
6163 map_symbol_filenames (datum, false /*need_fullname*/);
6164
6165 return list;
6166 }
6167 \f
6168 /* Track MAIN */
6169
6170 /* Return the "main_info" object for the current program space. If
6171 the object has not yet been created, create it and fill in some
6172 default values. */
6173
6174 static struct main_info *
6175 get_main_info (void)
6176 {
6177 struct main_info *info = main_progspace_key.get (current_program_space);
6178
6179 if (info == NULL)
6180 {
6181 /* It may seem strange to store the main name in the progspace
6182 and also in whatever objfile happens to see a main name in
6183 its debug info. The reason for this is mainly historical:
6184 gdb returned "main" as the name even if no function named
6185 "main" was defined the program; and this approach lets us
6186 keep compatibility. */
6187 info = main_progspace_key.emplace (current_program_space);
6188 }
6189
6190 return info;
6191 }
6192
6193 static void
6194 set_main_name (const char *name, enum language lang)
6195 {
6196 struct main_info *info = get_main_info ();
6197
6198 if (info->name_of_main != NULL)
6199 {
6200 xfree (info->name_of_main);
6201 info->name_of_main = NULL;
6202 info->language_of_main = language_unknown;
6203 }
6204 if (name != NULL)
6205 {
6206 info->name_of_main = xstrdup (name);
6207 info->language_of_main = lang;
6208 }
6209 }
6210
6211 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6212 accordingly. */
6213
6214 static void
6215 find_main_name (void)
6216 {
6217 const char *new_main_name;
6218
6219 /* First check the objfiles to see whether a debuginfo reader has
6220 picked up the appropriate main name. Historically the main name
6221 was found in a more or less random way; this approach instead
6222 relies on the order of objfile creation -- which still isn't
6223 guaranteed to get the correct answer, but is just probably more
6224 accurate. */
6225 for (objfile *objfile : current_program_space->objfiles ())
6226 {
6227 if (objfile->per_bfd->name_of_main != NULL)
6228 {
6229 set_main_name (objfile->per_bfd->name_of_main,
6230 objfile->per_bfd->language_of_main);
6231 return;
6232 }
6233 }
6234
6235 /* Try to see if the main procedure is in Ada. */
6236 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6237 be to add a new method in the language vector, and call this
6238 method for each language until one of them returns a non-empty
6239 name. This would allow us to remove this hard-coded call to
6240 an Ada function. It is not clear that this is a better approach
6241 at this point, because all methods need to be written in a way
6242 such that false positives never be returned. For instance, it is
6243 important that a method does not return a wrong name for the main
6244 procedure if the main procedure is actually written in a different
6245 language. It is easy to guaranty this with Ada, since we use a
6246 special symbol generated only when the main in Ada to find the name
6247 of the main procedure. It is difficult however to see how this can
6248 be guarantied for languages such as C, for instance. This suggests
6249 that order of call for these methods becomes important, which means
6250 a more complicated approach. */
6251 new_main_name = ada_main_name ();
6252 if (new_main_name != NULL)
6253 {
6254 set_main_name (new_main_name, language_ada);
6255 return;
6256 }
6257
6258 new_main_name = d_main_name ();
6259 if (new_main_name != NULL)
6260 {
6261 set_main_name (new_main_name, language_d);
6262 return;
6263 }
6264
6265 new_main_name = go_main_name ();
6266 if (new_main_name != NULL)
6267 {
6268 set_main_name (new_main_name, language_go);
6269 return;
6270 }
6271
6272 new_main_name = pascal_main_name ();
6273 if (new_main_name != NULL)
6274 {
6275 set_main_name (new_main_name, language_pascal);
6276 return;
6277 }
6278
6279 /* The languages above didn't identify the name of the main procedure.
