]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
* symtab.c (symbol_set_names): Correctly set 'name' on symbol when
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 /* Prototypes for local functions */
66
67 static void completion_list_add_name (char *, char *, int, char *, char *);
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *);
82
83 /* This one is used by linespec.c */
84
85 char *operator_chars (char *p, char **end);
86
87 static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94 static
95 struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112 static int file_matches (char *, char **, int);
113
114 static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117 static void print_msymbol_info (struct minimal_symbol *);
118
119 static void symtab_symbol_info (char *, domain_enum, int);
120
121 void _initialize_symtab (void);
122
123 /* */
124
125 /* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129 const char multiple_symbols_ask[] = "ask";
130 const char multiple_symbols_all[] = "all";
131 const char multiple_symbols_cancel[] = "cancel";
132 static const char *multiple_symbols_modes[] =
133 {
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138 };
139 static const char *multiple_symbols_mode = multiple_symbols_all;
140
141 /* Read-only accessor to AUTO_SELECT_MODE. */
142
143 const char *
144 multiple_symbols_select_mode (void)
145 {
146 return multiple_symbols_mode;
147 }
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Objects of this type are stored in the demangled name hash table. */
431 struct demangled_name_entry
432 {
433 char *mangled;
434 char demangled[1];
435 };
436
437 /* Hash function for the demangled name hash. */
438 static hashval_t
439 hash_demangled_name_entry (const void *data)
440 {
441 const struct demangled_name_entry *e = data;
442 return htab_hash_string (e->mangled);
443 }
444
445 /* Equality function for the demangled name hash. */
446 static int
447 eq_demangled_name_entry (const void *a, const void *b)
448 {
449 const struct demangled_name_entry *da = a;
450 const struct demangled_name_entry *db = b;
451 return strcmp (da->mangled, db->mangled) == 0;
452 }
453
454 /* Create the hash table used for demangled names. Each hash entry is
455 a pair of strings; one for the mangled name and one for the demangled
456 name. The entry is hashed via just the mangled name. */
457
458 static void
459 create_demangled_names_hash (struct objfile *objfile)
460 {
461 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
462 The hash table code will round this up to the next prime number.
463 Choosing a much larger table size wastes memory, and saves only about
464 1% in symbol reading. */
465
466 objfile->demangled_names_hash = htab_create_alloc
467 (256, hash_demangled_name_entry, eq_demangled_name_entry,
468 NULL, xcalloc, xfree);
469 }
470
471 /* Try to determine the demangled name for a symbol, based on the
472 language of that symbol. If the language is set to language_auto,
473 it will attempt to find any demangling algorithm that works and
474 then set the language appropriately. The returned name is allocated
475 by the demangler and should be xfree'd. */
476
477 static char *
478 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
479 const char *mangled)
480 {
481 char *demangled = NULL;
482
483 if (gsymbol->language == language_unknown)
484 gsymbol->language = language_auto;
485
486 if (gsymbol->language == language_objc
487 || gsymbol->language == language_auto)
488 {
489 demangled =
490 objc_demangle (mangled, 0);
491 if (demangled != NULL)
492 {
493 gsymbol->language = language_objc;
494 return demangled;
495 }
496 }
497 if (gsymbol->language == language_cplus
498 || gsymbol->language == language_auto)
499 {
500 demangled =
501 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
502 if (demangled != NULL)
503 {
504 gsymbol->language = language_cplus;
505 return demangled;
506 }
507 }
508 if (gsymbol->language == language_java)
509 {
510 demangled =
511 cplus_demangle (mangled,
512 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
513 if (demangled != NULL)
514 {
515 gsymbol->language = language_java;
516 return demangled;
517 }
518 }
519 return NULL;
520 }
521
522 /* Set both the mangled and demangled (if any) names for GSYMBOL based
523 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
524 objfile's obstack; but if COPY_NAME is 0 and if NAME is
525 NUL-terminated, then this function assumes that NAME is already
526 correctly saved (either permanently or with a lifetime tied to the
527 objfile), and it will not be copied.
528
529 The hash table corresponding to OBJFILE is used, and the memory
530 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
531 so the pointer can be discarded after calling this function. */
532
533 /* We have to be careful when dealing with Java names: when we run
534 into a Java minimal symbol, we don't know it's a Java symbol, so it
535 gets demangled as a C++ name. This is unfortunate, but there's not
536 much we can do about it: but when demangling partial symbols and
537 regular symbols, we'd better not reuse the wrong demangled name.
538 (See PR gdb/1039.) We solve this by putting a distinctive prefix
539 on Java names when storing them in the hash table. */
540
541 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
542 don't mind the Java prefix so much: different languages have
543 different demangling requirements, so it's only natural that we
544 need to keep language data around in our demangling cache. But
545 it's not good that the minimal symbol has the wrong demangled name.
546 Unfortunately, I can't think of any easy solution to that
547 problem. */
548
549 #define JAVA_PREFIX "##JAVA$$"
550 #define JAVA_PREFIX_LEN 8
551
552 void
553 symbol_set_names (struct general_symbol_info *gsymbol,
554 const char *linkage_name, int len, int copy_name,
555 struct objfile *objfile)
556 {
557 struct demangled_name_entry **slot;
558 /* A 0-terminated copy of the linkage name. */
559 const char *linkage_name_copy;
560 /* A copy of the linkage name that might have a special Java prefix
561 added to it, for use when looking names up in the hash table. */
562 const char *lookup_name;
563 /* The length of lookup_name. */
564 int lookup_len;
565 struct demangled_name_entry entry;
566
567 if (gsymbol->language == language_ada)
568 {
569 /* In Ada, we do the symbol lookups using the mangled name, so
570 we can save some space by not storing the demangled name.
571
572 As a side note, we have also observed some overlap between
573 the C++ mangling and Ada mangling, similarly to what has
574 been observed with Java. Because we don't store the demangled
575 name with the symbol, we don't need to use the same trick
576 as Java. */
577 if (!copy_name)
578 gsymbol->name = (char *) linkage_name;
579 else
580 {
581 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
582 memcpy (gsymbol->name, linkage_name, len);
583 gsymbol->name[len] = '\0';
584 }
585 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
586
587 return;
588 }
589
590 if (objfile->demangled_names_hash == NULL)
591 create_demangled_names_hash (objfile);
592
593 /* The stabs reader generally provides names that are not
594 NUL-terminated; most of the other readers don't do this, so we
595 can just use the given copy, unless we're in the Java case. */
596 if (gsymbol->language == language_java)
597 {
598 char *alloc_name;
599 lookup_len = len + JAVA_PREFIX_LEN;
600
601 alloc_name = alloca (lookup_len + 1);
602 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
603 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
604 alloc_name[lookup_len] = '\0';
605
606 lookup_name = alloc_name;
607 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
608 }
609 else if (linkage_name[len] != '\0')
610 {
611 char *alloc_name;
612 lookup_len = len;
613
614 alloc_name = alloca (lookup_len + 1);
615 memcpy (alloc_name, linkage_name, len);
616 alloc_name[lookup_len] = '\0';
617
618 lookup_name = alloc_name;
619 linkage_name_copy = alloc_name;
620 }
621 else
622 {
623 lookup_len = len;
624 lookup_name = linkage_name;
625 linkage_name_copy = linkage_name;
626 }
627
628 entry.mangled = (char *) lookup_name;
629 slot = ((struct demangled_name_entry **)
630 htab_find_slot (objfile->demangled_names_hash,
631 &entry, INSERT));
632
633 /* If this name is not in the hash table, add it. */
634 if (*slot == NULL)
635 {
636 char *demangled_name = symbol_find_demangled_name (gsymbol,
637 linkage_name_copy);
638 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
639
640 /* Suppose we have demangled_name==NULL, copy_name==0, and
641 lookup_name==linkage_name. In this case, we already have the
642 mangled name saved, and we don't have a demangled name. So,
643 you might think we could save a little space by not recording
644 this in the hash table at all.
645
646 It turns out that it is actually important to still save such
647 an entry in the hash table, because storing this name gives
648 us better backache hit rates for partial symbols. */
649 if (!copy_name && lookup_name == linkage_name)
650 {
651 *slot = obstack_alloc (&objfile->objfile_obstack,
652 offsetof (struct demangled_name_entry,
653 demangled)
654 + demangled_len + 1);
655 (*slot)->mangled = (char *) lookup_name;
656 }
657 else
658 {
659 /* If we must copy the mangled name, put it directly after
660 the demangled name so we can have a single
661 allocation. */
662 *slot = obstack_alloc (&objfile->objfile_obstack,
663 offsetof (struct demangled_name_entry,
664 demangled)
665 + lookup_len + demangled_len + 2);
666 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
667 strcpy ((*slot)->mangled, lookup_name);
668 }
669
670 if (demangled_name != NULL)
671 {
672 strcpy ((*slot)->demangled, demangled_name);
673 xfree (demangled_name);
674 }
675 else
676 (*slot)->demangled[0] = '\0';
677 }
678
679 gsymbol->name = (*slot)->mangled + lookup_len - len;
680 if ((*slot)->demangled[0] != '\0')
681 gsymbol->language_specific.cplus_specific.demangled_name
682 = (*slot)->demangled;
683 else
684 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
685 }
686
687 /* Return the source code name of a symbol. In languages where
688 demangling is necessary, this is the demangled name. */
689
690 char *
691 symbol_natural_name (const struct general_symbol_info *gsymbol)
692 {
693 switch (gsymbol->language)
694 {
695 case language_cplus:
696 case language_java:
697 case language_objc:
698 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
699 return gsymbol->language_specific.cplus_specific.demangled_name;
700 break;
701 case language_ada:
702 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
703 return gsymbol->language_specific.cplus_specific.demangled_name;
704 else
705 return ada_decode_symbol (gsymbol);
706 break;
707 default:
708 break;
709 }
710 return gsymbol->name;
711 }
712
713 /* Return the demangled name for a symbol based on the language for
714 that symbol. If no demangled name exists, return NULL. */
715 char *
716 symbol_demangled_name (const struct general_symbol_info *gsymbol)
717 {
718 switch (gsymbol->language)
719 {
720 case language_cplus:
721 case language_java:
722 case language_objc:
723 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
724 return gsymbol->language_specific.cplus_specific.demangled_name;
725 break;
726 case language_ada:
727 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
728 return gsymbol->language_specific.cplus_specific.demangled_name;
729 else
730 return ada_decode_symbol (gsymbol);
731 break;
732 default:
733 break;
734 }
735 return NULL;
736 }
737
738 /* Return the search name of a symbol---generally the demangled or
739 linkage name of the symbol, depending on how it will be searched for.
740 If there is no distinct demangled name, then returns the same value
741 (same pointer) as SYMBOL_LINKAGE_NAME. */
742 char *
743 symbol_search_name (const struct general_symbol_info *gsymbol)
744 {
745 if (gsymbol->language == language_ada)
746 return gsymbol->name;
747 else
748 return symbol_natural_name (gsymbol);
749 }
750
751 /* Initialize the structure fields to zero values. */
752 void
753 init_sal (struct symtab_and_line *sal)
754 {
755 sal->pspace = NULL;
756 sal->symtab = 0;
757 sal->section = 0;
758 sal->line = 0;
759 sal->pc = 0;
760 sal->end = 0;
761 sal->explicit_pc = 0;
762 sal->explicit_line = 0;
763 }
764 \f
765
766 /* Return 1 if the two sections are the same, or if they could
767 plausibly be copies of each other, one in an original object
768 file and another in a separated debug file. */
769
770 int
771 matching_obj_sections (struct obj_section *obj_first,
772 struct obj_section *obj_second)
773 {
774 asection *first = obj_first? obj_first->the_bfd_section : NULL;
775 asection *second = obj_second? obj_second->the_bfd_section : NULL;
776 struct objfile *obj;
777
778 /* If they're the same section, then they match. */
779 if (first == second)
780 return 1;
781
782 /* If either is NULL, give up. */
783 if (first == NULL || second == NULL)
784 return 0;
785
786 /* This doesn't apply to absolute symbols. */
787 if (first->owner == NULL || second->owner == NULL)
788 return 0;
789
790 /* If they're in the same object file, they must be different sections. */
791 if (first->owner == second->owner)
792 return 0;
793
794 /* Check whether the two sections are potentially corresponding. They must
795 have the same size, address, and name. We can't compare section indexes,
796 which would be more reliable, because some sections may have been
797 stripped. */
798 if (bfd_get_section_size (first) != bfd_get_section_size (second))
799 return 0;
800
801 /* In-memory addresses may start at a different offset, relativize them. */
802 if (bfd_get_section_vma (first->owner, first)
803 - bfd_get_start_address (first->owner)
804 != bfd_get_section_vma (second->owner, second)
805 - bfd_get_start_address (second->owner))
806 return 0;
807
808 if (bfd_get_section_name (first->owner, first) == NULL
809 || bfd_get_section_name (second->owner, second) == NULL
810 || strcmp (bfd_get_section_name (first->owner, first),
811 bfd_get_section_name (second->owner, second)) != 0)
812 return 0;
813
814 /* Otherwise check that they are in corresponding objfiles. */
815
816 ALL_OBJFILES (obj)
817 if (obj->obfd == first->owner)
818 break;
819 gdb_assert (obj != NULL);
820
821 if (obj->separate_debug_objfile != NULL
822 && obj->separate_debug_objfile->obfd == second->owner)
823 return 1;
824 if (obj->separate_debug_objfile_backlink != NULL
825 && obj->separate_debug_objfile_backlink->obfd == second->owner)
826 return 1;
827
828 return 0;
829 }
830
831 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
832 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
833
834 static struct partial_symtab *
835 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
836 struct partial_symtab *pst,
837 struct minimal_symbol *msymbol)
838 {
839 struct objfile *objfile = pst->objfile;
840 struct partial_symtab *tpst;
841 struct partial_symtab *best_pst = pst;
842 CORE_ADDR best_addr = pst->textlow;
843
844 /* An objfile that has its functions reordered might have
845 many partial symbol tables containing the PC, but
846 we want the partial symbol table that contains the
847 function containing the PC. */
848 if (!(objfile->flags & OBJF_REORDERED) &&
849 section == 0) /* can't validate section this way */
850 return pst;
851
852 if (msymbol == NULL)
853 return (pst);
854
855 /* The code range of partial symtabs sometimes overlap, so, in
856 the loop below, we need to check all partial symtabs and
857 find the one that fits better for the given PC address. We
858 select the partial symtab that contains a symbol whose
859 address is closest to the PC address. By closest we mean
860 that find_pc_sect_symbol returns the symbol with address
861 that is closest and still less than the given PC. */
862 for (tpst = pst; tpst != NULL; tpst = tpst->next)
863 {
864 if (pc >= tpst->textlow && pc < tpst->texthigh)
865 {
866 struct partial_symbol *p;
867 CORE_ADDR this_addr;
868
869 /* NOTE: This assumes that every psymbol has a
870 corresponding msymbol, which is not necessarily
871 true; the debug info might be much richer than the
872 object's symbol table. */
873 p = find_pc_sect_psymbol (tpst, pc, section);
874 if (p != NULL
875 && SYMBOL_VALUE_ADDRESS (p)
876 == SYMBOL_VALUE_ADDRESS (msymbol))
877 return tpst;
878
879 /* Also accept the textlow value of a psymtab as a
880 "symbol", to provide some support for partial
881 symbol tables with line information but no debug
882 symbols (e.g. those produced by an assembler). */
883 if (p != NULL)
884 this_addr = SYMBOL_VALUE_ADDRESS (p);
885 else
886 this_addr = tpst->textlow;
887
888 /* Check whether it is closer than our current
889 BEST_ADDR. Since this symbol address is
890 necessarily lower or equal to PC, the symbol closer
891 to PC is the symbol which address is the highest.
