]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
2010-01-26 Sami Wagiaalla <swagiaal@redhat.com>
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009,
5 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 /* Prototypes for local functions */
66
67 static void completion_list_add_name (char *, char *, int, char *, char *);
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *);
82
83 /* This one is used by linespec.c */
84
85 char *operator_chars (char *p, char **end);
86
87 static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94 static
95 struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112 static int file_matches (char *, char **, int);
113
114 static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117 static void print_msymbol_info (struct minimal_symbol *);
118
119 static void symtab_symbol_info (char *, domain_enum, int);
120
121 void _initialize_symtab (void);
122
123 /* */
124
125 /* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129 const char multiple_symbols_ask[] = "ask";
130 const char multiple_symbols_all[] = "all";
131 const char multiple_symbols_cancel[] = "cancel";
132 static const char *multiple_symbols_modes[] =
133 {
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138 };
139 static const char *multiple_symbols_mode = multiple_symbols_all;
140
141 /* Read-only accessor to AUTO_SELECT_MODE. */
142
143 const char *
144 multiple_symbols_select_mode (void)
145 {
146 return multiple_symbols_mode;
147 }
148
149 /* Block in which the most recently searched-for symbol was found.
150 Might be better to make this a parameter to lookup_symbol and
151 value_of_this. */
152
153 const struct block *block_found;
154
155 /* Check for a symtab of a specific name; first in symtabs, then in
156 psymtabs. *If* there is no '/' in the name, a match after a '/'
157 in the symtab filename will also work. */
158
159 struct symtab *
160 lookup_symtab (const char *name)
161 {
162 struct symtab *s;
163 struct partial_symtab *ps;
164 struct objfile *objfile;
165 char *real_path = NULL;
166 char *full_path = NULL;
167
168 /* Here we are interested in canonicalizing an absolute path, not
169 absolutizing a relative path. */
170 if (IS_ABSOLUTE_PATH (name))
171 {
172 full_path = xfullpath (name);
173 make_cleanup (xfree, full_path);
174 real_path = gdb_realpath (name);
175 make_cleanup (xfree, real_path);
176 }
177
178 got_symtab:
179
180 /* First, search for an exact match */
181
182 ALL_SYMTABS (objfile, s)
183 {
184 if (FILENAME_CMP (name, s->filename) == 0)
185 {
186 return s;
187 }
188
189 /* If the user gave us an absolute path, try to find the file in
190 this symtab and use its absolute path. */
191
192 if (full_path != NULL)
193 {
194 const char *fp = symtab_to_fullname (s);
195 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
196 {
197 return s;
198 }
199 }
200
201 if (real_path != NULL)
202 {
203 char *fullname = symtab_to_fullname (s);
204 if (fullname != NULL)
205 {
206 char *rp = gdb_realpath (fullname);
207 make_cleanup (xfree, rp);
208 if (FILENAME_CMP (real_path, rp) == 0)
209 {
210 return s;
211 }
212 }
213 }
214 }
215
216 /* Now, search for a matching tail (only if name doesn't have any dirs) */
217
218 if (lbasename (name) == name)
219 ALL_SYMTABS (objfile, s)
220 {
221 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
222 return s;
223 }
224
225 /* Same search rules as above apply here, but now we look thru the
226 psymtabs. */
227
228 ps = lookup_partial_symtab (name);
229 if (!ps)
230 return (NULL);
231
232 if (ps->readin)
233 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
234 ps->filename, name);
235
236 s = PSYMTAB_TO_SYMTAB (ps);
237
238 if (s)
239 return s;
240
241 /* At this point, we have located the psymtab for this file, but
242 the conversion to a symtab has failed. This usually happens
243 when we are looking up an include file. In this case,
244 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
245 been created. So, we need to run through the symtabs again in
246 order to find the file.
247 XXX - This is a crock, and should be fixed inside of the the
248 symbol parsing routines. */
249 goto got_symtab;
250 }
251
252 /* Lookup the partial symbol table of a source file named NAME.
