]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
New common function "startswith"
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct symbol *lookup_symbol_aux (const char *name,
72 const struct block *block,
73 const domain_enum domain,
74 enum language language,
75 struct field_of_this_result *);
76
77 static
78 struct symbol *lookup_local_symbol (const char *name,
79 const struct block *block,
80 const domain_enum domain,
81 enum language language);
82
83 static struct symbol *
84 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
85 const char *name, const domain_enum domain);
86
87 extern initialize_file_ftype _initialize_symtab;
88
89 /* Program space key for finding name and language of "main". */
90
91 static const struct program_space_data *main_progspace_key;
92
93 /* Type of the data stored on the program space. */
94
95 struct main_info
96 {
97 /* Name of "main". */
98
99 char *name_of_main;
100
101 /* Language of "main". */
102
103 enum language language_of_main;
104 };
105
106 /* Program space key for finding its symbol cache. */
107
108 static const struct program_space_data *symbol_cache_key;
109
110 /* The default symbol cache size.
111 There is no extra cpu cost for large N (except when flushing the cache,
112 which is rare). The value here is just a first attempt. A better default
113 value may be higher or lower. A prime number can make up for a bad hash
114 computation, so that's why the number is what it is. */
115 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
116
117 /* The maximum symbol cache size.
118 There's no method to the decision of what value to use here, other than
119 there's no point in allowing a user typo to make gdb consume all memory. */
120 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
121
122 /* symbol_cache_lookup returns this if a previous lookup failed to find the
123 symbol in any objfile. */
124 #define SYMBOL_LOOKUP_FAILED ((struct symbol *) 1)
125
126 /* Recording lookups that don't find the symbol is just as important, if not
127 more so, than recording found symbols. */
128
129 enum symbol_cache_slot_state
130 {
131 SYMBOL_SLOT_UNUSED,
132 SYMBOL_SLOT_NOT_FOUND,
133 SYMBOL_SLOT_FOUND
134 };
135
136 struct symbol_cache_slot
137 {
138 enum symbol_cache_slot_state state;
139
140 /* The objfile that was current when the symbol was looked up.
141 This is only needed for global blocks, but for simplicity's sake
142 we allocate the space for both. If data shows the extra space used
143 for static blocks is a problem, we can split things up then.
144
145 Global blocks need cache lookup to include the objfile context because
146 we need to account for gdbarch_iterate_over_objfiles_in_search_order
147 which can traverse objfiles in, effectively, any order, depending on
148 the current objfile, thus affecting which symbol is found. Normally,
149 only the current objfile is searched first, and then the rest are
150 searched in recorded order; but putting cache lookup inside
151 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
152 Instead we just make the current objfile part of the context of
153 cache lookup. This means we can record the same symbol multiple times,
154 each with a different "current objfile" that was in effect when the
155 lookup was saved in the cache, but cache space is pretty cheap. */
156 const struct objfile *objfile_context;
157
158 union
159 {
160 struct symbol *found;
161 struct
162 {
163 char *name;
164 domain_enum domain;
165 } not_found;
166 } value;
167 };
168
169 /* Symbols don't specify global vs static block.
170 So keep them in separate caches. */
171
172 struct block_symbol_cache
173 {
174 unsigned int hits;
175 unsigned int misses;
176 unsigned int collisions;
177
178 /* SYMBOLS is a variable length array of this size.
179 One can imagine that in general one cache (global/static) should be a
180 fraction of the size of the other, but there's no data at the moment
181 on which to decide. */
182 unsigned int size;
183
184 struct symbol_cache_slot symbols[1];
185 };
186
187 /* The symbol cache.
188
189 Searching for symbols in the static and global blocks over multiple objfiles
190 again and again can be slow, as can searching very big objfiles. This is a
191 simple cache to improve symbol lookup performance, which is critical to
192 overall gdb performance.
193
194 Symbols are hashed on the name, its domain, and block.
195 They are also hashed on their objfile for objfile-specific lookups. */
196
197 struct symbol_cache
198 {
199 struct block_symbol_cache *global_symbols;
200 struct block_symbol_cache *static_symbols;
201 };
202
203 /* When non-zero, print debugging messages related to symtab creation. */
204 unsigned int symtab_create_debug = 0;
205
206 /* When non-zero, print debugging messages related to symbol lookup. */
207 unsigned int symbol_lookup_debug = 0;
208
209 /* The size of the cache is staged here. */
210 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
211
212 /* The current value of the symbol cache size.
213 This is saved so that if the user enters a value too big we can restore
214 the original value from here. */
215 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
216
217 /* Non-zero if a file may be known by two different basenames.
218 This is the uncommon case, and significantly slows down gdb.
219 Default set to "off" to not slow down the common case. */
220 int basenames_may_differ = 0;
221
222 /* Allow the user to configure the debugger behavior with respect
223 to multiple-choice menus when more than one symbol matches during
224 a symbol lookup. */
225
226 const char multiple_symbols_ask[] = "ask";
227 const char multiple_symbols_all[] = "all";
228 const char multiple_symbols_cancel[] = "cancel";
229 static const char *const multiple_symbols_modes[] =
230 {
231 multiple_symbols_ask,
232 multiple_symbols_all,
233 multiple_symbols_cancel,
234 NULL
235 };
236 static const char *multiple_symbols_mode = multiple_symbols_all;
237
238 /* Read-only accessor to AUTO_SELECT_MODE. */
239
240 const char *
241 multiple_symbols_select_mode (void)
242 {
243 return multiple_symbols_mode;
244 }
245
246 /* Block in which the most recently searched-for symbol was found.
247 Might be better to make this a parameter to lookup_symbol and
248 value_of_this. */
249
250 const struct block *block_found;
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Check for a symtab of a specific name by searching some symtabs.
346 This is a helper function for callbacks of iterate_over_symtabs.
347
348 If NAME is not absolute, then REAL_PATH is NULL
349 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
350
351 The return value, NAME, REAL_PATH, CALLBACK, and DATA
352 are identical to the `map_symtabs_matching_filename' method of
353 quick_symbol_functions.
354
355 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
356 Each symtab within the specified compunit symtab is also searched.
357 AFTER_LAST is one past the last compunit symtab to search; NULL means to
358 search until the end of the list. */
359
360 int
361 iterate_over_some_symtabs (const char *name,
362 const char *real_path,
363 int (*callback) (struct symtab *symtab,
364 void *data),
365 void *data,
366 struct compunit_symtab *first,
367 struct compunit_symtab *after_last)
368 {
369 struct compunit_symtab *cust;
370 struct symtab *s;
371 const char* base_name = lbasename (name);
372
373 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
374 {
375 ALL_COMPUNIT_FILETABS (cust, s)
376 {
377 if (compare_filenames_for_search (s->filename, name))
378 {
379 if (callback (s, data))
380 return 1;
381 continue;
382 }
383
384 /* Before we invoke realpath, which can get expensive when many
385 files are involved, do a quick comparison of the basenames. */
386 if (! basenames_may_differ
387 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
388 continue;
389
390 if (compare_filenames_for_search (symtab_to_fullname (s), name))
391 {
392 if (callback (s, data))
393 return 1;
394 continue;
395 }
396
397 /* If the user gave us an absolute path, try to find the file in
398 this symtab and use its absolute path. */
399 if (real_path != NULL)
400 {
401 const char *fullname = symtab_to_fullname (s);
402
403 gdb_assert (IS_ABSOLUTE_PATH (real_path));
404 gdb_assert (IS_ABSOLUTE_PATH (name));
405 if (FILENAME_CMP (real_path, fullname) == 0)
406 {
407 if (callback (s, data))
408 return 1;
409 continue;
410 }
411 }
412 }
413 }
414
415 return 0;
416 }
417
418 /* Check for a symtab of a specific name; first in symtabs, then in
419 psymtabs. *If* there is no '/' in the name, a match after a '/'
420 in the symtab filename will also work.
421
422 Calls CALLBACK with each symtab that is found and with the supplied
423 DATA. If CALLBACK returns true, the search stops. */
424
425 void
426 iterate_over_symtabs (const char *name,
427 int (*callback) (struct symtab *symtab,
428 void *data),
429 void *data)
430 {
431 struct objfile *objfile;
432 char *real_path = NULL;
433 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
434
435 /* Here we are interested in canonicalizing an absolute path, not
436 absolutizing a relative path. */
437 if (IS_ABSOLUTE_PATH (name))
438 {
439 real_path = gdb_realpath (name);
440 make_cleanup (xfree, real_path);
441 gdb_assert (IS_ABSOLUTE_PATH (real_path));
442 }
443
444 ALL_OBJFILES (objfile)
445 {
446 if (iterate_over_some_symtabs (name, real_path, callback, data,
447 objfile->compunit_symtabs, NULL))
448 {
449 do_cleanups (cleanups);
450 return;
451 }
452 }
453
454 /* Same search rules as above apply here, but now we look thru the
455 psymtabs. */
456
457 ALL_OBJFILES (objfile)
458 {
459 if (objfile->sf
460 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
461 name,
462 real_path,
463 callback,
464 data))
465 {
466 do_cleanups (cleanups);
467 return;
468 }
469 }
470
471 do_cleanups (cleanups);
472 }
473
474 /* The callback function used by lookup_symtab. */
475
476 static int
477 lookup_symtab_callback (struct symtab *symtab, void *data)
478 {
479 struct symtab **result_ptr = data;
480
481 *result_ptr = symtab;
482 return 1;
483 }
484
485 /* A wrapper for iterate_over_symtabs that returns the first matching
486 symtab, or NULL. */
487
488 struct symtab *
489 lookup_symtab (const char *name)
490 {
491 struct symtab *result = NULL;
492
493 iterate_over_symtabs (name, lookup_symtab_callback, &result);
494 return result;
495 }
496
497 \f
498 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
499 full method name, which consist of the class name (from T), the unadorned
500 method name from METHOD_ID, and the signature for the specific overload,
501 specified by SIGNATURE_ID. Note that this function is g++ specific. */
502
503 char *
504 gdb_mangle_name (struct type *type, int method_id, int signature_id)
505 {
506 int mangled_name_len;
507 char *mangled_name;
508 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
509 struct fn_field *method = &f[signature_id];
510 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
511 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
512 const char *newname = type_name_no_tag (type);
513
514 /* Does the form of physname indicate that it is the full mangled name
515 of a constructor (not just the args)? */
516 int is_full_physname_constructor;
517
518 int is_constructor;
519 int is_destructor = is_destructor_name (physname);
520 /* Need a new type prefix. */
521 char *const_prefix = method->is_const ? "C" : "";
522 char *volatile_prefix = method->is_volatile ? "V" : "";
523 char buf[20];
524 int len = (newname == NULL ? 0 : strlen (newname));
525
526 /* Nothing to do if physname already contains a fully mangled v3 abi name
527 or an operator name. */
528 if ((physname[0] == '_' && physname[1] == 'Z')
529 || is_operator_name (field_name))
530 return xstrdup (physname);
531
532 is_full_physname_constructor = is_constructor_name (physname);
533
534 is_constructor = is_full_physname_constructor
535 || (newname && strcmp (field_name, newname) == 0);
536
537 if (!is_destructor)
538 is_destructor = (startswith (physname, "__dt"));
539
540 if (is_destructor || is_full_physname_constructor)
541 {
542 mangled_name = (char *) xmalloc (strlen (physname) + 1);
543 strcpy (mangled_name, physname);
544 return mangled_name;
545 }
546
547 if (len == 0)
548 {
549 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
550 }
551 else if (physname[0] == 't' || physname[0] == 'Q')
552 {
553 /* The physname for template and qualified methods already includes
554 the class name. */
555 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
556 newname = NULL;
557 len = 0;
558 }
559 else
560 {
561 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
562 volatile_prefix, len);
563 }
564 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
565 + strlen (buf) + len + strlen (physname) + 1);
566
567 mangled_name = (char *) xmalloc (mangled_name_len);
568 if (is_constructor)
569 mangled_name[0] = '\0';
570 else
571 strcpy (mangled_name, field_name);
572
573 strcat (mangled_name, buf);
574 /* If the class doesn't have a name, i.e. newname NULL, then we just
575 mangle it using 0 for the length of the class. Thus it gets mangled
576 as something starting with `::' rather than `classname::'. */
577 if (newname != NULL)
578 strcat (mangled_name, newname);
579
580 strcat (mangled_name, physname);
581 return (mangled_name);
582 }
583
584 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
585 correctly allocated. */
586
587 void
588 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
589 const char *name,
590 struct obstack *obstack)
591 {
592 if (gsymbol->language == language_ada)
593 {
594 if (name == NULL)
595 {
596 gsymbol->ada_mangled = 0;
597 gsymbol->language_specific.obstack = obstack;
598 }
599 else
600 {
601 gsymbol->ada_mangled = 1;
602 gsymbol->language_specific.mangled_lang.demangled_name = name;
603 }
604 }
605 else
606 gsymbol->language_specific.mangled_lang.demangled_name = name;
607 }
608
609 /* Return the demangled name of GSYMBOL. */
610
611 const char *
612 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
613 {
614 if (gsymbol->language == language_ada)
615 {
616 if (!gsymbol->ada_mangled)
617 return NULL;
618 /* Fall through. */
619 }
620
621 return gsymbol->language_specific.mangled_lang.demangled_name;
622 }
623
624 \f
625 /* Initialize the language dependent portion of a symbol
626 depending upon the language for the symbol. */
627
628 void
629 symbol_set_language (struct general_symbol_info *gsymbol,
630 enum language language,
631 struct obstack *obstack)
632 {
633 gsymbol->language = language;
634 if (gsymbol->language == language_cplus
635 || gsymbol->language == language_d
636 || gsymbol->language == language_go
637 || gsymbol->language == language_java
638 || gsymbol->language == language_objc
639 || gsymbol->language == language_fortran)
640 {
641 symbol_set_demangled_name (gsymbol, NULL, obstack);
642 }
643 else if (gsymbol->language == language_ada)
644 {
645 gdb_assert (gsymbol->ada_mangled == 0);
646 gsymbol->language_specific.obstack = obstack;
647 }
648 else
649 {
650 memset (&gsymbol->language_specific, 0,
651 sizeof (gsymbol->language_specific));
652 }
653 }
654
655 /* Functions to initialize a symbol's mangled name. */
656
657 /* Objects of this type are stored in the demangled name hash table. */
658 struct demangled_name_entry
659 {
660 const char *mangled;
661 char demangled[1];
662 };
663
664 /* Hash function for the demangled name hash. */
665
666 static hashval_t
667 hash_demangled_name_entry (const void *data)
668 {
669 const struct demangled_name_entry *e = data;
670
671 return htab_hash_string (e->mangled);
672 }
673
674 /* Equality function for the demangled name hash. */
675
676 static int
677 eq_demangled_name_entry (const void *a, const void *b)
678 {
679 const struct demangled_name_entry *da = a;
680 const struct demangled_name_entry *db = b;
681
682 return strcmp (da->mangled, db->mangled) == 0;
683 }
684
685 /* Create the hash table used for demangled names. Each hash entry is
686 a pair of strings; one for the mangled name and one for the demangled
687 name. The entry is hashed via just the mangled name. */
688
689 static void
690 create_demangled_names_hash (struct objfile *objfile)
691 {
692 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
693 The hash table code will round this up to the next prime number.
694 Choosing a much larger table size wastes memory, and saves only about
695 1% in symbol reading. */
696
697 objfile->per_bfd->demangled_names_hash = htab_create_alloc
698 (256, hash_demangled_name_entry, eq_demangled_name_entry,
699 NULL, xcalloc, xfree);
700 }
701
702 /* Try to determine the demangled name for a symbol, based on the
703 language of that symbol. If the language is set to language_auto,
704 it will attempt to find any demangling algorithm that works and
705 then set the language appropriately. The returned name is allocated
706 by the demangler and should be xfree'd. */
707
708 static char *
709 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
710 const char *mangled)
711 {
712 char *demangled = NULL;
713
714 if (gsymbol->language == language_unknown)
715 gsymbol->language = language_auto;
716
717 if (gsymbol->language == language_objc
718 || gsymbol->language == language_auto)
719 {
720 demangled =
721 objc_demangle (mangled, 0);
722 if (demangled != NULL)
723 {
724 gsymbol->language = language_objc;
725 return demangled;
726 }
727 }
728 if (gsymbol->language == language_cplus
729 || gsymbol->language == language_auto)
730 {
731 demangled =
732 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
733 if (demangled != NULL)
734 {
735 gsymbol->language = language_cplus;
736 return demangled;
737 }
738 }
739 if (gsymbol->language == language_java)
740 {
741 demangled =
742 gdb_demangle (mangled,
743 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
744 if (demangled != NULL)
745 {
746 gsymbol->language = language_java;
747 return demangled;
748 }
749 }
750 if (gsymbol->language == language_d
751 || gsymbol->language == language_auto)
752 {
753 demangled = d_demangle(mangled, 0);
754 if (demangled != NULL)
755 {
756 gsymbol->language = language_d;
757 return demangled;
758 }
759 }
760 /* FIXME(dje): Continually adding languages here is clumsy.
761 Better to just call la_demangle if !auto, and if auto then call
762 a utility routine that tries successive languages in turn and reports
763 which one it finds. I realize the la_demangle options may be different
764 for different languages but there's already a FIXME for that. */
765 if (gsymbol->language == language_go
766 || gsymbol->language == language_auto)
767 {
768 demangled = go_demangle (mangled, 0);
769 if (demangled != NULL)
770 {
771 gsymbol->language = language_go;
772 return demangled;
773 }
774 }
775
776 /* We could support `gsymbol->language == language_fortran' here to provide
777 module namespaces also for inferiors with only minimal symbol table (ELF
778 symbols). Just the mangling standard is not standardized across compilers
779 and there is no DW_AT_producer available for inferiors with only the ELF
780 symbols to check the mangling kind. */
781
782 /* Check for Ada symbols last. See comment below explaining why. */
783
784 if (gsymbol->language == language_auto)
785 {
786 const char *demangled = ada_decode (mangled);
787
788 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
789 {
790 /* Set the gsymbol language to Ada, but still return NULL.
791 Two reasons for that:
792
793 1. For Ada, we prefer computing the symbol's decoded name
794 on the fly rather than pre-compute it, in order to save
795 memory (Ada projects are typically very large).
796
797 2. There are some areas in the definition of the GNAT
798 encoding where, with a bit of bad luck, we might be able
799 to decode a non-Ada symbol, generating an incorrect
800 demangled name (Eg: names ending with "TB" for instance
801 are identified as task bodies and so stripped from
802 the decoded name returned).
803
804 Returning NULL, here, helps us get a little bit of
805 the best of both worlds. Because we're last, we should
806 not affect any of the other languages that were able to
807 demangle the symbol before us; we get to correctly tag
808 Ada symbols as such; and even if we incorrectly tagged
809 a non-Ada symbol, which should be rare, any routing
810 through the Ada language should be transparent (Ada
811 tries to behave much like C/C++ with non-Ada symbols). */
812 gsymbol->language = language_ada;
813 return NULL;
814 }
815 }
816
817 return NULL;
818 }
819
820 /* Set both the mangled and demangled (if any) names for GSYMBOL based
821 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
822 objfile's obstack; but if COPY_NAME is 0 and if NAME is
823 NUL-terminated, then this function assumes that NAME is already
824 correctly saved (either permanently or with a lifetime tied to the
825 objfile), and it will not be copied.
826
827 The hash table corresponding to OBJFILE is used, and the memory
828 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
829 so the pointer can be discarded after calling this function. */
830
831 /* We have to be careful when dealing with Java names: when we run
832 into a Java minimal symbol, we don't know it's a Java symbol, so it
833 gets demangled as a C++ name. This is unfortunate, but there's not
834 much we can do about it: but when demangling partial symbols and
835 regular symbols, we'd better not reuse the wrong demangled name.
836 (See PR gdb/1039.) We solve this by putting a distinctive prefix
837 on Java names when storing them in the hash table. */
838
839 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
840 don't mind the Java prefix so much: different languages have
841 different demangling requirements, so it's only natural that we
842 need to keep language data around in our demangling cache. But
843 it's not good that the minimal symbol has the wrong demangled name.
844 Unfortunately, I can't think of any easy solution to that
845 problem. */
846
847 #define JAVA_PREFIX "##JAVA$$"
848 #define JAVA_PREFIX_LEN 8
849
850 void
851 symbol_set_names (struct general_symbol_info *gsymbol,
852 const char *linkage_name, int len, int copy_name,
853 struct objfile *objfile)
854 {
855 struct demangled_name_entry **slot;
856 /* A 0-terminated copy of the linkage name. */
857 const char *linkage_name_copy;
858 /* A copy of the linkage name that might have a special Java prefix
859 added to it, for use when looking names up in the hash table. */
860 const char *lookup_name;
861 /* The length of lookup_name. */
862 int lookup_len;
863 struct demangled_name_entry entry;
864 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
865
866 if (gsymbol->language == language_ada)
867 {
868 /* In Ada, we do the symbol lookups using the mangled name, so
869 we can save some space by not storing the demangled name.
870
871 As a side note, we have also observed some overlap between
872 the C++ mangling and Ada mangling, similarly to what has
873 been observed with Java. Because we don't store the demangled
874 name with the symbol, we don't need to use the same trick
875 as Java. */
876 if (!copy_name)
877 gsymbol->name = linkage_name;
878 else
879 {
880 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
881
882 memcpy (name, linkage_name, len);
883 name[len] = '\0';
884 gsymbol->name = name;
885 }
886 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
887
888 return;
889 }
890
891 if (per_bfd->demangled_names_hash == NULL)
892 create_demangled_names_hash (objfile);
893
894 /* The stabs reader generally provides names that are not
895 NUL-terminated; most of the other readers don't do this, so we
896 can just use the given copy, unless we're in the Java case. */
897 if (gsymbol->language == language_java)
898 {
899 char *alloc_name;
900
901 lookup_len = len + JAVA_PREFIX_LEN;
902 alloc_name = alloca (lookup_len + 1);
903 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
904 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
905 alloc_name[lookup_len] = '\0';
906
907 lookup_name = alloc_name;
908 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
909 }
910 else if (linkage_name[len] != '\0')
911 {
912 char *alloc_name;
913
914 lookup_len = len;
915 alloc_name = alloca (lookup_len + 1);
916 memcpy (alloc_name, linkage_name, len);
917 alloc_name[lookup_len] = '\0';
918
919 lookup_name = alloc_name;
920 linkage_name_copy = alloc_name;
921 }
922 else
923 {
924 lookup_len = len;
925 lookup_name = linkage_name;
926 linkage_name_copy = linkage_name;
927 }
928
929 entry.mangled = lookup_name;
930 slot = ((struct demangled_name_entry **)
931 htab_find_slot (per_bfd->demangled_names_hash,
932 &entry, INSERT));
933
934 /* If this name is not in the hash table, add it. */
935 if (*slot == NULL
936 /* A C version of the symbol may have already snuck into the table.
