]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
Set language for Ada minimal symbols.
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <string.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63 #include "ada-lang.h"
64
65 #include "psymtab.h"
66 #include "parser-defs.h"
67
68 /* Prototypes for local functions */
69
70 static void rbreak_command (char *, int);
71
72 static void types_info (char *, int);
73
74 static void functions_info (char *, int);
75
76 static void variables_info (char *, int);
77
78 static void sources_info (char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct symbol *lookup_symbol_aux (const char *name,
83 const struct block *block,
84 const domain_enum domain,
85 enum language language,
86 struct field_of_this_result *is_a_field_of_this);
87
88 static
89 struct symbol *lookup_symbol_aux_local (const char *name,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static
95 struct symbol *lookup_symbol_aux_symtabs (int block_index,
96 const char *name,
97 const domain_enum domain);
98
99 static
100 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
101 int block_index,
102 const char *name,
103 const domain_enum domain);
104
105 void _initialize_symtab (void);
106
107 /* */
108
109 /* When non-zero, print debugging messages related to symtab creation. */
110 unsigned int symtab_create_debug = 0;
111
112 /* Non-zero if a file may be known by two different basenames.
113 This is the uncommon case, and significantly slows down gdb.
114 Default set to "off" to not slow down the common case. */
115 int basenames_may_differ = 0;
116
117 /* Allow the user to configure the debugger behavior with respect
118 to multiple-choice menus when more than one symbol matches during
119 a symbol lookup. */
120
121 const char multiple_symbols_ask[] = "ask";
122 const char multiple_symbols_all[] = "all";
123 const char multiple_symbols_cancel[] = "cancel";
124 static const char *const multiple_symbols_modes[] =
125 {
126 multiple_symbols_ask,
127 multiple_symbols_all,
128 multiple_symbols_cancel,
129 NULL
130 };
131 static const char *multiple_symbols_mode = multiple_symbols_all;
132
133 /* Read-only accessor to AUTO_SELECT_MODE. */
134
135 const char *
136 multiple_symbols_select_mode (void)
137 {
138 return multiple_symbols_mode;
139 }
140
141 /* Block in which the most recently searched-for symbol was found.
142 Might be better to make this a parameter to lookup_symbol and
143 value_of_this. */
144
145 const struct block *block_found;
146
147 /* Return the name of a domain_enum. */
148
149 const char *
150 domain_name (domain_enum e)
151 {
152 switch (e)
153 {
154 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
155 case VAR_DOMAIN: return "VAR_DOMAIN";
156 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
157 case LABEL_DOMAIN: return "LABEL_DOMAIN";
158 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
159 default: gdb_assert_not_reached ("bad domain_enum");
160 }
161 }
162
163 /* Return the name of a search_domain . */
164
165 const char *
166 search_domain_name (enum search_domain e)
167 {
168 switch (e)
169 {
170 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
171 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
172 case TYPES_DOMAIN: return "TYPES_DOMAIN";
173 case ALL_DOMAIN: return "ALL_DOMAIN";
174 default: gdb_assert_not_reached ("bad search_domain");
175 }
176 }
177
178 /* Set the primary field in SYMTAB. */
179
180 void
181 set_symtab_primary (struct symtab *symtab, int primary)
182 {
183 symtab->primary = primary;
184
185 if (symtab_create_debug && primary)
186 {
187 fprintf_unfiltered (gdb_stdlog,
188 "Created primary symtab %s for %s.\n",
189 host_address_to_string (symtab),
190 symtab_to_filename_for_display (symtab));
191 }
192 }
193
194 /* See whether FILENAME matches SEARCH_NAME using the rule that we
195 advertise to the user. (The manual's description of linespecs
196 describes what we advertise). Returns true if they match, false
197 otherwise. */
198
199 int
200 compare_filenames_for_search (const char *filename, const char *search_name)
201 {
202 int len = strlen (filename);
203 size_t search_len = strlen (search_name);
204
205 if (len < search_len)
206 return 0;
207
208 /* The tail of FILENAME must match. */
209 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
210 return 0;
211
212 /* Either the names must completely match, or the character
213 preceding the trailing SEARCH_NAME segment of FILENAME must be a
214 directory separator.
215
216 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
217 cannot match FILENAME "/path//dir/file.c" - as user has requested
218 absolute path. The sama applies for "c:\file.c" possibly
219 incorrectly hypothetically matching "d:\dir\c:\file.c".
220
221 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
222 compatible with SEARCH_NAME "file.c". In such case a compiler had
223 to put the "c:file.c" name into debug info. Such compatibility
224 works only on GDB built for DOS host. */
225 return (len == search_len
226 || (!IS_ABSOLUTE_PATH (search_name)
227 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
228 || (HAS_DRIVE_SPEC (filename)
229 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
230 }
231
232 /* Check for a symtab of a specific name by searching some symtabs.
233 This is a helper function for callbacks of iterate_over_symtabs.
234
235 If NAME is not absolute, then REAL_PATH is NULL
236 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
237
238 The return value, NAME, REAL_PATH, CALLBACK, and DATA
239 are identical to the `map_symtabs_matching_filename' method of
240 quick_symbol_functions.
241
242 FIRST and AFTER_LAST indicate the range of symtabs to search.
243 AFTER_LAST is one past the last symtab to search; NULL means to
244 search until the end of the list. */
245
246 int
247 iterate_over_some_symtabs (const char *name,
248 const char *real_path,
249 int (*callback) (struct symtab *symtab,
250 void *data),
251 void *data,
252 struct symtab *first,
253 struct symtab *after_last)
254 {
255 struct symtab *s = NULL;
256 const char* base_name = lbasename (name);
257
258 for (s = first; s != NULL && s != after_last; s = s->next)
259 {
260 if (compare_filenames_for_search (s->filename, name))
261 {
262 if (callback (s, data))
263 return 1;
264 continue;
265 }
266
267 /* Before we invoke realpath, which can get expensive when many
268 files are involved, do a quick comparison of the basenames. */
269 if (! basenames_may_differ
270 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
271 continue;
272
273 if (compare_filenames_for_search (symtab_to_fullname (s), name))
274 {
275 if (callback (s, data))
276 return 1;
277 continue;
278 }
279
280 /* If the user gave us an absolute path, try to find the file in
281 this symtab and use its absolute path. */
282 if (real_path != NULL)
283 {
284 const char *fullname = symtab_to_fullname (s);
285
286 gdb_assert (IS_ABSOLUTE_PATH (real_path));
287 gdb_assert (IS_ABSOLUTE_PATH (name));
288 if (FILENAME_CMP (real_path, fullname) == 0)
289 {
290 if (callback (s, data))
291 return 1;
292 continue;
293 }
294 }
295 }
296
297 return 0;
298 }
299
300 /* Check for a symtab of a specific name; first in symtabs, then in
301 psymtabs. *If* there is no '/' in the name, a match after a '/'
302 in the symtab filename will also work.
303
304 Calls CALLBACK with each symtab that is found and with the supplied
305 DATA. If CALLBACK returns true, the search stops. */
306
307 void
308 iterate_over_symtabs (const char *name,
309 int (*callback) (struct symtab *symtab,
310 void *data),
311 void *data)
312 {
313 struct objfile *objfile;
314 char *real_path = NULL;
315 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
316
317 /* Here we are interested in canonicalizing an absolute path, not
318 absolutizing a relative path. */
319 if (IS_ABSOLUTE_PATH (name))
320 {
321 real_path = gdb_realpath (name);
322 make_cleanup (xfree, real_path);
323 gdb_assert (IS_ABSOLUTE_PATH (real_path));
324 }
325
326 ALL_OBJFILES (objfile)
327 {
328 if (iterate_over_some_symtabs (name, real_path, callback, data,
329 objfile->symtabs, NULL))
330 {
331 do_cleanups (cleanups);
332 return;
333 }
334 }
335
336 /* Same search rules as above apply here, but now we look thru the
337 psymtabs. */
338
339 ALL_OBJFILES (objfile)
340 {
341 if (objfile->sf
342 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
343 name,
344 real_path,
345 callback,
346 data))
347 {
348 do_cleanups (cleanups);
349 return;
350 }
351 }
352
353 do_cleanups (cleanups);
354 }
355
356 /* The callback function used by lookup_symtab. */
357
358 static int
359 lookup_symtab_callback (struct symtab *symtab, void *data)
360 {
361 struct symtab **result_ptr = data;
362
363 *result_ptr = symtab;
364 return 1;
365 }
366
367 /* A wrapper for iterate_over_symtabs that returns the first matching
368 symtab, or NULL. */
369
370 struct symtab *
371 lookup_symtab (const char *name)
372 {
373 struct symtab *result = NULL;
374
375 iterate_over_symtabs (name, lookup_symtab_callback, &result);
376 return result;
377 }
378
379 \f
380 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
381 full method name, which consist of the class name (from T), the unadorned
382 method name from METHOD_ID, and the signature for the specific overload,
383 specified by SIGNATURE_ID. Note that this function is g++ specific. */
384
385 char *
386 gdb_mangle_name (struct type *type, int method_id, int signature_id)
387 {
388 int mangled_name_len;
389 char *mangled_name;
390 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
391 struct fn_field *method = &f[signature_id];
392 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
393 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
394 const char *newname = type_name_no_tag (type);
395
396 /* Does the form of physname indicate that it is the full mangled name
397 of a constructor (not just the args)? */
398 int is_full_physname_constructor;
399
400 int is_constructor;
401 int is_destructor = is_destructor_name (physname);
402 /* Need a new type prefix. */
403 char *const_prefix = method->is_const ? "C" : "";
404 char *volatile_prefix = method->is_volatile ? "V" : "";
405 char buf[20];
406 int len = (newname == NULL ? 0 : strlen (newname));
407
408 /* Nothing to do if physname already contains a fully mangled v3 abi name
409 or an operator name. */
410 if ((physname[0] == '_' && physname[1] == 'Z')
411 || is_operator_name (field_name))
412 return xstrdup (physname);
413
414 is_full_physname_constructor = is_constructor_name (physname);
415
416 is_constructor = is_full_physname_constructor
417 || (newname && strcmp (field_name, newname) == 0);
418
419 if (!is_destructor)
420 is_destructor = (strncmp (physname, "__dt", 4) == 0);
421
422 if (is_destructor || is_full_physname_constructor)
423 {
424 mangled_name = (char *) xmalloc (strlen (physname) + 1);
425 strcpy (mangled_name, physname);
426 return mangled_name;
427 }
428
429 if (len == 0)
430 {
431 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
432 }
433 else if (physname[0] == 't' || physname[0] == 'Q')
434 {
435 /* The physname for template and qualified methods already includes
436 the class name. */
437 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
438 newname = NULL;
439 len = 0;
440 }
441 else
442 {
443 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
444 volatile_prefix, len);
445 }
446 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
447 + strlen (buf) + len + strlen (physname) + 1);
448
449 mangled_name = (char *) xmalloc (mangled_name_len);
450 if (is_constructor)
451 mangled_name[0] = '\0';
452 else
453 strcpy (mangled_name, field_name);
454
455 strcat (mangled_name, buf);
456 /* If the class doesn't have a name, i.e. newname NULL, then we just
457 mangle it using 0 for the length of the class. Thus it gets mangled
458 as something starting with `::' rather than `classname::'. */
459 if (newname != NULL)
460 strcat (mangled_name, newname);
461
462 strcat (mangled_name, physname);
463 return (mangled_name);
464 }
465
466 /* Initialize the cplus_specific structure. 'cplus_specific' should
467 only be allocated for use with cplus symbols. */
468
469 static void
470 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
471 struct obstack *obstack)
472 {
473 /* A language_specific structure should not have been previously
474 initialized. */
475 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
476 gdb_assert (obstack != NULL);
477
478 gsymbol->language_specific.cplus_specific =
479 OBSTACK_ZALLOC (obstack, struct cplus_specific);
480 }
481
482 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
483 correctly allocated. For C++ symbols a cplus_specific struct is
484 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
485 OBJFILE can be NULL. */
486
487 void
488 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
489 const char *name,
490 struct obstack *obstack)
491 {
492 if (gsymbol->language == language_cplus)
493 {
494 if (gsymbol->language_specific.cplus_specific == NULL)
495 symbol_init_cplus_specific (gsymbol, obstack);
496
497 gsymbol->language_specific.cplus_specific->demangled_name = name;
498 }
499 else if (gsymbol->language == language_ada)
500 {
501 if (name == NULL)
502 {
503 gsymbol->ada_mangled = 0;
504 gsymbol->language_specific.obstack = obstack;
505 }
506 else
507 {
508 gsymbol->ada_mangled = 1;
509 gsymbol->language_specific.mangled_lang.demangled_name = name;
510 }
511 }
512 else
513 gsymbol->language_specific.mangled_lang.demangled_name = name;
514 }
515
516 /* Return the demangled name of GSYMBOL. */
517
518 const char *
519 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
520 {
521 if (gsymbol->language == language_cplus)
522 {
523 if (gsymbol->language_specific.cplus_specific != NULL)
524 return gsymbol->language_specific.cplus_specific->demangled_name;
525 else
526 return NULL;
527 }
528 else if (gsymbol->language == language_ada)
529 {
530 if (!gsymbol->ada_mangled)
531 return NULL;
532 /* Fall through. */
533 }
534
535 return gsymbol->language_specific.mangled_lang.demangled_name;
536 }
537
538 \f
539 /* Initialize the language dependent portion of a symbol
540 depending upon the language for the symbol. */
541
542 void
543 symbol_set_language (struct general_symbol_info *gsymbol,
544 enum language language,
545 struct obstack *obstack)
546 {
547 gsymbol->language = language;
548 if (gsymbol->language == language_d
549 || gsymbol->language == language_go
550 || gsymbol->language == language_java
551 || gsymbol->language == language_objc
552 || gsymbol->language == language_fortran)
553 {
554 symbol_set_demangled_name (gsymbol, NULL, obstack);
555 }
556 else if (gsymbol->language == language_ada)
557 {
558 gdb_assert (gsymbol->ada_mangled == 0);
559 gsymbol->language_specific.obstack = obstack;
560 }
561 else if (gsymbol->language == language_cplus)
562 gsymbol->language_specific.cplus_specific = NULL;
563 else
564 {
565 memset (&gsymbol->language_specific, 0,
566 sizeof (gsymbol->language_specific));
567 }
568 }
569
570 /* Functions to initialize a symbol's mangled name. */
571
572 /* Objects of this type are stored in the demangled name hash table. */
573 struct demangled_name_entry
574 {
575 const char *mangled;
576 char demangled[1];
577 };
578
579 /* Hash function for the demangled name hash. */
580
581 static hashval_t
582 hash_demangled_name_entry (const void *data)
583 {
584 const struct demangled_name_entry *e = data;
585
586 return htab_hash_string (e->mangled);
587 }
588
589 /* Equality function for the demangled name hash. */
590
591 static int
592 eq_demangled_name_entry (const void *a, const void *b)
593 {
594 const struct demangled_name_entry *da = a;
595 const struct demangled_name_entry *db = b;
596
597 return strcmp (da->mangled, db->mangled) == 0;
598 }
599
600 /* Create the hash table used for demangled names. Each hash entry is
601 a pair of strings; one for the mangled name and one for the demangled
602 name. The entry is hashed via just the mangled name. */
603
604 static void
605 create_demangled_names_hash (struct objfile *objfile)
606 {
607 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
608 The hash table code will round this up to the next prime number.
609 Choosing a much larger table size wastes memory, and saves only about
610 1% in symbol reading. */
611
612 objfile->per_bfd->demangled_names_hash = htab_create_alloc
613 (256, hash_demangled_name_entry, eq_demangled_name_entry,
614 NULL, xcalloc, xfree);
615 }
616
617 /* Try to determine the demangled name for a symbol, based on the
618 language of that symbol. If the language is set to language_auto,
619 it will attempt to find any demangling algorithm that works and
620 then set the language appropriately. The returned name is allocated
621 by the demangler and should be xfree'd. */
622
623 static char *
624 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
625 const char *mangled)
626 {
627 char *demangled = NULL;
628
629 if (gsymbol->language == language_unknown)
630 gsymbol->language = language_auto;
631
632 if (gsymbol->language == language_objc
633 || gsymbol->language == language_auto)
634 {
635 demangled =
636 objc_demangle (mangled, 0);
637 if (demangled != NULL)
638 {
639 gsymbol->language = language_objc;
640 return demangled;
641 }
642 }
643 if (gsymbol->language == language_cplus
644 || gsymbol->language == language_auto)
645 {
646 demangled =
647 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
648 if (demangled != NULL)
649 {
650 gsymbol->language = language_cplus;
651 return demangled;
652 }
653 }
654 if (gsymbol->language == language_java)
655 {
656 demangled =
657 gdb_demangle (mangled,
658 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
659 if (demangled != NULL)
660 {
661 gsymbol->language = language_java;
662 return demangled;
663 }
664 }
665 if (gsymbol->language == language_d
666 || gsymbol->language == language_auto)
667 {
668 demangled = d_demangle(mangled, 0);
669 if (demangled != NULL)
670 {
671 gsymbol->language = language_d;
672 return demangled;
673 }
674 }
675 /* FIXME(dje): Continually adding languages here is clumsy.
676 Better to just call la_demangle if !auto, and if auto then call
677 a utility routine that tries successive languages in turn and reports
678 which one it finds. I realize the la_demangle options may be different
679 for different languages but there's already a FIXME for that. */
680 if (gsymbol->language == language_go
681 || gsymbol->language == language_auto)
682 {
683 demangled = go_demangle (mangled, 0);
684 if (demangled != NULL)
685 {
686 gsymbol->language = language_go;
687 return demangled;
688 }
689 }
690
691 /* We could support `gsymbol->language == language_fortran' here to provide
692 module namespaces also for inferiors with only minimal symbol table (ELF
693 symbols). Just the mangling standard is not standardized across compilers
694 and there is no DW_AT_producer available for inferiors with only the ELF
695 symbols to check the mangling kind. */
696
697 /* Check for Ada symbols last. See comment below explaining why. */
698
699 if (gsymbol->language == language_auto)
700 {
701 const char *demangled = ada_decode (mangled);
702
703 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
704 {
705 /* Set the gsymbol language to Ada, but still return NULL.
706 Two reasons for that:
707
708 1. For Ada, we prefer computing the symbol's decoded name
709 on the fly rather than pre-compute it, in order to save
710 memory (Ada projects are typically very large).
711
712 2. There are some areas in the definition of the GNAT
713 encoding where, with a bit of bad luck, we might be able
714 to decode a non-Ada symbol, generating an incorrect
715 demangled name (Eg: names ending with "TB" for instance
716 are identified as task bodies and so stripped from
717 the decoded name returned).
718
719 Returning NULL, here, helps us get a little bit of
720 the best of both worlds. Because we're last, we should
721 not affect any of the other languages that were able to
722 demangle the symbol before us; we get to correctly tag
723 Ada symbols as such; and even if we incorrectly tagged
724 a non-Ada symbol, which should be rare, any routing
725 through the Ada language should be transparent (Ada
726 tries to behave much like C/C++ with non-Ada symbols). */
727 gsymbol->language = language_ada;
728 return NULL;
729 }
730 }
731
732 return NULL;
733 }
734
735 /* Set both the mangled and demangled (if any) names for GSYMBOL based
736 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
737 objfile's obstack; but if COPY_NAME is 0 and if NAME is
738 NUL-terminated, then this function assumes that NAME is already
739 correctly saved (either permanently or with a lifetime tied to the
740 objfile), and it will not be copied.