253 *If* there is no '/' in the name, a match after a '/'
254 in the psymtab filename will also work. */
255
256 struct partial_symtab *
257 lookup_partial_symtab (const char *name)
258 {
259 struct partial_symtab *pst;
260 struct objfile *objfile;
261 char *full_path = NULL;
262 char *real_path = NULL;
263
264 /* Here we are interested in canonicalizing an absolute path, not
265 absolutizing a relative path. */
266 if (IS_ABSOLUTE_PATH (name))
267 {
268 full_path = xfullpath (name);
269 make_cleanup (xfree, full_path);
270 real_path = gdb_realpath (name);
271 make_cleanup (xfree, real_path);
272 }
273
274 ALL_PSYMTABS (objfile, pst)
275 {
276 if (FILENAME_CMP (name, pst->filename) == 0)
277 {
278 return (pst);
279 }
280
281 /* If the user gave us an absolute path, try to find the file in
282 this symtab and use its absolute path. */
283 if (full_path != NULL)
284 {
285 psymtab_to_fullname (pst);
286 if (pst->fullname != NULL
287 && FILENAME_CMP (full_path, pst->fullname) == 0)
288 {
289 return pst;
290 }
291 }
292
293 if (real_path != NULL)
294 {
295 char *rp = NULL;
296 psymtab_to_fullname (pst);
297 if (pst->fullname != NULL)
298 {
299 rp = gdb_realpath (pst->fullname);
300 make_cleanup (xfree, rp);
301 }
302 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
303 {
304 return pst;
305 }
306 }
307 }
308
309 /* Now, search for a matching tail (only if name doesn't have any dirs) */
310
311 if (lbasename (name) == name)
312 ALL_PSYMTABS (objfile, pst)
313 {
314 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
315 return (pst);
316 }
317
318 return (NULL);
319 }
320 \f
321 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
322 full method name, which consist of the class name (from T), the unadorned
323 method name from METHOD_ID, and the signature for the specific overload,
324 specified by SIGNATURE_ID. Note that this function is g++ specific. */
325
326 char *
327 gdb_mangle_name (struct type *type, int method_id, int signature_id)
328 {
329 int mangled_name_len;
330 char *mangled_name;
331 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
332 struct fn_field *method = &f[signature_id];
333 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
334 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
335 char *newname = type_name_no_tag (type);
336
337 /* Does the form of physname indicate that it is the full mangled name
338 of a constructor (not just the args)? */
339 int is_full_physname_constructor;
340
341 int is_constructor;
342 int is_destructor = is_destructor_name (physname);
343 /* Need a new type prefix. */
344 char *const_prefix = method->is_const ? "C" : "";
345 char *volatile_prefix = method->is_volatile ? "V" : "";
346 char buf[20];
347 int len = (newname == NULL ? 0 : strlen (newname));
348
349 /* Nothing to do if physname already contains a fully mangled v3 abi name
350 or an operator name. */
351 if ((physname[0] == '_' && physname[1] == 'Z')
352 || is_operator_name (field_name))
353 return xstrdup (physname);
354
355 is_full_physname_constructor = is_constructor_name (physname);
356
357 is_constructor =
358 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
359
360 if (!is_destructor)
361 is_destructor = (strncmp (physname, "__dt", 4) == 0);
362
363 if (is_destructor || is_full_physname_constructor)
364 {
365 mangled_name = (char *) xmalloc (strlen (physname) + 1);
366 strcpy (mangled_name, physname);
367 return mangled_name;
368 }
369
370 if (len == 0)
371 {
372 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
373 }
374 else if (physname[0] == 't' || physname[0] == 'Q')
375 {
376 /* The physname for template and qualified methods already includes
377 the class name. */
378 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
379 newname = NULL;
380 len = 0;
381 }
382 else
383 {
384 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
385 }
386 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
387 + strlen (buf) + len + strlen (physname) + 1);
388
389 {
390 mangled_name = (char *) xmalloc (mangled_name_len);
391 if (is_constructor)
392 mangled_name[0] = '\0';
393 else
394 strcpy (mangled_name, field_name);
395 }
396 strcat (mangled_name, buf);
397 /* If the class doesn't have a name, i.e. newname NULL, then we just
398 mangle it using 0 for the length of the class. Thus it gets mangled
399 as something starting with `::' rather than `classname::'. */
400 if (newname != NULL)
401 strcat (mangled_name, newname);
402
403 strcat (mangled_name, physname);
404 return (mangled_name);
405 }
406
407 \f
408 /* Initialize the language dependent portion of a symbol
409 depending upon the language for the symbol. */
410 void
411 symbol_init_language_specific (struct general_symbol_info *gsymbol,
412 enum language language)
413 {
414 gsymbol->language = language;
415 if (gsymbol->language == language_cplus
416 || gsymbol->language == language_java
417 || gsymbol->language == language_objc)
418 {
419 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
420 }
421 else
422 {
423 memset (&gsymbol->language_specific, 0,
424 sizeof (gsymbol->language_specific));
425 }
426 }
427
428 /* Functions to initialize a symbol's mangled name. */
429
430 /* Objects of this type are stored in the demangled name hash table. */
431 struct demangled_name_entry
432 {
433 char *mangled;
434 char demangled[1];
435 };
436
437 /* Hash function for the demangled name hash. */
438 static hashval_t
439 hash_demangled_name_entry (const void *data)
440 {
441 const struct demangled_name_entry *e = data;
442 return htab_hash_string (e->mangled);
443 }
444
445 /* Equality function for the demangled name hash. */
446 static int
447 eq_demangled_name_entry (const void *a, const void *b)
448 {
449 const struct demangled_name_entry *da = a;
450 const struct demangled_name_entry *db = b;
451 return strcmp (da->mangled, db->mangled) == 0;
452 }
453
454 /* Create the hash table used for demangled names. Each hash entry is
455 a pair of strings; one for the mangled name and one for the demangled
456 name. The entry is hashed via just the mangled name. */
457
458 static void
459 create_demangled_names_hash (struct objfile *objfile)