6280 Fallback to "main". */
6281
6282 /* Try to find language for main in psymtabs. */
6283 enum language lang
6284 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6285 if (lang != language_unknown)
6286 {
6287 set_main_name ("main", lang);
6288 return;
6289 }
6290
6291 set_main_name ("main", language_unknown);
6292 }
6293
6294 /* See symtab.h. */
6295
6296 const char *
6297 main_name ()
6298 {
6299 struct main_info *info = get_main_info ();
6300
6301 if (info->name_of_main == NULL)
6302 find_main_name ();
6303
6304 return info->name_of_main;
6305 }
6306
6307 /* Return the language of the main function. If it is not known,
6308 return language_unknown. */
6309
6310 enum language
6311 main_language (void)
6312 {
6313 struct main_info *info = get_main_info ();
6314
6315 if (info->name_of_main == NULL)
6316 find_main_name ();
6317
6318 return info->language_of_main;
6319 }
6320
6321 /* Handle ``executable_changed'' events for the symtab module. */
6322
6323 static void
6324 symtab_observer_executable_changed (void)
6325 {
6326 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6327 set_main_name (NULL, language_unknown);
6328 }
6329
6330 /* Return 1 if the supplied producer string matches the ARM RealView
6331 compiler (armcc). */
6332
6333 bool
6334 producer_is_realview (const char *producer)
6335 {
6336 static const char *const arm_idents[] = {
6337 "ARM C Compiler, ADS",
6338 "Thumb C Compiler, ADS",
6339 "ARM C++ Compiler, ADS",
6340 "Thumb C++ Compiler, ADS",
6341 "ARM/Thumb C/C++ Compiler, RVCT",
6342 "ARM C/C++ Compiler, RVCT"
6343 };
6344 int i;
6345
6346 if (producer == NULL)
6347 return false;
6348
6349 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6350 if (startswith (producer, arm_idents[i]))
6351 return true;
6352
6353 return false;
6354 }
6355
6356 \f
6357
6358 /* The next index to hand out in response to a registration request. */
6359
6360 static int next_aclass_value = LOC_FINAL_VALUE;
6361
6362 /* The maximum number of "aclass" registrations we support. This is
6363 constant for convenience. */
6364 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6365
6366 /* The objects representing the various "aclass" values. The elements
6367 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6368 elements are those registered at gdb initialization time. */
6369
6370 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6371
6372 /* The globally visible pointer. This is separate from 'symbol_impl'
6373 so that it can be const. */
6374
6375 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6376
6377 /* Make sure we saved enough room in struct symbol. */
6378
6379 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6380
6381 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6382 is the ops vector associated with this index. This returns the new
6383 index, which should be used as the aclass_index field for symbols
6384 of this type. */
6385
6386 int
6387 register_symbol_computed_impl (enum address_class aclass,
6388 const struct symbol_computed_ops *ops)
6389 {
6390 int result = next_aclass_value++;
6391
6392 gdb_assert (aclass == LOC_COMPUTED);
6393 gdb_assert (result < MAX_SYMBOL_IMPLS);
6394 symbol_impl[result].aclass = aclass;
6395 symbol_impl[result].ops_computed = ops;
6396
6397 /* Sanity check OPS. */
6398 gdb_assert (ops != NULL);
6399 gdb_assert (ops->tracepoint_var_ref != NULL);
6400 gdb_assert (ops->describe_location != NULL);
6401 gdb_assert (ops->get_symbol_read_needs != NULL);
6402 gdb_assert (ops->read_variable != NULL);
6403
6404 return result;
6405 }
6406
6407 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6408 OPS is the ops vector associated with this index. This returns the
6409 new index, which should be used as the aclass_index field for symbols
6410 of this type. */
6411
6412 int
6413 register_symbol_block_impl (enum address_class aclass,
6414 const struct symbol_block_ops *ops)
6415 {
6416 int result = next_aclass_value++;
6417
6418 gdb_assert (aclass == LOC_BLOCK);
6419 gdb_assert (result < MAX_SYMBOL_IMPLS);