741
742 The hash table corresponding to OBJFILE is used, and the memory
743 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
744 so the pointer can be discarded after calling this function. */
745
746 /* We have to be careful when dealing with Java names: when we run
747 into a Java minimal symbol, we don't know it's a Java symbol, so it
748 gets demangled as a C++ name. This is unfortunate, but there's not
749 much we can do about it: but when demangling partial symbols and
750 regular symbols, we'd better not reuse the wrong demangled name.
751 (See PR gdb/1039.) We solve this by putting a distinctive prefix
752 on Java names when storing them in the hash table. */
753
754 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
755 don't mind the Java prefix so much: different languages have
756 different demangling requirements, so it's only natural that we
757 need to keep language data around in our demangling cache. But
758 it's not good that the minimal symbol has the wrong demangled name.
759 Unfortunately, I can't think of any easy solution to that
760 problem. */
761
762 #define JAVA_PREFIX "##JAVA$$"
763 #define JAVA_PREFIX_LEN 8
764
765 void
766 symbol_set_names (struct general_symbol_info *gsymbol,
767 const char *linkage_name, int len, int copy_name,
768 struct objfile *objfile)
769 {
770 struct demangled_name_entry **slot;
771 /* A 0-terminated copy of the linkage name. */
772 const char *linkage_name_copy;
773 /* A copy of the linkage name that might have a special Java prefix
774 added to it, for use when looking names up in the hash table. */
775 const char *lookup_name;
776 /* The length of lookup_name. */
777 int lookup_len;
778 struct demangled_name_entry entry;
779 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
780
781 if (gsymbol->language == language_ada)
782 {
783 /* In Ada, we do the symbol lookups using the mangled name, so
784 we can save some space by not storing the demangled name.
785
786 As a side note, we have also observed some overlap between
787 the C++ mangling and Ada mangling, similarly to what has
788 been observed with Java. Because we don't store the demangled
789 name with the symbol, we don't need to use the same trick
790 as Java. */
791 if (!copy_name)
792 gsymbol->name = linkage_name;
793 else
794 {
795 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
796
797 memcpy (name, linkage_name, len);
798 name[len] = '\0';
799 gsymbol->name = name;
800 }
801 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
802
803 return;
804 }
805
806 if (per_bfd->demangled_names_hash == NULL)
807 create_demangled_names_hash (objfile);
808
809 /* The stabs reader generally provides names that are not
810 NUL-terminated; most of the other readers don't do this, so we
811 can just use the given copy, unless we're in the Java case. */
812 if (gsymbol->language == language_java)
813 {
814 char *alloc_name;
815
816 lookup_len = len + JAVA_PREFIX_LEN;
817 alloc_name = alloca (lookup_len + 1);
818 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
819 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
820 alloc_name[lookup_len] = '\0';
821
822 lookup_name = alloc_name;
823 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
824 }
825 else if (linkage_name[len] != '\0')
826 {
827 char *alloc_name;
828
829 lookup_len = len;
830 alloc_name = alloca (lookup_len + 1);
831 memcpy (alloc_name, linkage_name, len);
832 alloc_name[lookup_len] = '\0';
833
834 lookup_name = alloc_name;
835 linkage_name_copy = alloc_name;
836 }
837 else
838 {
839 lookup_len = len;
840 lookup_name = linkage_name;
841 linkage_name_copy = linkage_name;
842 }
843
844 entry.mangled = lookup_name;
845 slot = ((struct demangled_name_entry **)
846 htab_find_slot (per_bfd->demangled_names_hash,
847 &entry, INSERT));
848
849 /* If this name is not in the hash table, add it. */
850 if (*slot == NULL
851 /* A C version of the symbol may have already snuck into the table.
852 This happens to, e.g., main.init (__go_init_main). Cope. */
853 || (gsymbol->language == language_go
854 && (*slot)->demangled[0] == '\0'))
855 {
856 char *demangled_name = symbol_find_demangled_name (gsymbol,
857 linkage_name_copy);
858 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
859
860 /* Suppose we have demangled_name==NULL, copy_name==0, and
861 lookup_name==linkage_name. In this case, we already have the
862 mangled name saved, and we don't have a demangled name. So,
863 you might think we could save a little space by not recording
864 this in the hash table at all.
865
866 It turns out that it is actually important to still save such
867 an entry in the hash table, because storing this name gives
868 us better bcache hit rates for partial symbols. */
869 if (!copy_name && lookup_name == linkage_name)
870 {
871 *slot = obstack_alloc (&per_bfd->storage_obstack,
872 offsetof (struct demangled_name_entry,
873 demangled)
874 + demangled_len + 1);
875 (*slot)->mangled = lookup_name;
876 }
877 else
878 {
879 char *mangled_ptr;
880
881 /* If we must copy the mangled name, put it directly after
882 the demangled name so we can have a single
883 allocation. */
884 *slot = obstack_alloc (&per_bfd->storage_obstack,
885 offsetof (struct demangled_name_entry,
886 demangled)
887 + lookup_len + demangled_len + 2);
888 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
889 strcpy (mangled_ptr, lookup_name);
890 (*slot)->mangled = mangled_ptr;
891 }
892
893 if (demangled_name != NULL)
894 {
895 strcpy ((*slot)->demangled, demangled_name);
896 xfree (demangled_name);
897 }
898 else
899 (*slot)->demangled[0] = '\0';
900 }
901
902 gsymbol->name = (*slot)->mangled + lookup_len - len;
903 if ((*slot)->demangled[0] != '\0')
904 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
905 &per_bfd->storage_obstack);
906 else
907 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
908 }
909
910 /* Return the source code name of a symbol. In languages where
911 demangling is necessary, this is the demangled name. */
912
913 const char *
914 symbol_natural_name (const struct general_symbol_info *gsymbol)
915 {
916 switch (gsymbol->language)
917 {
918 case language_cplus:
919 case language_d:
920 case language_go:
921 case language_java:
922 case language_objc:
923 case language_fortran:
924 if (symbol_get_demangled_name (gsymbol) != NULL)
925 return symbol_get_demangled_name (gsymbol);
926 break;
927 case language_ada:
928 return ada_decode_symbol (gsymbol);
929 default:
930 break;
931 }
932 return gsymbol->name;
933 }
934
935 /* Return the demangled name for a symbol based on the language for
936 that symbol. If no demangled name exists, return NULL. */
937
938 const char *
939 symbol_demangled_name (const struct general_symbol_info *gsymbol)
940 {
941 const char *dem_name = NULL;
942
943 switch (gsymbol->language)
944 {
945 case language_cplus:
946 case language_d:
947 case language_go:
948 case language_java:
949 case language_objc:
950 case language_fortran:
951 dem_name = symbol_get_demangled_name (gsymbol);
952 break;
953 case language_ada:
954 dem_name = ada_decode_symbol (gsymbol);
955 break;
956 default:
957 break;
958 }
959 return dem_name;
960 }
961
962 /* Return the search name of a symbol---generally the demangled or
963 linkage name of the symbol, depending on how it will be searched for.
964 If there is no distinct demangled name, then returns the same value
965 (same pointer) as SYMBOL_LINKAGE_NAME. */
966
967 const char *
968 symbol_search_name (const struct general_symbol_info *gsymbol)
969 {
970 if (gsymbol->language == language_ada)
971 return gsymbol->name;
972 else
973 return symbol_natural_name (gsymbol);
974 }
975
976 /* Initialize the structure fields to zero values. */
977
978 void
979 init_sal (struct symtab_and_line *sal)
980 {
981 sal->pspace = NULL;
982 sal->symtab = 0;
983 sal->section = 0;
984 sal->line = 0;
985 sal->pc = 0;
986 sal->end = 0;
987 sal->explicit_pc = 0;
988 sal->explicit_line = 0;
989 sal->probe = NULL;
990 }
991 \f
992
993 /* Return 1 if the two sections are the same, or if they could
994 plausibly be copies of each other, one in an original object
995 file and another in a separated debug file. */
996
997 int
998 matching_obj_sections (struct obj_section *obj_first,
999 struct obj_section *obj_second)
1000 {
1001 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1002 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1003 struct objfile *obj;
1004
1005 /* If they're the same section, then they match. */
1006 if (first == second)
1007 return 1;
1008
1009 /* If either is NULL, give up. */
1010 if (first == NULL || second == NULL)
1011 return 0;
1012
1013 /* This doesn't apply to absolute symbols. */
1014 if (first->owner == NULL || second->owner == NULL)
1015 return 0;
1016
1017 /* If they're in the same object file, they must be different sections. */
1018 if (first->owner == second->owner)
1019 return 0;
1020
1021 /* Check whether the two sections are potentially corresponding. They must
1022 have the same size, address, and name. We can't compare section indexes,
1023 which would be more reliable, because some sections may have been
1024 stripped. */
1025 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1026 return 0;
1027
1028 /* In-memory addresses may start at a different offset, relativize them. */
1029 if (bfd_get_section_vma (first->owner, first)
1030 - bfd_get_start_address (first->owner)
1031 != bfd_get_section_vma (second->owner, second)
1032 - bfd_get_start_address (second->owner))
1033 return 0;
1034
1035 if (bfd_get_section_name (first->owner, first) == NULL
1036 || bfd_get_section_name (second->owner, second) == NULL
1037 || strcmp (bfd_get_section_name (first->owner, first),
1038 bfd_get_section_name (second->owner, second)) != 0)
1039 return 0;
1040
1041 /* Otherwise check that they are in corresponding objfiles. */
1042
1043 ALL_OBJFILES (obj)
1044 if (obj->obfd == first->owner)
1045 break;
1046 gdb_assert (obj != NULL);
1047
1048 if (obj->separate_debug_objfile != NULL
1049 && obj->separate_debug_objfile->obfd == second->owner)
1050 return 1;
1051 if (obj->separate_debug_objfile_backlink != NULL
1052 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1053 return 1;
1054
1055 return 0;
1056 }
1057
1058 struct symtab *
1059 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1060 {
1061 struct objfile *objfile;
1062 struct minimal_symbol *msymbol;
1063
1064 /* If we know that this is not a text address, return failure. This is
1065 necessary because we loop based on texthigh and textlow, which do
1066 not include the data ranges. */
1067 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
1068 if (msymbol
1069 && (MSYMBOL_TYPE (msymbol) == mst_data
1070 || MSYMBOL_TYPE (msymbol) == mst_bss
1071 || MSYMBOL_TYPE (msymbol) == mst_abs
1072 || MSYMBOL_TYPE (msymbol) == mst_file_data
1073 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1074 return NULL;
1075
1076 ALL_OBJFILES (objfile)
1077 {
1078 struct symtab *result = NULL;
1079
1080 if (objfile->sf)
1081 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1082 pc, section, 0);
1083 if (result)
1084 return result;
1085 }
1086
1087 return NULL;
1088 }
1089 \f
1090 /* Debug symbols usually don't have section information. We need to dig that
1091 out of the minimal symbols and stash that in the debug symbol. */
1092
1093 void
1094 fixup_section (struct general_symbol_info *ginfo,
1095 CORE_ADDR addr, struct objfile *objfile)
1096 {
1097 struct minimal_symbol *msym;
1098
1099 /* First, check whether a minimal symbol with the same name exists
1100 and points to the same address. The address check is required
1101 e.g. on PowerPC64, where the minimal symbol for a function will
1102 point to the function descriptor, while the debug symbol will
1103 point to the actual function code. */
1104 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1105 if (msym)
1106 ginfo->section = SYMBOL_SECTION (msym);
1107 else
1108 {
1109 /* Static, function-local variables do appear in the linker
1110 (minimal) symbols, but are frequently given names that won't
1111 be found via lookup_minimal_symbol(). E.g., it has been
1112 observed in frv-uclinux (ELF) executables that a static,
1113 function-local variable named "foo" might appear in the
1114 linker symbols as "foo.6" or "foo.3". Thus, there is no
1115 point in attempting to extend the lookup-by-name mechanism to
1116 handle this case due to the fact that there can be multiple
1117 names.
1118
1119 So, instead, search the section table when lookup by name has
1120 failed. The ``addr'' and ``endaddr'' fields may have already
1121 been relocated. If so, the relocation offset (i.e. the
1122 ANOFFSET value) needs to be subtracted from these values when
1123 performing the comparison. We unconditionally subtract it,
1124 because, when no relocation has been performed, the ANOFFSET
1125 value will simply be zero.
1126
1127 The address of the symbol whose section we're fixing up HAS
1128 NOT BEEN adjusted (relocated) yet. It can't have been since
1129 the section isn't yet known and knowing the section is
1130 necessary in order to add the correct relocation value. In
1131 other words, we wouldn't even be in this function (attempting
1132 to compute the section) if it were already known.
1133
1134 Note that it is possible to search the minimal symbols
1135 (subtracting the relocation value if necessary) to find the
1136 matching minimal symbol, but this is overkill and much less
1137 efficient. It is not necessary to find the matching minimal
1138 symbol, only its section.
1139
1140 Note that this technique (of doing a section table search)
1141 can fail when unrelocated section addresses overlap. For
1142 this reason, we still attempt a lookup by name prior to doing
1143 a search of the section table. */
1144
1145 struct obj_section *s;
1146 int fallback = -1;
1147
1148 ALL_OBJFILE_OSECTIONS (objfile, s)
1149 {
1150 int idx = s - objfile->sections;
1151 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1152
1153 if (fallback == -1)
1154 fallback = idx;
1155
1156 if (obj_section_addr (s) - offset <= addr
1157 && addr < obj_section_endaddr (s) - offset)
1158 {
1159 ginfo->section = idx;
1160 return;
1161 }
1162 }
1163
1164 /* If we didn't find the section, assume it is in the first
1165 section. If there is no allocated section, then it hardly
1166 matters what we pick, so just pick zero. */
1167 if (fallback == -1)
1168 ginfo->section = 0;
1169 else
1170 ginfo->section = fallback;
1171 }
1172 }
1173
1174 struct symbol *
1175 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1176 {
1177 CORE_ADDR addr;
1178
1179 if (!sym)
1180 return NULL;
1181
1182 /* We either have an OBJFILE, or we can get at it from the sym's
1183 symtab. Anything else is a bug. */
1184 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1185
1186 if (objfile == NULL)
1187 objfile = SYMBOL_SYMTAB (sym)->objfile;
1188
1189 if (SYMBOL_OBJ_SECTION (objfile, sym))
1190 return sym;
1191
1192 /* We should have an objfile by now. */
1193 gdb_assert (objfile);
1194
1195 switch (SYMBOL_CLASS (sym))
1196 {
1197 case LOC_STATIC:
1198 case LOC_LABEL:
1199 addr = SYMBOL_VALUE_ADDRESS (sym);
1200 break;
1201 case LOC_BLOCK:
1202 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1203 break;
1204
1205 default:
1206 /* Nothing else will be listed in the minsyms -- no use looking
1207 it up. */
1208 return sym;
1209 }
1210
1211 fixup_section (&sym->ginfo, addr, objfile);
1212
1213 return sym;
1214 }
1215
1216 /* Compute the demangled form of NAME as used by the various symbol
1217 lookup functions. The result is stored in *RESULT_NAME. Returns a
1218 cleanup which can be used to clean up the result.
1219
1220 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1221 Normally, Ada symbol lookups are performed using the encoded name
1222 rather than the demangled name, and so it might seem to make sense
1223 for this function to return an encoded version of NAME.
1224 Unfortunately, we cannot do this, because this function is used in
1225 circumstances where it is not appropriate to try to encode NAME.
1226 For instance, when displaying the frame info, we demangle the name
1227 of each parameter, and then perform a symbol lookup inside our
1228 function using that demangled name. In Ada, certain functions
1229 have internally-generated parameters whose name contain uppercase
1230 characters. Encoding those name would result in those uppercase
1231 characters to become lowercase, and thus cause the symbol lookup
1232 to fail. */
1233
1234 struct cleanup *
1235 demangle_for_lookup (const char *name, enum language lang,
1236 const char **result_name)
1237 {
1238 char *demangled_name = NULL;
1239 const char *modified_name = NULL;
1240 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1241
1242 modified_name = name;
1243
1244 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1245 lookup, so we can always binary search. */
1246 if (lang == language_cplus)
1247 {
1248 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1249 if (demangled_name)
1250 {
1251 modified_name = demangled_name;
1252 make_cleanup (xfree, demangled_name);
1253 }
1254 else
1255 {
1256 /* If we were given a non-mangled name, canonicalize it
1257 according to the language (so far only for C++). */
1258 demangled_name = cp_canonicalize_string (name);
1259 if (demangled_name)
1260 {
1261 modified_name = demangled_name;
1262 make_cleanup (xfree, demangled_name);
1263 }
1264 }
1265 }
1266 else if (lang == language_java)
1267 {
1268 demangled_name = gdb_demangle (name,
1269 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1270 if (demangled_name)
1271 {
1272 modified_name = demangled_name;
1273 make_cleanup (xfree, demangled_name);
1274 }
1275 }
1276 else if (lang == language_d)
1277 {
1278 demangled_name = d_demangle (name, 0);
1279 if (demangled_name)
1280 {
1281 modified_name = demangled_name;
1282 make_cleanup (xfree, demangled_name);
1283 }
1284 }
1285 else if (lang == language_go)
1286 {
1287 demangled_name = go_demangle (name, 0);
1288 if (demangled_name)
1289 {
1290 modified_name = demangled_name;
1291 make_cleanup (xfree, demangled_name);
1292 }
1293 }
1294
1295 *result_name = modified_name;
1296 return cleanup;
1297 }
1298
1299 /* Find the definition for a specified symbol name NAME
1300 in domain DOMAIN, visible from lexical block BLOCK.