892 This way we return the psymtab which contains such
893 best match symbol. This can help in cases where the
894 symbol information/debuginfo is not complete, like
895 for instance on IRIX6 with gcc, where no debug info
896 is emitted for statics. (See also the nodebug.exp
897 testcase.) */
898 if (this_addr > best_addr)
899 {
900 best_addr = this_addr;
901 best_pst = tpst;
902 }
903 }
904 }
905 return best_pst;
906 }
907
908 /* Find which partial symtab contains PC and SECTION. Return 0 if
909 none. We return the psymtab that contains a symbol whose address
910 exactly matches PC, or, if we cannot find an exact match, the
911 psymtab that contains a symbol whose address is closest to PC. */
912 struct partial_symtab *
913 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
914 {
915 struct objfile *objfile;
916 struct minimal_symbol *msymbol;
917
918 /* If we know that this is not a text address, return failure. This is
919 necessary because we loop based on texthigh and textlow, which do
920 not include the data ranges. */
921 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
922 if (msymbol
923 && (MSYMBOL_TYPE (msymbol) == mst_data
924 || MSYMBOL_TYPE (msymbol) == mst_bss
925 || MSYMBOL_TYPE (msymbol) == mst_abs
926 || MSYMBOL_TYPE (msymbol) == mst_file_data
927 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
928 return NULL;
929
930 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
931 than the later used TEXTLOW/TEXTHIGH one. */
932
933 ALL_OBJFILES (objfile)
934 if (objfile->psymtabs_addrmap != NULL)
935 {
936 struct partial_symtab *pst;
937
938 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
939 if (pst != NULL)
940 {
941 /* FIXME: addrmaps currently do not handle overlayed sections,
942 so fall back to the non-addrmap case if we're debugging
943 overlays and the addrmap returned the wrong section. */
944 if (overlay_debugging && msymbol && section)
945 {
946 struct partial_symbol *p;
947 /* NOTE: This assumes that every psymbol has a
948 corresponding msymbol, which is not necessarily
949 true; the debug info might be much richer than the
950 object's symbol table. */
951 p = find_pc_sect_psymbol (pst, pc, section);
952 if (!p
953 || SYMBOL_VALUE_ADDRESS (p)
954 != SYMBOL_VALUE_ADDRESS (msymbol))
955 continue;
956 }
957
958 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
959 PSYMTABS_ADDRMAP we used has already the best 1-byte
960 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
961 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
962 overlap. */
963
964 return pst;
965 }
966 }
967
968 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
969 which still have no corresponding full SYMTABs read. But it is not
970 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
971 so far. */
972
973 ALL_OBJFILES (objfile)
974 {
975 struct partial_symtab *pst;
976
977 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
978 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
979 debug info type in single OBJFILE. */
980
981 ALL_OBJFILE_PSYMTABS (objfile, pst)
982 if (pc >= pst->textlow && pc < pst->texthigh)
983 {
984 struct partial_symtab *best_pst;
985
986 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
987 msymbol);
988 if (best_pst != NULL)
989 return best_pst;
990 }
991 }
992
993 return NULL;
994 }
995
996 /* Find which partial symtab contains PC. Return 0 if none.
997 Backward compatibility, no section */
998
999 struct partial_symtab *
1000 find_pc_psymtab (CORE_ADDR pc)
1001 {
1002 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
1003 }
1004
1005 /* Find which partial symbol within a psymtab matches PC and SECTION.
1006 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
1007
1008 struct partial_symbol *
1009 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
1010 struct obj_section *section)
1011 {
1012 struct partial_symbol *best = NULL, *p, **pp;
1013 CORE_ADDR best_pc;
1014
1015 if (!psymtab)
1016 psymtab = find_pc_sect_psymtab (pc, section);
1017 if (!psymtab)
1018 return 0;
1019
1020 /* Cope with programs that start at address 0 */
1021 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
1022
1023 /* Search the global symbols as well as the static symbols, so that
1024 find_pc_partial_function doesn't use a minimal symbol and thus
1025 cache a bad endaddr. */
1026 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
1027 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
1028 < psymtab->n_global_syms);
1029 pp++)
1030 {
1031 p = *pp;
1032 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1033 && SYMBOL_CLASS (p) == LOC_BLOCK
1034 && pc >= SYMBOL_VALUE_ADDRESS (p)
1035 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1036 || (psymtab->textlow == 0
1037 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1038 {
1039 if (section) /* match on a specific section */
1040 {
1041 fixup_psymbol_section (p, psymtab->objfile);
1042 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1043 continue;
1044 }
1045 best_pc = SYMBOL_VALUE_ADDRESS (p);
1046 best = p;
1047 }
1048 }
1049
1050 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
1051 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
1052 < psymtab->n_static_syms);
1053 pp++)
1054 {
1055 p = *pp;
1056 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1057 && SYMBOL_CLASS (p) == LOC_BLOCK
1058 && pc >= SYMBOL_VALUE_ADDRESS (p)
1059 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1060 || (psymtab->textlow == 0
1061 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1062 {
1063 if (section) /* match on a specific section */
1064 {
1065 fixup_psymbol_section (p, psymtab->objfile);
1066 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1067 continue;
1068 }
1069 best_pc = SYMBOL_VALUE_ADDRESS (p);
1070 best = p;
1071 }
1072 }
1073
1074 return best;
1075 }
1076
1077 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1078 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1079
1080 struct partial_symbol *
1081 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1082 {
1083 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1084 }
1085 \f
1086 /* Debug symbols usually don't have section information. We need to dig that
1087 out of the minimal symbols and stash that in the debug symbol. */
1088
1089 static void
1090 fixup_section (struct general_symbol_info *ginfo,
1091 CORE_ADDR addr, struct objfile *objfile)
1092 {
1093 struct minimal_symbol *msym;
1094
1095 /* First, check whether a minimal symbol with the same name exists
1096 and points to the same address. The address check is required
1097 e.g. on PowerPC64, where the minimal symbol for a function will
1098 point to the function descriptor, while the debug symbol will
1099 point to the actual function code. */
1100 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1101 if (msym)
1102 {
1103 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1104 ginfo->section = SYMBOL_SECTION (msym);
1105 }
1106 else
1107 {
1108 /* Static, function-local variables do appear in the linker
1109 (minimal) symbols, but are frequently given names that won't
1110 be found via lookup_minimal_symbol(). E.g., it has been
1111 observed in frv-uclinux (ELF) executables that a static,
1112 function-local variable named "foo" might appear in the
1113 linker symbols as "foo.6" or "foo.3". Thus, there is no
1114 point in attempting to extend the lookup-by-name mechanism to
1115 handle this case due to the fact that there can be multiple
1116 names.
1117
1118 So, instead, search the section table when lookup by name has
1119 failed. The ``addr'' and ``endaddr'' fields may have already
1120 been relocated. If so, the relocation offset (i.e. the
1121 ANOFFSET value) needs to be subtracted from these values when
1122 performing the comparison. We unconditionally subtract it,
1123 because, when no relocation has been performed, the ANOFFSET
1124 value will simply be zero.
1125
1126 The address of the symbol whose section we're fixing up HAS
1127 NOT BEEN adjusted (relocated) yet. It can't have been since
1128 the section isn't yet known and knowing the section is
1129 necessary in order to add the correct relocation value. In
1130 other words, we wouldn't even be in this function (attempting
1131 to compute the section) if it were already known.
1132
1133 Note that it is possible to search the minimal symbols
1134 (subtracting the relocation value if necessary) to find the
1135 matching minimal symbol, but this is overkill and much less
1136 efficient. It is not necessary to find the matching minimal
1137 symbol, only its section.
1138
1139 Note that this technique (of doing a section table search)
1140 can fail when unrelocated section addresses overlap. For
1141 this reason, we still attempt a lookup by name prior to doing
1142 a search of the section table. */
1143
1144 struct obj_section *s;
1145 ALL_OBJFILE_OSECTIONS (objfile, s)
1146 {
1147 int idx = s->the_bfd_section->index;
1148 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1149
1150 if (obj_section_addr (s) - offset <= addr
1151 && addr < obj_section_endaddr (s) - offset)
1152 {
1153 ginfo->obj_section = s;
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158 }
1159 }
1160
1161 struct symbol *
1162 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1163 {
1164 CORE_ADDR addr;
1165
1166 if (!sym)
1167 return NULL;
1168
1169 if (SYMBOL_OBJ_SECTION (sym))
1170 return sym;
1171
1172 /* We either have an OBJFILE, or we can get at it from the sym's
1173 symtab. Anything else is a bug. */
1174 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1175
1176 if (objfile == NULL)
1177 objfile = SYMBOL_SYMTAB (sym)->objfile;
1178
1179 /* We should have an objfile by now. */
1180 gdb_assert (objfile);
1181
1182 switch (SYMBOL_CLASS (sym))
1183 {
1184 case LOC_STATIC:
1185 case LOC_LABEL:
1186 addr = SYMBOL_VALUE_ADDRESS (sym);
1187 break;
1188 case LOC_BLOCK:
1189 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1190 break;
1191
1192 default:
1193 /* Nothing else will be listed in the minsyms -- no use looking
1194 it up. */
1195 return sym;
1196 }
1197
1198 fixup_section (&sym->ginfo, addr, objfile);
1199
1200 return sym;
1201 }
1202
1203 struct partial_symbol *
1204 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1205 {
1206 CORE_ADDR addr;
1207
1208 if (!psym)
1209 return NULL;
1210
1211 if (SYMBOL_OBJ_SECTION (psym))
1212 return psym;
1213
1214 gdb_assert (objfile);
1215
1216 switch (SYMBOL_CLASS (psym))
1217 {
1218 case LOC_STATIC:
1219 case LOC_LABEL:
1220 case LOC_BLOCK:
1221 addr = SYMBOL_VALUE_ADDRESS (psym);
1222 break;
1223 default:
1224 /* Nothing else will be listed in the minsyms -- no use looking
1225 it up. */
1226 return psym;
1227 }
1228
1229 fixup_section (&psym->ginfo, addr, objfile);
1230
1231 return psym;
1232 }
1233
1234 /* Find the definition for a specified symbol name NAME
1235 in domain DOMAIN, visible from lexical block BLOCK.
1236 Returns the struct symbol pointer, or zero if no symbol is found.
1237 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1238 NAME is a field of the current implied argument `this'. If so set
1239 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1240 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1241 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1242
1243 /* This function has a bunch of loops in it and it would seem to be
1244 attractive to put in some QUIT's (though I'm not really sure
1245 whether it can run long enough to be really important). But there
1246 are a few calls for which it would appear to be bad news to quit
1247 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1248 that there is C++ code below which can error(), but that probably
1249 doesn't affect these calls since they are looking for a known
1250 variable and thus can probably assume it will never hit the C++
1251 code). */
1252
1253 struct symbol *
1254 lookup_symbol_in_language (const char *name, const struct block *block,
1255 const domain_enum domain, enum language lang,
1256 int *is_a_field_of_this)
1257 {
1258 char *demangled_name = NULL;
1259 const char *modified_name = NULL;
1260 const char *mangled_name = NULL;
1261 struct symbol *returnval;
1262 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1263
1264 modified_name = name;
1265
1266 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1267 we can always binary search. */
1268 if (lang == language_cplus)
1269 {
1270 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1271 if (demangled_name)
1272 {
1273 mangled_name = name;
1274 modified_name = demangled_name;
1275 make_cleanup (xfree, demangled_name);
1276 }
1277 else
1278 {
1279 /* If we were given a non-mangled name, canonicalize it
1280 according to the language (so far only for C++). */
1281 demangled_name = cp_canonicalize_string (name);
1282 if (demangled_name)
1283 {
1284 modified_name = demangled_name;
1285 make_cleanup (xfree, demangled_name);
1286 }
1287 }
1288 }
1289 else if (lang == language_java)
1290 {
1291 demangled_name = cplus_demangle (name,
1292 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1293 if (demangled_name)
1294 {
1295 mangled_name = name;
1296 modified_name = demangled_name;
1297 make_cleanup (xfree, demangled_name);
1298 }
1299 }
1300
1301 if (case_sensitivity == case_sensitive_off)
1302 {
1303 char *copy;
1304 int len, i;
1305
1306 len = strlen (name);
1307 copy = (char *) alloca (len + 1);
1308 for (i= 0; i < len; i++)
1309 copy[i] = tolower (name[i]);
1310 copy[len] = 0;
1311 modified_name = copy;
1312 }
1313
1314 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1315 domain, lang, is_a_field_of_this);
1316 do_cleanups (cleanup);
1317
1318 return returnval;
1319 }
1320
1321 /* Behave like lookup_symbol_in_language, but performed with the
1322 current language. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain, int *is_a_field_of_this)
1327 {
1328 return lookup_symbol_in_language (name, block, domain,
1329 current_language->la_language,
1330 is_a_field_of_this);
1331 }
1332
1333 /* Behave like lookup_symbol except that NAME is the natural name
1334 of the symbol that we're looking for and, if LINKAGE_NAME is
1335 non-NULL, ensure that the symbol's linkage name matches as
1336 well. */
1337
1338 static struct symbol *
1339 lookup_symbol_aux (const char *name, const char *linkage_name,
1340 const struct block *block, const domain_enum domain,
1341 enum language language, int *is_a_field_of_this)
1342 {
1343 struct symbol *sym;
1344 const struct language_defn *langdef;
1345
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later and expect it to be either 0 or 1.
1349 If we don't set it, the contents of is_a_field_of_this are
1350 undefined. */
1351 if (is_a_field_of_this != NULL)
1352 *is_a_field_of_this = 0;
1353
1354 /* Search specified block and its superiors. Don't search
1355 STATIC_BLOCK or GLOBAL_BLOCK. */
1356
1357 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1358 if (sym != NULL)
1359 return sym;
1360
1361 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1362 check to see if NAME is a field of `this'. */
1363
1364 langdef = language_def (language);
1365
1366 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1367 && block != NULL)
1368 {
1369 struct symbol *sym = NULL;
1370 /* 'this' is only defined in the function's block, so find the
1371 enclosing function block. */
1372 for (; block && !BLOCK_FUNCTION (block);
1373 block = BLOCK_SUPERBLOCK (block));
1374
1375 if (block && !dict_empty (BLOCK_DICT (block)))
1376 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1377 NULL, VAR_DOMAIN);
1378 if (sym)
1379 {
1380 struct type *t = sym->type;
1381
1382 /* I'm not really sure that type of this can ever
1383 be typedefed; just be safe. */
1384 CHECK_TYPEDEF (t);
1385 if (TYPE_CODE (t) == TYPE_CODE_PTR
1386 || TYPE_CODE (t) == TYPE_CODE_REF)
1387 t = TYPE_TARGET_TYPE (t);
1388
1389 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1390 && TYPE_CODE (t) != TYPE_CODE_UNION)
1391 error (_("Internal error: `%s' is not an aggregate"),
1392 langdef->la_name_of_this);
1393
1394 if (check_field (t, name))
1395 {
1396 *is_a_field_of_this = 1;
1397 return NULL;
1398 }
1399 }
1400 }
1401
1402 /* Now do whatever is appropriate for LANGUAGE to look
1403 up static and global variables. */
1404
1405 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1406 if (sym != NULL)
1407 return sym;
1408
1409 /* Now search all static file-level symbols. Not strictly correct,
1410 but more useful than an error. Do the symtabs first, then check
1411 the psymtabs. If a psymtab indicates the existence of the
1412 desired name as a file-level static, then do psymtab-to-symtab
1413 conversion on the fly and return the found symbol. */
1414
1415 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1416 if (sym != NULL)
1417 return sym;
1418
1419 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1420 if (sym != NULL)
1421 return sym;
1422
1423 return NULL;
1424 }
1425
1426 /* Check to see if the symbol is defined in BLOCK or its superiors.
1427 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1428
1429 static struct symbol *
1430 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1431 const struct block *block,
1432 const domain_enum domain)
1433 {
1434 struct symbol *sym;
1435 const struct block *static_block = block_static_block (block);
1436
1437 /* Check if either no block is specified or it's a global block. */
1438
1439 if (static_block == NULL)
1440 return NULL;
1441
1442 while (block != static_block)
1443 {
1444 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1445 if (sym != NULL)
1446 return sym;
1447
1448 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1449 break;
1450 block = BLOCK_SUPERBLOCK (block);
1451 }
1452
1453 /* We've reached the edge of the function without finding a result. */
1454
1455 return NULL;
1456 }
1457
1458 /* Look up OBJFILE to BLOCK. */
1459
1460 static struct objfile *
1461 lookup_objfile_from_block (const struct block *block)
1462 {
1463 struct objfile *obj;
1464 struct symtab *s;
1465
1466 if (block == NULL)
1467 return NULL;
1468
1469 block = block_global_block (block);
1470 /* Go through SYMTABS. */
1471 ALL_SYMTABS (obj, s)
1472 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1473 return obj;
1474
1475 return NULL;
1476 }
1477
1478 /* Look up a symbol in a block; if found, fixup the symbol, and set
1479 block_found appropriately. */
1480
1481 struct symbol *
1482 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1483 const struct block *block,
1484 const domain_enum domain)
1485 {
1486 struct symbol *sym;
1487
1488 sym = lookup_block_symbol (block, name, linkage_name, domain);
1489 if (sym)
1490 {
1491 block_found = block;
1492 return fixup_symbol_section (sym, NULL);
1493 }
1494
1495 return NULL;
1496 }
1497
1498 /* Check all global symbols in OBJFILE in symtabs and
1499 psymtabs. */
1500
1501 struct symbol *
1502 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1503 const char *name,
1504 const char *linkage_name,
1505 const domain_enum domain)
1506 {
1507 struct symbol *sym;
1508 struct blockvector *bv;
1509 const struct block *block;
1510 struct symtab *s;
1511 struct partial_symtab *ps;
1512
1513 /* Go through symtabs. */
1514 ALL_OBJFILE_SYMTABS (objfile, s)
1515 {
1516 bv = BLOCKVECTOR (s);
1517 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1518 sym = lookup_block_symbol (block, name, linkage_name, domain);
1519 if (sym)
1520 {
1521 block_found = block;
1522 return fixup_symbol_section (sym, (struct objfile *)objfile);
1523 }
1524 }
1525
1526 /* Now go through psymtabs. */
1527 ALL_OBJFILE_PSYMTABS (objfile, ps)
1528 {
1529 if (!ps->readin
1530 && lookup_partial_symbol (ps, name, linkage_name,
1531 1, domain))
1532 {
1533 s = PSYMTAB_TO_SYMTAB (ps);
1534 bv = BLOCKVECTOR (s);
1535 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1536 sym = lookup_block_symbol (block, name, linkage_name, domain);
1537 return fixup_symbol_section (sym, (struct objfile *)objfile);
1538 }
1539 }
1540
1541 if (objfile->separate_debug_objfile)
1542 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1543 name, linkage_name, domain);
1544
1545 return NULL;
1546 }
1547
1548 /* Check to see if the symbol is defined in one of the symtabs.