6420 symbol_impl[result].aclass = aclass;
6421 symbol_impl[result].ops_block = ops;
6422
6423 /* Sanity check OPS. */
6424 gdb_assert (ops != NULL);
6425 gdb_assert (ops->find_frame_base_location != NULL);
6426
6427 return result;
6428 }
6429
6430 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6431 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6432 this index. This returns the new index, which should be used as
6433 the aclass_index field for symbols of this type. */
6434
6435 int
6436 register_symbol_register_impl (enum address_class aclass,
6437 const struct symbol_register_ops *ops)
6438 {
6439 int result = next_aclass_value++;
6440
6441 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6442 gdb_assert (result < MAX_SYMBOL_IMPLS);
6443 symbol_impl[result].aclass = aclass;
6444 symbol_impl[result].ops_register = ops;
6445
6446 return result;
6447 }
6448
6449 /* Initialize elements of 'symbol_impl' for the constants in enum
6450 address_class. */
6451
6452 static void
6453 initialize_ordinary_address_classes (void)
6454 {
6455 int i;
6456
6457 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6458 symbol_impl[i].aclass = (enum address_class) i;
6459 }
6460
6461 \f
6462
6463 /* See symtab.h. */
6464
6465 struct objfile *
6466 symbol_objfile (const struct symbol *symbol)
6467 {
6468 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6469 return SYMTAB_OBJFILE (symbol->owner.symtab);
6470 }
6471
6472 /* See symtab.h. */
6473
6474 struct gdbarch *
6475 symbol_arch (const struct symbol *symbol)
6476 {
6477 if (!SYMBOL_OBJFILE_OWNED (symbol))
6478 return symbol->owner.arch;
6479 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6480 }
6481
6482 /* See symtab.h. */
6483
6484 struct symtab *
6485 symbol_symtab (const struct symbol *symbol)
6486 {
6487 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6488 return symbol->owner.symtab;
6489 }
6490
6491 /* See symtab.h. */
6492
6493 void
6494 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6495 {
6496 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6497 symbol->owner.symtab = symtab;
6498 }
6499
6500 /* See symtab.h. */
6501
6502 CORE_ADDR
6503 get_symbol_address (const struct symbol *sym)
6504 {
6505 gdb_assert (sym->maybe_copied);
6506 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6507
6508 const char *linkage_name = sym->linkage_name ();
6509
6510 for (objfile *objfile : current_program_space->objfiles ())
6511 {
6512 if (objfile->separate_debug_objfile_backlink != nullptr)
6513 continue;
6514
6515 bound_minimal_symbol minsym
6516 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6517 if (minsym.minsym != nullptr)
6518 return BMSYMBOL_VALUE_ADDRESS (minsym);
6519 }
6520 return sym->value.address;
6521 }
6522
6523 /* See symtab.h. */
6524
6525 CORE_ADDR
6526 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6527 {
6528 gdb_assert (minsym->maybe_copied);
6529 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6530
6531 const char *linkage_name = minsym->linkage_name ();
6532
6533 for (objfile *objfile : current_program_space->objfiles ())
6534 {
6535 if (objfile->separate_debug_objfile_backlink == nullptr
6536 && (objfile->flags & OBJF_MAINLINE) != 0)
6537 {
6538 bound_minimal_symbol found
6539 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6540 if (found.minsym != nullptr)
6541 return BMSYMBOL_VALUE_ADDRESS (found);
6542 }
6543 }
6544 return (minsym->value.address
6545 + objf->section_offsets[minsym->section_index ()]);
6546 }
6547
6548 \f
6549
6550 /* Hold the sub-commands of 'info module'. */
6551
6552 static struct cmd_list_element *info_module_cmdlist = NULL;
6553
6554 /* See symtab.h. */
6555
6556 std::vector<module_symbol_search>
6557 search_module_symbols (const char *module_regexp, const char *regexp,
6558 const char *type_regexp, search_domain kind)
6559 {
6560 std::vector<module_symbol_search> results;
6561
6562 /* Search for all modules matching MODULE_REGEXP. */
6563 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6564 spec1.set_exclude_minsyms (true);
