]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
Remove ALL_PSPACES
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 language_sniff_from_mangled_name (lang, mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 for (struct program_space *pspace : program_spaces)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Mark SYMBOL as found in SLOT.
1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1376 necessarily the objfile the symbol was found in. */
1377
1378 static void
1379 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1380 struct symbol_cache_slot *slot,
1381 struct objfile *objfile_context,
1382 struct symbol *symbol,
1383 const struct block *block)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.found.symbol = symbol;
1395 slot->value.found.block = block;
1396 }
1397
1398 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1401
1402 static void
1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1404 struct symbol_cache_slot *slot,
1405 struct objfile *objfile_context,
1406 const char *name, domain_enum domain)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_NOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.not_found.name = xstrdup (name);
1418 slot->value.not_found.domain = domain;
1419 }
1420
1421 /* Flush the symbol cache of PSPACE. */
1422
1423 static void
1424 symbol_cache_flush (struct program_space *pspace)
1425 {
1426 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 int pass;
1428
1429 if (cache == NULL)
1430 return;
1431 if (cache->global_symbols == NULL)
1432 {
1433 gdb_assert (symbol_cache_size == 0);
1434 gdb_assert (cache->static_symbols == NULL);
1435 return;
1436 }
1437
1438 /* If the cache is untouched since the last flush, early exit.
1439 This is important for performance during the startup of a program linked
1440 with 100s (or 1000s) of shared libraries. */
1441 if (cache->global_symbols->misses == 0
1442 && cache->static_symbols->misses == 0)
1443 return;
1444
1445 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1446 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1447
1448 for (pass = 0; pass < 2; ++pass)
1449 {
1450 struct block_symbol_cache *bsc
1451 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1452 unsigned int i;
1453
1454 for (i = 0; i < bsc->size; ++i)
1455 symbol_cache_clear_slot (&bsc->symbols[i]);
1456 }
1457
1458 cache->global_symbols->hits = 0;
1459 cache->global_symbols->misses = 0;
1460 cache->global_symbols->collisions = 0;
1461 cache->static_symbols->hits = 0;
1462 cache->static_symbols->misses = 0;
1463 cache->static_symbols->collisions = 0;
1464 }
1465
1466 /* Dump CACHE. */
1467
1468 static void
1469 symbol_cache_dump (const struct symbol_cache *cache)
1470 {
1471 int pass;
1472
1473 if (cache->global_symbols == NULL)
1474 {
1475 printf_filtered (" <disabled>\n");
1476 return;
1477 }
1478
1479 for (pass = 0; pass < 2; ++pass)
1480 {
1481 const struct block_symbol_cache *bsc
1482 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 unsigned int i;
1484
1485 if (pass == 0)
1486 printf_filtered ("Global symbols:\n");
1487 else
1488 printf_filtered ("Static symbols:\n");
1489
1490 for (i = 0; i < bsc->size; ++i)
1491 {
1492 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493
1494 QUIT;
1495
1496 switch (slot->state)
1497 {
1498 case SYMBOL_SLOT_UNUSED:
1499 break;
1500 case SYMBOL_SLOT_NOT_FOUND:
1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1502 host_address_to_string (slot->objfile_context),
1503 slot->value.not_found.name,
1504 domain_name (slot->value.not_found.domain));
1505 break;
1506 case SYMBOL_SLOT_FOUND:
1507 {
1508 struct symbol *found = slot->value.found.symbol;
1509 const struct objfile *context = slot->objfile_context;
1510
1511 printf_filtered (" [%4u] = %s, %s %s\n", i,
1512 host_address_to_string (context),
1513 found->print_name (),
1514 domain_name (SYMBOL_DOMAIN (found)));
1515 break;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* The "mt print symbol-cache" command. */
1523
1524 static void
1525 maintenance_print_symbol_cache (const char *args, int from_tty)
1526 {
1527 for (struct program_space *pspace : program_spaces)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache = symbol_cache_key.get (pspace);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 for (struct program_space *pspace : program_spaces)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1645 objfile);
1646 if (msym)
1647 ginfo->section = MSYMBOL_SECTION (msym);
1648 else
1649 {
1650 /* Static, function-local variables do appear in the linker
1651 (minimal) symbols, but are frequently given names that won't
1652 be found via lookup_minimal_symbol(). E.g., it has been
1653 observed in frv-uclinux (ELF) executables that a static,
1654 function-local variable named "foo" might appear in the
1655 linker symbols as "foo.6" or "foo.3". Thus, there is no
1656 point in attempting to extend the lookup-by-name mechanism to
1657 handle this case due to the fact that there can be multiple
1658 names.
1659
1660 So, instead, search the section table when lookup by name has
1661 failed. The ``addr'' and ``endaddr'' fields may have already
1662 been relocated. If so, the relocation offset needs to be
1663 subtracted from these values when performing the comparison.
1664 We unconditionally subtract it, because, when no relocation
1665 has been performed, the value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = objfile->section_offsets[idx];
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (sym, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.c_str ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1834 if (canon != nullptr)
1835 return storage.set_malloc_ptr (std::move (canon));
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->la_search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->la_name_of_this == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = lookup_objfile_from_block (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->la_name, host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->la_name_of_this,
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 sym->print_name (),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = lookup_objfile_from_block (block);
2016
2017 fprintf_unfiltered (gdb_stdlog,
2018 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2019 name, host_address_to_string (block),
2020 objfile != NULL
2021 ? objfile_debug_name (objfile) : "NULL",
2022 domain_name (domain), language_str (language));
2023 }
2024
2025 /* Make sure we do something sensible with is_a_field_of_this, since
2026 the callers that set this parameter to some non-null value will
2027 certainly use it later. If we don't set it, the contents of
2028 is_a_field_of_this are undefined. */
2029 if (is_a_field_of_this != NULL)
2030 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2031
2032 /* Search specified block and its superiors. Don't search
2033 STATIC_BLOCK or GLOBAL_BLOCK. */
2034
2035 result = lookup_local_symbol (name, match_type, block, domain, language);
2036 if (result.symbol != NULL)
2037 {
2038 if (symbol_lookup_debug)
2039 {
2040 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2041 host_address_to_string (result.symbol));
2042 }
2043 return result;
2044 }
2045
2046 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2047 check to see if NAME is a field of `this'. */
2048
2049 langdef = language_def (language);
2050
2051 /* Don't do this check if we are searching for a struct. It will
2052 not be found by check_field, but will be found by other
2053 means. */
2054 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2055 {
2056 result = lookup_language_this (langdef, block);
2057
2058 if (result.symbol)
2059 {
2060 struct type *t = result.symbol->type;
2061
2062 /* I'm not really sure that type of this can ever
2063 be typedefed; just be safe. */
2064 t = check_typedef (t);
2065 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2066 t = TYPE_TARGET_TYPE (t);
2067
2068 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2069 && TYPE_CODE (t) != TYPE_CODE_UNION)
2070 error (_("Internal error: `%s' is not an aggregate"),
2071 langdef->la_name_of_this);
2072
2073 if (check_field (t, name, is_a_field_of_this))
2074 {
2075 if (symbol_lookup_debug)
2076 {
2077 fprintf_unfiltered (gdb_stdlog,
2078 "lookup_symbol_aux (...) = NULL\n");
2079 }
2080 return {};
2081 }
2082 }
2083 }
2084
2085 /* Now do whatever is appropriate for LANGUAGE to look
2086 up static and global variables. */
2087
2088 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2089 if (result.symbol != NULL)
2090 {
2091 if (symbol_lookup_debug)
2092 {
2093 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2094 host_address_to_string (result.symbol));
2095 }
2096 return result;
2097 }
2098
2099 /* Now search all static file-level symbols. Not strictly correct,
2100 but more useful than an error. */
2101
2102 result = lookup_static_symbol (name, domain);
2103 if (symbol_lookup_debug)
2104 {
2105 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2106 result.symbol != NULL
2107 ? host_address_to_string (result.symbol)
2108 : "NULL");
2109 }
2110 return result;
2111 }
2112
2113 /* Check to see if the symbol is defined in BLOCK or its superiors.
2114 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2115
2116 static struct block_symbol
2117 lookup_local_symbol (const char *name,
2118 symbol_name_match_type match_type,
2119 const struct block *block,
2120 const domain_enum domain,
2121 enum language language)
2122 {
2123 struct symbol *sym;
2124 const struct block *static_block = block_static_block (block);
2125 const char *scope = block_scope (block);
2126
2127 /* Check if either no block is specified or it's a global block. */
2128
2129 if (static_block == NULL)
2130 return {};
2131
2132 while (block != static_block)
2133 {
2134 sym = lookup_symbol_in_block (name, match_type, block, domain);
2135 if (sym != NULL)
2136 return (struct block_symbol) {sym, block};
2137
2138 if (language == language_cplus || language == language_fortran)
2139 {
2140 struct block_symbol blocksym
2141 = cp_lookup_symbol_imports_or_template (scope, name, block,
2142 domain);
2143
2144 if (blocksym.symbol != NULL)
2145 return blocksym;
2146 }
2147
2148 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2149 break;
2150 block = BLOCK_SUPERBLOCK (block);
2151 }
2152
2153 /* We've reached the end of the function without finding a result. */
2154
2155 return {};
2156 }
2157
2158 /* See symtab.h. */
2159
2160 struct objfile *
2161 lookup_objfile_from_block (const struct block *block)
2162 {
2163 if (block == NULL)
2164 return NULL;
2165
2166 block = block_global_block (block);
2167 /* Look through all blockvectors. */
2168 for (objfile *obj : current_program_space->objfiles ())
2169 {
2170 for (compunit_symtab *cust : obj->compunits ())
2171 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2172 GLOBAL_BLOCK))
2173 {
2174 if (obj->separate_debug_objfile_backlink)
2175 obj = obj->separate_debug_objfile_backlink;
2176
2177 return obj;
2178 }
2179 }
2180
2181 return NULL;
2182 }
2183
2184 /* See symtab.h. */
2185
2186 struct symbol *
2187 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2188 const struct block *block,
2189 const domain_enum domain)
2190 {
2191 struct symbol *sym;
2192
2193 if (symbol_lookup_debug > 1)
2194 {
2195 struct objfile *objfile = lookup_objfile_from_block (block);
2196
2197 fprintf_unfiltered (gdb_stdlog,
2198 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2199 name, host_address_to_string (block),
2200 objfile_debug_name (objfile),
2201 domain_name (domain));
2202 }
2203
2204 sym = block_lookup_symbol (block, name, match_type, domain);
2205 if (sym)
2206 {
2207 if (symbol_lookup_debug > 1)
2208 {
2209 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2210 host_address_to_string (sym));
2211 }
2212 return fixup_symbol_section (sym, NULL);
2213 }
2214
2215 if (symbol_lookup_debug > 1)
2216 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2217 return NULL;
2218 }
2219
2220 /* See symtab.h. */
2221
2222 struct block_symbol
2223 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2224 enum block_enum block_index,
2225 const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2231 {
2232 struct block_symbol result
2233 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2234
2235 if (result.symbol != nullptr)
2236 return result;
2237 }
2238
2239 return {};
2240 }
2241
2242 /* Check to see if the symbol is defined in one of the OBJFILE's
2243 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2244 depending on whether or not we want to search global symbols or
2245 static symbols. */
2246
2247 static struct block_symbol
2248 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2249 enum block_enum block_index, const char *name,
2250 const domain_enum domain)
2251 {
2252 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2253
2254 if (symbol_lookup_debug > 1)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2258 objfile_debug_name (objfile),
2259 block_index == GLOBAL_BLOCK
2260 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2261 name, domain_name (domain));
2262 }
2263
2264 struct block_symbol other;
2265 other.symbol = NULL;
2266 for (compunit_symtab *cust : objfile->compunits ())
2267 {
2268 const struct blockvector *bv;
2269 const struct block *block;
2270 struct block_symbol result;
2271
2272 bv = COMPUNIT_BLOCKVECTOR (cust);
2273 block = BLOCKVECTOR_BLOCK (bv, block_index);
2274 result.symbol = block_lookup_symbol_primary (block, name, domain);
2275 result.block = block;
2276 if (result.symbol == NULL)
2277 continue;
2278 if (best_symbol (result.symbol, domain))
2279 {
2280 other = result;
2281 break;
2282 }
2283 if (symbol_matches_domain (result.symbol->language (),
2284 SYMBOL_DOMAIN (result.symbol), domain))
2285 {
2286 struct symbol *better
2287 = better_symbol (other.symbol, result.symbol, domain);
2288 if (better != other.symbol)
2289 {
2290 other.symbol = better;
2291 other.block = block;
2292 }
2293 }
2294 }
2295
2296 if (other.symbol != NULL)
2297 {
2298 if (symbol_lookup_debug > 1)
2299 {
2300 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2301 host_address_to_string (other.symbol),
2302 host_address_to_string (other.block));
2303 }
2304 other.symbol = fixup_symbol_section (other.symbol, objfile);
2305 return other;
2306 }
2307
2308 if (symbol_lookup_debug > 1)
2309 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2310 return {};
2311 }
2312
2313 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2314 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2315 and all associated separate debug objfiles.
2316
2317 Normally we only look in OBJFILE, and not any separate debug objfiles
2318 because the outer loop will cause them to be searched too. This case is
2319 different. Here we're called from search_symbols where it will only
2320 call us for the objfile that contains a matching minsym. */
2321
2322 static struct block_symbol
2323 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2324 const char *linkage_name,
2325 domain_enum domain)
2326 {
2327 enum language lang = current_language->la_language;
2328 struct objfile *main_objfile;
2329
2330 demangle_result_storage storage;
2331 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2332
2333 if (objfile->separate_debug_objfile_backlink)
2334 main_objfile = objfile->separate_debug_objfile_backlink;
2335 else
2336 main_objfile = objfile;
2337
2338 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2339 {
2340 struct block_symbol result;
2341
2342 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2343 modified_name, domain);
2344 if (result.symbol == NULL)
2345 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2346 modified_name, domain);
2347 if (result.symbol != NULL)
2348 return result;
2349 }
2350
2351 return {};
2352 }
2353
2354 /* A helper function that throws an exception when a symbol was found
2355 in a psymtab but not in a symtab. */
2356
2357 static void ATTRIBUTE_NORETURN
2358 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2359 struct compunit_symtab *cust)
2360 {
2361 error (_("\
2362 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2363 %s may be an inlined function, or may be a template function\n \
2364 (if a template, try specifying an instantiation: %s<type>)."),
2365 block_index == GLOBAL_BLOCK ? "global" : "static",
2366 name,
2367 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2368 name, name);
2369 }
2370
2371 /* A helper function for various lookup routines that interfaces with
2372 the "quick" symbol table functions. */
2373
2374 static struct block_symbol
2375 lookup_symbol_via_quick_fns (struct objfile *objfile,
2376 enum block_enum block_index, const char *name,
2377 const domain_enum domain)
2378 {
2379 struct compunit_symtab *cust;
2380 const struct blockvector *bv;
2381 const struct block *block;
2382 struct block_symbol result;
2383
2384 if (!objfile->sf)
2385 return {};
2386
2387 if (symbol_lookup_debug > 1)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2391 objfile_debug_name (objfile),
2392 block_index == GLOBAL_BLOCK
2393 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2394 name, domain_name (domain));
2395 }
2396
2397 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2398 if (cust == NULL)
2399 {
2400 if (symbol_lookup_debug > 1)
2401 {
2402 fprintf_unfiltered (gdb_stdlog,
2403 "lookup_symbol_via_quick_fns (...) = NULL\n");
2404 }
2405 return {};
2406 }
2407
2408 bv = COMPUNIT_BLOCKVECTOR (cust);
2409 block = BLOCKVECTOR_BLOCK (bv, block_index);
2410 result.symbol = block_lookup_symbol (block, name,
2411 symbol_name_match_type::FULL, domain);
2412 if (result.symbol == NULL)
2413 error_in_psymtab_expansion (block_index, name, cust);
2414
2415 if (symbol_lookup_debug > 1)
2416 {
2417 fprintf_unfiltered (gdb_stdlog,
2418 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2419 host_address_to_string (result.symbol),
2420 host_address_to_string (block));
2421 }
2422
2423 result.symbol = fixup_symbol_section (result.symbol, objfile);
2424 result.block = block;
2425 return result;
2426 }
2427
2428 /* See symtab.h. */
2429
2430 struct block_symbol
2431 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2432 const char *name,
2433 const struct block *block,
2434 const domain_enum domain)
2435 {
2436 struct block_symbol result;
2437
2438 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2439 the current objfile. Searching the current objfile first is useful
2440 for both matching user expectations as well as performance. */
2441
2442 result = lookup_symbol_in_static_block (name, block, domain);
2443 if (result.symbol != NULL)
2444 return result;
2445
2446 /* If we didn't find a definition for a builtin type in the static block,
2447 search for it now. This is actually the right thing to do and can be
2448 a massive performance win. E.g., when debugging a program with lots of
2449 shared libraries we could search all of them only to find out the
2450 builtin type isn't defined in any of them. This is common for types
2451 like "void". */
2452 if (domain == VAR_DOMAIN)
2453 {
2454 struct gdbarch *gdbarch;
2455
2456 if (block == NULL)
2457 gdbarch = target_gdbarch ();
2458 else
2459 gdbarch = block_gdbarch (block);
2460 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2461 gdbarch, name);
2462 result.block = NULL;
2463 if (result.symbol != NULL)
2464 return result;
2465 }
2466
2467 return lookup_global_symbol (name, block, domain);
2468 }
2469
2470 /* See symtab.h. */
2471
2472 struct block_symbol
2473 lookup_symbol_in_static_block (const char *name,
2474 const struct block *block,
2475 const domain_enum domain)
2476 {
2477 const struct block *static_block = block_static_block (block);
2478 struct symbol *sym;
2479
2480 if (static_block == NULL)
2481 return {};
2482
2483 if (symbol_lookup_debug)
2484 {
2485 struct objfile *objfile = lookup_objfile_from_block (static_block);
2486
2487 fprintf_unfiltered (gdb_stdlog,
2488 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2489 " %s)\n",
2490 name,
2491 host_address_to_string (block),
2492 objfile_debug_name (objfile),
2493 domain_name (domain));
2494 }
2495
2496 sym = lookup_symbol_in_block (name,
2497 symbol_name_match_type::FULL,
2498 static_block, domain);
2499 if (symbol_lookup_debug)
2500 {
2501 fprintf_unfiltered (gdb_stdlog,
2502 "lookup_symbol_in_static_block (...) = %s\n",
2503 sym != NULL ? host_address_to_string (sym) : "NULL");
2504 }
2505 return (struct block_symbol) {sym, static_block};
2506 }
2507
2508 /* Perform the standard symbol lookup of NAME in OBJFILE:
2509 1) First search expanded symtabs, and if not found
2510 2) Search the "quick" symtabs (partial or .gdb_index).