1301 Returns the struct symbol pointer, or zero if no symbol is found.
1302 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1303 NAME is a field of the current implied argument `this'. If so set
1304 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1305 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1306 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1307
1308 /* This function (or rather its subordinates) have a bunch of loops and
1309 it would seem to be attractive to put in some QUIT's (though I'm not really
1310 sure whether it can run long enough to be really important). But there
1311 are a few calls for which it would appear to be bad news to quit
1312 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1313 that there is C++ code below which can error(), but that probably
1314 doesn't affect these calls since they are looking for a known
1315 variable and thus can probably assume it will never hit the C++
1316 code). */
1317
1318 struct symbol *
1319 lookup_symbol_in_language (const char *name, const struct block *block,
1320 const domain_enum domain, enum language lang,
1321 struct field_of_this_result *is_a_field_of_this)
1322 {
1323 const char *modified_name;
1324 struct symbol *returnval;
1325 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1326
1327 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1328 is_a_field_of_this);
1329 do_cleanups (cleanup);
1330
1331 return returnval;
1332 }
1333
1334 /* Behave like lookup_symbol_in_language, but performed with the
1335 current language. */
1336
1337 struct symbol *
1338 lookup_symbol (const char *name, const struct block *block,
1339 domain_enum domain,
1340 struct field_of_this_result *is_a_field_of_this)
1341 {
1342 return lookup_symbol_in_language (name, block, domain,
1343 current_language->la_language,
1344 is_a_field_of_this);
1345 }
1346
1347 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1348 found, or NULL if not found. */
1349
1350 struct symbol *
1351 lookup_language_this (const struct language_defn *lang,
1352 const struct block *block)
1353 {
1354 if (lang->la_name_of_this == NULL || block == NULL)
1355 return NULL;
1356
1357 while (block)
1358 {
1359 struct symbol *sym;
1360
1361 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1362 if (sym != NULL)
1363 {
1364 block_found = block;
1365 return sym;
1366 }
1367 if (BLOCK_FUNCTION (block))
1368 break;
1369 block = BLOCK_SUPERBLOCK (block);
1370 }
1371
1372 return NULL;
1373 }
1374
1375 /* Given TYPE, a structure/union,
1376 return 1 if the component named NAME from the ultimate target
1377 structure/union is defined, otherwise, return 0. */
1378
1379 static int
1380 check_field (struct type *type, const char *name,
1381 struct field_of_this_result *is_a_field_of_this)
1382 {
1383 int i;
1384
1385 /* The type may be a stub. */
1386 CHECK_TYPEDEF (type);
1387
1388 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1389 {
1390 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1391
1392 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1393 {
1394 is_a_field_of_this->type = type;
1395 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1396 return 1;
1397 }
1398 }
1399
1400 /* C++: If it was not found as a data field, then try to return it
1401 as a pointer to a method. */
1402
1403 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1404 {
1405 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1406 {
1407 is_a_field_of_this->type = type;
1408 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1409 return 1;
1410 }
1411 }
1412
1413 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1414 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1415 return 1;
1416
1417 return 0;
1418 }
1419
1420 /* Behave like lookup_symbol except that NAME is the natural name
1421 (e.g., demangled name) of the symbol that we're looking for. */
1422
1423 static struct symbol *
1424 lookup_symbol_aux (const char *name, const struct block *block,
1425 const domain_enum domain, enum language language,
1426 struct field_of_this_result *is_a_field_of_this)
1427 {
1428 struct symbol *sym;
1429 const struct language_defn *langdef;
1430
1431 /* Make sure we do something sensible with is_a_field_of_this, since
1432 the callers that set this parameter to some non-null value will
1433 certainly use it later. If we don't set it, the contents of
1434 is_a_field_of_this are undefined. */
1435 if (is_a_field_of_this != NULL)
1436 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1437
1438 /* Search specified block and its superiors. Don't search
1439 STATIC_BLOCK or GLOBAL_BLOCK. */
1440
1441 sym = lookup_symbol_aux_local (name, block, domain, language);
1442 if (sym != NULL)
1443 return sym;
1444
1445 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1446 check to see if NAME is a field of `this'. */
1447
1448 langdef = language_def (language);
1449
1450 /* Don't do this check if we are searching for a struct. It will
1451 not be found by check_field, but will be found by other
1452 means. */
1453 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1454 {
1455 struct symbol *sym = lookup_language_this (langdef, block);
1456
1457 if (sym)
1458 {
1459 struct type *t = sym->type;
1460
1461 /* I'm not really sure that type of this can ever
1462 be typedefed; just be safe. */
1463 CHECK_TYPEDEF (t);
1464 if (TYPE_CODE (t) == TYPE_CODE_PTR
1465 || TYPE_CODE (t) == TYPE_CODE_REF)
1466 t = TYPE_TARGET_TYPE (t);
1467
1468 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1469 && TYPE_CODE (t) != TYPE_CODE_UNION)
1470 error (_("Internal error: `%s' is not an aggregate"),
1471 langdef->la_name_of_this);
1472
1473 if (check_field (t, name, is_a_field_of_this))
1474 return NULL;
1475 }
1476 }
1477
1478 /* Now do whatever is appropriate for LANGUAGE to look
1479 up static and global variables. */
1480
1481 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1482 if (sym != NULL)
1483 return sym;
1484
1485 /* Now search all static file-level symbols. Not strictly correct,
1486 but more useful than an error. */
1487
1488 return lookup_static_symbol_aux (name, domain);
1489 }
1490
1491 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1492 first, then check the psymtabs. If a psymtab indicates the existence of the
1493 desired name as a file-level static, then do psymtab-to-symtab conversion on
1494 the fly and return the found symbol. */
1495
1496 struct symbol *
1497 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1498 {
1499 struct objfile *objfile;
1500 struct symbol *sym;
1501
1502 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1503 if (sym != NULL)
1504 return sym;
1505
1506 ALL_OBJFILES (objfile)
1507 {
1508 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1509 if (sym != NULL)
1510 return sym;
1511 }
1512
1513 return NULL;
1514 }
1515
1516 /* Check to see if the symbol is defined in BLOCK or its superiors.
1517 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1518
1519 static struct symbol *
1520 lookup_symbol_aux_local (const char *name, const struct block *block,
1521 const domain_enum domain,
1522 enum language language)
1523 {
1524 struct symbol *sym;
1525 const struct block *static_block = block_static_block (block);
1526 const char *scope = block_scope (block);
1527
1528 /* Check if either no block is specified or it's a global block. */
1529
1530 if (static_block == NULL)
1531 return NULL;
1532
1533 while (block != static_block)
1534 {
1535 sym = lookup_symbol_aux_block (name, block, domain);
1536 if (sym != NULL)
1537 return sym;
1538
1539 if (language == language_cplus || language == language_fortran)
1540 {
1541 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1542 domain);
1543 if (sym != NULL)
1544 return sym;
1545 }
1546
1547 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1548 break;
1549 block = BLOCK_SUPERBLOCK (block);
1550 }
1551
1552 /* We've reached the edge of the function without finding a result. */
1553
1554 return NULL;
1555 }
1556
1557 /* Look up OBJFILE to BLOCK. */
1558
1559 struct objfile *
1560 lookup_objfile_from_block (const struct block *block)
1561 {
1562 struct objfile *obj;
1563 struct symtab *s;
1564
1565 if (block == NULL)
1566 return NULL;
1567
1568 block = block_global_block (block);
1569 /* Go through SYMTABS. */
1570 ALL_SYMTABS (obj, s)
1571 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1572 {
1573 if (obj->separate_debug_objfile_backlink)
1574 obj = obj->separate_debug_objfile_backlink;
1575
1576 return obj;
1577 }
1578
1579 return NULL;
1580 }
1581
1582 /* Look up a symbol in a block; if found, fixup the symbol, and set
1583 block_found appropriately. */
1584
1585 struct symbol *
1586 lookup_symbol_aux_block (const char *name, const struct block *block,
1587 const domain_enum domain)
1588 {
1589 struct symbol *sym;
1590
1591 sym = lookup_block_symbol (block, name, domain);
1592 if (sym)
1593 {
1594 block_found = block;
1595 return fixup_symbol_section (sym, NULL);
1596 }
1597
1598 return NULL;
1599 }
1600
1601 /* Check all global symbols in OBJFILE in symtabs and
1602 psymtabs. */
1603
1604 struct symbol *
1605 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1606 const char *name,
1607 const domain_enum domain)
1608 {
1609 const struct objfile *objfile;
1610 struct symbol *sym;
1611 struct blockvector *bv;
1612 const struct block *block;
1613 struct symtab *s;
1614
1615 for (objfile = main_objfile;
1616 objfile;
1617 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1618 {
1619 /* Go through symtabs. */
1620 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1621 {
1622 bv = BLOCKVECTOR (s);
1623 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1624 sym = lookup_block_symbol (block, name, domain);
1625 if (sym)
1626 {
1627 block_found = block;
1628 return fixup_symbol_section (sym, (struct objfile *)objfile);
1629 }
1630 }
1631
1632 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1633 name, domain);
1634 if (sym)
1635 return sym;
1636 }
1637
1638 return NULL;
1639 }
1640
1641 /* Check to see if the symbol is defined in one of the OBJFILE's
1642 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1643 depending on whether or not we want to search global symbols or
1644 static symbols. */
1645
1646 static struct symbol *
1647 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1648 const char *name, const domain_enum domain)
1649 {
1650 struct symbol *sym = NULL;
1651 struct blockvector *bv;
1652 const struct block *block;
1653 struct symtab *s;
1654
1655 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1656 {
1657 bv = BLOCKVECTOR (s);
1658 block = BLOCKVECTOR_BLOCK (bv, block_index);
1659 sym = lookup_block_symbol (block, name, domain);
1660 if (sym)
1661 {
1662 block_found = block;
1663 return fixup_symbol_section (sym, objfile);
1664 }
1665 }
1666
1667 return NULL;
1668 }
1669
1670 /* Same as lookup_symbol_aux_objfile, except that it searches all
1671 objfiles. Return the first match found. */
1672
1673 static struct symbol *
1674 lookup_symbol_aux_symtabs (int block_index, const char *name,
1675 const domain_enum domain)
1676 {
1677 struct symbol *sym;
1678 struct objfile *objfile;
1679
1680 ALL_OBJFILES (objfile)
1681 {
1682 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1683 if (sym)
1684 return sym;
1685 }
1686
1687 return NULL;
1688 }
1689
1690 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1691 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1692 and all related objfiles. */
1693
1694 static struct symbol *
1695 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1696 const char *linkage_name,
1697 domain_enum domain)
1698 {
1699 enum language lang = current_language->la_language;
1700 const char *modified_name;
1701 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1702 &modified_name);
1703 struct objfile *main_objfile, *cur_objfile;
1704
1705 if (objfile->separate_debug_objfile_backlink)
1706 main_objfile = objfile->separate_debug_objfile_backlink;
1707 else
1708 main_objfile = objfile;
1709
1710 for (cur_objfile = main_objfile;
1711 cur_objfile;
1712 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1713 {
1714 struct symbol *sym;
1715
1716 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1717 modified_name, domain);
1718 if (sym == NULL)
1719 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1720 modified_name, domain);
1721 if (sym != NULL)
1722 {
1723 do_cleanups (cleanup);
1724 return sym;
1725 }
1726 }
1727
1728 do_cleanups (cleanup);
1729 return NULL;
1730 }
1731
1732 /* A helper function that throws an exception when a symbol was found
1733 in a psymtab but not in a symtab. */
1734
1735 static void ATTRIBUTE_NORETURN
1736 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1737 {
1738 error (_("\
1739 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1740 %s may be an inlined function, or may be a template function\n \
1741 (if a template, try specifying an instantiation: %s<type>)."),
1742 kind == GLOBAL_BLOCK ? "global" : "static",
1743 name, symtab_to_filename_for_display (symtab), name, name);
1744 }
1745
1746 /* A helper function for lookup_symbol_aux that interfaces with the
1747 "quick" symbol table functions. */
1748
1749 static struct symbol *
1750 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1751 const char *name, const domain_enum domain)
1752 {
1753 struct symtab *symtab;
1754 struct blockvector *bv;
1755 const struct block *block;
1756 struct symbol *sym;
1757
1758 if (!objfile->sf)
1759 return NULL;
1760 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1761 if (!symtab)
1762 return NULL;
1763
1764 bv = BLOCKVECTOR (symtab);
1765 block = BLOCKVECTOR_BLOCK (bv, kind);
1766 sym = lookup_block_symbol (block, name, domain);
1767 if (!sym)
1768 error_in_psymtab_expansion (kind, name, symtab);
1769 return fixup_symbol_section (sym, objfile);
1770 }
1771
1772 /* A default version of lookup_symbol_nonlocal for use by languages
1773 that can't think of anything better to do. This implements the C
1774 lookup rules. */
1775
1776 struct symbol *
1777 basic_lookup_symbol_nonlocal (const char *name,
1778 const struct block *block,
1779 const domain_enum domain)
1780 {
1781 struct symbol *sym;
1782
1783 /* NOTE: carlton/2003-05-19: The comments below were written when
1784 this (or what turned into this) was part of lookup_symbol_aux;
1785 I'm much less worried about these questions now, since these
1786 decisions have turned out well, but I leave these comments here
1787 for posterity. */
1788
1789 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1790 not it would be appropriate to search the current global block
1791 here as well. (That's what this code used to do before the
1792 is_a_field_of_this check was moved up.) On the one hand, it's
1793 redundant with the lookup_symbol_aux_symtabs search that happens
1794 next. On the other hand, if decode_line_1 is passed an argument
1795 like filename:var, then the user presumably wants 'var' to be
1796 searched for in filename. On the third hand, there shouldn't be
1797 multiple global variables all of which are named 'var', and it's
1798 not like decode_line_1 has ever restricted its search to only
1799 global variables in a single filename. All in all, only
1800 searching the static block here seems best: it's correct and it's
1801 cleanest. */
1802
1803 /* NOTE: carlton/2002-12-05: There's also a possible performance
1804 issue here: if you usually search for global symbols in the
1805 current file, then it would be slightly better to search the
1806 current global block before searching all the symtabs. But there
1807 are other factors that have a much greater effect on performance
1808 than that one, so I don't think we should worry about that for
1809 now. */
1810
1811 sym = lookup_symbol_static (name, block, domain);
1812 if (sym != NULL)
1813 return sym;
1814
1815 return lookup_symbol_global (name, block, domain);
1816 }
1817
1818 /* Lookup a symbol in the static block associated to BLOCK, if there
1819 is one; do nothing if BLOCK is NULL or a global block. */
1820
1821 struct symbol *
1822 lookup_symbol_static (const char *name,
1823 const struct block *block,
1824 const domain_enum domain)
1825 {
1826 const struct block *static_block = block_static_block (block);
1827
1828 if (static_block != NULL)
1829 return lookup_symbol_aux_block (name, static_block, domain);
1830 else
1831 return NULL;
1832 }
1833
1834 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1835
1836 struct global_sym_lookup_data
1837 {
1838 /* The name of the symbol we are searching for. */
1839 const char *name;
1840
1841 /* The domain to use for our search. */
1842 domain_enum domain;
1843
1844 /* The field where the callback should store the symbol if found.
1845 It should be initialized to NULL before the search is started. */
1846 struct symbol *result;
1847 };
1848
1849 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1850 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1851 OBJFILE. The arguments for the search are passed via CB_DATA,
1852 which in reality is a pointer to struct global_sym_lookup_data. */
1853
1854 static int
1855 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1856 void *cb_data)
1857 {
1858 struct global_sym_lookup_data *data =
1859 (struct global_sym_lookup_data *) cb_data;
1860
1861 gdb_assert (data->result == NULL);
1862
1863 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1864 data->name, data->domain);
1865 if (data->result == NULL)
1866 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1867 data->name, data->domain);
1868
1869 /* If we found a match, tell the iterator to stop. Otherwise,
1870 keep going. */
1871 return (data->result != NULL);
1872 }
1873
1874 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1875 necessary). */
1876
1877 struct symbol *
1878 lookup_symbol_global (const char *name,
1879 const struct block *block,
1880 const domain_enum domain)
1881 {
1882 struct symbol *sym = NULL;
1883 struct objfile *objfile = NULL;
1884 struct global_sym_lookup_data lookup_data;
1885
1886 /* Call library-specific lookup procedure. */
1887 objfile = lookup_objfile_from_block (block);
1888 if (objfile != NULL)
1889 sym = solib_global_lookup (objfile, name, domain);
1890 if (sym != NULL)
1891 return sym;
1892
1893 memset (&lookup_data, 0, sizeof (lookup_data));
1894 lookup_data.name = name;
1895 lookup_data.domain = domain;
1896 gdbarch_iterate_over_objfiles_in_search_order
1897 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1898 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1899
1900 return lookup_data.result;
1901 }
1902
1903 int
1904 symbol_matches_domain (enum language symbol_language,
1905 domain_enum symbol_domain,
1906 domain_enum domain)
1907 {
1908 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1909 A Java class declaration also defines a typedef for the class.
1910 Similarly, any Ada type declaration implicitly defines a typedef. */
1911 if (symbol_language == language_cplus
1912 || symbol_language == language_d
1913 || symbol_language == language_java
1914 || symbol_language == language_ada)
1915 {
1916 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1917 && symbol_domain == STRUCT_DOMAIN)
1918 return 1;
1919 }
1920 /* For all other languages, strict match is required. */
1921 return (symbol_domain == domain);
1922 }
1923
1924 /* Look up a type named NAME in the struct_domain. The type returned
1925 must not be opaque -- i.e., must have at least one field
1926 defined. */
1927
1928 struct type *
1929 lookup_transparent_type (const char *name)
1930 {
1931 return current_language->la_lookup_transparent_type (name);
1932 }
1933
1934 /* A helper for basic_lookup_transparent_type that interfaces with the
1935 "quick" symbol table functions. */
1936
1937 static struct type *
1938 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1939 const char *name)
1940 {
1941 struct symtab *symtab;
1942 struct blockvector *bv;
1943 struct block *block;
1944 struct symbol *sym;
1945
1946 if (!objfile->sf)
1947 return NULL;
1948 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1949 if (!symtab)
1950 return NULL;
1951
1952 bv = BLOCKVECTOR (symtab);
1953 block = BLOCKVECTOR_BLOCK (bv, kind);
1954 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1955 if (!sym)
1956 error_in_psymtab_expansion (kind, name, symtab);
1957
1958 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1959 return SYMBOL_TYPE (sym);
1960
1961 return NULL;
1962 }
1963
1964 /* The standard implementation of lookup_transparent_type. This code
1965 was modeled on lookup_symbol -- the parts not relevant to looking
1966 up types were just left out. In particular it's assumed here that
1967 types are available in struct_domain and only at file-static or
1968 global blocks. */
1969
1970 struct type *
1971 basic_lookup_transparent_type (const char *name)
1972 {
1973 struct symbol *sym;
1974 struct symtab *s = NULL;
1975 struct blockvector *bv;
1976 struct objfile *objfile;
1977 struct block *block;
1978 struct type *t;
1979
1980 /* Now search all the global symbols. Do the symtab's first, then
1981 check the psymtab's. If a psymtab indicates the existence
1982 of the desired name as a global, then do psymtab-to-symtab
1983 conversion on the fly and return the found symbol. */
1984
1985 ALL_OBJFILES (objfile)
1986 {
1987 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1988 {
1989 bv = BLOCKVECTOR (s);
1990 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1991 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1992 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1993 {
1994 return SYMBOL_TYPE (sym);
1995 }
1996 }
1997 }
1998
1999 ALL_OBJFILES (objfile)
2000 {
2001 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2002 if (t)
2003 return t;
2004 }
2005
2006 /* Now search the static file-level symbols.
2007 Not strictly correct, but more useful than an error.
2008 Do the symtab's first, then
2009 check the psymtab's. If a psymtab indicates the existence
2010 of the desired name as a file-level static, then do psymtab-to-symtab
2011 conversion on the fly and return the found symbol. */
2012
2013 ALL_OBJFILES (objfile)
2014 {
2015 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2016 {
2017 bv = BLOCKVECTOR (s);
2018 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2019 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2020 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2021 {
2022 return SYMBOL_TYPE (sym);
2023 }
2024 }
2025 }
2026
2027 ALL_OBJFILES (objfile)
2028 {
2029 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2030 if (t)
2031 return t;
2032 }
2033
2034 return (struct type *) 0;
2035 }
2036
2037 /* Search BLOCK for symbol NAME in DOMAIN.