6565 std::vector<symbol_search> modules = spec1.search ();
6566
6567 /* Now search for all symbols of the required KIND matching the required
6568 regular expressions. We figure out which ones are in which modules
6569 below. */
6570 global_symbol_searcher spec2 (kind, regexp);
6571 spec2.set_symbol_type_regexp (type_regexp);
6572 spec2.set_exclude_minsyms (true);
6573 std::vector<symbol_search> symbols = spec2.search ();
6574
6575 /* Now iterate over all MODULES, checking to see which items from
6576 SYMBOLS are in each module. */
6577 for (const symbol_search &p : modules)
6578 {
6579 QUIT;
6580
6581 /* This is a module. */
6582 gdb_assert (p.symbol != nullptr);
6583
6584 std::string prefix = p.symbol->print_name ();
6585 prefix += "::";
6586
6587 for (const symbol_search &q : symbols)
6588 {
6589 if (q.symbol == nullptr)
6590 continue;
6591
6592 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6593 prefix.size ()) != 0)
6594 continue;
6595
6596 results.push_back ({p, q});
6597 }
6598 }
6599
6600 return results;
6601 }
6602
6603 /* Implement the core of both 'info module functions' and 'info module
6604 variables'. */
6605
6606 static void
6607 info_module_subcommand (bool quiet, const char *module_regexp,
6608 const char *regexp, const char *type_regexp,
6609 search_domain kind)
6610 {
6611 /* Print a header line. Don't build the header line bit by bit as this
6612 prevents internationalisation. */
6613 if (!quiet)
6614 {
6615 if (module_regexp == nullptr)
6616 {
6617 if (type_regexp == nullptr)
6618 {
6619 if (regexp == nullptr)
6620 printf_filtered ((kind == VARIABLES_DOMAIN
6621 ? _("All variables in all modules:")
6622 : _("All functions in all modules:")));
6623 else
6624 printf_filtered
6625 ((kind == VARIABLES_DOMAIN
6626 ? _("All variables matching regular expression"
6627 " \"%s\" in all modules:")
6628 : _("All functions matching regular expression"
6629 " \"%s\" in all modules:")),
6630 regexp);
6631 }
6632 else
6633 {
6634 if (regexp == nullptr)
6635 printf_filtered
6636 ((kind == VARIABLES_DOMAIN
6637 ? _("All variables with type matching regular "
6638 "expression \"%s\" in all modules:")
6639 : _("All functions with type matching regular "
6640 "expression \"%s\" in all modules:")),
6641 type_regexp);
6642 else
6643 printf_filtered
6644 ((kind == VARIABLES_DOMAIN
6645 ? _("All variables matching regular expression "
6646 "\"%s\",\n\twith type matching regular "
6647 "expression \"%s\" in all modules:")
6648 : _("All functions matching regular expression "
6649 "\"%s\",\n\twith type matching regular "
6650 "expression \"%s\" in all modules:")),
6651 regexp, type_regexp);
6652 }
6653 }
6654 else
6655 {
6656 if (type_regexp == nullptr)
6657 {
6658 if (regexp == nullptr)
6659 printf_filtered
6660 ((kind == VARIABLES_DOMAIN
6661 ? _("All variables in all modules matching regular "
6662 "expression \"%s\":")
6663 : _("All functions in all modules matching regular "
6664 "expression \"%s\":")),
6665 module_regexp);
6666 else
6667 printf_filtered
6668 ((kind == VARIABLES_DOMAIN
6669 ? _("All variables matching regular expression "
6670 "\"%s\",\n\tin all modules matching regular "
6671 "expression \"%s\":")
6672 : _("All functions matching regular expression "
6673 "\"%s\",\n\tin all modules matching regular "
6674 "expression \"%s\":")),
6675 regexp, module_regexp);
6676 }
6677 else
6678 {
6679 if (regexp == nullptr)
6680 printf_filtered
6681 ((kind == VARIABLES_DOMAIN
6682 ? _("All variables with type matching regular "
6683 "expression \"%s\"\n\tin all modules matching "
6684 "regular expression \"%s\":")
6685 : _("All functions with type matching regular "
6686 "expression \"%s\"\n\tin all modules matching "
6687 "regular expression \"%s\":")),
6688 type_regexp, module_regexp);
6689 else
6690 printf_filtered
6691 ((kind == VARIABLES_DOMAIN
6692 ? _("All variables matching regular expression "
6693 "\"%s\",\n\twith type matching regular expression "
6694 "\"%s\",\n\tin all modules matching regular "
6695 "expression \"%s\":")
6696 : _("All functions matching regular expression "