2511 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2512
2513 static struct block_symbol
2514 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2515 const char *name, const domain_enum domain)
2516 {
2517 struct block_symbol result;
2518
2519 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2520
2521 if (symbol_lookup_debug)
2522 {
2523 fprintf_unfiltered (gdb_stdlog,
2524 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2525 objfile_debug_name (objfile),
2526 block_index == GLOBAL_BLOCK
2527 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2528 name, domain_name (domain));
2529 }
2530
2531 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2532 name, domain);
2533 if (result.symbol != NULL)
2534 {
2535 if (symbol_lookup_debug)
2536 {
2537 fprintf_unfiltered (gdb_stdlog,
2538 "lookup_symbol_in_objfile (...) = %s"
2539 " (in symtabs)\n",
2540 host_address_to_string (result.symbol));
2541 }
2542 return result;
2543 }
2544
2545 result = lookup_symbol_via_quick_fns (objfile, block_index,
2546 name, domain);
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s%s\n",
2551 result.symbol != NULL
2552 ? host_address_to_string (result.symbol)
2553 : "NULL",
2554 result.symbol != NULL ? " (via quick fns)" : "");
2555 }
2556 return result;
2557 }
2558
2559 /* Find the language for partial symbol with NAME. */
2560
2561 static enum language
2562 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2563 {
2564 for (objfile *objfile : current_program_space->objfiles ())
2565 {
2566 if (objfile->sf && objfile->sf->qf
2567 && objfile->sf->qf->lookup_global_symbol_language)
2568 continue;
2569 return language_unknown;
2570 }
2571
2572 for (objfile *objfile : current_program_space->objfiles ())
2573 {
2574 bool symbol_found_p;
2575 enum language lang
2576 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2577 &symbol_found_p);
2578 if (!symbol_found_p)
2579 continue;
2580 return lang;
2581 }
2582
2583 return language_unknown;
2584 }
2585
2586 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2587
2588 struct global_or_static_sym_lookup_data
2589 {
2590 /* The name of the symbol we are searching for. */
2591 const char *name;
2592
2593 /* The domain to use for our search. */
2594 domain_enum domain;
2595
2596 /* The block index in which to search. */
2597 enum block_enum block_index;
2598
2599 /* The field where the callback should store the symbol if found.
2600 It should be initialized to {NULL, NULL} before the search is started. */
2601 struct block_symbol result;
2602 };
2603
2604 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2605 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2606 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2607 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2608
2609 static int
2610 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2611 void *cb_data)
2612 {
2613 struct global_or_static_sym_lookup_data *data =
2614 (struct global_or_static_sym_lookup_data *) cb_data;
2615
2616 gdb_assert (data->result.symbol == NULL
2617 && data->result.block == NULL);
2618
2619 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2620 data->name, data->domain);
2621
2622 /* If we found a match, tell the iterator to stop. Otherwise,
2623 keep going. */
2624 return (data->result.symbol != NULL);
2625 }
2626
2627 /* This function contains the common code of lookup_{global,static}_symbol.
2628 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2629 the objfile to start the lookup in. */
2630
2631 static struct block_symbol
2632 lookup_global_or_static_symbol (const char *name,
2633 enum block_enum block_index,
2634 struct objfile *objfile,
2635 const domain_enum domain)
2636 {
2637 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2638 struct block_symbol result;
2639 struct global_or_static_sym_lookup_data lookup_data;
2640 struct block_symbol_cache *bsc;
2641 struct symbol_cache_slot *slot;
2642
2643 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2644 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2645
2646 /* First see if we can find the symbol in the cache.
2647 This works because we use the current objfile to qualify the lookup. */
2648 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2649 &bsc, &slot);
2650 if (result.symbol != NULL)
2651 {
2652 if (SYMBOL_LOOKUP_FAILED_P (result))
2653 return {};
2654 return result;
2655 }
2656
2657 /* Do a global search (of global blocks, heh). */
2658 if (result.symbol == NULL)
2659 {
2660 memset (&lookup_data, 0, sizeof (lookup_data));
2661 lookup_data.name = name;
2662 lookup_data.block_index = block_index;
2663 lookup_data.domain = domain;
2664 gdbarch_iterate_over_objfiles_in_search_order
2665 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2666 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2667 result = lookup_data.result;
2668 }
2669
2670 if (result.symbol != NULL)
2671 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2672 else
2673 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2674
2675 return result;
2676 }
2677
2678 /* See symtab.h. */
2679
2680 struct block_symbol
2681 lookup_static_symbol (const char *name, const domain_enum domain)
2682 {
2683 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2684 }
2685
2686 /* See symtab.h. */
2687
2688 struct block_symbol
2689 lookup_global_symbol (const char *name,
2690 const struct block *block,
2691 const domain_enum domain)
2692 {
2693 /* If a block was passed in, we want to search the corresponding
2694 global block first. This yields "more expected" behavior, and is
2695 needed to support 'FILENAME'::VARIABLE lookups. */
2696 const struct block *global_block = block_global_block (block);
2697 symbol *sym = NULL;
2698 if (global_block != nullptr)
2699 {
2700 sym = lookup_symbol_in_block (name,
2701 symbol_name_match_type::FULL,
2702 global_block, domain);
2703 if (sym != NULL && best_symbol (sym, domain))
2704 return { sym, global_block };
2705 }
2706
2707 struct objfile *objfile = lookup_objfile_from_block (block);
2708 block_symbol bs
2709 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2710 if (better_symbol (sym, bs.symbol, domain) == sym)
2711 return { sym, global_block };
2712 else
2713 return bs;
2714 }
2715
2716 bool
2717 symbol_matches_domain (enum language symbol_language,
2718 domain_enum symbol_domain,
2719 domain_enum domain)
2720 {
2721 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2722 Similarly, any Ada type declaration implicitly defines a typedef. */
2723 if (symbol_language == language_cplus
2724 || symbol_language == language_d
2725 || symbol_language == language_ada
2726 || symbol_language == language_rust)
2727 {
2728 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2729 && symbol_domain == STRUCT_DOMAIN)
2730 return true;
2731 }
2732 /* For all other languages, strict match is required. */
2733 return (symbol_domain == domain);
2734 }
2735
2736 /* See symtab.h. */
2737
2738 struct type *
2739 lookup_transparent_type (const char *name)
2740 {
2741 return current_language->la_lookup_transparent_type (name);
2742 }
2743
2744 /* A helper for basic_lookup_transparent_type that interfaces with the
2745 "quick" symbol table functions. */
2746
2747 static struct type *
2748 basic_lookup_transparent_type_quick (struct objfile *objfile,
2749 enum block_enum block_index,
2750 const char *name)
2751 {
2752 struct compunit_symtab *cust;
2753 const struct blockvector *bv;
2754 const struct block *block;
2755 struct symbol *sym;
2756
2757 if (!objfile->sf)
2758 return NULL;
2759 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2760 STRUCT_DOMAIN);
2761 if (cust == NULL)
2762 return NULL;
2763
2764 bv = COMPUNIT_BLOCKVECTOR (cust);
2765 block = BLOCKVECTOR_BLOCK (bv, block_index);
2766 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2767 block_find_non_opaque_type, NULL);
2768 if (sym == NULL)
2769 error_in_psymtab_expansion (block_index, name, cust);
2770 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2771 return SYMBOL_TYPE (sym);
2772 }
2773
2774 /* Subroutine of basic_lookup_transparent_type to simplify it.
2775 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2776 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2777
2778 static struct type *
2779 basic_lookup_transparent_type_1 (struct objfile *objfile,
2780 enum block_enum block_index,
2781 const char *name)
2782 {
2783 const struct blockvector *bv;
2784 const struct block *block;
2785 const struct symbol *sym;
2786
2787 for (compunit_symtab *cust : objfile->compunits ())
2788 {
2789 bv = COMPUNIT_BLOCKVECTOR (cust);
2790 block = BLOCKVECTOR_BLOCK (bv, block_index);
2791 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2792 block_find_non_opaque_type, NULL);
2793 if (sym != NULL)
2794 {
2795 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2796 return SYMBOL_TYPE (sym);
2797 }
2798 }
2799
2800 return NULL;
2801 }
2802
2803 /* The standard implementation of lookup_transparent_type. This code
2804 was modeled on lookup_symbol -- the parts not relevant to looking
2805 up types were just left out. In particular it's assumed here that
2806 types are available in STRUCT_DOMAIN and only in file-static or
2807 global blocks. */
2808
2809 struct type *
2810 basic_lookup_transparent_type (const char *name)
2811 {
2812 struct type *t;
2813
2814 /* Now search all the global symbols. Do the symtab's first, then
2815 check the psymtab's. If a psymtab indicates the existence
2816 of the desired name as a global, then do psymtab-to-symtab
2817 conversion on the fly and return the found symbol. */
2818
2819 for (objfile *objfile : current_program_space->objfiles ())
2820 {
2821 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2822 if (t)
2823 return t;
2824 }
2825
2826 for (objfile *objfile : current_program_space->objfiles ())
2827 {
2828 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2829 if (t)
2830 return t;
2831 }
2832
2833 /* Now search the static file-level symbols.
2834 Not strictly correct, but more useful than an error.
2835 Do the symtab's first, then
2836 check the psymtab's. If a psymtab indicates the existence
2837 of the desired name as a file-level static, then do psymtab-to-symtab
2838 conversion on the fly and return the found symbol. */
2839
2840 for (objfile *objfile : current_program_space->objfiles ())
2841 {
2842 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2843 if (t)
2844 return t;
2845 }
2846
2847 for (objfile *objfile : current_program_space->objfiles ())
2848 {
2849 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2850 if (t)
2851 return t;
2852 }
2853
2854 return (struct type *) 0;
2855 }
2856
2857 /* See symtab.h. */
2858
2859 bool
2860 iterate_over_symbols (const struct block *block,
2861 const lookup_name_info &name,
2862 const domain_enum domain,
2863 gdb::function_view<symbol_found_callback_ftype> callback)
2864 {
2865 struct block_iterator iter;
2866 struct symbol *sym;
2867
2868 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2869 {
2870 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2871 {
2872 struct block_symbol block_sym = {sym, block};
2873
2874 if (!callback (&block_sym))
2875 return false;
2876 }
2877 }
2878 return true;
2879 }
2880
2881 /* See symtab.h. */
2882
2883 bool
2884 iterate_over_symbols_terminated
2885 (const struct block *block,
2886 const lookup_name_info &name,
2887 const domain_enum domain,
2888 gdb::function_view<symbol_found_callback_ftype> callback)
2889 {
2890 if (!iterate_over_symbols (block, name, domain, callback))
2891 return false;
2892 struct block_symbol block_sym = {nullptr, block};
2893 return callback (&block_sym);
2894 }
2895
2896 /* Find the compunit symtab associated with PC and SECTION.
2897 This will read in debug info as necessary. */
2898
2899 struct compunit_symtab *
2900 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2901 {
2902 struct compunit_symtab *best_cust = NULL;
2903 CORE_ADDR distance = 0;
2904 struct bound_minimal_symbol msymbol;
2905
2906 /* If we know that this is not a text address, return failure. This is
2907 necessary because we loop based on the block's high and low code
2908 addresses, which do not include the data ranges, and because
2909 we call find_pc_sect_psymtab which has a similar restriction based
2910 on the partial_symtab's texthigh and textlow. */
2911 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2912 if (msymbol.minsym && msymbol.minsym->data_p ())
2913 return NULL;
2914
2915 /* Search all symtabs for the one whose file contains our address, and which
2916 is the smallest of all the ones containing the address. This is designed
2917 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2918 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2919 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2920
2921 This happens for native ecoff format, where code from included files
2922 gets its own symtab. The symtab for the included file should have
2923 been read in already via the dependency mechanism.
2924 It might be swifter to create several symtabs with the same name
2925 like xcoff does (I'm not sure).
2926
2927 It also happens for objfiles that have their functions reordered.
2928 For these, the symtab we are looking for is not necessarily read in. */
2929
2930 for (objfile *obj_file : current_program_space->objfiles ())
2931 {
2932 for (compunit_symtab *cust : obj_file->compunits ())
2933 {
2934 const struct block *b;
2935 const struct blockvector *bv;
2936
2937 bv = COMPUNIT_BLOCKVECTOR (cust);
2938 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2939
2940 if (BLOCK_START (b) <= pc
2941 && BLOCK_END (b) > pc
2942 && (distance == 0
2943 || BLOCK_END (b) - BLOCK_START (b) < distance))
2944 {
2945 /* For an objfile that has its functions reordered,
2946 find_pc_psymtab will find the proper partial symbol table
2947 and we simply return its corresponding symtab. */
2948 /* In order to better support objfiles that contain both
2949 stabs and coff debugging info, we continue on if a psymtab
2950 can't be found. */
2951 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2952 {
2953 struct compunit_symtab *result;
2954
2955 result
2956 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2957 msymbol,
2958 pc,
2959 section,
2960 0);
2961 if (result != NULL)
2962 return result;
2963 }
2964 if (section != 0)
2965 {
2966 struct block_iterator iter;
2967 struct symbol *sym = NULL;
2968
2969 ALL_BLOCK_SYMBOLS (b, iter, sym)
2970 {
2971 fixup_symbol_section (sym, obj_file);
2972 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2973 sym),
2974 section))
2975 break;
2976 }
2977 if (sym == NULL)
2978 continue; /* No symbol in this symtab matches
2979 section. */
2980 }
2981 distance = BLOCK_END (b) - BLOCK_START (b);
2982 best_cust = cust;
2983 }
2984 }
2985 }
2986
2987 if (best_cust != NULL)
2988 return best_cust;
2989
2990 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2991
2992 for (objfile *objf : current_program_space->objfiles ())
2993 {
2994 struct compunit_symtab *result;
2995
2996 if (!objf->sf)
2997 continue;
2998 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2999 msymbol,
3000 pc, section,
3001 1);
3002 if (result != NULL)
3003 return result;
3004 }
3005
3006 return NULL;
3007 }
3008
3009 /* Find the compunit symtab associated with PC.
3010 This will read in debug info as necessary.
3011 Backward compatibility, no section. */
3012
3013 struct compunit_symtab *
3014 find_pc_compunit_symtab (CORE_ADDR pc)
3015 {
3016 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3017 }
3018
3019 /* See symtab.h. */
3020
3021 struct symbol *
3022 find_symbol_at_address (CORE_ADDR address)
3023 {
3024 for (objfile *objfile : current_program_space->objfiles ())
3025 {
3026 if (objfile->sf == NULL
3027 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3028 continue;
3029
3030 struct compunit_symtab *symtab
3031 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3032 if (symtab != NULL)
3033 {
3034 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3035
3036 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3037 {
3038 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3039 struct block_iterator iter;
3040 struct symbol *sym;
3041
3042 ALL_BLOCK_SYMBOLS (b, iter, sym)
3043 {
3044 if (SYMBOL_CLASS (sym) == LOC_STATIC
3045 && SYMBOL_VALUE_ADDRESS (sym) == address)
3046 return sym;
3047 }
3048 }
3049 }
3050 }
3051
3052 return NULL;
3053 }
3054
3055 \f
3056
3057 /* Find the source file and line number for a given PC value and SECTION.
3058 Return a structure containing a symtab pointer, a line number,
3059 and a pc range for the entire source line.
3060 The value's .pc field is NOT the specified pc.
3061 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3062 use the line that ends there. Otherwise, in that case, the line
3063 that begins there is used. */
3064
3065 /* The big complication here is that a line may start in one file, and end just
3066 before the start of another file. This usually occurs when you #include
3067 code in the middle of a subroutine. To properly find the end of a line's PC
3068 range, we must search all symtabs associated with this compilation unit, and
3069 find the one whose first PC is closer than that of the next line in this
3070 symtab. */
3071
3072 struct symtab_and_line
3073 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3074 {
3075 struct compunit_symtab *cust;
3076 struct linetable *l;
3077 int len;
3078 struct linetable_entry *item;
3079 const struct blockvector *bv;
3080 struct bound_minimal_symbol msymbol;
3081
3082 /* Info on best line seen so far, and where it starts, and its file. */
3083
3084 struct linetable_entry *best = NULL;
3085 CORE_ADDR best_end = 0;
3086 struct symtab *best_symtab = 0;
3087
3088 /* Store here the first line number
3089 of a file which contains the line at the smallest pc after PC.
3090 If we don't find a line whose range contains PC,
3091 we will use a line one less than this,
3092 with a range from the start of that file to the first line's pc. */
3093 struct linetable_entry *alt = NULL;
3094
3095 /* Info on best line seen in this file. */
3096
3097 struct linetable_entry *prev;
3098
3099 /* If this pc is not from the current frame,
3100 it is the address of the end of a call instruction.
3101 Quite likely that is the start of the following statement.
3102 But what we want is the statement containing the instruction.
3103 Fudge the pc to make sure we get that. */
3104
3105 /* It's tempting to assume that, if we can't find debugging info for
3106 any function enclosing PC, that we shouldn't search for line
3107 number info, either. However, GAS can emit line number info for
3108 assembly files --- very helpful when debugging hand-written
3109 assembly code. In such a case, we'd have no debug info for the
3110 function, but we would have line info. */
3111
3112 if (notcurrent)
3113 pc -= 1;
3114
3115 /* elz: added this because this function returned the wrong
3116 information if the pc belongs to a stub (import/export)
3117 to call a shlib function. This stub would be anywhere between
3118 two functions in the target, and the line info was erroneously
3119 taken to be the one of the line before the pc. */
3120
3121 /* RT: Further explanation:
3122
3123 * We have stubs (trampolines) inserted between procedures.
3124 *
3125 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3126 * exists in the main image.
3127 *
3128 * In the minimal symbol table, we have a bunch of symbols
3129 * sorted by start address. The stubs are marked as "trampoline",
3130 * the others appear as text. E.g.:
3131 *
3132 * Minimal symbol table for main image
3133 * main: code for main (text symbol)
3134 * shr1: stub (trampoline symbol)
3135 * foo: code for foo (text symbol)
3136 * ...
3137 * Minimal symbol table for "shr1" image:
3138 * ...
3139 * shr1: code for shr1 (text symbol)
3140 * ...
3141 *
3142 * So the code below is trying to detect if we are in the stub
3143 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3144 * and if found, do the symbolization from the real-code address
3145 * rather than the stub address.
3146 *
3147 * Assumptions being made about the minimal symbol table:
3148 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3149 * if we're really in the trampoline.s If we're beyond it (say
3150 * we're in "foo" in the above example), it'll have a closer
3151 * symbol (the "foo" text symbol for example) and will not
3152 * return the trampoline.
3153 * 2. lookup_minimal_symbol_text() will find a real text symbol
3154 * corresponding to the trampoline, and whose address will
3155 * be different than the trampoline address. I put in a sanity
3156 * check for the address being the same, to avoid an
3157 * infinite recursion.