937 This happens to, e.g., main.init (__go_init_main). Cope. */
938 || (gsymbol->language == language_go
939 && (*slot)->demangled[0] == '\0'))
940 {
941 char *demangled_name = symbol_find_demangled_name (gsymbol,
942 linkage_name_copy);
943 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
944
945 /* Suppose we have demangled_name==NULL, copy_name==0, and
946 lookup_name==linkage_name. In this case, we already have the
947 mangled name saved, and we don't have a demangled name. So,
948 you might think we could save a little space by not recording
949 this in the hash table at all.
950
951 It turns out that it is actually important to still save such
952 an entry in the hash table, because storing this name gives
953 us better bcache hit rates for partial symbols. */
954 if (!copy_name && lookup_name == linkage_name)
955 {
956 *slot = obstack_alloc (&per_bfd->storage_obstack,
957 offsetof (struct demangled_name_entry,
958 demangled)
959 + demangled_len + 1);
960 (*slot)->mangled = lookup_name;
961 }
962 else
963 {
964 char *mangled_ptr;
965
966 /* If we must copy the mangled name, put it directly after
967 the demangled name so we can have a single
968 allocation. */
969 *slot = obstack_alloc (&per_bfd->storage_obstack,
970 offsetof (struct demangled_name_entry,
971 demangled)
972 + lookup_len + demangled_len + 2);
973 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
974 strcpy (mangled_ptr, lookup_name);
975 (*slot)->mangled = mangled_ptr;
976 }
977
978 if (demangled_name != NULL)
979 {
980 strcpy ((*slot)->demangled, demangled_name);
981 xfree (demangled_name);
982 }
983 else
984 (*slot)->demangled[0] = '\0';
985 }
986
987 gsymbol->name = (*slot)->mangled + lookup_len - len;
988 if ((*slot)->demangled[0] != '\0')
989 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
990 &per_bfd->storage_obstack);
991 else
992 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
993 }
994
995 /* Return the source code name of a symbol. In languages where
996 demangling is necessary, this is the demangled name. */
997
998 const char *
999 symbol_natural_name (const struct general_symbol_info *gsymbol)
1000 {
1001 switch (gsymbol->language)
1002 {
1003 case language_cplus:
1004 case language_d:
1005 case language_go:
1006 case language_java:
1007 case language_objc:
1008 case language_fortran:
1009 if (symbol_get_demangled_name (gsymbol) != NULL)
1010 return symbol_get_demangled_name (gsymbol);
1011 break;
1012 case language_ada:
1013 return ada_decode_symbol (gsymbol);
1014 default:
1015 break;
1016 }
1017 return gsymbol->name;
1018 }
1019
1020 /* Return the demangled name for a symbol based on the language for
1021 that symbol. If no demangled name exists, return NULL. */
1022
1023 const char *
1024 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1025 {
1026 const char *dem_name = NULL;
1027
1028 switch (gsymbol->language)
1029 {
1030 case language_cplus:
1031 case language_d:
1032 case language_go:
1033 case language_java:
1034 case language_objc:
1035 case language_fortran:
1036 dem_name = symbol_get_demangled_name (gsymbol);
1037 break;
1038 case language_ada:
1039 dem_name = ada_decode_symbol (gsymbol);
1040 break;
1041 default:
1042 break;
1043 }
1044 return dem_name;
1045 }
1046
1047 /* Return the search name of a symbol---generally the demangled or
1048 linkage name of the symbol, depending on how it will be searched for.
1049 If there is no distinct demangled name, then returns the same value
1050 (same pointer) as SYMBOL_LINKAGE_NAME. */
1051
1052 const char *
1053 symbol_search_name (const struct general_symbol_info *gsymbol)
1054 {
1055 if (gsymbol->language == language_ada)
1056 return gsymbol->name;
1057 else
1058 return symbol_natural_name (gsymbol);
1059 }
1060
1061 /* Initialize the structure fields to zero values. */
1062
1063 void
1064 init_sal (struct symtab_and_line *sal)
1065 {
1066 memset (sal, 0, sizeof (*sal));
1067 }
1068 \f
1069
1070 /* Return 1 if the two sections are the same, or if they could
1071 plausibly be copies of each other, one in an original object
1072 file and another in a separated debug file. */
1073
1074 int
1075 matching_obj_sections (struct obj_section *obj_first,
1076 struct obj_section *obj_second)
1077 {
1078 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1079 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1080 struct objfile *obj;
1081
1082 /* If they're the same section, then they match. */
1083 if (first == second)
1084 return 1;
1085
1086 /* If either is NULL, give up. */
1087 if (first == NULL || second == NULL)
1088 return 0;
1089
1090 /* This doesn't apply to absolute symbols. */
1091 if (first->owner == NULL || second->owner == NULL)
1092 return 0;
1093
1094 /* If they're in the same object file, they must be different sections. */
1095 if (first->owner == second->owner)
1096 return 0;
1097
1098 /* Check whether the two sections are potentially corresponding. They must
1099 have the same size, address, and name. We can't compare section indexes,
1100 which would be more reliable, because some sections may have been
1101 stripped. */
1102 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1103 return 0;
1104
1105 /* In-memory addresses may start at a different offset, relativize them. */
1106 if (bfd_get_section_vma (first->owner, first)
1107 - bfd_get_start_address (first->owner)
1108 != bfd_get_section_vma (second->owner, second)
1109 - bfd_get_start_address (second->owner))
1110 return 0;
1111
1112 if (bfd_get_section_name (first->owner, first) == NULL
1113 || bfd_get_section_name (second->owner, second) == NULL
1114 || strcmp (bfd_get_section_name (first->owner, first),
1115 bfd_get_section_name (second->owner, second)) != 0)
1116 return 0;
1117
1118 /* Otherwise check that they are in corresponding objfiles. */
1119
1120 ALL_OBJFILES (obj)
1121 if (obj->obfd == first->owner)
1122 break;
1123 gdb_assert (obj != NULL);
1124
1125 if (obj->separate_debug_objfile != NULL
1126 && obj->separate_debug_objfile->obfd == second->owner)
1127 return 1;
1128 if (obj->separate_debug_objfile_backlink != NULL
1129 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1130 return 1;
1131
1132 return 0;
1133 }
1134
1135 /* See symtab.h. */
1136
1137 void
1138 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1139 {
1140 struct objfile *objfile;
1141 struct bound_minimal_symbol msymbol;
1142
1143 /* If we know that this is not a text address, return failure. This is
1144 necessary because we loop based on texthigh and textlow, which do
1145 not include the data ranges. */
1146 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1147 if (msymbol.minsym
1148 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1149 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1150 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1151 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1152 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1153 return;
1154
1155 ALL_OBJFILES (objfile)
1156 {
1157 struct compunit_symtab *cust = NULL;
1158
1159 if (objfile->sf)
1160 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1161 pc, section, 0);
1162 if (cust)
1163 return;
1164 }
1165 }
1166 \f
1167 /* Hash function for the symbol cache. */
1168
1169 static unsigned int
1170 hash_symbol_entry (const struct objfile *objfile_context,
1171 const char *name, domain_enum domain)
1172 {
1173 unsigned int hash = (uintptr_t) objfile_context;
1174
1175 if (name != NULL)
1176 hash += htab_hash_string (name);
1177
1178 hash += domain;
1179
1180 return hash;
1181 }
1182
1183 /* Equality function for the symbol cache. */
1184
1185 static int
1186 eq_symbol_entry (const struct symbol_cache_slot *slot,
1187 const struct objfile *objfile_context,
1188 const char *name, domain_enum domain)
1189 {
1190 const char *slot_name;
1191 domain_enum slot_domain;
1192
1193 if (slot->state == SYMBOL_SLOT_UNUSED)
1194 return 0;
1195
1196 if (slot->objfile_context != objfile_context)
1197 return 0;
1198
1199 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1200 {
1201 slot_name = slot->value.not_found.name;
1202 slot_domain = slot->value.not_found.domain;
1203 }
1204 else
1205 {
1206 slot_name = SYMBOL_SEARCH_NAME (slot->value.found);
1207 slot_domain = SYMBOL_DOMAIN (slot->value.found);
1208 }
1209
1210 /* NULL names match. */
1211 if (slot_name == NULL && name == NULL)
1212 {
1213 /* But there's no point in calling symbol_matches_domain in the
1214 SYMBOL_SLOT_FOUND case. */
1215 if (slot_domain != domain)
1216 return 0;
1217 }
1218 else if (slot_name != NULL && name != NULL)
1219 {
1220 /* It's important that we use the same comparison that was done the
1221 first time through. If the slot records a found symbol, then this
1222 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1223 It also means using symbol_matches_domain for found symbols.
1224 See block.c.
1225
1226 If the slot records a not-found symbol, then require a precise match.
1227 We could still be lax with whitespace like strcmp_iw though. */
1228
1229 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1230 {
1231 if (strcmp (slot_name, name) != 0)
1232 return 0;
1233 if (slot_domain != domain)
1234 return 0;
1235 }
1236 else
1237 {
1238 struct symbol *sym = slot->value.found;
1239
1240 if (strcmp_iw (slot_name, name) != 0)
1241 return 0;
1242 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1243 slot_domain, domain))
1244 return 0;
1245 }
1246 }
1247 else
1248 {
1249 /* Only one name is NULL. */
1250 return 0;
1251 }
1252
1253 return 1;
1254 }
1255
1256 /* Given a cache of size SIZE, return the size of the struct (with variable
1257 length array) in bytes. */
1258
1259 static size_t
1260 symbol_cache_byte_size (unsigned int size)
1261 {
1262 return (sizeof (struct block_symbol_cache)
1263 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1264 }
1265
1266 /* Resize CACHE. */
1267
1268 static void
1269 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1270 {
1271 /* If there's no change in size, don't do anything.
1272 All caches have the same size, so we can just compare with the size
1273 of the global symbols cache. */
1274 if ((cache->global_symbols != NULL
1275 && cache->global_symbols->size == new_size)
1276 || (cache->global_symbols == NULL
1277 && new_size == 0))
1278 return;
1279
1280 xfree (cache->global_symbols);
1281 xfree (cache->static_symbols);
1282
1283 if (new_size == 0)
1284 {
1285 cache->global_symbols = NULL;
1286 cache->static_symbols = NULL;
1287 }
1288 else
1289 {
1290 size_t total_size = symbol_cache_byte_size (new_size);
1291
1292 cache->global_symbols = xcalloc (1, total_size);
1293 cache->static_symbols = xcalloc (1, total_size);
1294 cache->global_symbols->size = new_size;
1295 cache->static_symbols->size = new_size;
1296 }
1297 }
1298
1299 /* Make a symbol cache of size SIZE. */
1300
1301 static struct symbol_cache *
1302 make_symbol_cache (unsigned int size)
1303 {
1304 struct symbol_cache *cache;
1305
1306 cache = XCNEW (struct symbol_cache);
1307 resize_symbol_cache (cache, symbol_cache_size);
1308 return cache;
1309 }
1310
1311 /* Free the space used by CACHE. */
1312
1313 static void
1314 free_symbol_cache (struct symbol_cache *cache)
1315 {
1316 xfree (cache->global_symbols);
1317 xfree (cache->static_symbols);
1318 xfree (cache);
1319 }
1320
1321 /* Return the symbol cache of PSPACE.
1322 Create one if it doesn't exist yet. */
1323
1324 static struct symbol_cache *
1325 get_symbol_cache (struct program_space *pspace)
1326 {
1327 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1328
1329 if (cache == NULL)
1330 {
1331 cache = make_symbol_cache (symbol_cache_size);
1332 set_program_space_data (pspace, symbol_cache_key, cache);
1333 }
1334
1335 return cache;
1336 }
1337
1338 /* Delete the symbol cache of PSPACE.
1339 Called when PSPACE is destroyed. */
1340
1341 static void
1342 symbol_cache_cleanup (struct program_space *pspace, void *data)
1343 {
1344 struct symbol_cache *cache = data;
1345
1346 free_symbol_cache (cache);
1347 }
1348
1349 /* Set the size of the symbol cache in all program spaces. */
1350
1351 static void
1352 set_symbol_cache_size (unsigned int new_size)
1353 {
1354 struct program_space *pspace;
1355
1356 ALL_PSPACES (pspace)
1357 {
1358 struct symbol_cache *cache
1359 = program_space_data (pspace, symbol_cache_key);
1360
1361 /* The pspace could have been created but not have a cache yet. */
1362 if (cache != NULL)
1363 resize_symbol_cache (cache, new_size);
1364 }
1365 }
1366
1367 /* Called when symbol-cache-size is set. */
1368
1369 static void
1370 set_symbol_cache_size_handler (char *args, int from_tty,
1371 struct cmd_list_element *c)
1372 {
1373 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1374 {
1375 /* Restore the previous value.
1376 This is the value the "show" command prints. */
1377 new_symbol_cache_size = symbol_cache_size;
1378
1379 error (_("Symbol cache size is too large, max is %u."),
1380 MAX_SYMBOL_CACHE_SIZE);
1381 }
1382 symbol_cache_size = new_symbol_cache_size;
1383
1384 set_symbol_cache_size (symbol_cache_size);
1385 }
1386
1387 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1388 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1389 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1390 failed (and thus this one will too), or NULL if the symbol is not present
1391 in the cache.
1392 *BSC_PTR, *SLOT_PTR are set to the cache and slot of the symbol, whether
1393 found or not found. */
1394
1395 static struct symbol *
1396 symbol_cache_lookup (struct symbol_cache *cache,
1397 struct objfile *objfile_context, int block,
1398 const char *name, domain_enum domain,
1399 struct block_symbol_cache **bsc_ptr,
1400 struct symbol_cache_slot **slot_ptr)
1401 {
1402 struct block_symbol_cache *bsc;
1403 unsigned int hash;
1404 struct symbol_cache_slot *slot;
1405
1406 if (block == GLOBAL_BLOCK)
1407 bsc = cache->global_symbols;
1408 else
1409 bsc = cache->static_symbols;
1410 if (bsc == NULL)
1411 {
1412 *bsc_ptr = NULL;
1413 *slot_ptr = NULL;
1414 return NULL;
1415 }
1416
1417 hash = hash_symbol_entry (objfile_context, name, domain);
1418 slot = bsc->symbols + hash % bsc->size;
1419 *bsc_ptr = bsc;
1420 *slot_ptr = slot;
1421
1422 if (eq_symbol_entry (slot, objfile_context, name, domain))
1423 {
1424 if (symbol_lookup_debug)
1425 fprintf_unfiltered (gdb_stdlog,
1426 "%s block symbol cache hit%s for %s, %s\n",
1427 block == GLOBAL_BLOCK ? "Global" : "Static",
1428 slot->state == SYMBOL_SLOT_NOT_FOUND
1429 ? " (not found)" : "",
1430 name, domain_name (domain));
1431 ++bsc->hits;
1432 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1433 return SYMBOL_LOOKUP_FAILED;
1434 return slot->value.found;
1435 }
1436
1437 if (symbol_lookup_debug)
1438 {
1439 fprintf_unfiltered (gdb_stdlog,
1440 "%s block symbol cache miss for %s, %s\n",
1441 block == GLOBAL_BLOCK ? "Global" : "Static",
1442 name, domain_name (domain));
1443 }
1444 ++bsc->misses;
1445 return NULL;
1446 }
1447
1448 /* Clear out SLOT. */
1449
1450 static void
1451 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1452 {
1453 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1454 xfree (slot->value.not_found.name);
1455 slot->state = SYMBOL_SLOT_UNUSED;
1456 }
1457
1458 /* Mark SYMBOL as found in SLOT.
1459 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1460 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1461 necessarily the objfile the symbol was found in. */
1462
1463 static void
1464 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1465 struct symbol_cache_slot *slot,
1466 struct objfile *objfile_context,
1467 struct symbol *symbol)
1468 {
1469 if (bsc == NULL)
1470 return;
1471 if (slot->state != SYMBOL_SLOT_UNUSED)
1472 {
1473 ++bsc->collisions;
1474 symbol_cache_clear_slot (slot);
1475 }
1476 slot->state = SYMBOL_SLOT_FOUND;
1477 slot->objfile_context = objfile_context;
1478 slot->value.found = symbol;
1479 }
1480
1481 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1482 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1483 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1484
1485 static void
1486 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1487 struct symbol_cache_slot *slot,
1488 struct objfile *objfile_context,
1489 const char *name, domain_enum domain)
1490 {
1491 if (bsc == NULL)
1492 return;
1493 if (slot->state != SYMBOL_SLOT_UNUSED)
1494 {
1495 ++bsc->collisions;
1496 symbol_cache_clear_slot (slot);
1497 }
1498 slot->state = SYMBOL_SLOT_NOT_FOUND;
1499 slot->objfile_context = objfile_context;
1500 slot->value.not_found.name = xstrdup (name);
1501 slot->value.not_found.domain = domain;
1502 }
1503
1504 /* Flush the symbol cache of PSPACE. */
1505
1506 static void
1507 symbol_cache_flush (struct program_space *pspace)
1508 {
1509 struct symbol_cache *cache = program_space_data (pspace, symbol_cache_key);
1510 int pass;
1511 size_t total_size;
1512
1513 if (cache == NULL)
1514 return;
1515 if (cache->global_symbols == NULL)
1516 {
1517 gdb_assert (symbol_cache_size == 0);
1518 gdb_assert (cache->static_symbols == NULL);
1519 return;
1520 }
1521
1522 /* If the cache is untouched since the last flush, early exit.
1523 This is important for performance during the startup of a program linked
1524 with 100s (or 1000s) of shared libraries. */
1525 if (cache->global_symbols->misses == 0
1526 && cache->static_symbols->misses == 0)
1527 return;
1528
1529 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1530 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1531
1532 for (pass = 0; pass < 2; ++pass)
1533 {
1534 struct block_symbol_cache *bsc
1535 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1536 unsigned int i;
1537
1538 for (i = 0; i < bsc->size; ++i)
1539 symbol_cache_clear_slot (&bsc->symbols[i]);
1540 }
1541
1542 cache->global_symbols->hits = 0;
1543 cache->global_symbols->misses = 0;
1544 cache->global_symbols->collisions = 0;
1545 cache->static_symbols->hits = 0;
1546 cache->static_symbols->misses = 0;
1547 cache->static_symbols->collisions = 0;
1548 }
1549
1550 /* Dump CACHE. */
1551
1552 static void
1553 symbol_cache_dump (const struct symbol_cache *cache)
1554 {
1555 int pass;
1556
1557 if (cache->global_symbols == NULL)
1558 {
1559 printf_filtered (" <disabled>\n");
1560 return;
1561 }
1562
1563 for (pass = 0; pass < 2; ++pass)
1564 {
1565 const struct block_symbol_cache *bsc
1566 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1567 unsigned int i;
1568
1569 if (pass == 0)
1570 printf_filtered ("Global symbols:\n");
1571 else
1572 printf_filtered ("Static symbols:\n");
1573
1574 for (i = 0; i < bsc->size; ++i)
1575 {
1576 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1577
1578 QUIT;
1579
1580 switch (slot->state)
1581 {
1582 case SYMBOL_SLOT_UNUSED:
1583 break;
1584 case SYMBOL_SLOT_NOT_FOUND:
1585 printf_filtered (" [%-4u] = %s, %s (not found)\n", i,
1586 host_address_to_string (slot->objfile_context),
1587 slot->value.not_found.name);
1588 break;
1589 case SYMBOL_SLOT_FOUND:
1590 printf_filtered (" [%-4u] = %s, %s\n", i,
1591 host_address_to_string (slot->objfile_context),
1592 SYMBOL_PRINT_NAME (slot->value.found));
1593 break;
1594 }
1595 }
1596 }
1597 }
1598
1599 /* The "mt print symbol-cache" command. */
1600
1601 static void
1602 maintenance_print_symbol_cache (char *args, int from_tty)
1603 {
1604 struct program_space *pspace;
1605
1606 ALL_PSPACES (pspace)
1607 {
1608 struct symbol_cache *cache;
1609
1610 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1611 pspace->num,
1612 pspace->symfile_object_file != NULL
1613 ? objfile_name (pspace->symfile_object_file)
1614 : "(no object file)");
1615
1616 /* If the cache hasn't been created yet, avoid creating one. */
1617 cache = program_space_data (pspace, symbol_cache_key);
1618 if (cache == NULL)
1619 printf_filtered (" <empty>\n");
1620 else
1621 symbol_cache_dump (cache);
1622 }
1623 }
1624
1625 /* The "mt flush-symbol-cache" command. */
1626
1627 static void
1628 maintenance_flush_symbol_cache (char *args, int from_tty)
1629 {
1630 struct program_space *pspace;
1631
1632 ALL_PSPACES (pspace)
1633 {
1634 symbol_cache_flush (pspace);
1635 }
1636 }
1637
1638 /* Print usage statistics of CACHE. */
1639
1640 static void
1641 symbol_cache_stats (struct symbol_cache *cache)
1642 {
1643 int pass;
1644
1645 if (cache->global_symbols == NULL)
1646 {
1647 printf_filtered (" <disabled>\n");
1648 return;
1649 }
1650
1651 for (pass = 0; pass < 2; ++pass)
1652 {
1653 const struct block_symbol_cache *bsc
1654 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1655
1656 QUIT;
1657
1658 if (pass == 0)
1659 printf_filtered ("Global block cache stats:\n");
1660 else
1661 printf_filtered ("Static block cache stats:\n");
1662
1663 printf_filtered (" size: %u\n", bsc->size);
1664 printf_filtered (" hits: %u\n", bsc->hits);
1665 printf_filtered (" misses: %u\n", bsc->misses);
1666 printf_filtered (" collisions: %u\n", bsc->collisions);
1667 }
1668 }
1669
1670 /* The "mt print symbol-cache-statistics" command. */
1671
1672 static void
1673 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1674 {
1675 struct program_space *pspace;
1676
1677 ALL_PSPACES (pspace)
1678 {
1679 struct symbol_cache *cache;
1680
1681 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1682 pspace->num,
1683 pspace->symfile_object_file != NULL
1684 ? objfile_name (pspace->symfile_object_file)
1685 : "(no object file)");
1686
1687 /* If the cache hasn't been created yet, avoid creating one. */
1688 cache = program_space_data (pspace, symbol_cache_key);
1689 if (cache == NULL)
1690 printf_filtered (" empty, no stats available\n");
1691 else
1692 symbol_cache_stats (cache);
1693 }
1694 }
1695
1696 /* This module's 'new_objfile' observer. */
1697
1698 static void
1699 symtab_new_objfile_observer (struct objfile *objfile)
1700 {
1701 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1702 symbol_cache_flush (current_program_space);
1703 }
1704
1705 /* This module's 'free_objfile' observer. */
1706
1707 static void
1708 symtab_free_objfile_observer (struct objfile *objfile)
1709 {
1710 symbol_cache_flush (objfile->pspace);
1711 }
1712 \f
1713 /* Debug symbols usually don't have section information. We need to dig that
1714 out of the minimal symbols and stash that in the debug symbol. */
1715
1716 void
1717 fixup_section (struct general_symbol_info *ginfo,
1718 CORE_ADDR addr, struct objfile *objfile)
1719 {
1720 struct minimal_symbol *msym;
1721
1722 /* First, check whether a minimal symbol with the same name exists
1723 and points to the same address. The address check is required
1724 e.g. on PowerPC64, where the minimal symbol for a function will
1725 point to the function descriptor, while the debug symbol will
1726 point to the actual function code. */
1727 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1728 if (msym)
1729 ginfo->section = MSYMBOL_SECTION (msym);
1730 else
1731 {
1732 /* Static, function-local variables do appear in the linker
1733 (minimal) symbols, but are frequently given names that won't
1734 be found via lookup_minimal_symbol(). E.g., it has been
1735 observed in frv-uclinux (ELF) executables that a static,
1736 function-local variable named "foo" might appear in the
1737 linker symbols as "foo.6" or "foo.3". Thus, there is no
1738 point in attempting to extend the lookup-by-name mechanism to
1739 handle this case due to the fact that there can be multiple
1740 names.