6697 "\"%s\",\n\twith type matching regular expression "
6698 "\"%s\",\n\tin all modules matching regular "
6699 "expression \"%s\":")),
6700 regexp, type_regexp, module_regexp);
6701 }
6702 }
6703 printf_filtered ("\n");
6704 }
6705
6706 /* Find all symbols of type KIND matching the given regular expressions
6707 along with the symbols for the modules in which those symbols
6708 reside. */
6709 std::vector<module_symbol_search> module_symbols
6710 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6711
6712 std::sort (module_symbols.begin (), module_symbols.end (),
6713 [] (const module_symbol_search &a, const module_symbol_search &b)
6714 {
6715 if (a.first < b.first)
6716 return true;
6717 else if (a.first == b.first)
6718 return a.second < b.second;
6719 else
6720 return false;
6721 });
6722
6723 const char *last_filename = "";
6724 const symbol *last_module_symbol = nullptr;
6725 for (const module_symbol_search &ms : module_symbols)
6726 {
6727 const symbol_search &p = ms.first;
6728 const symbol_search &q = ms.second;
6729
6730 gdb_assert (q.symbol != nullptr);
6731
6732 if (last_module_symbol != p.symbol)
6733 {
6734 printf_filtered ("\n");
6735 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6736 last_module_symbol = p.symbol;
6737 last_filename = "";
6738 }
6739
6740 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6741 last_filename);
6742 last_filename
6743 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6744 }
6745 }
6746
6747 /* Hold the option values for the 'info module .....' sub-commands. */
6748
6749 struct info_modules_var_func_options
6750 {
6751 bool quiet = false;
6752 char *type_regexp = nullptr;
6753 char *module_regexp = nullptr;
6754
6755 ~info_modules_var_func_options ()
6756 {
6757 xfree (type_regexp);
6758 xfree (module_regexp);
6759 }
6760 };
6761
6762 /* The options used by 'info module variables' and 'info module functions'
6763 commands. */
6764
6765 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6766 gdb::option::boolean_option_def<info_modules_var_func_options> {
6767 "q",
6768 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6769 nullptr, /* show_cmd_cb */
6770 nullptr /* set_doc */
6771 },
6772
6773 gdb::option::string_option_def<info_modules_var_func_options> {
6774 "t",
6775 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6776 nullptr, /* show_cmd_cb */
6777 nullptr /* set_doc */
6778 },
6779
6780 gdb::option::string_option_def<info_modules_var_func_options> {
6781 "m",
6782 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6783 nullptr, /* show_cmd_cb */
6784 nullptr /* set_doc */
6785 }
6786 };
6787
6788 /* Return the option group used by the 'info module ...' sub-commands. */
6789
6790 static inline gdb::option::option_def_group
6791 make_info_modules_var_func_options_def_group
6792 (info_modules_var_func_options *opts)
6793 {
6794 return {{info_modules_var_func_options_defs}, opts};
6795 }
6796
6797 /* Implements the 'info module functions' command. */
6798
6799 static void
6800 info_module_functions_command (const char *args, int from_tty)
6801 {
6802 info_modules_var_func_options opts;
6803 auto grp = make_info_modules_var_func_options_def_group (&opts);
6804 gdb::option::process_options
6805 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6806 if (args != nullptr && *args == '\0')
6807 args = nullptr;
6808
6809 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6810 opts.type_regexp, FUNCTIONS_DOMAIN);
6811 }
6812
6813 /* Implements the 'info module variables' command. */
6814
6815 static void
6816 info_module_variables_command (const char *args, int from_tty)
6817 {
6818 info_modules_var_func_options opts;
6819 auto grp = make_info_modules_var_func_options_def_group (&opts);
6820 gdb::option::process_options
6821 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6822 if (args != nullptr && *args == '\0')
6823 args = nullptr;
6824
6825 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6826 opts.type_regexp, VARIABLES_DOMAIN);
6827 }
6828
6829 /* Command completer for 'info module ...' sub-commands. */