3158 */
3159 msymbol = lookup_minimal_symbol_by_pc (pc);
3160 if (msymbol.minsym != NULL)
3161 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3162 {
3163 struct bound_minimal_symbol mfunsym
3164 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3165 NULL);
3166
3167 if (mfunsym.minsym == NULL)
3168 /* I eliminated this warning since it is coming out
3169 * in the following situation:
3170 * gdb shmain // test program with shared libraries
3171 * (gdb) break shr1 // function in shared lib
3172 * Warning: In stub for ...
3173 * In the above situation, the shared lib is not loaded yet,
3174 * so of course we can't find the real func/line info,
3175 * but the "break" still works, and the warning is annoying.
3176 * So I commented out the warning. RT */
3177 /* warning ("In stub for %s; unable to find real function/line info",
3178 msymbol->linkage_name ()); */
3179 ;
3180 /* fall through */
3181 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3182 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3183 /* Avoid infinite recursion */
3184 /* See above comment about why warning is commented out. */
3185 /* warning ("In stub for %s; unable to find real function/line info",
3186 msymbol->linkage_name ()); */
3187 ;
3188 /* fall through */
3189 else
3190 {
3191 /* Detect an obvious case of infinite recursion. If this
3192 should occur, we'd like to know about it, so error out,
3193 fatally. */
3194 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3195 internal_error (__FILE__, __LINE__,
3196 _("Infinite recursion detected in find_pc_sect_line;"
3197 "please file a bug report"));
3198
3199 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3200 }
3201 }
3202
3203 symtab_and_line val;
3204 val.pspace = current_program_space;
3205
3206 cust = find_pc_sect_compunit_symtab (pc, section);
3207 if (cust == NULL)
3208 {
3209 /* If no symbol information, return previous pc. */
3210 if (notcurrent)
3211 pc++;
3212 val.pc = pc;
3213 return val;
3214 }
3215
3216 bv = COMPUNIT_BLOCKVECTOR (cust);
3217
3218 /* Look at all the symtabs that share this blockvector.
3219 They all have the same apriori range, that we found was right;
3220 but they have different line tables. */
3221
3222 for (symtab *iter_s : compunit_filetabs (cust))
3223 {
3224 /* Find the best line in this symtab. */
3225 l = SYMTAB_LINETABLE (iter_s);
3226 if (!l)
3227 continue;
3228 len = l->nitems;
3229 if (len <= 0)
3230 {
3231 /* I think len can be zero if the symtab lacks line numbers
3232 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3233 I'm not sure which, and maybe it depends on the symbol
3234 reader). */
3235 continue;
3236 }
3237
3238 prev = NULL;
3239 item = l->item; /* Get first line info. */
3240
3241 /* Is this file's first line closer than the first lines of other files?
3242 If so, record this file, and its first line, as best alternate. */
3243 if (item->pc > pc && (!alt || item->pc < alt->pc))
3244 alt = item;
3245
3246 auto pc_compare = [](const CORE_ADDR & comp_pc,
3247 const struct linetable_entry & lhs)->bool
3248 {
3249 return comp_pc < lhs.pc;
3250 };
3251
3252 struct linetable_entry *first = item;
3253 struct linetable_entry *last = item + len;
3254 item = std::upper_bound (first, last, pc, pc_compare);
3255 if (item != first)
3256 {
3257 /* Found a matching item. Skip backwards over any end of
3258 sequence markers. */
3259 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3260 /* Nothing. */;
3261 }
3262
3263 /* At this point, prev points at the line whose start addr is <= pc, and
3264 item points at the next line. If we ran off the end of the linetable
3265 (pc >= start of the last line), then prev == item. If pc < start of
3266 the first line, prev will not be set. */
3267
3268 /* Is this file's best line closer than the best in the other files?
3269 If so, record this file, and its best line, as best so far. Don't
3270 save prev if it represents the end of a function (i.e. line number
3271 0) instead of a real line. */
3272
3273 if (prev && prev->line && (!best || prev->pc > best->pc))
3274 {
3275 best = prev;
3276 best_symtab = iter_s;
3277
3278 /* If during the binary search we land on a non-statement entry,
3279 scan backward through entries at the same address to see if
3280 there is an entry marked as is-statement. In theory this
3281 duplication should have been removed from the line table
3282 during construction, this is just a double check. If the line
3283 table has had the duplication removed then this should be
3284 pretty cheap. */
3285 if (!best->is_stmt)
3286 {
3287 struct linetable_entry *tmp = best;
3288 while (tmp > first && (tmp - 1)->pc == tmp->pc
3289 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3290 --tmp;
3291 if (tmp->is_stmt)
3292 best = tmp;
3293 }
3294
3295 /* Discard BEST_END if it's before the PC of the current BEST. */
3296 if (best_end <= best->pc)
3297 best_end = 0;
3298 }
3299
3300 /* If another line (denoted by ITEM) is in the linetable and its
3301 PC is after BEST's PC, but before the current BEST_END, then
3302 use ITEM's PC as the new best_end. */
3303 if (best && item < last && item->pc > best->pc
3304 && (best_end == 0 || best_end > item->pc))
3305 best_end = item->pc;
3306 }
3307
3308 if (!best_symtab)
3309 {
3310 /* If we didn't find any line number info, just return zeros.
3311 We used to return alt->line - 1 here, but that could be
3312 anywhere; if we don't have line number info for this PC,
3313 don't make some up. */
3314 val.pc = pc;
3315 }
3316 else if (best->line == 0)
3317 {
3318 /* If our best fit is in a range of PC's for which no line
3319 number info is available (line number is zero) then we didn't
3320 find any valid line information. */
3321 val.pc = pc;
3322 }
3323 else
3324 {
3325 val.is_stmt = best->is_stmt;
3326 val.symtab = best_symtab;
3327 val.line = best->line;
3328 val.pc = best->pc;
3329 if (best_end && (!alt || best_end < alt->pc))
3330 val.end = best_end;
3331 else if (alt)
3332 val.end = alt->pc;
3333 else
3334 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3335 }
3336 val.section = section;
3337 return val;
3338 }
3339
3340 /* Backward compatibility (no section). */
3341
3342 struct symtab_and_line
3343 find_pc_line (CORE_ADDR pc, int notcurrent)
3344 {
3345 struct obj_section *section;
3346
3347 section = find_pc_overlay (pc);
3348 if (pc_in_unmapped_range (pc, section))
3349 pc = overlay_mapped_address (pc, section);
3350 return find_pc_sect_line (pc, section, notcurrent);
3351 }
3352
3353 /* See symtab.h. */
3354
3355 struct symtab *
3356 find_pc_line_symtab (CORE_ADDR pc)
3357 {
3358 struct symtab_and_line sal;
3359
3360 /* This always passes zero for NOTCURRENT to find_pc_line.
3361 There are currently no callers that ever pass non-zero. */
3362 sal = find_pc_line (pc, 0);
3363 return sal.symtab;
3364 }
3365 \f
3366 /* Find line number LINE in any symtab whose name is the same as
3367 SYMTAB.
3368
3369 If found, return the symtab that contains the linetable in which it was
3370 found, set *INDEX to the index in the linetable of the best entry
3371 found, and set *EXACT_MATCH to true if the value returned is an
3372 exact match.
3373
3374 If not found, return NULL. */
3375
3376 struct symtab *
3377 find_line_symtab (struct symtab *sym_tab, int line,
3378 int *index, bool *exact_match)
3379 {
3380 int exact = 0; /* Initialized here to avoid a compiler warning. */
3381
3382 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3383 so far seen. */
3384
3385 int best_index;
3386 struct linetable *best_linetable;
3387 struct symtab *best_symtab;
3388
3389 /* First try looking it up in the given symtab. */
3390 best_linetable = SYMTAB_LINETABLE (sym_tab);
3391 best_symtab = sym_tab;
3392 best_index = find_line_common (best_linetable, line, &exact, 0);
3393 if (best_index < 0 || !exact)
3394 {
3395 /* Didn't find an exact match. So we better keep looking for
3396 another symtab with the same name. In the case of xcoff,
3397 multiple csects for one source file (produced by IBM's FORTRAN
3398 compiler) produce multiple symtabs (this is unavoidable
3399 assuming csects can be at arbitrary places in memory and that
3400 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3401
3402 /* BEST is the smallest linenumber > LINE so far seen,
3403 or 0 if none has been seen so far.
3404 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3405 int best;
3406
3407 if (best_index >= 0)
3408 best = best_linetable->item[best_index].line;
3409 else
3410 best = 0;
3411
3412 for (objfile *objfile : current_program_space->objfiles ())
3413 {
3414 if (objfile->sf)
3415 objfile->sf->qf->expand_symtabs_with_fullname
3416 (objfile, symtab_to_fullname (sym_tab));
3417 }
3418
3419 for (objfile *objfile : current_program_space->objfiles ())
3420 {
3421 for (compunit_symtab *cu : objfile->compunits ())
3422 {
3423 for (symtab *s : compunit_filetabs (cu))
3424 {
3425 struct linetable *l;
3426 int ind;
3427
3428 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3429 continue;
3430 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3431 symtab_to_fullname (s)) != 0)
3432 continue;
3433 l = SYMTAB_LINETABLE (s);
3434 ind = find_line_common (l, line, &exact, 0);
3435 if (ind >= 0)
3436 {
3437 if (exact)
3438 {
3439 best_index = ind;
3440 best_linetable = l;
3441 best_symtab = s;
3442 goto done;
3443 }
3444 if (best == 0 || l->item[ind].line < best)
3445 {
3446 best = l->item[ind].line;
3447 best_index = ind;
3448 best_linetable = l;
3449 best_symtab = s;
3450 }
3451 }
3452 }
3453 }
3454 }
3455 }
3456 done:
3457 if (best_index < 0)
3458 return NULL;
3459
3460 if (index)
3461 *index = best_index;
3462 if (exact_match)
3463 *exact_match = (exact != 0);
3464
3465 return best_symtab;
3466 }
3467
3468 /* Given SYMTAB, returns all the PCs function in the symtab that
3469 exactly match LINE. Returns an empty vector if there are no exact
3470 matches, but updates BEST_ITEM in this case. */
3471
3472 std::vector<CORE_ADDR>
3473 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3474 struct linetable_entry **best_item)
3475 {
3476 int start = 0;
3477 std::vector<CORE_ADDR> result;
3478
3479 /* First, collect all the PCs that are at this line. */
3480 while (1)
3481 {
3482 int was_exact;
3483 int idx;
3484
3485 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3486 start);
3487 if (idx < 0)
3488 break;
3489
3490 if (!was_exact)
3491 {
3492 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3493
3494 if (*best_item == NULL
3495 || (item->line < (*best_item)->line && item->is_stmt))
3496 *best_item = item;
3497
3498 break;
3499 }
3500
3501 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3502 start = idx + 1;
3503 }
3504
3505 return result;
3506 }
3507
3508 \f
3509 /* Set the PC value for a given source file and line number and return true.
3510 Returns false for invalid line number (and sets the PC to 0).
3511 The source file is specified with a struct symtab. */
3512
3513 bool
3514 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3515 {
3516 struct linetable *l;
3517 int ind;
3518
3519 *pc = 0;
3520 if (symtab == 0)
3521 return false;
3522
3523 symtab = find_line_symtab (symtab, line, &ind, NULL);
3524 if (symtab != NULL)
3525 {
3526 l = SYMTAB_LINETABLE (symtab);
3527 *pc = l->item[ind].pc;
3528 return true;
3529 }
3530 else
3531 return false;
3532 }
3533
3534 /* Find the range of pc values in a line.
3535 Store the starting pc of the line into *STARTPTR
3536 and the ending pc (start of next line) into *ENDPTR.
3537 Returns true to indicate success.
3538 Returns false if could not find the specified line. */
3539
3540 bool
3541 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3542 CORE_ADDR *endptr)
3543 {
3544 CORE_ADDR startaddr;
3545 struct symtab_and_line found_sal;
3546
3547 startaddr = sal.pc;
3548 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3549 return false;
3550
3551 /* This whole function is based on address. For example, if line 10 has
3552 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3553 "info line *0x123" should say the line goes from 0x100 to 0x200
3554 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3555 This also insures that we never give a range like "starts at 0x134
3556 and ends at 0x12c". */
3557
3558 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3559 if (found_sal.line != sal.line)
3560 {
3561 /* The specified line (sal) has zero bytes. */
3562 *startptr = found_sal.pc;
3563 *endptr = found_sal.pc;
3564 }
3565 else
3566 {
3567 *startptr = found_sal.pc;
3568 *endptr = found_sal.end;
3569 }
3570 return true;
3571 }
3572
3573 /* Given a line table and a line number, return the index into the line
3574 table for the pc of the nearest line whose number is >= the specified one.
3575 Return -1 if none is found. The value is >= 0 if it is an index.
3576 START is the index at which to start searching the line table.
3577
3578 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3579
3580 static int
3581 find_line_common (struct linetable *l, int lineno,
3582 int *exact_match, int start)
3583 {
3584 int i;
3585 int len;
3586
3587 /* BEST is the smallest linenumber > LINENO so far seen,
3588 or 0 if none has been seen so far.
3589 BEST_INDEX identifies the item for it. */
3590
3591 int best_index = -1;
3592 int best = 0;
3593
3594 *exact_match = 0;
3595
3596 if (lineno <= 0)
3597 return -1;
3598 if (l == 0)
3599 return -1;
3600
3601 len = l->nitems;
3602 for (i = start; i < len; i++)
3603 {
3604 struct linetable_entry *item = &(l->item[i]);
3605
3606 /* Ignore non-statements. */
3607 if (!item->is_stmt)
3608 continue;
3609
3610 if (item->line == lineno)
3611 {
3612 /* Return the first (lowest address) entry which matches. */
3613 *exact_match = 1;
3614 return i;
3615 }
3616
3617 if (item->line > lineno && (best == 0 || item->line < best))
3618 {
3619 best = item->line;
3620 best_index = i;
3621 }
3622 }
3623
3624 /* If we got here, we didn't get an exact match. */
3625 return best_index;
3626 }
3627
3628 bool
3629 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3630 {
3631 struct symtab_and_line sal;
3632
3633 sal = find_pc_line (pc, 0);
3634 *startptr = sal.pc;
3635 *endptr = sal.end;
3636 return sal.symtab != 0;
3637 }
3638
3639 /* Helper for find_function_start_sal. Does most of the work, except
3640 setting the sal's symbol. */
3641
3642 static symtab_and_line
3643 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3644 bool funfirstline)
3645 {
3646 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3647
3648 if (funfirstline && sal.symtab != NULL
3649 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3650 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3651 {
3652 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3653
3654 sal.pc = func_addr;
3655 if (gdbarch_skip_entrypoint_p (gdbarch))
3656 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3657 return sal;
3658 }
3659
3660 /* We always should have a line for the function start address.
3661 If we don't, something is odd. Create a plain SAL referring
3662 just the PC and hope that skip_prologue_sal (if requested)
3663 can find a line number for after the prologue. */
3664 if (sal.pc < func_addr)
3665 {
3666 sal = {};
3667 sal.pspace = current_program_space;
3668 sal.pc = func_addr;
3669 sal.section = section;
3670 }
3671
3672 if (funfirstline)
3673 skip_prologue_sal (&sal);
3674
3675 return sal;
3676 }
3677
3678 /* See symtab.h. */
3679
3680 symtab_and_line
3681 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3682 bool funfirstline)
3683 {
3684 symtab_and_line sal
3685 = find_function_start_sal_1 (func_addr, section, funfirstline);
3686
3687 /* find_function_start_sal_1 does a linetable search, so it finds
3688 the symtab and linenumber, but not a symbol. Fill in the
3689 function symbol too. */
3690 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3691
3692 return sal;
3693 }
3694
3695 /* See symtab.h. */
3696
3697 symtab_and_line
3698 find_function_start_sal (symbol *sym, bool funfirstline)
3699 {
3700 fixup_symbol_section (sym, NULL);
3701 symtab_and_line sal
3702 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3703 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3704 funfirstline);
3705 sal.symbol = sym;
3706 return sal;
3707 }
3708
3709
3710 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3711 address for that function that has an entry in SYMTAB's line info
3712 table. If such an entry cannot be found, return FUNC_ADDR
3713 unaltered. */
3714
3715 static CORE_ADDR
3716 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3717 {
3718 CORE_ADDR func_start, func_end;
3719 struct linetable *l;
3720 int i;
3721
3722 /* Give up if this symbol has no lineinfo table. */
3723 l = SYMTAB_LINETABLE (symtab);
3724 if (l == NULL)
3725 return func_addr;
3726
3727 /* Get the range for the function's PC values, or give up if we
3728 cannot, for some reason. */
3729 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3730 return func_addr;
3731
3732 /* Linetable entries are ordered by PC values, see the commentary in
3733 symtab.h where `struct linetable' is defined. Thus, the first
3734 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3735 address we are looking for. */
3736 for (i = 0; i < l->nitems; i++)
3737 {
3738 struct linetable_entry *item = &(l->item[i]);
3739
3740 /* Don't use line numbers of zero, they mark special entries in
3741 the table. See the commentary on symtab.h before the
3742 definition of struct linetable. */
3743 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3744 return item->pc;
3745 }
3746
3747 return func_addr;
3748 }
3749
3750 /* Adjust SAL to the first instruction past the function prologue.
3751 If the PC was explicitly specified, the SAL is not changed.
3752 If the line number was explicitly specified then the SAL can still be
3753 updated, unless the language for SAL is assembler, in which case the SAL
3754 will be left unchanged.
