]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
Reorder/reindent dw2_expand_symtabs_matching & friends
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64 #include "progspace-and-thread.h"
65 #include "common/gdb_optional.h"
66 #include "filename-seen-cache.h"
67 #include "arch-utils.h"
68 #include <algorithm>
69
70 /* Forward declarations for local functions. */
71
72 static void rbreak_command (const char *, int);
73
74 static int find_line_common (struct linetable *, int, int *, int);
75
76 static struct block_symbol
77 lookup_symbol_aux (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language,
81 struct field_of_this_result *);
82
83 static
84 struct block_symbol lookup_local_symbol (const char *name,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language);
88
89 static struct block_symbol
90 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
91 const char *name, const domain_enum domain);
92
93 /* See symtab.h. */
94 const struct block_symbol null_block_symbol = { NULL, NULL };
95
96 /* Program space key for finding name and language of "main". */
97
98 static const struct program_space_data *main_progspace_key;
99
100 /* Type of the data stored on the program space. */
101
102 struct main_info
103 {
104 /* Name of "main". */
105
106 char *name_of_main;
107
108 /* Language of "main". */
109
110 enum language language_of_main;
111 };
112
113 /* Program space key for finding its symbol cache. */
114
115 static const struct program_space_data *symbol_cache_key;
116
117 /* The default symbol cache size.
118 There is no extra cpu cost for large N (except when flushing the cache,
119 which is rare). The value here is just a first attempt. A better default
120 value may be higher or lower. A prime number can make up for a bad hash
121 computation, so that's why the number is what it is. */
122 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
123
124 /* The maximum symbol cache size.
125 There's no method to the decision of what value to use here, other than
126 there's no point in allowing a user typo to make gdb consume all memory. */
127 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
128
129 /* symbol_cache_lookup returns this if a previous lookup failed to find the
130 symbol in any objfile. */
131 #define SYMBOL_LOOKUP_FAILED \
132 ((struct block_symbol) {(struct symbol *) 1, NULL})
133 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
134
135 /* Recording lookups that don't find the symbol is just as important, if not
136 more so, than recording found symbols. */
137
138 enum symbol_cache_slot_state
139 {
140 SYMBOL_SLOT_UNUSED,
141 SYMBOL_SLOT_NOT_FOUND,
142 SYMBOL_SLOT_FOUND
143 };
144
145 struct symbol_cache_slot
146 {
147 enum symbol_cache_slot_state state;
148
149 /* The objfile that was current when the symbol was looked up.
150 This is only needed for global blocks, but for simplicity's sake
151 we allocate the space for both. If data shows the extra space used
152 for static blocks is a problem, we can split things up then.
153
154 Global blocks need cache lookup to include the objfile context because
155 we need to account for gdbarch_iterate_over_objfiles_in_search_order
156 which can traverse objfiles in, effectively, any order, depending on
157 the current objfile, thus affecting which symbol is found. Normally,
158 only the current objfile is searched first, and then the rest are
159 searched in recorded order; but putting cache lookup inside
160 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
161 Instead we just make the current objfile part of the context of
162 cache lookup. This means we can record the same symbol multiple times,
163 each with a different "current objfile" that was in effect when the
164 lookup was saved in the cache, but cache space is pretty cheap. */
165 const struct objfile *objfile_context;
166
167 union
168 {
169 struct block_symbol found;
170 struct
171 {
172 char *name;
173 domain_enum domain;
174 } not_found;
175 } value;
176 };
177
178 /* Symbols don't specify global vs static block.
179 So keep them in separate caches. */
180
181 struct block_symbol_cache
182 {
183 unsigned int hits;
184 unsigned int misses;
185 unsigned int collisions;
186
187 /* SYMBOLS is a variable length array of this size.
188 One can imagine that in general one cache (global/static) should be a
189 fraction of the size of the other, but there's no data at the moment
190 on which to decide. */
191 unsigned int size;
192
193 struct symbol_cache_slot symbols[1];
194 };
195
196 /* The symbol cache.
197
198 Searching for symbols in the static and global blocks over multiple objfiles
199 again and again can be slow, as can searching very big objfiles. This is a
200 simple cache to improve symbol lookup performance, which is critical to
201 overall gdb performance.
202
203 Symbols are hashed on the name, its domain, and block.
204 They are also hashed on their objfile for objfile-specific lookups. */
205
206 struct symbol_cache
207 {
208 struct block_symbol_cache *global_symbols;
209 struct block_symbol_cache *static_symbols;
210 };
211
212 /* When non-zero, print debugging messages related to symtab creation. */
213 unsigned int symtab_create_debug = 0;
214
215 /* When non-zero, print debugging messages related to symbol lookup. */
216 unsigned int symbol_lookup_debug = 0;
217
218 /* The size of the cache is staged here. */
219 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
220
221 /* The current value of the symbol cache size.
222 This is saved so that if the user enters a value too big we can restore
223 the original value from here. */
224 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
225
226 /* Non-zero if a file may be known by two different basenames.
227 This is the uncommon case, and significantly slows down gdb.
228 Default set to "off" to not slow down the common case. */
229 int basenames_may_differ = 0;
230
231 /* Allow the user to configure the debugger behavior with respect
232 to multiple-choice menus when more than one symbol matches during
233 a symbol lookup. */
234
235 const char multiple_symbols_ask[] = "ask";
236 const char multiple_symbols_all[] = "all";
237 const char multiple_symbols_cancel[] = "cancel";
238 static const char *const multiple_symbols_modes[] =
239 {
240 multiple_symbols_ask,
241 multiple_symbols_all,
242 multiple_symbols_cancel,
243 NULL
244 };
245 static const char *multiple_symbols_mode = multiple_symbols_all;
246
247 /* Read-only accessor to AUTO_SELECT_MODE. */
248
249 const char *
250 multiple_symbols_select_mode (void)
251 {
252 return multiple_symbols_mode;
253 }
254
255 /* Return the name of a domain_enum. */
256
257 const char *
258 domain_name (domain_enum e)
259 {
260 switch (e)
261 {
262 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
263 case VAR_DOMAIN: return "VAR_DOMAIN";
264 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
265 case MODULE_DOMAIN: return "MODULE_DOMAIN";
266 case LABEL_DOMAIN: return "LABEL_DOMAIN";
267 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
268 default: gdb_assert_not_reached ("bad domain_enum");
269 }
270 }
271
272 /* Return the name of a search_domain . */
273
274 const char *
275 search_domain_name (enum search_domain e)
276 {
277 switch (e)
278 {
279 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
280 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
281 case TYPES_DOMAIN: return "TYPES_DOMAIN";
282 case ALL_DOMAIN: return "ALL_DOMAIN";
283 default: gdb_assert_not_reached ("bad search_domain");
284 }
285 }
286
287 /* See symtab.h. */
288
289 struct symtab *
290 compunit_primary_filetab (const struct compunit_symtab *cust)
291 {
292 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
293
294 /* The primary file symtab is the first one in the list. */
295 return COMPUNIT_FILETABS (cust);
296 }
297
298 /* See symtab.h. */
299
300 enum language
301 compunit_language (const struct compunit_symtab *cust)
302 {
303 struct symtab *symtab = compunit_primary_filetab (cust);
304
305 /* The language of the compunit symtab is the language of its primary
306 source file. */
307 return SYMTAB_LANGUAGE (symtab);
308 }
309
310 /* See whether FILENAME matches SEARCH_NAME using the rule that we
311 advertise to the user. (The manual's description of linespecs
312 describes what we advertise). Returns true if they match, false
313 otherwise. */
314
315 int
316 compare_filenames_for_search (const char *filename, const char *search_name)
317 {
318 int len = strlen (filename);
319 size_t search_len = strlen (search_name);
320
321 if (len < search_len)
322 return 0;
323
324 /* The tail of FILENAME must match. */
325 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
326 return 0;
327
328 /* Either the names must completely match, or the character
329 preceding the trailing SEARCH_NAME segment of FILENAME must be a
330 directory separator.
331
332 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
333 cannot match FILENAME "/path//dir/file.c" - as user has requested
334 absolute path. The sama applies for "c:\file.c" possibly
335 incorrectly hypothetically matching "d:\dir\c:\file.c".
336
337 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
338 compatible with SEARCH_NAME "file.c". In such case a compiler had
339 to put the "c:file.c" name into debug info. Such compatibility
340 works only on GDB built for DOS host. */
341 return (len == search_len
342 || (!IS_ABSOLUTE_PATH (search_name)
343 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
344 || (HAS_DRIVE_SPEC (filename)
345 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
346 }
347
348 /* Same as compare_filenames_for_search, but for glob-style patterns.
349 Heads up on the order of the arguments. They match the order of
350 compare_filenames_for_search, but it's the opposite of the order of
351 arguments to gdb_filename_fnmatch. */
352
353 int
354 compare_glob_filenames_for_search (const char *filename,
355 const char *search_name)
356 {
357 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
358 all /s have to be explicitly specified. */
359 int file_path_elements = count_path_elements (filename);
360 int search_path_elements = count_path_elements (search_name);
361
362 if (search_path_elements > file_path_elements)
363 return 0;
364
365 if (IS_ABSOLUTE_PATH (search_name))
366 {
367 return (search_path_elements == file_path_elements
368 && gdb_filename_fnmatch (search_name, filename,
369 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
370 }
371
372 {
373 const char *file_to_compare
374 = strip_leading_path_elements (filename,
375 file_path_elements - search_path_elements);
376
377 return gdb_filename_fnmatch (search_name, file_to_compare,
378 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
379 }
380 }
381
382 /* Check for a symtab of a specific name by searching some symtabs.
383 This is a helper function for callbacks of iterate_over_symtabs.
384
385 If NAME is not absolute, then REAL_PATH is NULL
386 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
387
388 The return value, NAME, REAL_PATH and CALLBACK are identical to the
389 `map_symtabs_matching_filename' method of quick_symbol_functions.
390
391 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
392 Each symtab within the specified compunit symtab is also searched.
393 AFTER_LAST is one past the last compunit symtab to search; NULL means to
394 search until the end of the list. */
395
396 bool
397 iterate_over_some_symtabs (const char *name,
398 const char *real_path,
399 struct compunit_symtab *first,
400 struct compunit_symtab *after_last,
401 gdb::function_view<bool (symtab *)> callback)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s))
414 return true;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s))
427 return true;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s))
442 return true;
443 continue;
444 }
445 }
446 }
447 }
448
449 return false;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found. If CALLBACK returns
457 true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 gdb::function_view<bool (symtab *)> callback)
462 {
463 struct objfile *objfile;
464 gdb::unique_xmalloc_ptr<char> real_path;
465
466 /* Here we are interested in canonicalizing an absolute path, not
467 absolutizing a relative path. */
468 if (IS_ABSOLUTE_PATH (name))
469 {
470 real_path = gdb_realpath (name);
471 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
472 }
473
474 ALL_OBJFILES (objfile)
475 {
476 if (iterate_over_some_symtabs (name, real_path.get (),
477 objfile->compunit_symtabs, NULL,
478 callback))
479 return;
480 }
481
482 /* Same search rules as above apply here, but now we look thru the
483 psymtabs. */
484
485 ALL_OBJFILES (objfile)
486 {
487 if (objfile->sf
488 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
489 name,
490 real_path.get (),
491 callback))
492 return;
493 }
494 }
495
496 /* A wrapper for iterate_over_symtabs that returns the first matching
497 symtab, or NULL. */
498
499 struct symtab *
500 lookup_symtab (const char *name)
501 {
502 struct symtab *result = NULL;
503
504 iterate_over_symtabs (name, [&] (symtab *symtab)
505 {
506 result = symtab;
507 return true;
508 });
509
510 return result;
511 }
512
513 \f
514 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
515 full method name, which consist of the class name (from T), the unadorned
516 method name from METHOD_ID, and the signature for the specific overload,
517 specified by SIGNATURE_ID. Note that this function is g++ specific. */
518
519 char *
520 gdb_mangle_name (struct type *type, int method_id, int signature_id)
521 {
522 int mangled_name_len;
523 char *mangled_name;
524 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
525 struct fn_field *method = &f[signature_id];
526 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
527 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
528 const char *newname = type_name_no_tag (type);
529
530 /* Does the form of physname indicate that it is the full mangled name
531 of a constructor (not just the args)? */
532 int is_full_physname_constructor;
533
534 int is_constructor;
535 int is_destructor = is_destructor_name (physname);
536 /* Need a new type prefix. */
537 const char *const_prefix = method->is_const ? "C" : "";
538 const char *volatile_prefix = method->is_volatile ? "V" : "";
539 char buf[20];
540 int len = (newname == NULL ? 0 : strlen (newname));
541
542 /* Nothing to do if physname already contains a fully mangled v3 abi name
543 or an operator name. */
544 if ((physname[0] == '_' && physname[1] == 'Z')
545 || is_operator_name (field_name))
546 return xstrdup (physname);
547
548 is_full_physname_constructor = is_constructor_name (physname);
549
550 is_constructor = is_full_physname_constructor
551 || (newname && strcmp (field_name, newname) == 0);
552
553 if (!is_destructor)
554 is_destructor = (startswith (physname, "__dt"));
555
556 if (is_destructor || is_full_physname_constructor)
557 {
558 mangled_name = (char *) xmalloc (strlen (physname) + 1);
559 strcpy (mangled_name, physname);
560 return mangled_name;
561 }
562
563 if (len == 0)
564 {
565 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
566 }
567 else if (physname[0] == 't' || physname[0] == 'Q')
568 {
569 /* The physname for template and qualified methods already includes
570 the class name. */
571 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
572 newname = NULL;
573 len = 0;
574 }
575 else
576 {
577 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
578 volatile_prefix, len);
579 }
580 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
581 + strlen (buf) + len + strlen (physname) + 1);
582
583 mangled_name = (char *) xmalloc (mangled_name_len);
584 if (is_constructor)
585 mangled_name[0] = '\0';
586 else
587 strcpy (mangled_name, field_name);
588
589 strcat (mangled_name, buf);
590 /* If the class doesn't have a name, i.e. newname NULL, then we just
591 mangle it using 0 for the length of the class. Thus it gets mangled
592 as something starting with `::' rather than `classname::'. */
593 if (newname != NULL)
594 strcat (mangled_name, newname);
595
596 strcat (mangled_name, physname);
597 return (mangled_name);
598 }
599
600 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
601 correctly allocated. */
602
603 void
604 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
605 const char *name,
606 struct obstack *obstack)
607 {
608 if (gsymbol->language == language_ada)
609 {
610 if (name == NULL)
611 {
612 gsymbol->ada_mangled = 0;
613 gsymbol->language_specific.obstack = obstack;
614 }
615 else
616 {
617 gsymbol->ada_mangled = 1;
618 gsymbol->language_specific.demangled_name = name;
619 }
620 }
621 else
622 gsymbol->language_specific.demangled_name = name;
623 }
624
625 /* Return the demangled name of GSYMBOL. */
626
627 const char *
628 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
629 {
630 if (gsymbol->language == language_ada)
631 {
632 if (!gsymbol->ada_mangled)
633 return NULL;
634 /* Fall through. */
635 }
636
637 return gsymbol->language_specific.demangled_name;
638 }
639
640 \f
641 /* Initialize the language dependent portion of a symbol
642 depending upon the language for the symbol. */
643
644 void
645 symbol_set_language (struct general_symbol_info *gsymbol,
646 enum language language,
647 struct obstack *obstack)
648 {
649 gsymbol->language = language;
650 if (gsymbol->language == language_cplus
651 || gsymbol->language == language_d
652 || gsymbol->language == language_go
653 || gsymbol->language == language_objc
654 || gsymbol->language == language_fortran)
655 {
656 symbol_set_demangled_name (gsymbol, NULL, obstack);
657 }
658 else if (gsymbol->language == language_ada)
659 {
660 gdb_assert (gsymbol->ada_mangled == 0);
661 gsymbol->language_specific.obstack = obstack;
662 }
663 else
664 {
665 memset (&gsymbol->language_specific, 0,
666 sizeof (gsymbol->language_specific));
667 }
668 }
669
670 /* Functions to initialize a symbol's mangled name. */
671
672 /* Objects of this type are stored in the demangled name hash table. */
673 struct demangled_name_entry
674 {
675 const char *mangled;
676 char demangled[1];
677 };
678
679 /* Hash function for the demangled name hash. */
680
681 static hashval_t
682 hash_demangled_name_entry (const void *data)
683 {
684 const struct demangled_name_entry *e
685 = (const struct demangled_name_entry *) data;
686
687 return htab_hash_string (e->mangled);
688 }
689
690 /* Equality function for the demangled name hash. */
691
692 static int
693 eq_demangled_name_entry (const void *a, const void *b)
694 {
695 const struct demangled_name_entry *da
696 = (const struct demangled_name_entry *) a;
697 const struct demangled_name_entry *db
698 = (const struct demangled_name_entry *) b;
699
700 return strcmp (da->mangled, db->mangled) == 0;
701 }
702
703 /* Create the hash table used for demangled names. Each hash entry is
704 a pair of strings; one for the mangled name and one for the demangled
705 name. The entry is hashed via just the mangled name. */
706
707 static void
708 create_demangled_names_hash (struct objfile *objfile)
709 {
710 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
711 The hash table code will round this up to the next prime number.
712 Choosing a much larger table size wastes memory, and saves only about
713 1% in symbol reading. */
714
715 objfile->per_bfd->demangled_names_hash = htab_create_alloc
716 (256, hash_demangled_name_entry, eq_demangled_name_entry,
717 NULL, xcalloc, xfree);
718 }
719
720 /* Try to determine the demangled name for a symbol, based on the
721 language of that symbol. If the language is set to language_auto,
722 it will attempt to find any demangling algorithm that works and
723 then set the language appropriately. The returned name is allocated
724 by the demangler and should be xfree'd. */
725
726 static char *
727 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
728 const char *mangled)
729 {
730 char *demangled = NULL;
731 int i;
732 int recognized;
733
734 if (gsymbol->language == language_unknown)
735 gsymbol->language = language_auto;
736
737 if (gsymbol->language != language_auto)
738 {
739 const struct language_defn *lang = language_def (gsymbol->language);
740
741 language_sniff_from_mangled_name (lang, mangled, &demangled);
742 return demangled;
743 }
744
745 for (i = language_unknown; i < nr_languages; ++i)
746 {
747 enum language l = (enum language) i;
748 const struct language_defn *lang = language_def (l);
749
750 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
751 {
752 gsymbol->language = l;
753 return demangled;
754 }
755 }
756
757 return NULL;
758 }
759
760 /* Set both the mangled and demangled (if any) names for GSYMBOL based
761 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
762 objfile's obstack; but if COPY_NAME is 0 and if NAME is
763 NUL-terminated, then this function assumes that NAME is already
764 correctly saved (either permanently or with a lifetime tied to the
765 objfile), and it will not be copied.
766
767 The hash table corresponding to OBJFILE is used, and the memory
768 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
769 so the pointer can be discarded after calling this function. */
770
771 void
772 symbol_set_names (struct general_symbol_info *gsymbol,
773 const char *linkage_name, int len, int copy_name,
774 struct objfile *objfile)
775 {
776 struct demangled_name_entry **slot;
777 /* A 0-terminated copy of the linkage name. */
778 const char *linkage_name_copy;
779 struct demangled_name_entry entry;
780 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
781
782 if (gsymbol->language == language_ada)
783 {
784 /* In Ada, we do the symbol lookups using the mangled name, so
785 we can save some space by not storing the demangled name. */
786 if (!copy_name)
787 gsymbol->name = linkage_name;
788 else
789 {
790 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
791 len + 1);
792
793 memcpy (name, linkage_name, len);
794 name[len] = '\0';
795 gsymbol->name = name;
796 }
797 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
798
799 return;
800 }
801
802 if (per_bfd->demangled_names_hash == NULL)
803 create_demangled_names_hash (objfile);
804
805 if (linkage_name[len] != '\0')
806 {
807 char *alloc_name;
808
809 alloc_name = (char *) alloca (len + 1);
810 memcpy (alloc_name, linkage_name, len);
811 alloc_name[len] = '\0';
812
813 linkage_name_copy = alloc_name;
814 }
815 else
816 linkage_name_copy = linkage_name;
817
818 entry.mangled = linkage_name_copy;
819 slot = ((struct demangled_name_entry **)
820 htab_find_slot (per_bfd->demangled_names_hash,
821 &entry, INSERT));
822
823 /* If this name is not in the hash table, add it. */
824 if (*slot == NULL
825 /* A C version of the symbol may have already snuck into the table.
826 This happens to, e.g., main.init (__go_init_main). Cope. */
827 || (gsymbol->language == language_go
828 && (*slot)->demangled[0] == '\0'))
829 {
830 char *demangled_name = symbol_find_demangled_name (gsymbol,
831 linkage_name_copy);
832 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
833
834 /* Suppose we have demangled_name==NULL, copy_name==0, and
835 linkage_name_copy==linkage_name. In this case, we already have the
836 mangled name saved, and we don't have a demangled name. So,
837 you might think we could save a little space by not recording
838 this in the hash table at all.