460 {
461 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
462 The hash table code will round this up to the next prime number.
463 Choosing a much larger table size wastes memory, and saves only about
464 1% in symbol reading. */
465
466 objfile->demangled_names_hash = htab_create_alloc
467 (256, hash_demangled_name_entry, eq_demangled_name_entry,
468 NULL, xcalloc, xfree);
469 }
470
471 /* Try to determine the demangled name for a symbol, based on the
472 language of that symbol. If the language is set to language_auto,
473 it will attempt to find any demangling algorithm that works and
474 then set the language appropriately. The returned name is allocated
475 by the demangler and should be xfree'd. */
476
477 static char *
478 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
479 const char *mangled)
480 {
481 char *demangled = NULL;
482
483 if (gsymbol->language == language_unknown)
484 gsymbol->language = language_auto;
485
486 if (gsymbol->language == language_objc
487 || gsymbol->language == language_auto)
488 {
489 demangled =
490 objc_demangle (mangled, 0);
491 if (demangled != NULL)
492 {
493 gsymbol->language = language_objc;
494 return demangled;
495 }
496 }
497 if (gsymbol->language == language_cplus
498 || gsymbol->language == language_auto)
499 {
500 demangled =
501 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
502 if (demangled != NULL)
503 {
504 gsymbol->language = language_cplus;
505 return demangled;
506 }
507 }
508 if (gsymbol->language == language_java)
509 {
510 demangled =
511 cplus_demangle (mangled,
512 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
513 if (demangled != NULL)
514 {
515 gsymbol->language = language_java;
516 return demangled;
517 }
518 }
519 return NULL;
520 }
521
522 /* Set both the mangled and demangled (if any) names for GSYMBOL based
523 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
524 objfile's obstack; but if COPY_NAME is 0 and if NAME is
525 NUL-terminated, then this function assumes that NAME is already
526 correctly saved (either permanently or with a lifetime tied to the
527 objfile), and it will not be copied.
528
529 The hash table corresponding to OBJFILE is used, and the memory
530 comes from that objfile's objfile_obstack. LINKAGE_NAME is copied,
531 so the pointer can be discarded after calling this function. */
532
533 /* We have to be careful when dealing with Java names: when we run
534 into a Java minimal symbol, we don't know it's a Java symbol, so it
535 gets demangled as a C++ name. This is unfortunate, but there's not
536 much we can do about it: but when demangling partial symbols and
537 regular symbols, we'd better not reuse the wrong demangled name.
538 (See PR gdb/1039.) We solve this by putting a distinctive prefix
539 on Java names when storing them in the hash table. */
540
541 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
542 don't mind the Java prefix so much: different languages have
543 different demangling requirements, so it's only natural that we
544 need to keep language data around in our demangling cache. But
545 it's not good that the minimal symbol has the wrong demangled name.
546 Unfortunately, I can't think of any easy solution to that
547 problem. */
548
549 #define JAVA_PREFIX "##JAVA$$"
550 #define JAVA_PREFIX_LEN 8
551
552 void
553 symbol_set_names (struct general_symbol_info *gsymbol,
554 const char *linkage_name, int len, int copy_name,
555 struct objfile *objfile)
556 {
557 struct demangled_name_entry **slot;
558 /* A 0-terminated copy of the linkage name. */
559 const char *linkage_name_copy;
560 /* A copy of the linkage name that might have a special Java prefix
561 added to it, for use when looking names up in the hash table. */
562 const char *lookup_name;
563 /* The length of lookup_name. */
564 int lookup_len;
565 struct demangled_name_entry entry;
566
567 if (gsymbol->language == language_ada)
568 {
569 /* In Ada, we do the symbol lookups using the mangled name, so
570 we can save some space by not storing the demangled name.