3755 If SAL is already past the prologue, then do nothing. */
3756
3757 void
3758 skip_prologue_sal (struct symtab_and_line *sal)
3759 {
3760 struct symbol *sym;
3761 struct symtab_and_line start_sal;
3762 CORE_ADDR pc, saved_pc;
3763 struct obj_section *section;
3764 const char *name;
3765 struct objfile *objfile;
3766 struct gdbarch *gdbarch;
3767 const struct block *b, *function_block;
3768 int force_skip, skip;
3769
3770 /* Do not change the SAL if PC was specified explicitly. */
3771 if (sal->explicit_pc)
3772 return;
3773
3774 /* In assembly code, if the user asks for a specific line then we should
3775 not adjust the SAL. The user already has instruction level
3776 visibility in this case, so selecting a line other than one requested
3777 is likely to be the wrong choice. */
3778 if (sal->symtab != nullptr
3779 && sal->explicit_line
3780 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3781 return;
3782
3783 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3784
3785 switch_to_program_space_and_thread (sal->pspace);
3786
3787 sym = find_pc_sect_function (sal->pc, sal->section);
3788 if (sym != NULL)
3789 {
3790 fixup_symbol_section (sym, NULL);
3791
3792 objfile = symbol_objfile (sym);
3793 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3794 section = SYMBOL_OBJ_SECTION (objfile, sym);
3795 name = sym->linkage_name ();
3796 }
3797 else
3798 {
3799 struct bound_minimal_symbol msymbol
3800 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3801
3802 if (msymbol.minsym == NULL)
3803 return;
3804
3805 objfile = msymbol.objfile;
3806 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3807 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3808 name = msymbol.minsym->linkage_name ();
3809 }
3810
3811 gdbarch = objfile->arch ();
3812
3813 /* Process the prologue in two passes. In the first pass try to skip the
3814 prologue (SKIP is true) and verify there is a real need for it (indicated
3815 by FORCE_SKIP). If no such reason was found run a second pass where the
3816 prologue is not skipped (SKIP is false). */
3817
3818 skip = 1;
3819 force_skip = 1;
3820
3821 /* Be conservative - allow direct PC (without skipping prologue) only if we
3822 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3823 have to be set by the caller so we use SYM instead. */
3824 if (sym != NULL
3825 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3826 force_skip = 0;
3827
3828 saved_pc = pc;
3829 do
3830 {
3831 pc = saved_pc;
3832
3833 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3834 so that gdbarch_skip_prologue has something unique to work on. */
3835 if (section_is_overlay (section) && !section_is_mapped (section))
3836 pc = overlay_unmapped_address (pc, section);
3837
3838 /* Skip "first line" of function (which is actually its prologue). */
3839 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3840 if (gdbarch_skip_entrypoint_p (gdbarch))
3841 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3842 if (skip)
3843 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3844
3845 /* For overlays, map pc back into its mapped VMA range. */
3846 pc = overlay_mapped_address (pc, section);
3847
3848 /* Calculate line number. */
3849 start_sal = find_pc_sect_line (pc, section, 0);
3850
3851 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3852 line is still part of the same function. */
3853 if (skip && start_sal.pc != pc
3854 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3855 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3856 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3857 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3858 {
3859 /* First pc of next line */
3860 pc = start_sal.end;
3861 /* Recalculate the line number (might not be N+1). */
3862 start_sal = find_pc_sect_line (pc, section, 0);
3863 }
3864
3865 /* On targets with executable formats that don't have a concept of
3866 constructors (ELF with .init has, PE doesn't), gcc emits a call
3867 to `__main' in `main' between the prologue and before user
3868 code. */
3869 if (gdbarch_skip_main_prologue_p (gdbarch)
3870 && name && strcmp_iw (name, "main") == 0)
3871 {
3872 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3873 /* Recalculate the line number (might not be N+1). */
3874 start_sal = find_pc_sect_line (pc, section, 0);
3875 force_skip = 1;
3876 }
3877 }
3878 while (!force_skip && skip--);
3879
3880 /* If we still don't have a valid source line, try to find the first
3881 PC in the lineinfo table that belongs to the same function. This
3882 happens with COFF debug info, which does not seem to have an
3883 entry in lineinfo table for the code after the prologue which has
3884 no direct relation to source. For example, this was found to be
3885 the case with the DJGPP target using "gcc -gcoff" when the
3886 compiler inserted code after the prologue to make sure the stack
3887 is aligned. */
3888 if (!force_skip && sym && start_sal.symtab == NULL)
3889 {
3890 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3891 /* Recalculate the line number. */
3892 start_sal = find_pc_sect_line (pc, section, 0);
3893 }
3894
3895 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3896 forward SAL to the end of the prologue. */
3897 if (sal->pc >= pc)
3898 return;
3899
3900 sal->pc = pc;
3901 sal->section = section;
3902 sal->symtab = start_sal.symtab;
3903 sal->line = start_sal.line;
3904 sal->end = start_sal.end;
3905
3906 /* Check if we are now inside an inlined function. If we can,
3907 use the call site of the function instead. */
3908 b = block_for_pc_sect (sal->pc, sal->section);
3909 function_block = NULL;
3910 while (b != NULL)
3911 {
3912 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3913 function_block = b;
3914 else if (BLOCK_FUNCTION (b) != NULL)
3915 break;
3916 b = BLOCK_SUPERBLOCK (b);
3917 }
3918 if (function_block != NULL
3919 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3920 {
3921 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3922 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3923 }
3924 }
3925
3926 /* Given PC at the function's start address, attempt to find the
3927 prologue end using SAL information. Return zero if the skip fails.
3928
3929 A non-optimized prologue traditionally has one SAL for the function
3930 and a second for the function body. A single line function has
3931 them both pointing at the same line.
3932
3933 An optimized prologue is similar but the prologue may contain
3934 instructions (SALs) from the instruction body. Need to skip those
3935 while not getting into the function body.
3936
3937 The functions end point and an increasing SAL line are used as
3938 indicators of the prologue's endpoint.
3939
3940 This code is based on the function refine_prologue_limit
3941 (found in ia64). */
3942
3943 CORE_ADDR
3944 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3945 {
3946 struct symtab_and_line prologue_sal;
3947 CORE_ADDR start_pc;
3948 CORE_ADDR end_pc;
3949 const struct block *bl;
3950
3951 /* Get an initial range for the function. */
3952 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3953 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3954
3955 prologue_sal = find_pc_line (start_pc, 0);
3956 if (prologue_sal.line != 0)
3957 {
3958 /* For languages other than assembly, treat two consecutive line
3959 entries at the same address as a zero-instruction prologue.
3960 The GNU assembler emits separate line notes for each instruction
3961 in a multi-instruction macro, but compilers generally will not
3962 do this. */
3963 if (prologue_sal.symtab->language != language_asm)
3964 {
3965 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3966 int idx = 0;
3967
3968 /* Skip any earlier lines, and any end-of-sequence marker
3969 from a previous function. */
3970 while (linetable->item[idx].pc != prologue_sal.pc
3971 || linetable->item[idx].line == 0)
3972 idx++;
3973
3974 if (idx+1 < linetable->nitems
3975 && linetable->item[idx+1].line != 0
3976 && linetable->item[idx+1].pc == start_pc)
3977 return start_pc;
3978 }
3979
3980 /* If there is only one sal that covers the entire function,
3981 then it is probably a single line function, like
3982 "foo(){}". */
3983 if (prologue_sal.end >= end_pc)
3984 return 0;
3985
3986 while (prologue_sal.end < end_pc)
3987 {
3988 struct symtab_and_line sal;
3989
3990 sal = find_pc_line (prologue_sal.end, 0);
3991 if (sal.line == 0)
3992 break;
3993 /* Assume that a consecutive SAL for the same (or larger)
3994 line mark the prologue -> body transition. */
3995 if (sal.line >= prologue_sal.line)
3996 break;
3997 /* Likewise if we are in a different symtab altogether
3998 (e.g. within a file included via #include).  */
3999 if (sal.symtab != prologue_sal.symtab)
4000 break;
4001
4002 /* The line number is smaller. Check that it's from the
4003 same function, not something inlined. If it's inlined,
4004 then there is no point comparing the line numbers. */
4005 bl = block_for_pc (prologue_sal.end);
4006 while (bl)
4007 {
4008 if (block_inlined_p (bl))
4009 break;
4010 if (BLOCK_FUNCTION (bl))
4011 {
4012 bl = NULL;
4013 break;
4014 }
4015 bl = BLOCK_SUPERBLOCK (bl);
4016 }
4017 if (bl != NULL)
4018 break;
4019
4020 /* The case in which compiler's optimizer/scheduler has
4021 moved instructions into the prologue. We look ahead in
4022 the function looking for address ranges whose
4023 corresponding line number is less the first one that we
4024 found for the function. This is more conservative then
4025 refine_prologue_limit which scans a large number of SALs
4026 looking for any in the prologue. */
4027 prologue_sal = sal;
4028 }
4029 }
4030
4031 if (prologue_sal.end < end_pc)
4032 /* Return the end of this line, or zero if we could not find a
4033 line. */
4034 return prologue_sal.end;
4035 else
4036 /* Don't return END_PC, which is past the end of the function. */
4037 return prologue_sal.pc;
4038 }
4039
4040 /* See symtab.h. */
4041
4042 symbol *
4043 find_function_alias_target (bound_minimal_symbol msymbol)
4044 {
4045 CORE_ADDR func_addr;
4046 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4047 return NULL;
4048
4049 symbol *sym = find_pc_function (func_addr);
4050 if (sym != NULL
4051 && SYMBOL_CLASS (sym) == LOC_BLOCK
4052 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4053 return sym;
4054
4055 return NULL;
4056 }
4057
4058 \f
4059 /* If P is of the form "operator[ \t]+..." where `...' is
4060 some legitimate operator text, return a pointer to the
4061 beginning of the substring of the operator text.
4062 Otherwise, return "". */
4063
4064 static const char *
4065 operator_chars (const char *p, const char **end)
4066 {
4067 *end = "";
4068 if (!startswith (p, CP_OPERATOR_STR))
4069 return *end;
4070 p += CP_OPERATOR_LEN;
4071
4072 /* Don't get faked out by `operator' being part of a longer
4073 identifier. */
4074 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4075 return *end;
4076
4077 /* Allow some whitespace between `operator' and the operator symbol. */
4078 while (*p == ' ' || *p == '\t')
4079 p++;
4080
4081 /* Recognize 'operator TYPENAME'. */
4082
4083 if (isalpha (*p) || *p == '_' || *p == '$')
4084 {
4085 const char *q = p + 1;
4086
4087 while (isalnum (*q) || *q == '_' || *q == '$')
4088 q++;
4089 *end = q;
4090 return p;
4091 }
4092
4093 while (*p)
4094 switch (*p)
4095 {
4096 case '\\': /* regexp quoting */
4097 if (p[1] == '*')
4098 {
4099 if (p[2] == '=') /* 'operator\*=' */
4100 *end = p + 3;
4101 else /* 'operator\*' */
4102 *end = p + 2;
4103 return p;
4104 }
4105 else if (p[1] == '[')
4106 {
4107 if (p[2] == ']')
4108 error (_("mismatched quoting on brackets, "
4109 "try 'operator\\[\\]'"));
4110 else if (p[2] == '\\' && p[3] == ']')
4111 {
4112 *end = p + 4; /* 'operator\[\]' */
4113 return p;
4114 }
4115 else
4116 error (_("nothing is allowed between '[' and ']'"));
4117 }
4118 else
4119 {
4120 /* Gratuitous quote: skip it and move on. */
4121 p++;
4122 continue;
4123 }
4124 break;
4125 case '!':
4126 case '=':
4127 case '*':
4128 case '/':
4129 case '%':
4130 case '^':
4131 if (p[1] == '=')
4132 *end = p + 2;
4133 else
4134 *end = p + 1;
4135 return p;
4136 case '<':
4137 case '>':
4138 case '+':
4139 case '-':
4140 case '&':
4141 case '|':
4142 if (p[0] == '-' && p[1] == '>')
4143 {
4144 /* Struct pointer member operator 'operator->'. */
4145 if (p[2] == '*')
4146 {
4147 *end = p + 3; /* 'operator->*' */
4148 return p;
4149 }
4150 else if (p[2] == '\\')
4151 {
4152 *end = p + 4; /* Hopefully 'operator->\*' */
4153 return p;
4154 }
4155 else
4156 {
4157 *end = p + 2; /* 'operator->' */
4158 return p;
4159 }
4160 }
4161 if (p[1] == '=' || p[1] == p[0])
4162 *end = p + 2;
4163 else
4164 *end = p + 1;
4165 return p;
4166 case '~':
4167 case ',':
4168 *end = p + 1;
4169 return p;
4170 case '(':
4171 if (p[1] != ')')
4172 error (_("`operator ()' must be specified "
4173 "without whitespace in `()'"));
4174 *end = p + 2;
4175 return p;
4176 case '?':
4177 if (p[1] != ':')
4178 error (_("`operator ?:' must be specified "
4179 "without whitespace in `?:'"));
4180 *end = p + 2;
4181 return p;
4182 case '[':
4183 if (p[1] != ']')
4184 error (_("`operator []' must be specified "
4185 "without whitespace in `[]'"));
4186 *end = p + 2;
4187 return p;
4188 default:
4189 error (_("`operator %s' not supported"), p);
4190 break;
4191 }
4192
4193 *end = "";
4194 return *end;
4195 }
4196 \f
4197
4198 /* What part to match in a file name. */
4199
4200 struct filename_partial_match_opts
4201 {
4202 /* Only match the directory name part. */
4203 bool dirname = false;
4204
4205 /* Only match the basename part. */
4206 bool basename = false;
4207 };
4208
4209 /* Data structure to maintain printing state for output_source_filename. */
4210
4211 struct output_source_filename_data
4212 {
4213 /* Output only filenames matching REGEXP. */
4214 std::string regexp;
4215 gdb::optional<compiled_regex> c_regexp;
4216 /* Possibly only match a part of the filename. */
4217 filename_partial_match_opts partial_match;
4218
4219
4220 /* Cache of what we've seen so far. */
4221 struct filename_seen_cache *filename_seen_cache;
4222
4223 /* Flag of whether we're printing the first one. */
4224 int first;
4225 };
4226
4227 /* Slave routine for sources_info. Force line breaks at ,'s.
4228 NAME is the name to print.
4229 DATA contains the state for printing and watching for duplicates. */
4230
4231 static void
4232 output_source_filename (const char *name,
4233 struct output_source_filename_data *data)
4234 {
4235 /* Since a single source file can result in several partial symbol
4236 tables, we need to avoid printing it more than once. Note: if
4237 some of the psymtabs are read in and some are not, it gets
4238 printed both under "Source files for which symbols have been
4239 read" and "Source files for which symbols will be read in on
4240 demand". I consider this a reasonable way to deal with the
4241 situation. I'm not sure whether this can also happen for
4242 symtabs; it doesn't hurt to check. */
4243
4244 /* Was NAME already seen? */
4245 if (data->filename_seen_cache->seen (name))
4246 {
4247 /* Yes; don't print it again. */
4248 return;
4249 }
4250
4251 /* Does it match data->regexp? */
4252 if (data->c_regexp.has_value ())
4253 {
4254 const char *to_match;
4255 std::string dirname;
4256
4257 if (data->partial_match.dirname)
4258 {
4259 dirname = ldirname (name);
4260 to_match = dirname.c_str ();
4261 }
4262 else if (data->partial_match.basename)
4263 to_match = lbasename (name);
4264 else
4265 to_match = name;
4266
4267 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4268 return;
4269 }
4270
4271 /* Print it and reset *FIRST. */
4272 if (! data->first)
4273 printf_filtered (", ");
4274 data->first = 0;
4275
4276 wrap_here ("");
4277 fputs_styled (name, file_name_style.style (), gdb_stdout);
4278 }
4279
4280 /* A callback for map_partial_symbol_filenames. */
4281
4282 static void
4283 output_partial_symbol_filename (const char *filename, const char *fullname,
4284 void *data)
4285 {
4286 output_source_filename (fullname ? fullname : filename,
4287 (struct output_source_filename_data *) data);
4288 }
4289
4290 using isrc_flag_option_def
4291 = gdb::option::flag_option_def<filename_partial_match_opts>;
4292
4293 static const gdb::option::option_def info_sources_option_defs[] = {
4294
4295 isrc_flag_option_def {
4296 "dirname",
4297 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4298 N_("Show only the files having a dirname matching REGEXP."),
4299 },
4300
4301 isrc_flag_option_def {
4302 "basename",
4303 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4304 N_("Show only the files having a basename matching REGEXP."),
4305 },
4306
4307 };
4308
4309 /* Create an option_def_group for the "info sources" options, with
4310 ISRC_OPTS as context. */
4311
4312 static inline gdb::option::option_def_group
4313 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4314 {
4315 return {{info_sources_option_defs}, isrc_opts};
4316 }
4317
4318 /* Prints the header message for the source files that will be printed
4319 with the matching info present in DATA. SYMBOL_MSG is a message
4320 that tells what will or has been done with the symbols of the
4321 matching source files. */
4322
4323 static void
4324 print_info_sources_header (const char *symbol_msg,
4325 const struct output_source_filename_data *data)
4326 {
4327 puts_filtered (symbol_msg);
4328 if (!data->regexp.empty ())
4329 {
4330 if (data->partial_match.dirname)
4331 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4332 data->regexp.c_str ());
4333 else if (data->partial_match.basename)
4334 printf_filtered (_("(basename matching regular expression \"%s\")"),
4335 data->regexp.c_str ());
4336 else
4337 printf_filtered (_("(filename matching regular expression \"%s\")"),
4338 data->regexp.c_str ());
4339 }
4340 puts_filtered ("\n");
4341 }
4342
4343 /* Completer for "info sources". */
4344
4345 static void
4346 info_sources_command_completer (cmd_list_element *ignore,
4347 completion_tracker &tracker,
4348 const char *text, const char *word)
4349 {
4350 const auto group = make_info_sources_options_def_group (nullptr);
4351 if (gdb::option::complete_options
4352 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4353 return;
4354 }
4355
4356 static void
4357 info_sources_command (const char *args, int from_tty)
4358 {
4359 struct output_source_filename_data data;
4360
4361 if (!have_full_symbols () && !have_partial_symbols ())
4362 {
4363 error (_("No symbol table is loaded. Use the \"file\" command."));
4364 }
4365
4366 filename_seen_cache filenames_seen;
4367
4368 auto group = make_info_sources_options_def_group (&data.partial_match);
4369
4370 gdb::option::process_options
4371 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4372
4373 if (args != NULL && *args != '\000')
4374 data.regexp = args;
4375
4376 data.filename_seen_cache = &filenames_seen;
4377 data.first = 1;
4378
4379 if (data.partial_match.dirname && data.partial_match.basename)
4380 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4381 if ((data.partial_match.dirname || data.partial_match.basename)
4382 && data.regexp.empty ())
4383 error (_("Missing REGEXP for 'info sources'."));
4384
4385 if (data.regexp.empty ())
4386 data.c_regexp.reset ();
4387 else
4388 {
4389 int cflags = REG_NOSUB;
4390 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4391 cflags |= REG_ICASE;
4392 #endif
4393 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4394 _("Invalid regexp"));
4395 }
4396
4397 print_info_sources_header
4398 (_("Source files for which symbols have been read in:\n"), &data);
4399
4400 for (objfile *objfile : current_program_space->objfiles ())
4401 {
4402 for (compunit_symtab *cu : objfile->compunits ())
4403 {
4404 for (symtab *s : compunit_filetabs (cu))
4405 {
4406 const char *fullname = symtab_to_fullname (s);
4407
4408 output_source_filename (fullname, &data);
4409 }
4410 }
4411 }
4412 printf_filtered ("\n\n");
4413
4414 print_info_sources_header
4415 (_("Source files for which symbols will be read in on demand:\n"), &data);
4416
4417 filenames_seen.clear ();
4418 data.first = 1;
4419 map_symbol_filenames (output_partial_symbol_filename, &data,
4420 1 /*need_fullname*/);
4421 printf_filtered ("\n");
4422 }
4423
4424 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4425 true compare only lbasename of FILENAMES. */
4426
4427 static bool
4428 file_matches (const char *file, const std::vector<const char *> &filenames,
4429 bool basenames)
4430 {
4431 if (filenames.empty ())
4432 return true;
4433
4434 for (const char *name : filenames)
4435 {
4436 name = (basenames ? lbasename (name) : name);
4437 if (compare_filenames_for_search (file, name))
4438 return true;
4439 }
4440
4441 return false;
4442 }
4443
4444 /* Helper function for std::sort on symbol_search objects. Can only sort
4445 symbols, not minimal symbols. */
4446
4447 int
4448 symbol_search::compare_search_syms (const symbol_search &sym_a,
4449 const symbol_search &sym_b)
4450 {
4451 int c;
4452
4453 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4454 symbol_symtab (sym_b.symbol)->filename);
4455 if (c != 0)
4456 return c;
4457
4458 if (sym_a.block != sym_b.block)
4459 return sym_a.block - sym_b.block;
4460
4461 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4462 }
4463
4464 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4465 If SYM has no symbol_type or symbol_name, returns false. */
4466
4467 bool
4468 treg_matches_sym_type_name (const compiled_regex &treg,
4469 const struct symbol *sym)
4470 {
4471 struct type *sym_type;
4472 std::string printed_sym_type_name;
4473
4474 if (symbol_lookup_debug > 1)
4475 {
4476 fprintf_unfiltered (gdb_stdlog,
4477 "treg_matches_sym_type_name\n sym %s\n",
4478 sym->natural_name ());
4479 }
4480
4481 sym_type = SYMBOL_TYPE (sym);
4482 if (sym_type == NULL)
4483 return false;
4484
4485 {
4486 scoped_switch_to_sym_language_if_auto l (sym);
4487
4488 printed_sym_type_name = type_to_string (sym_type);
4489 }
4490
4491
4492 if (symbol_lookup_debug > 1)
4493 {
4494 fprintf_unfiltered (gdb_stdlog,
4495 " sym_type_name %s\n",
4496 printed_sym_type_name.c_str ());
4497 }
4498
4499
4500 if (printed_sym_type_name.empty ())
4501 return false;
4502
4503 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4504 }
4505
4506 /* See symtab.h. */
4507
4508 bool
4509 global_symbol_searcher::is_suitable_msymbol
4510 (const enum search_domain kind, const minimal_symbol *msymbol)
4511 {
4512 switch (MSYMBOL_TYPE (msymbol))
4513 {
4514 case mst_data:
4515 case mst_bss:
4516 case mst_file_data:
4517 case mst_file_bss:
4518 return kind == VARIABLES_DOMAIN;
4519 case mst_text:
4520 case mst_file_text:
4521 case mst_solib_trampoline:
4522 case mst_text_gnu_ifunc:
4523 return kind == FUNCTIONS_DOMAIN;
4524 default:
4525 return false;
4526 }
4527 }
4528
4529 /* See symtab.h. */
4530
4531 bool
4532 global_symbol_searcher::expand_symtabs
4533 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4534 {
4535 enum search_domain kind = m_kind;
4536 bool found_msymbol = false;
4537
4538 if (objfile->sf)
4539 objfile->sf->qf->expand_symtabs_matching
4540 (objfile,
4541 [&] (const char *filename, bool basenames)
4542 {
4543 return file_matches (filename, filenames, basenames);
4544 },
4545 &lookup_name_info::match_any (),
4546 [&] (const char *symname)
4547 {
4548 return (!preg.has_value ()
4549 || preg->exec (symname, 0, NULL, 0) == 0);
4550 },
4551 NULL,
4552 kind);
4553
4554 /* Here, we search through the minimal symbol tables for functions and
4555 variables that match, and force their symbols to be read. This is in
4556 particular necessary for demangled variable names, which are no longer
4557 put into the partial symbol tables. The symbol will then be found
4558 during the scan of symtabs later.