1741
1742 So, instead, search the section table when lookup by name has
1743 failed. The ``addr'' and ``endaddr'' fields may have already
1744 been relocated. If so, the relocation offset (i.e. the
1745 ANOFFSET value) needs to be subtracted from these values when
1746 performing the comparison. We unconditionally subtract it,
1747 because, when no relocation has been performed, the ANOFFSET
1748 value will simply be zero.
1749
1750 The address of the symbol whose section we're fixing up HAS
1751 NOT BEEN adjusted (relocated) yet. It can't have been since
1752 the section isn't yet known and knowing the section is
1753 necessary in order to add the correct relocation value. In
1754 other words, we wouldn't even be in this function (attempting
1755 to compute the section) if it were already known.
1756
1757 Note that it is possible to search the minimal symbols
1758 (subtracting the relocation value if necessary) to find the
1759 matching minimal symbol, but this is overkill and much less
1760 efficient. It is not necessary to find the matching minimal
1761 symbol, only its section.
1762
1763 Note that this technique (of doing a section table search)
1764 can fail when unrelocated section addresses overlap. For
1765 this reason, we still attempt a lookup by name prior to doing
1766 a search of the section table. */
1767
1768 struct obj_section *s;
1769 int fallback = -1;
1770
1771 ALL_OBJFILE_OSECTIONS (objfile, s)
1772 {
1773 int idx = s - objfile->sections;
1774 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1775
1776 if (fallback == -1)
1777 fallback = idx;
1778
1779 if (obj_section_addr (s) - offset <= addr
1780 && addr < obj_section_endaddr (s) - offset)
1781 {
1782 ginfo->section = idx;
1783 return;
1784 }
1785 }
1786
1787 /* If we didn't find the section, assume it is in the first
1788 section. If there is no allocated section, then it hardly
1789 matters what we pick, so just pick zero. */
1790 if (fallback == -1)
1791 ginfo->section = 0;
1792 else
1793 ginfo->section = fallback;
1794 }
1795 }
1796
1797 struct symbol *
1798 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1799 {
1800 CORE_ADDR addr;
1801
1802 if (!sym)
1803 return NULL;
1804
1805 if (!SYMBOL_OBJFILE_OWNED (sym))
1806 return sym;
1807
1808 /* We either have an OBJFILE, or we can get at it from the sym's
1809 symtab. Anything else is a bug. */
1810 gdb_assert (objfile || symbol_symtab (sym));
1811
1812 if (objfile == NULL)
1813 objfile = symbol_objfile (sym);
1814
1815 if (SYMBOL_OBJ_SECTION (objfile, sym))
1816 return sym;
1817
1818 /* We should have an objfile by now. */
1819 gdb_assert (objfile);
1820
1821 switch (SYMBOL_CLASS (sym))
1822 {
1823 case LOC_STATIC:
1824 case LOC_LABEL:
1825 addr = SYMBOL_VALUE_ADDRESS (sym);
1826 break;
1827 case LOC_BLOCK:
1828 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1829 break;
1830
1831 default:
1832 /* Nothing else will be listed in the minsyms -- no use looking
1833 it up. */
1834 return sym;
1835 }
1836
1837 fixup_section (&sym->ginfo, addr, objfile);
1838
1839 return sym;
1840 }
1841
1842 /* Compute the demangled form of NAME as used by the various symbol
1843 lookup functions. The result is stored in *RESULT_NAME. Returns a
1844 cleanup which can be used to clean up the result.
1845
1846 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1847 Normally, Ada symbol lookups are performed using the encoded name
1848 rather than the demangled name, and so it might seem to make sense
1849 for this function to return an encoded version of NAME.
1850 Unfortunately, we cannot do this, because this function is used in
1851 circumstances where it is not appropriate to try to encode NAME.
1852 For instance, when displaying the frame info, we demangle the name
1853 of each parameter, and then perform a symbol lookup inside our
1854 function using that demangled name. In Ada, certain functions
1855 have internally-generated parameters whose name contain uppercase
1856 characters. Encoding those name would result in those uppercase
1857 characters to become lowercase, and thus cause the symbol lookup
1858 to fail. */
1859
1860 struct cleanup *
1861 demangle_for_lookup (const char *name, enum language lang,
1862 const char **result_name)
1863 {
1864 char *demangled_name = NULL;
1865 const char *modified_name = NULL;
1866 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1867
1868 modified_name = name;
1869
1870 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1871 lookup, so we can always binary search. */
1872 if (lang == language_cplus)
1873 {
1874 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1875 if (demangled_name)
1876 {
1877 modified_name = demangled_name;
1878 make_cleanup (xfree, demangled_name);
1879 }
1880 else
1881 {
1882 /* If we were given a non-mangled name, canonicalize it
1883 according to the language (so far only for C++). */
1884 demangled_name = cp_canonicalize_string (name);
1885 if (demangled_name)
1886 {
1887 modified_name = demangled_name;
1888 make_cleanup (xfree, demangled_name);
1889 }
1890 }
1891 }
1892 else if (lang == language_java)
1893 {
1894 demangled_name = gdb_demangle (name,
1895 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1896 if (demangled_name)
1897 {
1898 modified_name = demangled_name;
1899 make_cleanup (xfree, demangled_name);
1900 }
1901 }
1902 else if (lang == language_d)
1903 {
1904 demangled_name = d_demangle (name, 0);
1905 if (demangled_name)
1906 {
1907 modified_name = demangled_name;
1908 make_cleanup (xfree, demangled_name);
1909 }
1910 }
1911 else if (lang == language_go)
1912 {
1913 demangled_name = go_demangle (name, 0);
1914 if (demangled_name)
1915 {
1916 modified_name = demangled_name;
1917 make_cleanup (xfree, demangled_name);
1918 }
1919 }
1920
1921 *result_name = modified_name;
1922 return cleanup;
1923 }
1924
1925 /* See symtab.h.
1926
1927 This function (or rather its subordinates) have a bunch of loops and
1928 it would seem to be attractive to put in some QUIT's (though I'm not really
1929 sure whether it can run long enough to be really important). But there
1930 are a few calls for which it would appear to be bad news to quit
1931 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1932 that there is C++ code below which can error(), but that probably
1933 doesn't affect these calls since they are looking for a known
1934 variable and thus can probably assume it will never hit the C++
1935 code). */
1936
1937 struct symbol *
1938 lookup_symbol_in_language (const char *name, const struct block *block,
1939 const domain_enum domain, enum language lang,
1940 struct field_of_this_result *is_a_field_of_this)
1941 {
1942 const char *modified_name;
1943 struct symbol *returnval;
1944 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1945
1946 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1947 is_a_field_of_this);
1948 do_cleanups (cleanup);
1949
1950 return returnval;
1951 }
1952
1953 /* See symtab.h. */
1954
1955 struct symbol *
1956 lookup_symbol (const char *name, const struct block *block,
1957 domain_enum domain,
1958 struct field_of_this_result *is_a_field_of_this)
1959 {
1960 return lookup_symbol_in_language (name, block, domain,
1961 current_language->la_language,
1962 is_a_field_of_this);
1963 }
1964
1965 /* See symtab.h. */
1966
1967 struct symbol *
1968 lookup_language_this (const struct language_defn *lang,
1969 const struct block *block)
1970 {
1971 if (lang->la_name_of_this == NULL || block == NULL)
1972 return NULL;
1973
1974 if (symbol_lookup_debug > 1)
1975 {
1976 struct objfile *objfile = lookup_objfile_from_block (block);
1977
1978 fprintf_unfiltered (gdb_stdlog,
1979 "lookup_language_this (%s, %s (objfile %s))",
1980 lang->la_name, host_address_to_string (block),
1981 objfile_debug_name (objfile));
1982 }
1983
1984 while (block)
1985 {
1986 struct symbol *sym;
1987
1988 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1989 if (sym != NULL)
1990 {
1991 if (symbol_lookup_debug > 1)
1992 {
1993 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1994 SYMBOL_PRINT_NAME (sym),
1995 host_address_to_string (sym),
1996 host_address_to_string (block));
1997 }
1998 block_found = block;
1999 return sym;
2000 }
2001 if (BLOCK_FUNCTION (block))
2002 break;
2003 block = BLOCK_SUPERBLOCK (block);
2004 }
2005
2006 if (symbol_lookup_debug > 1)
2007 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2008 return NULL;
2009 }
2010
2011 /* Given TYPE, a structure/union,
2012 return 1 if the component named NAME from the ultimate target
2013 structure/union is defined, otherwise, return 0. */
2014
2015 static int
2016 check_field (struct type *type, const char *name,
2017 struct field_of_this_result *is_a_field_of_this)
2018 {
2019 int i;
2020
2021 /* The type may be a stub. */
2022 CHECK_TYPEDEF (type);
2023
2024 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2025 {
2026 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2027
2028 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2029 {
2030 is_a_field_of_this->type = type;
2031 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2032 return 1;
2033 }
2034 }
2035
2036 /* C++: If it was not found as a data field, then try to return it
2037 as a pointer to a method. */
2038
2039 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2040 {
2041 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2042 {
2043 is_a_field_of_this->type = type;
2044 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2045 return 1;
2046 }
2047 }
2048
2049 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2050 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2051 return 1;
2052
2053 return 0;
2054 }
2055
2056 /* Behave like lookup_symbol except that NAME is the natural name
2057 (e.g., demangled name) of the symbol that we're looking for. */
2058
2059 static struct symbol *
2060 lookup_symbol_aux (const char *name, const struct block *block,
2061 const domain_enum domain, enum language language,
2062 struct field_of_this_result *is_a_field_of_this)
2063 {
2064 struct symbol *sym;
2065 const struct language_defn *langdef;
2066
2067 if (symbol_lookup_debug)
2068 {
2069 struct objfile *objfile = lookup_objfile_from_block (block);
2070
2071 fprintf_unfiltered (gdb_stdlog,
2072 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2073 name, host_address_to_string (block),
2074 objfile != NULL
2075 ? objfile_debug_name (objfile) : "NULL",
2076 domain_name (domain), language_str (language));
2077 }
2078
2079 /* Initialize block_found so that the language la_lookup_symbol_nonlocal
2080 routines don't have to set it (to NULL) if a primitive type is found.
2081 We do this early so that block_found is also NULL if no symbol is
2082 found (though this is not part of the API, and callers cannot assume
2083 this). */
2084 block_found = NULL;
2085
2086 /* Make sure we do something sensible with is_a_field_of_this, since
2087 the callers that set this parameter to some non-null value will
2088 certainly use it later. If we don't set it, the contents of
2089 is_a_field_of_this are undefined. */
2090 if (is_a_field_of_this != NULL)
2091 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2092
2093 /* Search specified block and its superiors. Don't search
2094 STATIC_BLOCK or GLOBAL_BLOCK. */
2095
2096 sym = lookup_local_symbol (name, block, domain, language);
2097 if (sym != NULL)
2098 {
2099 if (symbol_lookup_debug)
2100 {
2101 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2102 host_address_to_string (sym));
2103 }
2104 return sym;
2105 }
2106
2107 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2108 check to see if NAME is a field of `this'. */
2109
2110 langdef = language_def (language);
2111
2112 /* Don't do this check if we are searching for a struct. It will
2113 not be found by check_field, but will be found by other
2114 means. */
2115 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2116 {
2117 struct symbol *sym = lookup_language_this (langdef, block);
2118
2119 if (sym)
2120 {
2121 struct type *t = sym->type;
2122
2123 /* I'm not really sure that type of this can ever
2124 be typedefed; just be safe. */
2125 CHECK_TYPEDEF (t);
2126 if (TYPE_CODE (t) == TYPE_CODE_PTR
2127 || TYPE_CODE (t) == TYPE_CODE_REF)
2128 t = TYPE_TARGET_TYPE (t);
2129
2130 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2131 && TYPE_CODE (t) != TYPE_CODE_UNION)
2132 error (_("Internal error: `%s' is not an aggregate"),
2133 langdef->la_name_of_this);
2134
2135 if (check_field (t, name, is_a_field_of_this))
2136 {
2137 if (symbol_lookup_debug)
2138 {
2139 fprintf_unfiltered (gdb_stdlog,
2140 "lookup_symbol_aux (...) = NULL\n");
2141 }
2142 return NULL;
2143 }
2144 }
2145 }
2146
2147 /* Now do whatever is appropriate for LANGUAGE to look
2148 up static and global variables. */
2149
2150 sym = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2151 if (sym != NULL)
2152 {
2153 if (symbol_lookup_debug)
2154 {
2155 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2156 host_address_to_string (sym));
2157 }
2158 return sym;
2159 }
2160
2161 /* Now search all static file-level symbols. Not strictly correct,
2162 but more useful than an error. */
2163
2164 sym = lookup_static_symbol (name, domain);
2165 if (symbol_lookup_debug)
2166 {
2167 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2168 sym != NULL ? host_address_to_string (sym) : "NULL");
2169 }
2170 return sym;
2171 }
2172
2173 /* Check to see if the symbol is defined in BLOCK or its superiors.
2174 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2175
2176 static struct symbol *
2177 lookup_local_symbol (const char *name, const struct block *block,
2178 const domain_enum domain,
2179 enum language language)
2180 {
2181 struct symbol *sym;
2182 const struct block *static_block = block_static_block (block);
2183 const char *scope = block_scope (block);
2184
2185 /* Check if either no block is specified or it's a global block. */
2186
2187 if (static_block == NULL)
2188 return NULL;
2189
2190 while (block != static_block)
2191 {
2192 sym = lookup_symbol_in_block (name, block, domain);
2193 if (sym != NULL)
2194 return sym;
2195
2196 if (language == language_cplus || language == language_fortran)
2197 {
2198 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
2199 domain);
2200 if (sym != NULL)
2201 return sym;
2202 }
2203
2204 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2205 break;
2206 block = BLOCK_SUPERBLOCK (block);
2207 }
2208
2209 /* We've reached the end of the function without finding a result. */
2210
2211 return NULL;
2212 }
2213
2214 /* See symtab.h. */
2215
2216 struct objfile *
2217 lookup_objfile_from_block (const struct block *block)
2218 {
2219 struct objfile *obj;
2220 struct compunit_symtab *cust;
2221
2222 if (block == NULL)
2223 return NULL;
2224
2225 block = block_global_block (block);
2226 /* Look through all blockvectors. */
2227 ALL_COMPUNITS (obj, cust)
2228 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2229 GLOBAL_BLOCK))
2230 {
2231 if (obj->separate_debug_objfile_backlink)
2232 obj = obj->separate_debug_objfile_backlink;
2233
2234 return obj;
2235 }
2236
2237 return NULL;
2238 }
2239
2240 /* See symtab.h. */
2241
2242 struct symbol *
2243 lookup_symbol_in_block (const char *name, const struct block *block,
2244 const domain_enum domain)
2245 {
2246 struct symbol *sym;
2247
2248 if (symbol_lookup_debug > 1)
2249 {
2250 struct objfile *objfile = lookup_objfile_from_block (block);
2251
2252 fprintf_unfiltered (gdb_stdlog,
2253 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2254 name, host_address_to_string (block),
2255 objfile_debug_name (objfile),
2256 domain_name (domain));
2257 }
2258
2259 sym = block_lookup_symbol (block, name, domain);
2260 if (sym)
2261 {
2262 if (symbol_lookup_debug > 1)
2263 {
2264 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2265 host_address_to_string (sym));
2266 }
2267 block_found = block;
2268 return fixup_symbol_section (sym, NULL);
2269 }
2270
2271 if (symbol_lookup_debug > 1)
2272 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2273 return NULL;
2274 }
2275
2276 /* See symtab.h. */
2277
2278 struct symbol *
2279 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2280 const char *name,
2281 const domain_enum domain)
2282 {
2283 struct objfile *objfile;
2284
2285 for (objfile = main_objfile;
2286 objfile;
2287 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2288 {
2289 struct symbol *sym = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2290 name, domain);
2291
2292 if (sym != NULL)
2293 return sym;
2294 }
2295
2296 return NULL;
2297 }
2298
2299 /* Check to see if the symbol is defined in one of the OBJFILE's
2300 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2301 depending on whether or not we want to search global symbols or
2302 static symbols. */
2303
2304 static struct symbol *
2305 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2306 const char *name, const domain_enum domain)
2307 {
2308 struct compunit_symtab *cust;
2309
2310 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2311
2312 if (symbol_lookup_debug > 1)
2313 {
2314 fprintf_unfiltered (gdb_stdlog,
2315 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2316 objfile_debug_name (objfile),
2317 block_index == GLOBAL_BLOCK
2318 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2319 name, domain_name (domain));
2320 }
2321
2322 ALL_OBJFILE_COMPUNITS (objfile, cust)
2323 {
2324 const struct blockvector *bv;
2325 const struct block *block;
2326 struct symbol *sym;
2327
2328 bv = COMPUNIT_BLOCKVECTOR (cust);
2329 block = BLOCKVECTOR_BLOCK (bv, block_index);
2330 sym = block_lookup_symbol_primary (block, name, domain);
2331 if (sym)
2332 {
2333 if (symbol_lookup_debug > 1)
2334 {
2335 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2336 host_address_to_string (sym),
2337 host_address_to_string (block));
2338 }
2339 block_found = block;
2340 return fixup_symbol_section (sym, objfile);
2341 }
2342 }
2343
2344 if (symbol_lookup_debug > 1)
2345 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2346 return NULL;
2347 }
2348
2349 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2350 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2351 and all associated separate debug objfiles.
2352
2353 Normally we only look in OBJFILE, and not any separate debug objfiles
2354 because the outer loop will cause them to be searched too. This case is
2355 different. Here we're called from search_symbols where it will only
2356 call us for the the objfile that contains a matching minsym. */
2357
2358 static struct symbol *
2359 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2360 const char *linkage_name,
2361 domain_enum domain)
2362 {
2363 enum language lang = current_language->la_language;
2364 const char *modified_name;
2365 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2366 &modified_name);
2367 struct objfile *main_objfile, *cur_objfile;
2368
2369 if (objfile->separate_debug_objfile_backlink)
2370 main_objfile = objfile->separate_debug_objfile_backlink;
2371 else
2372 main_objfile = objfile;
2373
2374 for (cur_objfile = main_objfile;
2375 cur_objfile;
2376 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2377 {
2378 struct symbol *sym;
2379
2380 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2381 modified_name, domain);
2382 if (sym == NULL)
2383 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2384 modified_name, domain);
2385 if (sym != NULL)
2386 {
2387 do_cleanups (cleanup);
2388 return sym;
2389 }
2390 }
2391
2392 do_cleanups (cleanup);
2393 return NULL;
2394 }
2395
2396 /* A helper function that throws an exception when a symbol was found
2397 in a psymtab but not in a symtab. */
2398
2399 static void ATTRIBUTE_NORETURN
2400 error_in_psymtab_expansion (int block_index, const char *name,
2401 struct compunit_symtab *cust)
2402 {
2403 error (_("\
2404 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2405 %s may be an inlined function, or may be a template function\n \
2406 (if a template, try specifying an instantiation: %s<type>)."),
2407 block_index == GLOBAL_BLOCK ? "global" : "static",
2408 name,
2409 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2410 name, name);
2411 }
2412
2413 /* A helper function for various lookup routines that interfaces with
2414 the "quick" symbol table functions. */
2415
2416 static struct symbol *
2417 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2418 const char *name, const domain_enum domain)
2419 {
2420 struct compunit_symtab *cust;
2421 const struct blockvector *bv;
2422 const struct block *block;
2423 struct symbol *sym;
2424
2425 if (!objfile->sf)
2426 return NULL;
2427
2428 if (symbol_lookup_debug > 1)
2429 {
2430 fprintf_unfiltered (gdb_stdlog,
2431 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2432 objfile_debug_name (objfile),
2433 block_index == GLOBAL_BLOCK
2434 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2435 name, domain_name (domain));
2436 }
2437
2438 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2439 if (cust == NULL)
2440 {
2441 if (symbol_lookup_debug > 1)
2442 {
2443 fprintf_unfiltered (gdb_stdlog,
2444 "lookup_symbol_via_quick_fns (...) = NULL\n");
2445 }
2446 return NULL;
2447 }
2448
2449 bv = COMPUNIT_BLOCKVECTOR (cust);
2450 block = BLOCKVECTOR_BLOCK (bv, block_index);
2451 sym = block_lookup_symbol (block, name, domain);
2452 if (!sym)
2453 error_in_psymtab_expansion (block_index, name, cust);
2454
2455 if (symbol_lookup_debug > 1)
2456 {
2457 fprintf_unfiltered (gdb_stdlog,
2458 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2459 host_address_to_string (sym),
2460 host_address_to_string (block));
2461 }
2462
2463 block_found = block;
2464 return fixup_symbol_section (sym, objfile);
2465 }
2466
2467 /* See symtab.h. */
2468
2469 struct symbol *
2470 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2471 const char *name,
2472 const struct block *block,
2473 const domain_enum domain)
2474 {
2475 struct symbol *sym;
2476
2477 /* NOTE: carlton/2003-05-19: The comments below were written when
2478 this (or what turned into this) was part of lookup_symbol_aux;
2479 I'm much less worried about these questions now, since these
2480 decisions have turned out well, but I leave these comments here
2481 for posterity. */
2482
2483 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2484 not it would be appropriate to search the current global block
2485 here as well. (That's what this code used to do before the
2486 is_a_field_of_this check was moved up.) On the one hand, it's
2487 redundant with the lookup in all objfiles search that happens
2488 next. On the other hand, if decode_line_1 is passed an argument
2489 like filename:var, then the user presumably wants 'var' to be
2490 searched for in filename. On the third hand, there shouldn't be
2491 multiple global variables all of which are named 'var', and it's
2492 not like decode_line_1 has ever restricted its search to only
2493 global variables in a single filename. All in all, only
2494 searching the static block here seems best: it's correct and it's
2495 cleanest. */
2496
2497 /* NOTE: carlton/2002-12-05: There's also a possible performance
2498 issue here: if you usually search for global symbols in the
2499 current file, then it would be slightly better to search the
2500 current global block before searching all the symtabs. But there
2501 are other factors that have a much greater effect on performance
2502 than that one, so I don't think we should worry about that for
2503 now. */
2504
2505 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2506 the current objfile. Searching the current objfile first is useful
2507 for both matching user expectations as well as performance. */
2508
2509 sym = lookup_symbol_in_static_block (name, block, domain);
2510 if (sym != NULL)
2511 return sym;
2512
2513 /* If we didn't find a definition for a builtin type in the static block,
2514 search for it now. This is actually the right thing to do and can be
2515 a massive performance win. E.g., when debugging a program with lots of
2516 shared libraries we could search all of them only to find out the
2517 builtin type isn't defined in any of them. This is common for types
2518 like "void". */
2519 if (domain == VAR_DOMAIN)
2520 {
2521 struct gdbarch *gdbarch;
2522
2523 if (block == NULL)
2524 gdbarch = target_gdbarch ();
2525 else
2526 gdbarch = block_gdbarch (block);
2527 sym = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
2528 if (sym != NULL)
2529 return sym;
2530 }
2531
2532 return lookup_global_symbol (name, block, domain);
2533 }
2534
2535 /* See symtab.h. */
2536
2537 struct symbol *
2538 lookup_symbol_in_static_block (const char *name,
2539 const struct block *block,
2540 const domain_enum domain)
2541 {
2542 const struct block *static_block = block_static_block (block);
2543 struct symbol *sym;
2544
2545 if (static_block == NULL)
2546 return NULL;
2547
2548 if (symbol_lookup_debug)
2549 {
2550 struct objfile *objfile = lookup_objfile_from_block (static_block);
2551
2552 fprintf_unfiltered (gdb_stdlog,
2553 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2554 " %s)\n",
2555 name,
2556 host_address_to_string (block),
2557 objfile_debug_name (objfile),
2558 domain_name (domain));
2559 }
2560
2561 sym = lookup_symbol_in_block (name, static_block, domain);
2562 if (symbol_lookup_debug)
2563 {
2564 fprintf_unfiltered (gdb_stdlog,
2565 "lookup_symbol_in_static_block (...) = %s\n",
2566 sym != NULL ? host_address_to_string (sym) : "NULL");
2567 }
2568 return sym;
2569 }
2570
2571 /* Perform the standard symbol lookup of NAME in OBJFILE:
2572 1) First search expanded symtabs, and if not found
2573 2) Search the "quick" symtabs (partial or .gdb_index).