571
572 As a side note, we have also observed some overlap between
573 the C++ mangling and Ada mangling, similarly to what has
574 been observed with Java. Because we don't store the demangled
575 name with the symbol, we don't need to use the same trick
576 as Java. */
577 if (!copy_name)
578 gsymbol->name = (char *) linkage_name;
579 else
580 {
581 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
582 memcpy (gsymbol->name, linkage_name, len);
583 gsymbol->name[len] = '\0';
584 }
585 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
586
587 return;
588 }
589
590 if (objfile->demangled_names_hash == NULL)
591 create_demangled_names_hash (objfile);
592
593 /* The stabs reader generally provides names that are not
594 NUL-terminated; most of the other readers don't do this, so we
595 can just use the given copy, unless we're in the Java case. */
596 if (gsymbol->language == language_java)
597 {
598 char *alloc_name;
599 lookup_len = len + JAVA_PREFIX_LEN;
600
601 alloc_name = alloca (lookup_len + 1);
602 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
603 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
604 alloc_name[lookup_len] = '\0';
605
606 lookup_name = alloc_name;
607 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
608 }
609 else if (linkage_name[len] != '\0')
610 {
611 char *alloc_name;
612 lookup_len = len;
613
614 alloc_name = alloca (lookup_len + 1);
615 memcpy (alloc_name, linkage_name, len);
616 alloc_name[lookup_len] = '\0';
617
618 lookup_name = alloc_name;
619 linkage_name_copy = alloc_name;
620 }
621 else
622 {
623 lookup_len = len;
624 lookup_name = linkage_name;
625 linkage_name_copy = linkage_name;
626 }
627
628 entry.mangled = (char *) lookup_name;
629 slot = ((struct demangled_name_entry **)
630 htab_find_slot (objfile->demangled_names_hash,
631 &entry, INSERT));
632
633 /* If this name is not in the hash table, add it. */
634 if (*slot == NULL)
635 {
636 char *demangled_name = symbol_find_demangled_name (gsymbol,
637 linkage_name_copy);
638 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
639
640 /* Suppose we have demangled_name==NULL, copy_name==0, and
641 lookup_name==linkage_name. In this case, we already have the
642 mangled name saved, and we don't have a demangled name. So,
643 you might think we could save a little space by not recording
644 this in the hash table at all.
645
646 It turns out that it is actually important to still save such
647 an entry in the hash table, because storing this name gives
648 us better backache hit rates for partial symbols. */
649 if (!copy_name && lookup_name == linkage_name)
650 {
651 *slot = obstack_alloc (&objfile->objfile_obstack,
652 offsetof (struct demangled_name_entry,
653 demangled)
654 + demangled_len + 1);
655 (*slot)->mangled = (char *) lookup_name;
656 }
657 else
658 {
659 /* If we must copy the mangled name, put it directly after
660 the demangled name so we can have a single
661 allocation. */
662 *slot = obstack_alloc (&objfile->objfile_obstack,
663 offsetof (struct demangled_name_entry,
664 demangled)
665 + lookup_len + demangled_len + 2);
666 (*slot)->mangled = &((*slot)->demangled[demangled_len + 1]);
667 strcpy ((*slot)->mangled, lookup_name);
668 }
669
670 if (demangled_name != NULL)
671 {
672 strcpy ((*slot)->demangled, demangled_name);
673 xfree (demangled_name);
674 }
675 else
676 (*slot)->demangled[0] = '\0';
677 }
678
679 gsymbol->name = (*slot)->mangled + lookup_len - len;
680 if ((*slot)->demangled[0] != '\0')
681 gsymbol->language_specific.cplus_specific.demangled_name
682 = (*slot)->demangled;
683 else
684 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
685 }
686
687 /* Return the source code name of a symbol. In languages where
688 demangling is necessary, this is the demangled name. */
689
690 char *
691 symbol_natural_name (const struct general_symbol_info *gsymbol)
692 {
693 switch (gsymbol->language)
694 {
695 case language_cplus:
696 case language_java:
697 case language_objc:
698 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
699 return gsymbol->language_specific.cplus_specific.demangled_name;
700 break;
701 case language_ada:
702 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
703 return gsymbol->language_specific.cplus_specific.demangled_name;
704 else
705 return ada_decode_symbol (gsymbol);
706 break;
707 default:
708 break;
709 }
710 return gsymbol->name;
711 }
712
713 /* Return the demangled name for a symbol based on the language for
714 that symbol. If no demangled name exists, return NULL. */
715 char *
716 symbol_demangled_name (const struct general_symbol_info *gsymbol)
717 {
718 switch (gsymbol->language)
719 {
720 case language_cplus:
721 case language_java:
722 case language_objc:
723 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
724 return gsymbol->language_specific.cplus_specific.demangled_name;
725 break;
726 case language_ada:
727 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
728 return gsymbol->language_specific.cplus_specific.demangled_name;
729 else
730 return ada_decode_symbol (gsymbol);
731 break;
732 default:
733 break;
734 }
735 return NULL;
736 }
737
738 /* Return the search name of a symbol---generally the demangled or
739 linkage name of the symbol, depending on how it will be searched for.