4559
4560 For functions, find_pc_symtab should succeed if we have debug info for
4561 the function, for variables we have to call
4562 lookup_symbol_in_objfile_from_linkage_name to determine if the
4563 variable has debug info. If the lookup fails, set found_msymbol so
4564 that we will rescan to print any matching symbols without debug info.
4565 We only search the objfile the msymbol came from, we no longer search
4566 all objfiles. In large programs (1000s of shared libs) searching all
4567 objfiles is not worth the pain. */
4568 if (filenames.empty ()
4569 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4570 {
4571 for (minimal_symbol *msymbol : objfile->msymbols ())
4572 {
4573 QUIT;
4574
4575 if (msymbol->created_by_gdb)
4576 continue;
4577
4578 if (is_suitable_msymbol (kind, msymbol))
4579 {
4580 if (!preg.has_value ()
4581 || preg->exec (msymbol->natural_name (), 0,
4582 NULL, 0) == 0)
4583 {
4584 /* An important side-effect of these lookup functions is
4585 to expand the symbol table if msymbol is found, later
4586 in the process we will add matching symbols or
4587 msymbols to the results list, and that requires that
4588 the symbols tables are expanded. */
4589 if (kind == FUNCTIONS_DOMAIN
4590 ? (find_pc_compunit_symtab
4591 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4592 == NULL)
4593 : (lookup_symbol_in_objfile_from_linkage_name
4594 (objfile, msymbol->linkage_name (),
4595 VAR_DOMAIN)
4596 .symbol == NULL))
4597 found_msymbol = true;
4598 }
4599 }
4600 }
4601 }
4602
4603 return found_msymbol;
4604 }
4605
4606 /* See symtab.h. */
4607
4608 bool
4609 global_symbol_searcher::add_matching_symbols
4610 (objfile *objfile,
4611 const gdb::optional<compiled_regex> &preg,
4612 const gdb::optional<compiled_regex> &treg,
4613 std::set<symbol_search> *result_set) const
4614 {
4615 enum search_domain kind = m_kind;
4616
4617 /* Add matching symbols (if not already present). */
4618 for (compunit_symtab *cust : objfile->compunits ())
4619 {
4620 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4621
4622 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4623 {
4624 struct block_iterator iter;
4625 struct symbol *sym;
4626 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4627
4628 ALL_BLOCK_SYMBOLS (b, iter, sym)
4629 {
4630 struct symtab *real_symtab = symbol_symtab (sym);
4631
4632 QUIT;
4633
4634 /* Check first sole REAL_SYMTAB->FILENAME. It does
4635 not need to be a substring of symtab_to_fullname as
4636 it may contain "./" etc. */
4637 if ((file_matches (real_symtab->filename, filenames, false)
4638 || ((basenames_may_differ
4639 || file_matches (lbasename (real_symtab->filename),
4640 filenames, true))
4641 && file_matches (symtab_to_fullname (real_symtab),
4642 filenames, false)))
4643 && ((!preg.has_value ()
4644 || preg->exec (sym->natural_name (), 0,
4645 NULL, 0) == 0)
4646 && ((kind == VARIABLES_DOMAIN
4647 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4648 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4649 && SYMBOL_CLASS (sym) != LOC_BLOCK
4650 /* LOC_CONST can be used for more than
4651 just enums, e.g., c++ static const
4652 members. We only want to skip enums
4653 here. */
4654 && !(SYMBOL_CLASS (sym) == LOC_CONST
4655 && (TYPE_CODE (SYMBOL_TYPE (sym))
4656 == TYPE_CODE_ENUM))
4657 && (!treg.has_value ()
4658 || treg_matches_sym_type_name (*treg, sym)))
4659 || (kind == FUNCTIONS_DOMAIN
4660 && SYMBOL_CLASS (sym) == LOC_BLOCK
4661 && (!treg.has_value ()
4662 || treg_matches_sym_type_name (*treg,
4663 sym)))
4664 || (kind == TYPES_DOMAIN
4665 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4666 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4667 || (kind == MODULES_DOMAIN
4668 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4669 && SYMBOL_LINE (sym) != 0))))
4670 {
4671 if (result_set->size () < m_max_search_results)
4672 {
4673 /* Match, insert if not already in the results. */
4674 symbol_search ss (block, sym);
4675 if (result_set->find (ss) == result_set->end ())
4676 result_set->insert (ss);
4677 }
4678 else
4679 return false;
4680 }
4681 }
4682 }
4683 }
4684
4685 return true;
4686 }
4687
4688 /* See symtab.h. */
4689
4690 bool
4691 global_symbol_searcher::add_matching_msymbols
4692 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4693 std::vector<symbol_search> *results) const
4694 {
4695 enum search_domain kind = m_kind;
4696
4697 for (minimal_symbol *msymbol : objfile->msymbols ())
4698 {
4699 QUIT;
4700
4701 if (msymbol->created_by_gdb)
4702 continue;
4703
4704 if (is_suitable_msymbol (kind, msymbol))
4705 {
4706 if (!preg.has_value ()
4707 || preg->exec (msymbol->natural_name (), 0,
4708 NULL, 0) == 0)
4709 {
4710 /* For functions we can do a quick check of whether the
4711 symbol might be found via find_pc_symtab. */
4712 if (kind != FUNCTIONS_DOMAIN
4713 || (find_pc_compunit_symtab
4714 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4715 == NULL))
4716 {
4717 if (lookup_symbol_in_objfile_from_linkage_name
4718 (objfile, msymbol->linkage_name (),
4719 VAR_DOMAIN).symbol == NULL)
4720 {
4721 /* Matching msymbol, add it to the results list. */
4722 if (results->size () < m_max_search_results)
4723 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4724 else
4725 return false;
4726 }
4727 }
4728 }
4729 }
4730 }
4731
4732 return true;
4733 }
4734
4735 /* See symtab.h. */
4736
4737 std::vector<symbol_search>
4738 global_symbol_searcher::search () const
4739 {
4740 gdb::optional<compiled_regex> preg;
4741 gdb::optional<compiled_regex> treg;
4742
4743 gdb_assert (m_kind != ALL_DOMAIN);
4744
4745 if (m_symbol_name_regexp != NULL)
4746 {
4747 const char *symbol_name_regexp = m_symbol_name_regexp;
4748
4749 /* Make sure spacing is right for C++ operators.
4750 This is just a courtesy to make the matching less sensitive
4751 to how many spaces the user leaves between 'operator'
4752 and <TYPENAME> or <OPERATOR>. */
4753 const char *opend;
4754 const char *opname = operator_chars (symbol_name_regexp, &opend);
4755
4756 if (*opname)
4757 {
4758 int fix = -1; /* -1 means ok; otherwise number of
4759 spaces needed. */
4760
4761 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4762 {
4763 /* There should 1 space between 'operator' and 'TYPENAME'. */
4764 if (opname[-1] != ' ' || opname[-2] == ' ')
4765 fix = 1;
4766 }
4767 else
4768 {
4769 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4770 if (opname[-1] == ' ')
4771 fix = 0;
4772 }
4773 /* If wrong number of spaces, fix it. */
4774 if (fix >= 0)
4775 {
4776 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4777
4778 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4779 symbol_name_regexp = tmp;
4780 }
4781 }
4782
4783 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4784 ? REG_ICASE : 0);
4785 preg.emplace (symbol_name_regexp, cflags,
4786 _("Invalid regexp"));
4787 }
4788
4789 if (m_symbol_type_regexp != NULL)
4790 {
4791 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4792 ? REG_ICASE : 0);
4793 treg.emplace (m_symbol_type_regexp, cflags,
4794 _("Invalid regexp"));
4795 }
4796
4797 bool found_msymbol = false;
4798 std::set<symbol_search> result_set;
4799 for (objfile *objfile : current_program_space->objfiles ())
4800 {
4801 /* Expand symtabs within objfile that possibly contain matching
4802 symbols. */
4803 found_msymbol |= expand_symtabs (objfile, preg);
4804
4805 /* Find matching symbols within OBJFILE and add them in to the
4806 RESULT_SET set. Use a set here so that we can easily detect
4807 duplicates as we go, and can therefore track how many unique
4808 matches we have found so far. */
4809 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4810 break;
4811 }
4812
4813 /* Convert the result set into a sorted result list, as std::set is
4814 defined to be sorted then no explicit call to std::sort is needed. */
4815 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4816
4817 /* If there are no debug symbols, then add matching minsyms. But if the
4818 user wants to see symbols matching a type regexp, then never give a
4819 minimal symbol, as we assume that a minimal symbol does not have a
4820 type. */
4821 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4822 && !m_exclude_minsyms
4823 && !treg.has_value ())
4824 {
4825 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4826 for (objfile *objfile : current_program_space->objfiles ())
4827 if (!add_matching_msymbols (objfile, preg, &result))
4828 break;
4829 }
4830
4831 return result;
4832 }
4833
4834 /* See symtab.h. */
4835
4836 std::string
4837 symbol_to_info_string (struct symbol *sym, int block,
4838 enum search_domain kind)
4839 {
4840 std::string str;
4841
4842 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4843
4844 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4845 str += "static ";
4846
4847 /* Typedef that is not a C++ class. */
4848 if (kind == TYPES_DOMAIN
4849 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4850 {
4851 string_file tmp_stream;
4852
4853 /* FIXME: For C (and C++) we end up with a difference in output here
4854 between how a typedef is printed, and non-typedefs are printed.
4855 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4856 appear C-like, while TYPE_PRINT doesn't.
4857
4858 For the struct printing case below, things are worse, we force
4859 printing of the ";" in this function, which is going to be wrong
4860 for languages that don't require a ";" between statements. */
4861 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4862 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4863 else
4864 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4865 str += tmp_stream.string ();
4866 }
4867 /* variable, func, or typedef-that-is-c++-class. */
4868 else if (kind < TYPES_DOMAIN
4869 || (kind == TYPES_DOMAIN
4870 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4871 {
4872 string_file tmp_stream;
4873
4874 type_print (SYMBOL_TYPE (sym),
4875 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4876 ? "" : sym->print_name ()),
4877 &tmp_stream, 0);
4878
4879 str += tmp_stream.string ();
4880 str += ";";
4881 }
4882 /* Printing of modules is currently done here, maybe at some future
4883 point we might want a language specific method to print the module
4884 symbol so that we can customise the output more. */
4885 else if (kind == MODULES_DOMAIN)
4886 str += sym->print_name ();
4887
4888 return str;
4889 }
4890
4891 /* Helper function for symbol info commands, for example 'info functions',
4892 'info variables', etc. KIND is the kind of symbol we searched for, and
4893 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4894 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4895 print file and line number information for the symbol as well. Skip
4896 printing the filename if it matches LAST. */
4897
4898 static void
4899 print_symbol_info (enum search_domain kind,
4900 struct symbol *sym,
4901 int block, const char *last)
4902 {
4903 scoped_switch_to_sym_language_if_auto l (sym);
4904 struct symtab *s = symbol_symtab (sym);
4905
4906 if (last != NULL)
4907 {
4908 const char *s_filename = symtab_to_filename_for_display (s);
4909
4910 if (filename_cmp (last, s_filename) != 0)
4911 {
4912 printf_filtered (_("\nFile %ps:\n"),
4913 styled_string (file_name_style.style (),
4914 s_filename));
4915 }
4916
4917 if (SYMBOL_LINE (sym) != 0)
4918 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4919 else
4920 puts_filtered ("\t");
4921 }
4922
4923 std::string str = symbol_to_info_string (sym, block, kind);
4924 printf_filtered ("%s\n", str.c_str ());
4925 }
4926
4927 /* This help function for symtab_symbol_info() prints information
4928 for non-debugging symbols to gdb_stdout. */
4929
4930 static void
4931 print_msymbol_info (struct bound_minimal_symbol msymbol)
4932 {
4933 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4934 char *tmp;
4935
4936 if (gdbarch_addr_bit (gdbarch) <= 32)
4937 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4938 & (CORE_ADDR) 0xffffffff,
4939 8);
4940 else
4941 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4942 16);
4943
4944 ui_file_style sym_style = (msymbol.minsym->text_p ()
4945 ? function_name_style.style ()
4946 : ui_file_style ());
4947
4948 printf_filtered (_("%ps %ps\n"),
4949 styled_string (address_style.style (), tmp),
4950 styled_string (sym_style, msymbol.minsym->print_name ()));
4951 }
4952
4953 /* This is the guts of the commands "info functions", "info types", and
4954 "info variables". It calls search_symbols to find all matches and then
4955 print_[m]symbol_info to print out some useful information about the
4956 matches. */
4957
4958 static void
4959 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4960 const char *regexp, enum search_domain kind,
4961 const char *t_regexp, int from_tty)
4962 {
4963 static const char * const classnames[] =
4964 {"variable", "function", "type", "module"};
4965 const char *last_filename = "";
4966 int first = 1;
4967
4968 gdb_assert (kind != ALL_DOMAIN);
4969
4970 if (regexp != nullptr && *regexp == '\0')
4971 regexp = nullptr;
4972
4973 global_symbol_searcher spec (kind, regexp);
4974 spec.set_symbol_type_regexp (t_regexp);
4975 spec.set_exclude_minsyms (exclude_minsyms);
4976 std::vector<symbol_search> symbols = spec.search ();
4977
4978 if (!quiet)
4979 {
4980 if (regexp != NULL)
4981 {
4982 if (t_regexp != NULL)
4983 printf_filtered
4984 (_("All %ss matching regular expression \"%s\""
4985 " with type matching regular expression \"%s\":\n"),
4986 classnames[kind], regexp, t_regexp);
4987 else
4988 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4989 classnames[kind], regexp);
4990 }
4991 else
4992 {
4993 if (t_regexp != NULL)
4994 printf_filtered
4995 (_("All defined %ss"
4996 " with type matching regular expression \"%s\" :\n"),
4997 classnames[kind], t_regexp);
4998 else
4999 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5000 }
5001 }
5002
5003 for (const symbol_search &p : symbols)
5004 {
5005 QUIT;
5006
5007 if (p.msymbol.minsym != NULL)
5008 {
5009 if (first)
5010 {
5011 if (!quiet)
5012 printf_filtered (_("\nNon-debugging symbols:\n"));
5013 first = 0;
5014 }
5015 print_msymbol_info (p.msymbol);
5016 }
5017 else
5018 {
5019 print_symbol_info (kind,
5020 p.symbol,
5021 p.block,
5022 last_filename);
5023 last_filename
5024 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5025 }
5026 }
5027 }
5028
5029 /* Structure to hold the values of the options used by the 'info variables'
5030 and 'info functions' commands. These correspond to the -q, -t, and -n
5031 options. */
5032
5033 struct info_vars_funcs_options
5034 {
5035 bool quiet = false;
5036 bool exclude_minsyms = false;
5037 char *type_regexp = nullptr;
5038
5039 ~info_vars_funcs_options ()
5040 {
5041 xfree (type_regexp);
5042 }
5043 };
5044
5045 /* The options used by the 'info variables' and 'info functions'
5046 commands. */
5047
5048 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5049 gdb::option::boolean_option_def<info_vars_funcs_options> {
5050 "q",
5051 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5052 nullptr, /* show_cmd_cb */
5053 nullptr /* set_doc */
5054 },
5055
5056 gdb::option::boolean_option_def<info_vars_funcs_options> {
5057 "n",
5058 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5059 nullptr, /* show_cmd_cb */
5060 nullptr /* set_doc */
5061 },
5062
5063 gdb::option::string_option_def<info_vars_funcs_options> {
5064 "t",
5065 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5066 },
5067 nullptr, /* show_cmd_cb */
5068 nullptr /* set_doc */
5069 }
5070 };
5071
5072 /* Returns the option group used by 'info variables' and 'info
5073 functions'. */
5074
5075 static gdb::option::option_def_group
5076 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5077 {
5078 return {{info_vars_funcs_options_defs}, opts};
5079 }
5080
5081 /* Command completer for 'info variables' and 'info functions'. */
5082
5083 static void
5084 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5085 completion_tracker &tracker,
5086 const char *text, const char * /* word */)
5087 {
5088 const auto group
5089 = make_info_vars_funcs_options_def_group (nullptr);
5090 if (gdb::option::complete_options
5091 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5092 return;
5093
5094 const char *word = advance_to_expression_complete_word_point (tracker, text);
5095 symbol_completer (ignore, tracker, text, word);
5096 }
5097
5098 /* Implement the 'info variables' command. */
5099
5100 static void
5101 info_variables_command (const char *args, int from_tty)
5102 {
5103 info_vars_funcs_options opts;
5104 auto grp = make_info_vars_funcs_options_def_group (&opts);
5105 gdb::option::process_options
5106 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5107 if (args != nullptr && *args == '\0')
5108 args = nullptr;
5109
5110 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5111 opts.type_regexp, from_tty);
5112 }
5113
5114 /* Implement the 'info functions' command. */
5115
5116 static void
5117 info_functions_command (const char *args, int from_tty)
5118 {
5119 info_vars_funcs_options opts;
5120
5121 auto grp = make_info_vars_funcs_options_def_group (&opts);
5122 gdb::option::process_options
5123 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5124 if (args != nullptr && *args == '\0')
5125 args = nullptr;
5126
5127 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5128 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5129 }
5130
5131 /* Holds the -q option for the 'info types' command. */
5132
5133 struct info_types_options
5134 {
5135 bool quiet = false;
5136 };
5137
5138 /* The options used by the 'info types' command. */
5139
5140 static const gdb::option::option_def info_types_options_defs[] = {
5141 gdb::option::boolean_option_def<info_types_options> {
5142 "q",
5143 [] (info_types_options *opt) { return &opt->quiet; },
5144 nullptr, /* show_cmd_cb */
5145 nullptr /* set_doc */
5146 }
5147 };
5148
5149 /* Returns the option group used by 'info types'. */
5150
5151 static gdb::option::option_def_group
5152 make_info_types_options_def_group (info_types_options *opts)
5153 {
5154 return {{info_types_options_defs}, opts};
5155 }
5156
5157 /* Implement the 'info types' command. */
5158
5159 static void
5160 info_types_command (const char *args, int from_tty)
5161 {
5162 info_types_options opts;
5163
5164 auto grp = make_info_types_options_def_group (&opts);
5165 gdb::option::process_options
5166 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5167 if (args != nullptr && *args == '\0')
5168 args = nullptr;
5169 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5170 }
5171
5172 /* Command completer for 'info types' command. */
5173
5174 static void
5175 info_types_command_completer (struct cmd_list_element *ignore,
5176 completion_tracker &tracker,
5177 const char *text, const char * /* word */)
5178 {
5179 const auto group
5180 = make_info_types_options_def_group (nullptr);
5181 if (gdb::option::complete_options
5182 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5183 return;
5184
5185 const char *word = advance_to_expression_complete_word_point (tracker, text);
5186 symbol_completer (ignore, tracker, text, word);
5187 }
5188
5189 /* Implement the 'info modules' command. */
5190
5191 static void
5192 info_modules_command (const char *args, int from_tty)
5193 {
5194 info_types_options opts;
5195
5196 auto grp = make_info_types_options_def_group (&opts);
5197 gdb::option::process_options
5198 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5199 if (args != nullptr && *args == '\0')
5200 args = nullptr;
5201 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5202 from_tty);
5203 }
5204
5205 static void
5206 rbreak_command (const char *regexp, int from_tty)
5207 {
5208 std::string string;
5209 const char *file_name = nullptr;
5210
5211 if (regexp != nullptr)
5212 {
5213 const char *colon = strchr (regexp, ':');
5214
5215 if (colon && *(colon + 1) != ':')
5216 {
5217 int colon_index;
5218 char *local_name;
5219
5220 colon_index = colon - regexp;
5221 local_name = (char *) alloca (colon_index + 1);
5222 memcpy (local_name, regexp, colon_index);