1549 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1550 depending on whether or not we want to search global symbols or
1551 static symbols. */
1552
1553 static struct symbol *
1554 lookup_symbol_aux_symtabs (int block_index,
1555 const char *name, const char *linkage_name,
1556 const domain_enum domain)
1557 {
1558 struct symbol *sym;
1559 struct objfile *objfile;
1560 struct blockvector *bv;
1561 const struct block *block;
1562 struct symtab *s;
1563
1564 ALL_PRIMARY_SYMTABS (objfile, s)
1565 {
1566 bv = BLOCKVECTOR (s);
1567 block = BLOCKVECTOR_BLOCK (bv, block_index);
1568 sym = lookup_block_symbol (block, name, linkage_name, domain);
1569 if (sym)
1570 {
1571 block_found = block;
1572 return fixup_symbol_section (sym, objfile);
1573 }
1574 }
1575
1576 return NULL;
1577 }
1578
1579 /* Check to see if the symbol is defined in one of the partial
1580 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1581 STATIC_BLOCK, depending on whether or not we want to search global
1582 symbols or static symbols. */
1583
1584 static struct symbol *
1585 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1586 const char *linkage_name,
1587 const domain_enum domain)
1588 {
1589 struct symbol *sym;
1590 struct objfile *objfile;
1591 struct blockvector *bv;
1592 const struct block *block;
1593 struct partial_symtab *ps;
1594 struct symtab *s;
1595 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1596
1597 ALL_PSYMTABS (objfile, ps)
1598 {
1599 if (!ps->readin
1600 && lookup_partial_symbol (ps, name, linkage_name,
1601 psymtab_index, domain))
1602 {
1603 s = PSYMTAB_TO_SYMTAB (ps);
1604 bv = BLOCKVECTOR (s);
1605 block = BLOCKVECTOR_BLOCK (bv, block_index);
1606 sym = lookup_block_symbol (block, name, linkage_name, domain);
1607 if (!sym)
1608 {
1609 /* This shouldn't be necessary, but as a last resort try
1610 looking in the statics even though the psymtab claimed
1611 the symbol was global, or vice-versa. It's possible
1612 that the psymtab gets it wrong in some cases. */
1613
1614 /* FIXME: carlton/2002-09-30: Should we really do that?
1615 If that happens, isn't it likely to be a GDB error, in
1616 which case we should fix the GDB error rather than
1617 silently dealing with it here? So I'd vote for
1618 removing the check for the symbol in the other
1619 block. */
1620 block = BLOCKVECTOR_BLOCK (bv,
1621 block_index == GLOBAL_BLOCK ?
1622 STATIC_BLOCK : GLOBAL_BLOCK);
1623 sym = lookup_block_symbol (block, name, linkage_name, domain);
1624 if (!sym)
1625 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1626 block_index == GLOBAL_BLOCK ? "global" : "static",
1627 name, ps->filename, name, name);
1628 }
1629 return fixup_symbol_section (sym, objfile);
1630 }
1631 }
1632
1633 return NULL;
1634 }
1635
1636 /* A default version of lookup_symbol_nonlocal for use by languages
1637 that can't think of anything better to do. This implements the C
1638 lookup rules. */
1639
1640 struct symbol *
1641 basic_lookup_symbol_nonlocal (const char *name,
1642 const char *linkage_name,
1643 const struct block *block,
1644 const domain_enum domain)
1645 {
1646 struct symbol *sym;
1647
1648 /* NOTE: carlton/2003-05-19: The comments below were written when
1649 this (or what turned into this) was part of lookup_symbol_aux;
1650 I'm much less worried about these questions now, since these
1651 decisions have turned out well, but I leave these comments here
1652 for posterity. */
1653
1654 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1655 not it would be appropriate to search the current global block
1656 here as well. (That's what this code used to do before the
1657 is_a_field_of_this check was moved up.) On the one hand, it's
1658 redundant with the lookup_symbol_aux_symtabs search that happens
1659 next. On the other hand, if decode_line_1 is passed an argument
1660 like filename:var, then the user presumably wants 'var' to be
1661 searched for in filename. On the third hand, there shouldn't be
1662 multiple global variables all of which are named 'var', and it's
1663 not like decode_line_1 has ever restricted its search to only
1664 global variables in a single filename. All in all, only
1665 searching the static block here seems best: it's correct and it's
1666 cleanest. */
1667
1668 /* NOTE: carlton/2002-12-05: There's also a possible performance
1669 issue here: if you usually search for global symbols in the
1670 current file, then it would be slightly better to search the
1671 current global block before searching all the symtabs. But there
1672 are other factors that have a much greater effect on performance
1673 than that one, so I don't think we should worry about that for
1674 now. */
1675
1676 sym = lookup_symbol_static (name, linkage_name, block, domain);
1677 if (sym != NULL)
1678 return sym;
1679
1680 return lookup_symbol_global (name, linkage_name, block, domain);
1681 }
1682
1683 /* Lookup a symbol in the static block associated to BLOCK, if there
1684 is one; do nothing if BLOCK is NULL or a global block. */
1685
1686 struct symbol *
1687 lookup_symbol_static (const char *name,
1688 const char *linkage_name,
1689 const struct block *block,
1690 const domain_enum domain)
1691 {
1692 const struct block *static_block = block_static_block (block);
1693
1694 if (static_block != NULL)
1695 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1696 else
1697 return NULL;
1698 }
1699
1700 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1701 necessary). */
1702
1703 struct symbol *
1704 lookup_symbol_global (const char *name,
1705 const char *linkage_name,
1706 const struct block *block,
1707 const domain_enum domain)
1708 {
1709 struct symbol *sym = NULL;
1710 struct objfile *objfile = NULL;
1711
1712 /* Call library-specific lookup procedure. */
1713 objfile = lookup_objfile_from_block (block);
1714 if (objfile != NULL)
1715 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1716 if (sym != NULL)
1717 return sym;
1718
1719 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1720 if (sym != NULL)
1721 return sym;
1722
1723 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1724 }
1725
1726 int
1727 symbol_matches_domain (enum language symbol_language,
1728 domain_enum symbol_domain,
1729 domain_enum domain)
1730 {
1731 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1732 A Java class declaration also defines a typedef for the class.
1733 Similarly, any Ada type declaration implicitly defines a typedef. */
1734 if (symbol_language == language_cplus
1735 || symbol_language == language_java
1736 || symbol_language == language_ada)
1737 {
1738 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1739 && symbol_domain == STRUCT_DOMAIN)
1740 return 1;
1741 }
1742 /* For all other languages, strict match is required. */
1743 return (symbol_domain == domain);
1744 }
1745
1746 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1747 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1748 linkage name matches it. Check the global symbols if GLOBAL, the
1749 static symbols if not */
1750
1751 struct partial_symbol *
1752 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1753 const char *linkage_name, int global,
1754 domain_enum domain)
1755 {
1756 struct partial_symbol *temp;
1757 struct partial_symbol **start, **psym;
1758 struct partial_symbol **top, **real_top, **bottom, **center;
1759 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1760 int do_linear_search = 1;
1761
1762 if (length == 0)
1763 {
1764 return (NULL);
1765 }
1766 start = (global ?
1767 pst->objfile->global_psymbols.list + pst->globals_offset :
1768 pst->objfile->static_psymbols.list + pst->statics_offset);
1769
1770 if (global) /* This means we can use a binary search. */
1771 {
1772 do_linear_search = 0;
1773
1774 /* Binary search. This search is guaranteed to end with center
1775 pointing at the earliest partial symbol whose name might be
1776 correct. At that point *all* partial symbols with an
1777 appropriate name will be checked against the correct
1778 domain. */
1779
1780 bottom = start;
1781 top = start + length - 1;
1782 real_top = top;
1783 while (top > bottom)
1784 {
1785 center = bottom + (top - bottom) / 2;
1786 if (!(center < top))
1787 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1788 if (!do_linear_search
1789 && (SYMBOL_LANGUAGE (*center) == language_java))
1790 {
1791 do_linear_search = 1;
1792 }
1793 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1794 {
1795 top = center;
1796 }
1797 else
1798 {
1799 bottom = center + 1;
1800 }
1801 }
1802 if (!(top == bottom))
1803 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1804
1805 while (top <= real_top
1806 && (linkage_name != NULL
1807 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1808 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1809 {
1810 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1811 SYMBOL_DOMAIN (*top), domain))
1812 return (*top);
1813 top++;
1814 }
1815 }
1816
1817 /* Can't use a binary search or else we found during the binary search that
1818 we should also do a linear search. */
1819
1820 if (do_linear_search)
1821 {
1822 for (psym = start; psym < start + length; psym++)
1823 {
1824 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1825 SYMBOL_DOMAIN (*psym), domain))
1826 {
1827 if (linkage_name != NULL
1828 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1829 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1830 {
1831 return (*psym);
1832 }
1833 }
1834 }
1835 }
1836
1837 return (NULL);
1838 }
1839
1840 /* Look up a type named NAME in the struct_domain. The type returned
1841 must not be opaque -- i.e., must have at least one field
1842 defined. */
1843
1844 struct type *
1845 lookup_transparent_type (const char *name)
1846 {
1847 return current_language->la_lookup_transparent_type (name);
1848 }
1849
1850 /* The standard implementation of lookup_transparent_type. This code
1851 was modeled on lookup_symbol -- the parts not relevant to looking
1852 up types were just left out. In particular it's assumed here that
1853 types are available in struct_domain and only at file-static or
1854 global blocks. */
1855
1856 struct type *
1857 basic_lookup_transparent_type (const char *name)
1858 {
1859 struct symbol *sym;
1860 struct symtab *s = NULL;
1861 struct partial_symtab *ps;
1862 struct blockvector *bv;
1863 struct objfile *objfile;
1864 struct block *block;
1865
1866 /* Now search all the global symbols. Do the symtab's first, then
1867 check the psymtab's. If a psymtab indicates the existence
1868 of the desired name as a global, then do psymtab-to-symtab
1869 conversion on the fly and return the found symbol. */
1870
1871 ALL_PRIMARY_SYMTABS (objfile, s)
1872 {
1873 bv = BLOCKVECTOR (s);
1874 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1875 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1876 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1877 {
1878 return SYMBOL_TYPE (sym);
1879 }
1880 }
1881
1882 ALL_PSYMTABS (objfile, ps)
1883 {
1884 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1885 1, STRUCT_DOMAIN))
1886 {
1887 s = PSYMTAB_TO_SYMTAB (ps);
1888 bv = BLOCKVECTOR (s);
1889 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1890 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1891 if (!sym)
1892 {
1893 /* This shouldn't be necessary, but as a last resort
1894 * try looking in the statics even though the psymtab
1895 * claimed the symbol was global. It's possible that
1896 * the psymtab gets it wrong in some cases.
1897 */
1898 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1899 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1900 if (!sym)
1901 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1902 %s may be an inlined function, or may be a template function\n\
1903 (if a template, try specifying an instantiation: %s<type>)."),
1904 name, ps->filename, name, name);
1905 }
1906 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1907 return SYMBOL_TYPE (sym);
1908 }
1909 }
1910
1911 /* Now search the static file-level symbols.
1912 Not strictly correct, but more useful than an error.
1913 Do the symtab's first, then
1914 check the psymtab's. If a psymtab indicates the existence
1915 of the desired name as a file-level static, then do psymtab-to-symtab
1916 conversion on the fly and return the found symbol.
1917 */
1918
1919 ALL_PRIMARY_SYMTABS (objfile, s)
1920 {
1921 bv = BLOCKVECTOR (s);
1922 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1923 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1924 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1925 {
1926 return SYMBOL_TYPE (sym);
1927 }
1928 }
1929
1930 ALL_PSYMTABS (objfile, ps)
1931 {
1932 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1933 {
1934 s = PSYMTAB_TO_SYMTAB (ps);
1935 bv = BLOCKVECTOR (s);
1936 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1937 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1938 if (!sym)
1939 {
1940 /* This shouldn't be necessary, but as a last resort
1941 * try looking in the globals even though the psymtab
1942 * claimed the symbol was static. It's possible that
1943 * the psymtab gets it wrong in some cases.
1944 */
1945 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1946 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1947 if (!sym)
1948 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1949 %s may be an inlined function, or may be a template function\n\
1950 (if a template, try specifying an instantiation: %s<type>)."),
1951 name, ps->filename, name, name);
1952 }
1953 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1954 return SYMBOL_TYPE (sym);
1955 }
1956 }
1957 return (struct type *) 0;
1958 }
1959
1960
1961 /* Find the psymtab containing main(). */
1962 /* FIXME: What about languages without main() or specially linked
1963 executables that have no main() ? */
1964
1965 struct partial_symtab *
1966 find_main_psymtab (void)
1967 {
1968 struct partial_symtab *pst;
1969 struct objfile *objfile;
1970
1971 ALL_PSYMTABS (objfile, pst)
1972 {
1973 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1974 {
1975 return (pst);
1976 }
1977 }
1978 return (NULL);
1979 }
1980
1981 /* Search BLOCK for symbol NAME in DOMAIN.
1982
1983 Note that if NAME is the demangled form of a C++ symbol, we will fail
1984 to find a match during the binary search of the non-encoded names, but
1985 for now we don't worry about the slight inefficiency of looking for
1986 a match we'll never find, since it will go pretty quick. Once the
1987 binary search terminates, we drop through and do a straight linear
1988 search on the symbols. Each symbol which is marked as being a ObjC/C++
1989 symbol (language_cplus or language_objc set) has both the encoded and
1990 non-encoded names tested for a match.
1991
1992 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1993 particular mangled name.
1994 */
1995
1996 struct symbol *
1997 lookup_block_symbol (const struct block *block, const char *name,
1998 const char *linkage_name,
1999 const domain_enum domain)
2000 {
2001 struct dict_iterator iter;
2002 struct symbol *sym;
2003
2004 if (!BLOCK_FUNCTION (block))
2005 {
2006 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2007 sym != NULL;
2008 sym = dict_iter_name_next (name, &iter))
2009 {
2010 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2011 SYMBOL_DOMAIN (sym), domain)
2012 && (linkage_name != NULL
2013 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2014 return sym;
2015 }
2016 return NULL;
2017 }
2018 else
2019 {
2020 /* Note that parameter symbols do not always show up last in the
2021 list; this loop makes sure to take anything else other than
2022 parameter symbols first; it only uses parameter symbols as a
2023 last resort. Note that this only takes up extra computation
2024 time on a match. */
2025
2026 struct symbol *sym_found = NULL;
2027
2028 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2029 sym != NULL;
2030 sym = dict_iter_name_next (name, &iter))
2031 {
2032 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2033 SYMBOL_DOMAIN (sym), domain)
2034 && (linkage_name != NULL
2035 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2036 {
2037 sym_found = sym;
2038 if (!SYMBOL_IS_ARGUMENT (sym))
2039 {
2040 break;
2041 }
2042 }
2043 }
2044 return (sym_found); /* Will be NULL if not found. */
2045 }
2046 }
2047
2048 /* Find the symtab associated with PC and SECTION. Look through the
2049 psymtabs and read in another symtab if necessary. */
2050
2051 struct symtab *
2052 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2053 {
2054 struct block *b;
2055 struct blockvector *bv;
2056 struct symtab *s = NULL;
2057 struct symtab *best_s = NULL;
2058 struct partial_symtab *ps;
2059 struct objfile *objfile;
2060 struct program_space *pspace;
2061 CORE_ADDR distance = 0;
2062 struct minimal_symbol *msymbol;
2063
2064 pspace = current_program_space;
2065
2066 /* If we know that this is not a text address, return failure. This is
2067 necessary because we loop based on the block's high and low code
2068 addresses, which do not include the data ranges, and because
2069 we call find_pc_sect_psymtab which has a similar restriction based
2070 on the partial_symtab's texthigh and textlow. */
2071 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2072 if (msymbol
2073 && (MSYMBOL_TYPE (msymbol) == mst_data
2074 || MSYMBOL_TYPE (msymbol) == mst_bss
2075 || MSYMBOL_TYPE (msymbol) == mst_abs
2076 || MSYMBOL_TYPE (msymbol) == mst_file_data
2077 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2078 return NULL;
2079
2080 /* Search all symtabs for the one whose file contains our address, and which
2081 is the smallest of all the ones containing the address. This is designed
2082 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2083 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2084 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2085
2086 This happens for native ecoff format, where code from included files
2087 gets its own symtab. The symtab for the included file should have
2088 been read in already via the dependency mechanism.