740 If there is no distinct demangled name, then returns the same value
741 (same pointer) as SYMBOL_LINKAGE_NAME. */
742 char *
743 symbol_search_name (const struct general_symbol_info *gsymbol)
744 {
745 if (gsymbol->language == language_ada)
746 return gsymbol->name;
747 else
748 return symbol_natural_name (gsymbol);
749 }
750
751 /* Initialize the structure fields to zero values. */
752 void
753 init_sal (struct symtab_and_line *sal)
754 {
755 sal->pspace = NULL;
756 sal->symtab = 0;
757 sal->section = 0;
758 sal->line = 0;
759 sal->pc = 0;
760 sal->end = 0;
761 sal->explicit_pc = 0;
762 sal->explicit_line = 0;
763 }
764 \f
765
766 /* Return 1 if the two sections are the same, or if they could
767 plausibly be copies of each other, one in an original object
768 file and another in a separated debug file. */
769
770 int
771 matching_obj_sections (struct obj_section *obj_first,
772 struct obj_section *obj_second)
773 {
774 asection *first = obj_first? obj_first->the_bfd_section : NULL;
775 asection *second = obj_second? obj_second->the_bfd_section : NULL;
776 struct objfile *obj;
777
778 /* If they're the same section, then they match. */
779 if (first == second)
780 return 1;
781
782 /* If either is NULL, give up. */
783 if (first == NULL || second == NULL)
784 return 0;
785
786 /* This doesn't apply to absolute symbols. */
787 if (first->owner == NULL || second->owner == NULL)
788 return 0;
789
790 /* If they're in the same object file, they must be different sections. */
791 if (first->owner == second->owner)
792 return 0;
793
794 /* Check whether the two sections are potentially corresponding. They must
795 have the same size, address, and name. We can't compare section indexes,
796 which would be more reliable, because some sections may have been
797 stripped. */
798 if (bfd_get_section_size (first) != bfd_get_section_size (second))
799 return 0;
800
801 /* In-memory addresses may start at a different offset, relativize them. */
802 if (bfd_get_section_vma (first->owner, first)
803 - bfd_get_start_address (first->owner)
804 != bfd_get_section_vma (second->owner, second)
805 - bfd_get_start_address (second->owner))
806 return 0;
807
808 if (bfd_get_section_name (first->owner, first) == NULL
809 || bfd_get_section_name (second->owner, second) == NULL
810 || strcmp (bfd_get_section_name (first->owner, first),
811 bfd_get_section_name (second->owner, second)) != 0)
812 return 0;
813
814 /* Otherwise check that they are in corresponding objfiles. */
815
816 ALL_OBJFILES (obj)
817 if (obj->obfd == first->owner)
818 break;
819 gdb_assert (obj != NULL);
820
821 if (obj->separate_debug_objfile != NULL
822 && obj->separate_debug_objfile->obfd == second->owner)
823 return 1;
824 if (obj->separate_debug_objfile_backlink != NULL
825 && obj->separate_debug_objfile_backlink->obfd == second->owner)
826 return 1;
827
828 return 0;
829 }
830
831 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
832 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
833
834 static struct partial_symtab *
835 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
836 struct partial_symtab *pst,
837 struct minimal_symbol *msymbol)
838 {
839 struct objfile *objfile = pst->objfile;
840 struct partial_symtab *tpst;
841 struct partial_symtab *best_pst = pst;
842 CORE_ADDR best_addr = pst->textlow;
843
844 /* An objfile that has its functions reordered might have
845 many partial symbol tables containing the PC, but
846 we want the partial symbol table that contains the
847 function containing the PC. */
848 if (!(objfile->flags & OBJF_REORDERED) &&
849 section == 0) /* can't validate section this way */
850 return pst;
851
852 if (msymbol == NULL)
853 return (pst);
854
855 /* The code range of partial symtabs sometimes overlap, so, in
856 the loop below, we need to check all partial symtabs and
857 find the one that fits better for the given PC address. We
858 select the partial symtab that contains a symbol whose
859 address is closest to the PC address. By closest we mean
860 that find_pc_sect_symbol returns the symbol with address
861 that is closest and still less than the given PC. */
862 for (tpst = pst; tpst != NULL; tpst = tpst->next)
863 {
864 if (pc >= tpst->textlow && pc < tpst->texthigh)
865 {
866 struct partial_symbol *p;