839
840 It turns out that it is actually important to still save such
841 an entry in the hash table, because storing this name gives
842 us better bcache hit rates for partial symbols. */
843 if (!copy_name && linkage_name_copy == linkage_name)
844 {
845 *slot
846 = ((struct demangled_name_entry *)
847 obstack_alloc (&per_bfd->storage_obstack,
848 offsetof (struct demangled_name_entry, demangled)
849 + demangled_len + 1));
850 (*slot)->mangled = linkage_name;
851 }
852 else
853 {
854 char *mangled_ptr;
855
856 /* If we must copy the mangled name, put it directly after
857 the demangled name so we can have a single
858 allocation. */
859 *slot
860 = ((struct demangled_name_entry *)
861 obstack_alloc (&per_bfd->storage_obstack,
862 offsetof (struct demangled_name_entry, demangled)
863 + len + demangled_len + 2));
864 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
865 strcpy (mangled_ptr, linkage_name_copy);
866 (*slot)->mangled = mangled_ptr;
867 }
868
869 if (demangled_name != NULL)
870 {
871 strcpy ((*slot)->demangled, demangled_name);
872 xfree (demangled_name);
873 }
874 else
875 (*slot)->demangled[0] = '\0';
876 }
877
878 gsymbol->name = (*slot)->mangled;
879 if ((*slot)->demangled[0] != '\0')
880 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
881 &per_bfd->storage_obstack);
882 else
883 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
884 }
885
886 /* Return the source code name of a symbol. In languages where
887 demangling is necessary, this is the demangled name. */
888
889 const char *
890 symbol_natural_name (const struct general_symbol_info *gsymbol)
891 {
892 switch (gsymbol->language)
893 {
894 case language_cplus:
895 case language_d:
896 case language_go:
897 case language_objc:
898 case language_fortran:
899 if (symbol_get_demangled_name (gsymbol) != NULL)
900 return symbol_get_demangled_name (gsymbol);
901 break;
902 case language_ada:
903 return ada_decode_symbol (gsymbol);
904 default:
905 break;
906 }
907 return gsymbol->name;
908 }
909
910 /* Return the demangled name for a symbol based on the language for
911 that symbol. If no demangled name exists, return NULL. */
912
913 const char *
914 symbol_demangled_name (const struct general_symbol_info *gsymbol)
915 {
916 const char *dem_name = NULL;
917
918 switch (gsymbol->language)
919 {
920 case language_cplus:
921 case language_d:
922 case language_go:
923 case language_objc:
924 case language_fortran:
925 dem_name = symbol_get_demangled_name (gsymbol);
926 break;
927 case language_ada:
928 dem_name = ada_decode_symbol (gsymbol);
929 break;
930 default:
931 break;
932 }
933 return dem_name;
934 }
935
936 /* Return the search name of a symbol---generally the demangled or
937 linkage name of the symbol, depending on how it will be searched for.
938 If there is no distinct demangled name, then returns the same value
939 (same pointer) as SYMBOL_LINKAGE_NAME. */
940
941 const char *
942 symbol_search_name (const struct general_symbol_info *gsymbol)
943 {
944 if (gsymbol->language == language_ada)
945 return gsymbol->name;
946 else
947 return symbol_natural_name (gsymbol);
948 }
949
950 /* See symtab.h. */
951
952 bool
953 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
954 const lookup_name_info &name)
955 {
956 symbol_name_matcher_ftype *name_match
957 = language_get_symbol_name_matcher (language_def (gsymbol->language),
958 name);
959 return name_match (symbol_search_name (gsymbol), name, NULL);
960 }
961
962 \f
963
964 /* Return 1 if the two sections are the same, or if they could
965 plausibly be copies of each other, one in an original object
966 file and another in a separated debug file. */
967
968 int
969 matching_obj_sections (struct obj_section *obj_first,
970 struct obj_section *obj_second)
971 {
972 asection *first = obj_first? obj_first->the_bfd_section : NULL;
973 asection *second = obj_second? obj_second->the_bfd_section : NULL;
974 struct objfile *obj;
975
976 /* If they're the same section, then they match. */
977 if (first == second)
978 return 1;
979
980 /* If either is NULL, give up. */
981 if (first == NULL || second == NULL)
982 return 0;
983
984 /* This doesn't apply to absolute symbols. */
985 if (first->owner == NULL || second->owner == NULL)
986 return 0;
987
988 /* If they're in the same object file, they must be different sections. */
989 if (first->owner == second->owner)
990 return 0;
991
992 /* Check whether the two sections are potentially corresponding. They must
993 have the same size, address, and name. We can't compare section indexes,
994 which would be more reliable, because some sections may have been
995 stripped. */
996 if (bfd_get_section_size (first) != bfd_get_section_size (second))
997 return 0;
998
999 /* In-memory addresses may start at a different offset, relativize them. */
1000 if (bfd_get_section_vma (first->owner, first)
1001 - bfd_get_start_address (first->owner)
1002 != bfd_get_section_vma (second->owner, second)
1003 - bfd_get_start_address (second->owner))
1004 return 0;
1005
1006 if (bfd_get_section_name (first->owner, first) == NULL
1007 || bfd_get_section_name (second->owner, second) == NULL
1008 || strcmp (bfd_get_section_name (first->owner, first),
1009 bfd_get_section_name (second->owner, second)) != 0)
1010 return 0;
1011
1012 /* Otherwise check that they are in corresponding objfiles. */
1013
1014 ALL_OBJFILES (obj)
1015 if (obj->obfd == first->owner)
1016 break;
1017 gdb_assert (obj != NULL);
1018
1019 if (obj->separate_debug_objfile != NULL
1020 && obj->separate_debug_objfile->obfd == second->owner)
1021 return 1;
1022 if (obj->separate_debug_objfile_backlink != NULL
1023 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1024 return 1;
1025
1026 return 0;
1027 }
1028
1029 /* See symtab.h. */
1030
1031 void
1032 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1033 {
1034 struct objfile *objfile;
1035 struct bound_minimal_symbol msymbol;
1036
1037 /* If we know that this is not a text address, return failure. This is
1038 necessary because we loop based on texthigh and textlow, which do
1039 not include the data ranges. */
1040 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1041 if (msymbol.minsym
1042 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1043 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1044 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1045 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1047 return;
1048
1049 ALL_OBJFILES (objfile)
1050 {
1051 struct compunit_symtab *cust = NULL;
1052
1053 if (objfile->sf)
1054 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1055 pc, section, 0);
1056 if (cust)
1057 return;
1058 }
1059 }
1060 \f
1061 /* Hash function for the symbol cache. */
1062
1063 static unsigned int
1064 hash_symbol_entry (const struct objfile *objfile_context,
1065 const char *name, domain_enum domain)
1066 {
1067 unsigned int hash = (uintptr_t) objfile_context;
1068
1069 if (name != NULL)
1070 hash += htab_hash_string (name);
1071
1072 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1073 to map to the same slot. */
1074 if (domain == STRUCT_DOMAIN)
1075 hash += VAR_DOMAIN * 7;
1076 else
1077 hash += domain * 7;
1078
1079 return hash;
1080 }
1081
1082 /* Equality function for the symbol cache. */
1083
1084 static int
1085 eq_symbol_entry (const struct symbol_cache_slot *slot,
1086 const struct objfile *objfile_context,
1087 const char *name, domain_enum domain)
1088 {
1089 const char *slot_name;
1090 domain_enum slot_domain;
1091
1092 if (slot->state == SYMBOL_SLOT_UNUSED)
1093 return 0;
1094
1095 if (slot->objfile_context != objfile_context)
1096 return 0;
1097
1098 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1099 {
1100 slot_name = slot->value.not_found.name;
1101 slot_domain = slot->value.not_found.domain;
1102 }
1103 else
1104 {
1105 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1106 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1107 }
1108
1109 /* NULL names match. */
1110 if (slot_name == NULL && name == NULL)
1111 {
1112 /* But there's no point in calling symbol_matches_domain in the
1113 SYMBOL_SLOT_FOUND case. */
1114 if (slot_domain != domain)
1115 return 0;
1116 }
1117 else if (slot_name != NULL && name != NULL)
1118 {
1119 /* It's important that we use the same comparison that was done
1120 the first time through. If the slot records a found symbol,
1121 then this means using the symbol name comparison function of
1122 the symbol's language with SYMBOL_SEARCH_NAME. See
1123 dictionary.c. It also means using symbol_matches_domain for
1124 found symbols. See block.c.
1125
1126 If the slot records a not-found symbol, then require a precise match.
1127 We could still be lax with whitespace like strcmp_iw though. */
1128
1129 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1130 {
1131 if (strcmp (slot_name, name) != 0)
1132 return 0;
1133 if (slot_domain != domain)
1134 return 0;
1135 }
1136 else
1137 {
1138 struct symbol *sym = slot->value.found.symbol;
1139 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1140
1141 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1142 return 0;
1143
1144 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1145 slot_domain, domain))
1146 return 0;
1147 }
1148 }
1149 else
1150 {
1151 /* Only one name is NULL. */
1152 return 0;
1153 }
1154
1155 return 1;
1156 }
1157
1158 /* Given a cache of size SIZE, return the size of the struct (with variable
1159 length array) in bytes. */
1160
1161 static size_t
1162 symbol_cache_byte_size (unsigned int size)
1163 {
1164 return (sizeof (struct block_symbol_cache)
1165 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1166 }
1167
1168 /* Resize CACHE. */
1169
1170 static void
1171 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1172 {
1173 /* If there's no change in size, don't do anything.
1174 All caches have the same size, so we can just compare with the size
1175 of the global symbols cache. */
1176 if ((cache->global_symbols != NULL
1177 && cache->global_symbols->size == new_size)
1178 || (cache->global_symbols == NULL
1179 && new_size == 0))
1180 return;
1181
1182 xfree (cache->global_symbols);
1183 xfree (cache->static_symbols);
1184
1185 if (new_size == 0)
1186 {
1187 cache->global_symbols = NULL;
1188 cache->static_symbols = NULL;
1189 }
1190 else
1191 {
1192 size_t total_size = symbol_cache_byte_size (new_size);
1193
1194 cache->global_symbols
1195 = (struct block_symbol_cache *) xcalloc (1, total_size);
1196 cache->static_symbols
1197 = (struct block_symbol_cache *) xcalloc (1, total_size);
1198 cache->global_symbols->size = new_size;
1199 cache->static_symbols->size = new_size;
1200 }
1201 }
1202
1203 /* Make a symbol cache of size SIZE. */
1204
1205 static struct symbol_cache *
1206 make_symbol_cache (unsigned int size)
1207 {
1208 struct symbol_cache *cache;
1209
1210 cache = XCNEW (struct symbol_cache);
1211 resize_symbol_cache (cache, symbol_cache_size);
1212 return cache;
1213 }
1214
1215 /* Free the space used by CACHE. */
1216
1217 static void
1218 free_symbol_cache (struct symbol_cache *cache)
1219 {
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1222 xfree (cache);
1223 }
1224
1225 /* Return the symbol cache of PSPACE.
1226 Create one if it doesn't exist yet. */
1227
1228 static struct symbol_cache *
1229 get_symbol_cache (struct program_space *pspace)
1230 {
1231 struct symbol_cache *cache
1232 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1233
1234 if (cache == NULL)
1235 {
1236 cache = make_symbol_cache (symbol_cache_size);
1237 set_program_space_data (pspace, symbol_cache_key, cache);
1238 }
1239
1240 return cache;
1241 }
1242
1243 /* Delete the symbol cache of PSPACE.
1244 Called when PSPACE is destroyed. */
1245
1246 static void
1247 symbol_cache_cleanup (struct program_space *pspace, void *data)
1248 {
1249 struct symbol_cache *cache = (struct symbol_cache *) data;
1250
1251 free_symbol_cache (cache);
1252 }
1253
1254 /* Set the size of the symbol cache in all program spaces. */
1255
1256 static void
1257 set_symbol_cache_size (unsigned int new_size)
1258 {
1259 struct program_space *pspace;
1260
1261 ALL_PSPACES (pspace)
1262 {
1263 struct symbol_cache *cache
1264 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1265
1266 /* The pspace could have been created but not have a cache yet. */
1267 if (cache != NULL)
1268 resize_symbol_cache (cache, new_size);
1269 }
1270 }
1271
1272 /* Called when symbol-cache-size is set. */
1273
1274 static void
1275 set_symbol_cache_size_handler (const char *args, int from_tty,
1276 struct cmd_list_element *c)
1277 {
1278 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1279 {
1280 /* Restore the previous value.
1281 This is the value the "show" command prints. */
1282 new_symbol_cache_size = symbol_cache_size;
1283
1284 error (_("Symbol cache size is too large, max is %u."),
1285 MAX_SYMBOL_CACHE_SIZE);
1286 }
1287 symbol_cache_size = new_symbol_cache_size;
1288
1289 set_symbol_cache_size (symbol_cache_size);
1290 }
1291
1292 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1293 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1294 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1295 failed (and thus this one will too), or NULL if the symbol is not present
1296 in the cache.
1297 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1298 set to the cache and slot of the symbol to save the result of a full lookup
1299 attempt. */
1300
1301 static struct block_symbol
1302 symbol_cache_lookup (struct symbol_cache *cache,
1303 struct objfile *objfile_context, int block,
1304 const char *name, domain_enum domain,
1305 struct block_symbol_cache **bsc_ptr,
1306 struct symbol_cache_slot **slot_ptr)
1307 {
1308 struct block_symbol_cache *bsc;
1309 unsigned int hash;
1310 struct symbol_cache_slot *slot;
1311
1312 if (block == GLOBAL_BLOCK)
1313 bsc = cache->global_symbols;
1314 else
1315 bsc = cache->static_symbols;
1316 if (bsc == NULL)
1317 {
1318 *bsc_ptr = NULL;
1319 *slot_ptr = NULL;
1320 return (struct block_symbol) {NULL, NULL};
1321 }
1322
1323 hash = hash_symbol_entry (objfile_context, name, domain);
1324 slot = bsc->symbols + hash % bsc->size;
1325
1326 if (eq_symbol_entry (slot, objfile_context, name, domain))
1327 {
1328 if (symbol_lookup_debug)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "%s block symbol cache hit%s for %s, %s\n",
1331 block == GLOBAL_BLOCK ? "Global" : "Static",
1332 slot->state == SYMBOL_SLOT_NOT_FOUND
1333 ? " (not found)" : "",
1334 name, domain_name (domain));
1335 ++bsc->hits;
1336 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1337 return SYMBOL_LOOKUP_FAILED;
1338 return slot->value.found;
1339 }
1340
1341 /* Symbol is not present in the cache. */
1342
1343 *bsc_ptr = bsc;
1344 *slot_ptr = slot;
1345
1346 if (symbol_lookup_debug)
1347 {
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache miss for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 name, domain_name (domain));
1352 }
1353 ++bsc->misses;
1354 return (struct block_symbol) {NULL, NULL};
1355 }
1356
1357 /* Clear out SLOT. */
1358
1359 static void
1360 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1361 {
1362 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1363 xfree (slot->value.not_found.name);
1364 slot->state = SYMBOL_SLOT_UNUSED;
1365 }
1366
1367 /* Mark SYMBOL as found in SLOT.
1368 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1369 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1370 necessarily the objfile the symbol was found in. */
1371
1372 static void
1373 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1374 struct symbol_cache_slot *slot,
1375 struct objfile *objfile_context,
1376 struct symbol *symbol,
1377 const struct block *block)
1378 {
1379 if (bsc == NULL)
1380 return;
1381 if (slot->state != SYMBOL_SLOT_UNUSED)
1382 {
1383 ++bsc->collisions;
1384 symbol_cache_clear_slot (slot);
1385 }
1386 slot->state = SYMBOL_SLOT_FOUND;
1387 slot->objfile_context = objfile_context;
1388 slot->value.found.symbol = symbol;
1389 slot->value.found.block = block;
1390 }
1391
1392 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1393 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1394 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1395
1396 static void
1397 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 const char *name, domain_enum domain)
1401 {
1402 if (bsc == NULL)
1403 return;
1404 if (slot->state != SYMBOL_SLOT_UNUSED)
1405 {
1406 ++bsc->collisions;
1407 symbol_cache_clear_slot (slot);
1408 }
1409 slot->state = SYMBOL_SLOT_NOT_FOUND;
1410 slot->objfile_context = objfile_context;
1411 slot->value.not_found.name = xstrdup (name);
1412 slot->value.not_found.domain = domain;
1413 }
1414
1415 /* Flush the symbol cache of PSPACE. */
1416
1417 static void
1418 symbol_cache_flush (struct program_space *pspace)
1419 {
1420 struct symbol_cache *cache
1421 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1422 int pass;
1423
1424 if (cache == NULL)
1425 return;
1426 if (cache->global_symbols == NULL)
1427 {
1428 gdb_assert (symbol_cache_size == 0);
1429 gdb_assert (cache->static_symbols == NULL);
1430 return;
1431 }
1432
1433 /* If the cache is untouched since the last flush, early exit.
1434 This is important for performance during the startup of a program linked
1435 with 100s (or 1000s) of shared libraries. */
1436 if (cache->global_symbols->misses == 0
1437 && cache->static_symbols->misses == 0)
1438 return;
1439
1440 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1441 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1442
1443 for (pass = 0; pass < 2; ++pass)
1444 {
1445 struct block_symbol_cache *bsc
1446 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1447 unsigned int i;
1448
1449 for (i = 0; i < bsc->size; ++i)
1450 symbol_cache_clear_slot (&bsc->symbols[i]);
1451 }
1452
1453 cache->global_symbols->hits = 0;
1454 cache->global_symbols->misses = 0;
1455 cache->global_symbols->collisions = 0;
1456 cache->static_symbols->hits = 0;
1457 cache->static_symbols->misses = 0;
1458 cache->static_symbols->collisions = 0;
1459 }
1460
1461 /* Dump CACHE. */
1462
1463 static void
1464 symbol_cache_dump (const struct symbol_cache *cache)
1465 {
1466 int pass;
1467
1468 if (cache->global_symbols == NULL)
1469 {
1470 printf_filtered (" <disabled>\n");
1471 return;
1472 }
1473
1474 for (pass = 0; pass < 2; ++pass)
1475 {
1476 const struct block_symbol_cache *bsc
1477 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1478 unsigned int i;
1479
1480 if (pass == 0)
1481 printf_filtered ("Global symbols:\n");
1482 else
1483 printf_filtered ("Static symbols:\n");
1484
1485 for (i = 0; i < bsc->size; ++i)
1486 {
1487 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1488
1489 QUIT;
1490
1491 switch (slot->state)
1492 {
1493 case SYMBOL_SLOT_UNUSED:
1494 break;
1495 case SYMBOL_SLOT_NOT_FOUND:
1496 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1497 host_address_to_string (slot->objfile_context),
1498 slot->value.not_found.name,
1499 domain_name (slot->value.not_found.domain));
1500 break;
1501 case SYMBOL_SLOT_FOUND:
1502 {
1503 struct symbol *found = slot->value.found.symbol;
1504 const struct objfile *context = slot->objfile_context;
1505
1506 printf_filtered (" [%4u] = %s, %s %s\n", i,
1507 host_address_to_string (context),
1508 SYMBOL_PRINT_NAME (found),
1509 domain_name (SYMBOL_DOMAIN (found)));
1510 break;
1511 }
1512 }
1513 }
1514 }
1515 }
1516
1517 /* The "mt print symbol-cache" command. */
1518
1519 static void
1520 maintenance_print_symbol_cache (const char *args, int from_tty)
1521 {
1522 struct program_space *pspace;
1523
1524 ALL_PSPACES (pspace)
1525 {
1526 struct symbol_cache *cache;
1527
1528 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1529 pspace->num,
1530 pspace->symfile_object_file != NULL
1531 ? objfile_name (pspace->symfile_object_file)
1532 : "(no object file)");
1533
1534 /* If the cache hasn't been created yet, avoid creating one. */
1535 cache
1536 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1537 if (cache == NULL)
1538 printf_filtered (" <empty>\n");
1539 else
1540 symbol_cache_dump (cache);
1541 }
1542 }
1543
1544 /* The "mt flush-symbol-cache" command. */
1545
1546 static void
1547 maintenance_flush_symbol_cache (const char *args, int from_tty)
1548 {
1549 struct program_space *pspace;
1550
1551 ALL_PSPACES (pspace)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 struct program_space *pspace;
1595
1596 ALL_PSPACES (pspace)
1597 {
1598 struct symbol_cache *cache;
1599
1600 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1601 pspace->num,
1602 pspace->symfile_object_file != NULL
1603 ? objfile_name (pspace->symfile_object_file)
1604 : "(no object file)");
1605
1606 /* If the cache hasn't been created yet, avoid creating one. */
1607 cache
1608 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1609 if (cache == NULL)
1610 printf_filtered (" empty, no stats available\n");
1611 else
1612 symbol_cache_stats (cache);
1613 }
1614 }
1615
1616 /* This module's 'new_objfile' observer. */
1617
1618 static void
1619 symtab_new_objfile_observer (struct objfile *objfile)
1620 {
1621 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1622 symbol_cache_flush (current_program_space);
1623 }
1624
1625 /* This module's 'free_objfile' observer. */
1626
1627 static void
1628 symtab_free_objfile_observer (struct objfile *objfile)
1629 {
1630 symbol_cache_flush (objfile->pspace);
1631 }
1632 \f
1633 /* Debug symbols usually don't have section information. We need to dig that
1634 out of the minimal symbols and stash that in the debug symbol. */
1635
1636 void
1637 fixup_section (struct general_symbol_info *ginfo,
1638 CORE_ADDR addr, struct objfile *objfile)
1639 {
1640 struct minimal_symbol *msym;
1641
1642 /* First, check whether a minimal symbol with the same name exists
1643 and points to the same address. The address check is required
1644 e.g. on PowerPC64, where the minimal symbol for a function will
1645 point to the function descriptor, while the debug symbol will
1646 point to the actual function code. */
1647 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1648 if (msym)
1649 ginfo->section = MSYMBOL_SECTION (msym);
1650 else
1651 {
1652 /* Static, function-local variables do appear in the linker
1653 (minimal) symbols, but are frequently given names that won't
1654 be found via lookup_minimal_symbol(). E.g., it has been
1655 observed in frv-uclinux (ELF) executables that a static,
1656 function-local variable named "foo" might appear in the
1657 linker symbols as "foo.6" or "foo.3". Thus, there is no
1658 point in attempting to extend the lookup-by-name mechanism to
1659 handle this case due to the fact that there can be multiple
1660 names.