2574 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2575
2576 static struct symbol *
2577 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2578 const char *name, const domain_enum domain)
2579 {
2580 struct symbol *result;
2581
2582 if (symbol_lookup_debug)
2583 {
2584 fprintf_unfiltered (gdb_stdlog,
2585 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2586 objfile_debug_name (objfile),
2587 block_index == GLOBAL_BLOCK
2588 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2589 name, domain_name (domain));
2590 }
2591
2592 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2593 name, domain);
2594 if (result != NULL)
2595 {
2596 if (symbol_lookup_debug)
2597 {
2598 fprintf_unfiltered (gdb_stdlog,
2599 "lookup_symbol_in_objfile (...) = %s"
2600 " (in symtabs)\n",
2601 host_address_to_string (result));
2602 }
2603 return result;
2604 }
2605
2606 result = lookup_symbol_via_quick_fns (objfile, block_index,
2607 name, domain);
2608 if (symbol_lookup_debug)
2609 {
2610 fprintf_unfiltered (gdb_stdlog,
2611 "lookup_symbol_in_objfile (...) = %s%s\n",
2612 result != NULL
2613 ? host_address_to_string (result)
2614 : "NULL",
2615 result != NULL ? " (via quick fns)" : "");
2616 }
2617 return result;
2618 }
2619
2620 /* See symtab.h. */
2621
2622 struct symbol *
2623 lookup_static_symbol (const char *name, const domain_enum domain)
2624 {
2625 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2626 struct objfile *objfile;
2627 struct symbol *result;
2628 struct block_symbol_cache *bsc;
2629 struct symbol_cache_slot *slot;
2630
2631 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2632 NULL for OBJFILE_CONTEXT. */
2633 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2634 &bsc, &slot);
2635 if (result != NULL)
2636 {
2637 if (result == SYMBOL_LOOKUP_FAILED)
2638 return NULL;
2639 return result;
2640 }
2641
2642 ALL_OBJFILES (objfile)
2643 {
2644 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2645 if (result != NULL)
2646 {
2647 /* Still pass NULL for OBJFILE_CONTEXT here. */
2648 symbol_cache_mark_found (bsc, slot, NULL, result);
2649 return result;
2650 }
2651 }
2652
2653 /* Still pass NULL for OBJFILE_CONTEXT here. */
2654 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2655 return NULL;
2656 }
2657
2658 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2659
2660 struct global_sym_lookup_data
2661 {
2662 /* The name of the symbol we are searching for. */
2663 const char *name;
2664
2665 /* The domain to use for our search. */
2666 domain_enum domain;
2667
2668 /* The field where the callback should store the symbol if found.
2669 It should be initialized to NULL before the search is started. */
2670 struct symbol *result;
2671 };
2672
2673 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2674 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2675 OBJFILE. The arguments for the search are passed via CB_DATA,
2676 which in reality is a pointer to struct global_sym_lookup_data. */
2677
2678 static int
2679 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2680 void *cb_data)
2681 {
2682 struct global_sym_lookup_data *data =
2683 (struct global_sym_lookup_data *) cb_data;
2684
2685 gdb_assert (data->result == NULL);
2686
2687 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2688 data->name, data->domain);
2689
2690 /* If we found a match, tell the iterator to stop. Otherwise,
2691 keep going. */
2692 return (data->result != NULL);
2693 }
2694
2695 /* See symtab.h. */
2696
2697 struct symbol *
2698 lookup_global_symbol (const char *name,
2699 const struct block *block,
2700 const domain_enum domain)
2701 {
2702 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2703 struct symbol *sym;
2704 struct objfile *objfile;
2705 struct global_sym_lookup_data lookup_data;
2706 struct block_symbol_cache *bsc;
2707 struct symbol_cache_slot *slot;
2708
2709 objfile = lookup_objfile_from_block (block);
2710
2711 /* First see if we can find the symbol in the cache.
2712 This works because we use the current objfile to qualify the lookup. */
2713 sym = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2714 &bsc, &slot);
2715 if (sym != NULL)
2716 {
2717 if (sym == SYMBOL_LOOKUP_FAILED)
2718 return NULL;
2719 return sym;
2720 }
2721
2722 /* Call library-specific lookup procedure. */
2723 if (objfile != NULL)
2724 sym = solib_global_lookup (objfile, name, domain);
2725
2726 /* If that didn't work go a global search (of global blocks, heh). */
2727 if (sym == NULL)
2728 {
2729 memset (&lookup_data, 0, sizeof (lookup_data));
2730 lookup_data.name = name;
2731 lookup_data.domain = domain;
2732 gdbarch_iterate_over_objfiles_in_search_order
2733 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2734 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2735 sym = lookup_data.result;
2736 }
2737
2738 if (sym != NULL)
2739 symbol_cache_mark_found (bsc, slot, objfile, sym);
2740 else
2741 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2742
2743 return sym;
2744 }
2745
2746 int
2747 symbol_matches_domain (enum language symbol_language,
2748 domain_enum symbol_domain,
2749 domain_enum domain)
2750 {
2751 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2752 A Java class declaration also defines a typedef for the class.
2753 Similarly, any Ada type declaration implicitly defines a typedef. */
2754 if (symbol_language == language_cplus
2755 || symbol_language == language_d
2756 || symbol_language == language_java
2757 || symbol_language == language_ada)
2758 {
2759 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2760 && symbol_domain == STRUCT_DOMAIN)
2761 return 1;
2762 }
2763 /* For all other languages, strict match is required. */
2764 return (symbol_domain == domain);
2765 }
2766
2767 /* See symtab.h. */
2768
2769 struct type *
2770 lookup_transparent_type (const char *name)
2771 {
2772 return current_language->la_lookup_transparent_type (name);
2773 }
2774
2775 /* A helper for basic_lookup_transparent_type that interfaces with the
2776 "quick" symbol table functions. */
2777
2778 static struct type *
2779 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2780 const char *name)
2781 {
2782 struct compunit_symtab *cust;
2783 const struct blockvector *bv;
2784 struct block *block;
2785 struct symbol *sym;
2786
2787 if (!objfile->sf)
2788 return NULL;
2789 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2790 STRUCT_DOMAIN);
2791 if (cust == NULL)
2792 return NULL;
2793
2794 bv = COMPUNIT_BLOCKVECTOR (cust);
2795 block = BLOCKVECTOR_BLOCK (bv, block_index);
2796 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2797 if (!sym)
2798 error_in_psymtab_expansion (block_index, name, cust);
2799
2800 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2801 return SYMBOL_TYPE (sym);
2802
2803 return NULL;
2804 }
2805
2806 /* The standard implementation of lookup_transparent_type. This code
2807 was modeled on lookup_symbol -- the parts not relevant to looking
2808 up types were just left out. In particular it's assumed here that
2809 types are available in STRUCT_DOMAIN and only in file-static or
2810 global blocks. */
2811
2812 struct type *
2813 basic_lookup_transparent_type (const char *name)
2814 {
2815 struct symbol *sym;
2816 struct compunit_symtab *cust;
2817 const struct blockvector *bv;
2818 struct objfile *objfile;
2819 struct block *block;
2820 struct type *t;
2821
2822 /* Now search all the global symbols. Do the symtab's first, then
2823 check the psymtab's. If a psymtab indicates the existence
2824 of the desired name as a global, then do psymtab-to-symtab
2825 conversion on the fly and return the found symbol. */
2826
2827 ALL_OBJFILES (objfile)
2828 {
2829 ALL_OBJFILE_COMPUNITS (objfile, cust)
2830 {
2831 bv = COMPUNIT_BLOCKVECTOR (cust);
2832 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2833 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2834 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2835 {
2836 return SYMBOL_TYPE (sym);
2837 }
2838 }
2839 }
2840
2841 ALL_OBJFILES (objfile)
2842 {
2843 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2844 if (t)
2845 return t;
2846 }
2847
2848 /* Now search the static file-level symbols.
2849 Not strictly correct, but more useful than an error.
2850 Do the symtab's first, then
2851 check the psymtab's. If a psymtab indicates the existence
2852 of the desired name as a file-level static, then do psymtab-to-symtab
2853 conversion on the fly and return the found symbol. */
2854
2855 ALL_OBJFILES (objfile)
2856 {
2857 ALL_OBJFILE_COMPUNITS (objfile, cust)
2858 {
2859 bv = COMPUNIT_BLOCKVECTOR (cust);
2860 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2861 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2862 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2863 {
2864 return SYMBOL_TYPE (sym);
2865 }
2866 }
2867 }
2868
2869 ALL_OBJFILES (objfile)
2870 {
2871 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2872 if (t)
2873 return t;
2874 }
2875
2876 return (struct type *) 0;
2877 }
2878
2879 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2880
2881 For each symbol that matches, CALLBACK is called. The symbol and
2882 DATA are passed to the callback.
2883
2884 If CALLBACK returns zero, the iteration ends. Otherwise, the
2885 search continues. */
2886
2887 void
2888 iterate_over_symbols (const struct block *block, const char *name,
2889 const domain_enum domain,
2890 symbol_found_callback_ftype *callback,
2891 void *data)
2892 {
2893 struct block_iterator iter;
2894 struct symbol *sym;
2895
2896 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2897 {
2898 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2899 SYMBOL_DOMAIN (sym), domain))
2900 {
2901 if (!callback (sym, data))
2902 return;
2903 }
2904 }
2905 }
2906
2907 /* Find the compunit symtab associated with PC and SECTION.
2908 This will read in debug info as necessary. */
2909
2910 struct compunit_symtab *
2911 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2912 {
2913 struct compunit_symtab *cust;
2914 struct compunit_symtab *best_cust = NULL;
2915 struct objfile *objfile;
2916 CORE_ADDR distance = 0;
2917 struct bound_minimal_symbol msymbol;
2918
2919 /* If we know that this is not a text address, return failure. This is
2920 necessary because we loop based on the block's high and low code
2921 addresses, which do not include the data ranges, and because
2922 we call find_pc_sect_psymtab which has a similar restriction based
2923 on the partial_symtab's texthigh and textlow. */
2924 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2925 if (msymbol.minsym
2926 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2927 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2928 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2929 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2930 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2931 return NULL;
2932
2933 /* Search all symtabs for the one whose file contains our address, and which
2934 is the smallest of all the ones containing the address. This is designed
2935 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2936 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2937 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2938
2939 This happens for native ecoff format, where code from included files
2940 gets its own symtab. The symtab for the included file should have
2941 been read in already via the dependency mechanism.
2942 It might be swifter to create several symtabs with the same name
2943 like xcoff does (I'm not sure).
2944
2945 It also happens for objfiles that have their functions reordered.
2946 For these, the symtab we are looking for is not necessarily read in. */
2947
2948 ALL_COMPUNITS (objfile, cust)
2949 {
2950 struct block *b;
2951 const struct blockvector *bv;
2952
2953 bv = COMPUNIT_BLOCKVECTOR (cust);
2954 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2955
2956 if (BLOCK_START (b) <= pc
2957 && BLOCK_END (b) > pc
2958 && (distance == 0
2959 || BLOCK_END (b) - BLOCK_START (b) < distance))
2960 {
2961 /* For an objfile that has its functions reordered,
2962 find_pc_psymtab will find the proper partial symbol table
2963 and we simply return its corresponding symtab. */
2964 /* In order to better support objfiles that contain both
2965 stabs and coff debugging info, we continue on if a psymtab
2966 can't be found. */
2967 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2968 {
2969 struct compunit_symtab *result;
2970
2971 result
2972 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2973 msymbol,
2974 pc, section,
2975 0);
2976 if (result != NULL)
2977 return result;
2978 }
2979 if (section != 0)
2980 {
2981 struct block_iterator iter;
2982 struct symbol *sym = NULL;
2983
2984 ALL_BLOCK_SYMBOLS (b, iter, sym)
2985 {
2986 fixup_symbol_section (sym, objfile);
2987 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2988 section))
2989 break;
2990 }
2991 if (sym == NULL)
2992 continue; /* No symbol in this symtab matches
2993 section. */
2994 }
2995 distance = BLOCK_END (b) - BLOCK_START (b);
2996 best_cust = cust;
2997 }
2998 }
2999
3000 if (best_cust != NULL)
3001 return best_cust;
3002
3003 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3004
3005 ALL_OBJFILES (objfile)
3006 {
3007 struct compunit_symtab *result;
3008
3009 if (!objfile->sf)
3010 continue;
3011 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3012 msymbol,
3013 pc, section,
3014 1);
3015 if (result != NULL)
3016 return result;
3017 }
3018
3019 return NULL;
3020 }
3021
3022 /* Find the compunit symtab associated with PC.
3023 This will read in debug info as necessary.
3024 Backward compatibility, no section. */
3025
3026 struct compunit_symtab *
3027 find_pc_compunit_symtab (CORE_ADDR pc)
3028 {
3029 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3030 }
3031 \f
3032
3033 /* Find the source file and line number for a given PC value and SECTION.
3034 Return a structure containing a symtab pointer, a line number,
3035 and a pc range for the entire source line.
3036 The value's .pc field is NOT the specified pc.
3037 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3038 use the line that ends there. Otherwise, in that case, the line
3039 that begins there is used. */
3040
3041 /* The big complication here is that a line may start in one file, and end just
3042 before the start of another file. This usually occurs when you #include
3043 code in the middle of a subroutine. To properly find the end of a line's PC
3044 range, we must search all symtabs associated with this compilation unit, and
3045 find the one whose first PC is closer than that of the next line in this
3046 symtab. */
3047
3048 /* If it's worth the effort, we could be using a binary search. */
3049
3050 struct symtab_and_line
3051 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3052 {
3053 struct compunit_symtab *cust;
3054 struct symtab *iter_s;
3055 struct linetable *l;
3056 int len;
3057 int i;
3058 struct linetable_entry *item;
3059 struct symtab_and_line val;
3060 const struct blockvector *bv;
3061 struct bound_minimal_symbol msymbol;
3062
3063 /* Info on best line seen so far, and where it starts, and its file. */
3064
3065 struct linetable_entry *best = NULL;
3066 CORE_ADDR best_end = 0;
3067 struct symtab *best_symtab = 0;
3068
3069 /* Store here the first line number
3070 of a file which contains the line at the smallest pc after PC.
3071 If we don't find a line whose range contains PC,
3072 we will use a line one less than this,
3073 with a range from the start of that file to the first line's pc. */
3074 struct linetable_entry *alt = NULL;
3075
3076 /* Info on best line seen in this file. */
3077
3078 struct linetable_entry *prev;
3079
3080 /* If this pc is not from the current frame,
3081 it is the address of the end of a call instruction.
3082 Quite likely that is the start of the following statement.
3083 But what we want is the statement containing the instruction.
3084 Fudge the pc to make sure we get that. */
3085
3086 init_sal (&val); /* initialize to zeroes */
3087
3088 val.pspace = current_program_space;
3089
3090 /* It's tempting to assume that, if we can't find debugging info for
3091 any function enclosing PC, that we shouldn't search for line
3092 number info, either. However, GAS can emit line number info for
3093 assembly files --- very helpful when debugging hand-written
3094 assembly code. In such a case, we'd have no debug info for the
3095 function, but we would have line info. */
3096
3097 if (notcurrent)
3098 pc -= 1;
3099
3100 /* elz: added this because this function returned the wrong
3101 information if the pc belongs to a stub (import/export)
3102 to call a shlib function. This stub would be anywhere between
3103 two functions in the target, and the line info was erroneously
3104 taken to be the one of the line before the pc. */
3105
3106 /* RT: Further explanation:
3107
3108 * We have stubs (trampolines) inserted between procedures.
3109 *
3110 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3111 * exists in the main image.
3112 *
3113 * In the minimal symbol table, we have a bunch of symbols
3114 * sorted by start address. The stubs are marked as "trampoline",
3115 * the others appear as text. E.g.:
3116 *
3117 * Minimal symbol table for main image
3118 * main: code for main (text symbol)
3119 * shr1: stub (trampoline symbol)
3120 * foo: code for foo (text symbol)
3121 * ...
3122 * Minimal symbol table for "shr1" image:
3123 * ...
3124 * shr1: code for shr1 (text symbol)
3125 * ...
3126 *
3127 * So the code below is trying to detect if we are in the stub
3128 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3129 * and if found, do the symbolization from the real-code address
3130 * rather than the stub address.
3131 *
3132 * Assumptions being made about the minimal symbol table:
3133 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3134 * if we're really in the trampoline.s If we're beyond it (say
3135 * we're in "foo" in the above example), it'll have a closer
3136 * symbol (the "foo" text symbol for example) and will not
3137 * return the trampoline.
3138 * 2. lookup_minimal_symbol_text() will find a real text symbol
3139 * corresponding to the trampoline, and whose address will
3140 * be different than the trampoline address. I put in a sanity
3141 * check for the address being the same, to avoid an
3142 * infinite recursion.
3143 */
3144 msymbol = lookup_minimal_symbol_by_pc (pc);
3145 if (msymbol.minsym != NULL)
3146 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3147 {
3148 struct bound_minimal_symbol mfunsym
3149 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3150 NULL);
3151
3152 if (mfunsym.minsym == NULL)
3153 /* I eliminated this warning since it is coming out
3154 * in the following situation:
3155 * gdb shmain // test program with shared libraries
3156 * (gdb) break shr1 // function in shared lib
3157 * Warning: In stub for ...
3158 * In the above situation, the shared lib is not loaded yet,
3159 * so of course we can't find the real func/line info,
3160 * but the "break" still works, and the warning is annoying.
3161 * So I commented out the warning. RT */
3162 /* warning ("In stub for %s; unable to find real function/line info",
3163 SYMBOL_LINKAGE_NAME (msymbol)); */
3164 ;
3165 /* fall through */
3166 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3167 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3168 /* Avoid infinite recursion */
3169 /* See above comment about why warning is commented out. */
3170 /* warning ("In stub for %s; unable to find real function/line info",
3171 SYMBOL_LINKAGE_NAME (msymbol)); */
3172 ;
3173 /* fall through */
3174 else
3175 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3176 }
3177
3178
3179 cust = find_pc_sect_compunit_symtab (pc, section);
3180 if (cust == NULL)
3181 {
3182 /* If no symbol information, return previous pc. */
3183 if (notcurrent)
3184 pc++;
3185 val.pc = pc;
3186 return val;
3187 }
3188
3189 bv = COMPUNIT_BLOCKVECTOR (cust);
3190
3191 /* Look at all the symtabs that share this blockvector.
3192 They all have the same apriori range, that we found was right;
3193 but they have different line tables. */
3194
3195 ALL_COMPUNIT_FILETABS (cust, iter_s)
3196 {
3197 /* Find the best line in this symtab. */
3198 l = SYMTAB_LINETABLE (iter_s);
3199 if (!l)
3200 continue;
3201 len = l->nitems;
3202 if (len <= 0)
3203 {
3204 /* I think len can be zero if the symtab lacks line numbers
3205 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3206 I'm not sure which, and maybe it depends on the symbol
3207 reader). */
3208 continue;
3209 }
3210
3211 prev = NULL;
3212 item = l->item; /* Get first line info. */
3213
3214 /* Is this file's first line closer than the first lines of other files?
3215 If so, record this file, and its first line, as best alternate. */
3216 if (item->pc > pc && (!alt || item->pc < alt->pc))
3217 alt = item;
3218
3219 for (i = 0; i < len; i++, item++)
3220 {
3221 /* Leave prev pointing to the linetable entry for the last line
3222 that started at or before PC. */
3223 if (item->pc > pc)
3224 break;
3225
3226 prev = item;
3227 }
3228
3229 /* At this point, prev points at the line whose start addr is <= pc, and
3230 item points at the next line. If we ran off the end of the linetable
3231 (pc >= start of the last line), then prev == item. If pc < start of
3232 the first line, prev will not be set. */
3233
3234 /* Is this file's best line closer than the best in the other files?