2089 It might be swifter to create several symtabs with the same name
2090 like xcoff does (I'm not sure).
2091
2092 It also happens for objfiles that have their functions reordered.
2093 For these, the symtab we are looking for is not necessarily read in. */
2094
2095 ALL_PRIMARY_SYMTABS (objfile, s)
2096 {
2097 bv = BLOCKVECTOR (s);
2098 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2099
2100 if (BLOCK_START (b) <= pc
2101 && BLOCK_END (b) > pc
2102 && (distance == 0
2103 || BLOCK_END (b) - BLOCK_START (b) < distance))
2104 {
2105 /* For an objfile that has its functions reordered,
2106 find_pc_psymtab will find the proper partial symbol table
2107 and we simply return its corresponding symtab. */
2108 /* In order to better support objfiles that contain both
2109 stabs and coff debugging info, we continue on if a psymtab
2110 can't be found. */
2111 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2112 {
2113 ps = find_pc_sect_psymtab (pc, section);
2114 if (ps)
2115 return PSYMTAB_TO_SYMTAB (ps);
2116 }
2117 if (section != 0)
2118 {
2119 struct dict_iterator iter;
2120 struct symbol *sym = NULL;
2121
2122 ALL_BLOCK_SYMBOLS (b, iter, sym)
2123 {
2124 fixup_symbol_section (sym, objfile);
2125 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2126 break;
2127 }
2128 if (sym == NULL)
2129 continue; /* no symbol in this symtab matches section */
2130 }
2131 distance = BLOCK_END (b) - BLOCK_START (b);
2132 best_s = s;
2133 }
2134 }
2135
2136 if (best_s != NULL)
2137 return (best_s);
2138
2139 s = NULL;
2140 ps = find_pc_sect_psymtab (pc, section);
2141 if (ps)
2142 {
2143 if (ps->readin)
2144 /* Might want to error() here (in case symtab is corrupt and
2145 will cause a core dump), but maybe we can successfully
2146 continue, so let's not. */
2147 warning (_("\
2148 (Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
2149 paddress (get_objfile_arch (ps->objfile), pc));
2150 s = PSYMTAB_TO_SYMTAB (ps);
2151 }
2152 return (s);
2153 }
2154
2155 /* Find the symtab associated with PC. Look through the psymtabs and
2156 read in another symtab if necessary. Backward compatibility, no section */
2157
2158 struct symtab *
2159 find_pc_symtab (CORE_ADDR pc)
2160 {
2161 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2162 }
2163 \f
2164
2165 /* Find the source file and line number for a given PC value and SECTION.
2166 Return a structure containing a symtab pointer, a line number,
2167 and a pc range for the entire source line.
2168 The value's .pc field is NOT the specified pc.
2169 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2170 use the line that ends there. Otherwise, in that case, the line
2171 that begins there is used. */
2172
2173 /* The big complication here is that a line may start in one file, and end just
2174 before the start of another file. This usually occurs when you #include
2175 code in the middle of a subroutine. To properly find the end of a line's PC
2176 range, we must search all symtabs associated with this compilation unit, and
2177 find the one whose first PC is closer than that of the next line in this
2178 symtab. */
2179
2180 /* If it's worth the effort, we could be using a binary search. */
2181
2182 struct symtab_and_line
2183 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2184 {
2185 struct symtab *s;
2186 struct linetable *l;
2187 int len;
2188 int i;
2189 struct linetable_entry *item;
2190 struct symtab_and_line val;
2191 struct blockvector *bv;
2192 struct minimal_symbol *msymbol;
2193 struct minimal_symbol *mfunsym;
2194
2195 /* Info on best line seen so far, and where it starts, and its file. */
2196
2197 struct linetable_entry *best = NULL;
2198 CORE_ADDR best_end = 0;
2199 struct symtab *best_symtab = 0;
2200
2201 /* Store here the first line number
2202 of a file which contains the line at the smallest pc after PC.
2203 If we don't find a line whose range contains PC,
2204 we will use a line one less than this,
2205 with a range from the start of that file to the first line's pc. */
2206 struct linetable_entry *alt = NULL;
2207 struct symtab *alt_symtab = 0;
2208
2209 /* Info on best line seen in this file. */
2210
2211 struct linetable_entry *prev;
2212
2213 /* If this pc is not from the current frame,
2214 it is the address of the end of a call instruction.
2215 Quite likely that is the start of the following statement.
2216 But what we want is the statement containing the instruction.
2217 Fudge the pc to make sure we get that. */
2218
2219 init_sal (&val); /* initialize to zeroes */
2220
2221 val.pspace = current_program_space;
2222
2223 /* It's tempting to assume that, if we can't find debugging info for
2224 any function enclosing PC, that we shouldn't search for line
2225 number info, either. However, GAS can emit line number info for
2226 assembly files --- very helpful when debugging hand-written
2227 assembly code. In such a case, we'd have no debug info for the
2228 function, but we would have line info. */
2229
2230 if (notcurrent)
2231 pc -= 1;
2232
2233 /* elz: added this because this function returned the wrong
2234 information if the pc belongs to a stub (import/export)
2235 to call a shlib function. This stub would be anywhere between
2236 two functions in the target, and the line info was erroneously
2237 taken to be the one of the line before the pc.
2238 */
2239 /* RT: Further explanation:
2240
2241 * We have stubs (trampolines) inserted between procedures.
2242 *
2243 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2244 * exists in the main image.
2245 *
2246 * In the minimal symbol table, we have a bunch of symbols
2247 * sorted by start address. The stubs are marked as "trampoline",
2248 * the others appear as text. E.g.:
2249 *
2250 * Minimal symbol table for main image
2251 * main: code for main (text symbol)
2252 * shr1: stub (trampoline symbol)
2253 * foo: code for foo (text symbol)
2254 * ...
2255 * Minimal symbol table for "shr1" image:
2256 * ...
2257 * shr1: code for shr1 (text symbol)
2258 * ...
2259 *
2260 * So the code below is trying to detect if we are in the stub
2261 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2262 * and if found, do the symbolization from the real-code address
2263 * rather than the stub address.
2264 *
2265 * Assumptions being made about the minimal symbol table:
2266 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2267 * if we're really in the trampoline. If we're beyond it (say
2268 * we're in "foo" in the above example), it'll have a closer
2269 * symbol (the "foo" text symbol for example) and will not
2270 * return the trampoline.
2271 * 2. lookup_minimal_symbol_text() will find a real text symbol
2272 * corresponding to the trampoline, and whose address will
2273 * be different than the trampoline address. I put in a sanity
2274 * check for the address being the same, to avoid an
2275 * infinite recursion.
2276 */
2277 msymbol = lookup_minimal_symbol_by_pc (pc);
2278 if (msymbol != NULL)
2279 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2280 {
2281 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2282 NULL);
2283 if (mfunsym == NULL)
2284 /* I eliminated this warning since it is coming out
2285 * in the following situation:
2286 * gdb shmain // test program with shared libraries
2287 * (gdb) break shr1 // function in shared lib
2288 * Warning: In stub for ...
2289 * In the above situation, the shared lib is not loaded yet,
2290 * so of course we can't find the real func/line info,
2291 * but the "break" still works, and the warning is annoying.
2292 * So I commented out the warning. RT */
2293 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2294 /* fall through */
2295 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2296 /* Avoid infinite recursion */
2297 /* See above comment about why warning is commented out */
2298 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2299 /* fall through */
2300 else
2301 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2302 }
2303
2304
2305 s = find_pc_sect_symtab (pc, section);
2306 if (!s)
2307 {
2308 /* if no symbol information, return previous pc */
2309 if (notcurrent)
2310 pc++;
2311 val.pc = pc;
2312 return val;
2313 }
2314
2315 bv = BLOCKVECTOR (s);
2316
2317 /* Look at all the symtabs that share this blockvector.
2318 They all have the same apriori range, that we found was right;
2319 but they have different line tables. */
2320
2321 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2322 {
2323 /* Find the best line in this symtab. */
2324 l = LINETABLE (s);
2325 if (!l)
2326 continue;
2327 len = l->nitems;
2328 if (len <= 0)
2329 {
2330 /* I think len can be zero if the symtab lacks line numbers
2331 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2332 I'm not sure which, and maybe it depends on the symbol
2333 reader). */
2334 continue;
2335 }
2336
2337 prev = NULL;
2338 item = l->item; /* Get first line info */
2339
2340 /* Is this file's first line closer than the first lines of other files?
2341 If so, record this file, and its first line, as best alternate. */
2342 if (item->pc > pc && (!alt || item->pc < alt->pc))
2343 {
2344 alt = item;
2345 alt_symtab = s;
2346 }
2347
2348 for (i = 0; i < len; i++, item++)
2349 {
2350 /* Leave prev pointing to the linetable entry for the last line
2351 that started at or before PC. */
2352 if (item->pc > pc)
2353 break;
2354
2355 prev = item;
2356 }
2357
2358 /* At this point, prev points at the line whose start addr is <= pc, and
2359 item points at the next line. If we ran off the end of the linetable
2360 (pc >= start of the last line), then prev == item. If pc < start of
2361 the first line, prev will not be set. */
2362
2363 /* Is this file's best line closer than the best in the other files?
2364 If so, record this file, and its best line, as best so far. Don't
2365 save prev if it represents the end of a function (i.e. line number
2366 0) instead of a real line. */
2367
2368 if (prev && prev->line && (!best || prev->pc > best->pc))
2369 {
2370 best = prev;
2371 best_symtab = s;
2372
2373 /* Discard BEST_END if it's before the PC of the current BEST. */
2374 if (best_end <= best->pc)
2375 best_end = 0;
2376 }
2377
2378 /* If another line (denoted by ITEM) is in the linetable and its
2379 PC is after BEST's PC, but before the current BEST_END, then
2380 use ITEM's PC as the new best_end. */
2381 if (best && i < len && item->pc > best->pc
2382 && (best_end == 0 || best_end > item->pc))
2383 best_end = item->pc;
2384 }
2385
2386 if (!best_symtab)
2387 {
2388 /* If we didn't find any line number info, just return zeros.
2389 We used to return alt->line - 1 here, but that could be
2390 anywhere; if we don't have line number info for this PC,
2391 don't make some up. */
2392 val.pc = pc;
2393 }
2394 else if (best->line == 0)
2395 {
2396 /* If our best fit is in a range of PC's for which no line
2397 number info is available (line number is zero) then we didn't
2398 find any valid line information. */
2399 val.pc = pc;
2400 }
2401 else
2402 {
2403 val.symtab = best_symtab;
2404 val.line = best->line;
2405 val.pc = best->pc;
2406 if (best_end && (!alt || best_end < alt->pc))
2407 val.end = best_end;
2408 else if (alt)
2409 val.end = alt->pc;
2410 else
2411 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2412 }
2413 val.section = section;
2414 return val;
2415 }
2416
2417 /* Backward compatibility (no section) */
2418
2419 struct symtab_and_line
2420 find_pc_line (CORE_ADDR pc, int notcurrent)
2421 {
2422 struct obj_section *section;
2423
2424 section = find_pc_overlay (pc);
2425 if (pc_in_unmapped_range (pc, section))
2426 pc = overlay_mapped_address (pc, section);
2427 return find_pc_sect_line (pc, section, notcurrent);
2428 }
2429 \f
2430 /* Find line number LINE in any symtab whose name is the same as
2431 SYMTAB.
2432
2433 If found, return the symtab that contains the linetable in which it was
2434 found, set *INDEX to the index in the linetable of the best entry
2435 found, and set *EXACT_MATCH nonzero if the value returned is an
2436 exact match.
2437
2438 If not found, return NULL. */
2439
2440 struct symtab *
2441 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2442 {
2443 int exact = 0; /* Initialized here to avoid a compiler warning. */
2444
2445 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2446 so far seen. */
2447
2448 int best_index;
2449 struct linetable *best_linetable;
2450 struct symtab *best_symtab;
2451
2452 /* First try looking it up in the given symtab. */
2453 best_linetable = LINETABLE (symtab);
2454 best_symtab = symtab;
2455 best_index = find_line_common (best_linetable, line, &exact);
2456 if (best_index < 0 || !exact)
2457 {
2458 /* Didn't find an exact match. So we better keep looking for
2459 another symtab with the same name. In the case of xcoff,
2460 multiple csects for one source file (produced by IBM's FORTRAN
2461 compiler) produce multiple symtabs (this is unavoidable
2462 assuming csects can be at arbitrary places in memory and that
2463 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2464
2465 /* BEST is the smallest linenumber > LINE so far seen,
2466 or 0 if none has been seen so far.
2467 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2468 int best;
2469
2470 struct objfile *objfile;
2471 struct symtab *s;
2472 struct partial_symtab *p;
2473
2474 if (best_index >= 0)
2475 best = best_linetable->item[best_index].line;
2476 else
2477 best = 0;
2478
2479 ALL_PSYMTABS (objfile, p)
2480 {
2481 if (FILENAME_CMP (symtab->filename, p->filename) != 0)
2482 continue;
2483 PSYMTAB_TO_SYMTAB (p);
2484 }
2485
2486 /* Get symbol full file name if possible. */
2487 symtab_to_fullname (symtab);
2488
2489 ALL_SYMTABS (objfile, s)
2490 {
2491 struct linetable *l;
2492 int ind;
2493
2494 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2495 continue;
2496 if (symtab->fullname != NULL
2497 && symtab_to_fullname (s) != NULL
2498 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2499 continue;
2500 l = LINETABLE (s);
2501 ind = find_line_common (l, line, &exact);
2502 if (ind >= 0)
2503 {
2504 if (exact)
2505 {
2506 best_index = ind;
2507 best_linetable = l;
2508 best_symtab = s;
2509 goto done;
2510 }
2511 if (best == 0 || l->item[ind].line < best)
2512 {
2513 best = l->item[ind].line;
2514 best_index = ind;
2515 best_linetable = l;
2516 best_symtab = s;
2517 }
2518 }
2519 }
2520 }
2521 done:
2522 if (best_index < 0)
2523 return NULL;
2524
2525 if (index)
2526 *index = best_index;
2527 if (exact_match)
2528 *exact_match = exact;
2529
2530 return best_symtab;
2531 }
2532 \f
2533 /* Set the PC value for a given source file and line number and return true.
2534 Returns zero for invalid line number (and sets the PC to 0).
2535 The source file is specified with a struct symtab. */
2536
2537 int
2538 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2539 {
2540 struct linetable *l;
2541 int ind;
2542
2543 *pc = 0;
2544 if (symtab == 0)
2545 return 0;
2546
2547 symtab = find_line_symtab (symtab, line, &ind, NULL);
2548 if (symtab != NULL)
2549 {
2550 l = LINETABLE (symtab);
2551 *pc = l->item[ind].pc;
2552 return 1;
2553 }
2554 else
2555 return 0;
2556 }
2557
2558 /* Find the range of pc values in a line.
2559 Store the starting pc of the line into *STARTPTR
2560 and the ending pc (start of next line) into *ENDPTR.
2561 Returns 1 to indicate success.
2562 Returns 0 if could not find the specified line. */
2563
2564 int
2565 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2566 CORE_ADDR *endptr)
2567 {
2568 CORE_ADDR startaddr;
2569 struct symtab_and_line found_sal;
2570
2571 startaddr = sal.pc;
2572 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2573 return 0;
2574
2575 /* This whole function is based on address. For example, if line 10 has
2576 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2577 "info line *0x123" should say the line goes from 0x100 to 0x200
2578 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2579 This also insures that we never give a range like "starts at 0x134
2580 and ends at 0x12c". */
2581
2582 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2583 if (found_sal.line != sal.line)
2584 {
2585 /* The specified line (sal) has zero bytes. */
2586 *startptr = found_sal.pc;
2587 *endptr = found_sal.pc;
2588 }
2589 else
2590 {
2591 *startptr = found_sal.pc;
2592 *endptr = found_sal.end;
2593 }
2594 return 1;
2595 }
2596
2597 /* Given a line table and a line number, return the index into the line
2598 table for the pc of the nearest line whose number is >= the specified one.
2599 Return -1 if none is found. The value is >= 0 if it is an index.
2600
2601 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2602
2603 static int
2604 find_line_common (struct linetable *l, int lineno,
2605 int *exact_match)
2606 {
2607 int i;
2608 int len;
2609
2610 /* BEST is the smallest linenumber > LINENO so far seen,
2611 or 0 if none has been seen so far.