867 CORE_ADDR this_addr;
868
869 /* NOTE: This assumes that every psymbol has a
870 corresponding msymbol, which is not necessarily
871 true; the debug info might be much richer than the
872 object's symbol table. */
873 p = find_pc_sect_psymbol (tpst, pc, section);
874 if (p != NULL
875 && SYMBOL_VALUE_ADDRESS (p)
876 == SYMBOL_VALUE_ADDRESS (msymbol))
877 return tpst;
878
879 /* Also accept the textlow value of a psymtab as a
880 "symbol", to provide some support for partial
881 symbol tables with line information but no debug
882 symbols (e.g. those produced by an assembler). */
883 if (p != NULL)
884 this_addr = SYMBOL_VALUE_ADDRESS (p);
885 else
886 this_addr = tpst->textlow;
887
888 /* Check whether it is closer than our current
889 BEST_ADDR. Since this symbol address is
890 necessarily lower or equal to PC, the symbol closer
891 to PC is the symbol which address is the highest.
892 This way we return the psymtab which contains such
893 best match symbol. This can help in cases where the
894 symbol information/debuginfo is not complete, like
895 for instance on IRIX6 with gcc, where no debug info
896 is emitted for statics. (See also the nodebug.exp
897 testcase.) */
898 if (this_addr > best_addr)
899 {
900 best_addr = this_addr;
901 best_pst = tpst;
902 }
903 }
904 }
905 return best_pst;
906 }
907
908 /* Find which partial symtab contains PC and SECTION. Return 0 if
909 none. We return the psymtab that contains a symbol whose address
910 exactly matches PC, or, if we cannot find an exact match, the
911 psymtab that contains a symbol whose address is closest to PC. */
912 struct partial_symtab *
913 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
914 {
915 struct objfile *objfile;
916 struct minimal_symbol *msymbol;
917
918 /* If we know that this is not a text address, return failure. This is
919 necessary because we loop based on texthigh and textlow, which do
920 not include the data ranges. */
921 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
922 if (msymbol
923 && (MSYMBOL_TYPE (msymbol) == mst_data
924 || MSYMBOL_TYPE (msymbol) == mst_bss
925 || MSYMBOL_TYPE (msymbol) == mst_abs
926 || MSYMBOL_TYPE (msymbol) == mst_file_data
927 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
928 return NULL;
929
930 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
931 than the later used TEXTLOW/TEXTHIGH one. */
932
933 ALL_OBJFILES (objfile)
934 if (objfile->psymtabs_addrmap != NULL)
935 {
936 struct partial_symtab *pst;
937
938 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
939 if (pst != NULL)
940 {
941 /* FIXME: addrmaps currently do not handle overlayed sections,
942 so fall back to the non-addrmap case if we're debugging
943 overlays and the addrmap returned the wrong section. */
944 if (overlay_debugging && msymbol && section)
945 {
946 struct partial_symbol *p;
947 /* NOTE: This assumes that every psymbol has a
948 corresponding msymbol, which is not necessarily
949 true; the debug info might be much richer than the
950 object's symbol table. */
951 p = find_pc_sect_psymbol (pst, pc, section);
952 if (!p
953 || SYMBOL_VALUE_ADDRESS (p)
954 != SYMBOL_VALUE_ADDRESS (msymbol))
955 continue;
956 }
957
958 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
959 PSYMTABS_ADDRMAP we used has already the best 1-byte
960 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
961 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
962 overlap. */
963
964 return pst;
965 }
966 }
967
968 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
969 which still have no corresponding full SYMTABs read. But it is not
970 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
971 so far. */
972
973 ALL_OBJFILES (objfile)
974 {
975 struct partial_symtab *pst;
976
977 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
978 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
979 debug info type in single OBJFILE. */
980
981 ALL_OBJFILE_PSYMTABS (objfile, pst)
982 if (pc >= pst->textlow && pc < pst->texthigh)
983 {
984 struct partial_symtab *best_pst;
985
986 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
987 msymbol);
988 if (best_pst != NULL)
989 return best_pst;
990 }
991 }
992
993 return NULL;
994 }
995
996 /* Find which partial symtab contains PC. Return 0 if none.