1661
1662 So, instead, search the section table when lookup by name has
1663 failed. The ``addr'' and ``endaddr'' fields may have already
1664 been relocated. If so, the relocation offset (i.e. the
1665 ANOFFSET value) needs to be subtracted from these values when
1666 performing the comparison. We unconditionally subtract it,
1667 because, when no relocation has been performed, the ANOFFSET
1668 value will simply be zero.
1669
1670 The address of the symbol whose section we're fixing up HAS
1671 NOT BEEN adjusted (relocated) yet. It can't have been since
1672 the section isn't yet known and knowing the section is
1673 necessary in order to add the correct relocation value. In
1674 other words, we wouldn't even be in this function (attempting
1675 to compute the section) if it were already known.
1676
1677 Note that it is possible to search the minimal symbols
1678 (subtracting the relocation value if necessary) to find the
1679 matching minimal symbol, but this is overkill and much less
1680 efficient. It is not necessary to find the matching minimal
1681 symbol, only its section.
1682
1683 Note that this technique (of doing a section table search)
1684 can fail when unrelocated section addresses overlap. For
1685 this reason, we still attempt a lookup by name prior to doing
1686 a search of the section table. */
1687
1688 struct obj_section *s;
1689 int fallback = -1;
1690
1691 ALL_OBJFILE_OSECTIONS (objfile, s)
1692 {
1693 int idx = s - objfile->sections;
1694 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1695
1696 if (fallback == -1)
1697 fallback = idx;
1698
1699 if (obj_section_addr (s) - offset <= addr
1700 && addr < obj_section_endaddr (s) - offset)
1701 {
1702 ginfo->section = idx;
1703 return;
1704 }
1705 }
1706
1707 /* If we didn't find the section, assume it is in the first
1708 section. If there is no allocated section, then it hardly
1709 matters what we pick, so just pick zero. */
1710 if (fallback == -1)
1711 ginfo->section = 0;
1712 else
1713 ginfo->section = fallback;
1714 }
1715 }
1716
1717 struct symbol *
1718 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1719 {
1720 CORE_ADDR addr;
1721
1722 if (!sym)
1723 return NULL;
1724
1725 if (!SYMBOL_OBJFILE_OWNED (sym))
1726 return sym;
1727
1728 /* We either have an OBJFILE, or we can get at it from the sym's
1729 symtab. Anything else is a bug. */
1730 gdb_assert (objfile || symbol_symtab (sym));
1731
1732 if (objfile == NULL)
1733 objfile = symbol_objfile (sym);
1734
1735 if (SYMBOL_OBJ_SECTION (objfile, sym))
1736 return sym;
1737
1738 /* We should have an objfile by now. */
1739 gdb_assert (objfile);
1740
1741 switch (SYMBOL_CLASS (sym))
1742 {
1743 case LOC_STATIC:
1744 case LOC_LABEL:
1745 addr = SYMBOL_VALUE_ADDRESS (sym);
1746 break;
1747 case LOC_BLOCK:
1748 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1749 break;
1750
1751 default:
1752 /* Nothing else will be listed in the minsyms -- no use looking
1753 it up. */
1754 return sym;
1755 }
1756
1757 fixup_section (&sym->ginfo, addr, objfile);
1758
1759 return sym;
1760 }
1761
1762 /* See symtab.h. */
1763
1764 demangle_for_lookup_info::demangle_for_lookup_info
1765 (const lookup_name_info &lookup_name, language lang)
1766 {
1767 demangle_result_storage storage;
1768
1769 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1770 lang, storage);
1771 }
1772
1773 /* See symtab.h. */
1774
1775 const lookup_name_info &
1776 lookup_name_info::match_any ()
1777 {
1778 /* Lookup any symbol that "" would complete. I.e., this matches all
1779 symbol names. */
1780 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1781 true);
1782
1783 return lookup_name;
1784 }
1785
1786 /* Compute the demangled form of NAME as used by the various symbol
1787 lookup functions. The result can either be the input NAME
1788 directly, or a pointer to a buffer owned by the STORAGE object.
1789
1790 For Ada, this function just returns NAME, unmodified.
1791 Normally, Ada symbol lookups are performed using the encoded name
1792 rather than the demangled name, and so it might seem to make sense
1793 for this function to return an encoded version of NAME.
1794 Unfortunately, we cannot do this, because this function is used in
1795 circumstances where it is not appropriate to try to encode NAME.
1796 For instance, when displaying the frame info, we demangle the name
1797 of each parameter, and then perform a symbol lookup inside our
1798 function using that demangled name. In Ada, certain functions
1799 have internally-generated parameters whose name contain uppercase
1800 characters. Encoding those name would result in those uppercase
1801 characters to become lowercase, and thus cause the symbol lookup
1802 to fail. */
1803
1804 const char *
1805 demangle_for_lookup (const char *name, enum language lang,
1806 demangle_result_storage &storage)
1807 {
1808 /* If we are using C++, D, or Go, demangle the name before doing a
1809 lookup, so we can always binary search. */
1810 if (lang == language_cplus)
1811 {
1812 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1813 if (demangled_name != NULL)
1814 return storage.set_malloc_ptr (demangled_name);
1815
1816 /* If we were given a non-mangled name, canonicalize it
1817 according to the language (so far only for C++). */
1818 std::string canon = cp_canonicalize_string (name);
1819 if (!canon.empty ())
1820 return storage.swap_string (canon);
1821 }
1822 else if (lang == language_d)
1823 {
1824 char *demangled_name = d_demangle (name, 0);
1825 if (demangled_name != NULL)
1826 return storage.set_malloc_ptr (demangled_name);
1827 }
1828 else if (lang == language_go)
1829 {
1830 char *demangled_name = go_demangle (name, 0);
1831 if (demangled_name != NULL)
1832 return storage.set_malloc_ptr (demangled_name);
1833 }
1834
1835 return name;
1836 }
1837
1838 /* See symtab.h. */
1839
1840 unsigned int
1841 search_name_hash (enum language language, const char *search_name)
1842 {
1843 return language_def (language)->la_search_name_hash (search_name);
1844 }
1845
1846 /* See symtab.h.
1847
1848 This function (or rather its subordinates) have a bunch of loops and
1849 it would seem to be attractive to put in some QUIT's (though I'm not really
1850 sure whether it can run long enough to be really important). But there
1851 are a few calls for which it would appear to be bad news to quit
1852 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1853 that there is C++ code below which can error(), but that probably
1854 doesn't affect these calls since they are looking for a known
1855 variable and thus can probably assume it will never hit the C++
1856 code). */
1857
1858 struct block_symbol
1859 lookup_symbol_in_language (const char *name, const struct block *block,
1860 const domain_enum domain, enum language lang,
1861 struct field_of_this_result *is_a_field_of_this)
1862 {
1863 demangle_result_storage storage;
1864 const char *modified_name = demangle_for_lookup (name, lang, storage);
1865
1866 return lookup_symbol_aux (modified_name, block, domain, lang,
1867 is_a_field_of_this);
1868 }
1869
1870 /* See symtab.h. */
1871
1872 struct block_symbol
1873 lookup_symbol (const char *name, const struct block *block,
1874 domain_enum domain,
1875 struct field_of_this_result *is_a_field_of_this)
1876 {
1877 return lookup_symbol_in_language (name, block, domain,
1878 current_language->la_language,
1879 is_a_field_of_this);
1880 }
1881
1882 /* See symtab.h. */
1883
1884 struct block_symbol
1885 lookup_language_this (const struct language_defn *lang,
1886 const struct block *block)
1887 {
1888 if (lang->la_name_of_this == NULL || block == NULL)
1889 return (struct block_symbol) {NULL, NULL};
1890
1891 if (symbol_lookup_debug > 1)
1892 {
1893 struct objfile *objfile = lookup_objfile_from_block (block);
1894
1895 fprintf_unfiltered (gdb_stdlog,
1896 "lookup_language_this (%s, %s (objfile %s))",
1897 lang->la_name, host_address_to_string (block),
1898 objfile_debug_name (objfile));
1899 }
1900
1901 while (block)
1902 {
1903 struct symbol *sym;
1904
1905 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1906 if (sym != NULL)
1907 {
1908 if (symbol_lookup_debug > 1)
1909 {
1910 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1911 SYMBOL_PRINT_NAME (sym),
1912 host_address_to_string (sym),
1913 host_address_to_string (block));
1914 }
1915 return (struct block_symbol) {sym, block};
1916 }
1917 if (BLOCK_FUNCTION (block))
1918 break;
1919 block = BLOCK_SUPERBLOCK (block);
1920 }
1921
1922 if (symbol_lookup_debug > 1)
1923 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1924 return (struct block_symbol) {NULL, NULL};
1925 }
1926
1927 /* Given TYPE, a structure/union,
1928 return 1 if the component named NAME from the ultimate target
1929 structure/union is defined, otherwise, return 0. */
1930
1931 static int
1932 check_field (struct type *type, const char *name,
1933 struct field_of_this_result *is_a_field_of_this)
1934 {
1935 int i;
1936
1937 /* The type may be a stub. */
1938 type = check_typedef (type);
1939
1940 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1941 {
1942 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1943
1944 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1945 {
1946 is_a_field_of_this->type = type;
1947 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1948 return 1;
1949 }
1950 }
1951
1952 /* C++: If it was not found as a data field, then try to return it
1953 as a pointer to a method. */
1954
1955 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1956 {
1957 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1958 {
1959 is_a_field_of_this->type = type;
1960 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1961 return 1;
1962 }
1963 }
1964
1965 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1966 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1967 return 1;
1968
1969 return 0;
1970 }
1971
1972 /* Behave like lookup_symbol except that NAME is the natural name
1973 (e.g., demangled name) of the symbol that we're looking for. */
1974
1975 static struct block_symbol
1976 lookup_symbol_aux (const char *name, const struct block *block,
1977 const domain_enum domain, enum language language,
1978 struct field_of_this_result *is_a_field_of_this)
1979 {
1980 struct block_symbol result;
1981 const struct language_defn *langdef;
1982
1983 if (symbol_lookup_debug)
1984 {
1985 struct objfile *objfile = lookup_objfile_from_block (block);
1986
1987 fprintf_unfiltered (gdb_stdlog,
1988 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
1989 name, host_address_to_string (block),
1990 objfile != NULL
1991 ? objfile_debug_name (objfile) : "NULL",
1992 domain_name (domain), language_str (language));
1993 }
1994
1995 /* Make sure we do something sensible with is_a_field_of_this, since
1996 the callers that set this parameter to some non-null value will
1997 certainly use it later. If we don't set it, the contents of
1998 is_a_field_of_this are undefined. */
1999 if (is_a_field_of_this != NULL)
2000 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2001
2002 /* Search specified block and its superiors. Don't search
2003 STATIC_BLOCK or GLOBAL_BLOCK. */
2004
2005 result = lookup_local_symbol (name, block, domain, language);
2006 if (result.symbol != NULL)
2007 {
2008 if (symbol_lookup_debug)
2009 {
2010 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2011 host_address_to_string (result.symbol));
2012 }
2013 return result;
2014 }
2015
2016 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2017 check to see if NAME is a field of `this'. */
2018
2019 langdef = language_def (language);
2020
2021 /* Don't do this check if we are searching for a struct. It will
2022 not be found by check_field, but will be found by other
2023 means. */
2024 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2025 {
2026 result = lookup_language_this (langdef, block);
2027
2028 if (result.symbol)
2029 {
2030 struct type *t = result.symbol->type;
2031
2032 /* I'm not really sure that type of this can ever
2033 be typedefed; just be safe. */
2034 t = check_typedef (t);
2035 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2036 t = TYPE_TARGET_TYPE (t);
2037
2038 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2039 && TYPE_CODE (t) != TYPE_CODE_UNION)
2040 error (_("Internal error: `%s' is not an aggregate"),
2041 langdef->la_name_of_this);
2042
2043 if (check_field (t, name, is_a_field_of_this))
2044 {
2045 if (symbol_lookup_debug)
2046 {
2047 fprintf_unfiltered (gdb_stdlog,
2048 "lookup_symbol_aux (...) = NULL\n");
2049 }
2050 return (struct block_symbol) {NULL, NULL};
2051 }
2052 }
2053 }
2054
2055 /* Now do whatever is appropriate for LANGUAGE to look
2056 up static and global variables. */
2057
2058 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2059 if (result.symbol != NULL)
2060 {
2061 if (symbol_lookup_debug)
2062 {
2063 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2064 host_address_to_string (result.symbol));
2065 }
2066 return result;
2067 }
2068
2069 /* Now search all static file-level symbols. Not strictly correct,
2070 but more useful than an error. */
2071
2072 result = lookup_static_symbol (name, domain);
2073 if (symbol_lookup_debug)
2074 {
2075 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2076 result.symbol != NULL
2077 ? host_address_to_string (result.symbol)
2078 : "NULL");
2079 }
2080 return result;
2081 }
2082
2083 /* Check to see if the symbol is defined in BLOCK or its superiors.
2084 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2085
2086 static struct block_symbol
2087 lookup_local_symbol (const char *name, const struct block *block,
2088 const domain_enum domain,
2089 enum language language)
2090 {
2091 struct symbol *sym;
2092 const struct block *static_block = block_static_block (block);
2093 const char *scope = block_scope (block);
2094
2095 /* Check if either no block is specified or it's a global block. */
2096
2097 if (static_block == NULL)
2098 return (struct block_symbol) {NULL, NULL};
2099
2100 while (block != static_block)
2101 {
2102 sym = lookup_symbol_in_block (name, block, domain);
2103 if (sym != NULL)
2104 return (struct block_symbol) {sym, block};
2105
2106 if (language == language_cplus || language == language_fortran)
2107 {
2108 struct block_symbol sym
2109 = cp_lookup_symbol_imports_or_template (scope, name, block,
2110 domain);
2111
2112 if (sym.symbol != NULL)
2113 return sym;
2114 }
2115
2116 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2117 break;
2118 block = BLOCK_SUPERBLOCK (block);
2119 }
2120
2121 /* We've reached the end of the function without finding a result. */
2122
2123 return (struct block_symbol) {NULL, NULL};
2124 }
2125
2126 /* See symtab.h. */
2127
2128 struct objfile *
2129 lookup_objfile_from_block (const struct block *block)
2130 {
2131 struct objfile *obj;
2132 struct compunit_symtab *cust;
2133
2134 if (block == NULL)
2135 return NULL;
2136
2137 block = block_global_block (block);
2138 /* Look through all blockvectors. */
2139 ALL_COMPUNITS (obj, cust)
2140 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2141 GLOBAL_BLOCK))
2142 {
2143 if (obj->separate_debug_objfile_backlink)
2144 obj = obj->separate_debug_objfile_backlink;
2145
2146 return obj;
2147 }
2148
2149 return NULL;
2150 }
2151
2152 /* See symtab.h. */
2153
2154 struct symbol *
2155 lookup_symbol_in_block (const char *name, const struct block *block,
2156 const domain_enum domain)
2157 {
2158 struct symbol *sym;
2159
2160 if (symbol_lookup_debug > 1)
2161 {
2162 struct objfile *objfile = lookup_objfile_from_block (block);
2163
2164 fprintf_unfiltered (gdb_stdlog,
2165 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2166 name, host_address_to_string (block),
2167 objfile_debug_name (objfile),
2168 domain_name (domain));
2169 }
2170
2171 sym = block_lookup_symbol (block, name, domain);
2172 if (sym)
2173 {
2174 if (symbol_lookup_debug > 1)
2175 {
2176 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2177 host_address_to_string (sym));
2178 }
2179 return fixup_symbol_section (sym, NULL);
2180 }
2181
2182 if (symbol_lookup_debug > 1)
2183 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2184 return NULL;
2185 }
2186
2187 /* See symtab.h. */
2188
2189 struct block_symbol
2190 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2191 const char *name,
2192 const domain_enum domain)
2193 {
2194 struct objfile *objfile;
2195
2196 for (objfile = main_objfile;
2197 objfile;
2198 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2199 {
2200 struct block_symbol result
2201 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2202
2203 if (result.symbol != NULL)
2204 return result;
2205 }
2206
2207 return (struct block_symbol) {NULL, NULL};
2208 }
2209
2210 /* Check to see if the symbol is defined in one of the OBJFILE's
2211 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2212 depending on whether or not we want to search global symbols or
2213 static symbols. */
2214
2215 static struct block_symbol
2216 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2217 const char *name, const domain_enum domain)
2218 {
2219 struct compunit_symtab *cust;
2220
2221 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2222
2223 if (symbol_lookup_debug > 1)
2224 {
2225 fprintf_unfiltered (gdb_stdlog,
2226 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2227 objfile_debug_name (objfile),
2228 block_index == GLOBAL_BLOCK
2229 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2230 name, domain_name (domain));
2231 }
2232
2233 ALL_OBJFILE_COMPUNITS (objfile, cust)
2234 {
2235 const struct blockvector *bv;
2236 const struct block *block;
2237 struct block_symbol result;
2238
2239 bv = COMPUNIT_BLOCKVECTOR (cust);
2240 block = BLOCKVECTOR_BLOCK (bv, block_index);
2241 result.symbol = block_lookup_symbol_primary (block, name, domain);
2242 result.block = block;
2243 if (result.symbol != NULL)
2244 {
2245 if (symbol_lookup_debug > 1)
2246 {
2247 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2248 host_address_to_string (result.symbol),
2249 host_address_to_string (block));
2250 }
2251 result.symbol = fixup_symbol_section (result.symbol, objfile);
2252 return result;
2253
2254 }
2255 }
2256
2257 if (symbol_lookup_debug > 1)
2258 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2259 return (struct block_symbol) {NULL, NULL};
2260 }
2261
2262 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2263 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2264 and all associated separate debug objfiles.