2612 BEST_INDEX identifies the item for it. */
2613
2614 int best_index = -1;
2615 int best = 0;
2616
2617 *exact_match = 0;
2618
2619 if (lineno <= 0)
2620 return -1;
2621 if (l == 0)
2622 return -1;
2623
2624 len = l->nitems;
2625 for (i = 0; i < len; i++)
2626 {
2627 struct linetable_entry *item = &(l->item[i]);
2628
2629 if (item->line == lineno)
2630 {
2631 /* Return the first (lowest address) entry which matches. */
2632 *exact_match = 1;
2633 return i;
2634 }
2635
2636 if (item->line > lineno && (best == 0 || item->line < best))
2637 {
2638 best = item->line;
2639 best_index = i;
2640 }
2641 }
2642
2643 /* If we got here, we didn't get an exact match. */
2644 return best_index;
2645 }
2646
2647 int
2648 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2649 {
2650 struct symtab_and_line sal;
2651 sal = find_pc_line (pc, 0);
2652 *startptr = sal.pc;
2653 *endptr = sal.end;
2654 return sal.symtab != 0;
2655 }
2656
2657 /* Given a function start address PC and SECTION, find the first
2658 address after the function prologue. */
2659 CORE_ADDR
2660 find_function_start_pc (struct gdbarch *gdbarch,
2661 CORE_ADDR pc, struct obj_section *section)
2662 {
2663 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2664 so that gdbarch_skip_prologue has something unique to work on. */
2665 if (section_is_overlay (section) && !section_is_mapped (section))
2666 pc = overlay_unmapped_address (pc, section);
2667
2668 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2669 pc = gdbarch_skip_prologue (gdbarch, pc);
2670
2671 /* For overlays, map pc back into its mapped VMA range. */
2672 pc = overlay_mapped_address (pc, section);
2673
2674 return pc;
2675 }
2676
2677 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2678 address for that function that has an entry in SYMTAB's line info
2679 table. If such an entry cannot be found, return FUNC_ADDR
2680 unaltered. */
2681 CORE_ADDR
2682 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2683 {
2684 CORE_ADDR func_start, func_end;
2685 struct linetable *l;
2686 int ind, i, len;
2687 int best_lineno = 0;
2688 CORE_ADDR best_pc = func_addr;
2689
2690 /* Give up if this symbol has no lineinfo table. */
2691 l = LINETABLE (symtab);
2692 if (l == NULL)
2693 return func_addr;
2694
2695 /* Get the range for the function's PC values, or give up if we
2696 cannot, for some reason. */
2697 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2698 return func_addr;
2699
2700 /* Linetable entries are ordered by PC values, see the commentary in
2701 symtab.h where `struct linetable' is defined. Thus, the first
2702 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2703 address we are looking for. */
2704 for (i = 0; i < l->nitems; i++)
2705 {
2706 struct linetable_entry *item = &(l->item[i]);
2707
2708 /* Don't use line numbers of zero, they mark special entries in
2709 the table. See the commentary on symtab.h before the
2710 definition of struct linetable. */
2711 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2712 return item->pc;
2713 }
2714
2715 return func_addr;
2716 }
2717
2718 /* Given a function symbol SYM, find the symtab and line for the start
2719 of the function.
2720 If the argument FUNFIRSTLINE is nonzero, we want the first line
2721 of real code inside the function. */
2722
2723 struct symtab_and_line
2724 find_function_start_sal (struct symbol *sym, int funfirstline)
2725 {
2726 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2727 struct objfile *objfile = lookup_objfile_from_block (block);
2728 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2729
2730 CORE_ADDR pc;
2731 struct symtab_and_line sal;
2732 struct block *b, *function_block;
2733
2734 struct cleanup *old_chain;
2735
2736 old_chain = save_current_space_and_thread ();
2737 switch_to_program_space_and_thread (objfile->pspace);
2738
2739 pc = BLOCK_START (block);
2740 fixup_symbol_section (sym, objfile);
2741 if (funfirstline)
2742 {
2743 /* Skip "first line" of function (which is actually its prologue). */
2744 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2745 }
2746 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2747
2748 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2749 line is still part of the same function. */
2750 if (sal.pc != pc
2751 && BLOCK_START (block) <= sal.end
2752 && sal.end < BLOCK_END (block))
2753 {
2754 /* First pc of next line */
2755 pc = sal.end;
2756 /* Recalculate the line number (might not be N+1). */
2757 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2758 }
2759
2760 /* On targets with executable formats that don't have a concept of
2761 constructors (ELF with .init has, PE doesn't), gcc emits a call
2762 to `__main' in `main' between the prologue and before user
2763 code. */
2764 if (funfirstline
2765 && gdbarch_skip_main_prologue_p (gdbarch)
2766 && SYMBOL_LINKAGE_NAME (sym)
2767 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2768 {
2769 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2770 /* Recalculate the line number (might not be N+1). */
2771 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2772 }
2773
2774 /* If we still don't have a valid source line, try to find the first
2775 PC in the lineinfo table that belongs to the same function. This
2776 happens with COFF debug info, which does not seem to have an
2777 entry in lineinfo table for the code after the prologue which has
2778 no direct relation to source. For example, this was found to be
2779 the case with the DJGPP target using "gcc -gcoff" when the
2780 compiler inserted code after the prologue to make sure the stack
2781 is aligned. */
2782 if (funfirstline && sal.symtab == NULL)
2783 {
2784 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2785 /* Recalculate the line number. */
2786 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2787 }
2788
2789 sal.pc = pc;
2790 sal.pspace = objfile->pspace;
2791
2792 /* Check if we are now inside an inlined function. If we can,
2793 use the call site of the function instead. */
2794 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2795 function_block = NULL;
2796 while (b != NULL)
2797 {
2798 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2799 function_block = b;
2800 else if (BLOCK_FUNCTION (b) != NULL)
2801 break;
2802 b = BLOCK_SUPERBLOCK (b);
2803 }
2804 if (function_block != NULL
2805 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2806 {
2807 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2808 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2809 }
2810
2811 do_cleanups (old_chain);
2812 return sal;
2813 }
2814
2815 /* If P is of the form "operator[ \t]+..." where `...' is
2816 some legitimate operator text, return a pointer to the
2817 beginning of the substring of the operator text.
2818 Otherwise, return "". */
2819 char *
2820 operator_chars (char *p, char **end)
2821 {
2822 *end = "";
2823 if (strncmp (p, "operator", 8))
2824 return *end;
2825 p += 8;
2826
2827 /* Don't get faked out by `operator' being part of a longer
2828 identifier. */
2829 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2830 return *end;
2831
2832 /* Allow some whitespace between `operator' and the operator symbol. */
2833 while (*p == ' ' || *p == '\t')
2834 p++;
2835
2836 /* Recognize 'operator TYPENAME'. */
2837
2838 if (isalpha (*p) || *p == '_' || *p == '$')
2839 {
2840 char *q = p + 1;
2841 while (isalnum (*q) || *q == '_' || *q == '$')
2842 q++;
2843 *end = q;
2844 return p;
2845 }
2846
2847 while (*p)
2848 switch (*p)
2849 {
2850 case '\\': /* regexp quoting */
2851 if (p[1] == '*')
2852 {
2853 if (p[2] == '=') /* 'operator\*=' */
2854 *end = p + 3;
2855 else /* 'operator\*' */
2856 *end = p + 2;
2857 return p;
2858 }
2859 else if (p[1] == '[')
2860 {
2861 if (p[2] == ']')
2862 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2863 else if (p[2] == '\\' && p[3] == ']')
2864 {
2865 *end = p + 4; /* 'operator\[\]' */
2866 return p;
2867 }
2868 else
2869 error (_("nothing is allowed between '[' and ']'"));
2870 }
2871 else
2872 {
2873 /* Gratuitous qoute: skip it and move on. */
2874 p++;
2875 continue;
2876 }
2877 break;
2878 case '!':
2879 case '=':
2880 case '*':
2881 case '/':
2882 case '%':
2883 case '^':
2884 if (p[1] == '=')
2885 *end = p + 2;
2886 else
2887 *end = p + 1;
2888 return p;
2889 case '<':
2890 case '>':
2891 case '+':
2892 case '-':
2893 case '&':
2894 case '|':
2895 if (p[0] == '-' && p[1] == '>')
2896 {
2897 /* Struct pointer member operator 'operator->'. */
2898 if (p[2] == '*')
2899 {
2900 *end = p + 3; /* 'operator->*' */
2901 return p;
2902 }
2903 else if (p[2] == '\\')
2904 {
2905 *end = p + 4; /* Hopefully 'operator->\*' */
2906 return p;
2907 }
2908 else
2909 {
2910 *end = p + 2; /* 'operator->' */
2911 return p;
2912 }
2913 }
2914 if (p[1] == '=' || p[1] == p[0])
2915 *end = p + 2;
2916 else
2917 *end = p + 1;
2918 return p;
2919 case '~':
2920 case ',':
2921 *end = p + 1;
2922 return p;
2923 case '(':
2924 if (p[1] != ')')
2925 error (_("`operator ()' must be specified without whitespace in `()'"));
2926 *end = p + 2;
2927 return p;
2928 case '?':
2929 if (p[1] != ':')
2930 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2931 *end = p + 2;
2932 return p;
2933 case '[':
2934 if (p[1] != ']')
2935 error (_("`operator []' must be specified without whitespace in `[]'"));
2936 *end = p + 2;
2937 return p;
2938 default:
2939 error (_("`operator %s' not supported"), p);
2940 break;
2941 }
2942
2943 *end = "";
2944 return *end;
2945 }
2946 \f
2947
2948 /* If FILE is not already in the table of files, return zero;
2949 otherwise return non-zero. Optionally add FILE to the table if ADD
2950 is non-zero. If *FIRST is non-zero, forget the old table
2951 contents. */
2952 static int
2953 filename_seen (const char *file, int add, int *first)
2954 {
2955 /* Table of files seen so far. */
2956 static const char **tab = NULL;
2957 /* Allocated size of tab in elements.
2958 Start with one 256-byte block (when using GNU malloc.c).
2959 24 is the malloc overhead when range checking is in effect. */
2960 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2961 /* Current size of tab in elements. */
2962 static int tab_cur_size;
2963 const char **p;
2964
2965 if (*first)
2966 {
2967 if (tab == NULL)
2968 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2969 tab_cur_size = 0;
2970 }
2971
2972 /* Is FILE in tab? */
2973 for (p = tab; p < tab + tab_cur_size; p++)
2974 if (strcmp (*p, file) == 0)
2975 return 1;
2976
2977 /* No; maybe add it to tab. */
2978 if (add)
2979 {
2980 if (tab_cur_size == tab_alloc_size)
2981 {
2982 tab_alloc_size *= 2;
2983 tab = (const char **) xrealloc ((char *) tab,
2984 tab_alloc_size * sizeof (*tab));
2985 }
2986 tab[tab_cur_size++] = file;
2987 }
2988
2989 return 0;
2990 }
2991
2992 /* Slave routine for sources_info. Force line breaks at ,'s.
2993 NAME is the name to print and *FIRST is nonzero if this is the first
2994 name printed. Set *FIRST to zero. */
2995 static void
2996 output_source_filename (const char *name, int *first)
2997 {
2998 /* Since a single source file can result in several partial symbol
2999 tables, we need to avoid printing it more than once. Note: if
3000 some of the psymtabs are read in and some are not, it gets
3001 printed both under "Source files for which symbols have been
3002 read" and "Source files for which symbols will be read in on
3003 demand". I consider this a reasonable way to deal with the
3004 situation. I'm not sure whether this can also happen for
3005 symtabs; it doesn't hurt to check. */
3006
3007 /* Was NAME already seen? */
3008 if (filename_seen (name, 1, first))
3009 {
3010 /* Yes; don't print it again. */
3011 return;
3012 }
3013 /* No; print it and reset *FIRST. */
3014 if (*first)
3015 {
3016 *first = 0;
3017 }
3018 else
3019 {
3020 printf_filtered (", ");
3021 }
3022
3023 wrap_here ("");
3024 fputs_filtered (name, gdb_stdout);
3025 }
3026
3027 static void
3028 sources_info (char *ignore, int from_tty)
3029 {
3030 struct symtab *s;
3031 struct partial_symtab *ps;
3032 struct objfile *objfile;
3033 int first;
3034
3035 if (!have_full_symbols () && !have_partial_symbols ())
3036 {
3037 error (_("No symbol table is loaded. Use the \"file\" command."));
3038 }
3039
3040 printf_filtered ("Source files for which symbols have been read in:\n\n");
3041
3042 first = 1;
3043 ALL_SYMTABS (objfile, s)
3044 {
3045 const char *fullname = symtab_to_fullname (s);
3046 output_source_filename (fullname ? fullname : s->filename, &first);
3047 }
3048 printf_filtered ("\n\n");
3049
3050 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
3051
3052 first = 1;
3053 ALL_PSYMTABS (objfile, ps)
3054 {
3055 if (!ps->readin)
3056 {
3057 const char *fullname = psymtab_to_fullname (ps);
3058 output_source_filename (fullname ? fullname : ps->filename, &first);
3059 }
3060 }
3061 printf_filtered ("\n");
3062 }
3063
3064 static int
3065 file_matches (char *file, char *files[], int nfiles)
3066 {
3067 int i;
3068
3069 if (file != NULL && nfiles != 0)
3070 {
3071 for (i = 0; i < nfiles; i++)
3072 {
3073 if (strcmp (files[i], lbasename (file)) == 0)
3074 return 1;
3075 }
3076 }
3077 else if (nfiles == 0)
3078 return 1;
3079 return 0;
3080 }
3081
3082 /* Free any memory associated with a search. */
3083 void
3084 free_search_symbols (struct symbol_search *symbols)
3085 {
3086 struct symbol_search *p;
3087 struct symbol_search *next;
3088
3089 for (p = symbols; p != NULL; p = next)
3090 {
3091 next = p->next;
3092 xfree (p);
3093 }
3094 }
3095
3096 static void
3097 do_free_search_symbols_cleanup (void *symbols)
3098 {
3099 free_search_symbols (symbols);
3100 }
3101
3102 struct cleanup *
3103 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3104 {
3105 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3106 }
3107
3108 /* Helper function for sort_search_symbols and qsort. Can only
3109 sort symbols, not minimal symbols. */
3110 static int
3111 compare_search_syms (const void *sa, const void *sb)
3112 {
3113 struct symbol_search **sym_a = (struct symbol_search **) sa;
3114 struct symbol_search **sym_b = (struct symbol_search **) sb;
3115
3116 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3117 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3118 }
3119
3120 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3121 prevtail where it is, but update its next pointer to point to
3122 the first of the sorted symbols. */
3123 static struct symbol_search *
3124 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3125 {
3126 struct symbol_search **symbols, *symp, *old_next;
3127 int i;
3128
3129 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3130 * nfound);
3131 symp = prevtail->next;
3132 for (i = 0; i < nfound; i++)
3133 {
3134 symbols[i] = symp;
3135 symp = symp->next;
3136 }
3137 /* Generally NULL. */
3138 old_next = symp;
3139
3140 qsort (symbols, nfound, sizeof (struct symbol_search *),
3141 compare_search_syms);
3142
3143 symp = prevtail;
3144 for (i = 0; i < nfound; i++)
3145 {
3146 symp->next = symbols[i];
3147 symp = symp->next;
3148 }
3149 symp->next = old_next;
3150
3151 xfree (symbols);
3152 return symp;
3153 }
3154
3155 /* Search the symbol table for matches to the regular expression REGEXP,
3156 returning the results in *MATCHES.
3157
3158 Only symbols of KIND are searched:
3159 FUNCTIONS_DOMAIN - search all functions
3160 TYPES_DOMAIN - search all type names
3161 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3162 and constants (enums)
3163
3164 free_search_symbols should be called when *MATCHES is no longer needed.
3165
3166 The results are sorted locally; each symtab's global and static blocks are
3167 separately alphabetized.
3168 */
3169 void
3170 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3171 struct symbol_search **matches)
3172 {
3173 struct symtab *s;
3174 struct partial_symtab *ps;
3175 struct blockvector *bv;
3176 struct block *b;
3177 int i = 0;
3178 struct dict_iterator iter;
3179 struct symbol *sym;
3180 struct partial_symbol **psym;
3181 struct objfile *objfile;
3182 struct minimal_symbol *msymbol;
3183 char *val;
3184 int found_misc = 0;
3185 static enum minimal_symbol_type types[]
3186 =
3187 {mst_data, mst_text, mst_abs, mst_unknown};
3188 static enum minimal_symbol_type types2[]
3189 =
3190 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3191 static enum minimal_symbol_type types3[]
3192 =
3193 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3194 static enum minimal_symbol_type types4[]
3195 =
3196 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3197 enum minimal_symbol_type ourtype;
3198 enum minimal_symbol_type ourtype2;
3199 enum minimal_symbol_type ourtype3;
3200 enum minimal_symbol_type ourtype4;
3201 struct symbol_search *sr;
3202 struct symbol_search *psr;
3203 struct symbol_search *tail;
3204 struct cleanup *old_chain = NULL;
3205
3206 if (kind < VARIABLES_DOMAIN)
3207 error (_("must search on specific domain"));
3208
3209 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3210 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3211 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3212 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3213
3214 sr = *matches = NULL;
3215 tail = NULL;
3216
3217 if (regexp != NULL)
3218 {
3219 /* Make sure spacing is right for C++ operators.