2038
2039 Note that if NAME is the demangled form of a C++ symbol, we will fail
2040 to find a match during the binary search of the non-encoded names, but
2041 for now we don't worry about the slight inefficiency of looking for
2042 a match we'll never find, since it will go pretty quick. Once the
2043 binary search terminates, we drop through and do a straight linear
2044 search on the symbols. Each symbol which is marked as being a ObjC/C++
2045 symbol (language_cplus or language_objc set) has both the encoded and
2046 non-encoded names tested for a match. */
2047
2048 struct symbol *
2049 lookup_block_symbol (const struct block *block, const char *name,
2050 const domain_enum domain)
2051 {
2052 struct block_iterator iter;
2053 struct symbol *sym;
2054
2055 if (!BLOCK_FUNCTION (block))
2056 {
2057 for (sym = block_iter_name_first (block, name, &iter);
2058 sym != NULL;
2059 sym = block_iter_name_next (name, &iter))
2060 {
2061 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2062 SYMBOL_DOMAIN (sym), domain))
2063 return sym;
2064 }
2065 return NULL;
2066 }
2067 else
2068 {
2069 /* Note that parameter symbols do not always show up last in the
2070 list; this loop makes sure to take anything else other than
2071 parameter symbols first; it only uses parameter symbols as a
2072 last resort. Note that this only takes up extra computation
2073 time on a match. */
2074
2075 struct symbol *sym_found = NULL;
2076
2077 for (sym = block_iter_name_first (block, name, &iter);
2078 sym != NULL;
2079 sym = block_iter_name_next (name, &iter))
2080 {
2081 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2082 SYMBOL_DOMAIN (sym), domain))
2083 {
2084 sym_found = sym;
2085 if (!SYMBOL_IS_ARGUMENT (sym))
2086 {
2087 break;
2088 }
2089 }
2090 }
2091 return (sym_found); /* Will be NULL if not found. */
2092 }
2093 }
2094
2095 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2096
2097 For each symbol that matches, CALLBACK is called. The symbol and
2098 DATA are passed to the callback.
2099
2100 If CALLBACK returns zero, the iteration ends. Otherwise, the
2101 search continues. */
2102
2103 void
2104 iterate_over_symbols (const struct block *block, const char *name,
2105 const domain_enum domain,
2106 symbol_found_callback_ftype *callback,
2107 void *data)
2108 {
2109 struct block_iterator iter;
2110 struct symbol *sym;
2111
2112 for (sym = block_iter_name_first (block, name, &iter);
2113 sym != NULL;
2114 sym = block_iter_name_next (name, &iter))
2115 {
2116 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2117 SYMBOL_DOMAIN (sym), domain))
2118 {
2119 if (!callback (sym, data))
2120 return;
2121 }
2122 }
2123 }
2124
2125 /* Find the symtab associated with PC and SECTION. Look through the
2126 psymtabs and read in another symtab if necessary. */
2127
2128 struct symtab *
2129 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2130 {
2131 struct block *b;
2132 struct blockvector *bv;
2133 struct symtab *s = NULL;
2134 struct symtab *best_s = NULL;
2135 struct objfile *objfile;
2136 CORE_ADDR distance = 0;
2137 struct minimal_symbol *msymbol;
2138
2139 /* If we know that this is not a text address, return failure. This is
2140 necessary because we loop based on the block's high and low code
2141 addresses, which do not include the data ranges, and because
2142 we call find_pc_sect_psymtab which has a similar restriction based
2143 on the partial_symtab's texthigh and textlow. */
2144 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2145 if (msymbol
2146 && (MSYMBOL_TYPE (msymbol) == mst_data
2147 || MSYMBOL_TYPE (msymbol) == mst_bss
2148 || MSYMBOL_TYPE (msymbol) == mst_abs
2149 || MSYMBOL_TYPE (msymbol) == mst_file_data
2150 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2151 return NULL;
2152
2153 /* Search all symtabs for the one whose file contains our address, and which
2154 is the smallest of all the ones containing the address. This is designed
2155 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2156 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2157 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2158
2159 This happens for native ecoff format, where code from included files
2160 gets its own symtab. The symtab for the included file should have
2161 been read in already via the dependency mechanism.
2162 It might be swifter to create several symtabs with the same name
2163 like xcoff does (I'm not sure).
2164
2165 It also happens for objfiles that have their functions reordered.
2166 For these, the symtab we are looking for is not necessarily read in. */
2167
2168 ALL_PRIMARY_SYMTABS (objfile, s)
2169 {
2170 bv = BLOCKVECTOR (s);
2171 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2172
2173 if (BLOCK_START (b) <= pc
2174 && BLOCK_END (b) > pc
2175 && (distance == 0
2176 || BLOCK_END (b) - BLOCK_START (b) < distance))
2177 {
2178 /* For an objfile that has its functions reordered,
2179 find_pc_psymtab will find the proper partial symbol table
2180 and we simply return its corresponding symtab. */
2181 /* In order to better support objfiles that contain both
2182 stabs and coff debugging info, we continue on if a psymtab
2183 can't be found. */
2184 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2185 {
2186 struct symtab *result;
2187
2188 result
2189 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2190 msymbol,
2191 pc, section,
2192 0);
2193 if (result)
2194 return result;
2195 }
2196 if (section != 0)
2197 {
2198 struct block_iterator iter;
2199 struct symbol *sym = NULL;
2200
2201 ALL_BLOCK_SYMBOLS (b, iter, sym)
2202 {
2203 fixup_symbol_section (sym, objfile);
2204 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2205 section))
2206 break;
2207 }
2208 if (sym == NULL)
2209 continue; /* No symbol in this symtab matches
2210 section. */
2211 }
2212 distance = BLOCK_END (b) - BLOCK_START (b);
2213 best_s = s;
2214 }
2215 }
2216
2217 if (best_s != NULL)
2218 return (best_s);
2219
2220 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2221
2222 ALL_OBJFILES (objfile)
2223 {
2224 struct symtab *result;
2225
2226 if (!objfile->sf)
2227 continue;
2228 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2229 msymbol,
2230 pc, section,
2231 1);
2232 if (result)
2233 return result;
2234 }
2235
2236 return NULL;
2237 }
2238
2239 /* Find the symtab associated with PC. Look through the psymtabs and read
2240 in another symtab if necessary. Backward compatibility, no section. */
2241
2242 struct symtab *
2243 find_pc_symtab (CORE_ADDR pc)
2244 {
2245 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2246 }
2247 \f
2248
2249 /* Find the source file and line number for a given PC value and SECTION.
2250 Return a structure containing a symtab pointer, a line number,
2251 and a pc range for the entire source line.
2252 The value's .pc field is NOT the specified pc.
2253 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2254 use the line that ends there. Otherwise, in that case, the line
2255 that begins there is used. */
2256
2257 /* The big complication here is that a line may start in one file, and end just
2258 before the start of another file. This usually occurs when you #include
2259 code in the middle of a subroutine. To properly find the end of a line's PC
2260 range, we must search all symtabs associated with this compilation unit, and
2261 find the one whose first PC is closer than that of the next line in this
2262 symtab. */
2263
2264 /* If it's worth the effort, we could be using a binary search. */
2265
2266 struct symtab_and_line
2267 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2268 {
2269 struct symtab *s;
2270 struct linetable *l;
2271 int len;
2272 int i;
2273 struct linetable_entry *item;
2274 struct symtab_and_line val;
2275 struct blockvector *bv;
2276 struct bound_minimal_symbol msymbol;
2277 struct minimal_symbol *mfunsym;
2278 struct objfile *objfile;
2279
2280 /* Info on best line seen so far, and where it starts, and its file. */
2281
2282 struct linetable_entry *best = NULL;
2283 CORE_ADDR best_end = 0;
2284 struct symtab *best_symtab = 0;
2285
2286 /* Store here the first line number
2287 of a file which contains the line at the smallest pc after PC.
2288 If we don't find a line whose range contains PC,
2289 we will use a line one less than this,
2290 with a range from the start of that file to the first line's pc. */
2291 struct linetable_entry *alt = NULL;
2292
2293 /* Info on best line seen in this file. */
2294
2295 struct linetable_entry *prev;
2296
2297 /* If this pc is not from the current frame,
2298 it is the address of the end of a call instruction.
2299 Quite likely that is the start of the following statement.
2300 But what we want is the statement containing the instruction.
2301 Fudge the pc to make sure we get that. */
2302
2303 init_sal (&val); /* initialize to zeroes */
2304
2305 val.pspace = current_program_space;
2306
2307 /* It's tempting to assume that, if we can't find debugging info for
2308 any function enclosing PC, that we shouldn't search for line
2309 number info, either. However, GAS can emit line number info for
2310 assembly files --- very helpful when debugging hand-written
2311 assembly code. In such a case, we'd have no debug info for the
2312 function, but we would have line info. */
2313
2314 if (notcurrent)
2315 pc -= 1;
2316
2317 /* elz: added this because this function returned the wrong
2318 information if the pc belongs to a stub (import/export)
2319 to call a shlib function. This stub would be anywhere between
2320 two functions in the target, and the line info was erroneously
2321 taken to be the one of the line before the pc. */
2322
2323 /* RT: Further explanation:
2324
2325 * We have stubs (trampolines) inserted between procedures.
2326 *
2327 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2328 * exists in the main image.
2329 *
2330 * In the minimal symbol table, we have a bunch of symbols
2331 * sorted by start address. The stubs are marked as "trampoline",
2332 * the others appear as text. E.g.:
2333 *
2334 * Minimal symbol table for main image
2335 * main: code for main (text symbol)
2336 * shr1: stub (trampoline symbol)
2337 * foo: code for foo (text symbol)
2338 * ...
2339 * Minimal symbol table for "shr1" image:
2340 * ...
2341 * shr1: code for shr1 (text symbol)
2342 * ...
2343 *
2344 * So the code below is trying to detect if we are in the stub
2345 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2346 * and if found, do the symbolization from the real-code address
2347 * rather than the stub address.
2348 *
2349 * Assumptions being made about the minimal symbol table:
2350 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2351 * if we're really in the trampoline.s If we're beyond it (say
2352 * we're in "foo" in the above example), it'll have a closer
2353 * symbol (the "foo" text symbol for example) and will not
2354 * return the trampoline.
2355 * 2. lookup_minimal_symbol_text() will find a real text symbol
2356 * corresponding to the trampoline, and whose address will
2357 * be different than the trampoline address. I put in a sanity
2358 * check for the address being the same, to avoid an
2359 * infinite recursion.
2360 */
2361 msymbol = lookup_minimal_symbol_by_pc (pc);
2362 if (msymbol.minsym != NULL)
2363 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2364 {
2365 mfunsym
2366 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2367 NULL);
2368 if (mfunsym == NULL)
2369 /* I eliminated this warning since it is coming out
2370 * in the following situation:
2371 * gdb shmain // test program with shared libraries
2372 * (gdb) break shr1 // function in shared lib
2373 * Warning: In stub for ...
2374 * In the above situation, the shared lib is not loaded yet,
2375 * so of course we can't find the real func/line info,
2376 * but the "break" still works, and the warning is annoying.
2377 * So I commented out the warning. RT */
2378 /* warning ("In stub for %s; unable to find real function/line info",
2379 SYMBOL_LINKAGE_NAME (msymbol)); */
2380 ;
2381 /* fall through */
2382 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2383 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2384 /* Avoid infinite recursion */
2385 /* See above comment about why warning is commented out. */
2386 /* warning ("In stub for %s; unable to find real function/line info",
2387 SYMBOL_LINKAGE_NAME (msymbol)); */
2388 ;
2389 /* fall through */
2390 else
2391 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2392 }
2393
2394
2395 s = find_pc_sect_symtab (pc, section);
2396 if (!s)
2397 {
2398 /* If no symbol information, return previous pc. */
2399 if (notcurrent)
2400 pc++;
2401 val.pc = pc;
2402 return val;
2403 }
2404
2405 bv = BLOCKVECTOR (s);
2406 objfile = s->objfile;
2407
2408 /* Look at all the symtabs that share this blockvector.
2409 They all have the same apriori range, that we found was right;
2410 but they have different line tables. */
2411
2412 ALL_OBJFILE_SYMTABS (objfile, s)
2413 {
2414 if (BLOCKVECTOR (s) != bv)
2415 continue;
2416
2417 /* Find the best line in this symtab. */
2418 l = LINETABLE (s);
2419 if (!l)
2420 continue;
2421 len = l->nitems;
2422 if (len <= 0)
2423 {
2424 /* I think len can be zero if the symtab lacks line numbers
2425 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2426 I'm not sure which, and maybe it depends on the symbol
2427 reader). */
2428 continue;
2429 }
2430
2431 prev = NULL;
2432 item = l->item; /* Get first line info. */
2433
2434 /* Is this file's first line closer than the first lines of other files?
2435 If so, record this file, and its first line, as best alternate. */
2436 if (item->pc > pc && (!alt || item->pc < alt->pc))
2437 alt = item;
2438
2439 for (i = 0; i < len; i++, item++)
2440 {
2441 /* Leave prev pointing to the linetable entry for the last line
2442 that started at or before PC. */
2443 if (item->pc > pc)
2444 break;
2445
2446 prev = item;
2447 }
2448
2449 /* At this point, prev points at the line whose start addr is <= pc, and
2450 item points at the next line. If we ran off the end of the linetable
2451 (pc >= start of the last line), then prev == item. If pc < start of
2452 the first line, prev will not be set. */
2453
2454 /* Is this file's best line closer than the best in the other files?
2455 If so, record this file, and its best line, as best so far. Don't
2456 save prev if it represents the end of a function (i.e. line number
2457 0) instead of a real line. */
2458
2459 if (prev && prev->line && (!best || prev->pc > best->pc))
2460 {
2461 best = prev;
2462 best_symtab = s;
2463
2464 /* Discard BEST_END if it's before the PC of the current BEST. */
2465 if (best_end <= best->pc)
2466 best_end = 0;
2467 }
2468
2469 /* If another line (denoted by ITEM) is in the linetable and its
2470 PC is after BEST's PC, but before the current BEST_END, then
2471 use ITEM's PC as the new best_end. */
2472 if (best && i < len && item->pc > best->pc
2473 && (best_end == 0 || best_end > item->pc))
2474 best_end = item->pc;
2475 }
2476
2477 if (!best_symtab)
2478 {
2479 /* If we didn't find any line number info, just return zeros.
2480 We used to return alt->line - 1 here, but that could be
2481 anywhere; if we don't have line number info for this PC,
2482 don't make some up. */
2483 val.pc = pc;
2484 }
2485 else if (best->line == 0)
2486 {
2487 /* If our best fit is in a range of PC's for which no line
2488 number info is available (line number is zero) then we didn't
2489 find any valid line information. */
2490 val.pc = pc;
2491 }
2492 else
2493 {
2494 val.symtab = best_symtab;
2495 val.line = best->line;
2496 val.pc = best->pc;
2497 if (best_end && (!alt || best_end < alt->pc))
2498 val.end = best_end;
2499 else if (alt)
2500 val.end = alt->pc;
2501 else
2502 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2503 }
2504 val.section = section;
2505 return val;
2506 }
2507
2508 /* Backward compatibility (no section). */
2509
2510 struct symtab_and_line
2511 find_pc_line (CORE_ADDR pc, int notcurrent)
2512 {
2513 struct obj_section *section;
2514
2515 section = find_pc_overlay (pc);
2516 if (pc_in_unmapped_range (pc, section))
2517 pc = overlay_mapped_address (pc, section);
2518 return find_pc_sect_line (pc, section, notcurrent);
2519 }
2520 \f
2521 /* Find line number LINE in any symtab whose name is the same as
2522 SYMTAB.
2523
2524 If found, return the symtab that contains the linetable in which it was
2525 found, set *INDEX to the index in the linetable of the best entry
2526 found, and set *EXACT_MATCH nonzero if the value returned is an
2527 exact match.
2528
2529 If not found, return NULL. */
2530
2531 struct symtab *
2532 find_line_symtab (struct symtab *symtab, int line,
2533 int *index, int *exact_match)
2534 {
2535 int exact = 0; /* Initialized here to avoid a compiler warning. */
2536
2537 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2538 so far seen. */
2539
2540 int best_index;
2541 struct linetable *best_linetable;
2542 struct symtab *best_symtab;
2543
2544 /* First try looking it up in the given symtab. */
2545 best_linetable = LINETABLE (symtab);
2546 best_symtab = symtab;
2547 best_index = find_line_common (best_linetable, line, &exact, 0);
2548 if (best_index < 0 || !exact)
2549 {
2550 /* Didn't find an exact match. So we better keep looking for
2551 another symtab with the same name. In the case of xcoff,
2552 multiple csects for one source file (produced by IBM's FORTRAN
2553 compiler) produce multiple symtabs (this is unavoidable
2554 assuming csects can be at arbitrary places in memory and that
2555 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2556
2557 /* BEST is the smallest linenumber > LINE so far seen,
2558 or 0 if none has been seen so far.
2559 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2560 int best;
2561
2562 struct objfile *objfile;
2563 struct symtab *s;
2564
2565 if (best_index >= 0)
2566 best = best_linetable->item[best_index].line;
2567 else
2568 best = 0;
2569
2570 ALL_OBJFILES (objfile)
2571 {
2572 if (objfile->sf)
2573 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2574 symtab_to_fullname (symtab));
2575 }
2576
2577 ALL_SYMTABS (objfile, s)
2578 {
2579 struct linetable *l;
2580 int ind;
2581
2582 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2583 continue;
2584 if (FILENAME_CMP (symtab_to_fullname (symtab),
2585 symtab_to_fullname (s)) != 0)
2586 continue;
2587 l = LINETABLE (s);
2588 ind = find_line_common (l, line, &exact, 0);
2589 if (ind >= 0)
2590 {
2591 if (exact)
2592 {
2593 best_index = ind;
2594 best_linetable = l;
2595 best_symtab = s;
2596 goto done;
2597 }
2598 if (best == 0 || l->item[ind].line < best)
2599 {
2600 best = l->item[ind].line;
2601 best_index = ind;
2602 best_linetable = l;
2603 best_symtab = s;
2604 }
2605 }
2606 }
2607 }
2608 done:
2609 if (best_index < 0)
2610 return NULL;
2611
2612 if (index)
2613 *index = best_index;
2614 if (exact_match)
2615 *exact_match = exact;
2616
2617 return best_symtab;
2618 }
2619
2620 /* Given SYMTAB, returns all the PCs function in the symtab that
2621 exactly match LINE. Returns NULL if there are no exact matches,
2622 but updates BEST_ITEM in this case. */
2623
2624 VEC (CORE_ADDR) *
2625 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2626 struct linetable_entry **best_item)
2627 {
2628 int start = 0;
2629 VEC (CORE_ADDR) *result = NULL;
2630
2631 /* First, collect all the PCs that are at this line. */
2632 while (1)
2633 {
2634 int was_exact;
2635 int idx;
2636
2637 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2638 if (idx < 0)
2639 break;
2640
2641 if (!was_exact)
2642 {
2643 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2644
2645 if (*best_item == NULL || item->line < (*best_item)->line)
2646 *best_item = item;
2647
2648 break;
2649 }
2650
2651 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2652 start = idx + 1;
2653 }
2654
2655 return result;
2656 }
2657
2658 \f
2659 /* Set the PC value for a given source file and line number and return true.
2660 Returns zero for invalid line number (and sets the PC to 0).
2661 The source file is specified with a struct symtab. */
2662
2663 int
2664 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2665 {
2666 struct linetable *l;
2667 int ind;
2668
2669 *pc = 0;
2670 if (symtab == 0)
2671 return 0;
2672
2673 symtab = find_line_symtab (symtab, line, &ind, NULL);
2674 if (symtab != NULL)
2675 {
2676 l = LINETABLE (symtab);
2677 *pc = l->item[ind].pc;
2678 return 1;
2679 }
2680 else
2681 return 0;
2682 }
2683
2684 /* Find the range of pc values in a line.
2685 Store the starting pc of the line into *STARTPTR
2686 and the ending pc (start of next line) into *ENDPTR.