2265
2266 Normally we only look in OBJFILE, and not any separate debug objfiles
2267 because the outer loop will cause them to be searched too. This case is
2268 different. Here we're called from search_symbols where it will only
2269 call us for the the objfile that contains a matching minsym. */
2270
2271 static struct block_symbol
2272 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2273 const char *linkage_name,
2274 domain_enum domain)
2275 {
2276 enum language lang = current_language->la_language;
2277 struct objfile *main_objfile, *cur_objfile;
2278
2279 demangle_result_storage storage;
2280 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2281
2282 if (objfile->separate_debug_objfile_backlink)
2283 main_objfile = objfile->separate_debug_objfile_backlink;
2284 else
2285 main_objfile = objfile;
2286
2287 for (cur_objfile = main_objfile;
2288 cur_objfile;
2289 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2290 {
2291 struct block_symbol result;
2292
2293 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2294 modified_name, domain);
2295 if (result.symbol == NULL)
2296 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2297 modified_name, domain);
2298 if (result.symbol != NULL)
2299 return result;
2300 }
2301
2302 return (struct block_symbol) {NULL, NULL};
2303 }
2304
2305 /* A helper function that throws an exception when a symbol was found
2306 in a psymtab but not in a symtab. */
2307
2308 static void ATTRIBUTE_NORETURN
2309 error_in_psymtab_expansion (int block_index, const char *name,
2310 struct compunit_symtab *cust)
2311 {
2312 error (_("\
2313 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2314 %s may be an inlined function, or may be a template function\n \
2315 (if a template, try specifying an instantiation: %s<type>)."),
2316 block_index == GLOBAL_BLOCK ? "global" : "static",
2317 name,
2318 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2319 name, name);
2320 }
2321
2322 /* A helper function for various lookup routines that interfaces with
2323 the "quick" symbol table functions. */
2324
2325 static struct block_symbol
2326 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2327 const char *name, const domain_enum domain)
2328 {
2329 struct compunit_symtab *cust;
2330 const struct blockvector *bv;
2331 const struct block *block;
2332 struct block_symbol result;
2333
2334 if (!objfile->sf)
2335 return (struct block_symbol) {NULL, NULL};
2336
2337 if (symbol_lookup_debug > 1)
2338 {
2339 fprintf_unfiltered (gdb_stdlog,
2340 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2341 objfile_debug_name (objfile),
2342 block_index == GLOBAL_BLOCK
2343 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2344 name, domain_name (domain));
2345 }
2346
2347 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2348 if (cust == NULL)
2349 {
2350 if (symbol_lookup_debug > 1)
2351 {
2352 fprintf_unfiltered (gdb_stdlog,
2353 "lookup_symbol_via_quick_fns (...) = NULL\n");
2354 }
2355 return (struct block_symbol) {NULL, NULL};
2356 }
2357
2358 bv = COMPUNIT_BLOCKVECTOR (cust);
2359 block = BLOCKVECTOR_BLOCK (bv, block_index);
2360 result.symbol = block_lookup_symbol (block, name, domain);
2361 if (result.symbol == NULL)
2362 error_in_psymtab_expansion (block_index, name, cust);
2363
2364 if (symbol_lookup_debug > 1)
2365 {
2366 fprintf_unfiltered (gdb_stdlog,
2367 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2368 host_address_to_string (result.symbol),
2369 host_address_to_string (block));
2370 }
2371
2372 result.symbol = fixup_symbol_section (result.symbol, objfile);
2373 result.block = block;
2374 return result;
2375 }
2376
2377 /* See symtab.h. */
2378
2379 struct block_symbol
2380 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2381 const char *name,
2382 const struct block *block,
2383 const domain_enum domain)
2384 {
2385 struct block_symbol result;
2386
2387 /* NOTE: carlton/2003-05-19: The comments below were written when
2388 this (or what turned into this) was part of lookup_symbol_aux;
2389 I'm much less worried about these questions now, since these
2390 decisions have turned out well, but I leave these comments here
2391 for posterity. */
2392
2393 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2394 not it would be appropriate to search the current global block
2395 here as well. (That's what this code used to do before the
2396 is_a_field_of_this check was moved up.) On the one hand, it's
2397 redundant with the lookup in all objfiles search that happens
2398 next. On the other hand, if decode_line_1 is passed an argument
2399 like filename:var, then the user presumably wants 'var' to be
2400 searched for in filename. On the third hand, there shouldn't be
2401 multiple global variables all of which are named 'var', and it's
2402 not like decode_line_1 has ever restricted its search to only
2403 global variables in a single filename. All in all, only
2404 searching the static block here seems best: it's correct and it's
2405 cleanest. */
2406
2407 /* NOTE: carlton/2002-12-05: There's also a possible performance
2408 issue here: if you usually search for global symbols in the
2409 current file, then it would be slightly better to search the
2410 current global block before searching all the symtabs. But there
2411 are other factors that have a much greater effect on performance
2412 than that one, so I don't think we should worry about that for
2413 now. */
2414
2415 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2416 the current objfile. Searching the current objfile first is useful
2417 for both matching user expectations as well as performance. */
2418
2419 result = lookup_symbol_in_static_block (name, block, domain);
2420 if (result.symbol != NULL)
2421 return result;
2422
2423 /* If we didn't find a definition for a builtin type in the static block,
2424 search for it now. This is actually the right thing to do and can be
2425 a massive performance win. E.g., when debugging a program with lots of
2426 shared libraries we could search all of them only to find out the
2427 builtin type isn't defined in any of them. This is common for types
2428 like "void". */
2429 if (domain == VAR_DOMAIN)
2430 {
2431 struct gdbarch *gdbarch;
2432
2433 if (block == NULL)
2434 gdbarch = target_gdbarch ();
2435 else
2436 gdbarch = block_gdbarch (block);
2437 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2438 gdbarch, name);
2439 result.block = NULL;
2440 if (result.symbol != NULL)
2441 return result;
2442 }
2443
2444 return lookup_global_symbol (name, block, domain);
2445 }
2446
2447 /* See symtab.h. */
2448
2449 struct block_symbol
2450 lookup_symbol_in_static_block (const char *name,
2451 const struct block *block,
2452 const domain_enum domain)
2453 {
2454 const struct block *static_block = block_static_block (block);
2455 struct symbol *sym;
2456
2457 if (static_block == NULL)
2458 return (struct block_symbol) {NULL, NULL};
2459
2460 if (symbol_lookup_debug)
2461 {
2462 struct objfile *objfile = lookup_objfile_from_block (static_block);
2463
2464 fprintf_unfiltered (gdb_stdlog,
2465 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2466 " %s)\n",
2467 name,
2468 host_address_to_string (block),
2469 objfile_debug_name (objfile),
2470 domain_name (domain));
2471 }
2472
2473 sym = lookup_symbol_in_block (name, static_block, domain);
2474 if (symbol_lookup_debug)
2475 {
2476 fprintf_unfiltered (gdb_stdlog,
2477 "lookup_symbol_in_static_block (...) = %s\n",
2478 sym != NULL ? host_address_to_string (sym) : "NULL");
2479 }
2480 return (struct block_symbol) {sym, static_block};
2481 }
2482
2483 /* Perform the standard symbol lookup of NAME in OBJFILE:
2484 1) First search expanded symtabs, and if not found
2485 2) Search the "quick" symtabs (partial or .gdb_index).
2486 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2487
2488 static struct block_symbol
2489 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2490 const char *name, const domain_enum domain)
2491 {
2492 struct block_symbol result;
2493
2494 if (symbol_lookup_debug)
2495 {
2496 fprintf_unfiltered (gdb_stdlog,
2497 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2498 objfile_debug_name (objfile),
2499 block_index == GLOBAL_BLOCK
2500 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2501 name, domain_name (domain));
2502 }
2503
2504 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2505 name, domain);
2506 if (result.symbol != NULL)
2507 {
2508 if (symbol_lookup_debug)
2509 {
2510 fprintf_unfiltered (gdb_stdlog,
2511 "lookup_symbol_in_objfile (...) = %s"
2512 " (in symtabs)\n",
2513 host_address_to_string (result.symbol));
2514 }
2515 return result;
2516 }
2517
2518 result = lookup_symbol_via_quick_fns (objfile, block_index,
2519 name, domain);
2520 if (symbol_lookup_debug)
2521 {
2522 fprintf_unfiltered (gdb_stdlog,
2523 "lookup_symbol_in_objfile (...) = %s%s\n",
2524 result.symbol != NULL
2525 ? host_address_to_string (result.symbol)
2526 : "NULL",
2527 result.symbol != NULL ? " (via quick fns)" : "");
2528 }
2529 return result;
2530 }
2531
2532 /* See symtab.h. */
2533
2534 struct block_symbol
2535 lookup_static_symbol (const char *name, const domain_enum domain)
2536 {
2537 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2538 struct objfile *objfile;
2539 struct block_symbol result;
2540 struct block_symbol_cache *bsc;
2541 struct symbol_cache_slot *slot;
2542
2543 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2544 NULL for OBJFILE_CONTEXT. */
2545 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2546 &bsc, &slot);
2547 if (result.symbol != NULL)
2548 {
2549 if (SYMBOL_LOOKUP_FAILED_P (result))
2550 return (struct block_symbol) {NULL, NULL};
2551 return result;
2552 }
2553
2554 ALL_OBJFILES (objfile)
2555 {
2556 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2557 if (result.symbol != NULL)
2558 {
2559 /* Still pass NULL for OBJFILE_CONTEXT here. */
2560 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2561 result.block);
2562 return result;
2563 }
2564 }
2565
2566 /* Still pass NULL for OBJFILE_CONTEXT here. */
2567 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2568 return (struct block_symbol) {NULL, NULL};
2569 }
2570
2571 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2572
2573 struct global_sym_lookup_data
2574 {
2575 /* The name of the symbol we are searching for. */
2576 const char *name;
2577
2578 /* The domain to use for our search. */
2579 domain_enum domain;
2580
2581 /* The field where the callback should store the symbol if found.
2582 It should be initialized to {NULL, NULL} before the search is started. */
2583 struct block_symbol result;
2584 };
2585
2586 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2587 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2588 OBJFILE. The arguments for the search are passed via CB_DATA,
2589 which in reality is a pointer to struct global_sym_lookup_data. */
2590
2591 static int
2592 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2593 void *cb_data)
2594 {
2595 struct global_sym_lookup_data *data =
2596 (struct global_sym_lookup_data *) cb_data;
2597
2598 gdb_assert (data->result.symbol == NULL
2599 && data->result.block == NULL);
2600
2601 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2602 data->name, data->domain);
2603
2604 /* If we found a match, tell the iterator to stop. Otherwise,
2605 keep going. */
2606 return (data->result.symbol != NULL);
2607 }
2608
2609 /* See symtab.h. */
2610
2611 struct block_symbol
2612 lookup_global_symbol (const char *name,
2613 const struct block *block,
2614 const domain_enum domain)
2615 {
2616 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2617 struct block_symbol result;
2618 struct objfile *objfile;
2619 struct global_sym_lookup_data lookup_data;
2620 struct block_symbol_cache *bsc;
2621 struct symbol_cache_slot *slot;
2622
2623 objfile = lookup_objfile_from_block (block);
2624
2625 /* First see if we can find the symbol in the cache.
2626 This works because we use the current objfile to qualify the lookup. */
2627 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2628 &bsc, &slot);
2629 if (result.symbol != NULL)
2630 {
2631 if (SYMBOL_LOOKUP_FAILED_P (result))
2632 return (struct block_symbol) {NULL, NULL};
2633 return result;
2634 }
2635
2636 /* Call library-specific lookup procedure. */
2637 if (objfile != NULL)
2638 result = solib_global_lookup (objfile, name, domain);
2639
2640 /* If that didn't work go a global search (of global blocks, heh). */
2641 if (result.symbol == NULL)
2642 {
2643 memset (&lookup_data, 0, sizeof (lookup_data));
2644 lookup_data.name = name;
2645 lookup_data.domain = domain;
2646 gdbarch_iterate_over_objfiles_in_search_order
2647 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2648 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2649 result = lookup_data.result;
2650 }
2651
2652 if (result.symbol != NULL)
2653 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2654 else
2655 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2656
2657 return result;
2658 }
2659
2660 int
2661 symbol_matches_domain (enum language symbol_language,
2662 domain_enum symbol_domain,
2663 domain_enum domain)
2664 {
2665 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2666 Similarly, any Ada type declaration implicitly defines a typedef. */
2667 if (symbol_language == language_cplus
2668 || symbol_language == language_d
2669 || symbol_language == language_ada
2670 || symbol_language == language_rust)
2671 {
2672 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2673 && symbol_domain == STRUCT_DOMAIN)
2674 return 1;
2675 }
2676 /* For all other languages, strict match is required. */
2677 return (symbol_domain == domain);
2678 }
2679
2680 /* See symtab.h. */
2681
2682 struct type *
2683 lookup_transparent_type (const char *name)
2684 {
2685 return current_language->la_lookup_transparent_type (name);
2686 }
2687
2688 /* A helper for basic_lookup_transparent_type that interfaces with the
2689 "quick" symbol table functions. */
2690
2691 static struct type *
2692 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2693 const char *name)
2694 {
2695 struct compunit_symtab *cust;
2696 const struct blockvector *bv;
2697 struct block *block;
2698 struct symbol *sym;
2699
2700 if (!objfile->sf)
2701 return NULL;
2702 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2703 STRUCT_DOMAIN);
2704 if (cust == NULL)
2705 return NULL;
2706
2707 bv = COMPUNIT_BLOCKVECTOR (cust);
2708 block = BLOCKVECTOR_BLOCK (bv, block_index);
2709 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2710 block_find_non_opaque_type, NULL);
2711 if (sym == NULL)
2712 error_in_psymtab_expansion (block_index, name, cust);
2713 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2714 return SYMBOL_TYPE (sym);
2715 }
2716
2717 /* Subroutine of basic_lookup_transparent_type to simplify it.
2718 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2719 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2720
2721 static struct type *
2722 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2723 const char *name)
2724 {
2725 const struct compunit_symtab *cust;
2726 const struct blockvector *bv;
2727 const struct block *block;
2728 const struct symbol *sym;
2729
2730 ALL_OBJFILE_COMPUNITS (objfile, cust)
2731 {
2732 bv = COMPUNIT_BLOCKVECTOR (cust);
2733 block = BLOCKVECTOR_BLOCK (bv, block_index);
2734 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2735 block_find_non_opaque_type, NULL);
2736 if (sym != NULL)
2737 {
2738 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2739 return SYMBOL_TYPE (sym);
2740 }
2741 }
2742
2743 return NULL;
2744 }
2745
2746 /* The standard implementation of lookup_transparent_type. This code
2747 was modeled on lookup_symbol -- the parts not relevant to looking
2748 up types were just left out. In particular it's assumed here that
2749 types are available in STRUCT_DOMAIN and only in file-static or
2750 global blocks. */
2751
2752 struct type *
2753 basic_lookup_transparent_type (const char *name)
2754 {
2755 struct objfile *objfile;
2756 struct type *t;
2757
2758 /* Now search all the global symbols. Do the symtab's first, then
2759 check the psymtab's. If a psymtab indicates the existence
2760 of the desired name as a global, then do psymtab-to-symtab
2761 conversion on the fly and return the found symbol. */
2762
2763 ALL_OBJFILES (objfile)
2764 {
2765 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2766 if (t)
2767 return t;
2768 }
2769
2770 ALL_OBJFILES (objfile)
2771 {
2772 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2773 if (t)
2774 return t;
2775 }
2776
2777 /* Now search the static file-level symbols.
2778 Not strictly correct, but more useful than an error.
2779 Do the symtab's first, then
2780 check the psymtab's. If a psymtab indicates the existence
2781 of the desired name as a file-level static, then do psymtab-to-symtab
2782 conversion on the fly and return the found symbol. */
2783
2784 ALL_OBJFILES (objfile)
2785 {
2786 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2787 if (t)
2788 return t;
2789 }
2790
2791 ALL_OBJFILES (objfile)
2792 {
2793 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2794 if (t)
2795 return t;
2796 }
2797
2798 return (struct type *) 0;
2799 }
2800
2801 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2802
2803 For each symbol that matches, CALLBACK is called. The symbol is
2804 passed to the callback.
2805
2806 If CALLBACK returns false, the iteration ends. Otherwise, the
2807 search continues. */
2808
2809 void
2810 iterate_over_symbols (const struct block *block,
2811 const lookup_name_info &name,
2812 const domain_enum domain,
2813 gdb::function_view<symbol_found_callback_ftype> callback)
2814 {
2815 struct block_iterator iter;
2816 struct symbol *sym;
2817
2818 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2819 {
2820 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2821 SYMBOL_DOMAIN (sym), domain))
2822 {
2823 if (!callback (sym))
2824 return;
2825 }
2826 }
2827 }
2828
2829 /* Find the compunit symtab associated with PC and SECTION.
2830 This will read in debug info as necessary. */
2831
2832 struct compunit_symtab *
2833 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2834 {
2835 struct compunit_symtab *cust;
2836 struct compunit_symtab *best_cust = NULL;
2837 struct objfile *objfile;
2838 CORE_ADDR distance = 0;
2839 struct bound_minimal_symbol msymbol;
2840
2841 /* If we know that this is not a text address, return failure. This is
2842 necessary because we loop based on the block's high and low code
2843 addresses, which do not include the data ranges, and because
2844 we call find_pc_sect_psymtab which has a similar restriction based
2845 on the partial_symtab's texthigh and textlow. */
2846 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2847 if (msymbol.minsym
2848 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2849 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2850 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2851 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2852 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2853 return NULL;
2854
2855 /* Search all symtabs for the one whose file contains our address, and which
2856 is the smallest of all the ones containing the address. This is designed
2857 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2858 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2859 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2860
2861 This happens for native ecoff format, where code from included files
2862 gets its own symtab. The symtab for the included file should have
2863 been read in already via the dependency mechanism.
2864 It might be swifter to create several symtabs with the same name
2865 like xcoff does (I'm not sure).
2866
2867 It also happens for objfiles that have their functions reordered.
2868 For these, the symtab we are looking for is not necessarily read in. */
2869
2870 ALL_COMPUNITS (objfile, cust)
2871 {
2872 struct block *b;
2873 const struct blockvector *bv;
2874
2875 bv = COMPUNIT_BLOCKVECTOR (cust);
2876 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2877
2878 if (BLOCK_START (b) <= pc
2879 && BLOCK_END (b) > pc
2880 && (distance == 0
2881 || BLOCK_END (b) - BLOCK_START (b) < distance))
2882 {
2883 /* For an objfile that has its functions reordered,
2884 find_pc_psymtab will find the proper partial symbol table
2885 and we simply return its corresponding symtab. */
2886 /* In order to better support objfiles that contain both
2887 stabs and coff debugging info, we continue on if a psymtab
2888 can't be found. */
2889 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2890 {
2891 struct compunit_symtab *result;
2892
2893 result
2894 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2895 msymbol,
2896 pc, section,
2897 0);
2898 if (result != NULL)
2899 return result;
2900 }
2901 if (section != 0)
2902 {
2903 struct block_iterator iter;
2904 struct symbol *sym = NULL;
2905
2906 ALL_BLOCK_SYMBOLS (b, iter, sym)
2907 {
2908 fixup_symbol_section (sym, objfile);
2909 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2910 section))
2911 break;
2912 }
2913 if (sym == NULL)
2914 continue; /* No symbol in this symtab matches
2915 section. */
2916 }
2917 distance = BLOCK_END (b) - BLOCK_START (b);
2918 best_cust = cust;
2919 }
2920 }
2921
2922 if (best_cust != NULL)
2923 return best_cust;
2924
2925 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2926
2927 ALL_OBJFILES (objfile)
2928 {
2929 struct compunit_symtab *result;
2930
2931 if (!objfile->sf)
2932 continue;
2933 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2934 msymbol,
2935 pc, section,
2936 1);
2937 if (result != NULL)
2938 return result;
2939 }
2940
2941 return NULL;
2942 }
2943
2944 /* Find the compunit symtab associated with PC.
2945 This will read in debug info as necessary.
2946 Backward compatibility, no section. */
2947
2948 struct compunit_symtab *
2949 find_pc_compunit_symtab (CORE_ADDR pc)
2950 {
2951 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2952 }
2953 \f
2954
2955 /* Find the source file and line number for a given PC value and SECTION.
2956 Return a structure containing a symtab pointer, a line number,
2957 and a pc range for the entire source line.
2958 The value's .pc field is NOT the specified pc.
2959 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2960 use the line that ends there. Otherwise, in that case, the line
2961 that begins there is used. */
2962
2963 /* The big complication here is that a line may start in one file, and end just
2964 before the start of another file. This usually occurs when you #include
2965 code in the middle of a subroutine. To properly find the end of a line's PC
2966 range, we must search all symtabs associated with this compilation unit, and
2967 find the one whose first PC is closer than that of the next line in this
2968 symtab. */
2969
2970 /* If it's worth the effort, we could be using a binary search. */
2971
2972 struct symtab_and_line
2973 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2974 {
2975 struct compunit_symtab *cust;
2976 struct symtab *iter_s;
2977 struct linetable *l;
2978 int len;
2979 int i;
2980 struct linetable_entry *item;
2981 const struct blockvector *bv;
2982 struct bound_minimal_symbol msymbol;
2983
2984 /* Info on best line seen so far, and where it starts, and its file. */
2985
2986 struct linetable_entry *best = NULL;
2987 CORE_ADDR best_end = 0;
2988 struct symtab *best_symtab = 0;
2989
2990 /* Store here the first line number
2991 of a file which contains the line at the smallest pc after PC.
2992 If we don't find a line whose range contains PC,
2993 we will use a line one less than this,
2994 with a range from the start of that file to the first line's pc. */
2995 struct linetable_entry *alt = NULL;
2996
2997 /* Info on best line seen in this file. */
2998
2999 struct linetable_entry *prev;
3000
3001 /* If this pc is not from the current frame,
3002 it is the address of the end of a call instruction.
3003 Quite likely that is the start of the following statement.
3004 But what we want is the statement containing the instruction.
3005 Fudge the pc to make sure we get that. */
3006
3007 /* It's tempting to assume that, if we can't find debugging info for
3008 any function enclosing PC, that we shouldn't search for line
3009 number info, either. However, GAS can emit line number info for
3010 assembly files --- very helpful when debugging hand-written
3011 assembly code. In such a case, we'd have no debug info for the
3012 function, but we would have line info. */
3013
3014 if (notcurrent)
3015 pc -= 1;
3016
3017 /* elz: added this because this function returned the wrong
3018 information if the pc belongs to a stub (import/export)
3019 to call a shlib function. This stub would be anywhere between
3020 two functions in the target, and the line info was erroneously
3021 taken to be the one of the line before the pc. */
3022
3023 /* RT: Further explanation:
3024
3025 * We have stubs (trampolines) inserted between procedures.
3026 *
3027 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3028 * exists in the main image.
3029 *
3030 * In the minimal symbol table, we have a bunch of symbols
3031 * sorted by start address. The stubs are marked as "trampoline",
3032 * the others appear as text. E.g.:
3033 *
3034 * Minimal symbol table for main image
3035 * main: code for main (text symbol)
3036 * shr1: stub (trampoline symbol)
3037 * foo: code for foo (text symbol)
3038 * ...
3039 * Minimal symbol table for "shr1" image:
3040 * ...
3041 * shr1: code for shr1 (text symbol)
3042 * ...
3043 *
3044 * So the code below is trying to detect if we are in the stub
3045 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3046 * and if found, do the symbolization from the real-code address
3047 * rather than the stub address.
3048 *
3049 * Assumptions being made about the minimal symbol table:
3050 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3051 * if we're really in the trampoline.s If we're beyond it (say
3052 * we're in "foo" in the above example), it'll have a closer
3053 * symbol (the "foo" text symbol for example) and will not
3054 * return the trampoline.
3055 * 2. lookup_minimal_symbol_text() will find a real text symbol
3056 * corresponding to the trampoline, and whose address will
3057 * be different than the trampoline address. I put in a sanity
3058 * check for the address being the same, to avoid an
3059 * infinite recursion.
3060 */
3061 msymbol = lookup_minimal_symbol_by_pc (pc);
3062 if (msymbol.minsym != NULL)
3063 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3064 {
3065 struct bound_minimal_symbol mfunsym
3066 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3067 NULL);
3068
3069 if (mfunsym.minsym == NULL)
3070 /* I eliminated this warning since it is coming out
3071 * in the following situation:
3072 * gdb shmain // test program with shared libraries
3073 * (gdb) break shr1 // function in shared lib
3074 * Warning: In stub for ...
3075 * In the above situation, the shared lib is not loaded yet,
3076 * so of course we can't find the real func/line info,
3077 * but the "break" still works, and the warning is annoying.