6830
6831 static void
6832 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6833 completion_tracker &tracker,
6834 const char *text,
6835 const char * /* word */)
6836 {
6837
6838 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6839 if (gdb::option::complete_options
6840 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6841 return;
6842
6843 const char *word = advance_to_expression_complete_word_point (tracker, text);
6844 symbol_completer (ignore, tracker, text, word);
6845 }
6846
6847 \f
6848
6849 void _initialize_symtab ();
6850 void
6851 _initialize_symtab ()
6852 {
6853 cmd_list_element *c;
6854
6855 initialize_ordinary_address_classes ();
6856
6857 c = add_info ("variables", info_variables_command,
6858 info_print_args_help (_("\
6859 All global and static variable names or those matching REGEXPs.\n\
6860 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6861 Prints the global and static variables.\n"),
6862 _("global and static variables"),
6863 true));
6864 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6865 if (dbx_commands)
6866 {
6867 c = add_com ("whereis", class_info, info_variables_command,
6868 info_print_args_help (_("\
6869 All global and static variable names, or those matching REGEXPs.\n\
6870 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6871 Prints the global and static variables.\n"),
6872 _("global and static variables"),
6873 true));
6874 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6875 }
6876
6877 c = add_info ("functions", info_functions_command,
6878 info_print_args_help (_("\
6879 All function names or those matching REGEXPs.\n\
6880 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6881 Prints the functions.\n"),
6882 _("functions"),
6883 true));
6884 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6885
6886 c = add_info ("types", info_types_command, _("\
6887 All type names, or those matching REGEXP.\n\
6888 Usage: info types [-q] [REGEXP]\n\
6889 Print information about all types matching REGEXP, or all types if no\n\
6890 REGEXP is given. The optional flag -q disables printing of headers."));
6891 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6892
6893 const auto info_sources_opts
6894 = make_info_sources_options_def_group (nullptr);
6895
6896 static std::string info_sources_help
6897 = gdb::option::build_help (_("\
6898 All source files in the program or those matching REGEXP.\n\
6899 Usage: info sources [OPTION]... [REGEXP]\n\
6900 By default, REGEXP is used to match anywhere in the filename.\n\
6901 \n\
6902 Options:\n\
6903 %OPTIONS%"),
6904 info_sources_opts);
6905
6906 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6907 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6908
6909 c = add_info ("modules", info_modules_command,
6910 _("All module names, or those matching REGEXP."));
6911 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6912
6913 add_basic_prefix_cmd ("module", class_info, _("\
6914 Print information about modules."),
6915 &info_module_cmdlist, 0, &infolist);
6916
6917 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6918 Display functions arranged by modules.\n\
6919 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6920 Print a summary of all functions within each Fortran module, grouped by\n\
6921 module and file. For each function the line on which the function is\n\
6922 defined is given along with the type signature and name of the function.\n\
6923 \n\
6924 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6925 listed. If MODREGEXP is provided then only functions in modules matching\n\
6926 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6927 type signature matches TYPEREGEXP are listed.\n\
6928 \n\
6929 The -q flag suppresses printing some header information."),
6930 &info_module_cmdlist);
6931 set_cmd_completer_handle_brkchars
6932 (c, info_module_var_func_command_completer);
6933
6934 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6935 Display variables arranged by modules.\n\