3220 This is just a courtesy to make the matching less sensitive
3221 to how many spaces the user leaves between 'operator'
3222 and <TYPENAME> or <OPERATOR>. */
3223 char *opend;
3224 char *opname = operator_chars (regexp, &opend);
3225 if (*opname)
3226 {
3227 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3228 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3229 {
3230 /* There should 1 space between 'operator' and 'TYPENAME'. */
3231 if (opname[-1] != ' ' || opname[-2] == ' ')
3232 fix = 1;
3233 }
3234 else
3235 {
3236 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3237 if (opname[-1] == ' ')
3238 fix = 0;
3239 }
3240 /* If wrong number of spaces, fix it. */
3241 if (fix >= 0)
3242 {
3243 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3244 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3245 regexp = tmp;
3246 }
3247 }
3248
3249 if (0 != (val = re_comp (regexp)))
3250 error (_("Invalid regexp (%s): %s"), val, regexp);
3251 }
3252
3253 /* Search through the partial symtabs *first* for all symbols
3254 matching the regexp. That way we don't have to reproduce all of
3255 the machinery below. */
3256
3257 ALL_PSYMTABS (objfile, ps)
3258 {
3259 struct partial_symbol **bound, **gbound, **sbound;
3260 int keep_going = 1;
3261
3262 if (ps->readin)
3263 continue;
3264
3265 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3266 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3267 bound = gbound;
3268
3269 /* Go through all of the symbols stored in a partial
3270 symtab in one loop. */
3271 psym = objfile->global_psymbols.list + ps->globals_offset;
3272 while (keep_going)
3273 {
3274 if (psym >= bound)
3275 {
3276 if (bound == gbound && ps->n_static_syms != 0)
3277 {
3278 psym = objfile->static_psymbols.list + ps->statics_offset;
3279 bound = sbound;
3280 }
3281 else
3282 keep_going = 0;
3283 continue;
3284 }
3285 else
3286 {
3287 QUIT;
3288
3289 /* If it would match (logic taken from loop below)
3290 load the file and go on to the next one. We check the
3291 filename here, but that's a bit bogus: we don't know
3292 what file it really comes from until we have full
3293 symtabs. The symbol might be in a header file included by
3294 this psymtab. This only affects Insight. */
3295 if (file_matches (ps->filename, files, nfiles)
3296 && ((regexp == NULL
3297 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3298 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3299 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3300 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3301 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3302 {
3303 PSYMTAB_TO_SYMTAB (ps);
3304 keep_going = 0;
3305 }
3306 }
3307 psym++;
3308 }
3309 }
3310
3311 /* Here, we search through the minimal symbol tables for functions
3312 and variables that match, and force their symbols to be read.
3313 This is in particular necessary for demangled variable names,
3314 which are no longer put into the partial symbol tables.
3315 The symbol will then be found during the scan of symtabs below.
3316
3317 For functions, find_pc_symtab should succeed if we have debug info
3318 for the function, for variables we have to call lookup_symbol
3319 to determine if the variable has debug info.
3320 If the lookup fails, set found_misc so that we will rescan to print
3321 any matching symbols without debug info.
3322 */
3323
3324 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3325 {
3326 ALL_MSYMBOLS (objfile, msymbol)
3327 {
3328 QUIT;
3329
3330 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3331 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3332 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3333 MSYMBOL_TYPE (msymbol) == ourtype4)
3334 {
3335 if (regexp == NULL
3336 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3337 {
3338 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3339 {
3340 /* FIXME: carlton/2003-02-04: Given that the
3341 semantics of lookup_symbol keeps on changing
3342 slightly, it would be a nice idea if we had a
3343 function lookup_symbol_minsym that found the
3344 symbol associated to a given minimal symbol (if
3345 any). */
3346 if (kind == FUNCTIONS_DOMAIN
3347 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3348 (struct block *) NULL,
3349 VAR_DOMAIN, 0)
3350 == NULL)
3351 found_misc = 1;
3352 }
3353 }
3354 }
3355 }
3356 }
3357
3358 ALL_PRIMARY_SYMTABS (objfile, s)
3359 {
3360 bv = BLOCKVECTOR (s);
3361 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3362 {
3363 struct symbol_search *prevtail = tail;
3364 int nfound = 0;
3365 b = BLOCKVECTOR_BLOCK (bv, i);
3366 ALL_BLOCK_SYMBOLS (b, iter, sym)
3367 {
3368 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3369 QUIT;
3370
3371 if (file_matches (real_symtab->filename, files, nfiles)
3372 && ((regexp == NULL
3373 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3374 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3375 && SYMBOL_CLASS (sym) != LOC_BLOCK
3376 && SYMBOL_CLASS (sym) != LOC_CONST)
3377 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3378 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3379 {
3380 /* match */
3381 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3382 psr->block = i;
3383 psr->symtab = real_symtab;
3384 psr->symbol = sym;
3385 psr->msymbol = NULL;
3386 psr->next = NULL;
3387 if (tail == NULL)
3388 sr = psr;
3389 else
3390 tail->next = psr;
3391 tail = psr;
3392 nfound ++;
3393 }
3394 }
3395 if (nfound > 0)
3396 {
3397 if (prevtail == NULL)
3398 {
3399 struct symbol_search dummy;
3400
3401 dummy.next = sr;
3402 tail = sort_search_symbols (&dummy, nfound);
3403 sr = dummy.next;
3404
3405 old_chain = make_cleanup_free_search_symbols (sr);
3406 }
3407 else
3408 tail = sort_search_symbols (prevtail, nfound);
3409 }
3410 }
3411 }
3412
3413 /* If there are no eyes, avoid all contact. I mean, if there are
3414 no debug symbols, then print directly from the msymbol_vector. */
3415
3416 if (found_misc || kind != FUNCTIONS_DOMAIN)
3417 {
3418 ALL_MSYMBOLS (objfile, msymbol)
3419 {
3420 QUIT;
3421
3422 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3423 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3424 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3425 MSYMBOL_TYPE (msymbol) == ourtype4)
3426 {
3427 if (regexp == NULL
3428 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3429 {
3430 /* Functions: Look up by address. */
3431 if (kind != FUNCTIONS_DOMAIN ||
3432 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3433 {
3434 /* Variables/Absolutes: Look up by name */
3435 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3436 (struct block *) NULL, VAR_DOMAIN, 0)
3437 == NULL)
3438 {
3439 /* match */
3440 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3441 psr->block = i;
3442 psr->msymbol = msymbol;
3443 psr->symtab = NULL;
3444 psr->symbol = NULL;
3445 psr->next = NULL;
3446 if (tail == NULL)
3447 {
3448 sr = psr;
3449 old_chain = make_cleanup_free_search_symbols (sr);
3450 }
3451 else
3452 tail->next = psr;
3453 tail = psr;
3454 }
3455 }
3456 }
3457 }
3458 }
3459 }
3460
3461 *matches = sr;
3462 if (sr != NULL)
3463 discard_cleanups (old_chain);
3464 }
3465
3466 /* Helper function for symtab_symbol_info, this function uses
3467 the data returned from search_symbols() to print information
3468 regarding the match to gdb_stdout.
3469 */
3470 static void
3471 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3472 int block, char *last)
3473 {
3474 if (last == NULL || strcmp (last, s->filename) != 0)
3475 {
3476 fputs_filtered ("\nFile ", gdb_stdout);
3477 fputs_filtered (s->filename, gdb_stdout);
3478 fputs_filtered (":\n", gdb_stdout);
3479 }
3480
3481 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3482 printf_filtered ("static ");
3483
3484 /* Typedef that is not a C++ class */
3485 if (kind == TYPES_DOMAIN
3486 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3487 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3488 /* variable, func, or typedef-that-is-c++-class */
3489 else if (kind < TYPES_DOMAIN ||
3490 (kind == TYPES_DOMAIN &&
3491 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3492 {
3493 type_print (SYMBOL_TYPE (sym),
3494 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3495 ? "" : SYMBOL_PRINT_NAME (sym)),
3496 gdb_stdout, 0);
3497
3498 printf_filtered (";\n");
3499 }
3500 }
3501
3502 /* This help function for symtab_symbol_info() prints information
3503 for non-debugging symbols to gdb_stdout.
3504 */
3505 static void
3506 print_msymbol_info (struct minimal_symbol *msymbol)
3507 {
3508 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3509 char *tmp;
3510
3511 if (gdbarch_addr_bit (gdbarch) <= 32)
3512 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3513 & (CORE_ADDR) 0xffffffff,
3514 8);
3515 else
3516 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3517 16);
3518 printf_filtered ("%s %s\n",
3519 tmp, SYMBOL_PRINT_NAME (msymbol));
3520 }
3521
3522 /* This is the guts of the commands "info functions", "info types", and
3523 "info variables". It calls search_symbols to find all matches and then
3524 print_[m]symbol_info to print out some useful information about the
3525 matches.
3526 */
3527 static void
3528 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3529 {
3530 static char *classnames[]
3531 =
3532 {"variable", "function", "type", "method"};
3533 struct symbol_search *symbols;
3534 struct symbol_search *p;
3535 struct cleanup *old_chain;
3536 char *last_filename = NULL;
3537 int first = 1;
3538
3539 /* must make sure that if we're interrupted, symbols gets freed */
3540 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3541 old_chain = make_cleanup_free_search_symbols (symbols);
3542
3543 printf_filtered (regexp
3544 ? "All %ss matching regular expression \"%s\":\n"
3545 : "All defined %ss:\n",
3546 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3547
3548 for (p = symbols; p != NULL; p = p->next)
3549 {
3550 QUIT;
3551
3552 if (p->msymbol != NULL)
3553 {
3554 if (first)
3555 {
3556 printf_filtered ("\nNon-debugging symbols:\n");
3557 first = 0;
3558 }
3559 print_msymbol_info (p->msymbol);
3560 }
3561 else
3562 {
3563 print_symbol_info (kind,
3564 p->symtab,
3565 p->symbol,
3566 p->block,
3567 last_filename);
3568 last_filename = p->symtab->filename;
3569 }
3570 }
3571
3572 do_cleanups (old_chain);
3573 }
3574
3575 static void
3576 variables_info (char *regexp, int from_tty)
3577 {
3578 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3579 }
3580
3581 static void
3582 functions_info (char *regexp, int from_tty)
3583 {
3584 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3585 }
3586
3587
3588 static void
3589 types_info (char *regexp, int from_tty)
3590 {
3591 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3592 }
3593
3594 /* Breakpoint all functions matching regular expression. */
3595
3596 void
3597 rbreak_command_wrapper (char *regexp, int from_tty)
3598 {
3599 rbreak_command (regexp, from_tty);
3600 }
3601
3602 static void
3603 rbreak_command (char *regexp, int from_tty)
3604 {
3605 struct symbol_search *ss;
3606 struct symbol_search *p;
3607 struct cleanup *old_chain;
3608
3609 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3610 old_chain = make_cleanup_free_search_symbols (ss);
3611
3612 for (p = ss; p != NULL; p = p->next)
3613 {
3614 if (p->msymbol == NULL)
3615 {
3616 char *string = alloca (strlen (p->symtab->filename)
3617 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3618 + 4);
3619 strcpy (string, p->symtab->filename);
3620 strcat (string, ":'");
3621 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3622 strcat (string, "'");
3623 break_command (string, from_tty);
3624 print_symbol_info (FUNCTIONS_DOMAIN,
3625 p->symtab,
3626 p->symbol,
3627 p->block,
3628 p->symtab->filename);
3629 }
3630 else
3631 {
3632 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3633 + 3);
3634 strcpy (string, "'");
3635 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3636 strcat (string, "'");
3637
3638 break_command (string, from_tty);
3639 printf_filtered ("<function, no debug info> %s;\n",
3640 SYMBOL_PRINT_NAME (p->msymbol));
3641 }
3642 }
3643
3644 do_cleanups (old_chain);
3645 }
3646 \f
3647
3648 /* Helper routine for make_symbol_completion_list. */
3649
3650 static int return_val_size;
3651 static int return_val_index;
3652 static char **return_val;
3653
3654 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3655 completion_list_add_name \
3656 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3657
3658 /* Test to see if the symbol specified by SYMNAME (which is already
3659 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3660 characters. If so, add it to the current completion list. */
3661
3662 static void
3663 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3664 char *text, char *word)
3665 {
3666 int newsize;
3667 int i;
3668
3669 /* clip symbols that cannot match */
3670
3671 if (strncmp (symname, sym_text, sym_text_len) != 0)
3672 {
3673 return;
3674 }
3675
3676 /* We have a match for a completion, so add SYMNAME to the current list
3677 of matches. Note that the name is moved to freshly malloc'd space. */
3678
3679 {
3680 char *new;
3681 if (word == sym_text)
3682 {
3683 new = xmalloc (strlen (symname) + 5);
3684 strcpy (new, symname);
3685 }
3686 else if (word > sym_text)
3687 {
3688 /* Return some portion of symname. */
3689 new = xmalloc (strlen (symname) + 5);
3690 strcpy (new, symname + (word - sym_text));
3691 }
3692 else
3693 {
3694 /* Return some of SYM_TEXT plus symname. */
3695 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3696 strncpy (new, word, sym_text - word);
3697 new[sym_text - word] = '\0';
3698 strcat (new, symname);
3699 }
3700
3701 if (return_val_index + 3 > return_val_size)
3702 {
3703 newsize = (return_val_size *= 2) * sizeof (char *);
3704 return_val = (char **) xrealloc ((char *) return_val, newsize);
3705 }
3706 return_val[return_val_index++] = new;
3707 return_val[return_val_index] = NULL;
3708 }
3709 }
3710
3711 /* ObjC: In case we are completing on a selector, look as the msymbol
3712 again and feed all the selectors into the mill. */
3713
3714 static void
3715 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3716 int sym_text_len, char *text, char *word)
3717 {
3718 static char *tmp = NULL;
3719 static unsigned int tmplen = 0;
3720
3721 char *method, *category, *selector;
3722 char *tmp2 = NULL;
3723
3724 method = SYMBOL_NATURAL_NAME (msymbol);
3725
3726 /* Is it a method? */
3727 if ((method[0] != '-') && (method[0] != '+'))
3728 return;
3729
3730 if (sym_text[0] == '[')
3731 /* Complete on shortened method method. */
3732 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3733
3734 while ((strlen (method) + 1) >= tmplen)
3735 {
3736 if (tmplen == 0)
3737 tmplen = 1024;
3738 else
3739 tmplen *= 2;
3740 tmp = xrealloc (tmp, tmplen);
3741 }
3742 selector = strchr (method, ' ');
3743 if (selector != NULL)
3744 selector++;
3745
3746 category = strchr (method, '(');
3747
3748 if ((category != NULL) && (selector != NULL))
3749 {
3750 memcpy (tmp, method, (category - method));
3751 tmp[category - method] = ' ';
3752 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3753 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3754 if (sym_text[0] == '[')
3755 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3756 }
3757
3758 if (selector != NULL)
3759 {
3760 /* Complete on selector only. */
3761 strcpy (tmp, selector);
3762 tmp2 = strchr (tmp, ']');
3763 if (tmp2 != NULL)
3764 *tmp2 = '\0';
3765
3766 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3767 }
3768 }
3769
3770 /* Break the non-quoted text based on the characters which are in
3771 symbols. FIXME: This should probably be language-specific. */
3772
3773 static char *
3774 language_search_unquoted_string (char *text, char *p)
3775 {
3776 for (; p > text; --p)
3777 {
3778 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3779 continue;
3780 else
3781 {
3782 if ((current_language->la_language == language_objc))
3783 {
3784 if (p[-1] == ':') /* might be part of a method name */
3785 continue;
3786 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3787 p -= 2; /* beginning of a method name */
3788 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3789 { /* might be part of a method name */
3790 char *t = p;
3791
3792 /* Seeing a ' ' or a '(' is not conclusive evidence
3793 that we are in the middle of a method name. However,
3794 finding "-[" or "+[" should be pretty un-ambiguous.