5223 local_name[colon_index--] = 0;
5224 while (isspace (local_name[colon_index]))
5225 local_name[colon_index--] = 0;
5226 file_name = local_name;
5227 regexp = skip_spaces (colon + 1);
5228 }
5229 }
5230
5231 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5232 if (file_name != nullptr)
5233 spec.filenames.push_back (file_name);
5234 std::vector<symbol_search> symbols = spec.search ();
5235
5236 scoped_rbreak_breakpoints finalize;
5237 for (const symbol_search &p : symbols)
5238 {
5239 if (p.msymbol.minsym == NULL)
5240 {
5241 struct symtab *symtab = symbol_symtab (p.symbol);
5242 const char *fullname = symtab_to_fullname (symtab);
5243
5244 string = string_printf ("%s:'%s'", fullname,
5245 p.symbol->linkage_name ());
5246 break_command (&string[0], from_tty);
5247 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5248 }
5249 else
5250 {
5251 string = string_printf ("'%s'",
5252 p.msymbol.minsym->linkage_name ());
5253
5254 break_command (&string[0], from_tty);
5255 printf_filtered ("<function, no debug info> %s;\n",
5256 p.msymbol.minsym->print_name ());
5257 }
5258 }
5259 }
5260 \f
5261
5262 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5263
5264 static int
5265 compare_symbol_name (const char *symbol_name, language symbol_language,
5266 const lookup_name_info &lookup_name,
5267 completion_match_result &match_res)
5268 {
5269 const language_defn *lang = language_def (symbol_language);
5270
5271 symbol_name_matcher_ftype *name_match
5272 = get_symbol_name_matcher (lang, lookup_name);
5273
5274 return name_match (symbol_name, lookup_name, &match_res);
5275 }
5276
5277 /* See symtab.h. */
5278
5279 void
5280 completion_list_add_name (completion_tracker &tracker,
5281 language symbol_language,
5282 const char *symname,
5283 const lookup_name_info &lookup_name,
5284 const char *text, const char *word)
5285 {
5286 completion_match_result &match_res
5287 = tracker.reset_completion_match_result ();
5288
5289 /* Clip symbols that cannot match. */
5290 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5291 return;
5292
5293 /* Refresh SYMNAME from the match string. It's potentially
5294 different depending on language. (E.g., on Ada, the match may be
5295 the encoded symbol name wrapped in "<>"). */
5296 symname = match_res.match.match ();
5297 gdb_assert (symname != NULL);
5298
5299 /* We have a match for a completion, so add SYMNAME to the current list
5300 of matches. Note that the name is moved to freshly malloc'd space. */
5301
5302 {
5303 gdb::unique_xmalloc_ptr<char> completion
5304 = make_completion_match_str (symname, text, word);
5305
5306 /* Here we pass the match-for-lcd object to add_completion. Some
5307 languages match the user text against substrings of symbol
5308 names in some cases. E.g., in C++, "b push_ba" completes to
5309 "std::vector::push_back", "std::string::push_back", etc., and
5310 in this case we want the completion lowest common denominator
5311 to be "push_back" instead of "std::". */
5312 tracker.add_completion (std::move (completion),
5313 &match_res.match_for_lcd, text, word);
5314 }
5315 }
5316
5317 /* completion_list_add_name wrapper for struct symbol. */
5318
5319 static void
5320 completion_list_add_symbol (completion_tracker &tracker,
5321 symbol *sym,
5322 const lookup_name_info &lookup_name,
5323 const char *text, const char *word)
5324 {
5325 completion_list_add_name (tracker, sym->language (),
5326 sym->natural_name (),
5327 lookup_name, text, word);
5328
5329 /* C++ function symbols include the parameters within both the msymbol
5330 name and the symbol name. The problem is that the msymbol name will
5331 describe the parameters in the most basic way, with typedefs stripped
5332 out, while the symbol name will represent the types as they appear in
5333 the program. This means we will see duplicate entries in the
5334 completion tracker. The following converts the symbol name back to
5335 the msymbol name and removes the msymbol name from the completion
5336 tracker. */
5337 if (sym->language () == language_cplus
5338 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5339 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5340 {
5341 /* The call to canonicalize returns the empty string if the input
5342 string is already in canonical form, thanks to this we don't
5343 remove the symbol we just added above. */
5344 gdb::unique_xmalloc_ptr<char> str
5345 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5346 if (str != nullptr)
5347 tracker.remove_completion (str.get ());
5348 }
5349 }
5350
5351 /* completion_list_add_name wrapper for struct minimal_symbol. */
5352
5353 static void
5354 completion_list_add_msymbol (completion_tracker &tracker,
5355 minimal_symbol *sym,
5356 const lookup_name_info &lookup_name,
5357 const char *text, const char *word)
5358 {
5359 completion_list_add_name (tracker, sym->language (),
5360 sym->natural_name (),
5361 lookup_name, text, word);
5362 }
5363
5364
5365 /* ObjC: In case we are completing on a selector, look as the msymbol
5366 again and feed all the selectors into the mill. */
5367
5368 static void
5369 completion_list_objc_symbol (completion_tracker &tracker,
5370 struct minimal_symbol *msymbol,
5371 const lookup_name_info &lookup_name,
5372 const char *text, const char *word)
5373 {
5374 static char *tmp = NULL;
5375 static unsigned int tmplen = 0;
5376
5377 const char *method, *category, *selector;
5378 char *tmp2 = NULL;
5379
5380 method = msymbol->natural_name ();
5381
5382 /* Is it a method? */
5383 if ((method[0] != '-') && (method[0] != '+'))
5384 return;
5385
5386 if (text[0] == '[')
5387 /* Complete on shortened method method. */
5388 completion_list_add_name (tracker, language_objc,
5389 method + 1,
5390 lookup_name,
5391 text, word);
5392
5393 while ((strlen (method) + 1) >= tmplen)
5394 {
5395 if (tmplen == 0)
5396 tmplen = 1024;
5397 else
5398 tmplen *= 2;
5399 tmp = (char *) xrealloc (tmp, tmplen);
5400 }
5401 selector = strchr (method, ' ');
5402 if (selector != NULL)
5403 selector++;
5404
5405 category = strchr (method, '(');
5406
5407 if ((category != NULL) && (selector != NULL))
5408 {
5409 memcpy (tmp, method, (category - method));
5410 tmp[category - method] = ' ';
5411 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5412 completion_list_add_name (tracker, language_objc, tmp,
5413 lookup_name, text, word);
5414 if (text[0] == '[')
5415 completion_list_add_name (tracker, language_objc, tmp + 1,
5416 lookup_name, text, word);
5417 }
5418
5419 if (selector != NULL)
5420 {
5421 /* Complete on selector only. */
5422 strcpy (tmp, selector);
5423 tmp2 = strchr (tmp, ']');
5424 if (tmp2 != NULL)
5425 *tmp2 = '\0';
5426
5427 completion_list_add_name (tracker, language_objc, tmp,
5428 lookup_name, text, word);
5429 }
5430 }
5431
5432 /* Break the non-quoted text based on the characters which are in
5433 symbols. FIXME: This should probably be language-specific. */
5434
5435 static const char *
5436 language_search_unquoted_string (const char *text, const char *p)
5437 {
5438 for (; p > text; --p)
5439 {
5440 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5441 continue;
5442 else
5443 {
5444 if ((current_language->la_language == language_objc))
5445 {
5446 if (p[-1] == ':') /* Might be part of a method name. */
5447 continue;
5448 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5449 p -= 2; /* Beginning of a method name. */
5450 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5451 { /* Might be part of a method name. */
5452 const char *t = p;
5453
5454 /* Seeing a ' ' or a '(' is not conclusive evidence
5455 that we are in the middle of a method name. However,
5456 finding "-[" or "+[" should be pretty un-ambiguous.
5457 Unfortunately we have to find it now to decide. */
5458
5459 while (t > text)
5460 if (isalnum (t[-1]) || t[-1] == '_' ||
5461 t[-1] == ' ' || t[-1] == ':' ||
5462 t[-1] == '(' || t[-1] == ')')
5463 --t;
5464 else
5465 break;
5466
5467 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5468 p = t - 2; /* Method name detected. */
5469 /* Else we leave with p unchanged. */
5470 }
5471 }
5472 break;
5473 }
5474 }
5475 return p;
5476 }
5477
5478 static void
5479 completion_list_add_fields (completion_tracker &tracker,
5480 struct symbol *sym,
5481 const lookup_name_info &lookup_name,
5482 const char *text, const char *word)
5483 {
5484 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5485 {
5486 struct type *t = SYMBOL_TYPE (sym);
5487 enum type_code c = TYPE_CODE (t);
5488 int j;
5489
5490 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5491 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5492 if (TYPE_FIELD_NAME (t, j))
5493 completion_list_add_name (tracker, sym->language (),
5494 TYPE_FIELD_NAME (t, j),
5495 lookup_name, text, word);
5496 }
5497 }
5498
5499 /* See symtab.h. */
5500
5501 bool
5502 symbol_is_function_or_method (symbol *sym)
5503 {
5504 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5505 {
5506 case TYPE_CODE_FUNC:
5507 case TYPE_CODE_METHOD:
5508 return true;
5509 default:
5510 return false;
5511 }
5512 }
5513
5514 /* See symtab.h. */
5515
5516 bool
5517 symbol_is_function_or_method (minimal_symbol *msymbol)
5518 {
5519 switch (MSYMBOL_TYPE (msymbol))
5520 {
5521 case mst_text:
5522 case mst_text_gnu_ifunc:
5523 case mst_solib_trampoline:
5524 case mst_file_text:
5525 return true;
5526 default:
5527 return false;
5528 }
5529 }
5530
5531 /* See symtab.h. */
5532
5533 bound_minimal_symbol
5534 find_gnu_ifunc (const symbol *sym)
5535 {
5536 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5537 return {};
5538
5539 lookup_name_info lookup_name (sym->search_name (),
5540 symbol_name_match_type::SEARCH_NAME);
5541 struct objfile *objfile = symbol_objfile (sym);
5542
5543 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5544 minimal_symbol *ifunc = NULL;
5545
5546 iterate_over_minimal_symbols (objfile, lookup_name,
5547 [&] (minimal_symbol *minsym)
5548 {
5549 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5550 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5551 {
5552 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5553 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5554 {
5555 struct gdbarch *gdbarch = objfile->arch ();
5556 msym_addr
5557 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5558 msym_addr,
5559 current_top_target ());
5560 }
5561 if (msym_addr == address)
5562 {
5563 ifunc = minsym;
5564 return true;
5565 }
5566 }
5567 return false;
5568 });
5569
5570 if (ifunc != NULL)
5571 return {ifunc, objfile};
5572 return {};
5573 }
5574
5575 /* Add matching symbols from SYMTAB to the current completion list. */
5576
5577 static void
5578 add_symtab_completions (struct compunit_symtab *cust,
5579 completion_tracker &tracker,
5580 complete_symbol_mode mode,
5581 const lookup_name_info &lookup_name,
5582 const char *text, const char *word,
5583 enum type_code code)
5584 {
5585 struct symbol *sym;
5586 const struct block *b;
5587 struct block_iterator iter;
5588 int i;
5589
5590 if (cust == NULL)
5591 return;
5592
5593 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5594 {
5595 QUIT;
5596 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5597 ALL_BLOCK_SYMBOLS (b, iter, sym)
5598 {
5599 if (completion_skip_symbol (mode, sym))
5600 continue;
5601
5602 if (code == TYPE_CODE_UNDEF
5603 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5604 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5605 completion_list_add_symbol (tracker, sym,
5606 lookup_name,
5607 text, word);
5608 }
5609 }
5610 }
5611
5612 void
5613 default_collect_symbol_completion_matches_break_on
5614 (completion_tracker &tracker, complete_symbol_mode mode,
5615 symbol_name_match_type name_match_type,
5616 const char *text, const char *word,
5617 const char *break_on, enum type_code code)
5618 {
5619 /* Problem: All of the symbols have to be copied because readline
5620 frees them. I'm not going to worry about this; hopefully there
5621 won't be that many. */
5622
5623 struct symbol *sym;
5624 const struct block *b;
5625 const struct block *surrounding_static_block, *surrounding_global_block;
5626 struct block_iterator iter;
5627 /* The symbol we are completing on. Points in same buffer as text. */
5628 const char *sym_text;
5629
5630 /* Now look for the symbol we are supposed to complete on. */
5631 if (mode == complete_symbol_mode::LINESPEC)
5632 sym_text = text;
5633 else
5634 {
5635 const char *p;
5636 char quote_found;
5637 const char *quote_pos = NULL;
5638
5639 /* First see if this is a quoted string. */
5640 quote_found = '\0';
5641 for (p = text; *p != '\0'; ++p)
5642 {
5643 if (quote_found != '\0')
5644 {
5645 if (*p == quote_found)
5646 /* Found close quote. */
5647 quote_found = '\0';
5648 else if (*p == '\\' && p[1] == quote_found)
5649 /* A backslash followed by the quote character
5650 doesn't end the string. */
5651 ++p;
5652 }
5653 else if (*p == '\'' || *p == '"')
5654 {
5655 quote_found = *p;
5656 quote_pos = p;
5657 }
5658 }
5659 if (quote_found == '\'')
5660 /* A string within single quotes can be a symbol, so complete on it. */
5661 sym_text = quote_pos + 1;
5662 else if (quote_found == '"')
5663 /* A double-quoted string is never a symbol, nor does it make sense
5664 to complete it any other way. */
5665 {
5666 return;
5667 }
5668 else
5669 {
5670 /* It is not a quoted string. Break it based on the characters
5671 which are in symbols. */
5672 while (p > text)
5673 {
5674 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5675 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5676 --p;
5677 else
5678 break;
5679 }
5680 sym_text = p;
5681 }
5682 }
5683
5684 lookup_name_info lookup_name (sym_text, name_match_type, true);
5685
5686 /* At this point scan through the misc symbol vectors and add each
5687 symbol you find to the list. Eventually we want to ignore
5688 anything that isn't a text symbol (everything else will be
5689 handled by the psymtab code below). */
5690
5691 if (code == TYPE_CODE_UNDEF)
5692 {
5693 for (objfile *objfile : current_program_space->objfiles ())
5694 {
5695 for (minimal_symbol *msymbol : objfile->msymbols ())
5696 {
5697 QUIT;
5698
5699 if (completion_skip_symbol (mode, msymbol))
5700 continue;
5701
5702 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5703 sym_text, word);
5704
5705 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5706 sym_text, word);
5707 }
5708 }
5709 }
5710
5711 /* Add completions for all currently loaded symbol tables. */
5712 for (objfile *objfile : current_program_space->objfiles ())
5713 {
5714 for (compunit_symtab *cust : objfile->compunits ())
5715 add_symtab_completions (cust, tracker, mode, lookup_name,
5716 sym_text, word, code);
5717 }
5718
5719 /* Look through the partial symtabs for all symbols which begin by
5720 matching SYM_TEXT. Expand all CUs that you find to the list. */
5721 expand_symtabs_matching (NULL,
5722 lookup_name,
5723 NULL,
5724 [&] (compunit_symtab *symtab) /* expansion notify */
5725 {
5726 add_symtab_completions (symtab,
5727 tracker, mode, lookup_name,
5728 sym_text, word, code);
5729 },
5730 ALL_DOMAIN);
5731
5732 /* Search upwards from currently selected frame (so that we can
5733 complete on local vars). Also catch fields of types defined in
5734 this places which match our text string. Only complete on types
5735 visible from current context. */
5736
5737 b = get_selected_block (0);
5738 surrounding_static_block = block_static_block (b);
5739 surrounding_global_block = block_global_block (b);
5740 if (surrounding_static_block != NULL)
5741 while (b != surrounding_static_block)
5742 {
5743 QUIT;
5744
5745 ALL_BLOCK_SYMBOLS (b, iter, sym)
5746 {
5747 if (code == TYPE_CODE_UNDEF)
5748 {
5749 completion_list_add_symbol (tracker, sym, lookup_name,
5750 sym_text, word);
5751 completion_list_add_fields (tracker, sym, lookup_name,
5752 sym_text, word);
5753 }
5754 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5755 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5756 completion_list_add_symbol (tracker, sym, lookup_name,
5757 sym_text, word);
5758 }
5759
5760 /* Stop when we encounter an enclosing function. Do not stop for
5761 non-inlined functions - the locals of the enclosing function
5762 are in scope for a nested function. */
5763 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5764 break;
5765 b = BLOCK_SUPERBLOCK (b);
5766 }
5767
5768 /* Add fields from the file's types; symbols will be added below. */
5769
5770 if (code == TYPE_CODE_UNDEF)
5771 {
5772 if (surrounding_static_block != NULL)
5773 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5774 completion_list_add_fields (tracker, sym, lookup_name,
5775 sym_text, word);
5776
5777 if (surrounding_global_block != NULL)
5778 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5779 completion_list_add_fields (tracker, sym, lookup_name,
5780 sym_text, word);
5781 }
5782
5783 /* Skip macros if we are completing a struct tag -- arguable but
5784 usually what is expected. */
5785 if (current_language->la_macro_expansion == macro_expansion_c
5786 && code == TYPE_CODE_UNDEF)
5787 {
5788 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5789
5790 /* This adds a macro's name to the current completion list. */
5791 auto add_macro_name = [&] (const char *macro_name,
5792 const macro_definition *,
5793 macro_source_file *,
5794 int)
5795 {
5796 completion_list_add_name (tracker, language_c, macro_name,
5797 lookup_name, sym_text, word);
5798 };
5799
5800 /* Add any macros visible in the default scope. Note that this
5801 may yield the occasional wrong result, because an expression
5802 might be evaluated in a scope other than the default. For
5803 example, if the user types "break file:line if <TAB>", the
5804 resulting expression will be evaluated at "file:line" -- but
5805 at there does not seem to be a way to detect this at
5806 completion time. */
5807 scope = default_macro_scope ();
5808 if (scope)
5809 macro_for_each_in_scope (scope->file, scope->line,
5810 add_macro_name);
5811
5812 /* User-defined macros are always visible. */
5813 macro_for_each (macro_user_macros, add_macro_name);
5814 }
5815 }
5816
5817 void
5818 default_collect_symbol_completion_matches (completion_tracker &tracker,
5819 complete_symbol_mode mode,
5820 symbol_name_match_type name_match_type,
5821 const char *text, const char *word,
5822 enum type_code code)
5823 {
5824 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5825 name_match_type,
5826 text, word, "",
5827 code);
5828 }
5829
5830 /* Collect all symbols (regardless of class) which begin by matching
5831 TEXT. */
5832
5833 void
5834 collect_symbol_completion_matches (completion_tracker &tracker,
5835 complete_symbol_mode mode,
5836 symbol_name_match_type name_match_type,
5837 const char *text, const char *word)
5838 {
5839 current_language->la_collect_symbol_completion_matches (tracker, mode,
5840 name_match_type,
5841 text, word,
5842 TYPE_CODE_UNDEF);
5843 }
5844
5845 /* Like collect_symbol_completion_matches, but only collect
5846 STRUCT_DOMAIN symbols whose type code is CODE. */
5847
5848 void
5849 collect_symbol_completion_matches_type (completion_tracker &tracker,
5850 const char *text, const char *word,
5851 enum type_code code)
5852 {
5853 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5854 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5855
5856 gdb_assert (code == TYPE_CODE_UNION
5857 || code == TYPE_CODE_STRUCT
5858 || code == TYPE_CODE_ENUM);
5859 current_language->la_collect_symbol_completion_matches (tracker, mode,
5860 name_match_type,
5861 text, word, code);
5862 }
5863
5864 /* Like collect_symbol_completion_matches, but collects a list of
5865 symbols defined in all source files named SRCFILE. */
5866
5867 void
5868 collect_file_symbol_completion_matches (completion_tracker &tracker,
5869 complete_symbol_mode mode,
5870 symbol_name_match_type name_match_type,
5871 const char *text, const char *word,
5872 const char *srcfile)
5873 {
5874 /* The symbol we are completing on. Points in same buffer as text. */
5875 const char *sym_text;
5876
5877 /* Now look for the symbol we are supposed to complete on.