6936 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6937 Print a summary of all variables within each Fortran module, grouped by\n\
6938 module and file. For each variable the line on which the variable is\n\
6939 defined is given along with the type and name of the variable.\n\
6940 \n\
6941 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6942 listed. If MODREGEXP is provided then only variables in modules matching\n\
6943 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6944 type matches TYPEREGEXP are listed.\n\
6945 \n\
6946 The -q flag suppresses printing some header information."),
6947 &info_module_cmdlist);
6948 set_cmd_completer_handle_brkchars
6949 (c, info_module_var_func_command_completer);
6950
6951 add_com ("rbreak", class_breakpoint, rbreak_command,
6952 _("Set a breakpoint for all functions matching REGEXP."));
6953
6954 add_setshow_enum_cmd ("multiple-symbols", no_class,
6955 multiple_symbols_modes, &multiple_symbols_mode,
6956 _("\
6957 Set how the debugger handles ambiguities in expressions."), _("\
6958 Show how the debugger handles ambiguities in expressions."), _("\
6959 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6960 NULL, NULL, &setlist, &showlist);
6961
6962 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6963 &basenames_may_differ, _("\
6964 Set whether a source file may have multiple base names."), _("\
6965 Show whether a source file may have multiple base names."), _("\
6966 (A \"base name\" is the name of a file with the directory part removed.\n\
6967 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6968 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6969 before comparing them. Canonicalization is an expensive operation,\n\
6970 but it allows the same file be known by more than one base name.\n\
6971 If not set (the default), all source files are assumed to have just\n\
6972 one base name, and gdb will do file name comparisons more efficiently."),
6973 NULL, NULL,
6974 &setlist, &showlist);
6975
6976 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6977 _("Set debugging of symbol table creation."),
6978 _("Show debugging of symbol table creation."), _("\
6979 When enabled (non-zero), debugging messages are printed when building\n\
6980 symbol tables. A value of 1 (one) normally provides enough information.\n\
6981 A value greater than 1 provides more verbose information."),
6982 NULL,
6983 NULL,
6984 &setdebuglist, &showdebuglist);
6985
6986 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6987 _("\
6988 Set debugging of symbol lookup."), _("\
6989 Show debugging of symbol lookup."), _("\
6990 When enabled (non-zero), symbol lookups are logged."),
6991 NULL, NULL,
6992 &setdebuglist, &showdebuglist);
6993
6994 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6995 &new_symbol_cache_size,
6996 _("Set the size of the symbol cache."),
6997 _("Show the size of the symbol cache."), _("\
6998 The size of the symbol cache.\n\
6999 If zero then the symbol cache is disabled."),
7000 set_symbol_cache_size_handler, NULL,
7001 &maintenance_set_cmdlist,
7002 &maintenance_show_cmdlist);
7003
7004 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
7005 _("Dump the symbol cache for each program space."),
7006 &maintenanceprintlist);
7007
7008 add_cmd ("symbol-cache-statistics", class_maintenance,
7009 maintenance_print_symbol_cache_statistics,
7010 _("Print symbol cache statistics for each program space."),
7011 &maintenanceprintlist);
7012
7013 cmd_list_element *maintenance_flush_symbol_cache_cmd
7014 = add_cmd ("symbol-cache", class_maintenance,
7015 maintenance_flush_symbol_cache,
7016 _("Flush the symbol cache for each program space."),
7017 &maintenanceflushlist);
7018 c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd,
7019 class_maintenance, 0, &maintenancelist);
7020 deprecate_cmd (c, "maintenancelist flush symbol-cache");
7021
7022 gdb::observers::executable_changed.attach (symtab_observer_executable_changed,
7023 "symtab");
7024 gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab");
7025 gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab");
7026 }