3795 Unfortunately we have to find it now to decide. */
3796
3797 while (t > text)
3798 if (isalnum (t[-1]) || t[-1] == '_' ||
3799 t[-1] == ' ' || t[-1] == ':' ||
3800 t[-1] == '(' || t[-1] == ')')
3801 --t;
3802 else
3803 break;
3804
3805 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3806 p = t - 2; /* method name detected */
3807 /* else we leave with p unchanged */
3808 }
3809 }
3810 break;
3811 }
3812 }
3813 return p;
3814 }
3815
3816 static void
3817 completion_list_add_fields (struct symbol *sym, char *sym_text,
3818 int sym_text_len, char *text, char *word)
3819 {
3820 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3821 {
3822 struct type *t = SYMBOL_TYPE (sym);
3823 enum type_code c = TYPE_CODE (t);
3824 int j;
3825
3826 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3827 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3828 if (TYPE_FIELD_NAME (t, j))
3829 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3830 sym_text, sym_text_len, text, word);
3831 }
3832 }
3833
3834 /* Type of the user_data argument passed to add_macro_name. The
3835 contents are simply whatever is needed by
3836 completion_list_add_name. */
3837 struct add_macro_name_data
3838 {
3839 char *sym_text;
3840 int sym_text_len;
3841 char *text;
3842 char *word;
3843 };
3844
3845 /* A callback used with macro_for_each and macro_for_each_in_scope.
3846 This adds a macro's name to the current completion list. */
3847 static void
3848 add_macro_name (const char *name, const struct macro_definition *ignore,
3849 void *user_data)
3850 {
3851 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3852 completion_list_add_name ((char *) name,
3853 datum->sym_text, datum->sym_text_len,
3854 datum->text, datum->word);
3855 }
3856
3857 char **
3858 default_make_symbol_completion_list (char *text, char *word)
3859 {
3860 /* Problem: All of the symbols have to be copied because readline
3861 frees them. I'm not going to worry about this; hopefully there
3862 won't be that many. */
3863
3864 struct symbol *sym;
3865 struct symtab *s;
3866 struct partial_symtab *ps;
3867 struct minimal_symbol *msymbol;
3868 struct objfile *objfile;
3869 struct block *b;
3870 const struct block *surrounding_static_block, *surrounding_global_block;
3871 struct dict_iterator iter;
3872 struct partial_symbol **psym;
3873 /* The symbol we are completing on. Points in same buffer as text. */
3874 char *sym_text;
3875 /* Length of sym_text. */
3876 int sym_text_len;
3877
3878 /* Now look for the symbol we are supposed to complete on. */
3879 {
3880 char *p;
3881 char quote_found;
3882 char *quote_pos = NULL;
3883
3884 /* First see if this is a quoted string. */
3885 quote_found = '\0';
3886 for (p = text; *p != '\0'; ++p)
3887 {
3888 if (quote_found != '\0')
3889 {
3890 if (*p == quote_found)
3891 /* Found close quote. */
3892 quote_found = '\0';
3893 else if (*p == '\\' && p[1] == quote_found)
3894 /* A backslash followed by the quote character
3895 doesn't end the string. */
3896 ++p;
3897 }
3898 else if (*p == '\'' || *p == '"')
3899 {
3900 quote_found = *p;
3901 quote_pos = p;
3902 }
3903 }
3904 if (quote_found == '\'')
3905 /* A string within single quotes can be a symbol, so complete on it. */
3906 sym_text = quote_pos + 1;
3907 else if (quote_found == '"')
3908 /* A double-quoted string is never a symbol, nor does it make sense
3909 to complete it any other way. */
3910 {
3911 return_val = (char **) xmalloc (sizeof (char *));
3912 return_val[0] = NULL;
3913 return return_val;
3914 }
3915 else
3916 {
3917 /* It is not a quoted string. Break it based on the characters
3918 which are in symbols. */
3919 while (p > text)
3920 {
3921 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3922 || p[-1] == ':')
3923 --p;
3924 else
3925 break;
3926 }
3927 sym_text = p;
3928 }
3929 }
3930
3931 sym_text_len = strlen (sym_text);
3932
3933 return_val_size = 100;
3934 return_val_index = 0;
3935 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3936 return_val[0] = NULL;
3937
3938 /* Look through the partial symtabs for all symbols which begin
3939 by matching SYM_TEXT. Add each one that you find to the list. */
3940
3941 ALL_PSYMTABS (objfile, ps)
3942 {
3943 /* If the psymtab's been read in we'll get it when we search
3944 through the blockvector. */
3945 if (ps->readin)
3946 continue;
3947
3948 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3949 psym < (objfile->global_psymbols.list + ps->globals_offset
3950 + ps->n_global_syms);
3951 psym++)
3952 {
3953 /* If interrupted, then quit. */
3954 QUIT;
3955 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3956 }
3957
3958 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3959 psym < (objfile->static_psymbols.list + ps->statics_offset
3960 + ps->n_static_syms);
3961 psym++)
3962 {
3963 QUIT;
3964 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3965 }
3966 }
3967
3968 /* At this point scan through the misc symbol vectors and add each
3969 symbol you find to the list. Eventually we want to ignore
3970 anything that isn't a text symbol (everything else will be
3971 handled by the psymtab code above). */
3972
3973 ALL_MSYMBOLS (objfile, msymbol)
3974 {
3975 QUIT;
3976 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3977
3978 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3979 }
3980
3981 /* Search upwards from currently selected frame (so that we can
3982 complete on local vars). Also catch fields of types defined in
3983 this places which match our text string. Only complete on types
3984 visible from current context. */
3985
3986 b = get_selected_block (0);
3987 surrounding_static_block = block_static_block (b);
3988 surrounding_global_block = block_global_block (b);
3989 if (surrounding_static_block != NULL)
3990 while (b != surrounding_static_block)
3991 {
3992 QUIT;
3993
3994 ALL_BLOCK_SYMBOLS (b, iter, sym)
3995 {
3996 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3997 word);
3998 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3999 word);
4000 }
4001
4002 /* Stop when we encounter an enclosing function. Do not stop for
4003 non-inlined functions - the locals of the enclosing function
4004 are in scope for a nested function. */
4005 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4006 break;
4007 b = BLOCK_SUPERBLOCK (b);
4008 }
4009
4010 /* Add fields from the file's types; symbols will be added below. */
4011
4012 if (surrounding_static_block != NULL)
4013 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4014 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4015
4016 if (surrounding_global_block != NULL)
4017 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4018 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4019
4020 /* Go through the symtabs and check the externs and statics for
4021 symbols which match. */
4022
4023 ALL_PRIMARY_SYMTABS (objfile, s)
4024 {
4025 QUIT;
4026 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4027 ALL_BLOCK_SYMBOLS (b, iter, sym)
4028 {
4029 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4030 }
4031 }
4032
4033 ALL_PRIMARY_SYMTABS (objfile, s)
4034 {
4035 QUIT;
4036 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4037 ALL_BLOCK_SYMBOLS (b, iter, sym)
4038 {
4039 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4040 }
4041 }
4042
4043 if (current_language->la_macro_expansion == macro_expansion_c)
4044 {
4045 struct macro_scope *scope;
4046 struct add_macro_name_data datum;
4047
4048 datum.sym_text = sym_text;
4049 datum.sym_text_len = sym_text_len;
4050 datum.text = text;
4051 datum.word = word;
4052
4053 /* Add any macros visible in the default scope. Note that this
4054 may yield the occasional wrong result, because an expression
4055 might be evaluated in a scope other than the default. For
4056 example, if the user types "break file:line if <TAB>", the
4057 resulting expression will be evaluated at "file:line" -- but
4058 at there does not seem to be a way to detect this at
4059 completion time. */
4060 scope = default_macro_scope ();
4061 if (scope)
4062 {
4063 macro_for_each_in_scope (scope->file, scope->line,
4064 add_macro_name, &datum);
4065 xfree (scope);
4066 }
4067
4068 /* User-defined macros are always visible. */
4069 macro_for_each (macro_user_macros, add_macro_name, &datum);
4070 }
4071
4072 return (return_val);
4073 }
4074
4075 /* Return a NULL terminated array of all symbols (regardless of class)
4076 which begin by matching TEXT. If the answer is no symbols, then
4077 the return value is an array which contains only a NULL pointer. */
4078
4079 char **
4080 make_symbol_completion_list (char *text, char *word)
4081 {
4082 return current_language->la_make_symbol_completion_list (text, word);
4083 }
4084
4085 /* Like make_symbol_completion_list, but suitable for use as a
4086 completion function. */
4087
4088 char **
4089 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4090 char *text, char *word)
4091 {
4092 return make_symbol_completion_list (text, word);
4093 }
4094
4095 /* Like make_symbol_completion_list, but returns a list of symbols
4096 defined in a source file FILE. */
4097
4098 char **
4099 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4100 {
4101 struct symbol *sym;
4102 struct symtab *s;
4103 struct block *b;
4104 struct dict_iterator iter;
4105 /* The symbol we are completing on. Points in same buffer as text. */
4106 char *sym_text;
4107 /* Length of sym_text. */
4108 int sym_text_len;
4109
4110 /* Now look for the symbol we are supposed to complete on.
4111 FIXME: This should be language-specific. */
4112 {
4113 char *p;
4114 char quote_found;
4115 char *quote_pos = NULL;
4116
4117 /* First see if this is a quoted string. */
4118 quote_found = '\0';
4119 for (p = text; *p != '\0'; ++p)
4120 {
4121 if (quote_found != '\0')
4122 {
4123 if (*p == quote_found)
4124 /* Found close quote. */
4125 quote_found = '\0';
4126 else if (*p == '\\' && p[1] == quote_found)
4127 /* A backslash followed by the quote character
4128 doesn't end the string. */
4129 ++p;
4130 }
4131 else if (*p == '\'' || *p == '"')
4132 {
4133 quote_found = *p;
4134 quote_pos = p;
4135 }
4136 }
4137 if (quote_found == '\'')
4138 /* A string within single quotes can be a symbol, so complete on it. */
4139 sym_text = quote_pos + 1;
4140 else if (quote_found == '"')
4141 /* A double-quoted string is never a symbol, nor does it make sense
4142 to complete it any other way. */
4143 {
4144 return_val = (char **) xmalloc (sizeof (char *));
4145 return_val[0] = NULL;
4146 return return_val;
4147 }
4148 else
4149 {
4150 /* Not a quoted string. */
4151 sym_text = language_search_unquoted_string (text, p);
4152 }
4153 }
4154
4155 sym_text_len = strlen (sym_text);
4156
4157 return_val_size = 10;
4158 return_val_index = 0;
4159 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4160 return_val[0] = NULL;
4161
4162 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4163 in). */
4164 s = lookup_symtab (srcfile);
4165 if (s == NULL)
4166 {
4167 /* Maybe they typed the file with leading directories, while the
4168 symbol tables record only its basename. */
4169 const char *tail = lbasename (srcfile);
4170
4171 if (tail > srcfile)
4172 s = lookup_symtab (tail);
4173 }
4174
4175 /* If we have no symtab for that file, return an empty list. */
4176 if (s == NULL)
4177 return (return_val);
4178
4179 /* Go through this symtab and check the externs and statics for
4180 symbols which match. */
4181
4182 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4183 ALL_BLOCK_SYMBOLS (b, iter, sym)
4184 {
4185 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4186 }
4187
4188 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4189 ALL_BLOCK_SYMBOLS (b, iter, sym)
4190 {
4191 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4192 }
4193
4194 return (return_val);
4195 }
4196
4197 /* A helper function for make_source_files_completion_list. It adds
4198 another file name to a list of possible completions, growing the
4199 list as necessary. */
4200
4201 static void
4202 add_filename_to_list (const char *fname, char *text, char *word,
4203 char ***list, int *list_used, int *list_alloced)
4204 {
4205 char *new;
4206 size_t fnlen = strlen (fname);
4207
4208 if (*list_used + 1 >= *list_alloced)
4209 {
4210 *list_alloced *= 2;
4211 *list = (char **) xrealloc ((char *) *list,
4212 *list_alloced * sizeof (char *));
4213 }
4214
4215 if (word == text)
4216 {
4217 /* Return exactly fname. */
4218 new = xmalloc (fnlen + 5);
4219 strcpy (new, fname);
4220 }
4221 else if (word > text)
4222 {
4223 /* Return some portion of fname. */
4224 new = xmalloc (fnlen + 5);
4225 strcpy (new, fname + (word - text));
4226 }
4227 else
4228 {
4229 /* Return some of TEXT plus fname. */
4230 new = xmalloc (fnlen + (text - word) + 5);
4231 strncpy (new, word, text - word);
4232 new[text - word] = '\0';
4233 strcat (new, fname);
4234 }
4235 (*list)[*list_used] = new;
4236 (*list)[++*list_used] = NULL;
4237 }
4238
4239 static int
4240 not_interesting_fname (const char *fname)
4241 {
4242 static const char *illegal_aliens[] = {
4243 "_globals_", /* inserted by coff_symtab_read */
4244 NULL
4245 };
4246 int i;
4247
4248 for (i = 0; illegal_aliens[i]; i++)
4249 {
4250 if (strcmp (fname, illegal_aliens[i]) == 0)
4251 return 1;
4252 }
4253 return 0;
4254 }
4255
4256 /* Return a NULL terminated array of all source files whose names
4257 begin with matching TEXT. The file names are looked up in the
4258 symbol tables of this program. If the answer is no matchess, then
4259 the return value is an array which contains only a NULL pointer. */
4260
4261 char **
4262 make_source_files_completion_list (char *text, char *word)
4263 {
4264 struct symtab *s;
4265 struct partial_symtab *ps;
4266 struct objfile *objfile;
4267 int first = 1;
4268 int list_alloced = 1;
4269 int list_used = 0;
4270 size_t text_len = strlen (text);
4271 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4272 const char *base_name;
4273
4274 list[0] = NULL;
4275
4276 if (!have_full_symbols () && !have_partial_symbols ())
4277 return list;
4278
4279 ALL_SYMTABS (objfile, s)
4280 {
4281 if (not_interesting_fname (s->filename))
4282 continue;
4283 if (!filename_seen (s->filename, 1, &first)
4284 #if HAVE_DOS_BASED_FILE_SYSTEM
4285 && strncasecmp (s->filename, text, text_len) == 0
4286 #else
4287 && strncmp (s->filename, text, text_len) == 0
4288 #endif
4289 )
4290 {
4291 /* This file matches for a completion; add it to the current
4292 list of matches. */
4293 add_filename_to_list (s->filename, text, word,
4294 &list, &list_used, &list_alloced);
4295 }
4296 else
4297 {
4298 /* NOTE: We allow the user to type a base name when the
4299 debug info records leading directories, but not the other
4300 way around. This is what subroutines of breakpoint
4301 command do when they parse file names. */
4302 base_name = lbasename (s->filename);
4303 if (base_name != s->filename
4304 && !filename_seen (base_name, 1, &first)
4305 #if HAVE_DOS_BASED_FILE_SYSTEM
4306 && strncasecmp (base_name, text, text_len) == 0
4307 #else
4308 && strncmp (base_name, text, text_len) == 0
4309 #endif
4310 )
4311 add_filename_to_list (base_name, text, word,
4312 &list, &list_used, &list_alloced);
4313 }
4314 }
4315
4316 ALL_PSYMTABS (objfile, ps)
4317 {
4318 if (not_interesting_fname (ps->filename))
4319 continue;
4320 if (!ps->readin)
4321 {
4322 if (!filename_seen (ps->filename, 1, &first)
4323 #if HAVE_DOS_BASED_FILE_SYSTEM
4324 && strncasecmp (ps->filename, text, text_len) == 0
4325 #else
4326 && strncmp (ps->filename, text, text_len) == 0
4327 #endif
4328 )
4329 {
4330 /* This file matches for a completion; add it to the
4331 current list of matches. */
4332 add_filename_to_list (ps->filename, text, word,
4333 &list, &list_used, &list_alloced);
4334
4335 }
4336 else
4337 {
4338 base_name = lbasename (ps->filename);
4339 if (base_name != ps->filename
4340 && !filename_seen (base_name, 1, &first)
4341 #if HAVE_DOS_BASED_FILE_SYSTEM
4342 && strncasecmp (base_name, text, text_len) == 0
4343 #else
4344 && strncmp (base_name, text, text_len) == 0
4345 #endif
4346 )
4347 add_filename_to_list (base_name, text, word,
4348 &list, &list_used, &list_alloced);
4349 }
4350 }
4351 }
4352
4353 return list;
4354 }
4355
4356 /* Determine if PC is in the prologue of a function. The prologue is the area
4357 between the first instruction of a function, and the first executable line.
4358 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4359
4360 If non-zero, func_start is where we think the prologue starts, possibly
4361 by previous examination of symbol table information.
4362 */
4363
4364 int
4365 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4366 {
4367 struct symtab_and_line sal;
4368 CORE_ADDR func_addr, func_end;
4369
4370 /* We have several sources of information we can consult to figure
4371 this out.
4372 - Compilers usually emit line number info that marks the prologue
4373 as its own "source line". So the ending address of that "line"
4374 is the end of the prologue. If available, this is the most
4375 reliable method.
4376 - The minimal symbols and partial symbols, which can usually tell
4377 us the starting and ending addresses of a function.
4378 - If we know the function's start address, we can call the
4379 architecture-defined gdbarch_skip_prologue function to analyze the
4380 instruction stream and guess where the prologue ends.