3078 * So I commented out the warning. RT */
3079 /* warning ("In stub for %s; unable to find real function/line info",
3080 SYMBOL_LINKAGE_NAME (msymbol)); */
3081 ;
3082 /* fall through */
3083 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3084 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3085 /* Avoid infinite recursion */
3086 /* See above comment about why warning is commented out. */
3087 /* warning ("In stub for %s; unable to find real function/line info",
3088 SYMBOL_LINKAGE_NAME (msymbol)); */
3089 ;
3090 /* fall through */
3091 else
3092 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3093 }
3094
3095 symtab_and_line val;
3096 val.pspace = current_program_space;
3097
3098 cust = find_pc_sect_compunit_symtab (pc, section);
3099 if (cust == NULL)
3100 {
3101 /* If no symbol information, return previous pc. */
3102 if (notcurrent)
3103 pc++;
3104 val.pc = pc;
3105 return val;
3106 }
3107
3108 bv = COMPUNIT_BLOCKVECTOR (cust);
3109
3110 /* Look at all the symtabs that share this blockvector.
3111 They all have the same apriori range, that we found was right;
3112 but they have different line tables. */
3113
3114 ALL_COMPUNIT_FILETABS (cust, iter_s)
3115 {
3116 /* Find the best line in this symtab. */
3117 l = SYMTAB_LINETABLE (iter_s);
3118 if (!l)
3119 continue;
3120 len = l->nitems;
3121 if (len <= 0)
3122 {
3123 /* I think len can be zero if the symtab lacks line numbers
3124 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3125 I'm not sure which, and maybe it depends on the symbol
3126 reader). */
3127 continue;
3128 }
3129
3130 prev = NULL;
3131 item = l->item; /* Get first line info. */
3132
3133 /* Is this file's first line closer than the first lines of other files?
3134 If so, record this file, and its first line, as best alternate. */
3135 if (item->pc > pc && (!alt || item->pc < alt->pc))
3136 alt = item;
3137
3138 for (i = 0; i < len; i++, item++)
3139 {
3140 /* Leave prev pointing to the linetable entry for the last line
3141 that started at or before PC. */
3142 if (item->pc > pc)
3143 break;
3144
3145 prev = item;
3146 }
3147
3148 /* At this point, prev points at the line whose start addr is <= pc, and
3149 item points at the next line. If we ran off the end of the linetable
3150 (pc >= start of the last line), then prev == item. If pc < start of
3151 the first line, prev will not be set. */
3152
3153 /* Is this file's best line closer than the best in the other files?
3154 If so, record this file, and its best line, as best so far. Don't
3155 save prev if it represents the end of a function (i.e. line number
3156 0) instead of a real line. */
3157
3158 if (prev && prev->line && (!best || prev->pc > best->pc))
3159 {
3160 best = prev;
3161 best_symtab = iter_s;
3162
3163 /* Discard BEST_END if it's before the PC of the current BEST. */
3164 if (best_end <= best->pc)
3165 best_end = 0;
3166 }
3167
3168 /* If another line (denoted by ITEM) is in the linetable and its
3169 PC is after BEST's PC, but before the current BEST_END, then
3170 use ITEM's PC as the new best_end. */
3171 if (best && i < len && item->pc > best->pc
3172 && (best_end == 0 || best_end > item->pc))
3173 best_end = item->pc;
3174 }
3175
3176 if (!best_symtab)
3177 {
3178 /* If we didn't find any line number info, just return zeros.
3179 We used to return alt->line - 1 here, but that could be
3180 anywhere; if we don't have line number info for this PC,
3181 don't make some up. */
3182 val.pc = pc;
3183 }
3184 else if (best->line == 0)
3185 {
3186 /* If our best fit is in a range of PC's for which no line
3187 number info is available (line number is zero) then we didn't
3188 find any valid line information. */
3189 val.pc = pc;
3190 }
3191 else
3192 {
3193 val.symtab = best_symtab;
3194 val.line = best->line;
3195 val.pc = best->pc;
3196 if (best_end && (!alt || best_end < alt->pc))
3197 val.end = best_end;
3198 else if (alt)
3199 val.end = alt->pc;
3200 else
3201 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3202 }
3203 val.section = section;
3204 return val;
3205 }
3206
3207 /* Backward compatibility (no section). */
3208
3209 struct symtab_and_line
3210 find_pc_line (CORE_ADDR pc, int notcurrent)
3211 {
3212 struct obj_section *section;
3213
3214 section = find_pc_overlay (pc);
3215 if (pc_in_unmapped_range (pc, section))
3216 pc = overlay_mapped_address (pc, section);
3217 return find_pc_sect_line (pc, section, notcurrent);
3218 }
3219
3220 /* See symtab.h. */
3221
3222 struct symtab *
3223 find_pc_line_symtab (CORE_ADDR pc)
3224 {
3225 struct symtab_and_line sal;
3226
3227 /* This always passes zero for NOTCURRENT to find_pc_line.
3228 There are currently no callers that ever pass non-zero. */
3229 sal = find_pc_line (pc, 0);
3230 return sal.symtab;
3231 }
3232 \f
3233 /* Find line number LINE in any symtab whose name is the same as
3234 SYMTAB.
3235
3236 If found, return the symtab that contains the linetable in which it was
3237 found, set *INDEX to the index in the linetable of the best entry
3238 found, and set *EXACT_MATCH nonzero if the value returned is an
3239 exact match.
3240
3241 If not found, return NULL. */
3242
3243 struct symtab *
3244 find_line_symtab (struct symtab *symtab, int line,
3245 int *index, int *exact_match)
3246 {
3247 int exact = 0; /* Initialized here to avoid a compiler warning. */
3248
3249 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3250 so far seen. */
3251
3252 int best_index;
3253 struct linetable *best_linetable;
3254 struct symtab *best_symtab;
3255
3256 /* First try looking it up in the given symtab. */
3257 best_linetable = SYMTAB_LINETABLE (symtab);
3258 best_symtab = symtab;
3259 best_index = find_line_common (best_linetable, line, &exact, 0);
3260 if (best_index < 0 || !exact)
3261 {
3262 /* Didn't find an exact match. So we better keep looking for
3263 another symtab with the same name. In the case of xcoff,
3264 multiple csects for one source file (produced by IBM's FORTRAN
3265 compiler) produce multiple symtabs (this is unavoidable
3266 assuming csects can be at arbitrary places in memory and that
3267 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3268
3269 /* BEST is the smallest linenumber > LINE so far seen,
3270 or 0 if none has been seen so far.
3271 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3272 int best;
3273
3274 struct objfile *objfile;
3275 struct compunit_symtab *cu;
3276 struct symtab *s;
3277
3278 if (best_index >= 0)
3279 best = best_linetable->item[best_index].line;
3280 else
3281 best = 0;
3282
3283 ALL_OBJFILES (objfile)
3284 {
3285 if (objfile->sf)
3286 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3287 symtab_to_fullname (symtab));
3288 }
3289
3290 ALL_FILETABS (objfile, cu, s)
3291 {
3292 struct linetable *l;
3293 int ind;
3294
3295 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3296 continue;
3297 if (FILENAME_CMP (symtab_to_fullname (symtab),
3298 symtab_to_fullname (s)) != 0)
3299 continue;
3300 l = SYMTAB_LINETABLE (s);
3301 ind = find_line_common (l, line, &exact, 0);
3302 if (ind >= 0)
3303 {
3304 if (exact)
3305 {
3306 best_index = ind;
3307 best_linetable = l;
3308 best_symtab = s;
3309 goto done;
3310 }
3311 if (best == 0 || l->item[ind].line < best)
3312 {
3313 best = l->item[ind].line;
3314 best_index = ind;
3315 best_linetable = l;
3316 best_symtab = s;
3317 }
3318 }
3319 }
3320 }
3321 done:
3322 if (best_index < 0)
3323 return NULL;
3324
3325 if (index)
3326 *index = best_index;
3327 if (exact_match)
3328 *exact_match = exact;
3329
3330 return best_symtab;
3331 }
3332
3333 /* Given SYMTAB, returns all the PCs function in the symtab that
3334 exactly match LINE. Returns an empty vector if there are no exact
3335 matches, but updates BEST_ITEM in this case. */
3336
3337 std::vector<CORE_ADDR>
3338 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3339 struct linetable_entry **best_item)
3340 {
3341 int start = 0;
3342 std::vector<CORE_ADDR> result;
3343
3344 /* First, collect all the PCs that are at this line. */
3345 while (1)
3346 {
3347 int was_exact;
3348 int idx;
3349
3350 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3351 start);
3352 if (idx < 0)
3353 break;
3354
3355 if (!was_exact)
3356 {
3357 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3358
3359 if (*best_item == NULL || item->line < (*best_item)->line)
3360 *best_item = item;
3361
3362 break;
3363 }
3364
3365 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3366 start = idx + 1;
3367 }
3368
3369 return result;
3370 }
3371
3372 \f
3373 /* Set the PC value for a given source file and line number and return true.
3374 Returns zero for invalid line number (and sets the PC to 0).
3375 The source file is specified with a struct symtab. */
3376
3377 int
3378 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3379 {
3380 struct linetable *l;
3381 int ind;
3382
3383 *pc = 0;
3384 if (symtab == 0)
3385 return 0;
3386
3387 symtab = find_line_symtab (symtab, line, &ind, NULL);
3388 if (symtab != NULL)
3389 {
3390 l = SYMTAB_LINETABLE (symtab);
3391 *pc = l->item[ind].pc;
3392 return 1;
3393 }
3394 else
3395 return 0;
3396 }
3397
3398 /* Find the range of pc values in a line.
3399 Store the starting pc of the line into *STARTPTR
3400 and the ending pc (start of next line) into *ENDPTR.
3401 Returns 1 to indicate success.
3402 Returns 0 if could not find the specified line. */
3403
3404 int
3405 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3406 CORE_ADDR *endptr)
3407 {
3408 CORE_ADDR startaddr;
3409 struct symtab_and_line found_sal;
3410
3411 startaddr = sal.pc;
3412 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3413 return 0;
3414
3415 /* This whole function is based on address. For example, if line 10 has
3416 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3417 "info line *0x123" should say the line goes from 0x100 to 0x200
3418 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3419 This also insures that we never give a range like "starts at 0x134
3420 and ends at 0x12c". */
3421
3422 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3423 if (found_sal.line != sal.line)
3424 {
3425 /* The specified line (sal) has zero bytes. */
3426 *startptr = found_sal.pc;
3427 *endptr = found_sal.pc;
3428 }
3429 else
3430 {
3431 *startptr = found_sal.pc;
3432 *endptr = found_sal.end;
3433 }
3434 return 1;
3435 }
3436
3437 /* Given a line table and a line number, return the index into the line
3438 table for the pc of the nearest line whose number is >= the specified one.
3439 Return -1 if none is found. The value is >= 0 if it is an index.
3440 START is the index at which to start searching the line table.
3441
3442 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3443
3444 static int
3445 find_line_common (struct linetable *l, int lineno,
3446 int *exact_match, int start)
3447 {
3448 int i;
3449 int len;
3450
3451 /* BEST is the smallest linenumber > LINENO so far seen,
3452 or 0 if none has been seen so far.
3453 BEST_INDEX identifies the item for it. */
3454
3455 int best_index = -1;
3456 int best = 0;
3457
3458 *exact_match = 0;
3459
3460 if (lineno <= 0)
3461 return -1;
3462 if (l == 0)
3463 return -1;
3464
3465 len = l->nitems;
3466 for (i = start; i < len; i++)
3467 {
3468 struct linetable_entry *item = &(l->item[i]);
3469
3470 if (item->line == lineno)
3471 {
3472 /* Return the first (lowest address) entry which matches. */
3473 *exact_match = 1;
3474 return i;
3475 }
3476
3477 if (item->line > lineno && (best == 0 || item->line < best))
3478 {
3479 best = item->line;
3480 best_index = i;
3481 }
3482 }
3483
3484 /* If we got here, we didn't get an exact match. */
3485 return best_index;
3486 }
3487
3488 int
3489 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3490 {
3491 struct symtab_and_line sal;
3492
3493 sal = find_pc_line (pc, 0);
3494 *startptr = sal.pc;
3495 *endptr = sal.end;
3496 return sal.symtab != 0;
3497 }
3498
3499 /* Given a function symbol SYM, find the symtab and line for the start
3500 of the function.
3501 If the argument FUNFIRSTLINE is nonzero, we want the first line
3502 of real code inside the function.
3503 This function should return SALs matching those from minsym_found,
3504 otherwise false multiple-locations breakpoints could be placed. */
3505
3506 struct symtab_and_line
3507 find_function_start_sal (struct symbol *sym, int funfirstline)
3508 {
3509 fixup_symbol_section (sym, NULL);
3510
3511 obj_section *section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3512 symtab_and_line sal
3513 = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3514 sal.symbol = sym;
3515
3516 if (funfirstline && sal.symtab != NULL
3517 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3518 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3519 {
3520 struct gdbarch *gdbarch = symbol_arch (sym);
3521
3522 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3523 if (gdbarch_skip_entrypoint_p (gdbarch))
3524 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3525 return sal;
3526 }
3527
3528 /* We always should have a line for the function start address.
3529 If we don't, something is odd. Create a plain SAL refering
3530 just the PC and hope that skip_prologue_sal (if requested)
3531 can find a line number for after the prologue. */
3532 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3533 {
3534 sal = {};
3535 sal.pspace = current_program_space;
3536 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3537 sal.section = section;
3538 sal.symbol = sym;
3539 }
3540
3541 if (funfirstline)
3542 skip_prologue_sal (&sal);
3543
3544 return sal;
3545 }
3546
3547 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3548 address for that function that has an entry in SYMTAB's line info
3549 table. If such an entry cannot be found, return FUNC_ADDR
3550 unaltered. */
3551
3552 static CORE_ADDR
3553 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3554 {
3555 CORE_ADDR func_start, func_end;
3556 struct linetable *l;
3557 int i;
3558
3559 /* Give up if this symbol has no lineinfo table. */
3560 l = SYMTAB_LINETABLE (symtab);
3561 if (l == NULL)
3562 return func_addr;
3563
3564 /* Get the range for the function's PC values, or give up if we
3565 cannot, for some reason. */
3566 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3567 return func_addr;
3568
3569 /* Linetable entries are ordered by PC values, see the commentary in
3570 symtab.h where `struct linetable' is defined. Thus, the first
3571 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3572 address we are looking for. */
3573 for (i = 0; i < l->nitems; i++)
3574 {
3575 struct linetable_entry *item = &(l->item[i]);
3576
3577 /* Don't use line numbers of zero, they mark special entries in
3578 the table. See the commentary on symtab.h before the
3579 definition of struct linetable. */
3580 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3581 return item->pc;
3582 }
3583
3584 return func_addr;
3585 }
3586
3587 /* Adjust SAL to the first instruction past the function prologue.
3588 If the PC was explicitly specified, the SAL is not changed.
3589 If the line number was explicitly specified, at most the SAL's PC
3590 is updated. If SAL is already past the prologue, then do nothing. */
3591
3592 void
3593 skip_prologue_sal (struct symtab_and_line *sal)
3594 {
3595 struct symbol *sym;
3596 struct symtab_and_line start_sal;
3597 CORE_ADDR pc, saved_pc;
3598 struct obj_section *section;
3599 const char *name;
3600 struct objfile *objfile;
3601 struct gdbarch *gdbarch;
3602 const struct block *b, *function_block;
3603 int force_skip, skip;
3604
3605 /* Do not change the SAL if PC was specified explicitly. */
3606 if (sal->explicit_pc)
3607 return;
3608
3609 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3610
3611 switch_to_program_space_and_thread (sal->pspace);
3612
3613 sym = find_pc_sect_function (sal->pc, sal->section);
3614 if (sym != NULL)
3615 {
3616 fixup_symbol_section (sym, NULL);
3617
3618 objfile = symbol_objfile (sym);
3619 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3620 section = SYMBOL_OBJ_SECTION (objfile, sym);
3621 name = SYMBOL_LINKAGE_NAME (sym);
3622 }
3623 else
3624 {
3625 struct bound_minimal_symbol msymbol
3626 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3627
3628 if (msymbol.minsym == NULL)
3629 return;
3630
3631 objfile = msymbol.objfile;
3632 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3633 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3634 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3635 }
3636
3637 gdbarch = get_objfile_arch (objfile);
3638
3639 /* Process the prologue in two passes. In the first pass try to skip the
3640 prologue (SKIP is true) and verify there is a real need for it (indicated
3641 by FORCE_SKIP). If no such reason was found run a second pass where the
3642 prologue is not skipped (SKIP is false). */
3643
3644 skip = 1;
3645 force_skip = 1;
3646
3647 /* Be conservative - allow direct PC (without skipping prologue) only if we
3648 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3649 have to be set by the caller so we use SYM instead. */
3650 if (sym != NULL
3651 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3652 force_skip = 0;
3653
3654 saved_pc = pc;
3655 do
3656 {
3657 pc = saved_pc;
3658
3659 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3660 so that gdbarch_skip_prologue has something unique to work on. */
3661 if (section_is_overlay (section) && !section_is_mapped (section))
3662 pc = overlay_unmapped_address (pc, section);
3663
3664 /* Skip "first line" of function (which is actually its prologue). */
3665 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3666 if (gdbarch_skip_entrypoint_p (gdbarch))
3667 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3668 if (skip)
3669 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3670
3671 /* For overlays, map pc back into its mapped VMA range. */
3672 pc = overlay_mapped_address (pc, section);
3673
3674 /* Calculate line number. */
3675 start_sal = find_pc_sect_line (pc, section, 0);
3676
3677 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3678 line is still part of the same function. */
3679 if (skip && start_sal.pc != pc
3680 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3681 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3682 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3683 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3684 {
3685 /* First pc of next line */
3686 pc = start_sal.end;
3687 /* Recalculate the line number (might not be N+1). */
3688 start_sal = find_pc_sect_line (pc, section, 0);
3689 }
3690
3691 /* On targets with executable formats that don't have a concept of
3692 constructors (ELF with .init has, PE doesn't), gcc emits a call
3693 to `__main' in `main' between the prologue and before user
3694 code. */
3695 if (gdbarch_skip_main_prologue_p (gdbarch)
3696 && name && strcmp_iw (name, "main") == 0)
3697 {
3698 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3699 /* Recalculate the line number (might not be N+1). */
3700 start_sal = find_pc_sect_line (pc, section, 0);
3701 force_skip = 1;
3702 }
3703 }
3704 while (!force_skip && skip--);
3705
3706 /* If we still don't have a valid source line, try to find the first
3707 PC in the lineinfo table that belongs to the same function. This
3708 happens with COFF debug info, which does not seem to have an
3709 entry in lineinfo table for the code after the prologue which has
3710 no direct relation to source. For example, this was found to be
3711 the case with the DJGPP target using "gcc -gcoff" when the
3712 compiler inserted code after the prologue to make sure the stack
3713 is aligned. */
3714 if (!force_skip && sym && start_sal.symtab == NULL)
3715 {
3716 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3717 /* Recalculate the line number. */
3718 start_sal = find_pc_sect_line (pc, section, 0);
3719 }
3720
3721 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3722 forward SAL to the end of the prologue. */
3723 if (sal->pc >= pc)
3724 return;
3725
3726 sal->pc = pc;
3727 sal->section = section;
3728
3729 /* Unless the explicit_line flag was set, update the SAL line
3730 and symtab to correspond to the modified PC location. */
3731 if (sal->explicit_line)
3732 return;
3733
3734 sal->symtab = start_sal.symtab;
3735 sal->line = start_sal.line;
3736 sal->end = start_sal.end;
3737
3738 /* Check if we are now inside an inlined function. If we can,
3739 use the call site of the function instead. */
3740 b = block_for_pc_sect (sal->pc, sal->section);
3741 function_block = NULL;
3742 while (b != NULL)
3743 {
3744 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3745 function_block = b;
3746 else if (BLOCK_FUNCTION (b) != NULL)
3747 break;
3748 b = BLOCK_SUPERBLOCK (b);
3749 }
3750 if (function_block != NULL
3751 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3752 {
3753 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3754 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3755 }
3756 }
3757
3758 /* Given PC at the function's start address, attempt to find the
3759 prologue end using SAL information. Return zero if the skip fails.
3760
3761 A non-optimized prologue traditionally has one SAL for the function
3762 and a second for the function body. A single line function has
3763 them both pointing at the same line.
3764
3765 An optimized prologue is similar but the prologue may contain
3766 instructions (SALs) from the instruction body. Need to skip those
3767 while not getting into the function body.
3768
3769 The functions end point and an increasing SAL line are used as
3770 indicators of the prologue's endpoint.
3771
3772 This code is based on the function refine_prologue_limit
3773 (found in ia64). */
3774
3775 CORE_ADDR
3776 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3777 {
3778 struct symtab_and_line prologue_sal;
3779 CORE_ADDR start_pc;
3780 CORE_ADDR end_pc;
3781 const struct block *bl;
3782
3783 /* Get an initial range for the function. */
3784 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3785 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3786
3787 prologue_sal = find_pc_line (start_pc, 0);
3788 if (prologue_sal.line != 0)
3789 {
3790 /* For languages other than assembly, treat two consecutive line
3791 entries at the same address as a zero-instruction prologue.