997 Backward compatibility, no section */
998
999 struct partial_symtab *
1000 find_pc_psymtab (CORE_ADDR pc)
1001 {
1002 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
1003 }
1004
1005 /* Find which partial symbol within a psymtab matches PC and SECTION.
1006 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
1007
1008 struct partial_symbol *
1009 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
1010 struct obj_section *section)
1011 {
1012 struct partial_symbol *best = NULL, *p, **pp;
1013 CORE_ADDR best_pc;
1014
1015 if (!psymtab)
1016 psymtab = find_pc_sect_psymtab (pc, section);
1017 if (!psymtab)
1018 return 0;
1019
1020 /* Cope with programs that start at address 0 */
1021 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
1022
1023 /* Search the global symbols as well as the static symbols, so that
1024 find_pc_partial_function doesn't use a minimal symbol and thus
1025 cache a bad endaddr. */
1026 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
1027 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
1028 < psymtab->n_global_syms);
1029 pp++)
1030 {
1031 p = *pp;
1032 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1033 && SYMBOL_CLASS (p) == LOC_BLOCK
1034 && pc >= SYMBOL_VALUE_ADDRESS (p)
1035 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1036 || (psymtab->textlow == 0
1037 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1038 {
1039 if (section) /* match on a specific section */
1040 {
1041 fixup_psymbol_section (p, psymtab->objfile);
1042 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1043 continue;
1044 }
1045 best_pc = SYMBOL_VALUE_ADDRESS (p);
1046 best = p;
1047 }
1048 }
1049
1050 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
1051 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
1052 < psymtab->n_static_syms);
1053 pp++)
1054 {
1055 p = *pp;
1056 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
1057 && SYMBOL_CLASS (p) == LOC_BLOCK
1058 && pc >= SYMBOL_VALUE_ADDRESS (p)
1059 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1060 || (psymtab->textlow == 0
1061 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1062 {
1063 if (section) /* match on a specific section */
1064 {
1065 fixup_psymbol_section (p, psymtab->objfile);
1066 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1067 continue;
1068 }
1069 best_pc = SYMBOL_VALUE_ADDRESS (p);
1070 best = p;
1071 }
1072 }
1073
1074 return best;
1075 }
1076
1077 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1078 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1079
1080 struct partial_symbol *
1081 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1082 {
1083 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1084 }
1085 \f
1086 /* Debug symbols usually don't have section information. We need to dig that
1087 out of the minimal symbols and stash that in the debug symbol. */
1088
1089 static void
1090 fixup_section (struct general_symbol_info *ginfo,
1091 CORE_ADDR addr, struct objfile *objfile)
1092 {
1093 struct minimal_symbol *msym;
1094
1095 /* First, check whether a minimal symbol with the same name exists
1096 and points to the same address. The address check is required
1097 e.g. on PowerPC64, where the minimal symbol for a function will
1098 point to the function descriptor, while the debug symbol will
1099 point to the actual function code. */
1100 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1101 if (msym)
1102 {
1103 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1104 ginfo->section = SYMBOL_SECTION (msym);
1105 }
1106 else
1107 {
1108 /* Static, function-local variables do appear in the linker
1109 (minimal) symbols, but are frequently given names that won't
1110 be found via lookup_minimal_symbol(). E.g., it has been
1111 observed in frv-uclinux (ELF) executables that a static,
1112 function-local variable named "foo" might appear in the
1113 linker symbols as "foo.6" or "foo.3". Thus, there is no
1114 point in attempting to extend the lookup-by-name mechanism to
1115 handle this case due to the fact that there can be multiple
1116 names.
1117
1118 So, instead, search the section table when lookup by name has
1119 failed. The ``addr'' and ``endaddr'' fields may have already
1120 been relocated. If so, the relocation offset (i.e. the
1121 ANOFFSET value) needs to be subtracted from these values when
1122 performing the comparison. We unconditionally subtract it,
1123 because, when no relocation has been performed, the ANOFFSET
1124 value will simply be zero.
1125
1126 The address of the symbol whose section we're fixing up HAS
1127 NOT BEEN adjusted (relocated) yet. It can't have been since
1128 the section isn't yet known and knowing the section is
1129 necessary in order to add the correct relocation value. In
1130 other words, we wouldn't even be in this function (attempting
1131 to compute the section) if it were already known.