4381 - Our `func_start' argument; if non-zero, this is the caller's
4382 best guess as to the function's entry point. At the time of
4383 this writing, handle_inferior_event doesn't get this right, so
4384 it should be our last resort. */
4385
4386 /* Consult the partial symbol table, to find which function
4387 the PC is in. */
4388 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4389 {
4390 CORE_ADDR prologue_end;
4391
4392 /* We don't even have minsym information, so fall back to using
4393 func_start, if given. */
4394 if (! func_start)
4395 return 1; /* We *might* be in a prologue. */
4396
4397 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4398
4399 return func_start <= pc && pc < prologue_end;
4400 }
4401
4402 /* If we have line number information for the function, that's
4403 usually pretty reliable. */
4404 sal = find_pc_line (func_addr, 0);
4405
4406 /* Now sal describes the source line at the function's entry point,
4407 which (by convention) is the prologue. The end of that "line",
4408 sal.end, is the end of the prologue.
4409
4410 Note that, for functions whose source code is all on a single
4411 line, the line number information doesn't always end up this way.
4412 So we must verify that our purported end-of-prologue address is
4413 *within* the function, not at its start or end. */
4414 if (sal.line == 0
4415 || sal.end <= func_addr
4416 || func_end <= sal.end)
4417 {
4418 /* We don't have any good line number info, so use the minsym
4419 information, together with the architecture-specific prologue
4420 scanning code. */
4421 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4422
4423 return func_addr <= pc && pc < prologue_end;
4424 }
4425
4426 /* We have line number info, and it looks good. */
4427 return func_addr <= pc && pc < sal.end;
4428 }
4429
4430 /* Given PC at the function's start address, attempt to find the
4431 prologue end using SAL information. Return zero if the skip fails.
4432
4433 A non-optimized prologue traditionally has one SAL for the function
4434 and a second for the function body. A single line function has
4435 them both pointing at the same line.
4436
4437 An optimized prologue is similar but the prologue may contain
4438 instructions (SALs) from the instruction body. Need to skip those
4439 while not getting into the function body.
4440
4441 The functions end point and an increasing SAL line are used as
4442 indicators of the prologue's endpoint.
4443
4444 This code is based on the function refine_prologue_limit (versions
4445 found in both ia64 and ppc). */
4446
4447 CORE_ADDR
4448 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4449 {
4450 struct symtab_and_line prologue_sal;
4451 CORE_ADDR start_pc;
4452 CORE_ADDR end_pc;
4453 struct block *bl;
4454
4455 /* Get an initial range for the function. */
4456 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4457 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4458
4459 prologue_sal = find_pc_line (start_pc, 0);
4460 if (prologue_sal.line != 0)
4461 {
4462 /* For langauges other than assembly, treat two consecutive line
4463 entries at the same address as a zero-instruction prologue.
4464 The GNU assembler emits separate line notes for each instruction
4465 in a multi-instruction macro, but compilers generally will not
4466 do this. */
4467 if (prologue_sal.symtab->language != language_asm)
4468 {
4469 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4470 int exact;
4471 int idx = 0;
4472
4473 /* Skip any earlier lines, and any end-of-sequence marker
4474 from a previous function. */
4475 while (linetable->item[idx].pc != prologue_sal.pc
4476 || linetable->item[idx].line == 0)
4477 idx++;
4478
4479 if (idx+1 < linetable->nitems
4480 && linetable->item[idx+1].line != 0
4481 && linetable->item[idx+1].pc == start_pc)
4482 return start_pc;
4483 }
4484
4485 /* If there is only one sal that covers the entire function,
4486 then it is probably a single line function, like
4487 "foo(){}". */
4488 if (prologue_sal.end >= end_pc)
4489 return 0;
4490
4491 while (prologue_sal.end < end_pc)
4492 {
4493 struct symtab_and_line sal;
4494
4495 sal = find_pc_line (prologue_sal.end, 0);
4496 if (sal.line == 0)
4497 break;
4498 /* Assume that a consecutive SAL for the same (or larger)
4499 line mark the prologue -> body transition. */
4500 if (sal.line >= prologue_sal.line)
4501 break;
4502
4503 /* The line number is smaller. Check that it's from the
4504 same function, not something inlined. If it's inlined,
4505 then there is no point comparing the line numbers. */
4506 bl = block_for_pc (prologue_sal.end);
4507 while (bl)
4508 {
4509 if (block_inlined_p (bl))
4510 break;
4511 if (BLOCK_FUNCTION (bl))
4512 {
4513 bl = NULL;
4514 break;
4515 }
4516 bl = BLOCK_SUPERBLOCK (bl);
4517 }
4518 if (bl != NULL)
4519 break;
4520
4521 /* The case in which compiler's optimizer/scheduler has
4522 moved instructions into the prologue. We look ahead in
4523 the function looking for address ranges whose
4524 corresponding line number is less the first one that we
4525 found for the function. This is more conservative then
4526 refine_prologue_limit which scans a large number of SALs
4527 looking for any in the prologue */
4528 prologue_sal = sal;
4529 }
4530 }
4531
4532 if (prologue_sal.end < end_pc)
4533 /* Return the end of this line, or zero if we could not find a
4534 line. */
4535 return prologue_sal.end;
4536 else
4537 /* Don't return END_PC, which is past the end of the function. */
4538 return prologue_sal.pc;
4539 }
4540 \f
4541 struct symtabs_and_lines
4542 decode_line_spec (char *string, int funfirstline)
4543 {
4544 struct symtabs_and_lines sals;
4545 struct symtab_and_line cursal;
4546
4547 if (string == 0)
4548 error (_("Empty line specification."));
4549
4550 /* We use whatever is set as the current source line. We do not try
4551 and get a default or it will recursively call us! */
4552 cursal = get_current_source_symtab_and_line ();
4553
4554 sals = decode_line_1 (&string, funfirstline,
4555 cursal.symtab, cursal.line,
4556 (char ***) NULL, NULL);
4557
4558 if (*string)
4559 error (_("Junk at end of line specification: %s"), string);
4560 return sals;
4561 }
4562
4563 /* Track MAIN */
4564 static char *name_of_main;
4565
4566 void
4567 set_main_name (const char *name)
4568 {
4569 if (name_of_main != NULL)
4570 {
4571 xfree (name_of_main);
4572 name_of_main = NULL;
4573 }
4574 if (name != NULL)
4575 {
4576 name_of_main = xstrdup (name);
4577 }
4578 }
4579
4580 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4581 accordingly. */
4582
4583 static void
4584 find_main_name (void)
4585 {
4586 const char *new_main_name;
4587
4588 /* Try to see if the main procedure is in Ada. */
4589 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4590 be to add a new method in the language vector, and call this
4591 method for each language until one of them returns a non-empty
4592 name. This would allow us to remove this hard-coded call to
4593 an Ada function. It is not clear that this is a better approach
4594 at this point, because all methods need to be written in a way
4595 such that false positives never be returned. For instance, it is
4596 important that a method does not return a wrong name for the main
4597 procedure if the main procedure is actually written in a different
4598 language. It is easy to guaranty this with Ada, since we use a
4599 special symbol generated only when the main in Ada to find the name
4600 of the main procedure. It is difficult however to see how this can
4601 be guarantied for languages such as C, for instance. This suggests
4602 that order of call for these methods becomes important, which means
4603 a more complicated approach. */
4604 new_main_name = ada_main_name ();
4605 if (new_main_name != NULL)
4606 {
4607 set_main_name (new_main_name);
4608 return;
4609 }
4610
4611 new_main_name = pascal_main_name ();
4612 if (new_main_name != NULL)
4613 {
4614 set_main_name (new_main_name);
4615 return;
4616 }
4617
4618 /* The languages above didn't identify the name of the main procedure.
4619 Fallback to "main". */
4620 set_main_name ("main");
4621 }
4622
4623 char *
4624 main_name (void)
4625 {
4626 if (name_of_main == NULL)
4627 find_main_name ();
4628
4629 return name_of_main;
4630 }
4631
4632 /* Handle ``executable_changed'' events for the symtab module. */
4633
4634 static void
4635 symtab_observer_executable_changed (void)
4636 {
4637 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4638 set_main_name (NULL);
4639 }
4640
4641 /* Helper to expand_line_sal below. Appends new sal to SAL,
4642 initializing it from SYMTAB, LINENO and PC. */
4643 static void
4644 append_expanded_sal (struct symtabs_and_lines *sal,
4645 struct program_space *pspace,
4646 struct symtab *symtab,
4647 int lineno, CORE_ADDR pc)
4648 {
4649 sal->sals = xrealloc (sal->sals,
4650 sizeof (sal->sals[0])
4651 * (sal->nelts + 1));
4652 init_sal (sal->sals + sal->nelts);
4653 sal->sals[sal->nelts].pspace = pspace;
4654 sal->sals[sal->nelts].symtab = symtab;
4655 sal->sals[sal->nelts].section = NULL;
4656 sal->sals[sal->nelts].end = 0;
4657 sal->sals[sal->nelts].line = lineno;
4658 sal->sals[sal->nelts].pc = pc;
4659 ++sal->nelts;
4660 }
4661
4662 /* Helper to expand_line_sal below. Search in the symtabs for any
4663 linetable entry that exactly matches FULLNAME and LINENO and append
4664 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4665 use FILENAME and LINENO instead. If there is at least one match,
4666 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4667 and BEST_SYMTAB. */
4668
4669 static int
4670 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4671 struct symtabs_and_lines *ret,
4672 struct linetable_entry **best_item,
4673 struct symtab **best_symtab)
4674 {
4675 struct program_space *pspace;
4676 struct objfile *objfile;
4677 struct symtab *symtab;
4678 int exact = 0;
4679 int j;
4680 *best_item = 0;
4681 *best_symtab = 0;
4682
4683 ALL_PSPACES (pspace)
4684 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4685 {
4686 if (FILENAME_CMP (filename, symtab->filename) == 0)
4687 {
4688 struct linetable *l;
4689 int len;
4690 if (fullname != NULL
4691 && symtab_to_fullname (symtab) != NULL
4692 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4693 continue;
4694 l = LINETABLE (symtab);
4695 if (!l)
4696 continue;
4697 len = l->nitems;
4698
4699 for (j = 0; j < len; j++)
4700 {
4701 struct linetable_entry *item = &(l->item[j]);
4702
4703 if (item->line == lineno)
4704 {
4705 exact = 1;
4706 append_expanded_sal (ret, objfile->pspace,
4707 symtab, lineno, item->pc);
4708 }
4709 else if (!exact && item->line > lineno
4710 && (*best_item == NULL
4711 || item->line < (*best_item)->line))
4712 {
4713 *best_item = item;
4714 *best_symtab = symtab;
4715 }
4716 }
4717 }
4718 }
4719 return exact;
4720 }
4721
4722 /* Compute a set of all sals in all program spaces that correspond to
4723 same file and line as SAL and return those. If there are several
4724 sals that belong to the same block, only one sal for the block is
4725 included in results. */
4726
4727 struct symtabs_and_lines
4728 expand_line_sal (struct symtab_and_line sal)
4729 {
4730 struct symtabs_and_lines ret, this_line;
4731 int i, j;
4732 struct objfile *objfile;
4733 struct partial_symtab *psymtab;
4734 struct symtab *symtab;
4735 int lineno;
4736 int deleted = 0;
4737 struct block **blocks = NULL;
4738 int *filter;
4739 struct cleanup *old_chain;
4740
4741 ret.nelts = 0;
4742 ret.sals = NULL;
4743
4744 /* Only expand sals that represent file.c:line. */
4745 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4746 {
4747 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4748 ret.sals[0] = sal;
4749 ret.nelts = 1;
4750 return ret;
4751 }
4752 else
4753 {
4754 struct program_space *pspace;
4755 struct linetable_entry *best_item = 0;
4756 struct symtab *best_symtab = 0;
4757 int exact = 0;
4758 char *match_filename;
4759
4760 lineno = sal.line;
4761 match_filename = sal.symtab->filename;
4762
4763 /* We need to find all symtabs for a file which name
4764 is described by sal. We cannot just directly
4765 iterate over symtabs, since a symtab might not be
4766 yet created. We also cannot iterate over psymtabs,
4767 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4768 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4769 corresponding to an included file. Therefore, we do
4770 first pass over psymtabs, reading in those with
4771 the right name. Then, we iterate over symtabs, knowing
4772 that all symtabs we're interested in are loaded. */
4773
4774 old_chain = save_current_program_space ();
4775 ALL_PSPACES (pspace)
4776 ALL_PSPACE_PSYMTABS (pspace, objfile, psymtab)
4777 {
4778 if (FILENAME_CMP (match_filename, psymtab->filename) == 0)
4779 {
4780 set_current_program_space (pspace);
4781
4782 PSYMTAB_TO_SYMTAB (psymtab);
4783 }
4784 }
4785 do_cleanups (old_chain);
4786
4787 /* Now search the symtab for exact matches and append them. If
4788 none is found, append the best_item and all its exact
4789 matches. */
4790 symtab_to_fullname (sal.symtab);
4791 exact = append_exact_match_to_sals (sal.symtab->filename,
4792 sal.symtab->fullname, lineno,
4793 &ret, &best_item, &best_symtab);
4794 if (!exact && best_item)
4795 append_exact_match_to_sals (best_symtab->filename,
4796 best_symtab->fullname, best_item->line,
4797 &ret, &best_item, &best_symtab);
4798 }
4799
4800 /* For optimized code, compiler can scatter one source line accross
4801 disjoint ranges of PC values, even when no duplicate functions
4802 or inline functions are involved. For example, 'for (;;)' inside
4803 non-template non-inline non-ctor-or-dtor function can result
4804 in two PC ranges. In this case, we don't want to set breakpoint
4805 on first PC of each range. To filter such cases, we use containing
4806 blocks -- for each PC found above we see if there are other PCs
4807 that are in the same block. If yes, the other PCs are filtered out. */
4808
4809 old_chain = save_current_program_space ();
4810 filter = alloca (ret.nelts * sizeof (int));
4811 blocks = alloca (ret.nelts * sizeof (struct block *));
4812 for (i = 0; i < ret.nelts; ++i)
4813 {
4814 struct blockvector *bl;
4815 struct block *b;
4816
4817 set_current_program_space (ret.sals[i].pspace);
4818
4819 filter[i] = 1;
4820 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4821
4822 }
4823 do_cleanups (old_chain);
4824
4825 for (i = 0; i < ret.nelts; ++i)
4826 if (blocks[i] != NULL)
4827 for (j = i+1; j < ret.nelts; ++j)
4828 if (blocks[j] == blocks[i])
4829 {
4830 filter[j] = 0;
4831 ++deleted;
4832 break;
4833 }
4834
4835 {
4836 struct symtab_and_line *final =
4837 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4838
4839 for (i = 0, j = 0; i < ret.nelts; ++i)
4840 if (filter[i])
4841 final[j++] = ret.sals[i];
4842
4843 ret.nelts -= deleted;
4844 xfree (ret.sals);
4845 ret.sals = final;
4846 }
4847
4848 return ret;
4849 }
4850
4851
4852 void
4853 _initialize_symtab (void)
4854 {
4855 add_info ("variables", variables_info, _("\
4856 All global and static variable names, or those matching REGEXP."));
4857 if (dbx_commands)
4858 add_com ("whereis", class_info, variables_info, _("\
4859 All global and static variable names, or those matching REGEXP."));
4860
4861 add_info ("functions", functions_info,
4862 _("All function names, or those matching REGEXP."));
4863
4864 /* FIXME: This command has at least the following problems:
4865 1. It prints builtin types (in a very strange and confusing fashion).
4866 2. It doesn't print right, e.g. with
4867 typedef struct foo *FOO
4868 type_print prints "FOO" when we want to make it (in this situation)
4869 print "struct foo *".
4870 I also think "ptype" or "whatis" is more likely to be useful (but if
4871 there is much disagreement "info types" can be fixed). */
4872 add_info ("types", types_info,
4873 _("All type names, or those matching REGEXP."));
4874
4875 add_info ("sources", sources_info,
4876 _("Source files in the program."));
4877
4878 add_com ("rbreak", class_breakpoint, rbreak_command,
4879 _("Set a breakpoint for all functions matching REGEXP."));
4880
4881 if (xdb_commands)
4882 {
4883 add_com ("lf", class_info, sources_info,
4884 _("Source files in the program"));
4885 add_com ("lg", class_info, variables_info, _("\
4886 All global and static variable names, or those matching REGEXP."));
4887 }
4888
4889 add_setshow_enum_cmd ("multiple-symbols", no_class,
4890 multiple_symbols_modes, &multiple_symbols_mode,
4891 _("\
4892 Set the debugger behavior when more than one symbol are possible matches\n\
4893 in an expression."), _("\
4894 Show how the debugger handles ambiguities in expressions."), _("\
4895 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4896 NULL, NULL, &setlist, &showlist);
4897
4898 observer_attach_executable_changed (symtab_observer_executable_changed);
4899 }