3235 If so, record this file, and its best line, as best so far. Don't
3236 save prev if it represents the end of a function (i.e. line number
3237 0) instead of a real line. */
3238
3239 if (prev && prev->line && (!best || prev->pc > best->pc))
3240 {
3241 best = prev;
3242 best_symtab = iter_s;
3243
3244 /* Discard BEST_END if it's before the PC of the current BEST. */
3245 if (best_end <= best->pc)
3246 best_end = 0;
3247 }
3248
3249 /* If another line (denoted by ITEM) is in the linetable and its
3250 PC is after BEST's PC, but before the current BEST_END, then
3251 use ITEM's PC as the new best_end. */
3252 if (best && i < len && item->pc > best->pc
3253 && (best_end == 0 || best_end > item->pc))
3254 best_end = item->pc;
3255 }
3256
3257 if (!best_symtab)
3258 {
3259 /* If we didn't find any line number info, just return zeros.
3260 We used to return alt->line - 1 here, but that could be
3261 anywhere; if we don't have line number info for this PC,
3262 don't make some up. */
3263 val.pc = pc;
3264 }
3265 else if (best->line == 0)
3266 {
3267 /* If our best fit is in a range of PC's for which no line
3268 number info is available (line number is zero) then we didn't
3269 find any valid line information. */
3270 val.pc = pc;
3271 }
3272 else
3273 {
3274 val.symtab = best_symtab;
3275 val.line = best->line;
3276 val.pc = best->pc;
3277 if (best_end && (!alt || best_end < alt->pc))
3278 val.end = best_end;
3279 else if (alt)
3280 val.end = alt->pc;
3281 else
3282 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3283 }
3284 val.section = section;
3285 return val;
3286 }
3287
3288 /* Backward compatibility (no section). */
3289
3290 struct symtab_and_line
3291 find_pc_line (CORE_ADDR pc, int notcurrent)
3292 {
3293 struct obj_section *section;
3294
3295 section = find_pc_overlay (pc);
3296 if (pc_in_unmapped_range (pc, section))
3297 pc = overlay_mapped_address (pc, section);
3298 return find_pc_sect_line (pc, section, notcurrent);
3299 }
3300
3301 /* See symtab.h. */
3302
3303 struct symtab *
3304 find_pc_line_symtab (CORE_ADDR pc)
3305 {
3306 struct symtab_and_line sal;
3307
3308 /* This always passes zero for NOTCURRENT to find_pc_line.
3309 There are currently no callers that ever pass non-zero. */
3310 sal = find_pc_line (pc, 0);
3311 return sal.symtab;
3312 }
3313 \f
3314 /* Find line number LINE in any symtab whose name is the same as
3315 SYMTAB.
3316
3317 If found, return the symtab that contains the linetable in which it was
3318 found, set *INDEX to the index in the linetable of the best entry
3319 found, and set *EXACT_MATCH nonzero if the value returned is an
3320 exact match.
3321
3322 If not found, return NULL. */
3323
3324 struct symtab *
3325 find_line_symtab (struct symtab *symtab, int line,
3326 int *index, int *exact_match)
3327 {
3328 int exact = 0; /* Initialized here to avoid a compiler warning. */
3329
3330 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3331 so far seen. */
3332
3333 int best_index;
3334 struct linetable *best_linetable;
3335 struct symtab *best_symtab;
3336
3337 /* First try looking it up in the given symtab. */
3338 best_linetable = SYMTAB_LINETABLE (symtab);
3339 best_symtab = symtab;
3340 best_index = find_line_common (best_linetable, line, &exact, 0);
3341 if (best_index < 0 || !exact)
3342 {
3343 /* Didn't find an exact match. So we better keep looking for
3344 another symtab with the same name. In the case of xcoff,
3345 multiple csects for one source file (produced by IBM's FORTRAN
3346 compiler) produce multiple symtabs (this is unavoidable
3347 assuming csects can be at arbitrary places in memory and that
3348 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3349
3350 /* BEST is the smallest linenumber > LINE so far seen,
3351 or 0 if none has been seen so far.
3352 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3353 int best;
3354
3355 struct objfile *objfile;
3356 struct compunit_symtab *cu;
3357 struct symtab *s;
3358
3359 if (best_index >= 0)
3360 best = best_linetable->item[best_index].line;
3361 else
3362 best = 0;
3363
3364 ALL_OBJFILES (objfile)
3365 {
3366 if (objfile->sf)
3367 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3368 symtab_to_fullname (symtab));
3369 }
3370
3371 ALL_FILETABS (objfile, cu, s)
3372 {
3373 struct linetable *l;
3374 int ind;
3375
3376 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3377 continue;
3378 if (FILENAME_CMP (symtab_to_fullname (symtab),
3379 symtab_to_fullname (s)) != 0)
3380 continue;
3381 l = SYMTAB_LINETABLE (s);
3382 ind = find_line_common (l, line, &exact, 0);
3383 if (ind >= 0)
3384 {
3385 if (exact)
3386 {
3387 best_index = ind;
3388 best_linetable = l;
3389 best_symtab = s;
3390 goto done;
3391 }
3392 if (best == 0 || l->item[ind].line < best)
3393 {
3394 best = l->item[ind].line;
3395 best_index = ind;
3396 best_linetable = l;
3397 best_symtab = s;
3398 }
3399 }
3400 }
3401 }
3402 done:
3403 if (best_index < 0)
3404 return NULL;
3405
3406 if (index)
3407 *index = best_index;
3408 if (exact_match)
3409 *exact_match = exact;
3410
3411 return best_symtab;
3412 }
3413
3414 /* Given SYMTAB, returns all the PCs function in the symtab that
3415 exactly match LINE. Returns NULL if there are no exact matches,
3416 but updates BEST_ITEM in this case. */
3417
3418 VEC (CORE_ADDR) *
3419 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3420 struct linetable_entry **best_item)
3421 {
3422 int start = 0;
3423 VEC (CORE_ADDR) *result = NULL;
3424
3425 /* First, collect all the PCs that are at this line. */
3426 while (1)
3427 {
3428 int was_exact;
3429 int idx;
3430
3431 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3432 start);
3433 if (idx < 0)
3434 break;
3435
3436 if (!was_exact)
3437 {
3438 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3439
3440 if (*best_item == NULL || item->line < (*best_item)->line)
3441 *best_item = item;
3442
3443 break;
3444 }
3445
3446 VEC_safe_push (CORE_ADDR, result,
3447 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3448 start = idx + 1;
3449 }
3450
3451 return result;
3452 }
3453
3454 \f
3455 /* Set the PC value for a given source file and line number and return true.
3456 Returns zero for invalid line number (and sets the PC to 0).
3457 The source file is specified with a struct symtab. */
3458
3459 int
3460 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3461 {
3462 struct linetable *l;
3463 int ind;
3464
3465 *pc = 0;
3466 if (symtab == 0)
3467 return 0;
3468
3469 symtab = find_line_symtab (symtab, line, &ind, NULL);
3470 if (symtab != NULL)
3471 {
3472 l = SYMTAB_LINETABLE (symtab);
3473 *pc = l->item[ind].pc;
3474 return 1;
3475 }
3476 else
3477 return 0;
3478 }
3479
3480 /* Find the range of pc values in a line.
3481 Store the starting pc of the line into *STARTPTR
3482 and the ending pc (start of next line) into *ENDPTR.
3483 Returns 1 to indicate success.
3484 Returns 0 if could not find the specified line. */
3485
3486 int
3487 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3488 CORE_ADDR *endptr)
3489 {
3490 CORE_ADDR startaddr;
3491 struct symtab_and_line found_sal;
3492
3493 startaddr = sal.pc;
3494 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3495 return 0;
3496
3497 /* This whole function is based on address. For example, if line 10 has
3498 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3499 "info line *0x123" should say the line goes from 0x100 to 0x200
3500 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3501 This also insures that we never give a range like "starts at 0x134
3502 and ends at 0x12c". */
3503
3504 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3505 if (found_sal.line != sal.line)
3506 {
3507 /* The specified line (sal) has zero bytes. */
3508 *startptr = found_sal.pc;
3509 *endptr = found_sal.pc;
3510 }
3511 else
3512 {
3513 *startptr = found_sal.pc;
3514 *endptr = found_sal.end;
3515 }
3516 return 1;
3517 }
3518
3519 /* Given a line table and a line number, return the index into the line
3520 table for the pc of the nearest line whose number is >= the specified one.
3521 Return -1 if none is found. The value is >= 0 if it is an index.
3522 START is the index at which to start searching the line table.
3523
3524 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3525
3526 static int
3527 find_line_common (struct linetable *l, int lineno,
3528 int *exact_match, int start)
3529 {
3530 int i;
3531 int len;
3532
3533 /* BEST is the smallest linenumber > LINENO so far seen,
3534 or 0 if none has been seen so far.
3535 BEST_INDEX identifies the item for it. */
3536
3537 int best_index = -1;
3538 int best = 0;
3539
3540 *exact_match = 0;
3541
3542 if (lineno <= 0)
3543 return -1;
3544 if (l == 0)
3545 return -1;
3546
3547 len = l->nitems;
3548 for (i = start; i < len; i++)
3549 {
3550 struct linetable_entry *item = &(l->item[i]);
3551
3552 if (item->line == lineno)
3553 {
3554 /* Return the first (lowest address) entry which matches. */
3555 *exact_match = 1;
3556 return i;
3557 }
3558
3559 if (item->line > lineno && (best == 0 || item->line < best))
3560 {
3561 best = item->line;
3562 best_index = i;
3563 }
3564 }
3565
3566 /* If we got here, we didn't get an exact match. */
3567 return best_index;
3568 }
3569
3570 int
3571 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3572 {
3573 struct symtab_and_line sal;
3574
3575 sal = find_pc_line (pc, 0);
3576 *startptr = sal.pc;
3577 *endptr = sal.end;
3578 return sal.symtab != 0;
3579 }
3580
3581 /* Given a function symbol SYM, find the symtab and line for the start
3582 of the function.
3583 If the argument FUNFIRSTLINE is nonzero, we want the first line
3584 of real code inside the function. */
3585
3586 struct symtab_and_line
3587 find_function_start_sal (struct symbol *sym, int funfirstline)
3588 {
3589 struct symtab_and_line sal;
3590 struct obj_section *section;
3591
3592 fixup_symbol_section (sym, NULL);
3593 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3594 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3595
3596 /* We always should have a line for the function start address.
3597 If we don't, something is odd. Create a plain SAL refering
3598 just the PC and hope that skip_prologue_sal (if requested)
3599 can find a line number for after the prologue. */
3600 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3601 {
3602 init_sal (&sal);
3603 sal.pspace = current_program_space;
3604 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3605 sal.section = section;
3606 }
3607
3608 if (funfirstline)
3609 skip_prologue_sal (&sal);
3610
3611 return sal;
3612 }
3613
3614 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3615 address for that function that has an entry in SYMTAB's line info
3616 table. If such an entry cannot be found, return FUNC_ADDR
3617 unaltered. */
3618
3619 static CORE_ADDR
3620 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3621 {
3622 CORE_ADDR func_start, func_end;
3623 struct linetable *l;
3624 int i;
3625
3626 /* Give up if this symbol has no lineinfo table. */
3627 l = SYMTAB_LINETABLE (symtab);
3628 if (l == NULL)
3629 return func_addr;
3630
3631 /* Get the range for the function's PC values, or give up if we
3632 cannot, for some reason. */
3633 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3634 return func_addr;
3635
3636 /* Linetable entries are ordered by PC values, see the commentary in
3637 symtab.h where `struct linetable' is defined. Thus, the first
3638 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3639 address we are looking for. */
3640 for (i = 0; i < l->nitems; i++)
3641 {
3642 struct linetable_entry *item = &(l->item[i]);
3643
3644 /* Don't use line numbers of zero, they mark special entries in
3645 the table. See the commentary on symtab.h before the
3646 definition of struct linetable. */
3647 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3648 return item->pc;
3649 }
3650
3651 return func_addr;
3652 }
3653
3654 /* Adjust SAL to the first instruction past the function prologue.
3655 If the PC was explicitly specified, the SAL is not changed.
3656 If the line number was explicitly specified, at most the SAL's PC
3657 is updated. If SAL is already past the prologue, then do nothing. */
3658
3659 void
3660 skip_prologue_sal (struct symtab_and_line *sal)
3661 {
3662 struct symbol *sym;
3663 struct symtab_and_line start_sal;
3664 struct cleanup *old_chain;
3665 CORE_ADDR pc, saved_pc;
3666 struct obj_section *section;
3667 const char *name;
3668 struct objfile *objfile;
3669 struct gdbarch *gdbarch;
3670 const struct block *b, *function_block;
3671 int force_skip, skip;
3672
3673 /* Do not change the SAL if PC was specified explicitly. */
3674 if (sal->explicit_pc)
3675 return;
3676
3677 old_chain = save_current_space_and_thread ();
3678 switch_to_program_space_and_thread (sal->pspace);
3679
3680 sym = find_pc_sect_function (sal->pc, sal->section);
3681 if (sym != NULL)
3682 {
3683 fixup_symbol_section (sym, NULL);
3684
3685 objfile = symbol_objfile (sym);
3686 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3687 section = SYMBOL_OBJ_SECTION (objfile, sym);
3688 name = SYMBOL_LINKAGE_NAME (sym);
3689 }
3690 else
3691 {
3692 struct bound_minimal_symbol msymbol
3693 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3694
3695 if (msymbol.minsym == NULL)
3696 {
3697 do_cleanups (old_chain);
3698 return;
3699 }
3700
3701 objfile = msymbol.objfile;
3702 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3703 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3704 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3705 }
3706
3707 gdbarch = get_objfile_arch (objfile);
3708
3709 /* Process the prologue in two passes. In the first pass try to skip the
3710 prologue (SKIP is true) and verify there is a real need for it (indicated
3711 by FORCE_SKIP). If no such reason was found run a second pass where the
3712 prologue is not skipped (SKIP is false). */
3713
3714 skip = 1;
3715 force_skip = 1;
3716
3717 /* Be conservative - allow direct PC (without skipping prologue) only if we
3718 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3719 have to be set by the caller so we use SYM instead. */
3720 if (sym != NULL
3721 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3722 force_skip = 0;
3723
3724 saved_pc = pc;
3725 do
3726 {
3727 pc = saved_pc;
3728
3729 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3730 so that gdbarch_skip_prologue has something unique to work on. */
3731 if (section_is_overlay (section) && !section_is_mapped (section))
3732 pc = overlay_unmapped_address (pc, section);
3733
3734 /* Skip "first line" of function (which is actually its prologue). */
3735 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3736 if (gdbarch_skip_entrypoint_p (gdbarch))
3737 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3738 if (skip)
3739 pc = gdbarch_skip_prologue (gdbarch, pc);
3740
3741 /* For overlays, map pc back into its mapped VMA range. */
3742 pc = overlay_mapped_address (pc, section);
3743
3744 /* Calculate line number. */
3745 start_sal = find_pc_sect_line (pc, section, 0);
3746
3747 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3748 line is still part of the same function. */
3749 if (skip && start_sal.pc != pc
3750 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3751 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3752 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3753 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3754 {
3755 /* First pc of next line */
3756 pc = start_sal.end;
3757 /* Recalculate the line number (might not be N+1). */
3758 start_sal = find_pc_sect_line (pc, section, 0);
3759 }
3760
3761 /* On targets with executable formats that don't have a concept of
3762 constructors (ELF with .init has, PE doesn't), gcc emits a call
3763 to `__main' in `main' between the prologue and before user
3764 code. */
3765 if (gdbarch_skip_main_prologue_p (gdbarch)
3766 && name && strcmp_iw (name, "main") == 0)
3767 {
3768 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3769 /* Recalculate the line number (might not be N+1). */
3770 start_sal = find_pc_sect_line (pc, section, 0);
3771 force_skip = 1;
3772 }
3773 }
3774 while (!force_skip && skip--);
3775
3776 /* If we still don't have a valid source line, try to find the first
3777 PC in the lineinfo table that belongs to the same function. This
3778 happens with COFF debug info, which does not seem to have an
3779 entry in lineinfo table for the code after the prologue which has
3780 no direct relation to source. For example, this was found to be
3781 the case with the DJGPP target using "gcc -gcoff" when the
3782 compiler inserted code after the prologue to make sure the stack
3783 is aligned. */
3784 if (!force_skip && sym && start_sal.symtab == NULL)
3785 {
3786 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3787 /* Recalculate the line number. */
3788 start_sal = find_pc_sect_line (pc, section, 0);
3789 }
3790
3791 do_cleanups (old_chain);
3792
3793 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3794 forward SAL to the end of the prologue. */
3795 if (sal->pc >= pc)
3796 return;
3797
3798 sal->pc = pc;
3799 sal->section = section;
3800
3801 /* Unless the explicit_line flag was set, update the SAL line
3802 and symtab to correspond to the modified PC location. */
3803 if (sal->explicit_line)
3804 return;
3805
3806 sal->symtab = start_sal.symtab;
3807 sal->line = start_sal.line;
3808 sal->end = start_sal.end;
3809
3810 /* Check if we are now inside an inlined function. If we can,
3811 use the call site of the function instead. */
3812 b = block_for_pc_sect (sal->pc, sal->section);
3813 function_block = NULL;
3814 while (b != NULL)
3815 {
3816 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3817 function_block = b;
3818 else if (BLOCK_FUNCTION (b) != NULL)
3819 break;
3820 b = BLOCK_SUPERBLOCK (b);
3821 }
3822 if (function_block != NULL
3823 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3824 {
3825 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3826 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3827 }
3828 }
3829
3830 /* Given PC at the function's start address, attempt to find the
3831 prologue end using SAL information. Return zero if the skip fails.
3832
3833 A non-optimized prologue traditionally has one SAL for the function
3834 and a second for the function body. A single line function has
3835 them both pointing at the same line.
3836
3837 An optimized prologue is similar but the prologue may contain
3838 instructions (SALs) from the instruction body. Need to skip those
3839 while not getting into the function body.
3840
3841 The functions end point and an increasing SAL line are used as
3842 indicators of the prologue's endpoint.
3843
3844 This code is based on the function refine_prologue_limit
3845 (found in ia64). */
3846
3847 CORE_ADDR
3848 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3849 {
3850 struct symtab_and_line prologue_sal;
3851 CORE_ADDR start_pc;
3852 CORE_ADDR end_pc;
3853 const struct block *bl;
3854
3855 /* Get an initial range for the function. */
3856 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3857 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3858
3859 prologue_sal = find_pc_line (start_pc, 0);
3860 if (prologue_sal.line != 0)
3861 {
3862 /* For languages other than assembly, treat two consecutive line
3863 entries at the same address as a zero-instruction prologue.
3864 The GNU assembler emits separate line notes for each instruction
3865 in a multi-instruction macro, but compilers generally will not
3866 do this. */
3867 if (prologue_sal.symtab->language != language_asm)
3868 {
3869 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3870 int idx = 0;
3871
3872 /* Skip any earlier lines, and any end-of-sequence marker
3873 from a previous function. */
3874 while (linetable->item[idx].pc != prologue_sal.pc
3875 || linetable->item[idx].line == 0)
3876 idx++;
3877
3878 if (idx+1 < linetable->nitems
3879 && linetable->item[idx+1].line != 0
3880 && linetable->item[idx+1].pc == start_pc)
3881 return start_pc;
3882 }
3883
3884 /* If there is only one sal that covers the entire function,
3885 then it is probably a single line function, like
3886 "foo(){}". */
3887 if (prologue_sal.end >= end_pc)
3888 return 0;
3889
3890 while (prologue_sal.end < end_pc)
3891 {
3892 struct symtab_and_line sal;
3893
3894 sal = find_pc_line (prologue_sal.end, 0);
3895 if (sal.line == 0)
3896 break;
3897 /* Assume that a consecutive SAL for the same (or larger)
3898 line mark the prologue -> body transition. */
3899 if (sal.line >= prologue_sal.line)
3900 break;
3901 /* Likewise if we are in a different symtab altogether
3902 (e.g. within a file included via #include).  */
3903 if (sal.symtab != prologue_sal.symtab)
3904 break;
3905
3906 /* The line number is smaller. Check that it's from the
3907 same function, not something inlined. If it's inlined,
3908 then there is no point comparing the line numbers. */
3909 bl = block_for_pc (prologue_sal.end);
3910 while (bl)
3911 {
3912 if (block_inlined_p (bl))
3913 break;
3914 if (BLOCK_FUNCTION (bl))
3915 {
3916 bl = NULL;
3917 break;
3918 }
3919 bl = BLOCK_SUPERBLOCK (bl);
3920 }
3921 if (bl != NULL)
3922 break;
3923
3924 /* The case in which compiler's optimizer/scheduler has
3925 moved instructions into the prologue. We look ahead in
3926 the function looking for address ranges whose
3927 corresponding line number is less the first one that we
3928 found for the function. This is more conservative then
3929 refine_prologue_limit which scans a large number of SALs
3930 looking for any in the prologue. */
3931 prologue_sal = sal;
3932 }
3933 }
3934
3935 if (prologue_sal.end < end_pc)
3936 /* Return the end of this line, or zero if we could not find a
3937 line. */
3938 return prologue_sal.end;
3939 else
3940 /* Don't return END_PC, which is past the end of the function. */
3941 return prologue_sal.pc;
3942 }
3943 \f
3944 /* If P is of the form "operator[ \t]+..." where `...' is
3945 some legitimate operator text, return a pointer to the
3946 beginning of the substring of the operator text.