2687 Returns 1 to indicate success.
2688 Returns 0 if could not find the specified line. */
2689
2690 int
2691 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2692 CORE_ADDR *endptr)
2693 {
2694 CORE_ADDR startaddr;
2695 struct symtab_and_line found_sal;
2696
2697 startaddr = sal.pc;
2698 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2699 return 0;
2700
2701 /* This whole function is based on address. For example, if line 10 has
2702 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2703 "info line *0x123" should say the line goes from 0x100 to 0x200
2704 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2705 This also insures that we never give a range like "starts at 0x134
2706 and ends at 0x12c". */
2707
2708 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2709 if (found_sal.line != sal.line)
2710 {
2711 /* The specified line (sal) has zero bytes. */
2712 *startptr = found_sal.pc;
2713 *endptr = found_sal.pc;
2714 }
2715 else
2716 {
2717 *startptr = found_sal.pc;
2718 *endptr = found_sal.end;
2719 }
2720 return 1;
2721 }
2722
2723 /* Given a line table and a line number, return the index into the line
2724 table for the pc of the nearest line whose number is >= the specified one.
2725 Return -1 if none is found. The value is >= 0 if it is an index.
2726 START is the index at which to start searching the line table.
2727
2728 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2729
2730 static int
2731 find_line_common (struct linetable *l, int lineno,
2732 int *exact_match, int start)
2733 {
2734 int i;
2735 int len;
2736
2737 /* BEST is the smallest linenumber > LINENO so far seen,
2738 or 0 if none has been seen so far.
2739 BEST_INDEX identifies the item for it. */
2740
2741 int best_index = -1;
2742 int best = 0;
2743
2744 *exact_match = 0;
2745
2746 if (lineno <= 0)
2747 return -1;
2748 if (l == 0)
2749 return -1;
2750
2751 len = l->nitems;
2752 for (i = start; i < len; i++)
2753 {
2754 struct linetable_entry *item = &(l->item[i]);
2755
2756 if (item->line == lineno)
2757 {
2758 /* Return the first (lowest address) entry which matches. */
2759 *exact_match = 1;
2760 return i;
2761 }
2762
2763 if (item->line > lineno && (best == 0 || item->line < best))
2764 {
2765 best = item->line;
2766 best_index = i;
2767 }
2768 }
2769
2770 /* If we got here, we didn't get an exact match. */
2771 return best_index;
2772 }
2773
2774 int
2775 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2776 {
2777 struct symtab_and_line sal;
2778
2779 sal = find_pc_line (pc, 0);
2780 *startptr = sal.pc;
2781 *endptr = sal.end;
2782 return sal.symtab != 0;
2783 }
2784
2785 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2786 address for that function that has an entry in SYMTAB's line info
2787 table. If such an entry cannot be found, return FUNC_ADDR
2788 unaltered. */
2789
2790 static CORE_ADDR
2791 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2792 {
2793 CORE_ADDR func_start, func_end;
2794 struct linetable *l;
2795 int i;
2796
2797 /* Give up if this symbol has no lineinfo table. */
2798 l = LINETABLE (symtab);
2799 if (l == NULL)
2800 return func_addr;
2801
2802 /* Get the range for the function's PC values, or give up if we
2803 cannot, for some reason. */
2804 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2805 return func_addr;
2806
2807 /* Linetable entries are ordered by PC values, see the commentary in
2808 symtab.h where `struct linetable' is defined. Thus, the first
2809 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2810 address we are looking for. */
2811 for (i = 0; i < l->nitems; i++)
2812 {
2813 struct linetable_entry *item = &(l->item[i]);
2814
2815 /* Don't use line numbers of zero, they mark special entries in
2816 the table. See the commentary on symtab.h before the
2817 definition of struct linetable. */
2818 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2819 return item->pc;
2820 }
2821
2822 return func_addr;
2823 }
2824
2825 /* Given a function symbol SYM, find the symtab and line for the start
2826 of the function.
2827 If the argument FUNFIRSTLINE is nonzero, we want the first line
2828 of real code inside the function. */
2829
2830 struct symtab_and_line
2831 find_function_start_sal (struct symbol *sym, int funfirstline)
2832 {
2833 struct symtab_and_line sal;
2834
2835 fixup_symbol_section (sym, NULL);
2836 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2837 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2838
2839 /* We always should have a line for the function start address.
2840 If we don't, something is odd. Create a plain SAL refering
2841 just the PC and hope that skip_prologue_sal (if requested)
2842 can find a line number for after the prologue. */
2843 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2844 {
2845 init_sal (&sal);
2846 sal.pspace = current_program_space;
2847 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2848 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2849 }
2850
2851 if (funfirstline)
2852 skip_prologue_sal (&sal);
2853
2854 return sal;
2855 }
2856
2857 /* Adjust SAL to the first instruction past the function prologue.
2858 If the PC was explicitly specified, the SAL is not changed.
2859 If the line number was explicitly specified, at most the SAL's PC
2860 is updated. If SAL is already past the prologue, then do nothing. */
2861
2862 void
2863 skip_prologue_sal (struct symtab_and_line *sal)
2864 {
2865 struct symbol *sym;
2866 struct symtab_and_line start_sal;
2867 struct cleanup *old_chain;
2868 CORE_ADDR pc, saved_pc;
2869 struct obj_section *section;
2870 const char *name;
2871 struct objfile *objfile;
2872 struct gdbarch *gdbarch;
2873 struct block *b, *function_block;
2874 int force_skip, skip;
2875
2876 /* Do not change the SAL if PC was specified explicitly. */
2877 if (sal->explicit_pc)
2878 return;
2879
2880 old_chain = save_current_space_and_thread ();
2881 switch_to_program_space_and_thread (sal->pspace);
2882
2883 sym = find_pc_sect_function (sal->pc, sal->section);
2884 if (sym != NULL)
2885 {
2886 fixup_symbol_section (sym, NULL);
2887
2888 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2889 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2890 name = SYMBOL_LINKAGE_NAME (sym);
2891 objfile = SYMBOL_SYMTAB (sym)->objfile;
2892 }
2893 else
2894 {
2895 struct bound_minimal_symbol msymbol
2896 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2897
2898 if (msymbol.minsym == NULL)
2899 {
2900 do_cleanups (old_chain);
2901 return;
2902 }
2903
2904 objfile = msymbol.objfile;
2905 pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
2906 section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2907 name = SYMBOL_LINKAGE_NAME (msymbol.minsym);
2908 }
2909
2910 gdbarch = get_objfile_arch (objfile);
2911
2912 /* Process the prologue in two passes. In the first pass try to skip the
2913 prologue (SKIP is true) and verify there is a real need for it (indicated
2914 by FORCE_SKIP). If no such reason was found run a second pass where the
2915 prologue is not skipped (SKIP is false). */
2916
2917 skip = 1;
2918 force_skip = 1;
2919
2920 /* Be conservative - allow direct PC (without skipping prologue) only if we
2921 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2922 have to be set by the caller so we use SYM instead. */
2923 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2924 force_skip = 0;
2925
2926 saved_pc = pc;
2927 do
2928 {
2929 pc = saved_pc;
2930
2931 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2932 so that gdbarch_skip_prologue has something unique to work on. */
2933 if (section_is_overlay (section) && !section_is_mapped (section))
2934 pc = overlay_unmapped_address (pc, section);
2935
2936 /* Skip "first line" of function (which is actually its prologue). */
2937 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2938 if (skip)
2939 pc = gdbarch_skip_prologue (gdbarch, pc);
2940
2941 /* For overlays, map pc back into its mapped VMA range. */
2942 pc = overlay_mapped_address (pc, section);
2943
2944 /* Calculate line number. */
2945 start_sal = find_pc_sect_line (pc, section, 0);
2946
2947 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2948 line is still part of the same function. */
2949 if (skip && start_sal.pc != pc
2950 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2951 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2952 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2953 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2954 {
2955 /* First pc of next line */
2956 pc = start_sal.end;
2957 /* Recalculate the line number (might not be N+1). */
2958 start_sal = find_pc_sect_line (pc, section, 0);
2959 }
2960
2961 /* On targets with executable formats that don't have a concept of
2962 constructors (ELF with .init has, PE doesn't), gcc emits a call
2963 to `__main' in `main' between the prologue and before user
2964 code. */
2965 if (gdbarch_skip_main_prologue_p (gdbarch)
2966 && name && strcmp_iw (name, "main") == 0)
2967 {
2968 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2969 /* Recalculate the line number (might not be N+1). */
2970 start_sal = find_pc_sect_line (pc, section, 0);
2971 force_skip = 1;
2972 }
2973 }
2974 while (!force_skip && skip--);
2975
2976 /* If we still don't have a valid source line, try to find the first
2977 PC in the lineinfo table that belongs to the same function. This
2978 happens with COFF debug info, which does not seem to have an
2979 entry in lineinfo table for the code after the prologue which has
2980 no direct relation to source. For example, this was found to be
2981 the case with the DJGPP target using "gcc -gcoff" when the
2982 compiler inserted code after the prologue to make sure the stack
2983 is aligned. */
2984 if (!force_skip && sym && start_sal.symtab == NULL)
2985 {
2986 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2987 /* Recalculate the line number. */
2988 start_sal = find_pc_sect_line (pc, section, 0);
2989 }
2990
2991 do_cleanups (old_chain);
2992
2993 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2994 forward SAL to the end of the prologue. */
2995 if (sal->pc >= pc)
2996 return;
2997
2998 sal->pc = pc;
2999 sal->section = section;
3000
3001 /* Unless the explicit_line flag was set, update the SAL line
3002 and symtab to correspond to the modified PC location. */
3003 if (sal->explicit_line)
3004 return;
3005
3006 sal->symtab = start_sal.symtab;
3007 sal->line = start_sal.line;
3008 sal->end = start_sal.end;
3009
3010 /* Check if we are now inside an inlined function. If we can,
3011 use the call site of the function instead. */
3012 b = block_for_pc_sect (sal->pc, sal->section);
3013 function_block = NULL;
3014 while (b != NULL)
3015 {
3016 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3017 function_block = b;
3018 else if (BLOCK_FUNCTION (b) != NULL)
3019 break;
3020 b = BLOCK_SUPERBLOCK (b);
3021 }
3022 if (function_block != NULL
3023 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3024 {
3025 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3026 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3027 }
3028 }
3029
3030 /* If P is of the form "operator[ \t]+..." where `...' is
3031 some legitimate operator text, return a pointer to the
3032 beginning of the substring of the operator text.
3033 Otherwise, return "". */
3034
3035 static char *
3036 operator_chars (char *p, char **end)
3037 {
3038 *end = "";
3039 if (strncmp (p, "operator", 8))
3040 return *end;
3041 p += 8;
3042
3043 /* Don't get faked out by `operator' being part of a longer
3044 identifier. */
3045 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3046 return *end;
3047
3048 /* Allow some whitespace between `operator' and the operator symbol. */
3049 while (*p == ' ' || *p == '\t')
3050 p++;
3051
3052 /* Recognize 'operator TYPENAME'. */
3053
3054 if (isalpha (*p) || *p == '_' || *p == '$')
3055 {
3056 char *q = p + 1;
3057
3058 while (isalnum (*q) || *q == '_' || *q == '$')
3059 q++;
3060 *end = q;
3061 return p;
3062 }
3063
3064 while (*p)
3065 switch (*p)
3066 {
3067 case '\\': /* regexp quoting */
3068 if (p[1] == '*')
3069 {
3070 if (p[2] == '=') /* 'operator\*=' */
3071 *end = p + 3;
3072 else /* 'operator\*' */
3073 *end = p + 2;
3074 return p;
3075 }
3076 else if (p[1] == '[')
3077 {
3078 if (p[2] == ']')
3079 error (_("mismatched quoting on brackets, "
3080 "try 'operator\\[\\]'"));
3081 else if (p[2] == '\\' && p[3] == ']')
3082 {
3083 *end = p + 4; /* 'operator\[\]' */
3084 return p;
3085 }
3086 else
3087 error (_("nothing is allowed between '[' and ']'"));
3088 }
3089 else
3090 {
3091 /* Gratuitous qoute: skip it and move on. */
3092 p++;
3093 continue;
3094 }
3095 break;
3096 case '!':
3097 case '=':
3098 case '*':
3099 case '/':
3100 case '%':
3101 case '^':
3102 if (p[1] == '=')
3103 *end = p + 2;
3104 else
3105 *end = p + 1;
3106 return p;
3107 case '<':
3108 case '>':
3109 case '+':
3110 case '-':
3111 case '&':
3112 case '|':
3113 if (p[0] == '-' && p[1] == '>')
3114 {
3115 /* Struct pointer member operator 'operator->'. */
3116 if (p[2] == '*')
3117 {
3118 *end = p + 3; /* 'operator->*' */
3119 return p;
3120 }
3121 else if (p[2] == '\\')
3122 {
3123 *end = p + 4; /* Hopefully 'operator->\*' */
3124 return p;
3125 }
3126 else
3127 {
3128 *end = p + 2; /* 'operator->' */
3129 return p;
3130 }
3131 }
3132 if (p[1] == '=' || p[1] == p[0])
3133 *end = p + 2;
3134 else
3135 *end = p + 1;
3136 return p;
3137 case '~':
3138 case ',':
3139 *end = p + 1;
3140 return p;
3141 case '(':
3142 if (p[1] != ')')
3143 error (_("`operator ()' must be specified "
3144 "without whitespace in `()'"));
3145 *end = p + 2;
3146 return p;
3147 case '?':
3148 if (p[1] != ':')
3149 error (_("`operator ?:' must be specified "
3150 "without whitespace in `?:'"));
3151 *end = p + 2;
3152 return p;
3153 case '[':
3154 if (p[1] != ']')
3155 error (_("`operator []' must be specified "
3156 "without whitespace in `[]'"));
3157 *end = p + 2;
3158 return p;
3159 default:
3160 error (_("`operator %s' not supported"), p);
3161 break;
3162 }
3163
3164 *end = "";
3165 return *end;
3166 }
3167 \f
3168
3169 /* Cache to watch for file names already seen by filename_seen. */
3170
3171 struct filename_seen_cache
3172 {
3173 /* Table of files seen so far. */
3174 htab_t tab;
3175 /* Initial size of the table. It automagically grows from here. */
3176 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3177 };
3178
3179 /* filename_seen_cache constructor. */
3180
3181 static struct filename_seen_cache *
3182 create_filename_seen_cache (void)
3183 {
3184 struct filename_seen_cache *cache;
3185
3186 cache = XNEW (struct filename_seen_cache);
3187 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3188 filename_hash, filename_eq,
3189 NULL, xcalloc, xfree);
3190
3191 return cache;
3192 }
3193
3194 /* Empty the cache, but do not delete it. */
3195
3196 static void
3197 clear_filename_seen_cache (struct filename_seen_cache *cache)
3198 {
3199 htab_empty (cache->tab);
3200 }
3201
3202 /* filename_seen_cache destructor.
3203 This takes a void * argument as it is generally used as a cleanup. */
3204
3205 static void
3206 delete_filename_seen_cache (void *ptr)
3207 {
3208 struct filename_seen_cache *cache = ptr;
3209
3210 htab_delete (cache->tab);
3211 xfree (cache);
3212 }
3213
3214 /* If FILE is not already in the table of files in CACHE, return zero;
3215 otherwise return non-zero. Optionally add FILE to the table if ADD
3216 is non-zero.
3217
3218 NOTE: We don't manage space for FILE, we assume FILE lives as long
3219 as the caller needs. */
3220
3221 static int
3222 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3223 {
3224 void **slot;
3225
3226 /* Is FILE in tab? */
3227 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3228 if (*slot != NULL)
3229 return 1;
3230
3231 /* No; maybe add it to tab. */
3232 if (add)
3233 *slot = (char *) file;
3234
3235 return 0;
3236 }
3237
3238 /* Data structure to maintain printing state for output_source_filename. */
3239
3240 struct output_source_filename_data
3241 {
3242 /* Cache of what we've seen so far. */
3243 struct filename_seen_cache *filename_seen_cache;
3244
3245 /* Flag of whether we're printing the first one. */
3246 int first;
3247 };
3248
3249 /* Slave routine for sources_info. Force line breaks at ,'s.
3250 NAME is the name to print.
3251 DATA contains the state for printing and watching for duplicates. */
3252
3253 static void
3254 output_source_filename (const char *name,
3255 struct output_source_filename_data *data)
3256 {
3257 /* Since a single source file can result in several partial symbol
3258 tables, we need to avoid printing it more than once. Note: if
3259 some of the psymtabs are read in and some are not, it gets
3260 printed both under "Source files for which symbols have been
3261 read" and "Source files for which symbols will be read in on
3262 demand". I consider this a reasonable way to deal with the
3263 situation. I'm not sure whether this can also happen for
3264 symtabs; it doesn't hurt to check. */
3265
3266 /* Was NAME already seen? */
3267 if (filename_seen (data->filename_seen_cache, name, 1))
3268 {
3269 /* Yes; don't print it again. */
3270 return;
3271 }
3272
3273 /* No; print it and reset *FIRST. */
3274 if (! data->first)
3275 printf_filtered (", ");
3276 data->first = 0;
3277
3278 wrap_here ("");
3279 fputs_filtered (name, gdb_stdout);
3280 }
3281
3282 /* A callback for map_partial_symbol_filenames. */
3283
3284 static void
3285 output_partial_symbol_filename (const char *filename, const char *fullname,
3286 void *data)
3287 {
3288 output_source_filename (fullname ? fullname : filename, data);
3289 }
3290
3291 static void
3292 sources_info (char *ignore, int from_tty)
3293 {
3294 struct symtab *s;
3295 struct objfile *objfile;
3296 struct output_source_filename_data data;
3297 struct cleanup *cleanups;
3298
3299 if (!have_full_symbols () && !have_partial_symbols ())
3300 {
3301 error (_("No symbol table is loaded. Use the \"file\" command."));
3302 }
3303
3304 data.filename_seen_cache = create_filename_seen_cache ();
3305 cleanups = make_cleanup (delete_filename_seen_cache,
3306 data.filename_seen_cache);
3307
3308 printf_filtered ("Source files for which symbols have been read in:\n\n");
3309
3310 data.first = 1;
3311 ALL_SYMTABS (objfile, s)
3312 {
3313 const char *fullname = symtab_to_fullname (s);
3314
3315 output_source_filename (fullname, &data);
3316 }
3317 printf_filtered ("\n\n");
3318
3319 printf_filtered ("Source files for which symbols "
3320 "will be read in on demand:\n\n");
3321
3322 clear_filename_seen_cache (data.filename_seen_cache);
3323 data.first = 1;
3324 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3325 1 /*need_fullname*/);
3326 printf_filtered ("\n");
3327
3328 do_cleanups (cleanups);
3329 }
3330
3331 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3332 non-zero compare only lbasename of FILES. */
3333
3334 static int
3335 file_matches (const char *file, char *files[], int nfiles, int basenames)
3336 {
3337 int i;
3338
3339 if (file != NULL && nfiles != 0)
3340 {
3341 for (i = 0; i < nfiles; i++)
3342 {
3343 if (compare_filenames_for_search (file, (basenames
3344 ? lbasename (files[i])
3345 : files[i])))
3346 return 1;
3347 }
3348 }
3349 else if (nfiles == 0)
3350 return 1;
3351 return 0;
3352 }
3353
3354 /* Free any memory associated with a search. */
3355
3356 void
3357 free_search_symbols (struct symbol_search *symbols)
3358 {
3359 struct symbol_search *p;
3360 struct symbol_search *next;
3361
3362 for (p = symbols; p != NULL; p = next)
3363 {
3364 next = p->next;
3365 xfree (p);
3366 }
3367 }
3368
3369 static void
3370 do_free_search_symbols_cleanup (void *symbolsp)
3371 {
3372 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3373
3374 free_search_symbols (symbols);
3375 }
3376
3377 struct cleanup *
3378 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3379 {
3380 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3381 }
3382
3383 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3384 sort symbols, not minimal symbols. */
3385
3386 static int
3387 compare_search_syms (const void *sa, const void *sb)
3388 {
3389 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3390 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3391 int c;
3392
3393 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3394 if (c != 0)
3395 return c;
3396
3397 if (sym_a->block != sym_b->block)
3398 return sym_a->block - sym_b->block;
3399
3400 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3401 SYMBOL_PRINT_NAME (sym_b->symbol));
3402 }
3403
3404 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3405 The duplicates are freed, and the new list is returned in
3406 *NEW_HEAD, *NEW_TAIL. */
3407
3408 static void
3409 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3410 struct symbol_search **new_head,
3411 struct symbol_search **new_tail)
3412 {
3413 struct symbol_search **symbols, *symp, *old_next;
3414 int i, j, nunique;
3415
3416 gdb_assert (found != NULL && nfound > 0);
3417
3418 /* Build an array out of the list so we can easily sort them. */
3419 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3420 * nfound);
3421 symp = found;
3422 for (i = 0; i < nfound; i++)
3423 {
3424 gdb_assert (symp != NULL);
3425 gdb_assert (symp->block >= 0 && symp->block <= 1);
3426 symbols[i] = symp;
3427 symp = symp->next;
3428 }
3429 gdb_assert (symp == NULL);
3430
3431 qsort (symbols, nfound, sizeof (struct symbol_search *),
3432 compare_search_syms);
3433
3434 /* Collapse out the dups. */
3435 for (i = 1, j = 1; i < nfound; ++i)
3436 {
3437 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3438 symbols[j++] = symbols[i];
3439 else
3440 xfree (symbols[i]);
3441 }
3442 nunique = j;
3443 symbols[j - 1]->next = NULL;
3444
3445 /* Rebuild the linked list. */
3446 for (i = 0; i < nunique - 1; i++)
3447 symbols[i]->next = symbols[i + 1];
3448 symbols[nunique - 1]->next = NULL;
3449
3450 *new_head = symbols[0];
3451 *new_tail = symbols[nunique - 1];
3452 xfree (symbols);
3453 }
3454
3455 /* An object of this type is passed as the user_data to the
3456 expand_symtabs_matching method. */
3457 struct search_symbols_data
3458 {
3459 int nfiles;
3460 char **files;
3461
3462 /* It is true if PREG contains valid data, false otherwise. */
3463 unsigned preg_p : 1;
3464 regex_t preg;
3465 };
3466
3467 /* A callback for expand_symtabs_matching. */
3468
3469 static int
3470 search_symbols_file_matches (const char *filename, void *user_data,
3471 int basenames)
3472 {
3473 struct search_symbols_data *data = user_data;
3474
3475 return file_matches (filename, data->files, data->nfiles, basenames);
3476 }
3477
3478 /* A callback for expand_symtabs_matching. */
3479
3480 static int
3481 search_symbols_name_matches (const char *symname, void *user_data)
3482 {
3483 struct search_symbols_data *data = user_data;
3484
3485 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3486 }
3487
3488 /* Search the symbol table for matches to the regular expression REGEXP,
3489 returning the results in *MATCHES.