5878 FIXME: This should be language-specific. */
5879 if (mode == complete_symbol_mode::LINESPEC)
5880 sym_text = text;
5881 else
5882 {
5883 const char *p;
5884 char quote_found;
5885 const char *quote_pos = NULL;
5886
5887 /* First see if this is a quoted string. */
5888 quote_found = '\0';
5889 for (p = text; *p != '\0'; ++p)
5890 {
5891 if (quote_found != '\0')
5892 {
5893 if (*p == quote_found)
5894 /* Found close quote. */
5895 quote_found = '\0';
5896 else if (*p == '\\' && p[1] == quote_found)
5897 /* A backslash followed by the quote character
5898 doesn't end the string. */
5899 ++p;
5900 }
5901 else if (*p == '\'' || *p == '"')
5902 {
5903 quote_found = *p;
5904 quote_pos = p;
5905 }
5906 }
5907 if (quote_found == '\'')
5908 /* A string within single quotes can be a symbol, so complete on it. */
5909 sym_text = quote_pos + 1;
5910 else if (quote_found == '"')
5911 /* A double-quoted string is never a symbol, nor does it make sense
5912 to complete it any other way. */
5913 {
5914 return;
5915 }
5916 else
5917 {
5918 /* Not a quoted string. */
5919 sym_text = language_search_unquoted_string (text, p);
5920 }
5921 }
5922
5923 lookup_name_info lookup_name (sym_text, name_match_type, true);
5924
5925 /* Go through symtabs for SRCFILE and check the externs and statics
5926 for symbols which match. */
5927 iterate_over_symtabs (srcfile, [&] (symtab *s)
5928 {
5929 add_symtab_completions (SYMTAB_COMPUNIT (s),
5930 tracker, mode, lookup_name,
5931 sym_text, word, TYPE_CODE_UNDEF);
5932 return false;
5933 });
5934 }
5935
5936 /* A helper function for make_source_files_completion_list. It adds
5937 another file name to a list of possible completions, growing the
5938 list as necessary. */
5939
5940 static void
5941 add_filename_to_list (const char *fname, const char *text, const char *word,
5942 completion_list *list)
5943 {
5944 list->emplace_back (make_completion_match_str (fname, text, word));
5945 }
5946
5947 static int
5948 not_interesting_fname (const char *fname)
5949 {
5950 static const char *illegal_aliens[] = {
5951 "_globals_", /* inserted by coff_symtab_read */
5952 NULL
5953 };
5954 int i;
5955
5956 for (i = 0; illegal_aliens[i]; i++)
5957 {
5958 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5959 return 1;
5960 }
5961 return 0;
5962 }
5963
5964 /* An object of this type is passed as the user_data argument to
5965 map_partial_symbol_filenames. */
5966 struct add_partial_filename_data
5967 {
5968 struct filename_seen_cache *filename_seen_cache;
5969 const char *text;
5970 const char *word;
5971 int text_len;
5972 completion_list *list;
5973 };
5974
5975 /* A callback for map_partial_symbol_filenames. */
5976
5977 static void
5978 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5979 void *user_data)
5980 {
5981 struct add_partial_filename_data *data
5982 = (struct add_partial_filename_data *) user_data;
5983
5984 if (not_interesting_fname (filename))
5985 return;
5986 if (!data->filename_seen_cache->seen (filename)
5987 && filename_ncmp (filename, data->text, data->text_len) == 0)
5988 {
5989 /* This file matches for a completion; add it to the
5990 current list of matches. */
5991 add_filename_to_list (filename, data->text, data->word, data->list);
5992 }
5993 else
5994 {
5995 const char *base_name = lbasename (filename);
5996
5997 if (base_name != filename
5998 && !data->filename_seen_cache->seen (base_name)
5999 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6000 add_filename_to_list (base_name, data->text, data->word, data->list);
6001 }
6002 }
6003
6004 /* Return a list of all source files whose names begin with matching
6005 TEXT. The file names are looked up in the symbol tables of this
6006 program. */
6007
6008 completion_list
6009 make_source_files_completion_list (const char *text, const char *word)
6010 {
6011 size_t text_len = strlen (text);
6012 completion_list list;
6013 const char *base_name;
6014 struct add_partial_filename_data datum;
6015
6016 if (!have_full_symbols () && !have_partial_symbols ())
6017 return list;
6018
6019 filename_seen_cache filenames_seen;
6020
6021 for (objfile *objfile : current_program_space->objfiles ())
6022 {
6023 for (compunit_symtab *cu : objfile->compunits ())
6024 {
6025 for (symtab *s : compunit_filetabs (cu))
6026 {
6027 if (not_interesting_fname (s->filename))
6028 continue;
6029 if (!filenames_seen.seen (s->filename)
6030 && filename_ncmp (s->filename, text, text_len) == 0)
6031 {
6032 /* This file matches for a completion; add it to the current
6033 list of matches. */
6034 add_filename_to_list (s->filename, text, word, &list);
6035 }
6036 else
6037 {
6038 /* NOTE: We allow the user to type a base name when the
6039 debug info records leading directories, but not the other
6040 way around. This is what subroutines of breakpoint
6041 command do when they parse file names. */
6042 base_name = lbasename (s->filename);
6043 if (base_name != s->filename
6044 && !filenames_seen.seen (base_name)
6045 && filename_ncmp (base_name, text, text_len) == 0)
6046 add_filename_to_list (base_name, text, word, &list);
6047 }
6048 }
6049 }
6050 }
6051
6052 datum.filename_seen_cache = &filenames_seen;
6053 datum.text = text;
6054 datum.word = word;
6055 datum.text_len = text_len;
6056 datum.list = &list;
6057 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6058 0 /*need_fullname*/);
6059
6060 return list;
6061 }
6062 \f
6063 /* Track MAIN */
6064
6065 /* Return the "main_info" object for the current program space. If
6066 the object has not yet been created, create it and fill in some
6067 default values. */
6068
6069 static struct main_info *
6070 get_main_info (void)
6071 {
6072 struct main_info *info = main_progspace_key.get (current_program_space);
6073
6074 if (info == NULL)
6075 {
6076 /* It may seem strange to store the main name in the progspace
6077 and also in whatever objfile happens to see a main name in
6078 its debug info. The reason for this is mainly historical:
6079 gdb returned "main" as the name even if no function named
6080 "main" was defined the program; and this approach lets us
6081 keep compatibility. */
6082 info = main_progspace_key.emplace (current_program_space);
6083 }
6084
6085 return info;
6086 }
6087
6088 static void
6089 set_main_name (const char *name, enum language lang)
6090 {
6091 struct main_info *info = get_main_info ();
6092
6093 if (info->name_of_main != NULL)
6094 {
6095 xfree (info->name_of_main);
6096 info->name_of_main = NULL;
6097 info->language_of_main = language_unknown;
6098 }
6099 if (name != NULL)
6100 {
6101 info->name_of_main = xstrdup (name);
6102 info->language_of_main = lang;
6103 }
6104 }
6105
6106 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6107 accordingly. */
6108
6109 static void
6110 find_main_name (void)
6111 {
6112 const char *new_main_name;
6113
6114 /* First check the objfiles to see whether a debuginfo reader has
6115 picked up the appropriate main name. Historically the main name
6116 was found in a more or less random way; this approach instead
6117 relies on the order of objfile creation -- which still isn't
6118 guaranteed to get the correct answer, but is just probably more
6119 accurate. */
6120 for (objfile *objfile : current_program_space->objfiles ())
6121 {
6122 if (objfile->per_bfd->name_of_main != NULL)
6123 {
6124 set_main_name (objfile->per_bfd->name_of_main,
6125 objfile->per_bfd->language_of_main);
6126 return;
6127 }
6128 }
6129
6130 /* Try to see if the main procedure is in Ada. */
6131 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6132 be to add a new method in the language vector, and call this
6133 method for each language until one of them returns a non-empty
6134 name. This would allow us to remove this hard-coded call to
6135 an Ada function. It is not clear that this is a better approach
6136 at this point, because all methods need to be written in a way
6137 such that false positives never be returned. For instance, it is
6138 important that a method does not return a wrong name for the main
6139 procedure if the main procedure is actually written in a different
6140 language. It is easy to guaranty this with Ada, since we use a
6141 special symbol generated only when the main in Ada to find the name
6142 of the main procedure. It is difficult however to see how this can
6143 be guarantied for languages such as C, for instance. This suggests
6144 that order of call for these methods becomes important, which means
6145 a more complicated approach. */
6146 new_main_name = ada_main_name ();
6147 if (new_main_name != NULL)
6148 {
6149 set_main_name (new_main_name, language_ada);
6150 return;
6151 }
6152
6153 new_main_name = d_main_name ();
6154 if (new_main_name != NULL)
6155 {
6156 set_main_name (new_main_name, language_d);
6157 return;
6158 }
6159
6160 new_main_name = go_main_name ();
6161 if (new_main_name != NULL)
6162 {
6163 set_main_name (new_main_name, language_go);
6164 return;
6165 }
6166
6167 new_main_name = pascal_main_name ();
6168 if (new_main_name != NULL)
6169 {
6170 set_main_name (new_main_name, language_pascal);
6171 return;
6172 }
6173
6174 /* The languages above didn't identify the name of the main procedure.