3947 Otherwise, return "". */
3948
3949 static const char *
3950 operator_chars (const char *p, const char **end)
3951 {
3952 *end = "";
3953 if (!startswith (p, "operator"))
3954 return *end;
3955 p += 8;
3956
3957 /* Don't get faked out by `operator' being part of a longer
3958 identifier. */
3959 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3960 return *end;
3961
3962 /* Allow some whitespace between `operator' and the operator symbol. */
3963 while (*p == ' ' || *p == '\t')
3964 p++;
3965
3966 /* Recognize 'operator TYPENAME'. */
3967
3968 if (isalpha (*p) || *p == '_' || *p == '$')
3969 {
3970 const char *q = p + 1;
3971
3972 while (isalnum (*q) || *q == '_' || *q == '$')
3973 q++;
3974 *end = q;
3975 return p;
3976 }
3977
3978 while (*p)
3979 switch (*p)
3980 {
3981 case '\\': /* regexp quoting */
3982 if (p[1] == '*')
3983 {
3984 if (p[2] == '=') /* 'operator\*=' */
3985 *end = p + 3;
3986 else /* 'operator\*' */
3987 *end = p + 2;
3988 return p;
3989 }
3990 else if (p[1] == '[')
3991 {
3992 if (p[2] == ']')
3993 error (_("mismatched quoting on brackets, "
3994 "try 'operator\\[\\]'"));
3995 else if (p[2] == '\\' && p[3] == ']')
3996 {
3997 *end = p + 4; /* 'operator\[\]' */
3998 return p;
3999 }
4000 else
4001 error (_("nothing is allowed between '[' and ']'"));
4002 }
4003 else
4004 {
4005 /* Gratuitous qoute: skip it and move on. */
4006 p++;
4007 continue;
4008 }
4009 break;
4010 case '!':
4011 case '=':
4012 case '*':
4013 case '/':
4014 case '%':
4015 case '^':
4016 if (p[1] == '=')
4017 *end = p + 2;
4018 else
4019 *end = p + 1;
4020 return p;
4021 case '<':
4022 case '>':
4023 case '+':
4024 case '-':
4025 case '&':
4026 case '|':
4027 if (p[0] == '-' && p[1] == '>')
4028 {
4029 /* Struct pointer member operator 'operator->'. */
4030 if (p[2] == '*')
4031 {
4032 *end = p + 3; /* 'operator->*' */
4033 return p;
4034 }
4035 else if (p[2] == '\\')
4036 {
4037 *end = p + 4; /* Hopefully 'operator->\*' */
4038 return p;
4039 }
4040 else
4041 {
4042 *end = p + 2; /* 'operator->' */
4043 return p;
4044 }
4045 }
4046 if (p[1] == '=' || p[1] == p[0])
4047 *end = p + 2;
4048 else
4049 *end = p + 1;
4050 return p;
4051 case '~':
4052 case ',':
4053 *end = p + 1;
4054 return p;
4055 case '(':
4056 if (p[1] != ')')
4057 error (_("`operator ()' must be specified "
4058 "without whitespace in `()'"));
4059 *end = p + 2;
4060 return p;
4061 case '?':
4062 if (p[1] != ':')
4063 error (_("`operator ?:' must be specified "
4064 "without whitespace in `?:'"));
4065 *end = p + 2;
4066 return p;
4067 case '[':
4068 if (p[1] != ']')
4069 error (_("`operator []' must be specified "
4070 "without whitespace in `[]'"));
4071 *end = p + 2;
4072 return p;
4073 default:
4074 error (_("`operator %s' not supported"), p);
4075 break;
4076 }
4077
4078 *end = "";
4079 return *end;
4080 }
4081 \f
4082
4083 /* Cache to watch for file names already seen by filename_seen. */
4084
4085 struct filename_seen_cache
4086 {
4087 /* Table of files seen so far. */
4088 htab_t tab;
4089 /* Initial size of the table. It automagically grows from here. */
4090 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4091 };
4092
4093 /* filename_seen_cache constructor. */
4094
4095 static struct filename_seen_cache *
4096 create_filename_seen_cache (void)
4097 {
4098 struct filename_seen_cache *cache;
4099
4100 cache = XNEW (struct filename_seen_cache);
4101 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4102 filename_hash, filename_eq,
4103 NULL, xcalloc, xfree);
4104
4105 return cache;
4106 }
4107
4108 /* Empty the cache, but do not delete it. */
4109
4110 static void
4111 clear_filename_seen_cache (struct filename_seen_cache *cache)
4112 {
4113 htab_empty (cache->tab);
4114 }
4115
4116 /* filename_seen_cache destructor.
4117 This takes a void * argument as it is generally used as a cleanup. */
4118
4119 static void
4120 delete_filename_seen_cache (void *ptr)
4121 {
4122 struct filename_seen_cache *cache = ptr;
4123
4124 htab_delete (cache->tab);
4125 xfree (cache);
4126 }
4127
4128 /* If FILE is not already in the table of files in CACHE, return zero;
4129 otherwise return non-zero. Optionally add FILE to the table if ADD
4130 is non-zero.
4131
4132 NOTE: We don't manage space for FILE, we assume FILE lives as long
4133 as the caller needs. */
4134
4135 static int
4136 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4137 {
4138 void **slot;
4139
4140 /* Is FILE in tab? */
4141 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4142 if (*slot != NULL)
4143 return 1;
4144
4145 /* No; maybe add it to tab. */
4146 if (add)
4147 *slot = (char *) file;
4148
4149 return 0;
4150 }
4151
4152 /* Data structure to maintain printing state for output_source_filename. */
4153
4154 struct output_source_filename_data
4155 {
4156 /* Cache of what we've seen so far. */
4157 struct filename_seen_cache *filename_seen_cache;
4158
4159 /* Flag of whether we're printing the first one. */
4160 int first;
4161 };
4162
4163 /* Slave routine for sources_info. Force line breaks at ,'s.
4164 NAME is the name to print.
4165 DATA contains the state for printing and watching for duplicates. */
4166
4167 static void
4168 output_source_filename (const char *name,
4169 struct output_source_filename_data *data)
4170 {
4171 /* Since a single source file can result in several partial symbol
4172 tables, we need to avoid printing it more than once. Note: if
4173 some of the psymtabs are read in and some are not, it gets
4174 printed both under "Source files for which symbols have been
4175 read" and "Source files for which symbols will be read in on
4176 demand". I consider this a reasonable way to deal with the
4177 situation. I'm not sure whether this can also happen for
4178 symtabs; it doesn't hurt to check. */
4179
4180 /* Was NAME already seen? */
4181 if (filename_seen (data->filename_seen_cache, name, 1))
4182 {
4183 /* Yes; don't print it again. */
4184 return;
4185 }
4186
4187 /* No; print it and reset *FIRST. */
4188 if (! data->first)
4189 printf_filtered (", ");
4190 data->first = 0;
4191
4192 wrap_here ("");
4193 fputs_filtered (name, gdb_stdout);
4194 }
4195
4196 /* A callback for map_partial_symbol_filenames. */
4197
4198 static void
4199 output_partial_symbol_filename (const char *filename, const char *fullname,
4200 void *data)
4201 {
4202 output_source_filename (fullname ? fullname : filename, data);
4203 }
4204
4205 static void
4206 sources_info (char *ignore, int from_tty)
4207 {
4208 struct compunit_symtab *cu;
4209 struct symtab *s;
4210 struct objfile *objfile;
4211 struct output_source_filename_data data;
4212 struct cleanup *cleanups;
4213
4214 if (!have_full_symbols () && !have_partial_symbols ())
4215 {
4216 error (_("No symbol table is loaded. Use the \"file\" command."));
4217 }
4218
4219 data.filename_seen_cache = create_filename_seen_cache ();
4220 cleanups = make_cleanup (delete_filename_seen_cache,
4221 data.filename_seen_cache);
4222
4223 printf_filtered ("Source files for which symbols have been read in:\n\n");
4224
4225 data.first = 1;
4226 ALL_FILETABS (objfile, cu, s)
4227 {
4228 const char *fullname = symtab_to_fullname (s);
4229
4230 output_source_filename (fullname, &data);
4231 }
4232 printf_filtered ("\n\n");
4233
4234 printf_filtered ("Source files for which symbols "
4235 "will be read in on demand:\n\n");
4236
4237 clear_filename_seen_cache (data.filename_seen_cache);
4238 data.first = 1;
4239 map_symbol_filenames (output_partial_symbol_filename, &data,
4240 1 /*need_fullname*/);
4241 printf_filtered ("\n");
4242
4243 do_cleanups (cleanups);
4244 }
4245
4246 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4247 non-zero compare only lbasename of FILES. */
4248
4249 static int
4250 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4251 {
4252 int i;
4253
4254 if (file != NULL && nfiles != 0)
4255 {
4256 for (i = 0; i < nfiles; i++)
4257 {
4258 if (compare_filenames_for_search (file, (basenames
4259 ? lbasename (files[i])
4260 : files[i])))
4261 return 1;
4262 }
4263 }
4264 else if (nfiles == 0)
4265 return 1;
4266 return 0;
4267 }
4268
4269 /* Free any memory associated with a search. */
4270
4271 void
4272 free_search_symbols (struct symbol_search *symbols)
4273 {
4274 struct symbol_search *p;
4275 struct symbol_search *next;
4276
4277 for (p = symbols; p != NULL; p = next)
4278 {
4279 next = p->next;
4280 xfree (p);
4281 }
4282 }
4283
4284 static void
4285 do_free_search_symbols_cleanup (void *symbolsp)
4286 {
4287 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4288
4289 free_search_symbols (symbols);
4290 }
4291
4292 struct cleanup *
4293 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4294 {
4295 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4296 }
4297
4298 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4299 sort symbols, not minimal symbols. */
4300
4301 static int
4302 compare_search_syms (const void *sa, const void *sb)
4303 {
4304 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4305 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4306 int c;
4307
4308 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4309 symbol_symtab (sym_b->symbol)->filename);
4310 if (c != 0)
4311 return c;
4312
4313 if (sym_a->block != sym_b->block)
4314 return sym_a->block - sym_b->block;
4315
4316 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4317 SYMBOL_PRINT_NAME (sym_b->symbol));
4318 }
4319
4320 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4321 The duplicates are freed, and the new list is returned in
4322 *NEW_HEAD, *NEW_TAIL. */
4323
4324 static void
4325 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4326 struct symbol_search **new_head,
4327 struct symbol_search **new_tail)
4328 {
4329 struct symbol_search **symbols, *symp, *old_next;
4330 int i, j, nunique;
4331
4332 gdb_assert (found != NULL && nfound > 0);
4333
4334 /* Build an array out of the list so we can easily sort them. */
4335 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
4336 * nfound);
4337 symp = found;
4338 for (i = 0; i < nfound; i++)
4339 {
4340 gdb_assert (symp != NULL);
4341 gdb_assert (symp->block >= 0 && symp->block <= 1);
4342 symbols[i] = symp;
4343 symp = symp->next;
4344 }
4345 gdb_assert (symp == NULL);
4346
4347 qsort (symbols, nfound, sizeof (struct symbol_search *),
4348 compare_search_syms);
4349
4350 /* Collapse out the dups. */
4351 for (i = 1, j = 1; i < nfound; ++i)
4352 {
4353 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4354 symbols[j++] = symbols[i];
4355 else
4356 xfree (symbols[i]);
4357 }
4358 nunique = j;
4359 symbols[j - 1]->next = NULL;
4360
4361 /* Rebuild the linked list. */
4362 for (i = 0; i < nunique - 1; i++)
4363 symbols[i]->next = symbols[i + 1];
4364 symbols[nunique - 1]->next = NULL;
4365
4366 *new_head = symbols[0];
4367 *new_tail = symbols[nunique - 1];
4368 xfree (symbols);
4369 }
4370
4371 /* An object of this type is passed as the user_data to the
4372 expand_symtabs_matching method. */
4373 struct search_symbols_data
4374 {
4375 int nfiles;
4376 const char **files;
4377
4378 /* It is true if PREG contains valid data, false otherwise. */
4379 unsigned preg_p : 1;
4380 regex_t preg;
4381 };
4382
4383 /* A callback for expand_symtabs_matching. */
4384
4385 static int
4386 search_symbols_file_matches (const char *filename, void *user_data,
4387 int basenames)
4388 {
4389 struct search_symbols_data *data = user_data;
4390
4391 return file_matches (filename, data->files, data->nfiles, basenames);
4392 }
4393
4394 /* A callback for expand_symtabs_matching. */
4395
4396 static int
4397 search_symbols_name_matches (const char *symname, void *user_data)
4398 {
4399 struct search_symbols_data *data = user_data;
4400
4401 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4402 }
4403
4404 /* Search the symbol table for matches to the regular expression REGEXP,
4405 returning the results in *MATCHES.
4406
4407 Only symbols of KIND are searched:
4408 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4409 and constants (enums)
4410 FUNCTIONS_DOMAIN - search all functions
4411 TYPES_DOMAIN - search all type names
4412 ALL_DOMAIN - an internal error for this function
4413
4414 free_search_symbols should be called when *MATCHES is no longer needed.
4415
4416 Within each file the results are sorted locally; each symtab's global and
4417 static blocks are separately alphabetized.
4418 Duplicate entries are removed. */
4419
4420 void
4421 search_symbols (const char *regexp, enum search_domain kind,
4422 int nfiles, const char *files[],
4423 struct symbol_search **matches)
4424 {
4425 struct compunit_symtab *cust;
4426 const struct blockvector *bv;
4427 struct block *b;
4428 int i = 0;
4429 struct block_iterator iter;
4430 struct symbol *sym;
4431 struct objfile *objfile;
4432 struct minimal_symbol *msymbol;
4433 int found_misc = 0;
4434 static const enum minimal_symbol_type types[]
4435 = {mst_data, mst_text, mst_abs};
4436 static const enum minimal_symbol_type types2[]
4437 = {mst_bss, mst_file_text, mst_abs};
4438 static const enum minimal_symbol_type types3[]
4439 = {mst_file_data, mst_solib_trampoline, mst_abs};
4440 static const enum minimal_symbol_type types4[]
4441 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4442 enum minimal_symbol_type ourtype;
4443 enum minimal_symbol_type ourtype2;
4444 enum minimal_symbol_type ourtype3;
4445 enum minimal_symbol_type ourtype4;
4446 struct symbol_search *found;
4447 struct symbol_search *tail;
4448 struct search_symbols_data datum;
4449 int nfound;
4450
4451 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4452 CLEANUP_CHAIN is freed only in the case of an error. */
4453 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4454 struct cleanup *retval_chain;
4455
4456 gdb_assert (kind <= TYPES_DOMAIN);
4457
4458 ourtype = types[kind];
4459 ourtype2 = types2[kind];
4460 ourtype3 = types3[kind];
4461 ourtype4 = types4[kind];
4462
4463 *matches = NULL;
4464 datum.preg_p = 0;
4465
4466 if (regexp != NULL)
4467 {
4468 /* Make sure spacing is right for C++ operators.
4469 This is just a courtesy to make the matching less sensitive
4470 to how many spaces the user leaves between 'operator'
4471 and <TYPENAME> or <OPERATOR>. */
4472 const char *opend;
4473 const char *opname = operator_chars (regexp, &opend);
4474 int errcode;
4475
4476 if (*opname)
4477 {
4478 int fix = -1; /* -1 means ok; otherwise number of
4479 spaces needed. */
4480
4481 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4482 {
4483 /* There should 1 space between 'operator' and 'TYPENAME'. */
4484 if (opname[-1] != ' ' || opname[-2] == ' ')
4485 fix = 1;
4486 }
4487 else
4488 {
4489 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4490 if (opname[-1] == ' ')
4491 fix = 0;
4492 }
4493 /* If wrong number of spaces, fix it. */
4494 if (fix >= 0)
4495 {
4496 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4497
4498 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4499 regexp = tmp;
4500 }
4501 }
4502
4503 errcode = regcomp (&datum.preg, regexp,
4504 REG_NOSUB | (case_sensitivity == case_sensitive_off
4505 ? REG_ICASE : 0));
4506 if (errcode != 0)
4507 {
4508 char *err = get_regcomp_error (errcode, &datum.preg);
4509
4510 make_cleanup (xfree, err);
4511 error (_("Invalid regexp (%s): %s"), err, regexp);
4512 }
4513 datum.preg_p = 1;
4514 make_regfree_cleanup (&datum.preg);
4515 }
4516
4517 /* Search through the partial symtabs *first* for all symbols
4518 matching the regexp. That way we don't have to reproduce all of
4519 the machinery below. */
4520
4521 datum.nfiles = nfiles;
4522 datum.files = files;
4523 expand_symtabs_matching ((nfiles == 0
4524 ? NULL
4525 : search_symbols_file_matches),
4526 search_symbols_name_matches,
4527 NULL, kind, &datum);
4528
4529 /* Here, we search through the minimal symbol tables for functions
4530 and variables that match, and force their symbols to be read.
4531 This is in particular necessary for demangled variable names,
4532 which are no longer put into the partial symbol tables.
4533 The symbol will then be found during the scan of symtabs below.
4534
4535 For functions, find_pc_symtab should succeed if we have debug info
4536 for the function, for variables we have to call
4537 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4538 has debug info.
4539 If the lookup fails, set found_misc so that we will rescan to print
4540 any matching symbols without debug info.
4541 We only search the objfile the msymbol came from, we no longer search
4542 all objfiles. In large programs (1000s of shared libs) searching all
4543 objfiles is not worth the pain. */
4544
4545 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4546 {
4547 ALL_MSYMBOLS (objfile, msymbol)
4548 {
4549 QUIT;
4550
4551 if (msymbol->created_by_gdb)
4552 continue;
4553
4554 if (MSYMBOL_TYPE (msymbol) == ourtype
4555 || MSYMBOL_TYPE (msymbol) == ourtype2
4556 || MSYMBOL_TYPE (msymbol) == ourtype3
4557 || MSYMBOL_TYPE (msymbol) == ourtype4)
4558 {
4559 if (!datum.preg_p
4560 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4561 NULL, 0) == 0)
4562 {
4563 /* Note: An important side-effect of these lookup functions
4564 is to expand the symbol table if msymbol is found, for the
4565 benefit of the next loop on ALL_COMPUNITS. */
4566 if (kind == FUNCTIONS_DOMAIN
4567 ? (find_pc_compunit_symtab
4568 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4569 : (lookup_symbol_in_objfile_from_linkage_name
4570 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4571 == NULL))
4572 found_misc = 1;
4573 }
4574 }
4575 }
4576 }
4577
4578 found = NULL;
4579 tail = NULL;
4580 nfound = 0;
4581 retval_chain = make_cleanup_free_search_symbols (&found);
4582
4583 ALL_COMPUNITS (objfile, cust)
4584 {
4585 bv = COMPUNIT_BLOCKVECTOR (cust);
4586 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4587 {
4588 b = BLOCKVECTOR_BLOCK (bv, i);
4589 ALL_BLOCK_SYMBOLS (b, iter, sym)
4590 {
4591 struct symtab *real_symtab = symbol_symtab (sym);
4592
4593 QUIT;
4594
4595 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4596 a substring of symtab_to_fullname as it may contain "./" etc. */
4597 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4598 || ((basenames_may_differ
4599 || file_matches (lbasename (real_symtab->filename),
4600 files, nfiles, 1))
4601 && file_matches (symtab_to_fullname (real_symtab),
4602 files, nfiles, 0)))
4603 && ((!datum.preg_p
4604 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4605 NULL, 0) == 0)
4606 && ((kind == VARIABLES_DOMAIN
4607 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4608 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4609 && SYMBOL_CLASS (sym) != LOC_BLOCK
4610 /* LOC_CONST can be used for more than just enums,
4611 e.g., c++ static const members.