3490
3491 Only symbols of KIND are searched:
3492 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3493 and constants (enums)
3494 FUNCTIONS_DOMAIN - search all functions
3495 TYPES_DOMAIN - search all type names
3496 ALL_DOMAIN - an internal error for this function
3497
3498 free_search_symbols should be called when *MATCHES is no longer needed.
3499
3500 Within each file the results are sorted locally; each symtab's global and
3501 static blocks are separately alphabetized.
3502 Duplicate entries are removed. */
3503
3504 void
3505 search_symbols (char *regexp, enum search_domain kind,
3506 int nfiles, char *files[],
3507 struct symbol_search **matches)
3508 {
3509 struct symtab *s;
3510 struct blockvector *bv;
3511 struct block *b;
3512 int i = 0;
3513 struct block_iterator iter;
3514 struct symbol *sym;
3515 struct objfile *objfile;
3516 struct minimal_symbol *msymbol;
3517 int found_misc = 0;
3518 static const enum minimal_symbol_type types[]
3519 = {mst_data, mst_text, mst_abs};
3520 static const enum minimal_symbol_type types2[]
3521 = {mst_bss, mst_file_text, mst_abs};
3522 static const enum minimal_symbol_type types3[]
3523 = {mst_file_data, mst_solib_trampoline, mst_abs};
3524 static const enum minimal_symbol_type types4[]
3525 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3526 enum minimal_symbol_type ourtype;
3527 enum minimal_symbol_type ourtype2;
3528 enum minimal_symbol_type ourtype3;
3529 enum minimal_symbol_type ourtype4;
3530 struct symbol_search *found;
3531 struct symbol_search *tail;
3532 struct search_symbols_data datum;
3533 int nfound;
3534
3535 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3536 CLEANUP_CHAIN is freed only in the case of an error. */
3537 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3538 struct cleanup *retval_chain;
3539
3540 gdb_assert (kind <= TYPES_DOMAIN);
3541
3542 ourtype = types[kind];
3543 ourtype2 = types2[kind];
3544 ourtype3 = types3[kind];
3545 ourtype4 = types4[kind];
3546
3547 *matches = NULL;
3548 datum.preg_p = 0;
3549
3550 if (regexp != NULL)
3551 {
3552 /* Make sure spacing is right for C++ operators.
3553 This is just a courtesy to make the matching less sensitive
3554 to how many spaces the user leaves between 'operator'
3555 and <TYPENAME> or <OPERATOR>. */
3556 char *opend;
3557 char *opname = operator_chars (regexp, &opend);
3558 int errcode;
3559
3560 if (*opname)
3561 {
3562 int fix = -1; /* -1 means ok; otherwise number of
3563 spaces needed. */
3564
3565 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3566 {
3567 /* There should 1 space between 'operator' and 'TYPENAME'. */
3568 if (opname[-1] != ' ' || opname[-2] == ' ')
3569 fix = 1;
3570 }
3571 else
3572 {
3573 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3574 if (opname[-1] == ' ')
3575 fix = 0;
3576 }
3577 /* If wrong number of spaces, fix it. */
3578 if (fix >= 0)
3579 {
3580 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3581
3582 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3583 regexp = tmp;
3584 }
3585 }
3586
3587 errcode = regcomp (&datum.preg, regexp,
3588 REG_NOSUB | (case_sensitivity == case_sensitive_off
3589 ? REG_ICASE : 0));
3590 if (errcode != 0)
3591 {
3592 char *err = get_regcomp_error (errcode, &datum.preg);
3593
3594 make_cleanup (xfree, err);
3595 error (_("Invalid regexp (%s): %s"), err, regexp);
3596 }
3597 datum.preg_p = 1;
3598 make_regfree_cleanup (&datum.preg);
3599 }
3600
3601 /* Search through the partial symtabs *first* for all symbols
3602 matching the regexp. That way we don't have to reproduce all of
3603 the machinery below. */
3604
3605 datum.nfiles = nfiles;
3606 datum.files = files;
3607 ALL_OBJFILES (objfile)
3608 {
3609 if (objfile->sf)
3610 objfile->sf->qf->expand_symtabs_matching (objfile,
3611 (nfiles == 0
3612 ? NULL
3613 : search_symbols_file_matches),
3614 search_symbols_name_matches,
3615 kind,
3616 &datum);
3617 }
3618
3619 /* Here, we search through the minimal symbol tables for functions
3620 and variables that match, and force their symbols to be read.
3621 This is in particular necessary for demangled variable names,
3622 which are no longer put into the partial symbol tables.
3623 The symbol will then be found during the scan of symtabs below.
3624
3625 For functions, find_pc_symtab should succeed if we have debug info
3626 for the function, for variables we have to call
3627 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3628 has debug info.
3629 If the lookup fails, set found_misc so that we will rescan to print
3630 any matching symbols without debug info.
3631 We only search the objfile the msymbol came from, we no longer search
3632 all objfiles. In large programs (1000s of shared libs) searching all
3633 objfiles is not worth the pain. */
3634
3635 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3636 {
3637 ALL_MSYMBOLS (objfile, msymbol)
3638 {
3639 QUIT;
3640
3641 if (msymbol->created_by_gdb)
3642 continue;
3643
3644 if (MSYMBOL_TYPE (msymbol) == ourtype
3645 || MSYMBOL_TYPE (msymbol) == ourtype2
3646 || MSYMBOL_TYPE (msymbol) == ourtype3
3647 || MSYMBOL_TYPE (msymbol) == ourtype4)
3648 {
3649 if (!datum.preg_p
3650 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3651 NULL, 0) == 0)
3652 {
3653 /* Note: An important side-effect of these lookup functions
3654 is to expand the symbol table if msymbol is found, for the
3655 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3656 if (kind == FUNCTIONS_DOMAIN
3657 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3658 : (lookup_symbol_in_objfile_from_linkage_name
3659 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3660 == NULL))
3661 found_misc = 1;
3662 }
3663 }
3664 }
3665 }
3666
3667 found = NULL;
3668 tail = NULL;
3669 nfound = 0;
3670 retval_chain = make_cleanup_free_search_symbols (&found);
3671
3672 ALL_PRIMARY_SYMTABS (objfile, s)
3673 {
3674 bv = BLOCKVECTOR (s);
3675 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3676 {
3677 b = BLOCKVECTOR_BLOCK (bv, i);
3678 ALL_BLOCK_SYMBOLS (b, iter, sym)
3679 {
3680 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3681
3682 QUIT;
3683
3684 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3685 a substring of symtab_to_fullname as it may contain "./" etc. */
3686 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3687 || ((basenames_may_differ
3688 || file_matches (lbasename (real_symtab->filename),
3689 files, nfiles, 1))
3690 && file_matches (symtab_to_fullname (real_symtab),
3691 files, nfiles, 0)))
3692 && ((!datum.preg_p
3693 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3694 NULL, 0) == 0)
3695 && ((kind == VARIABLES_DOMAIN
3696 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3697 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3698 && SYMBOL_CLASS (sym) != LOC_BLOCK
3699 /* LOC_CONST can be used for more than just enums,
3700 e.g., c++ static const members.
3701 We only want to skip enums here. */
3702 && !(SYMBOL_CLASS (sym) == LOC_CONST
3703 && TYPE_CODE (SYMBOL_TYPE (sym))
3704 == TYPE_CODE_ENUM))
3705 || (kind == FUNCTIONS_DOMAIN
3706 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3707 || (kind == TYPES_DOMAIN
3708 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3709 {
3710 /* match */
3711 struct symbol_search *psr = (struct symbol_search *)
3712 xmalloc (sizeof (struct symbol_search));
3713 psr->block = i;
3714 psr->symtab = real_symtab;
3715 psr->symbol = sym;
3716 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3717 psr->next = NULL;
3718 if (tail == NULL)
3719 found = psr;
3720 else
3721 tail->next = psr;
3722 tail = psr;
3723 nfound ++;
3724 }
3725 }
3726 }
3727 }
3728
3729 if (found != NULL)
3730 {
3731 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3732 /* Note: nfound is no longer useful beyond this point. */
3733 }
3734
3735 /* If there are no eyes, avoid all contact. I mean, if there are
3736 no debug symbols, then print directly from the msymbol_vector. */
3737
3738 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3739 {
3740 ALL_MSYMBOLS (objfile, msymbol)
3741 {
3742 QUIT;
3743
3744 if (msymbol->created_by_gdb)
3745 continue;
3746
3747 if (MSYMBOL_TYPE (msymbol) == ourtype
3748 || MSYMBOL_TYPE (msymbol) == ourtype2
3749 || MSYMBOL_TYPE (msymbol) == ourtype3
3750 || MSYMBOL_TYPE (msymbol) == ourtype4)
3751 {
3752 if (!datum.preg_p
3753 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3754 NULL, 0) == 0)
3755 {
3756 /* For functions we can do a quick check of whether the
3757 symbol might be found via find_pc_symtab. */
3758 if (kind != FUNCTIONS_DOMAIN
3759 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3760 {
3761 if (lookup_symbol_in_objfile_from_linkage_name
3762 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3763 == NULL)
3764 {
3765 /* match */
3766 struct symbol_search *psr = (struct symbol_search *)
3767 xmalloc (sizeof (struct symbol_search));
3768 psr->block = i;
3769 psr->msymbol.minsym = msymbol;
3770 psr->msymbol.objfile = objfile;
3771 psr->symtab = NULL;
3772 psr->symbol = NULL;
3773 psr->next = NULL;
3774 if (tail == NULL)
3775 found = psr;
3776 else
3777 tail->next = psr;
3778 tail = psr;
3779 }
3780 }
3781 }
3782 }
3783 }
3784 }
3785
3786 discard_cleanups (retval_chain);
3787 do_cleanups (old_chain);
3788 *matches = found;
3789 }
3790
3791 /* Helper function for symtab_symbol_info, this function uses
3792 the data returned from search_symbols() to print information
3793 regarding the match to gdb_stdout. */
3794
3795 static void
3796 print_symbol_info (enum search_domain kind,
3797 struct symtab *s, struct symbol *sym,
3798 int block, const char *last)
3799 {
3800 const char *s_filename = symtab_to_filename_for_display (s);
3801
3802 if (last == NULL || filename_cmp (last, s_filename) != 0)
3803 {
3804 fputs_filtered ("\nFile ", gdb_stdout);
3805 fputs_filtered (s_filename, gdb_stdout);
3806 fputs_filtered (":\n", gdb_stdout);
3807 }
3808
3809 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3810 printf_filtered ("static ");
3811
3812 /* Typedef that is not a C++ class. */
3813 if (kind == TYPES_DOMAIN
3814 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3815 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3816 /* variable, func, or typedef-that-is-c++-class. */
3817 else if (kind < TYPES_DOMAIN
3818 || (kind == TYPES_DOMAIN
3819 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3820 {
3821 type_print (SYMBOL_TYPE (sym),
3822 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3823 ? "" : SYMBOL_PRINT_NAME (sym)),
3824 gdb_stdout, 0);
3825
3826 printf_filtered (";\n");
3827 }
3828 }
3829
3830 /* This help function for symtab_symbol_info() prints information
3831 for non-debugging symbols to gdb_stdout. */
3832
3833 static void
3834 print_msymbol_info (struct bound_minimal_symbol msymbol)
3835 {
3836 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3837 char *tmp;
3838
3839 if (gdbarch_addr_bit (gdbarch) <= 32)
3840 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym)
3841 & (CORE_ADDR) 0xffffffff,
3842 8);
3843 else
3844 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym),
3845 16);
3846 printf_filtered ("%s %s\n",
3847 tmp, SYMBOL_PRINT_NAME (msymbol.minsym));
3848 }
3849
3850 /* This is the guts of the commands "info functions", "info types", and
3851 "info variables". It calls search_symbols to find all matches and then
3852 print_[m]symbol_info to print out some useful information about the
3853 matches. */
3854
3855 static void
3856 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3857 {
3858 static const char * const classnames[] =
3859 {"variable", "function", "type"};
3860 struct symbol_search *symbols;
3861 struct symbol_search *p;
3862 struct cleanup *old_chain;
3863 const char *last_filename = NULL;
3864 int first = 1;
3865
3866 gdb_assert (kind <= TYPES_DOMAIN);
3867
3868 /* Must make sure that if we're interrupted, symbols gets freed. */
3869 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3870 old_chain = make_cleanup_free_search_symbols (&symbols);
3871
3872 if (regexp != NULL)
3873 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3874 classnames[kind], regexp);
3875 else
3876 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3877
3878 for (p = symbols; p != NULL; p = p->next)
3879 {
3880 QUIT;
3881
3882 if (p->msymbol.minsym != NULL)
3883 {
3884 if (first)
3885 {
3886 printf_filtered (_("\nNon-debugging symbols:\n"));
3887 first = 0;
3888 }
3889 print_msymbol_info (p->msymbol);
3890 }
3891 else
3892 {
3893 print_symbol_info (kind,
3894 p->symtab,
3895 p->symbol,
3896 p->block,
3897 last_filename);
3898 last_filename = symtab_to_filename_for_display (p->symtab);
3899 }
3900 }
3901
3902 do_cleanups (old_chain);
3903 }
3904
3905 static void
3906 variables_info (char *regexp, int from_tty)
3907 {
3908 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3909 }
3910
3911 static void
3912 functions_info (char *regexp, int from_tty)
3913 {
3914 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3915 }
3916
3917
3918 static void
3919 types_info (char *regexp, int from_tty)
3920 {
3921 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3922 }
3923
3924 /* Breakpoint all functions matching regular expression. */
3925
3926 void
3927 rbreak_command_wrapper (char *regexp, int from_tty)
3928 {
3929 rbreak_command (regexp, from_tty);
3930 }
3931
3932 /* A cleanup function that calls end_rbreak_breakpoints. */
3933
3934 static void
3935 do_end_rbreak_breakpoints (void *ignore)
3936 {
3937 end_rbreak_breakpoints ();
3938 }
3939
3940 static void
3941 rbreak_command (char *regexp, int from_tty)
3942 {
3943 struct symbol_search *ss;
3944 struct symbol_search *p;
3945 struct cleanup *old_chain;
3946 char *string = NULL;
3947 int len = 0;
3948 char **files = NULL, *file_name;
3949 int nfiles = 0;
3950
3951 if (regexp)
3952 {
3953 char *colon = strchr (regexp, ':');
3954
3955 if (colon && *(colon + 1) != ':')
3956 {
3957 int colon_index;
3958
3959 colon_index = colon - regexp;
3960 file_name = alloca (colon_index + 1);
3961 memcpy (file_name, regexp, colon_index);
3962 file_name[colon_index--] = 0;
3963 while (isspace (file_name[colon_index]))
3964 file_name[colon_index--] = 0;
3965 files = &file_name;
3966 nfiles = 1;
3967 regexp = skip_spaces (colon + 1);
3968 }
3969 }
3970
3971 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3972 old_chain = make_cleanup_free_search_symbols (&ss);
3973 make_cleanup (free_current_contents, &string);
3974
3975 start_rbreak_breakpoints ();
3976 make_cleanup (do_end_rbreak_breakpoints, NULL);
3977 for (p = ss; p != NULL; p = p->next)
3978 {
3979 if (p->msymbol.minsym == NULL)
3980 {
3981 const char *fullname = symtab_to_fullname (p->symtab);
3982
3983 int newlen = (strlen (fullname)
3984 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3985 + 4);
3986
3987 if (newlen > len)
3988 {
3989 string = xrealloc (string, newlen);
3990 len = newlen;
3991 }
3992 strcpy (string, fullname);
3993 strcat (string, ":'");
3994 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3995 strcat (string, "'");
3996 break_command (string, from_tty);
3997 print_symbol_info (FUNCTIONS_DOMAIN,
3998 p->symtab,
3999 p->symbol,
4000 p->block,
4001 symtab_to_filename_for_display (p->symtab));
4002 }
4003 else
4004 {
4005 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4006
4007 if (newlen > len)
4008 {
4009 string = xrealloc (string, newlen);
4010 len = newlen;
4011 }
4012 strcpy (string, "'");
4013 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4014 strcat (string, "'");
4015
4016 break_command (string, from_tty);
4017 printf_filtered ("<function, no debug info> %s;\n",
4018 SYMBOL_PRINT_NAME (p->msymbol.minsym));
4019 }
4020 }
4021
4022 do_cleanups (old_chain);
4023 }
4024 \f
4025
4026 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4027
4028 Either sym_text[sym_text_len] != '(' and then we search for any
4029 symbol starting with SYM_TEXT text.