6175 Fallback to "main". */
6176
6177 /* Try to find language for main in psymtabs. */
6178 enum language lang
6179 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6180 if (lang != language_unknown)
6181 {
6182 set_main_name ("main", lang);
6183 return;
6184 }
6185
6186 set_main_name ("main", language_unknown);
6187 }
6188
6189 /* See symtab.h. */
6190
6191 const char *
6192 main_name ()
6193 {
6194 struct main_info *info = get_main_info ();
6195
6196 if (info->name_of_main == NULL)
6197 find_main_name ();
6198
6199 return info->name_of_main;
6200 }
6201
6202 /* Return the language of the main function. If it is not known,
6203 return language_unknown. */
6204
6205 enum language
6206 main_language (void)
6207 {
6208 struct main_info *info = get_main_info ();
6209
6210 if (info->name_of_main == NULL)
6211 find_main_name ();
6212
6213 return info->language_of_main;
6214 }
6215
6216 /* Handle ``executable_changed'' events for the symtab module. */
6217
6218 static void
6219 symtab_observer_executable_changed (void)
6220 {
6221 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6222 set_main_name (NULL, language_unknown);
6223 }
6224
6225 /* Return 1 if the supplied producer string matches the ARM RealView
6226 compiler (armcc). */
6227
6228 bool
6229 producer_is_realview (const char *producer)
6230 {
6231 static const char *const arm_idents[] = {
6232 "ARM C Compiler, ADS",
6233 "Thumb C Compiler, ADS",
6234 "ARM C++ Compiler, ADS",
6235 "Thumb C++ Compiler, ADS",
6236 "ARM/Thumb C/C++ Compiler, RVCT",
6237 "ARM C/C++ Compiler, RVCT"
6238 };
6239 int i;
6240
6241 if (producer == NULL)
6242 return false;
6243
6244 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6245 if (startswith (producer, arm_idents[i]))
6246 return true;
6247
6248 return false;
6249 }
6250
6251 \f
6252
6253 /* The next index to hand out in response to a registration request. */
6254
6255 static int next_aclass_value = LOC_FINAL_VALUE;
6256
6257 /* The maximum number of "aclass" registrations we support. This is
6258 constant for convenience. */
6259 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6260
6261 /* The objects representing the various "aclass" values. The elements
6262 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6263 elements are those registered at gdb initialization time. */
6264
6265 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6266
6267 /* The globally visible pointer. This is separate from 'symbol_impl'
6268 so that it can be const. */
6269
6270 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6271
6272 /* Make sure we saved enough room in struct symbol. */
6273
6274 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6275
6276 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6277 is the ops vector associated with this index. This returns the new
6278 index, which should be used as the aclass_index field for symbols
6279 of this type. */
6280
6281 int
6282 register_symbol_computed_impl (enum address_class aclass,
6283 const struct symbol_computed_ops *ops)
6284 {
6285 int result = next_aclass_value++;
6286
6287 gdb_assert (aclass == LOC_COMPUTED);
6288 gdb_assert (result < MAX_SYMBOL_IMPLS);
6289 symbol_impl[result].aclass = aclass;
6290 symbol_impl[result].ops_computed = ops;
6291
6292 /* Sanity check OPS. */
6293 gdb_assert (ops != NULL);
6294 gdb_assert (ops->tracepoint_var_ref != NULL);
6295 gdb_assert (ops->describe_location != NULL);
6296 gdb_assert (ops->get_symbol_read_needs != NULL);
6297 gdb_assert (ops->read_variable != NULL);
6298
6299 return result;
6300 }
6301
6302 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6303 OPS is the ops vector associated with this index. This returns the
6304 new index, which should be used as the aclass_index field for symbols
6305 of this type. */
6306
6307 int
6308 register_symbol_block_impl (enum address_class aclass,
6309 const struct symbol_block_ops *ops)
6310 {
6311 int result = next_aclass_value++;
6312
6313 gdb_assert (aclass == LOC_BLOCK);
6314 gdb_assert (result < MAX_SYMBOL_IMPLS);
6315 symbol_impl[result].aclass = aclass;
6316 symbol_impl[result].ops_block = ops;
6317
6318 /* Sanity check OPS. */
6319 gdb_assert (ops != NULL);
6320 gdb_assert (ops->find_frame_base_location != NULL);
6321
6322 return result;
6323 }
6324
6325 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6326 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6327 this index. This returns the new index, which should be used as
6328 the aclass_index field for symbols of this type. */
6329
6330 int
6331 register_symbol_register_impl (enum address_class aclass,
6332 const struct symbol_register_ops *ops)
6333 {
6334 int result = next_aclass_value++;
6335
6336 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6337 gdb_assert (result < MAX_SYMBOL_IMPLS);
6338 symbol_impl[result].aclass = aclass;
6339 symbol_impl[result].ops_register = ops;
6340
6341 return result;
6342 }
6343
6344 /* Initialize elements of 'symbol_impl' for the constants in enum
6345 address_class. */
6346
6347 static void
6348 initialize_ordinary_address_classes (void)
6349 {
6350 int i;
6351
6352 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6353 symbol_impl[i].aclass = (enum address_class) i;
6354 }
6355
6356 \f
6357
6358 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6359
6360 void
6361 initialize_objfile_symbol (struct symbol *sym)
6362 {
6363 SYMBOL_OBJFILE_OWNED (sym) = 1;
6364 SYMBOL_SECTION (sym) = -1;
6365 }
6366
6367 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6368 obstack. */
6369
6370 struct symbol *
6371 allocate_symbol (struct objfile *objfile)
6372 {
6373 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6374
6375 initialize_objfile_symbol (result);
6376
6377 return result;
6378 }
6379
6380 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6381 obstack. */
6382
6383 struct template_symbol *
6384 allocate_template_symbol (struct objfile *objfile)
6385 {
6386 struct template_symbol *result;
6387
6388 result = new (&objfile->objfile_obstack) template_symbol ();
6389 initialize_objfile_symbol (result);
6390
6391 return result;
6392 }
6393
6394 /* See symtab.h. */
6395
6396 struct objfile *
6397 symbol_objfile (const struct symbol *symbol)
6398 {
6399 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6400 return SYMTAB_OBJFILE (symbol->owner.symtab);
6401 }
6402
6403 /* See symtab.h. */
6404
6405 struct gdbarch *
6406 symbol_arch (const struct symbol *symbol)
6407 {
6408 if (!SYMBOL_OBJFILE_OWNED (symbol))
6409 return symbol->owner.arch;
6410 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6411 }
6412
6413 /* See symtab.h. */
6414
6415 struct symtab *
6416 symbol_symtab (const struct symbol *symbol)
6417 {
6418 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6419 return symbol->owner.symtab;
6420 }
6421
6422 /* See symtab.h. */
6423
6424 void
6425 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6426 {
6427 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6428 symbol->owner.symtab = symtab;
6429 }
6430
6431 /* See symtab.h. */
6432
6433 CORE_ADDR
6434 get_symbol_address (const struct symbol *sym)
6435 {
6436 gdb_assert (sym->maybe_copied);
6437 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6438
6439 const char *linkage_name = sym->linkage_name ();
6440
6441 for (objfile *objfile : current_program_space->objfiles ())
6442 {
6443 if (objfile->separate_debug_objfile_backlink != nullptr)
6444 continue;
6445
6446 bound_minimal_symbol minsym
6447 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6448 if (minsym.minsym != nullptr)
6449 return BMSYMBOL_VALUE_ADDRESS (minsym);
6450 }
6451 return sym->value.address;
6452 }
6453
6454 /* See symtab.h. */
6455
6456 CORE_ADDR
6457 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6458 {
6459 gdb_assert (minsym->maybe_copied);
6460 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6461
6462 const char *linkage_name = minsym->linkage_name ();
6463
6464 for (objfile *objfile : current_program_space->objfiles ())
6465 {
6466 if (objfile->separate_debug_objfile_backlink == nullptr
6467 && (objfile->flags & OBJF_MAINLINE) != 0)
6468 {
6469 bound_minimal_symbol found
6470 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6471 if (found.minsym != nullptr)
6472 return BMSYMBOL_VALUE_ADDRESS (found);
6473 }
6474 }
6475 return minsym->value.address + objf->section_offsets[minsym->section];
6476 }
6477
6478 \f
6479
6480 /* Hold the sub-commands of 'info module'. */
6481
6482 static struct cmd_list_element *info_module_cmdlist = NULL;
6483
6484 /* See symtab.h. */
6485
6486 std::vector<module_symbol_search>
6487 search_module_symbols (const char *module_regexp, const char *regexp,
6488 const char *type_regexp, search_domain kind)
6489 {
6490 std::vector<module_symbol_search> results;
6491
6492 /* Search for all modules matching MODULE_REGEXP. */
6493 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6494 spec1.set_exclude_minsyms (true);
6495 std::vector<symbol_search> modules = spec1.search ();
6496
6497 /* Now search for all symbols of the required KIND matching the required
6498 regular expressions. We figure out which ones are in which modules
6499 below. */
6500 global_symbol_searcher spec2 (kind, regexp);
6501 spec2.set_symbol_type_regexp (type_regexp);
6502 spec2.set_exclude_minsyms (true);
6503 std::vector<symbol_search> symbols = spec2.search ();
6504
6505 /* Now iterate over all MODULES, checking to see which items from
6506 SYMBOLS are in each module. */
6507 for (const symbol_search &p : modules)
6508 {
6509 QUIT;
6510
6511 /* This is a module. */
6512 gdb_assert (p.symbol != nullptr);
6513
6514 std::string prefix = p.symbol->print_name ();
6515 prefix += "::";
6516
6517 for (const symbol_search &q : symbols)
6518 {
6519 if (q.symbol == nullptr)
6520 continue;
6521
6522 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6523 prefix.size ()) != 0)
6524 continue;
6525
6526 results.push_back ({p, q});
6527 }
6528 }
6529
6530 return results;
6531 }
6532
6533 /* Implement the core of both 'info module functions' and 'info module
6534 variables'. */
6535
6536 static void
6537 info_module_subcommand (bool quiet, const char *module_regexp,
6538 const char *regexp, const char *type_regexp,
6539 search_domain kind)
6540 {
6541 /* Print a header line. Don't build the header line bit by bit as this
6542 prevents internationalisation. */
6543 if (!quiet)
6544 {
6545 if (module_regexp == nullptr)
6546 {
6547 if (type_regexp == nullptr)
6548 {
6549 if (regexp == nullptr)
6550 printf_filtered ((kind == VARIABLES_DOMAIN
6551 ? _("All variables in all modules:")
6552 : _("All functions in all modules:")));
6553 else
6554 printf_filtered
6555 ((kind == VARIABLES_DOMAIN
6556 ? _("All variables matching regular expression"
6557 " \"%s\" in all modules:")
6558 : _("All functions matching regular expression"
6559 " \"%s\" in all modules:")),
6560 regexp);
6561 }
6562 else
6563 {
6564 if (regexp == nullptr)
6565 printf_filtered
6566 ((kind == VARIABLES_DOMAIN
6567 ? _("All variables with type matching regular "
6568 "expression \"%s\" in all modules:")
6569 : _("All functions with type matching regular "
6570 "expression \"%s\" in all modules:")),
6571 type_regexp);
6572 else
6573 printf_filtered
6574 ((kind == VARIABLES_DOMAIN
6575 ? _("All variables matching regular expression "
6576 "\"%s\",\n\twith type matching regular "
6577 "expression \"%s\" in all modules:")
6578 : _("All functions matching regular expression "
6579 "\"%s\",\n\twith type matching regular "
6580 "expression \"%s\" in all modules:")),
6581 regexp, type_regexp);
6582 }
6583 }
6584 else
6585 {
6586 if (type_regexp == nullptr)
6587 {
6588 if (regexp == nullptr)
6589 printf_filtered
6590 ((kind == VARIABLES_DOMAIN
6591 ? _("All variables in all modules matching regular "
6592 "expression \"%s\":")
6593 : _("All functions in all modules matching regular "
6594 "expression \"%s\":")),
6595 module_regexp);
6596 else
6597 printf_filtered
6598 ((kind == VARIABLES_DOMAIN
6599 ? _("All variables matching regular expression "
6600 "\"%s\",\n\tin all modules matching regular "
6601 "expression \"%s\":")
6602 : _("All functions matching regular expression "
6603 "\"%s\",\n\tin all modules matching regular "
6604 "expression \"%s\":")),
6605 regexp, module_regexp);
6606 }
6607 else
6608 {
6609 if (regexp == nullptr)
6610 printf_filtered
6611 ((kind == VARIABLES_DOMAIN
6612 ? _("All variables with type matching regular "
6613 "expression \"%s\"\n\tin all modules matching "
6614 "regular expression \"%s\":")
6615 : _("All functions with type matching regular "
6616 "expression \"%s\"\n\tin all modules matching "
6617 "regular expression \"%s\":")),
6618 type_regexp, module_regexp);
6619 else
6620 printf_filtered
6621 ((kind == VARIABLES_DOMAIN
6622 ? _("All variables matching regular expression "
6623 "\"%s\",\n\twith type matching regular expression "
6624 "\"%s\",\n\tin all modules matching regular "
6625 "expression \"%s\":")
6626 : _("All functions matching regular expression "
6627 "\"%s\",\n\twith type matching regular expression "
6628 "\"%s\",\n\tin all modules matching regular "
6629 "expression \"%s\":")),
6630 regexp, type_regexp, module_regexp);
6631 }
6632 }
6633 printf_filtered ("\n");
6634 }
6635
6636 /* Find all symbols of type KIND matching the given regular expressions
6637 along with the symbols for the modules in which those symbols
6638 reside. */
6639 std::vector<module_symbol_search> module_symbols
6640 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6641
6642 std::sort (module_symbols.begin (), module_symbols.end (),
6643 [] (const module_symbol_search &a, const module_symbol_search &b)
6644 {
6645 if (a.first < b.first)
6646 return true;
6647 else if (a.first == b.first)
6648 return a.second < b.second;
6649 else
6650 return false;
6651 });
6652
6653 const char *last_filename = "";
6654 const symbol *last_module_symbol = nullptr;
6655 for (const module_symbol_search &ms : module_symbols)
6656 {
6657 const symbol_search &p = ms.first;
6658 const symbol_search &q = ms.second;
6659
6660 gdb_assert (q.symbol != nullptr);
6661
6662 if (last_module_symbol != p.symbol)
6663 {
6664 printf_filtered ("\n");
6665 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6666 last_module_symbol = p.symbol;
6667 last_filename = "";
6668 }
6669
6670 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6671 last_filename);
6672 last_filename
6673 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6674 }
6675 }
6676
6677 /* Hold the option values for the 'info module .....' sub-commands. */
6678
6679 struct info_modules_var_func_options
6680 {
6681 bool quiet = false;
6682 char *type_regexp = nullptr;
6683 char *module_regexp = nullptr;
6684
6685 ~info_modules_var_func_options ()
6686 {
6687 xfree (type_regexp);
6688 xfree (module_regexp);
6689 }
6690 };
6691
6692 /* The options used by 'info module variables' and 'info module functions'
6693 commands. */
6694
6695 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6696 gdb::option::boolean_option_def<info_modules_var_func_options> {
6697 "q",
6698 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6699 nullptr, /* show_cmd_cb */
6700 nullptr /* set_doc */
6701 },
6702
6703 gdb::option::string_option_def<info_modules_var_func_options> {
6704 "t",
6705 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6706 nullptr, /* show_cmd_cb */
6707 nullptr /* set_doc */
6708 },
6709
6710 gdb::option::string_option_def<info_modules_var_func_options> {
6711 "m",
6712 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6713 nullptr, /* show_cmd_cb */
6714 nullptr /* set_doc */
6715 }
6716 };
6717
6718 /* Return the option group used by the 'info module ...' sub-commands. */
6719
6720 static inline gdb::option::option_def_group
6721 make_info_modules_var_func_options_def_group
6722 (info_modules_var_func_options *opts)
6723 {
6724 return {{info_modules_var_func_options_defs}, opts};
6725 }
6726
6727 /* Implements the 'info module functions' command. */
6728
6729 static void
6730 info_module_functions_command (const char *args, int from_tty)
6731 {
6732 info_modules_var_func_options opts;
6733 auto grp = make_info_modules_var_func_options_def_group (&opts);
6734 gdb::option::process_options
6735 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6736 if (args != nullptr && *args == '\0')
6737 args = nullptr;
6738
6739 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6740 opts.type_regexp, FUNCTIONS_DOMAIN);
6741 }
6742
6743 /* Implements the 'info module variables' command. */
6744
6745 static void
6746 info_module_variables_command (const char *args, int from_tty)
6747 {
6748 info_modules_var_func_options opts;
6749 auto grp = make_info_modules_var_func_options_def_group (&opts);
6750 gdb::option::process_options
6751 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6752 if (args != nullptr && *args == '\0')
6753 args = nullptr;
6754
6755 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6756 opts.type_regexp, VARIABLES_DOMAIN);
6757 }
6758
6759 /* Command completer for 'info module ...' sub-commands. */
6760
6761 static void
6762 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6763 completion_tracker &tracker,
6764 const char *text,
6765 const char * /* word */)
6766 {
6767
6768 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6769 if (gdb::option::complete_options
6770 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6771 return;
6772
6773 const char *word = advance_to_expression_complete_word_point (tracker, text);
6774 symbol_completer (ignore, tracker, text, word);
6775 }
6776
6777 \f
6778
6779 void _initialize_symtab ();
6780 void
6781 _initialize_symtab ()
6782 {
6783 cmd_list_element *c;
6784
6785 initialize_ordinary_address_classes ();
6786
6787 c = add_info ("variables", info_variables_command,
6788 info_print_args_help (_("\
6789 All global and static variable names or those matching REGEXPs.\n\
6790 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6791 Prints the global and static variables.\n"),
6792 _("global and static variables"),
6793 true));
6794 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6795 if (dbx_commands)
6796 {
6797 c = add_com ("whereis", class_info, info_variables_command,
6798 info_print_args_help (_("\
6799 All global and static variable names, or those matching REGEXPs.\n\
6800 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6801 Prints the global and static variables.\n"),
6802 _("global and static variables"),
6803 true));
6804 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6805 }
6806
6807 c = add_info ("functions", info_functions_command,
6808 info_print_args_help (_("\
6809 All function names or those matching REGEXPs.\n\
6810 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6811 Prints the functions.\n"),
6812 _("functions"),
6813 true));
6814 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6815
6816 c = add_info ("types", info_types_command, _("\
6817 All type names, or those matching REGEXP.\n\
6818 Usage: info types [-q] [REGEXP]\n\
6819 Print information about all types matching REGEXP, or all types if no\n\
6820 REGEXP is given. The optional flag -q disables printing of headers."));
6821 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6822
6823 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6824
6825 static std::string info_sources_help
6826 = gdb::option::build_help (_("\
6827 All source files in the program or those matching REGEXP.\n\
6828 Usage: info sources [OPTION]... [REGEXP]\n\
6829 By default, REGEXP is used to match anywhere in the filename.\n\
6830 \n\
6831 Options:\n\
6832 %OPTIONS%"),
6833 info_sources_opts);
6834
6835 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6836 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6837
6838 c = add_info ("modules", info_modules_command,
6839 _("All module names, or those matching REGEXP."));
6840 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6841
6842 add_basic_prefix_cmd ("module", class_info, _("\
6843 Print information about modules."),
6844 &info_module_cmdlist, "info module ",
6845 0, &infolist);
6846
6847 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6848 Display functions arranged by modules.\n\
6849 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6850 Print a summary of all functions within each Fortran module, grouped by\n\
6851 module and file. For each function the line on which the function is\n\
6852 defined is given along with the type signature and name of the function.\n\
6853 \n\
6854 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6855 listed. If MODREGEXP is provided then only functions in modules matching\n\
6856 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6857 type signature matches TYPEREGEXP are listed.\n\
6858 \n\
6859 The -q flag suppresses printing some header information."),
6860 &info_module_cmdlist);
6861 set_cmd_completer_handle_brkchars
6862 (c, info_module_var_func_command_completer);
6863
6864 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6865 Display variables arranged by modules.\n\
6866 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6867 Print a summary of all variables within each Fortran module, grouped by\n\
6868 module and file. For each variable the line on which the variable is\n\
6869 defined is given along with the type and name of the variable.\n\
6870 \n\
6871 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6872 listed. If MODREGEXP is provided then only variables in modules matching\n\
6873 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6874 type matches TYPEREGEXP are listed.\n\
6875 \n\
6876 The -q flag suppresses printing some header information."),
6877 &info_module_cmdlist);
6878 set_cmd_completer_handle_brkchars
6879 (c, info_module_var_func_command_completer);
6880
6881 add_com ("rbreak", class_breakpoint, rbreak_command,
6882 _("Set a breakpoint for all functions matching REGEXP."));
6883
6884 add_setshow_enum_cmd ("multiple-symbols", no_class,
6885 multiple_symbols_modes, &multiple_symbols_mode,
6886 _("\
6887 Set how the debugger handles ambiguities in expressions."), _("\
6888 Show how the debugger handles ambiguities in expressions."), _("\
6889 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6890 NULL, NULL, &setlist, &showlist);
6891
6892 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6893 &basenames_may_differ, _("\
6894 Set whether a source file may have multiple base names."), _("\
6895 Show whether a source file may have multiple base names."), _("\
6896 (A \"base name\" is the name of a file with the directory part removed.\n\
6897 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6898 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6899 before comparing them. Canonicalization is an expensive operation,\n\
6900 but it allows the same file be known by more than one base name.\n\
6901 If not set (the default), all source files are assumed to have just\n\
6902 one base name, and gdb will do file name comparisons more efficiently."),
6903 NULL, NULL,
6904 &setlist, &showlist);
6905
6906 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6907 _("Set debugging of symbol table creation."),
6908 _("Show debugging of symbol table creation."), _("\
6909 When enabled (non-zero), debugging messages are printed when building\n\
6910 symbol tables. A value of 1 (one) normally provides enough information.\n\
6911 A value greater than 1 provides more verbose information."),
6912 NULL,
6913 NULL,
6914 &setdebuglist, &showdebuglist);
6915
6916 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6917 _("\
6918 Set debugging of symbol lookup."), _("\
6919 Show debugging of symbol lookup."), _("\
6920 When enabled (non-zero), symbol lookups are logged."),
6921 NULL, NULL,
6922 &setdebuglist, &showdebuglist);
6923
6924 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6925 &new_symbol_cache_size,
6926 _("Set the size of the symbol cache."),
6927 _("Show the size of the symbol cache."), _("\
6928 The size of the symbol cache.\n\
6929 If zero then the symbol cache is disabled."),
6930 set_symbol_cache_size_handler, NULL,
6931 &maintenance_set_cmdlist,
6932 &maintenance_show_cmdlist);
6933
6934 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6935 _("Dump the symbol cache for each program space."),
6936 &maintenanceprintlist);
6937
6938 add_cmd ("symbol-cache-statistics", class_maintenance,
6939 maintenance_print_symbol_cache_statistics,
6940 _("Print symbol cache statistics for each program space."),
6941 &maintenanceprintlist);
6942
6943 add_cmd ("flush-symbol-cache", class_maintenance,
6944 maintenance_flush_symbol_cache,
6945 _("Flush the symbol cache for each program space."),
6946 &maintenancelist);
6947
6948 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6949 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6950 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6951 }