4612 We only want to skip enums here. */
4613 && !(SYMBOL_CLASS (sym) == LOC_CONST
4614 && (TYPE_CODE (SYMBOL_TYPE (sym))
4615 == TYPE_CODE_ENUM)))
4616 || (kind == FUNCTIONS_DOMAIN
4617 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4618 || (kind == TYPES_DOMAIN
4619 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4620 {
4621 /* match */
4622 struct symbol_search *psr = (struct symbol_search *)
4623 xmalloc (sizeof (struct symbol_search));
4624 psr->block = i;
4625 psr->symbol = sym;
4626 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
4627 psr->next = NULL;
4628 if (tail == NULL)
4629 found = psr;
4630 else
4631 tail->next = psr;
4632 tail = psr;
4633 nfound ++;
4634 }
4635 }
4636 }
4637 }
4638
4639 if (found != NULL)
4640 {
4641 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4642 /* Note: nfound is no longer useful beyond this point. */
4643 }
4644
4645 /* If there are no eyes, avoid all contact. I mean, if there are
4646 no debug symbols, then add matching minsyms. */
4647
4648 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4649 {
4650 ALL_MSYMBOLS (objfile, msymbol)
4651 {
4652 QUIT;
4653
4654 if (msymbol->created_by_gdb)
4655 continue;
4656
4657 if (MSYMBOL_TYPE (msymbol) == ourtype
4658 || MSYMBOL_TYPE (msymbol) == ourtype2
4659 || MSYMBOL_TYPE (msymbol) == ourtype3
4660 || MSYMBOL_TYPE (msymbol) == ourtype4)
4661 {
4662 if (!datum.preg_p
4663 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4664 NULL, 0) == 0)
4665 {
4666 /* For functions we can do a quick check of whether the
4667 symbol might be found via find_pc_symtab. */
4668 if (kind != FUNCTIONS_DOMAIN
4669 || (find_pc_compunit_symtab
4670 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4671 {
4672 if (lookup_symbol_in_objfile_from_linkage_name
4673 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4674 == NULL)
4675 {
4676 /* match */
4677 struct symbol_search *psr = (struct symbol_search *)
4678 xmalloc (sizeof (struct symbol_search));
4679 psr->block = i;
4680 psr->msymbol.minsym = msymbol;
4681 psr->msymbol.objfile = objfile;
4682 psr->symbol = NULL;
4683 psr->next = NULL;
4684 if (tail == NULL)
4685 found = psr;
4686 else
4687 tail->next = psr;
4688 tail = psr;
4689 }
4690 }
4691 }
4692 }
4693 }
4694 }
4695
4696 discard_cleanups (retval_chain);
4697 do_cleanups (old_chain);
4698 *matches = found;
4699 }
4700
4701 /* Helper function for symtab_symbol_info, this function uses
4702 the data returned from search_symbols() to print information
4703 regarding the match to gdb_stdout. */
4704
4705 static void
4706 print_symbol_info (enum search_domain kind,
4707 struct symbol *sym,
4708 int block, const char *last)
4709 {
4710 struct symtab *s = symbol_symtab (sym);
4711 const char *s_filename = symtab_to_filename_for_display (s);
4712
4713 if (last == NULL || filename_cmp (last, s_filename) != 0)
4714 {
4715 fputs_filtered ("\nFile ", gdb_stdout);
4716 fputs_filtered (s_filename, gdb_stdout);
4717 fputs_filtered (":\n", gdb_stdout);
4718 }
4719
4720 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4721 printf_filtered ("static ");
4722
4723 /* Typedef that is not a C++ class. */
4724 if (kind == TYPES_DOMAIN
4725 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4726 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4727 /* variable, func, or typedef-that-is-c++-class. */
4728 else if (kind < TYPES_DOMAIN
4729 || (kind == TYPES_DOMAIN
4730 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4731 {
4732 type_print (SYMBOL_TYPE (sym),
4733 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4734 ? "" : SYMBOL_PRINT_NAME (sym)),
4735 gdb_stdout, 0);
4736
4737 printf_filtered (";\n");
4738 }
4739 }
4740
4741 /* This help function for symtab_symbol_info() prints information
4742 for non-debugging symbols to gdb_stdout. */
4743
4744 static void
4745 print_msymbol_info (struct bound_minimal_symbol msymbol)
4746 {
4747 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4748 char *tmp;
4749
4750 if (gdbarch_addr_bit (gdbarch) <= 32)
4751 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4752 & (CORE_ADDR) 0xffffffff,
4753 8);
4754 else
4755 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4756 16);
4757 printf_filtered ("%s %s\n",
4758 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4759 }
4760
4761 /* This is the guts of the commands "info functions", "info types", and
4762 "info variables". It calls search_symbols to find all matches and then
4763 print_[m]symbol_info to print out some useful information about the
4764 matches. */
4765
4766 static void
4767 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4768 {
4769 static const char * const classnames[] =
4770 {"variable", "function", "type"};
4771 struct symbol_search *symbols;
4772 struct symbol_search *p;
4773 struct cleanup *old_chain;
4774 const char *last_filename = NULL;
4775 int first = 1;
4776
4777 gdb_assert (kind <= TYPES_DOMAIN);
4778
4779 /* Must make sure that if we're interrupted, symbols gets freed. */
4780 search_symbols (regexp, kind, 0, NULL, &symbols);
4781 old_chain = make_cleanup_free_search_symbols (&symbols);
4782
4783 if (regexp != NULL)
4784 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4785 classnames[kind], regexp);
4786 else
4787 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4788
4789 for (p = symbols; p != NULL; p = p->next)
4790 {
4791 QUIT;
4792
4793 if (p->msymbol.minsym != NULL)
4794 {
4795 if (first)
4796 {
4797 printf_filtered (_("\nNon-debugging symbols:\n"));
4798 first = 0;
4799 }
4800 print_msymbol_info (p->msymbol);
4801 }
4802 else
4803 {
4804 print_symbol_info (kind,
4805 p->symbol,
4806 p->block,
4807 last_filename);
4808 last_filename
4809 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4810 }
4811 }
4812
4813 do_cleanups (old_chain);
4814 }
4815
4816 static void
4817 variables_info (char *regexp, int from_tty)
4818 {
4819 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4820 }
4821
4822 static void
4823 functions_info (char *regexp, int from_tty)
4824 {
4825 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4826 }
4827
4828
4829 static void
4830 types_info (char *regexp, int from_tty)
4831 {
4832 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4833 }
4834
4835 /* Breakpoint all functions matching regular expression. */
4836
4837 void
4838 rbreak_command_wrapper (char *regexp, int from_tty)
4839 {
4840 rbreak_command (regexp, from_tty);
4841 }
4842
4843 /* A cleanup function that calls end_rbreak_breakpoints. */
4844
4845 static void
4846 do_end_rbreak_breakpoints (void *ignore)
4847 {
4848 end_rbreak_breakpoints ();
4849 }
4850
4851 static void
4852 rbreak_command (char *regexp, int from_tty)
4853 {
4854 struct symbol_search *ss;
4855 struct symbol_search *p;
4856 struct cleanup *old_chain;
4857 char *string = NULL;
4858 int len = 0;
4859 const char **files = NULL;
4860 const char *file_name;
4861 int nfiles = 0;
4862
4863 if (regexp)
4864 {
4865 char *colon = strchr (regexp, ':');
4866
4867 if (colon && *(colon + 1) != ':')
4868 {
4869 int colon_index;
4870 char *local_name;
4871
4872 colon_index = colon - regexp;
4873 local_name = alloca (colon_index + 1);
4874 memcpy (local_name, regexp, colon_index);
4875 local_name[colon_index--] = 0;
4876 while (isspace (local_name[colon_index]))
4877 local_name[colon_index--] = 0;
4878 file_name = local_name;
4879 files = &file_name;
4880 nfiles = 1;
4881 regexp = skip_spaces (colon + 1);
4882 }
4883 }
4884
4885 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4886 old_chain = make_cleanup_free_search_symbols (&ss);
4887 make_cleanup (free_current_contents, &string);
4888
4889 start_rbreak_breakpoints ();
4890 make_cleanup (do_end_rbreak_breakpoints, NULL);
4891 for (p = ss; p != NULL; p = p->next)
4892 {
4893 if (p->msymbol.minsym == NULL)
4894 {
4895 struct symtab *symtab = symbol_symtab (p->symbol);
4896 const char *fullname = symtab_to_fullname (symtab);
4897
4898 int newlen = (strlen (fullname)
4899 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4900 + 4);
4901
4902 if (newlen > len)
4903 {
4904 string = xrealloc (string, newlen);
4905 len = newlen;
4906 }
4907 strcpy (string, fullname);
4908 strcat (string, ":'");
4909 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4910 strcat (string, "'");
4911 break_command (string, from_tty);
4912 print_symbol_info (FUNCTIONS_DOMAIN,
4913 p->symbol,
4914 p->block,
4915 symtab_to_filename_for_display (symtab));
4916 }
4917 else
4918 {
4919 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4920
4921 if (newlen > len)
4922 {
4923 string = xrealloc (string, newlen);
4924 len = newlen;
4925 }
4926 strcpy (string, "'");
4927 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4928 strcat (string, "'");
4929
4930 break_command (string, from_tty);
4931 printf_filtered ("<function, no debug info> %s;\n",
4932 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4933 }
4934 }
4935
4936 do_cleanups (old_chain);
4937 }
4938 \f
4939
4940 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4941
4942 Either sym_text[sym_text_len] != '(' and then we search for any
4943 symbol starting with SYM_TEXT text.
4944
4945 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4946 be terminated at that point. Partial symbol tables do not have parameters
4947 information. */
4948
4949 static int
4950 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4951 {
4952 int (*ncmp) (const char *, const char *, size_t);
4953
4954 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4955
4956 if (ncmp (name, sym_text, sym_text_len) != 0)
4957 return 0;
4958
4959 if (sym_text[sym_text_len] == '(')
4960 {
4961 /* User searches for `name(someth...'. Require NAME to be terminated.
4962 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4963 present but accept even parameters presence. In this case this
4964 function is in fact strcmp_iw but whitespace skipping is not supported
4965 for tab completion. */
4966
4967 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4968 return 0;
4969 }
4970
4971 return 1;
4972 }
4973
4974 /* Free any memory associated with a completion list. */
4975
4976 static void
4977 free_completion_list (VEC (char_ptr) **list_ptr)
4978 {
4979 int i;
4980 char *p;
4981
4982 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4983 xfree (p);
4984 VEC_free (char_ptr, *list_ptr);
4985 }
4986
4987 /* Callback for make_cleanup. */
4988
4989 static void
4990 do_free_completion_list (void *list)
4991 {
4992 free_completion_list (list);
4993 }
4994
4995 /* Helper routine for make_symbol_completion_list. */
4996
4997 static VEC (char_ptr) *return_val;
4998
4999 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5000 completion_list_add_name \
5001 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5002
5003 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5004 completion_list_add_name \
5005 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5006
5007 /* Tracker for how many unique completions have been generated. Used
5008 to terminate completion list generation early if the list has grown
5009 to a size so large as to be useless. This helps avoid GDB seeming
5010 to lock up in the event the user requests to complete on something
5011 vague that necessitates the time consuming expansion of many symbol
5012 tables. */
5013
5014 static completion_tracker_t completion_tracker;
5015
5016 /* Test to see if the symbol specified by SYMNAME (which is already
5017 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5018 characters. If so, add it to the current completion list. */
5019
5020 static void
5021 completion_list_add_name (const char *symname,
5022 const char *sym_text, int sym_text_len,
5023 const char *text, const char *word)
5024 {
5025 /* Clip symbols that cannot match. */
5026 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5027 return;
5028
5029 /* We have a match for a completion, so add SYMNAME to the current list
5030 of matches. Note that the name is moved to freshly malloc'd space. */
5031
5032 {
5033 char *newobj;
5034 enum maybe_add_completion_enum add_status;
5035
5036 if (word == sym_text)
5037 {
5038 newobj = xmalloc (strlen (symname) + 5);
5039 strcpy (newobj, symname);
5040 }
5041 else if (word > sym_text)
5042 {
5043 /* Return some portion of symname. */
5044 newobj = xmalloc (strlen (symname) + 5);
5045 strcpy (newobj, symname + (word - sym_text));
5046 }
5047 else
5048 {
5049 /* Return some of SYM_TEXT plus symname. */
5050 newobj = xmalloc (strlen (symname) + (sym_text - word) + 5);
5051 strncpy (newobj, word, sym_text - word);
5052 newobj[sym_text - word] = '\0';
5053 strcat (newobj, symname);
5054 }
5055
5056 add_status = maybe_add_completion (completion_tracker, newobj);
5057
5058 switch (add_status)
5059 {
5060 case MAYBE_ADD_COMPLETION_OK:
5061 VEC_safe_push (char_ptr, return_val, newobj);
5062 break;
5063 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5064 VEC_safe_push (char_ptr, return_val, newobj);
5065 throw_max_completions_reached_error ();
5066 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5067 xfree (newobj);
5068 throw_max_completions_reached_error ();
5069 case MAYBE_ADD_COMPLETION_DUPLICATE:
5070 xfree (newobj);
5071 break;
5072 }
5073 }
5074 }
5075
5076 /* ObjC: In case we are completing on a selector, look as the msymbol
5077 again and feed all the selectors into the mill. */
5078
5079 static void
5080 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5081 const char *sym_text, int sym_text_len,
5082 const char *text, const char *word)
5083 {
5084 static char *tmp = NULL;
5085 static unsigned int tmplen = 0;
5086
5087 const char *method, *category, *selector;
5088 char *tmp2 = NULL;
5089
5090 method = MSYMBOL_NATURAL_NAME (msymbol);
5091
5092 /* Is it a method? */
5093 if ((method[0] != '-') && (method[0] != '+'))
5094 return;
5095
5096 if (sym_text[0] == '[')
5097 /* Complete on shortened method method. */
5098 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5099
5100 while ((strlen (method) + 1) >= tmplen)
5101 {
5102 if (tmplen == 0)
5103 tmplen = 1024;
5104 else
5105 tmplen *= 2;
5106 tmp = xrealloc (tmp, tmplen);
5107 }
5108 selector = strchr (method, ' ');
5109 if (selector != NULL)
5110 selector++;
5111
5112 category = strchr (method, '(');
5113
5114 if ((category != NULL) && (selector != NULL))
5115 {
5116 memcpy (tmp, method, (category - method));
5117 tmp[category - method] = ' ';
5118 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5119 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5120 if (sym_text[0] == '[')
5121 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5122 }
5123
5124 if (selector != NULL)
5125 {
5126 /* Complete on selector only. */
5127 strcpy (tmp, selector);
5128 tmp2 = strchr (tmp, ']');
5129 if (tmp2 != NULL)
5130 *tmp2 = '\0';
5131
5132 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5133 }
5134 }
5135
5136 /* Break the non-quoted text based on the characters which are in
5137 symbols. FIXME: This should probably be language-specific. */
5138
5139 static const char *
5140 language_search_unquoted_string (const char *text, const char *p)
5141 {
5142 for (; p > text; --p)
5143 {
5144 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5145 continue;
5146 else
5147 {
5148 if ((current_language->la_language == language_objc))
5149 {
5150 if (p[-1] == ':') /* Might be part of a method name. */
5151 continue;
5152 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5153 p -= 2; /* Beginning of a method name. */
5154 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5155 { /* Might be part of a method name. */
5156 const char *t = p;
5157
5158 /* Seeing a ' ' or a '(' is not conclusive evidence
5159 that we are in the middle of a method name. However,
5160 finding "-[" or "+[" should be pretty un-ambiguous.
5161 Unfortunately we have to find it now to decide. */
5162
5163 while (t > text)
5164 if (isalnum (t[-1]) || t[-1] == '_' ||
5165 t[-1] == ' ' || t[-1] == ':' ||
5166 t[-1] == '(' || t[-1] == ')')
5167 --t;
5168 else
5169 break;
5170
5171 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5172 p = t - 2; /* Method name detected. */
5173 /* Else we leave with p unchanged. */
5174 }
5175 }
5176 break;
5177 }
5178 }
5179 return p;
5180 }
5181
5182 static void
5183 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5184 int sym_text_len, const char *text,
5185 const char *word)
5186 {
5187 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5188 {
5189 struct type *t = SYMBOL_TYPE (sym);
5190 enum type_code c = TYPE_CODE (t);
5191 int j;
5192
5193 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5194 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5195 if (TYPE_FIELD_NAME (t, j))
5196 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5197 sym_text, sym_text_len, text, word);
5198 }
5199 }
5200
5201 /* Type of the user_data argument passed to add_macro_name,
5202 symbol_completion_matcher and symtab_expansion_callback. */
5203
5204 struct add_name_data
5205 {
5206 /* Arguments required by completion_list_add_name. */
5207 const char *sym_text;
5208 int sym_text_len;
5209 const char *text;
5210 const char *word;
5211
5212 /* Extra argument required for add_symtab_completions. */
5213 enum type_code code;
5214 };
5215
5216 /* A callback used with macro_for_each and macro_for_each_in_scope.
5217 This adds a macro's name to the current completion list. */
5218
5219 static void
5220 add_macro_name (const char *name, const struct macro_definition *ignore,
5221 struct macro_source_file *ignore2, int ignore3,
5222 void *user_data)
5223 {
5224 struct add_name_data *datum = (struct add_name_data *) user_data;
5225
5226 completion_list_add_name (name,
5227 datum->sym_text, datum->sym_text_len,
5228 datum->text, datum->word);
5229 }
5230
5231 /* A callback for expand_symtabs_matching. */
5232
5233 static int
5234 symbol_completion_matcher (const char *name, void *user_data)
5235 {
5236 struct add_name_data *datum = (struct add_name_data *) user_data;
5237
5238 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5239 }
5240
5241 /* Add matching symbols from SYMTAB to the current completion list. */
5242
5243 static void
5244 add_symtab_completions (struct compunit_symtab *cust,
5245 const char *sym_text, int sym_text_len,
5246 const char *text, const char *word,
5247 enum type_code code)
5248 {
5249 struct symbol *sym;
5250 const struct block *b;
5251 struct block_iterator iter;
5252 int i;
5253
5254 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5255 {
5256 QUIT;
5257 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5258 ALL_BLOCK_SYMBOLS (b, iter, sym)
5259 {
5260 if (code == TYPE_CODE_UNDEF
5261 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5262 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5263 COMPLETION_LIST_ADD_SYMBOL (sym,
5264 sym_text, sym_text_len,
5265 text, word);
5266 }
5267 }
5268 }
5269
5270 /* Callback to add completions to the current list when symbol tables
5271 are expanded during completion list generation. */
5272
5273 static void
5274 symtab_expansion_callback (struct compunit_symtab *symtab,
5275 void *user_data)
5276 {
5277 struct add_name_data *datum = (struct add_name_data *) user_data;
5278
5279 add_symtab_completions (symtab,
5280 datum->sym_text, datum->sym_text_len,
5281 datum->text, datum->word,
5282 datum->code);
5283 }
5284
5285 static void
5286 default_make_symbol_completion_list_break_on_1 (const char *text,
5287 const char *word,
5288 const char *break_on,
5289 enum type_code code)
5290 {
5291 /* Problem: All of the symbols have to be copied because readline
5292 frees them. I'm not going to worry about this; hopefully there
5293 won't be that many. */
5294
5295 struct symbol *sym;
5296 struct compunit_symtab *cust;
5297 struct minimal_symbol *msymbol;
5298 struct objfile *objfile;
5299 const struct block *b;
5300 const struct block *surrounding_static_block, *surrounding_global_block;
5301 struct block_iterator iter;
5302 /* The symbol we are completing on. Points in same buffer as text. */
5303 const char *sym_text;
5304 /* Length of sym_text. */
5305 int sym_text_len;
5306 struct add_name_data datum;
5307 struct cleanup *cleanups;
5308
5309 /* Now look for the symbol we are supposed to complete on. */
5310 {
5311 const char *p;
5312 char quote_found;
5313 const char *quote_pos = NULL;
5314
5315 /* First see if this is a quoted string. */
5316 quote_found = '\0';
5317 for (p = text; *p != '\0'; ++p)
5318 {
5319 if (quote_found != '\0')
5320 {
5321 if (*p == quote_found)
5322 /* Found close quote. */
5323 quote_found = '\0';
5324 else if (*p == '\\' && p[1] == quote_found)
5325 /* A backslash followed by the quote character
5326 doesn't end the string. */
5327 ++p;
5328 }
5329 else if (*p == '\'' || *p == '"')
5330 {
5331 quote_found = *p;
5332 quote_pos = p;
5333 }
5334 }
5335 if (quote_found == '\'')
5336 /* A string within single quotes can be a symbol, so complete on it. */
5337 sym_text = quote_pos + 1;
5338 else if (quote_found == '"')
5339 /* A double-quoted string is never a symbol, nor does it make sense
5340 to complete it any other way. */
5341 {
5342 return;
5343 }
5344 else
5345 {
5346 /* It is not a quoted string. Break it based on the characters
5347 which are in symbols. */
5348 while (p > text)
5349 {
5350 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5351 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5352 --p;
5353 else
5354 break;
5355 }
5356 sym_text = p;
5357 }
5358 }
5359
5360 sym_text_len = strlen (sym_text);
5361
5362 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5363
5364 if (current_language->la_language == language_cplus
5365 || current_language->la_language == language_java
5366 || current_language->la_language == language_fortran)
5367 {
5368 /* These languages may have parameters entered by user but they are never
5369 present in the partial symbol tables. */
5370
5371 const char *cs = memchr (sym_text, '(', sym_text_len);
5372
5373 if (cs)
5374 sym_text_len = cs - sym_text;
5375 }
5376 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5377
5378 completion_tracker = new_completion_tracker ();
5379 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5380
5381 datum.sym_text = sym_text;
5382 datum.sym_text_len = sym_text_len;
5383 datum.text = text;
5384 datum.word = word;
5385 datum.code = code;
5386
5387 /* At this point scan through the misc symbol vectors and add each
5388 symbol you find to the list. Eventually we want to ignore
5389 anything that isn't a text symbol (everything else will be
5390 handled by the psymtab code below). */
5391
5392 if (code == TYPE_CODE_UNDEF)
5393 {
5394 ALL_MSYMBOLS (objfile, msymbol)
5395 {
5396 QUIT;
5397 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5398 word);
5399
5400 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5401 word);
5402 }
5403 }
5404
5405 /* Add completions for all currently loaded symbol tables. */
5406 ALL_COMPUNITS (objfile, cust)
5407 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5408 code);
5409
5410 /* Look through the partial symtabs for all symbols which begin
5411 by matching SYM_TEXT. Expand all CUs that you find to the list.
5412 symtab_expansion_callback is called for each expanded symtab,
5413 causing those symtab's completions to be added to the list too. */
5414 expand_symtabs_matching (NULL, symbol_completion_matcher,
5415 symtab_expansion_callback, ALL_DOMAIN,
5416 &datum);
5417
5418 /* Search upwards from currently selected frame (so that we can
5419 complete on local vars). Also catch fields of types defined in
5420 this places which match our text string. Only complete on types
5421 visible from current context. */
5422
5423 b = get_selected_block (0);
5424 surrounding_static_block = block_static_block (b);
5425 surrounding_global_block = block_global_block (b);
5426 if (surrounding_static_block != NULL)
5427 while (b != surrounding_static_block)
5428 {
5429 QUIT;
5430
5431 ALL_BLOCK_SYMBOLS (b, iter, sym)
5432 {
5433 if (code == TYPE_CODE_UNDEF)
5434 {
5435 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5436 word);
5437 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5438 word);
5439 }
5440 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5441 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5442 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5443 word);
5444 }
5445
5446 /* Stop when we encounter an enclosing function. Do not stop for
5447 non-inlined functions - the locals of the enclosing function
5448 are in scope for a nested function. */
5449 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5450 break;
5451 b = BLOCK_SUPERBLOCK (b);
5452 }
5453
5454 /* Add fields from the file's types; symbols will be added below. */
5455
5456 if (code == TYPE_CODE_UNDEF)
5457 {
5458 if (surrounding_static_block != NULL)
5459 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5460 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5461
5462 if (surrounding_global_block != NULL)
5463 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5464 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5465 }
5466
5467 /* Skip macros if we are completing a struct tag -- arguable but
5468 usually what is expected. */
5469 if (current_language->la_macro_expansion == macro_expansion_c
5470 && code == TYPE_CODE_UNDEF)
5471 {
5472 struct macro_scope *scope;
5473
5474 /* Add any macros visible in the default scope. Note that this
5475 may yield the occasional wrong result, because an expression
5476 might be evaluated in a scope other than the default. For
5477 example, if the user types "break file:line if <TAB>", the
5478 resulting expression will be evaluated at "file:line" -- but
5479 at there does not seem to be a way to detect this at
5480 completion time. */
5481 scope = default_macro_scope ();
5482 if (scope)
5483 {
5484 macro_for_each_in_scope (scope->file, scope->line,
5485 add_macro_name, &datum);
5486 xfree (scope);
5487 }
5488
5489 /* User-defined macros are always visible. */
5490 macro_for_each (macro_user_macros, add_macro_name, &datum);
5491 }
5492
5493 do_cleanups (cleanups);
5494 }
5495
5496 VEC (char_ptr) *
5497 default_make_symbol_completion_list_break_on (const char *text,
5498 const char *word,
5499 const char *break_on,
5500 enum type_code code)
5501 {
5502 struct cleanup *back_to;
5503 volatile struct gdb_exception except;
5504
5505 return_val = NULL;
5506 back_to = make_cleanup (do_free_completion_list, &return_val);
5507
5508 TRY_CATCH (except, RETURN_MASK_ERROR)
5509 {
5510 default_make_symbol_completion_list_break_on_1 (text, word,
5511 break_on, code);
5512 }
5513 if (except.reason < 0)
5514 {
5515 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5516 throw_exception (except);
5517 }
5518
5519 discard_cleanups (back_to);
5520 return return_val;
5521 }
5522
5523 VEC (char_ptr) *
5524 default_make_symbol_completion_list (const char *text, const char *word,
5525 enum type_code code)
5526 {
5527 return default_make_symbol_completion_list_break_on (text, word, "", code);
5528 }
5529
5530 /* Return a vector of all symbols (regardless of class) which begin by
5531 matching TEXT. If the answer is no symbols, then the return value
5532 is NULL. */
5533
5534 VEC (char_ptr) *
5535 make_symbol_completion_list (const char *text, const char *word)
5536 {
5537 return current_language->la_make_symbol_completion_list (text, word,
5538 TYPE_CODE_UNDEF);
5539 }
5540
5541 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5542 symbols whose type code is CODE. */
5543
5544 VEC (char_ptr) *
5545 make_symbol_completion_type (const char *text, const char *word,
5546 enum type_code code)
5547 {
5548 gdb_assert (code == TYPE_CODE_UNION
5549 || code == TYPE_CODE_STRUCT
5550 || code == TYPE_CODE_ENUM);
5551 return current_language->la_make_symbol_completion_list (text, word, code);
5552 }
5553
5554 /* Like make_symbol_completion_list, but suitable for use as a
5555 completion function. */
5556
5557 VEC (char_ptr) *
5558 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5559 const char *text, const char *word)
5560 {
5561 return make_symbol_completion_list (text, word);
5562 }
5563
5564 /* Like make_symbol_completion_list, but returns a list of symbols
5565 defined in a source file FILE. */
5566
5567 VEC (char_ptr) *
5568 make_file_symbol_completion_list (const char *text, const char *word,
5569 const char *srcfile)
5570 {
5571 struct symbol *sym;
5572 struct symtab *s;
5573 struct block *b;
5574 struct block_iterator iter;
5575 /* The symbol we are completing on. Points in same buffer as text. */
5576 const char *sym_text;
5577 /* Length of sym_text. */
5578 int sym_text_len;
5579
5580 /* Now look for the symbol we are supposed to complete on.