4030
4031 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4032 be terminated at that point. Partial symbol tables do not have parameters
4033 information. */
4034
4035 static int
4036 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4037 {
4038 int (*ncmp) (const char *, const char *, size_t);
4039
4040 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4041
4042 if (ncmp (name, sym_text, sym_text_len) != 0)
4043 return 0;
4044
4045 if (sym_text[sym_text_len] == '(')
4046 {
4047 /* User searches for `name(someth...'. Require NAME to be terminated.
4048 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4049 present but accept even parameters presence. In this case this
4050 function is in fact strcmp_iw but whitespace skipping is not supported
4051 for tab completion. */
4052
4053 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4054 return 0;
4055 }
4056
4057 return 1;
4058 }
4059
4060 /* Free any memory associated with a completion list. */
4061
4062 static void
4063 free_completion_list (VEC (char_ptr) **list_ptr)
4064 {
4065 int i;
4066 char *p;
4067
4068 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4069 xfree (p);
4070 VEC_free (char_ptr, *list_ptr);
4071 }
4072
4073 /* Callback for make_cleanup. */
4074
4075 static void
4076 do_free_completion_list (void *list)
4077 {
4078 free_completion_list (list);
4079 }
4080
4081 /* Helper routine for make_symbol_completion_list. */
4082
4083 static VEC (char_ptr) *return_val;
4084
4085 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4086 completion_list_add_name \
4087 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4088
4089 /* Test to see if the symbol specified by SYMNAME (which is already
4090 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4091 characters. If so, add it to the current completion list. */
4092
4093 static void
4094 completion_list_add_name (const char *symname,
4095 const char *sym_text, int sym_text_len,
4096 const char *text, const char *word)
4097 {
4098 /* Clip symbols that cannot match. */
4099 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4100 return;
4101
4102 /* We have a match for a completion, so add SYMNAME to the current list
4103 of matches. Note that the name is moved to freshly malloc'd space. */
4104
4105 {
4106 char *new;
4107
4108 if (word == sym_text)
4109 {
4110 new = xmalloc (strlen (symname) + 5);
4111 strcpy (new, symname);
4112 }
4113 else if (word > sym_text)
4114 {
4115 /* Return some portion of symname. */
4116 new = xmalloc (strlen (symname) + 5);
4117 strcpy (new, symname + (word - sym_text));
4118 }
4119 else
4120 {
4121 /* Return some of SYM_TEXT plus symname. */
4122 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4123 strncpy (new, word, sym_text - word);
4124 new[sym_text - word] = '\0';
4125 strcat (new, symname);
4126 }
4127
4128 VEC_safe_push (char_ptr, return_val, new);
4129 }
4130 }
4131
4132 /* ObjC: In case we are completing on a selector, look as the msymbol
4133 again and feed all the selectors into the mill. */
4134
4135 static void
4136 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4137 const char *sym_text, int sym_text_len,
4138 const char *text, const char *word)
4139 {
4140 static char *tmp = NULL;
4141 static unsigned int tmplen = 0;
4142
4143 const char *method, *category, *selector;
4144 char *tmp2 = NULL;
4145
4146 method = SYMBOL_NATURAL_NAME (msymbol);
4147
4148 /* Is it a method? */
4149 if ((method[0] != '-') && (method[0] != '+'))
4150 return;
4151
4152 if (sym_text[0] == '[')
4153 /* Complete on shortened method method. */
4154 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4155
4156 while ((strlen (method) + 1) >= tmplen)
4157 {
4158 if (tmplen == 0)
4159 tmplen = 1024;
4160 else
4161 tmplen *= 2;
4162 tmp = xrealloc (tmp, tmplen);
4163 }
4164 selector = strchr (method, ' ');
4165 if (selector != NULL)
4166 selector++;
4167
4168 category = strchr (method, '(');
4169
4170 if ((category != NULL) && (selector != NULL))
4171 {
4172 memcpy (tmp, method, (category - method));
4173 tmp[category - method] = ' ';
4174 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4175 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4176 if (sym_text[0] == '[')
4177 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4178 }
4179
4180 if (selector != NULL)
4181 {
4182 /* Complete on selector only. */
4183 strcpy (tmp, selector);
4184 tmp2 = strchr (tmp, ']');
4185 if (tmp2 != NULL)
4186 *tmp2 = '\0';
4187
4188 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4189 }
4190 }
4191
4192 /* Break the non-quoted text based on the characters which are in
4193 symbols. FIXME: This should probably be language-specific. */
4194
4195 static const char *
4196 language_search_unquoted_string (const char *text, const char *p)
4197 {
4198 for (; p > text; --p)
4199 {
4200 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4201 continue;
4202 else
4203 {
4204 if ((current_language->la_language == language_objc))
4205 {
4206 if (p[-1] == ':') /* Might be part of a method name. */
4207 continue;
4208 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4209 p -= 2; /* Beginning of a method name. */
4210 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4211 { /* Might be part of a method name. */
4212 const char *t = p;
4213
4214 /* Seeing a ' ' or a '(' is not conclusive evidence
4215 that we are in the middle of a method name. However,
4216 finding "-[" or "+[" should be pretty un-ambiguous.
4217 Unfortunately we have to find it now to decide. */
4218
4219 while (t > text)
4220 if (isalnum (t[-1]) || t[-1] == '_' ||
4221 t[-1] == ' ' || t[-1] == ':' ||
4222 t[-1] == '(' || t[-1] == ')')
4223 --t;
4224 else
4225 break;
4226
4227 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4228 p = t - 2; /* Method name detected. */
4229 /* Else we leave with p unchanged. */
4230 }
4231 }
4232 break;
4233 }
4234 }
4235 return p;
4236 }
4237
4238 static void
4239 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4240 int sym_text_len, const char *text,
4241 const char *word)
4242 {
4243 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4244 {
4245 struct type *t = SYMBOL_TYPE (sym);
4246 enum type_code c = TYPE_CODE (t);
4247 int j;
4248
4249 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4250 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4251 if (TYPE_FIELD_NAME (t, j))
4252 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4253 sym_text, sym_text_len, text, word);
4254 }
4255 }
4256
4257 /* Type of the user_data argument passed to add_macro_name or
4258 expand_partial_symbol_name. The contents are simply whatever is
4259 needed by completion_list_add_name. */
4260 struct add_name_data
4261 {
4262 const char *sym_text;
4263 int sym_text_len;
4264 const char *text;
4265 const char *word;
4266 };
4267
4268 /* A callback used with macro_for_each and macro_for_each_in_scope.
4269 This adds a macro's name to the current completion list. */
4270
4271 static void
4272 add_macro_name (const char *name, const struct macro_definition *ignore,
4273 struct macro_source_file *ignore2, int ignore3,
4274 void *user_data)
4275 {
4276 struct add_name_data *datum = (struct add_name_data *) user_data;
4277
4278 completion_list_add_name ((char *) name,
4279 datum->sym_text, datum->sym_text_len,
4280 datum->text, datum->word);
4281 }
4282
4283 /* A callback for expand_partial_symbol_names. */
4284
4285 static int
4286 expand_partial_symbol_name (const char *name, void *user_data)
4287 {
4288 struct add_name_data *datum = (struct add_name_data *) user_data;
4289
4290 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4291 }
4292
4293 VEC (char_ptr) *
4294 default_make_symbol_completion_list_break_on (const char *text,
4295 const char *word,
4296 const char *break_on,
4297 enum type_code code)
4298 {
4299 /* Problem: All of the symbols have to be copied because readline
4300 frees them. I'm not going to worry about this; hopefully there
4301 won't be that many. */
4302
4303 struct symbol *sym;
4304 struct symtab *s;
4305 struct minimal_symbol *msymbol;
4306 struct objfile *objfile;
4307 struct block *b;
4308 const struct block *surrounding_static_block, *surrounding_global_block;
4309 struct block_iterator iter;
4310 /* The symbol we are completing on. Points in same buffer as text. */
4311 const char *sym_text;
4312 /* Length of sym_text. */
4313 int sym_text_len;
4314 struct add_name_data datum;
4315 struct cleanup *back_to;
4316
4317 /* Now look for the symbol we are supposed to complete on. */
4318 {
4319 const char *p;
4320 char quote_found;
4321 const char *quote_pos = NULL;
4322
4323 /* First see if this is a quoted string. */
4324 quote_found = '\0';
4325 for (p = text; *p != '\0'; ++p)
4326 {
4327 if (quote_found != '\0')
4328 {
4329 if (*p == quote_found)
4330 /* Found close quote. */
4331 quote_found = '\0';
4332 else if (*p == '\\' && p[1] == quote_found)
4333 /* A backslash followed by the quote character
4334 doesn't end the string. */
4335 ++p;
4336 }
4337 else if (*p == '\'' || *p == '"')
4338 {
4339 quote_found = *p;
4340 quote_pos = p;
4341 }
4342 }
4343 if (quote_found == '\'')
4344 /* A string within single quotes can be a symbol, so complete on it. */
4345 sym_text = quote_pos + 1;
4346 else if (quote_found == '"')
4347 /* A double-quoted string is never a symbol, nor does it make sense
4348 to complete it any other way. */
4349 {
4350 return NULL;
4351 }
4352 else
4353 {
4354 /* It is not a quoted string. Break it based on the characters
4355 which are in symbols. */
4356 while (p > text)
4357 {
4358 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4359 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4360 --p;
4361 else
4362 break;
4363 }
4364 sym_text = p;
4365 }
4366 }
4367
4368 sym_text_len = strlen (sym_text);
4369
4370 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4371
4372 if (current_language->la_language == language_cplus
4373 || current_language->la_language == language_java
4374 || current_language->la_language == language_fortran)
4375 {
4376 /* These languages may have parameters entered by user but they are never
4377 present in the partial symbol tables. */
4378
4379 const char *cs = memchr (sym_text, '(', sym_text_len);
4380
4381 if (cs)
4382 sym_text_len = cs - sym_text;
4383 }
4384 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4385
4386 return_val = NULL;
4387 back_to = make_cleanup (do_free_completion_list, &return_val);
4388
4389 datum.sym_text = sym_text;
4390 datum.sym_text_len = sym_text_len;
4391 datum.text = text;
4392 datum.word = word;
4393
4394 /* Look through the partial symtabs for all symbols which begin
4395 by matching SYM_TEXT. Expand all CUs that you find to the list.
4396 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4397 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4398
4399 /* At this point scan through the misc symbol vectors and add each
4400 symbol you find to the list. Eventually we want to ignore
4401 anything that isn't a text symbol (everything else will be
4402 handled by the psymtab code above). */
4403
4404 if (code == TYPE_CODE_UNDEF)
4405 {
4406 ALL_MSYMBOLS (objfile, msymbol)
4407 {
4408 QUIT;
4409 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4410 word);
4411
4412 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4413 word);
4414 }
4415 }
4416
4417 /* Search upwards from currently selected frame (so that we can
4418 complete on local vars). Also catch fields of types defined in
4419 this places which match our text string. Only complete on types
4420 visible from current context. */
4421
4422 b = get_selected_block (0);
4423 surrounding_static_block = block_static_block (b);
4424 surrounding_global_block = block_global_block (b);
4425 if (surrounding_static_block != NULL)
4426 while (b != surrounding_static_block)
4427 {
4428 QUIT;
4429
4430 ALL_BLOCK_SYMBOLS (b, iter, sym)
4431 {
4432 if (code == TYPE_CODE_UNDEF)
4433 {
4434 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4435 word);
4436 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4437 word);
4438 }
4439 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4440 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4441 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4442 word);
4443 }
4444
4445 /* Stop when we encounter an enclosing function. Do not stop for
4446 non-inlined functions - the locals of the enclosing function
4447 are in scope for a nested function. */
4448 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4449 break;
4450 b = BLOCK_SUPERBLOCK (b);
4451 }
4452
4453 /* Add fields from the file's types; symbols will be added below. */
4454
4455 if (code == TYPE_CODE_UNDEF)
4456 {
4457 if (surrounding_static_block != NULL)
4458 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4459 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4460
4461 if (surrounding_global_block != NULL)
4462 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4463 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4464 }
4465
4466 /* Go through the symtabs and check the externs and statics for
4467 symbols which match. */
4468
4469 ALL_PRIMARY_SYMTABS (objfile, s)
4470 {
4471 QUIT;
4472 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4473 ALL_BLOCK_SYMBOLS (b, iter, sym)
4474 {
4475 if (code == TYPE_CODE_UNDEF
4476 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4477 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4478 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4479 }
4480 }
4481
4482 ALL_PRIMARY_SYMTABS (objfile, s)
4483 {
4484 QUIT;
4485 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4486 ALL_BLOCK_SYMBOLS (b, iter, sym)
4487 {
4488 if (code == TYPE_CODE_UNDEF
4489 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4490 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4491 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4492 }
4493 }
4494
4495 /* Skip macros if we are completing a struct tag -- arguable but
4496 usually what is expected. */
4497 if (current_language->la_macro_expansion == macro_expansion_c
4498 && code == TYPE_CODE_UNDEF)
4499 {
4500 struct macro_scope *scope;
4501
4502 /* Add any macros visible in the default scope. Note that this
4503 may yield the occasional wrong result, because an expression
4504 might be evaluated in a scope other than the default. For
4505 example, if the user types "break file:line if <TAB>", the
4506 resulting expression will be evaluated at "file:line" -- but
4507 at there does not seem to be a way to detect this at
4508 completion time. */
4509 scope = default_macro_scope ();
4510 if (scope)
4511 {
4512 macro_for_each_in_scope (scope->file, scope->line,
4513 add_macro_name, &datum);
4514 xfree (scope);
4515 }
4516
4517 /* User-defined macros are always visible. */
4518 macro_for_each (macro_user_macros, add_macro_name, &datum);
4519 }
4520
4521 discard_cleanups (back_to);
4522 return (return_val);
4523 }
4524
4525 VEC (char_ptr) *
4526 default_make_symbol_completion_list (const char *text, const char *word,
4527 enum type_code code)
4528 {
4529 return default_make_symbol_completion_list_break_on (text, word, "", code);
4530 }
4531
4532 /* Return a vector of all symbols (regardless of class) which begin by
4533 matching TEXT. If the answer is no symbols, then the return value
4534 is NULL. */
4535
4536 VEC (char_ptr) *
4537 make_symbol_completion_list (const char *text, const char *word)
4538 {
4539 return current_language->la_make_symbol_completion_list (text, word,
4540 TYPE_CODE_UNDEF);
4541 }
4542
4543 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4544 symbols whose type code is CODE. */
4545
4546 VEC (char_ptr) *
4547 make_symbol_completion_type (const char *text, const char *word,
4548 enum type_code code)
4549 {
4550 gdb_assert (code == TYPE_CODE_UNION
4551 || code == TYPE_CODE_STRUCT
4552 || code == TYPE_CODE_CLASS
4553 || code == TYPE_CODE_ENUM);
4554 return current_language->la_make_symbol_completion_list (text, word, code);
4555 }
4556
4557 /* Like make_symbol_completion_list, but suitable for use as a
4558 completion function. */
4559
4560 VEC (char_ptr) *
4561 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4562 const char *text, const char *word)
4563 {
4564 return make_symbol_completion_list (text, word);
4565 }
4566
4567 /* Like make_symbol_completion_list, but returns a list of symbols
4568 defined in a source file FILE. */
4569
4570 VEC (char_ptr) *
4571 make_file_symbol_completion_list (const char *text, const char *word,
4572 const char *srcfile)
4573 {
4574 struct symbol *sym;
4575 struct symtab *s;
4576 struct block *b;
4577 struct block_iterator iter;
4578 /* The symbol we are completing on. Points in same buffer as text. */
4579 const char *sym_text;
4580 /* Length of sym_text. */
4581 int sym_text_len;
4582
4583 /* Now look for the symbol we are supposed to complete on.
4584 FIXME: This should be language-specific. */
4585 {
4586 const char *p;
4587 char quote_found;
4588 const char *quote_pos = NULL;
4589
4590 /* First see if this is a quoted string. */
4591 quote_found = '\0';
4592 for (p = text; *p != '\0'; ++p)
4593 {
4594 if (quote_found != '\0')
4595 {
4596 if (*p == quote_found)
4597 /* Found close quote. */
4598 quote_found = '\0';
4599 else if (*p == '\\' && p[1] == quote_found)
4600 /* A backslash followed by the quote character
4601 doesn't end the string. */
4602 ++p;
4603 }
4604 else if (*p == '\'' || *p == '"')
4605 {
4606 quote_found = *p;
4607 quote_pos = p;
4608 }
4609 }
4610 if (quote_found == '\'')
4611 /* A string within single quotes can be a symbol, so complete on it. */
4612 sym_text = quote_pos + 1;
4613 else if (quote_found == '"')
4614 /* A double-quoted string is never a symbol, nor does it make sense
4615 to complete it any other way. */
4616 {
4617 return NULL;
4618 }
4619 else
4620 {
4621 /* Not a quoted string. */
4622 sym_text = language_search_unquoted_string (text, p);
4623 }
4624 }
4625
4626 sym_text_len = strlen (sym_text);
4627
4628 return_val = NULL;
4629
4630 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4631 in). */
4632 s = lookup_symtab (srcfile);
4633 if (s == NULL)
4634 {
4635 /* Maybe they typed the file with leading directories, while the
4636 symbol tables record only its basename. */
4637 const char *tail = lbasename (srcfile);
4638
4639 if (tail > srcfile)
4640 s = lookup_symtab (tail);
4641 }
4642
4643 /* If we have no symtab for that file, return an empty list. */
4644 if (s == NULL)
4645 return (return_val);
4646
4647 /* Go through this symtab and check the externs and statics for
4648 symbols which match. */
4649
4650 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4651 ALL_BLOCK_SYMBOLS (b, iter, sym)
4652 {
4653 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4654 }
4655
4656 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4657 ALL_BLOCK_SYMBOLS (b, iter, sym)
4658 {
4659 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4660 }
4661
4662 return (return_val);
4663 }
4664
4665 /* A helper function for make_source_files_completion_list. It adds
4666 another file name to a list of possible completions, growing the
4667 list as necessary. */
4668
4669 static void
4670 add_filename_to_list (const char *fname, const char *text, const char *word,
4671 VEC (char_ptr) **list)
4672 {
4673 char *new;
4674 size_t fnlen = strlen (fname);
4675
4676 if (word == text)
4677 {
4678 /* Return exactly fname. */
4679 new = xmalloc (fnlen + 5);
4680 strcpy (new, fname);
4681 }
4682 else if (word > text)
4683 {
4684 /* Return some portion of fname. */
4685 new = xmalloc (fnlen + 5);
4686 strcpy (new, fname + (word - text));
4687 }
4688 else
4689 {
4690 /* Return some of TEXT plus fname. */
4691 new = xmalloc (fnlen + (text - word) + 5);
4692 strncpy (new, word, text - word);
4693 new[text - word] = '\0';
4694 strcat (new, fname);
4695 }
4696 VEC_safe_push (char_ptr, *list, new);
4697 }
4698
4699 static int
4700 not_interesting_fname (const char *fname)
4701 {
4702 static const char *illegal_aliens[] = {
4703 "_globals_", /* inserted by coff_symtab_read */
4704 NULL
4705 };
4706 int i;
4707
4708 for (i = 0; illegal_aliens[i]; i++)
4709 {
4710 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4711 return 1;
4712 }
4713 return 0;
4714 }
4715
4716 /* An object of this type is passed as the user_data argument to
4717 map_partial_symbol_filenames. */
4718 struct add_partial_filename_data
4719 {
4720 struct filename_seen_cache *filename_seen_cache;
4721 const char *text;
4722 const char *word;
4723 int text_len;
4724 VEC (char_ptr) **list;
4725 };
4726
4727 /* A callback for map_partial_symbol_filenames. */
4728
4729 static void
4730 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4731 void *user_data)
4732 {
4733 struct add_partial_filename_data *data = user_data;
4734
4735 if (not_interesting_fname (filename))
4736 return;
4737 if (!filename_seen (data->filename_seen_cache, filename, 1)
4738 && filename_ncmp (filename, data->text, data->text_len) == 0)
4739 {
4740 /* This file matches for a completion; add it to the
4741 current list of matches. */
4742 add_filename_to_list (filename, data->text, data->word, data->list);
4743 }
4744 else
4745 {
4746 const char *base_name = lbasename (filename);
4747
4748 if (base_name != filename
4749 && !filename_seen (data->filename_seen_cache, base_name, 1)
4750 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4751 add_filename_to_list (base_name, data->text, data->word, data->list);
4752 }
4753 }
4754
4755 /* Return a vector of all source files whose names begin with matching
4756 TEXT. The file names are looked up in the symbol tables of this
4757 program. If the answer is no matchess, then the return value is
4758 NULL. */
4759
4760 VEC (char_ptr) *
4761 make_source_files_completion_list (const char *text, const char *word)
4762 {
4763 struct symtab *s;
4764 struct objfile *objfile;
4765 size_t text_len = strlen (text);
4766 VEC (char_ptr) *list = NULL;
4767 const char *base_name;
4768 struct add_partial_filename_data datum;
4769 struct filename_seen_cache *filename_seen_cache;
4770 struct cleanup *back_to, *cache_cleanup;
4771
4772 if (!have_full_symbols () && !have_partial_symbols ())
4773 return list;
4774
4775 back_to = make_cleanup (do_free_completion_list, &list);
4776
4777 filename_seen_cache = create_filename_seen_cache ();
4778 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4779 filename_seen_cache);
4780
4781 ALL_SYMTABS (objfile, s)
4782 {
4783 if (not_interesting_fname (s->filename))
4784 continue;
4785 if (!filename_seen (filename_seen_cache, s->filename, 1)
4786 && filename_ncmp (s->filename, text, text_len) == 0)
4787 {
4788 /* This file matches for a completion; add it to the current
4789 list of matches. */
4790 add_filename_to_list (s->filename, text, word, &list);
4791 }
4792 else
4793 {
4794 /* NOTE: We allow the user to type a base name when the
4795 debug info records leading directories, but not the other
4796 way around. This is what subroutines of breakpoint
4797 command do when they parse file names. */
4798 base_name = lbasename (s->filename);
4799 if (base_name != s->filename
4800 && !filename_seen (filename_seen_cache, base_name, 1)
4801 && filename_ncmp (base_name, text, text_len) == 0)
4802 add_filename_to_list (base_name, text, word, &list);
4803 }
4804 }
4805
4806 datum.filename_seen_cache = filename_seen_cache;
4807 datum.text = text;
4808 datum.word = word;
4809 datum.text_len = text_len;
4810 datum.list = &list;
4811 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4812 0 /*need_fullname*/);
4813
4814 do_cleanups (cache_cleanup);
4815 discard_cleanups (back_to);
4816
4817 return list;
4818 }
4819
4820 /* Determine if PC is in the prologue of a function. The prologue is the area
4821 between the first instruction of a function, and the first executable line.