3792 The GNU assembler emits separate line notes for each instruction
3793 in a multi-instruction macro, but compilers generally will not
3794 do this. */
3795 if (prologue_sal.symtab->language != language_asm)
3796 {
3797 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3798 int idx = 0;
3799
3800 /* Skip any earlier lines, and any end-of-sequence marker
3801 from a previous function. */
3802 while (linetable->item[idx].pc != prologue_sal.pc
3803 || linetable->item[idx].line == 0)
3804 idx++;
3805
3806 if (idx+1 < linetable->nitems
3807 && linetable->item[idx+1].line != 0
3808 && linetable->item[idx+1].pc == start_pc)
3809 return start_pc;
3810 }
3811
3812 /* If there is only one sal that covers the entire function,
3813 then it is probably a single line function, like
3814 "foo(){}". */
3815 if (prologue_sal.end >= end_pc)
3816 return 0;
3817
3818 while (prologue_sal.end < end_pc)
3819 {
3820 struct symtab_and_line sal;
3821
3822 sal = find_pc_line (prologue_sal.end, 0);
3823 if (sal.line == 0)
3824 break;
3825 /* Assume that a consecutive SAL for the same (or larger)
3826 line mark the prologue -> body transition. */
3827 if (sal.line >= prologue_sal.line)
3828 break;
3829 /* Likewise if we are in a different symtab altogether
3830 (e.g. within a file included via #include).  */
3831 if (sal.symtab != prologue_sal.symtab)
3832 break;
3833
3834 /* The line number is smaller. Check that it's from the
3835 same function, not something inlined. If it's inlined,
3836 then there is no point comparing the line numbers. */
3837 bl = block_for_pc (prologue_sal.end);
3838 while (bl)
3839 {
3840 if (block_inlined_p (bl))
3841 break;
3842 if (BLOCK_FUNCTION (bl))
3843 {
3844 bl = NULL;
3845 break;
3846 }
3847 bl = BLOCK_SUPERBLOCK (bl);
3848 }
3849 if (bl != NULL)
3850 break;
3851
3852 /* The case in which compiler's optimizer/scheduler has
3853 moved instructions into the prologue. We look ahead in
3854 the function looking for address ranges whose
3855 corresponding line number is less the first one that we
3856 found for the function. This is more conservative then
3857 refine_prologue_limit which scans a large number of SALs
3858 looking for any in the prologue. */
3859 prologue_sal = sal;
3860 }
3861 }
3862
3863 if (prologue_sal.end < end_pc)
3864 /* Return the end of this line, or zero if we could not find a
3865 line. */
3866 return prologue_sal.end;
3867 else
3868 /* Don't return END_PC, which is past the end of the function. */
3869 return prologue_sal.pc;
3870 }
3871
3872 /* See symtab.h. */
3873
3874 symbol *
3875 find_function_alias_target (bound_minimal_symbol msymbol)
3876 {
3877 if (!msymbol_is_text (msymbol.minsym))
3878 return NULL;
3879
3880 CORE_ADDR addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
3881 symbol *sym = find_pc_function (addr);
3882 if (sym != NULL
3883 && SYMBOL_CLASS (sym) == LOC_BLOCK
3884 && BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) == addr)
3885 return sym;
3886
3887 return NULL;
3888 }
3889
3890 \f
3891 /* If P is of the form "operator[ \t]+..." where `...' is
3892 some legitimate operator text, return a pointer to the
3893 beginning of the substring of the operator text.
3894 Otherwise, return "". */
3895
3896 static const char *
3897 operator_chars (const char *p, const char **end)
3898 {
3899 *end = "";
3900 if (!startswith (p, CP_OPERATOR_STR))
3901 return *end;
3902 p += CP_OPERATOR_LEN;
3903
3904 /* Don't get faked out by `operator' being part of a longer
3905 identifier. */
3906 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3907 return *end;
3908
3909 /* Allow some whitespace between `operator' and the operator symbol. */
3910 while (*p == ' ' || *p == '\t')
3911 p++;
3912
3913 /* Recognize 'operator TYPENAME'. */
3914
3915 if (isalpha (*p) || *p == '_' || *p == '$')
3916 {
3917 const char *q = p + 1;
3918
3919 while (isalnum (*q) || *q == '_' || *q == '$')
3920 q++;
3921 *end = q;
3922 return p;
3923 }
3924
3925 while (*p)
3926 switch (*p)
3927 {
3928 case '\\': /* regexp quoting */
3929 if (p[1] == '*')
3930 {
3931 if (p[2] == '=') /* 'operator\*=' */
3932 *end = p + 3;
3933 else /* 'operator\*' */
3934 *end = p + 2;
3935 return p;
3936 }
3937 else if (p[1] == '[')
3938 {
3939 if (p[2] == ']')
3940 error (_("mismatched quoting on brackets, "
3941 "try 'operator\\[\\]'"));
3942 else if (p[2] == '\\' && p[3] == ']')
3943 {
3944 *end = p + 4; /* 'operator\[\]' */
3945 return p;
3946 }
3947 else
3948 error (_("nothing is allowed between '[' and ']'"));
3949 }
3950 else
3951 {
3952 /* Gratuitous qoute: skip it and move on. */
3953 p++;
3954 continue;
3955 }
3956 break;
3957 case '!':
3958 case '=':
3959 case '*':
3960 case '/':
3961 case '%':
3962 case '^':
3963 if (p[1] == '=')
3964 *end = p + 2;
3965 else
3966 *end = p + 1;
3967 return p;
3968 case '<':
3969 case '>':
3970 case '+':
3971 case '-':
3972 case '&':
3973 case '|':
3974 if (p[0] == '-' && p[1] == '>')
3975 {
3976 /* Struct pointer member operator 'operator->'. */
3977 if (p[2] == '*')
3978 {
3979 *end = p + 3; /* 'operator->*' */
3980 return p;
3981 }
3982 else if (p[2] == '\\')
3983 {
3984 *end = p + 4; /* Hopefully 'operator->\*' */
3985 return p;
3986 }
3987 else
3988 {
3989 *end = p + 2; /* 'operator->' */
3990 return p;
3991 }
3992 }
3993 if (p[1] == '=' || p[1] == p[0])
3994 *end = p + 2;
3995 else
3996 *end = p + 1;
3997 return p;
3998 case '~':
3999 case ',':
4000 *end = p + 1;
4001 return p;
4002 case '(':
4003 if (p[1] != ')')
4004 error (_("`operator ()' must be specified "
4005 "without whitespace in `()'"));
4006 *end = p + 2;
4007 return p;
4008 case '?':
4009 if (p[1] != ':')
4010 error (_("`operator ?:' must be specified "
4011 "without whitespace in `?:'"));
4012 *end = p + 2;
4013 return p;
4014 case '[':
4015 if (p[1] != ']')
4016 error (_("`operator []' must be specified "
4017 "without whitespace in `[]'"));
4018 *end = p + 2;
4019 return p;
4020 default:
4021 error (_("`operator %s' not supported"), p);
4022 break;
4023 }
4024
4025 *end = "";
4026 return *end;
4027 }
4028 \f
4029
4030 /* Data structure to maintain printing state for output_source_filename. */
4031
4032 struct output_source_filename_data
4033 {
4034 /* Cache of what we've seen so far. */
4035 struct filename_seen_cache *filename_seen_cache;
4036
4037 /* Flag of whether we're printing the first one. */
4038 int first;
4039 };
4040
4041 /* Slave routine for sources_info. Force line breaks at ,'s.
4042 NAME is the name to print.
4043 DATA contains the state for printing and watching for duplicates. */
4044
4045 static void
4046 output_source_filename (const char *name,
4047 struct output_source_filename_data *data)
4048 {
4049 /* Since a single source file can result in several partial symbol
4050 tables, we need to avoid printing it more than once. Note: if
4051 some of the psymtabs are read in and some are not, it gets
4052 printed both under "Source files for which symbols have been
4053 read" and "Source files for which symbols will be read in on
4054 demand". I consider this a reasonable way to deal with the
4055 situation. I'm not sure whether this can also happen for
4056 symtabs; it doesn't hurt to check. */
4057
4058 /* Was NAME already seen? */
4059 if (data->filename_seen_cache->seen (name))
4060 {
4061 /* Yes; don't print it again. */
4062 return;
4063 }
4064
4065 /* No; print it and reset *FIRST. */
4066 if (! data->first)
4067 printf_filtered (", ");
4068 data->first = 0;
4069
4070 wrap_here ("");
4071 fputs_filtered (name, gdb_stdout);
4072 }
4073
4074 /* A callback for map_partial_symbol_filenames. */
4075
4076 static void
4077 output_partial_symbol_filename (const char *filename, const char *fullname,
4078 void *data)
4079 {
4080 output_source_filename (fullname ? fullname : filename,
4081 (struct output_source_filename_data *) data);
4082 }
4083
4084 static void
4085 info_sources_command (const char *ignore, int from_tty)
4086 {
4087 struct compunit_symtab *cu;
4088 struct symtab *s;
4089 struct objfile *objfile;
4090 struct output_source_filename_data data;
4091
4092 if (!have_full_symbols () && !have_partial_symbols ())
4093 {
4094 error (_("No symbol table is loaded. Use the \"file\" command."));
4095 }
4096
4097 filename_seen_cache filenames_seen;
4098
4099 data.filename_seen_cache = &filenames_seen;
4100
4101 printf_filtered ("Source files for which symbols have been read in:\n\n");
4102
4103 data.first = 1;
4104 ALL_FILETABS (objfile, cu, s)
4105 {
4106 const char *fullname = symtab_to_fullname (s);
4107
4108 output_source_filename (fullname, &data);
4109 }
4110 printf_filtered ("\n\n");
4111
4112 printf_filtered ("Source files for which symbols "
4113 "will be read in on demand:\n\n");
4114
4115 filenames_seen.clear ();
4116 data.first = 1;
4117 map_symbol_filenames (output_partial_symbol_filename, &data,
4118 1 /*need_fullname*/);
4119 printf_filtered ("\n");
4120 }
4121
4122 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4123 non-zero compare only lbasename of FILES. */
4124
4125 static int
4126 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4127 {
4128 int i;
4129
4130 if (file != NULL && nfiles != 0)
4131 {
4132 for (i = 0; i < nfiles; i++)
4133 {
4134 if (compare_filenames_for_search (file, (basenames
4135 ? lbasename (files[i])
4136 : files[i])))
4137 return 1;
4138 }
4139 }
4140 else if (nfiles == 0)
4141 return 1;
4142 return 0;
4143 }
4144
4145 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4146 sort symbols, not minimal symbols. */
4147
4148 int
4149 symbol_search::compare_search_syms (const symbol_search &sym_a,
4150 const symbol_search &sym_b)
4151 {
4152 int c;
4153
4154 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4155 symbol_symtab (sym_b.symbol)->filename);
4156 if (c != 0)
4157 return c;
4158
4159 if (sym_a.block != sym_b.block)
4160 return sym_a.block - sym_b.block;
4161
4162 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4163 SYMBOL_PRINT_NAME (sym_b.symbol));
4164 }
4165
4166 /* Sort the symbols in RESULT and remove duplicates. */
4167
4168 static void
4169 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4170 {
4171 std::sort (result->begin (), result->end ());
4172 result->erase (std::unique (result->begin (), result->end ()),
4173 result->end ());
4174 }
4175
4176 /* Search the symbol table for matches to the regular expression REGEXP,
4177 returning the results.
4178
4179 Only symbols of KIND are searched:
4180 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4181 and constants (enums)
4182 FUNCTIONS_DOMAIN - search all functions
4183 TYPES_DOMAIN - search all type names
4184 ALL_DOMAIN - an internal error for this function
4185
4186 Within each file the results are sorted locally; each symtab's global and
4187 static blocks are separately alphabetized.
4188 Duplicate entries are removed. */
4189
4190 std::vector<symbol_search>
4191 search_symbols (const char *regexp, enum search_domain kind,
4192 int nfiles, const char *files[])
4193 {
4194 struct compunit_symtab *cust;
4195 const struct blockvector *bv;
4196 struct block *b;
4197 int i = 0;
4198 struct block_iterator iter;
4199 struct symbol *sym;
4200 struct objfile *objfile;
4201 struct minimal_symbol *msymbol;
4202 int found_misc = 0;
4203 static const enum minimal_symbol_type types[]
4204 = {mst_data, mst_text, mst_abs};
4205 static const enum minimal_symbol_type types2[]
4206 = {mst_bss, mst_file_text, mst_abs};
4207 static const enum minimal_symbol_type types3[]
4208 = {mst_file_data, mst_solib_trampoline, mst_abs};
4209 static const enum minimal_symbol_type types4[]
4210 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4211 enum minimal_symbol_type ourtype;
4212 enum minimal_symbol_type ourtype2;
4213 enum minimal_symbol_type ourtype3;
4214 enum minimal_symbol_type ourtype4;
4215 std::vector<symbol_search> result;
4216 gdb::optional<compiled_regex> preg;
4217
4218 gdb_assert (kind <= TYPES_DOMAIN);
4219
4220 ourtype = types[kind];
4221 ourtype2 = types2[kind];
4222 ourtype3 = types3[kind];
4223 ourtype4 = types4[kind];
4224
4225 if (regexp != NULL)
4226 {
4227 /* Make sure spacing is right for C++ operators.
4228 This is just a courtesy to make the matching less sensitive
4229 to how many spaces the user leaves between 'operator'
4230 and <TYPENAME> or <OPERATOR>. */
4231 const char *opend;
4232 const char *opname = operator_chars (regexp, &opend);
4233 int errcode;
4234
4235 if (*opname)
4236 {
4237 int fix = -1; /* -1 means ok; otherwise number of
4238 spaces needed. */
4239
4240 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4241 {
4242 /* There should 1 space between 'operator' and 'TYPENAME'. */
4243 if (opname[-1] != ' ' || opname[-2] == ' ')
4244 fix = 1;
4245 }
4246 else
4247 {
4248 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4249 if (opname[-1] == ' ')
4250 fix = 0;
4251 }
4252 /* If wrong number of spaces, fix it. */
4253 if (fix >= 0)
4254 {
4255 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4256
4257 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4258 regexp = tmp;
4259 }
4260 }
4261
4262 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4263 ? REG_ICASE : 0);
4264 preg.emplace (regexp, cflags, _("Invalid regexp"));
4265 }
4266
4267 /* Search through the partial symtabs *first* for all symbols
4268 matching the regexp. That way we don't have to reproduce all of
4269 the machinery below. */
4270 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4271 {
4272 return file_matches (filename, files, nfiles,
4273 basenames);
4274 },
4275 lookup_name_info::match_any (),
4276 [&] (const char *symname)
4277 {
4278 return (!preg || preg->exec (symname,
4279 0, NULL, 0) == 0);
4280 },
4281 NULL,
4282 kind);
4283
4284 /* Here, we search through the minimal symbol tables for functions
4285 and variables that match, and force their symbols to be read.
4286 This is in particular necessary for demangled variable names,
4287 which are no longer put into the partial symbol tables.
4288 The symbol will then be found during the scan of symtabs below.
4289
4290 For functions, find_pc_symtab should succeed if we have debug info
4291 for the function, for variables we have to call
4292 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4293 has debug info.
4294 If the lookup fails, set found_misc so that we will rescan to print
4295 any matching symbols without debug info.
4296 We only search the objfile the msymbol came from, we no longer search
4297 all objfiles. In large programs (1000s of shared libs) searching all
4298 objfiles is not worth the pain. */
4299
4300 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4301 {
4302 ALL_MSYMBOLS (objfile, msymbol)
4303 {
4304 QUIT;
4305
4306 if (msymbol->created_by_gdb)
4307 continue;
4308
4309 if (MSYMBOL_TYPE (msymbol) == ourtype
4310 || MSYMBOL_TYPE (msymbol) == ourtype2
4311 || MSYMBOL_TYPE (msymbol) == ourtype3
4312 || MSYMBOL_TYPE (msymbol) == ourtype4)
4313 {
4314 if (!preg
4315 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4316 NULL, 0) == 0)
4317 {
4318 /* Note: An important side-effect of these lookup functions
4319 is to expand the symbol table if msymbol is found, for the
4320 benefit of the next loop on ALL_COMPUNITS. */
4321 if (kind == FUNCTIONS_DOMAIN
4322 ? (find_pc_compunit_symtab
4323 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4324 : (lookup_symbol_in_objfile_from_linkage_name
4325 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4326 .symbol == NULL))
4327 found_misc = 1;
4328 }
4329 }
4330 }
4331 }
4332
4333 ALL_COMPUNITS (objfile, cust)
4334 {
4335 bv = COMPUNIT_BLOCKVECTOR (cust);
4336 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4337 {
4338 b = BLOCKVECTOR_BLOCK (bv, i);
4339 ALL_BLOCK_SYMBOLS (b, iter, sym)
4340 {
4341 struct symtab *real_symtab = symbol_symtab (sym);
4342
4343 QUIT;
4344
4345 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4346 a substring of symtab_to_fullname as it may contain "./" etc. */
4347 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4348 || ((basenames_may_differ
4349 || file_matches (lbasename (real_symtab->filename),
4350 files, nfiles, 1))
4351 && file_matches (symtab_to_fullname (real_symtab),
4352 files, nfiles, 0)))
4353 && ((!preg
4354 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4355 NULL, 0) == 0)
4356 && ((kind == VARIABLES_DOMAIN
4357 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4358 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4359 && SYMBOL_CLASS (sym) != LOC_BLOCK
4360 /* LOC_CONST can be used for more than just enums,
4361 e.g., c++ static const members.
4362 We only want to skip enums here. */
4363 && !(SYMBOL_CLASS (sym) == LOC_CONST
4364 && (TYPE_CODE (SYMBOL_TYPE (sym))
4365 == TYPE_CODE_ENUM)))
4366 || (kind == FUNCTIONS_DOMAIN
4367 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4368 || (kind == TYPES_DOMAIN
4369 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4370 {
4371 /* match */
4372 result.emplace_back (i, sym);
4373 }
4374 }
4375 }
4376 }
4377
4378 if (!result.empty ())
4379 sort_search_symbols_remove_dups (&result);
4380
4381 /* If there are no eyes, avoid all contact. I mean, if there are
4382 no debug symbols, then add matching minsyms. */
4383
4384 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4385 {
4386 ALL_MSYMBOLS (objfile, msymbol)
4387 {
4388 QUIT;
4389
4390 if (msymbol->created_by_gdb)
4391 continue;
4392
4393 if (MSYMBOL_TYPE (msymbol) == ourtype
4394 || MSYMBOL_TYPE (msymbol) == ourtype2
4395 || MSYMBOL_TYPE (msymbol) == ourtype3
4396 || MSYMBOL_TYPE (msymbol) == ourtype4)
4397 {
4398 if (!preg || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4399 NULL, 0) == 0)
4400 {
4401 /* For functions we can do a quick check of whether the
4402 symbol might be found via find_pc_symtab. */
4403 if (kind != FUNCTIONS_DOMAIN
4404 || (find_pc_compunit_symtab
4405 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4406 {
4407 if (lookup_symbol_in_objfile_from_linkage_name
4408 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4409 .symbol == NULL)
4410 {
4411 /* match */
4412 result.emplace_back (i, msymbol, objfile);
4413 }
4414 }
4415 }
4416 }
4417 }
4418 }
4419
4420 return result;
4421 }
4422
4423 /* Helper function for symtab_symbol_info, this function uses
4424 the data returned from search_symbols() to print information
4425 regarding the match to gdb_stdout. */
4426
4427 static void
4428 print_symbol_info (enum search_domain kind,
4429 struct symbol *sym,
4430 int block, const char *last)
4431 {
4432 struct symtab *s = symbol_symtab (sym);
4433 const char *s_filename = symtab_to_filename_for_display (s);
4434
4435 if (last == NULL || filename_cmp (last, s_filename) != 0)
4436 {
4437 fputs_filtered ("\nFile ", gdb_stdout);
4438 fputs_filtered (s_filename, gdb_stdout);
4439 fputs_filtered (":\n", gdb_stdout);
4440 }
4441
4442 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4443 printf_filtered ("static ");
4444
4445 /* Typedef that is not a C++ class. */
4446 if (kind == TYPES_DOMAIN
4447 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4448 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4449 /* variable, func, or typedef-that-is-c++-class. */
4450 else if (kind < TYPES_DOMAIN
4451 || (kind == TYPES_DOMAIN
4452 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4453 {
4454 type_print (SYMBOL_TYPE (sym),
4455 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4456 ? "" : SYMBOL_PRINT_NAME (sym)),
4457 gdb_stdout, 0);
4458
4459 printf_filtered (";\n");
4460 }
4461 }
4462
4463 /* This help function for symtab_symbol_info() prints information
4464 for non-debugging symbols to gdb_stdout. */
4465
4466 static void
4467 print_msymbol_info (struct bound_minimal_symbol msymbol)
4468 {
4469 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4470 char *tmp;
4471
4472 if (gdbarch_addr_bit (gdbarch) <= 32)
4473 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4474 & (CORE_ADDR) 0xffffffff,
4475 8);
4476 else
4477 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4478 16);
4479 printf_filtered ("%s %s\n",
4480 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4481 }
4482
4483 /* This is the guts of the commands "info functions", "info types", and
4484 "info variables". It calls search_symbols to find all matches and then
4485 print_[m]symbol_info to print out some useful information about the
4486 matches. */
4487
4488 static void
4489 symtab_symbol_info (const char *regexp, enum search_domain kind, int from_tty)
4490 {
4491 static const char * const classnames[] =
4492 {"variable", "function", "type"};
4493 const char *last_filename = NULL;
4494 int first = 1;
4495
4496 gdb_assert (kind <= TYPES_DOMAIN);
4497
4498 /* Must make sure that if we're interrupted, symbols gets freed. */
4499 std::vector<symbol_search> symbols = search_symbols (regexp, kind, 0, NULL);
4500
4501 if (regexp != NULL)
4502 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4503 classnames[kind], regexp);
4504 else
4505 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4506
4507 for (const symbol_search &p : symbols)
4508 {
4509 QUIT;
4510
4511 if (p.msymbol.minsym != NULL)
4512 {
4513 if (first)
4514 {
4515 printf_filtered (_("\nNon-debugging symbols:\n"));
4516 first = 0;
4517 }
4518 print_msymbol_info (p.msymbol);
4519 }
4520 else
4521 {
4522 print_symbol_info (kind,
4523 p.symbol,
4524 p.block,
4525 last_filename);
4526 last_filename
4527 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4528 }
4529 }
4530 }
4531
4532 static void
4533 info_variables_command (const char *regexp, int from_tty)
4534 {
4535 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4536 }
4537
4538 static void
4539 info_functions_command (const char *regexp, int from_tty)
4540 {
4541 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4542 }
4543
4544
4545 static void
4546 info_types_command (const char *regexp, int from_tty)
4547 {
4548 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4549 }
4550
4551 /* Breakpoint all functions matching regular expression. */
4552
4553 void
4554 rbreak_command_wrapper (char *regexp, int from_tty)
4555 {
4556 rbreak_command (regexp, from_tty);
4557 }
4558
4559 static void
4560 rbreak_command (const char *regexp, int from_tty)
4561 {
4562 std::string string;
4563 const char **files = NULL;
4564 const char *file_name;
4565 int nfiles = 0;
4566
4567 if (regexp)
4568 {
4569 const char *colon = strchr (regexp, ':');
4570
4571 if (colon && *(colon + 1) != ':')
4572 {
4573 int colon_index;
4574 char *local_name;
4575
4576 colon_index = colon - regexp;
4577 local_name = (char *) alloca (colon_index + 1);
4578 memcpy (local_name, regexp, colon_index);
4579 local_name[colon_index--] = 0;
4580 while (isspace (local_name[colon_index]))
4581 local_name[colon_index--] = 0;
4582 file_name = local_name;
4583 files = &file_name;
4584 nfiles = 1;
4585 regexp = skip_spaces (colon + 1);
4586 }
4587 }
4588
4589 std::vector<symbol_search> symbols = search_symbols (regexp,
4590 FUNCTIONS_DOMAIN,
4591 nfiles, files);
4592
4593 scoped_rbreak_breakpoints finalize;
4594 for (const symbol_search &p : symbols)
4595 {
4596 if (p.msymbol.minsym == NULL)
4597 {
4598 struct symtab *symtab = symbol_symtab (p.symbol);
4599 const char *fullname = symtab_to_fullname (symtab);
4600
4601 string = string_printf ("%s:'%s'", fullname,
4602 SYMBOL_LINKAGE_NAME (p.symbol));
4603 break_command (&string[0], from_tty);
4604 print_symbol_info (FUNCTIONS_DOMAIN,
4605 p.symbol,
4606 p.block,
4607 symtab_to_filename_for_display (symtab));
4608 }
4609 else
4610 {
4611 string = string_printf ("'%s'",
4612 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4613
4614 break_command (&string[0], from_tty);
4615 printf_filtered ("<function, no debug info> %s;\n",
4616 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4617 }
4618 }
4619 }
4620 \f
4621
4622 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4623
4624 Either sym_text[sym_text_len] != '(' and then we search for any
4625 symbol starting with SYM_TEXT text.