5581 FIXME: This should be language-specific. */
5582 {
5583 const char *p;
5584 char quote_found;
5585 const char *quote_pos = NULL;
5586
5587 /* First see if this is a quoted string. */
5588 quote_found = '\0';
5589 for (p = text; *p != '\0'; ++p)
5590 {
5591 if (quote_found != '\0')
5592 {
5593 if (*p == quote_found)
5594 /* Found close quote. */
5595 quote_found = '\0';
5596 else if (*p == '\\' && p[1] == quote_found)
5597 /* A backslash followed by the quote character
5598 doesn't end the string. */
5599 ++p;
5600 }
5601 else if (*p == '\'' || *p == '"')
5602 {
5603 quote_found = *p;
5604 quote_pos = p;
5605 }
5606 }
5607 if (quote_found == '\'')
5608 /* A string within single quotes can be a symbol, so complete on it. */
5609 sym_text = quote_pos + 1;
5610 else if (quote_found == '"')
5611 /* A double-quoted string is never a symbol, nor does it make sense
5612 to complete it any other way. */
5613 {
5614 return NULL;
5615 }
5616 else
5617 {
5618 /* Not a quoted string. */
5619 sym_text = language_search_unquoted_string (text, p);
5620 }
5621 }
5622
5623 sym_text_len = strlen (sym_text);
5624
5625 return_val = NULL;
5626
5627 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5628 in). */
5629 s = lookup_symtab (srcfile);
5630 if (s == NULL)
5631 {
5632 /* Maybe they typed the file with leading directories, while the
5633 symbol tables record only its basename. */
5634 const char *tail = lbasename (srcfile);
5635
5636 if (tail > srcfile)
5637 s = lookup_symtab (tail);
5638 }
5639
5640 /* If we have no symtab for that file, return an empty list. */
5641 if (s == NULL)
5642 return (return_val);
5643
5644 /* Go through this symtab and check the externs and statics for
5645 symbols which match. */
5646
5647 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5648 ALL_BLOCK_SYMBOLS (b, iter, sym)
5649 {
5650 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5651 }
5652
5653 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5654 ALL_BLOCK_SYMBOLS (b, iter, sym)
5655 {
5656 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5657 }
5658
5659 return (return_val);
5660 }
5661
5662 /* A helper function for make_source_files_completion_list. It adds
5663 another file name to a list of possible completions, growing the
5664 list as necessary. */
5665
5666 static void
5667 add_filename_to_list (const char *fname, const char *text, const char *word,
5668 VEC (char_ptr) **list)
5669 {
5670 char *newobj;
5671 size_t fnlen = strlen (fname);
5672
5673 if (word == text)
5674 {
5675 /* Return exactly fname. */
5676 newobj = xmalloc (fnlen + 5);
5677 strcpy (newobj, fname);
5678 }
5679 else if (word > text)
5680 {
5681 /* Return some portion of fname. */
5682 newobj = xmalloc (fnlen + 5);
5683 strcpy (newobj, fname + (word - text));
5684 }
5685 else
5686 {
5687 /* Return some of TEXT plus fname. */
5688 newobj = xmalloc (fnlen + (text - word) + 5);
5689 strncpy (newobj, word, text - word);
5690 newobj[text - word] = '\0';
5691 strcat (newobj, fname);
5692 }
5693 VEC_safe_push (char_ptr, *list, newobj);
5694 }
5695
5696 static int
5697 not_interesting_fname (const char *fname)
5698 {
5699 static const char *illegal_aliens[] = {
5700 "_globals_", /* inserted by coff_symtab_read */
5701 NULL
5702 };
5703 int i;
5704
5705 for (i = 0; illegal_aliens[i]; i++)
5706 {
5707 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5708 return 1;
5709 }
5710 return 0;
5711 }
5712
5713 /* An object of this type is passed as the user_data argument to
5714 map_partial_symbol_filenames. */
5715 struct add_partial_filename_data
5716 {
5717 struct filename_seen_cache *filename_seen_cache;
5718 const char *text;
5719 const char *word;
5720 int text_len;
5721 VEC (char_ptr) **list;
5722 };
5723
5724 /* A callback for map_partial_symbol_filenames. */
5725
5726 static void
5727 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5728 void *user_data)
5729 {
5730 struct add_partial_filename_data *data = user_data;
5731
5732 if (not_interesting_fname (filename))
5733 return;
5734 if (!filename_seen (data->filename_seen_cache, filename, 1)
5735 && filename_ncmp (filename, data->text, data->text_len) == 0)
5736 {
5737 /* This file matches for a completion; add it to the
5738 current list of matches. */
5739 add_filename_to_list (filename, data->text, data->word, data->list);
5740 }
5741 else
5742 {
5743 const char *base_name = lbasename (filename);
5744
5745 if (base_name != filename
5746 && !filename_seen (data->filename_seen_cache, base_name, 1)
5747 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5748 add_filename_to_list (base_name, data->text, data->word, data->list);
5749 }
5750 }
5751
5752 /* Return a vector of all source files whose names begin with matching
5753 TEXT. The file names are looked up in the symbol tables of this
5754 program. If the answer is no matchess, then the return value is
5755 NULL. */
5756
5757 VEC (char_ptr) *
5758 make_source_files_completion_list (const char *text, const char *word)
5759 {
5760 struct compunit_symtab *cu;
5761 struct symtab *s;
5762 struct objfile *objfile;
5763 size_t text_len = strlen (text);
5764 VEC (char_ptr) *list = NULL;
5765 const char *base_name;
5766 struct add_partial_filename_data datum;
5767 struct filename_seen_cache *filename_seen_cache;
5768 struct cleanup *back_to, *cache_cleanup;
5769
5770 if (!have_full_symbols () && !have_partial_symbols ())
5771 return list;
5772
5773 back_to = make_cleanup (do_free_completion_list, &list);
5774
5775 filename_seen_cache = create_filename_seen_cache ();
5776 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5777 filename_seen_cache);
5778
5779 ALL_FILETABS (objfile, cu, s)
5780 {
5781 if (not_interesting_fname (s->filename))
5782 continue;
5783 if (!filename_seen (filename_seen_cache, s->filename, 1)
5784 && filename_ncmp (s->filename, text, text_len) == 0)
5785 {
5786 /* This file matches for a completion; add it to the current
5787 list of matches. */
5788 add_filename_to_list (s->filename, text, word, &list);
5789 }
5790 else
5791 {
5792 /* NOTE: We allow the user to type a base name when the
5793 debug info records leading directories, but not the other
5794 way around. This is what subroutines of breakpoint
5795 command do when they parse file names. */
5796 base_name = lbasename (s->filename);
5797 if (base_name != s->filename
5798 && !filename_seen (filename_seen_cache, base_name, 1)
5799 && filename_ncmp (base_name, text, text_len) == 0)
5800 add_filename_to_list (base_name, text, word, &list);
5801 }
5802 }
5803
5804 datum.filename_seen_cache = filename_seen_cache;
5805 datum.text = text;
5806 datum.word = word;
5807 datum.text_len = text_len;
5808 datum.list = &list;
5809 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5810 0 /*need_fullname*/);
5811
5812 do_cleanups (cache_cleanup);
5813 discard_cleanups (back_to);
5814
5815 return list;
5816 }
5817 \f
5818 /* Track MAIN */
5819
5820 /* Return the "main_info" object for the current program space. If
5821 the object has not yet been created, create it and fill in some
5822 default values. */
5823
5824 static struct main_info *
5825 get_main_info (void)
5826 {
5827 struct main_info *info = program_space_data (current_program_space,
5828 main_progspace_key);
5829
5830 if (info == NULL)
5831 {
5832 /* It may seem strange to store the main name in the progspace
5833 and also in whatever objfile happens to see a main name in
5834 its debug info. The reason for this is mainly historical:
5835 gdb returned "main" as the name even if no function named
5836 "main" was defined the program; and this approach lets us
5837 keep compatibility. */
5838 info = XCNEW (struct main_info);
5839 info->language_of_main = language_unknown;
5840 set_program_space_data (current_program_space, main_progspace_key,
5841 info);
5842 }
5843
5844 return info;
5845 }
5846
5847 /* A cleanup to destroy a struct main_info when a progspace is
5848 destroyed. */
5849
5850 static void
5851 main_info_cleanup (struct program_space *pspace, void *data)
5852 {
5853 struct main_info *info = data;
5854
5855 if (info != NULL)
5856 xfree (info->name_of_main);
5857 xfree (info);
5858 }
5859
5860 static void
5861 set_main_name (const char *name, enum language lang)
5862 {
5863 struct main_info *info = get_main_info ();
5864
5865 if (info->name_of_main != NULL)
5866 {
5867 xfree (info->name_of_main);
5868 info->name_of_main = NULL;
5869 info->language_of_main = language_unknown;
5870 }
5871 if (name != NULL)
5872 {
5873 info->name_of_main = xstrdup (name);
5874 info->language_of_main = lang;
5875 }
5876 }
5877
5878 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5879 accordingly. */
5880
5881 static void
5882 find_main_name (void)
5883 {
5884 const char *new_main_name;
5885 struct objfile *objfile;
5886
5887 /* First check the objfiles to see whether a debuginfo reader has
5888 picked up the appropriate main name. Historically the main name
5889 was found in a more or less random way; this approach instead
5890 relies on the order of objfile creation -- which still isn't
5891 guaranteed to get the correct answer, but is just probably more
5892 accurate. */
5893 ALL_OBJFILES (objfile)
5894 {
5895 if (objfile->per_bfd->name_of_main != NULL)
5896 {
5897 set_main_name (objfile->per_bfd->name_of_main,
5898 objfile->per_bfd->language_of_main);
5899 return;
5900 }
5901 }
5902
5903 /* Try to see if the main procedure is in Ada. */
5904 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5905 be to add a new method in the language vector, and call this
5906 method for each language until one of them returns a non-empty
5907 name. This would allow us to remove this hard-coded call to
5908 an Ada function. It is not clear that this is a better approach
5909 at this point, because all methods need to be written in a way
5910 such that false positives never be returned. For instance, it is
5911 important that a method does not return a wrong name for the main
5912 procedure if the main procedure is actually written in a different
5913 language. It is easy to guaranty this with Ada, since we use a
5914 special symbol generated only when the main in Ada to find the name
5915 of the main procedure. It is difficult however to see how this can
5916 be guarantied for languages such as C, for instance. This suggests
5917 that order of call for these methods becomes important, which means
5918 a more complicated approach. */
5919 new_main_name = ada_main_name ();
5920 if (new_main_name != NULL)
5921 {
5922 set_main_name (new_main_name, language_ada);
5923 return;
5924 }
5925
5926 new_main_name = d_main_name ();
5927 if (new_main_name != NULL)
5928 {
5929 set_main_name (new_main_name, language_d);
5930 return;
5931 }
5932
5933 new_main_name = go_main_name ();
5934 if (new_main_name != NULL)
5935 {
5936 set_main_name (new_main_name, language_go);
5937 return;
5938 }
5939
5940 new_main_name = pascal_main_name ();
5941 if (new_main_name != NULL)
5942 {
5943 set_main_name (new_main_name, language_pascal);
5944 return;
5945 }
5946
5947 /* The languages above didn't identify the name of the main procedure.
5948 Fallback to "main". */
5949 set_main_name ("main", language_unknown);
5950 }
5951
5952 char *
5953 main_name (void)
5954 {
5955 struct main_info *info = get_main_info ();
5956
5957 if (info->name_of_main == NULL)
5958 find_main_name ();
5959
5960 return info->name_of_main;
5961 }
5962
5963 /* Return the language of the main function. If it is not known,
5964 return language_unknown. */
5965
5966 enum language
5967 main_language (void)
5968 {
5969 struct main_info *info = get_main_info ();
5970
5971 if (info->name_of_main == NULL)
5972 find_main_name ();
5973
5974 return info->language_of_main;
5975 }
5976
5977 /* Handle ``executable_changed'' events for the symtab module. */
5978
5979 static void
5980 symtab_observer_executable_changed (void)
5981 {
5982 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5983 set_main_name (NULL, language_unknown);
5984 }
5985
5986 /* Return 1 if the supplied producer string matches the ARM RealView
5987 compiler (armcc). */
5988
5989 int
5990 producer_is_realview (const char *producer)
5991 {
5992 static const char *const arm_idents[] = {
5993 "ARM C Compiler, ADS",
5994 "Thumb C Compiler, ADS",
5995 "ARM C++ Compiler, ADS",
5996 "Thumb C++ Compiler, ADS",
5997 "ARM/Thumb C/C++ Compiler, RVCT",
5998 "ARM C/C++ Compiler, RVCT"
5999 };
6000 int i;
6001
6002 if (producer == NULL)
6003 return 0;
6004
6005 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6006 if (startswith (producer, arm_idents[i]))
6007 return 1;
6008
6009 return 0;
6010 }
6011
6012 \f
6013
6014 /* The next index to hand out in response to a registration request. */
6015
6016 static int next_aclass_value = LOC_FINAL_VALUE;
6017
6018 /* The maximum number of "aclass" registrations we support. This is
6019 constant for convenience. */
6020 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6021
6022 /* The objects representing the various "aclass" values. The elements
6023 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6024 elements are those registered at gdb initialization time. */
6025
6026 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6027
6028 /* The globally visible pointer. This is separate from 'symbol_impl'
6029 so that it can be const. */
6030
6031 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6032
6033 /* Make sure we saved enough room in struct symbol. */
6034
6035 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6036
6037 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6038 is the ops vector associated with this index. This returns the new
6039 index, which should be used as the aclass_index field for symbols
6040 of this type. */
6041
6042 int
6043 register_symbol_computed_impl (enum address_class aclass,
6044 const struct symbol_computed_ops *ops)
6045 {
6046 int result = next_aclass_value++;
6047
6048 gdb_assert (aclass == LOC_COMPUTED);
6049 gdb_assert (result < MAX_SYMBOL_IMPLS);
6050 symbol_impl[result].aclass = aclass;
6051 symbol_impl[result].ops_computed = ops;
6052
6053 /* Sanity check OPS. */
6054 gdb_assert (ops != NULL);
6055 gdb_assert (ops->tracepoint_var_ref != NULL);
6056 gdb_assert (ops->describe_location != NULL);
6057 gdb_assert (ops->read_needs_frame != NULL);
6058 gdb_assert (ops->read_variable != NULL);
6059
6060 return result;
6061 }
6062
6063 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6064 OPS is the ops vector associated with this index. This returns the
6065 new index, which should be used as the aclass_index field for symbols
6066 of this type. */
6067
6068 int
6069 register_symbol_block_impl (enum address_class aclass,
6070 const struct symbol_block_ops *ops)
6071 {
6072 int result = next_aclass_value++;
6073
6074 gdb_assert (aclass == LOC_BLOCK);
6075 gdb_assert (result < MAX_SYMBOL_IMPLS);
6076 symbol_impl[result].aclass = aclass;
6077 symbol_impl[result].ops_block = ops;
6078
6079 /* Sanity check OPS. */
6080 gdb_assert (ops != NULL);
6081 gdb_assert (ops->find_frame_base_location != NULL);
6082
6083 return result;
6084 }
6085
6086 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6087 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6088 this index. This returns the new index, which should be used as
6089 the aclass_index field for symbols of this type. */
6090
6091 int
6092 register_symbol_register_impl (enum address_class aclass,
6093 const struct symbol_register_ops *ops)
6094 {
6095 int result = next_aclass_value++;
6096
6097 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6098 gdb_assert (result < MAX_SYMBOL_IMPLS);
6099 symbol_impl[result].aclass = aclass;
6100 symbol_impl[result].ops_register = ops;
6101
6102 return result;
6103 }
6104
6105 /* Initialize elements of 'symbol_impl' for the constants in enum
6106 address_class. */
6107
6108 static void
6109 initialize_ordinary_address_classes (void)
6110 {
6111 int i;
6112
6113 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6114 symbol_impl[i].aclass = i;
6115 }
6116
6117 \f
6118
6119 /* Helper function to initialize the fields of an objfile-owned symbol.
6120 It assumed that *SYM is already all zeroes. */
6121
6122 static void
6123 initialize_objfile_symbol_1 (struct symbol *sym)
6124 {
6125 SYMBOL_OBJFILE_OWNED (sym) = 1;
6126 SYMBOL_SECTION (sym) = -1;
6127 }
6128
6129 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6130
6131 void
6132 initialize_objfile_symbol (struct symbol *sym)
6133 {
6134 memset (sym, 0, sizeof (*sym));
6135 initialize_objfile_symbol_1 (sym);
6136 }
6137
6138 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6139 obstack. */
6140
6141 struct symbol *
6142 allocate_symbol (struct objfile *objfile)
6143 {
6144 struct symbol *result;
6145
6146 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6147 initialize_objfile_symbol_1 (result);
6148
6149 return result;
6150 }
6151
6152 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6153 obstack. */
6154
6155 struct template_symbol *
6156 allocate_template_symbol (struct objfile *objfile)
6157 {
6158 struct template_symbol *result;
6159
6160 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6161 initialize_objfile_symbol_1 (&result->base);
6162
6163 return result;
6164 }
6165
6166 /* See symtab.h. */
6167
6168 struct objfile *
6169 symbol_objfile (const struct symbol *symbol)
6170 {
6171 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6172 return SYMTAB_OBJFILE (symbol->owner.symtab);
6173 }
6174
6175 /* See symtab.h. */
6176
6177 struct gdbarch *
6178 symbol_arch (const struct symbol *symbol)
6179 {
6180 if (!SYMBOL_OBJFILE_OWNED (symbol))
6181 return symbol->owner.arch;
6182 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6183 }
6184
6185 /* See symtab.h. */
6186
6187 struct symtab *
6188 symbol_symtab (const struct symbol *symbol)
6189 {
6190 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6191 return symbol->owner.symtab;
6192 }
6193
6194 /* See symtab.h. */
6195
6196 void
6197 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6198 {
6199 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6200 symbol->owner.symtab = symtab;
6201 }
6202
6203 \f
6204
6205 void
6206 _initialize_symtab (void)
6207 {
6208 initialize_ordinary_address_classes ();
6209
6210 main_progspace_key
6211 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6212
6213 symbol_cache_key
6214 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6215
6216 add_info ("variables", variables_info, _("\
6217 All global and static variable names, or those matching REGEXP."));
6218 if (dbx_commands)
6219 add_com ("whereis", class_info, variables_info, _("\
6220 All global and static variable names, or those matching REGEXP."));
6221
6222 add_info ("functions", functions_info,
6223 _("All function names, or those matching REGEXP."));
6224
6225 /* FIXME: This command has at least the following problems:
6226 1. It prints builtin types (in a very strange and confusing fashion).
6227 2. It doesn't print right, e.g. with
6228 typedef struct foo *FOO
6229 type_print prints "FOO" when we want to make it (in this situation)
6230 print "struct foo *".
6231 I also think "ptype" or "whatis" is more likely to be useful (but if
6232 there is much disagreement "info types" can be fixed). */
6233 add_info ("types", types_info,
6234 _("All type names, or those matching REGEXP."));
6235
6236 add_info ("sources", sources_info,
6237 _("Source files in the program."));
6238
6239 add_com ("rbreak", class_breakpoint, rbreak_command,
6240 _("Set a breakpoint for all functions matching REGEXP."));
6241
6242 if (xdb_commands)
6243 {
6244 add_com ("lf", class_info, sources_info,
6245 _("Source files in the program"));
6246 add_com ("lg", class_info, variables_info, _("\
6247 All global and static variable names, or those matching REGEXP."));
6248 }
6249
6250 add_setshow_enum_cmd ("multiple-symbols", no_class,
6251 multiple_symbols_modes, &multiple_symbols_mode,
6252 _("\
6253 Set the debugger behavior when more than one symbol are possible matches\n\
6254 in an expression."), _("\
6255 Show how the debugger handles ambiguities in expressions."), _("\
6256 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6257 NULL, NULL, &setlist, &showlist);
6258
6259 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6260 &basenames_may_differ, _("\
6261 Set whether a source file may have multiple base names."), _("\
6262 Show whether a source file may have multiple base names."), _("\
6263 (A \"base name\" is the name of a file with the directory part removed.\n\
6264 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6265 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6266 before comparing them. Canonicalization is an expensive operation,\n\
6267 but it allows the same file be known by more than one base name.\n\
6268 If not set (the default), all source files are assumed to have just\n\
6269 one base name, and gdb will do file name comparisons more efficiently."),
6270 NULL, NULL,
6271 &setlist, &showlist);
6272
6273 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6274 _("Set debugging of symbol table creation."),
6275 _("Show debugging of symbol table creation."), _("\
6276 When enabled (non-zero), debugging messages are printed when building\n\
6277 symbol tables. A value of 1 (one) normally provides enough information.\n\
6278 A value greater than 1 provides more verbose information."),
6279 NULL,
6280 NULL,
6281 &setdebuglist, &showdebuglist);
6282
6283 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6284 _("\
6285 Set debugging of symbol lookup."), _("\
6286 Show debugging of symbol lookup."), _("\
6287 When enabled (non-zero), symbol lookups are logged."),
6288 NULL, NULL,
6289 &setdebuglist, &showdebuglist);
6290
6291 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6292 &new_symbol_cache_size,
6293 _("Set the size of the symbol cache."),
6294 _("Show the size of the symbol cache."), _("\
6295 The size of the symbol cache.\n\
6296 If zero then the symbol cache is disabled."),
6297 set_symbol_cache_size_handler, NULL,
6298 &maintenance_set_cmdlist,
6299 &maintenance_show_cmdlist);
6300
6301 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6302 _("Dump the symbol cache for each program space."),
6303 &maintenanceprintlist);
6304
6305 add_cmd ("symbol-cache-statistics", class_maintenance,
6306 maintenance_print_symbol_cache_statistics,
6307 _("Print symbol cache statistics for each program space."),
6308 &maintenanceprintlist);
6309
6310 add_cmd ("flush-symbol-cache", class_maintenance,
6311 maintenance_flush_symbol_cache,
6312 _("Flush the symbol cache for each program space."),
6313 &maintenancelist);
6314
6315 observer_attach_executable_changed (symtab_observer_executable_changed);
6316 observer_attach_new_objfile (symtab_new_objfile_observer);
6317 observer_attach_free_objfile (symtab_free_objfile_observer);
6318 }