4822 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4823
4824 If non-zero, func_start is where we think the prologue starts, possibly
4825 by previous examination of symbol table information. */
4826
4827 int
4828 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4829 {
4830 struct symtab_and_line sal;
4831 CORE_ADDR func_addr, func_end;
4832
4833 /* We have several sources of information we can consult to figure
4834 this out.
4835 - Compilers usually emit line number info that marks the prologue
4836 as its own "source line". So the ending address of that "line"
4837 is the end of the prologue. If available, this is the most
4838 reliable method.
4839 - The minimal symbols and partial symbols, which can usually tell
4840 us the starting and ending addresses of a function.
4841 - If we know the function's start address, we can call the
4842 architecture-defined gdbarch_skip_prologue function to analyze the
4843 instruction stream and guess where the prologue ends.
4844 - Our `func_start' argument; if non-zero, this is the caller's
4845 best guess as to the function's entry point. At the time of
4846 this writing, handle_inferior_event doesn't get this right, so
4847 it should be our last resort. */
4848
4849 /* Consult the partial symbol table, to find which function
4850 the PC is in. */
4851 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4852 {
4853 CORE_ADDR prologue_end;
4854
4855 /* We don't even have minsym information, so fall back to using
4856 func_start, if given. */
4857 if (! func_start)
4858 return 1; /* We *might* be in a prologue. */
4859
4860 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4861
4862 return func_start <= pc && pc < prologue_end;
4863 }
4864
4865 /* If we have line number information for the function, that's
4866 usually pretty reliable. */
4867 sal = find_pc_line (func_addr, 0);
4868
4869 /* Now sal describes the source line at the function's entry point,
4870 which (by convention) is the prologue. The end of that "line",
4871 sal.end, is the end of the prologue.
4872
4873 Note that, for functions whose source code is all on a single
4874 line, the line number information doesn't always end up this way.
4875 So we must verify that our purported end-of-prologue address is
4876 *within* the function, not at its start or end. */
4877 if (sal.line == 0
4878 || sal.end <= func_addr
4879 || func_end <= sal.end)
4880 {
4881 /* We don't have any good line number info, so use the minsym
4882 information, together with the architecture-specific prologue
4883 scanning code. */
4884 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4885
4886 return func_addr <= pc && pc < prologue_end;
4887 }
4888
4889 /* We have line number info, and it looks good. */
4890 return func_addr <= pc && pc < sal.end;
4891 }
4892
4893 /* Given PC at the function's start address, attempt to find the
4894 prologue end using SAL information. Return zero if the skip fails.
4895
4896 A non-optimized prologue traditionally has one SAL for the function
4897 and a second for the function body. A single line function has
4898 them both pointing at the same line.
4899
4900 An optimized prologue is similar but the prologue may contain
4901 instructions (SALs) from the instruction body. Need to skip those
4902 while not getting into the function body.
4903
4904 The functions end point and an increasing SAL line are used as
4905 indicators of the prologue's endpoint.
4906
4907 This code is based on the function refine_prologue_limit
4908 (found in ia64). */
4909
4910 CORE_ADDR
4911 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4912 {
4913 struct symtab_and_line prologue_sal;
4914 CORE_ADDR start_pc;
4915 CORE_ADDR end_pc;
4916 struct block *bl;
4917
4918 /* Get an initial range for the function. */
4919 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4920 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4921
4922 prologue_sal = find_pc_line (start_pc, 0);
4923 if (prologue_sal.line != 0)
4924 {
4925 /* For languages other than assembly, treat two consecutive line
4926 entries at the same address as a zero-instruction prologue.
4927 The GNU assembler emits separate line notes for each instruction
4928 in a multi-instruction macro, but compilers generally will not
4929 do this. */
4930 if (prologue_sal.symtab->language != language_asm)
4931 {
4932 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4933 int idx = 0;
4934
4935 /* Skip any earlier lines, and any end-of-sequence marker
4936 from a previous function. */
4937 while (linetable->item[idx].pc != prologue_sal.pc
4938 || linetable->item[idx].line == 0)
4939 idx++;
4940
4941 if (idx+1 < linetable->nitems
4942 && linetable->item[idx+1].line != 0
4943 && linetable->item[idx+1].pc == start_pc)
4944 return start_pc;
4945 }
4946
4947 /* If there is only one sal that covers the entire function,
4948 then it is probably a single line function, like
4949 "foo(){}". */
4950 if (prologue_sal.end >= end_pc)
4951 return 0;
4952
4953 while (prologue_sal.end < end_pc)
4954 {
4955 struct symtab_and_line sal;
4956
4957 sal = find_pc_line (prologue_sal.end, 0);
4958 if (sal.line == 0)
4959 break;
4960 /* Assume that a consecutive SAL for the same (or larger)
4961 line mark the prologue -> body transition. */
4962 if (sal.line >= prologue_sal.line)
4963 break;
4964 /* Likewise if we are in a different symtab altogether
4965 (e.g. within a file included via #include).  */
4966 if (sal.symtab != prologue_sal.symtab)
4967 break;
4968
4969 /* The line number is smaller. Check that it's from the
4970 same function, not something inlined. If it's inlined,
4971 then there is no point comparing the line numbers. */
4972 bl = block_for_pc (prologue_sal.end);
4973 while (bl)
4974 {
4975 if (block_inlined_p (bl))
4976 break;
4977 if (BLOCK_FUNCTION (bl))
4978 {
4979 bl = NULL;
4980 break;
4981 }
4982 bl = BLOCK_SUPERBLOCK (bl);
4983 }
4984 if (bl != NULL)
4985 break;
4986
4987 /* The case in which compiler's optimizer/scheduler has
4988 moved instructions into the prologue. We look ahead in
4989 the function looking for address ranges whose
4990 corresponding line number is less the first one that we
4991 found for the function. This is more conservative then
4992 refine_prologue_limit which scans a large number of SALs
4993 looking for any in the prologue. */
4994 prologue_sal = sal;
4995 }
4996 }
4997
4998 if (prologue_sal.end < end_pc)
4999 /* Return the end of this line, or zero if we could not find a
5000 line. */
5001 return prologue_sal.end;
5002 else
5003 /* Don't return END_PC, which is past the end of the function. */
5004 return prologue_sal.pc;
5005 }
5006 \f
5007 /* Track MAIN */
5008 static char *name_of_main;
5009 enum language language_of_main = language_unknown;
5010
5011 void
5012 set_main_name (const char *name)
5013 {
5014 if (name_of_main != NULL)
5015 {
5016 xfree (name_of_main);
5017 name_of_main = NULL;
5018 language_of_main = language_unknown;
5019 }
5020 if (name != NULL)
5021 {
5022 name_of_main = xstrdup (name);
5023 language_of_main = language_unknown;
5024 }
5025 }
5026
5027 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5028 accordingly. */
5029
5030 static void
5031 find_main_name (void)
5032 {
5033 const char *new_main_name;
5034
5035 /* Try to see if the main procedure is in Ada. */
5036 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5037 be to add a new method in the language vector, and call this
5038 method for each language until one of them returns a non-empty
5039 name. This would allow us to remove this hard-coded call to
5040 an Ada function. It is not clear that this is a better approach
5041 at this point, because all methods need to be written in a way
5042 such that false positives never be returned. For instance, it is
5043 important that a method does not return a wrong name for the main
5044 procedure if the main procedure is actually written in a different
5045 language. It is easy to guaranty this with Ada, since we use a
5046 special symbol generated only when the main in Ada to find the name
5047 of the main procedure. It is difficult however to see how this can
5048 be guarantied for languages such as C, for instance. This suggests
5049 that order of call for these methods becomes important, which means
5050 a more complicated approach. */
5051 new_main_name = ada_main_name ();
5052 if (new_main_name != NULL)
5053 {
5054 set_main_name (new_main_name);
5055 return;
5056 }
5057
5058 new_main_name = go_main_name ();
5059 if (new_main_name != NULL)
5060 {
5061 set_main_name (new_main_name);
5062 return;
5063 }
5064
5065 new_main_name = pascal_main_name ();
5066 if (new_main_name != NULL)
5067 {
5068 set_main_name (new_main_name);
5069 return;
5070 }
5071
5072 /* The languages above didn't identify the name of the main procedure.
5073 Fallback to "main". */
5074 set_main_name ("main");
5075 }
5076
5077 char *
5078 main_name (void)
5079 {
5080 if (name_of_main == NULL)
5081 find_main_name ();
5082
5083 return name_of_main;
5084 }
5085
5086 /* Handle ``executable_changed'' events for the symtab module. */
5087
5088 static void
5089 symtab_observer_executable_changed (void)
5090 {
5091 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5092 set_main_name (NULL);
5093 }
5094
5095 /* Return 1 if the supplied producer string matches the ARM RealView
5096 compiler (armcc). */
5097
5098 int
5099 producer_is_realview (const char *producer)
5100 {
5101 static const char *const arm_idents[] = {
5102 "ARM C Compiler, ADS",
5103 "Thumb C Compiler, ADS",
5104 "ARM C++ Compiler, ADS",
5105 "Thumb C++ Compiler, ADS",
5106 "ARM/Thumb C/C++ Compiler, RVCT",
5107 "ARM C/C++ Compiler, RVCT"
5108 };
5109 int i;
5110
5111 if (producer == NULL)
5112 return 0;
5113
5114 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5115 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5116 return 1;
5117
5118 return 0;
5119 }
5120
5121 \f
5122
5123 /* The next index to hand out in response to a registration request. */
5124
5125 static int next_aclass_value = LOC_FINAL_VALUE;
5126
5127 /* The maximum number of "aclass" registrations we support. This is
5128 constant for convenience. */
5129 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5130
5131 /* The objects representing the various "aclass" values. The elements
5132 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5133 elements are those registered at gdb initialization time. */
5134
5135 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5136
5137 /* The globally visible pointer. This is separate from 'symbol_impl'
5138 so that it can be const. */
5139
5140 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5141
5142 /* Make sure we saved enough room in struct symbol. */
5143
5144 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5145
5146 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5147 is the ops vector associated with this index. This returns the new
5148 index, which should be used as the aclass_index field for symbols
5149 of this type. */
5150
5151 int
5152 register_symbol_computed_impl (enum address_class aclass,
5153 const struct symbol_computed_ops *ops)
5154 {
5155 int result = next_aclass_value++;
5156
5157 gdb_assert (aclass == LOC_COMPUTED);
5158 gdb_assert (result < MAX_SYMBOL_IMPLS);
5159 symbol_impl[result].aclass = aclass;
5160 symbol_impl[result].ops_computed = ops;
5161
5162 /* Sanity check OPS. */
5163 gdb_assert (ops != NULL);
5164 gdb_assert (ops->tracepoint_var_ref != NULL);
5165 gdb_assert (ops->describe_location != NULL);
5166 gdb_assert (ops->read_needs_frame != NULL);
5167 gdb_assert (ops->read_variable != NULL);
5168
5169 return result;
5170 }
5171
5172 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5173 OPS is the ops vector associated with this index. This returns the
5174 new index, which should be used as the aclass_index field for symbols
5175 of this type. */
5176
5177 int
5178 register_symbol_block_impl (enum address_class aclass,
5179 const struct symbol_block_ops *ops)
5180 {
5181 int result = next_aclass_value++;
5182
5183 gdb_assert (aclass == LOC_BLOCK);
5184 gdb_assert (result < MAX_SYMBOL_IMPLS);
5185 symbol_impl[result].aclass = aclass;
5186 symbol_impl[result].ops_block = ops;
5187
5188 /* Sanity check OPS. */
5189 gdb_assert (ops != NULL);
5190 gdb_assert (ops->find_frame_base_location != NULL);
5191
5192 return result;
5193 }
5194
5195 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5196 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5197 this index. This returns the new index, which should be used as
5198 the aclass_index field for symbols of this type. */
5199
5200 int
5201 register_symbol_register_impl (enum address_class aclass,
5202 const struct symbol_register_ops *ops)
5203 {
5204 int result = next_aclass_value++;
5205
5206 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5207 gdb_assert (result < MAX_SYMBOL_IMPLS);
5208 symbol_impl[result].aclass = aclass;
5209 symbol_impl[result].ops_register = ops;
5210
5211 return result;
5212 }
5213
5214 /* Initialize elements of 'symbol_impl' for the constants in enum
5215 address_class. */
5216
5217 static void
5218 initialize_ordinary_address_classes (void)
5219 {
5220 int i;
5221
5222 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5223 symbol_impl[i].aclass = i;
5224 }
5225
5226 \f
5227
5228 /* Initialize the symbol SYM. */
5229
5230 void
5231 initialize_symbol (struct symbol *sym)
5232 {
5233 memset (sym, 0, sizeof (*sym));
5234 SYMBOL_SECTION (sym) = -1;
5235 }
5236
5237 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5238 obstack. */
5239
5240 struct symbol *
5241 allocate_symbol (struct objfile *objfile)
5242 {
5243 struct symbol *result;
5244
5245 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5246 SYMBOL_SECTION (result) = -1;
5247
5248 return result;
5249 }
5250
5251 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5252 obstack. */
5253
5254 struct template_symbol *
5255 allocate_template_symbol (struct objfile *objfile)
5256 {
5257 struct template_symbol *result;
5258
5259 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5260 SYMBOL_SECTION (&result->base) = -1;
5261
5262 return result;
5263 }
5264
5265 \f
5266
5267 void
5268 _initialize_symtab (void)
5269 {
5270 initialize_ordinary_address_classes ();
5271
5272 add_info ("variables", variables_info, _("\
5273 All global and static variable names, or those matching REGEXP."));
5274 if (dbx_commands)
5275 add_com ("whereis", class_info, variables_info, _("\
5276 All global and static variable names, or those matching REGEXP."));
5277
5278 add_info ("functions", functions_info,
5279 _("All function names, or those matching REGEXP."));
5280
5281 /* FIXME: This command has at least the following problems:
5282 1. It prints builtin types (in a very strange and confusing fashion).
5283 2. It doesn't print right, e.g. with
5284 typedef struct foo *FOO
5285 type_print prints "FOO" when we want to make it (in this situation)
5286 print "struct foo *".
5287 I also think "ptype" or "whatis" is more likely to be useful (but if
5288 there is much disagreement "info types" can be fixed). */
5289 add_info ("types", types_info,
5290 _("All type names, or those matching REGEXP."));
5291
5292 add_info ("sources", sources_info,
5293 _("Source files in the program."));
5294
5295 add_com ("rbreak", class_breakpoint, rbreak_command,
5296 _("Set a breakpoint for all functions matching REGEXP."));
5297
5298 if (xdb_commands)
5299 {
5300 add_com ("lf", class_info, sources_info,
5301 _("Source files in the program"));
5302 add_com ("lg", class_info, variables_info, _("\
5303 All global and static variable names, or those matching REGEXP."));
5304 }
5305
5306 add_setshow_enum_cmd ("multiple-symbols", no_class,
5307 multiple_symbols_modes, &multiple_symbols_mode,
5308 _("\
5309 Set the debugger behavior when more than one symbol are possible matches\n\
5310 in an expression."), _("\
5311 Show how the debugger handles ambiguities in expressions."), _("\
5312 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5313 NULL, NULL, &setlist, &showlist);
5314
5315 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5316 &basenames_may_differ, _("\
5317 Set whether a source file may have multiple base names."), _("\
5318 Show whether a source file may have multiple base names."), _("\
5319 (A \"base name\" is the name of a file with the directory part removed.\n\
5320 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5321 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5322 before comparing them. Canonicalization is an expensive operation,\n\
5323 but it allows the same file be known by more than one base name.\n\
5324 If not set (the default), all source files are assumed to have just\n\
5325 one base name, and gdb will do file name comparisons more efficiently."),
5326 NULL, NULL,
5327 &setlist, &showlist);
5328
5329 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5330 _("Set debugging of symbol table creation."),
5331 _("Show debugging of symbol table creation."), _("\
5332 When enabled (non-zero), debugging messages are printed when building\n\
5333 symbol tables. A value of 1 (one) normally provides enough information.\n\
5334 A value greater than 1 provides more verbose information."),
5335 NULL,
5336 NULL,
5337 &setdebuglist, &showdebuglist);
5338
5339 observer_attach_executable_changed (symtab_observer_executable_changed);
5340 }