4626
4627 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4628 be terminated at that point. Partial symbol tables do not have parameters
4629 information. */
4630
4631 static int
4632 compare_symbol_name (const char *name,
4633 language symbol_language,
4634 const lookup_name_info &lookup_name,
4635 const char *sym_text, int sym_text_len,
4636 completion_match_result &match_res)
4637 {
4638 const language_defn *lang;
4639
4640 /* If we're completing for an expression and the symbol doesn't have
4641 an explicit language set, fallback to the current language. Ada
4642 minimal symbols won't have their language set to Ada, for
4643 example, and if we compared using the default/C-like matcher,
4644 then when completing e.g., symbols in a package named "pck", we'd
4645 match internal Ada symbols like "pckS", which are invalid in an
4646 Ada expression, unless you wrap them in '<' '>' to request a
4647 verbatim match. */
4648 if (symbol_language == language_auto
4649 && lookup_name.match_type () == symbol_name_match_type::EXPRESSION)
4650 lang = current_language;
4651 else
4652 lang = language_def (symbol_language);
4653
4654 symbol_name_matcher_ftype *name_match
4655 = language_get_symbol_name_matcher (lang, lookup_name);
4656
4657 /* Clip symbols that cannot match. */
4658 if (!name_match (name, lookup_name, &match_res.match))
4659 return 0;
4660
4661 if (sym_text[sym_text_len] == '(')
4662 {
4663 /* User searches for `name(someth...'. Require NAME to be terminated.
4664 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4665 present but accept even parameters presence. In this case this
4666 function is in fact strcmp_iw but whitespace skipping is not supported
4667 for tab completion. */
4668
4669 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4670 return 0;
4671 }
4672
4673 return 1;
4674 }
4675
4676 /* See symtab.h. */
4677
4678 void
4679 completion_list_add_name (completion_tracker &tracker,
4680 language symbol_language,
4681 const char *symname,
4682 const lookup_name_info &lookup_name,
4683 const char *sym_text, int sym_text_len,
4684 const char *text, const char *word)
4685 {
4686 completion_match_result &match_res
4687 = tracker.reset_completion_match_result ();
4688
4689 /* Clip symbols that cannot match. */
4690 if (!compare_symbol_name (symname, symbol_language,
4691 lookup_name,
4692 sym_text, sym_text_len,
4693 match_res))
4694 return;
4695
4696 /* Refresh SYMNAME from the match string. It's potentially
4697 different depending on language. (E.g., on Ada, the match may be
4698 the encoded symbol name wrapped in "<>"). */
4699 symname = match_res.match.match ();
4700 gdb_assert (symname != NULL);
4701
4702 /* We have a match for a completion, so add SYMNAME to the current list
4703 of matches. Note that the name is moved to freshly malloc'd space. */
4704
4705 {
4706 char *newobj;
4707
4708 if (word == sym_text)
4709 {
4710 newobj = (char *) xmalloc (strlen (symname) + 5);
4711 strcpy (newobj, symname);
4712 }
4713 else if (word > sym_text)
4714 {
4715 /* Return some portion of symname. */
4716 newobj = (char *) xmalloc (strlen (symname) + 5);
4717 strcpy (newobj, symname + (word - sym_text));
4718 }
4719 else
4720 {
4721 /* Return some of SYM_TEXT plus symname. */
4722 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
4723 strncpy (newobj, word, sym_text - word);
4724 newobj[sym_text - word] = '\0';
4725 strcat (newobj, symname);
4726 }
4727
4728 gdb::unique_xmalloc_ptr<char> completion (newobj);
4729
4730 tracker.add_completion (std::move (completion));
4731 }
4732 }
4733
4734 /* completion_list_add_name wrapper for struct symbol. */
4735
4736 static void
4737 completion_list_add_symbol (completion_tracker &tracker,
4738 symbol *sym,
4739 const lookup_name_info &lookup_name,
4740 const char *sym_text, int sym_text_len,
4741 const char *text, const char *word)
4742 {
4743 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4744 SYMBOL_NATURAL_NAME (sym),
4745 lookup_name, sym_text, sym_text_len, text, word);
4746 }
4747
4748 /* completion_list_add_name wrapper for struct minimal_symbol. */
4749
4750 static void
4751 completion_list_add_msymbol (completion_tracker &tracker,
4752 minimal_symbol *sym,
4753 const lookup_name_info &lookup_name,
4754 const char *sym_text, int sym_text_len,
4755 const char *text, const char *word)
4756 {
4757 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4758 MSYMBOL_NATURAL_NAME (sym),
4759 lookup_name, sym_text, sym_text_len, text, word);
4760 }
4761
4762
4763 /* ObjC: In case we are completing on a selector, look as the msymbol
4764 again and feed all the selectors into the mill. */
4765
4766 static void
4767 completion_list_objc_symbol (completion_tracker &tracker,
4768 struct minimal_symbol *msymbol,
4769 const lookup_name_info &lookup_name,
4770 const char *sym_text, int sym_text_len,
4771 const char *text, const char *word)
4772 {
4773 static char *tmp = NULL;
4774 static unsigned int tmplen = 0;
4775
4776 const char *method, *category, *selector;
4777 char *tmp2 = NULL;
4778
4779 method = MSYMBOL_NATURAL_NAME (msymbol);
4780
4781 /* Is it a method? */
4782 if ((method[0] != '-') && (method[0] != '+'))
4783 return;
4784
4785 if (sym_text[0] == '[')
4786 /* Complete on shortened method method. */
4787 completion_list_add_name (tracker, language_objc,
4788 method + 1,
4789 lookup_name,
4790 sym_text, sym_text_len, text, word);
4791
4792 while ((strlen (method) + 1) >= tmplen)
4793 {
4794 if (tmplen == 0)
4795 tmplen = 1024;
4796 else
4797 tmplen *= 2;
4798 tmp = (char *) xrealloc (tmp, tmplen);
4799 }
4800 selector = strchr (method, ' ');
4801 if (selector != NULL)
4802 selector++;
4803
4804 category = strchr (method, '(');
4805
4806 if ((category != NULL) && (selector != NULL))
4807 {
4808 memcpy (tmp, method, (category - method));
4809 tmp[category - method] = ' ';
4810 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4811 completion_list_add_name (tracker, language_objc, tmp,
4812 lookup_name,
4813 sym_text, sym_text_len, text, word);
4814 if (sym_text[0] == '[')
4815 completion_list_add_name (tracker, language_objc, tmp + 1,
4816 lookup_name,
4817 sym_text, sym_text_len, text, word);
4818 }
4819
4820 if (selector != NULL)
4821 {
4822 /* Complete on selector only. */
4823 strcpy (tmp, selector);
4824 tmp2 = strchr (tmp, ']');
4825 if (tmp2 != NULL)
4826 *tmp2 = '\0';
4827
4828 completion_list_add_name (tracker, language_objc, tmp,
4829 lookup_name,
4830 sym_text, sym_text_len, text, word);
4831 }
4832 }
4833
4834 /* Break the non-quoted text based on the characters which are in
4835 symbols. FIXME: This should probably be language-specific. */
4836
4837 static const char *
4838 language_search_unquoted_string (const char *text, const char *p)
4839 {
4840 for (; p > text; --p)
4841 {
4842 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4843 continue;
4844 else
4845 {
4846 if ((current_language->la_language == language_objc))
4847 {
4848 if (p[-1] == ':') /* Might be part of a method name. */
4849 continue;
4850 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4851 p -= 2; /* Beginning of a method name. */
4852 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4853 { /* Might be part of a method name. */
4854 const char *t = p;
4855
4856 /* Seeing a ' ' or a '(' is not conclusive evidence
4857 that we are in the middle of a method name. However,
4858 finding "-[" or "+[" should be pretty un-ambiguous.
4859 Unfortunately we have to find it now to decide. */
4860
4861 while (t > text)
4862 if (isalnum (t[-1]) || t[-1] == '_' ||
4863 t[-1] == ' ' || t[-1] == ':' ||
4864 t[-1] == '(' || t[-1] == ')')
4865 --t;
4866 else
4867 break;
4868
4869 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4870 p = t - 2; /* Method name detected. */
4871 /* Else we leave with p unchanged. */
4872 }
4873 }
4874 break;
4875 }
4876 }
4877 return p;
4878 }
4879
4880 static void
4881 completion_list_add_fields (completion_tracker &tracker,
4882 struct symbol *sym,
4883 const lookup_name_info &lookup_name,
4884 const char *sym_text, int sym_text_len,
4885 const char *text, const char *word)
4886 {
4887 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4888 {
4889 struct type *t = SYMBOL_TYPE (sym);
4890 enum type_code c = TYPE_CODE (t);
4891 int j;
4892
4893 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4894 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4895 if (TYPE_FIELD_NAME (t, j))
4896 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4897 TYPE_FIELD_NAME (t, j),
4898 lookup_name,
4899 sym_text, sym_text_len, text, word);
4900 }
4901 }
4902
4903 /* Add matching symbols from SYMTAB to the current completion list. */
4904
4905 static void
4906 add_symtab_completions (struct compunit_symtab *cust,
4907 completion_tracker &tracker,
4908 const lookup_name_info &lookup_name,
4909 const char *sym_text, int sym_text_len,
4910 const char *text, const char *word,
4911 enum type_code code)
4912 {
4913 struct symbol *sym;
4914 const struct block *b;
4915 struct block_iterator iter;
4916 int i;
4917
4918 if (cust == NULL)
4919 return;
4920
4921 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4922 {
4923 QUIT;
4924 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
4925 ALL_BLOCK_SYMBOLS (b, iter, sym)
4926 {
4927 if (code == TYPE_CODE_UNDEF
4928 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4929 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4930 completion_list_add_symbol (tracker, sym,
4931 lookup_name,
4932 sym_text, sym_text_len,
4933 text, word);
4934 }
4935 }
4936 }
4937
4938 void
4939 default_collect_symbol_completion_matches_break_on
4940 (completion_tracker &tracker, complete_symbol_mode mode,
4941 symbol_name_match_type name_match_type,
4942 const char *text, const char *word,
4943 const char *break_on, enum type_code code)
4944 {
4945 /* Problem: All of the symbols have to be copied because readline
4946 frees them. I'm not going to worry about this; hopefully there
4947 won't be that many. */
4948
4949 struct symbol *sym;
4950 struct compunit_symtab *cust;
4951 struct minimal_symbol *msymbol;
4952 struct objfile *objfile;
4953 const struct block *b;
4954 const struct block *surrounding_static_block, *surrounding_global_block;
4955 struct block_iterator iter;
4956 /* The symbol we are completing on. Points in same buffer as text. */
4957 const char *sym_text;
4958 /* Length of sym_text. */
4959 int sym_text_len;
4960
4961 /* Now look for the symbol we are supposed to complete on. */
4962 if (mode == complete_symbol_mode::LINESPEC)
4963 sym_text = text;
4964 else
4965 {
4966 const char *p;
4967 char quote_found;
4968 const char *quote_pos = NULL;
4969
4970 /* First see if this is a quoted string. */
4971 quote_found = '\0';
4972 for (p = text; *p != '\0'; ++p)
4973 {
4974 if (quote_found != '\0')
4975 {
4976 if (*p == quote_found)
4977 /* Found close quote. */
4978 quote_found = '\0';
4979 else if (*p == '\\' && p[1] == quote_found)
4980 /* A backslash followed by the quote character
4981 doesn't end the string. */
4982 ++p;
4983 }
4984 else if (*p == '\'' || *p == '"')
4985 {
4986 quote_found = *p;
4987 quote_pos = p;
4988 }
4989 }
4990 if (quote_found == '\'')
4991 /* A string within single quotes can be a symbol, so complete on it. */
4992 sym_text = quote_pos + 1;
4993 else if (quote_found == '"')
4994 /* A double-quoted string is never a symbol, nor does it make sense
4995 to complete it any other way. */
4996 {
4997 return;
4998 }
4999 else
5000 {
5001 /* It is not a quoted string. Break it based on the characters
5002 which are in symbols. */
5003 while (p > text)
5004 {
5005 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5006 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5007 --p;
5008 else
5009 break;
5010 }
5011 sym_text = p;
5012 }
5013 }
5014
5015 sym_text_len = strlen (sym_text);
5016
5017 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5018
5019 if (current_language->la_language == language_cplus
5020 || current_language->la_language == language_fortran)
5021 {
5022 /* These languages may have parameters entered by user but they are never
5023 present in the partial symbol tables. */
5024
5025 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5026
5027 if (cs)
5028 sym_text_len = cs - sym_text;
5029 }
5030 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5031
5032 lookup_name_info lookup_name (std::string (sym_text, sym_text_len),
5033 name_match_type, true);
5034
5035 /* At this point scan through the misc symbol vectors and add each
5036 symbol you find to the list. Eventually we want to ignore
5037 anything that isn't a text symbol (everything else will be
5038 handled by the psymtab code below). */
5039
5040 if (code == TYPE_CODE_UNDEF)
5041 {
5042 ALL_MSYMBOLS (objfile, msymbol)
5043 {
5044 QUIT;
5045
5046 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5047 sym_text, sym_text_len,
5048 text, word);
5049
5050 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5051 sym_text, sym_text_len, text,
5052 word);
5053 }
5054 }
5055
5056 /* Add completions for all currently loaded symbol tables. */
5057 ALL_COMPUNITS (objfile, cust)
5058 add_symtab_completions (cust, tracker, lookup_name,
5059 sym_text, sym_text_len, text, word, code);
5060
5061 /* Look through the partial symtabs for all symbols which begin by
5062 matching SYM_TEXT. Expand all CUs that you find to the list. */
5063 expand_symtabs_matching (NULL,
5064 lookup_name,
5065 NULL,
5066 [&] (compunit_symtab *symtab) /* expansion notify */
5067 {
5068 add_symtab_completions (symtab,
5069 tracker, lookup_name,
5070 sym_text, sym_text_len,
5071 text, word, code);
5072 },
5073 ALL_DOMAIN);
5074
5075 /* Search upwards from currently selected frame (so that we can
5076 complete on local vars). Also catch fields of types defined in
5077 this places which match our text string. Only complete on types
5078 visible from current context. */
5079
5080 b = get_selected_block (0);
5081 surrounding_static_block = block_static_block (b);
5082 surrounding_global_block = block_global_block (b);
5083 if (surrounding_static_block != NULL)
5084 while (b != surrounding_static_block)
5085 {
5086 QUIT;
5087
5088 ALL_BLOCK_SYMBOLS (b, iter, sym)
5089 {
5090 if (code == TYPE_CODE_UNDEF)
5091 {
5092 completion_list_add_symbol (tracker, sym, lookup_name,
5093 sym_text, sym_text_len, text,
5094 word);
5095 completion_list_add_fields (tracker, sym, lookup_name,
5096 sym_text, sym_text_len, text,
5097 word);
5098 }
5099 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5100 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5101 completion_list_add_symbol (tracker, sym, lookup_name,
5102 sym_text, sym_text_len, text,
5103 word);
5104 }
5105
5106 /* Stop when we encounter an enclosing function. Do not stop for
5107 non-inlined functions - the locals of the enclosing function
5108 are in scope for a nested function. */
5109 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5110 break;
5111 b = BLOCK_SUPERBLOCK (b);
5112 }
5113
5114 /* Add fields from the file's types; symbols will be added below. */
5115
5116 if (code == TYPE_CODE_UNDEF)
5117 {
5118 if (surrounding_static_block != NULL)
5119 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5120 completion_list_add_fields (tracker, sym, lookup_name,
5121 sym_text, sym_text_len, text, word);
5122
5123 if (surrounding_global_block != NULL)
5124 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5125 completion_list_add_fields (tracker, sym, lookup_name,
5126 sym_text, sym_text_len, text, word);
5127 }
5128
5129 /* Skip macros if we are completing a struct tag -- arguable but
5130 usually what is expected. */
5131 if (current_language->la_macro_expansion == macro_expansion_c
5132 && code == TYPE_CODE_UNDEF)
5133 {
5134 struct macro_scope *scope;
5135
5136 /* This adds a macro's name to the current completion list. */
5137 auto add_macro_name = [&] (const char *macro_name,
5138 const macro_definition *,
5139 macro_source_file *,
5140 int)
5141 {
5142 completion_list_add_name (tracker,
5143 language_c,
5144 macro_name,
5145 lookup_name,
5146 sym_text, sym_text_len,
5147 text, word);
5148 };
5149
5150 /* Add any macros visible in the default scope. Note that this
5151 may yield the occasional wrong result, because an expression
5152 might be evaluated in a scope other than the default. For
5153 example, if the user types "break file:line if <TAB>", the
5154 resulting expression will be evaluated at "file:line" -- but
5155 at there does not seem to be a way to detect this at
5156 completion time. */
5157 scope = default_macro_scope ();
5158 if (scope)
5159 {
5160 macro_for_each_in_scope (scope->file, scope->line,
5161 add_macro_name);
5162 xfree (scope);
5163 }
5164
5165 /* User-defined macros are always visible. */
5166 macro_for_each (macro_user_macros, add_macro_name);
5167 }
5168 }
5169
5170 void
5171 default_collect_symbol_completion_matches (completion_tracker &tracker,
5172 complete_symbol_mode mode,
5173 symbol_name_match_type name_match_type,
5174 const char *text, const char *word,
5175 enum type_code code)
5176 {
5177 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5178 name_match_type,
5179 text, word, "",
5180 code);
5181 }
5182
5183 /* Collect all symbols (regardless of class) which begin by matching
5184 TEXT. */
5185
5186 void
5187 collect_symbol_completion_matches (completion_tracker &tracker,
5188 complete_symbol_mode mode,
5189 symbol_name_match_type name_match_type,
5190 const char *text, const char *word)
5191 {
5192 current_language->la_collect_symbol_completion_matches (tracker, mode,
5193 name_match_type,
5194 text, word,
5195 TYPE_CODE_UNDEF);
5196 }
5197
5198 /* Like collect_symbol_completion_matches, but only collect
5199 STRUCT_DOMAIN symbols whose type code is CODE. */
5200
5201 void
5202 collect_symbol_completion_matches_type (completion_tracker &tracker,
5203 const char *text, const char *word,
5204 enum type_code code)
5205 {
5206 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5207 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5208
5209 gdb_assert (code == TYPE_CODE_UNION
5210 || code == TYPE_CODE_STRUCT
5211 || code == TYPE_CODE_ENUM);
5212 current_language->la_collect_symbol_completion_matches (tracker, mode,
5213 name_match_type,
5214 text, word, code);
5215 }
5216
5217 /* Like collect_symbol_completion_matches, but collects a list of
5218 symbols defined in all source files named SRCFILE. */
5219
5220 void
5221 collect_file_symbol_completion_matches (completion_tracker &tracker,
5222 complete_symbol_mode mode,
5223 symbol_name_match_type name_match_type,
5224 const char *text, const char *word,
5225 const char *srcfile)
5226 {
5227 /* The symbol we are completing on. Points in same buffer as text. */
5228 const char *sym_text;
5229 /* Length of sym_text. */
5230 int sym_text_len;
5231
5232 /* Now look for the symbol we are supposed to complete on.
5233 FIXME: This should be language-specific. */
5234 if (mode == complete_symbol_mode::LINESPEC)
5235 sym_text = text;
5236 else
5237 {
5238 const char *p;
5239 char quote_found;
5240 const char *quote_pos = NULL;
5241
5242 /* First see if this is a quoted string. */
5243 quote_found = '\0';
5244 for (p = text; *p != '\0'; ++p)
5245 {
5246 if (quote_found != '\0')
5247 {
5248 if (*p == quote_found)
5249 /* Found close quote. */
5250 quote_found = '\0';
5251 else if (*p == '\\' && p[1] == quote_found)
5252 /* A backslash followed by the quote character
5253 doesn't end the string. */
5254 ++p;
5255 }
5256 else if (*p == '\'' || *p == '"')
5257 {
5258 quote_found = *p;
5259 quote_pos = p;
5260 }
5261 }
5262 if (quote_found == '\'')
5263 /* A string within single quotes can be a symbol, so complete on it. */
5264 sym_text = quote_pos + 1;
5265 else if (quote_found == '"')
5266 /* A double-quoted string is never a symbol, nor does it make sense
5267 to complete it any other way. */
5268 {
5269 return;
5270 }
5271 else
5272 {
5273 /* Not a quoted string. */
5274 sym_text = language_search_unquoted_string (text, p);
5275 }
5276 }
5277
5278 sym_text_len = strlen (sym_text);
5279
5280 lookup_name_info lookup_name (std::string (sym_text, sym_text_len),
5281 name_match_type, true);
5282
5283 /* Go through symtabs for SRCFILE and check the externs and statics
5284 for symbols which match. */
5285 iterate_over_symtabs (srcfile, [&] (symtab *s)
5286 {
5287 add_symtab_completions (SYMTAB_COMPUNIT (s),
5288 tracker, lookup_name,
5289 sym_text, sym_text_len,
5290 text, word, TYPE_CODE_UNDEF);
5291 return false;
5292 });
5293 }
5294
5295 /* A helper function for make_source_files_completion_list. It adds
5296 another file name to a list of possible completions, growing the
5297 list as necessary. */
5298
5299 static void
5300 add_filename_to_list (const char *fname, const char *text, const char *word,
5301 completion_list *list)
5302 {
5303 char *newobj;
5304 size_t fnlen = strlen (fname);
5305
5306 if (word == text)
5307 {
5308 /* Return exactly fname. */
5309 newobj = (char *) xmalloc (fnlen + 5);
5310 strcpy (newobj, fname);
5311 }
5312 else if (word > text)
5313 {
5314 /* Return some portion of fname. */
5315 newobj = (char *) xmalloc (fnlen + 5);
5316 strcpy (newobj, fname + (word - text));
5317 }
5318 else
5319 {
5320 /* Return some of TEXT plus fname. */
5321 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5322 strncpy (newobj, word, text - word);
5323 newobj[text - word] = '\0';
5324 strcat (newobj, fname);
5325 }
5326 list->emplace_back (newobj);
5327 }
5328
5329 static int
5330 not_interesting_fname (const char *fname)
5331 {
5332 static const char *illegal_aliens[] = {
5333 "_globals_", /* inserted by coff_symtab_read */
5334 NULL
5335 };
5336 int i;
5337
5338 for (i = 0; illegal_aliens[i]; i++)
5339 {
5340 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5341 return 1;
5342 }
5343 return 0;
5344 }
5345
5346 /* An object of this type is passed as the user_data argument to
5347 map_partial_symbol_filenames. */
5348 struct add_partial_filename_data
5349 {
5350 struct filename_seen_cache *filename_seen_cache;
5351 const char *text;
5352 const char *word;
5353 int text_len;
5354 completion_list *list;
5355 };
5356
5357 /* A callback for map_partial_symbol_filenames. */
5358
5359 static void
5360 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5361 void *user_data)
5362 {
5363 struct add_partial_filename_data *data
5364 = (struct add_partial_filename_data *) user_data;
5365
5366 if (not_interesting_fname (filename))
5367 return;
5368 if (!data->filename_seen_cache->seen (filename)
5369 && filename_ncmp (filename, data->text, data->text_len) == 0)
5370 {
5371 /* This file matches for a completion; add it to the
5372 current list of matches. */
5373 add_filename_to_list (filename, data->text, data->word, data->list);
5374 }
5375 else
5376 {
5377 const char *base_name = lbasename (filename);
5378
5379 if (base_name != filename
5380 && !data->filename_seen_cache->seen (base_name)
5381 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5382 add_filename_to_list (base_name, data->text, data->word, data->list);
5383 }
5384 }
5385
5386 /* Return a list of all source files whose names begin with matching
5387 TEXT. The file names are looked up in the symbol tables of this
5388 program. */
5389
5390 completion_list
5391 make_source_files_completion_list (const char *text, const char *word)
5392 {
5393 struct compunit_symtab *cu;
5394 struct symtab *s;
5395 struct objfile *objfile;
5396 size_t text_len = strlen (text);
5397 completion_list list;
5398 const char *base_name;
5399 struct add_partial_filename_data datum;
5400
5401 if (!have_full_symbols () && !have_partial_symbols ())
5402 return list;
5403
5404 filename_seen_cache filenames_seen;
5405
5406 ALL_FILETABS (objfile, cu, s)
5407 {
5408 if (not_interesting_fname (s->filename))
5409 continue;
5410 if (!filenames_seen.seen (s->filename)
5411 && filename_ncmp (s->filename, text, text_len) == 0)
5412 {
5413 /* This file matches for a completion; add it to the current
5414 list of matches. */
5415 add_filename_to_list (s->filename, text, word, &list);
5416 }
5417 else
5418 {
5419 /* NOTE: We allow the user to type a base name when the
5420 debug info records leading directories, but not the other
5421 way around. This is what subroutines of breakpoint
5422 command do when they parse file names. */
5423 base_name = lbasename (s->filename);
5424 if (base_name != s->filename
5425 && !filenames_seen.seen (base_name)
5426 && filename_ncmp (base_name, text, text_len) == 0)
5427 add_filename_to_list (base_name, text, word, &list);
5428 }
5429 }
5430
5431 datum.filename_seen_cache = &filenames_seen;
5432 datum.text = text;
5433 datum.word = word;
5434 datum.text_len = text_len;
5435 datum.list = &list;
5436 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5437 0 /*need_fullname*/);
5438
5439 return list;
5440 }
5441 \f
5442 /* Track MAIN */
5443
5444 /* Return the "main_info" object for the current program space. If
5445 the object has not yet been created, create it and fill in some
5446 default values. */
5447
5448 static struct main_info *
5449 get_main_info (void)
5450 {
5451 struct main_info *info
5452 = (struct main_info *) program_space_data (current_program_space,
5453 main_progspace_key);
5454
5455 if (info == NULL)
5456 {
5457 /* It may seem strange to store the main name in the progspace
5458 and also in whatever objfile happens to see a main name in
5459 its debug info. The reason for this is mainly historical:
5460 gdb returned "main" as the name even if no function named
5461 "main" was defined the program; and this approach lets us
5462 keep compatibility. */
5463 info = XCNEW (struct main_info);
5464 info->language_of_main = language_unknown;
5465 set_program_space_data (current_program_space, main_progspace_key,
5466 info);
5467 }
5468
5469 return info;
5470 }
5471
5472 /* A cleanup to destroy a struct main_info when a progspace is
5473 destroyed. */
5474
5475 static void
5476 main_info_cleanup (struct program_space *pspace, void *data)
5477 {
5478 struct main_info *info = (struct main_info *) data;
5479
5480 if (info != NULL)
5481 xfree (info->name_of_main);
5482 xfree (info);
5483 }
5484
5485 static void
5486 set_main_name (const char *name, enum language lang)
5487 {
5488 struct main_info *info = get_main_info ();
5489
5490 if (info->name_of_main != NULL)
5491 {
5492 xfree (info->name_of_main);
5493 info->name_of_main = NULL;
5494 info->language_of_main = language_unknown;
5495 }
5496 if (name != NULL)
5497 {
5498 info->name_of_main = xstrdup (name);
5499 info->language_of_main = lang;
5500 }
5501 }
5502
5503 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5504 accordingly. */
5505
5506 static void
5507 find_main_name (void)
5508 {
5509 const char *new_main_name;
5510 struct objfile *objfile;
5511
5512 /* First check the objfiles to see whether a debuginfo reader has
5513 picked up the appropriate main name. Historically the main name
5514 was found in a more or less random way; this approach instead
5515 relies on the order of objfile creation -- which still isn't
5516 guaranteed to get the correct answer, but is just probably more
5517 accurate. */
5518 ALL_OBJFILES (objfile)
5519 {
5520 if (objfile->per_bfd->name_of_main != NULL)
5521 {
5522 set_main_name (objfile->per_bfd->name_of_main,
5523 objfile->per_bfd->language_of_main);
5524 return;
5525 }
5526 }
5527
5528 /* Try to see if the main procedure is in Ada. */
5529 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5530 be to add a new method in the language vector, and call this
5531 method for each language until one of them returns a non-empty
5532 name. This would allow us to remove this hard-coded call to
5533 an Ada function. It is not clear that this is a better approach
5534 at this point, because all methods need to be written in a way
5535 such that false positives never be returned. For instance, it is
5536 important that a method does not return a wrong name for the main
5537 procedure if the main procedure is actually written in a different
5538 language. It is easy to guaranty this with Ada, since we use a
5539 special symbol generated only when the main in Ada to find the name
5540 of the main procedure. It is difficult however to see how this can
5541 be guarantied for languages such as C, for instance. This suggests
5542 that order of call for these methods becomes important, which means
5543 a more complicated approach. */
5544 new_main_name = ada_main_name ();
5545 if (new_main_name != NULL)
5546 {
5547 set_main_name (new_main_name, language_ada);
5548 return;
5549 }
5550
5551 new_main_name = d_main_name ();
5552 if (new_main_name != NULL)
5553 {
5554 set_main_name (new_main_name, language_d);
5555 return;
5556 }
5557
5558 new_main_name = go_main_name ();
5559 if (new_main_name != NULL)
5560 {
5561 set_main_name (new_main_name, language_go);
5562 return;
5563 }
5564
5565 new_main_name = pascal_main_name ();
5566 if (new_main_name != NULL)
5567 {
5568 set_main_name (new_main_name, language_pascal);
5569 return;
5570 }
5571
5572 /* The languages above didn't identify the name of the main procedure.
5573 Fallback to "main". */
5574 set_main_name ("main", language_unknown);
5575 }
5576
5577 char *
5578 main_name (void)
5579 {
5580 struct main_info *info = get_main_info ();
5581
5582 if (info->name_of_main == NULL)
5583 find_main_name ();
5584
5585 return info->name_of_main;
5586 }
5587
5588 /* Return the language of the main function. If it is not known,
5589 return language_unknown. */
5590
5591 enum language
5592 main_language (void)
5593 {
5594 struct main_info *info = get_main_info ();
5595
5596 if (info->name_of_main == NULL)
5597 find_main_name ();
5598
5599 return info->language_of_main;
5600 }
5601
5602 /* Handle ``executable_changed'' events for the symtab module. */
5603
5604 static void
5605 symtab_observer_executable_changed (void)
5606 {
5607 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5608 set_main_name (NULL, language_unknown);
5609 }
5610
5611 /* Return 1 if the supplied producer string matches the ARM RealView
5612 compiler (armcc). */
5613
5614 int
5615 producer_is_realview (const char *producer)
5616 {
5617 static const char *const arm_idents[] = {
5618 "ARM C Compiler, ADS",
5619 "Thumb C Compiler, ADS",
5620 "ARM C++ Compiler, ADS",
5621 "Thumb C++ Compiler, ADS",
5622 "ARM/Thumb C/C++ Compiler, RVCT",
5623 "ARM C/C++ Compiler, RVCT"
5624 };
5625 int i;
5626
5627 if (producer == NULL)
5628 return 0;
5629
5630 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5631 if (startswith (producer, arm_idents[i]))
5632 return 1;
5633
5634 return 0;
5635 }
5636
5637 \f
5638
5639 /* The next index to hand out in response to a registration request. */
5640
5641 static int next_aclass_value = LOC_FINAL_VALUE;
5642
5643 /* The maximum number of "aclass" registrations we support. This is
5644 constant for convenience. */
5645 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5646
5647 /* The objects representing the various "aclass" values. The elements
5648 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5649 elements are those registered at gdb initialization time. */
5650
5651 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5652
5653 /* The globally visible pointer. This is separate from 'symbol_impl'
5654 so that it can be const. */
5655
5656 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5657
5658 /* Make sure we saved enough room in struct symbol. */
5659
5660 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5661
5662 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5663 is the ops vector associated with this index. This returns the new
5664 index, which should be used as the aclass_index field for symbols
5665 of this type. */
5666
5667 int
5668 register_symbol_computed_impl (enum address_class aclass,
5669 const struct symbol_computed_ops *ops)
5670 {
5671 int result = next_aclass_value++;
5672
5673 gdb_assert (aclass == LOC_COMPUTED);
5674 gdb_assert (result < MAX_SYMBOL_IMPLS);
5675 symbol_impl[result].aclass = aclass;
5676 symbol_impl[result].ops_computed = ops;
5677
5678 /* Sanity check OPS. */
5679 gdb_assert (ops != NULL);
5680 gdb_assert (ops->tracepoint_var_ref != NULL);
5681 gdb_assert (ops->describe_location != NULL);
5682 gdb_assert (ops->get_symbol_read_needs != NULL);
5683 gdb_assert (ops->read_variable != NULL);
5684
5685 return result;
5686 }
5687
5688 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5689 OPS is the ops vector associated with this index. This returns the
5690 new index, which should be used as the aclass_index field for symbols
5691 of this type. */
5692
5693 int
5694 register_symbol_block_impl (enum address_class aclass,
5695 const struct symbol_block_ops *ops)
5696 {
5697 int result = next_aclass_value++;
5698
5699 gdb_assert (aclass == LOC_BLOCK);
5700 gdb_assert (result < MAX_SYMBOL_IMPLS);
5701 symbol_impl[result].aclass = aclass;
5702 symbol_impl[result].ops_block = ops;
5703
5704 /* Sanity check OPS. */
5705 gdb_assert (ops != NULL);
5706 gdb_assert (ops->find_frame_base_location != NULL);
5707
5708 return result;
5709 }
5710
5711 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5712 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5713 this index. This returns the new index, which should be used as
5714 the aclass_index field for symbols of this type. */
5715
5716 int
5717 register_symbol_register_impl (enum address_class aclass,
5718 const struct symbol_register_ops *ops)
5719 {
5720 int result = next_aclass_value++;
5721
5722 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5723 gdb_assert (result < MAX_SYMBOL_IMPLS);
5724 symbol_impl[result].aclass = aclass;
5725 symbol_impl[result].ops_register = ops;
5726
5727 return result;
5728 }
5729
5730 /* Initialize elements of 'symbol_impl' for the constants in enum
5731 address_class. */
5732
5733 static void
5734 initialize_ordinary_address_classes (void)
5735 {
5736 int i;
5737
5738 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5739 symbol_impl[i].aclass = (enum address_class) i;
5740 }
5741
5742 \f
5743
5744 /* Helper function to initialize the fields of an objfile-owned symbol.
5745 It assumed that *SYM is already all zeroes. */
5746
5747 static void
5748 initialize_objfile_symbol_1 (struct symbol *sym)
5749 {
5750 SYMBOL_OBJFILE_OWNED (sym) = 1;
5751 SYMBOL_SECTION (sym) = -1;
5752 }
5753
5754 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5755
5756 void
5757 initialize_objfile_symbol (struct symbol *sym)
5758 {
5759 memset (sym, 0, sizeof (*sym));
5760 initialize_objfile_symbol_1 (sym);
5761 }
5762
5763 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5764 obstack. */
5765
5766 struct symbol *
5767 allocate_symbol (struct objfile *objfile)
5768 {
5769 struct symbol *result;
5770
5771 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5772 initialize_objfile_symbol_1 (result);
5773
5774 return result;
5775 }
5776
5777 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5778 obstack. */
5779
5780 struct template_symbol *
5781 allocate_template_symbol (struct objfile *objfile)
5782 {
5783 struct template_symbol *result;
5784
5785 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5786 initialize_objfile_symbol_1 (&result->base);
5787
5788 return result;
5789 }
5790
5791 /* See symtab.h. */
5792
5793 struct objfile *
5794 symbol_objfile (const struct symbol *symbol)
5795 {
5796 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5797 return SYMTAB_OBJFILE (symbol->owner.symtab);
5798 }
5799
5800 /* See symtab.h. */
5801
5802 struct gdbarch *
5803 symbol_arch (const struct symbol *symbol)
5804 {
5805 if (!SYMBOL_OBJFILE_OWNED (symbol))
5806 return symbol->owner.arch;
5807 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
5808 }
5809
5810 /* See symtab.h. */
5811
5812 struct symtab *
5813 symbol_symtab (const struct symbol *symbol)
5814 {
5815 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5816 return symbol->owner.symtab;
5817 }
5818
5819 /* See symtab.h. */
5820
5821 void
5822 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
5823 {
5824 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5825 symbol->owner.symtab = symtab;
5826 }
5827
5828 \f
5829
5830 void
5831 _initialize_symtab (void)
5832 {
5833 initialize_ordinary_address_classes ();
5834
5835 main_progspace_key
5836 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5837
5838 symbol_cache_key
5839 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
5840
5841 add_info ("variables", info_variables_command, _("\
5842 All global and static variable names, or those matching REGEXP."));
5843 if (dbx_commands)
5844 add_com ("whereis", class_info, info_variables_command, _("\
5845 All global and static variable names, or those matching REGEXP."));
5846
5847 add_info ("functions", info_functions_command,
5848 _("All function names, or those matching REGEXP."));
5849
5850 /* FIXME: This command has at least the following problems:
5851 1. It prints builtin types (in a very strange and confusing fashion).
5852 2. It doesn't print right, e.g. with
5853 typedef struct foo *FOO
5854 type_print prints "FOO" when we want to make it (in this situation)
5855 print "struct foo *".
5856 I also think "ptype" or "whatis" is more likely to be useful (but if
5857 there is much disagreement "info types" can be fixed). */
5858 add_info ("types", info_types_command,
5859 _("All type names, or those matching REGEXP."));
5860
5861 add_info ("sources", info_sources_command,
5862 _("Source files in the program."));
5863
5864 add_com ("rbreak", class_breakpoint, rbreak_command,
5865 _("Set a breakpoint for all functions matching REGEXP."));
5866
5867 add_setshow_enum_cmd ("multiple-symbols", no_class,
5868 multiple_symbols_modes, &multiple_symbols_mode,
5869 _("\
5870 Set the debugger behavior when more than one symbol are possible matches\n\
5871 in an expression."), _("\
5872 Show how the debugger handles ambiguities in expressions."), _("\
5873 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5874 NULL, NULL, &setlist, &showlist);
5875
5876 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5877 &basenames_may_differ, _("\
5878 Set whether a source file may have multiple base names."), _("\
5879 Show whether a source file may have multiple base names."), _("\
5880 (A \"base name\" is the name of a file with the directory part removed.\n\
5881 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5882 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5883 before comparing them. Canonicalization is an expensive operation,\n\
5884 but it allows the same file be known by more than one base name.\n\
5885 If not set (the default), all source files are assumed to have just\n\
5886 one base name, and gdb will do file name comparisons more efficiently."),
5887 NULL, NULL,
5888 &setlist, &showlist);
5889
5890 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5891 _("Set debugging of symbol table creation."),
5892 _("Show debugging of symbol table creation."), _("\
5893 When enabled (non-zero), debugging messages are printed when building\n\
5894 symbol tables. A value of 1 (one) normally provides enough information.\n\
5895 A value greater than 1 provides more verbose information."),
5896 NULL,
5897 NULL,
5898 &setdebuglist, &showdebuglist);
5899
5900 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
5901 _("\
5902 Set debugging of symbol lookup."), _("\
5903 Show debugging of symbol lookup."), _("\
5904 When enabled (non-zero), symbol lookups are logged."),
5905 NULL, NULL,
5906 &setdebuglist, &showdebuglist);
5907
5908 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
5909 &new_symbol_cache_size,
5910 _("Set the size of the symbol cache."),
5911 _("Show the size of the symbol cache."), _("\
5912 The size of the symbol cache.\n\
5913 If zero then the symbol cache is disabled."),
5914 set_symbol_cache_size_handler, NULL,
5915 &maintenance_set_cmdlist,
5916 &maintenance_show_cmdlist);
5917
5918 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
5919 _("Dump the symbol cache for each program space."),
5920 &maintenanceprintlist);
5921
5922 add_cmd ("symbol-cache-statistics", class_maintenance,
5923 maintenance_print_symbol_cache_statistics,
5924 _("Print symbol cache statistics for each program space."),
5925 &maintenanceprintlist);
5926
5927 add_cmd ("flush-symbol-cache", class_maintenance,
5928 maintenance_flush_symbol_cache,
5929 _("Flush the symbol cache for each program space."),
5930 &maintenancelist);
5931
5932 observer_attach_executable_changed (symtab_observer_executable_changed);
5933 observer_attach_new_objfile (symtab_new_objfile_observer);
5934 observer_attach_free_objfile (symtab_free_objfile_observer);
5935 }