1132
1133 Note that it is possible to search the minimal symbols
1134 (subtracting the relocation value if necessary) to find the
1135 matching minimal symbol, but this is overkill and much less
1136 efficient. It is not necessary to find the matching minimal
1137 symbol, only its section.
1138
1139 Note that this technique (of doing a section table search)
1140 can fail when unrelocated section addresses overlap. For
1141 this reason, we still attempt a lookup by name prior to doing
1142 a search of the section table. */
1143
1144 struct obj_section *s;
1145 ALL_OBJFILE_OSECTIONS (objfile, s)
1146 {
1147 int idx = s->the_bfd_section->index;
1148 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1149
1150 if (obj_section_addr (s) - offset <= addr
1151 && addr < obj_section_endaddr (s) - offset)
1152 {
1153 ginfo->obj_section = s;
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158 }
1159 }
1160
1161 struct symbol *
1162 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1163 {
1164 CORE_ADDR addr;
1165
1166 if (!sym)
1167 return NULL;
1168
1169 if (SYMBOL_OBJ_SECTION (sym))
1170 return sym;
1171
1172 /* We either have an OBJFILE, or we can get at it from the sym's
1173 symtab. Anything else is a bug. */
1174 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1175
1176 if (objfile == NULL)
1177 objfile = SYMBOL_SYMTAB (sym)->objfile;
1178
1179 /* We should have an objfile by now. */
1180 gdb_assert (objfile);
1181
1182 switch (SYMBOL_CLASS (sym))
1183 {
1184 case LOC_STATIC:
1185 case LOC_LABEL:
1186 addr = SYMBOL_VALUE_ADDRESS (sym);
1187 break;
1188 case LOC_BLOCK:
1189 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1190 break;
1191
1192 default:
1193 /* Nothing else will be listed in the minsyms -- no use looking
1194 it up. */
1195 return sym;
1196 }
1197
1198 fixup_section (&sym->ginfo, addr, objfile);
1199
1200 return sym;
1201 }
1202
1203 struct partial_symbol *
1204 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1205 {
1206 CORE_ADDR addr;
1207
1208 if (!psym)
1209 return NULL;
1210
1211 if (SYMBOL_OBJ_SECTION (psym))
1212 return psym;
1213
1214 gdb_assert (objfile);
1215
1216 switch (SYMBOL_CLASS (psym))
1217 {
1218 case LOC_STATIC:
1219 case LOC_LABEL:
1220 case LOC_BLOCK:
1221 addr = SYMBOL_VALUE_ADDRESS (psym);
1222 break;
1223 default:
1224 /* Nothing else will be listed in the minsyms -- no use looking
1225 it up. */
1226 return psym;
1227 }
1228
1229 fixup_section (&psym->ginfo, addr, objfile);
1230
1231 return psym;
1232 }
1233
1234 /* Find the definition for a specified symbol name NAME
1235 in domain DOMAIN, visible from lexical block BLOCK.
1236 Returns the struct symbol pointer, or zero if no symbol is found.
1237 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1238 NAME is a field of the current implied argument `this'. If so set
1239 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1240 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1241 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1242
1243 /* This function has a bunch of loops in it and it would seem to be
1244 attractive to put in some QUIT's (though I'm not really sure
1245 whether it can run long enough to be really important). But there
1246 are a few calls for which it would appear to be bad news to quit
1247 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1248 that there is C++ code below which can error(), but that probably
1249 doesn't affect these calls since they are looking for a known
1250 variable and thus can probably assume it will never hit the C++
1251 code). */
1252
1253 struct symbol *
1254 lookup_symbol_in_language (const char *name, const struct block *block,
1255 const domain_enum domain, enum language lang,
1256 int *is_a_field_of_this)
1257 {
1258 char *demangled_name = NULL;
1259 const char *modified_name = NULL;
1260 const char *mangled_name = NULL;
1261 struct symbol *returnval;
1262 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1263
1264 modified_name = name;
1265
1266 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1267 we can always binary search. */
1268 if (lang == language_cplus)
1269 {
1270 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1271 if (demangled_name)
1272 {
1273 mangled_name = name;
1274 modified_name = demangled_name;
1275 make_cleanup (xfree, demangled_name);
1276 }
1277 else
1278 {
1279 /* If we were given a non-mangled name, canonicalize it
1280 according to the language (so far only for C++). */
1281 demangled_name = cp_canonicalize_string (name);
1282 if (demangled_name)
1283 {
1284 modified_name = demangled_name;
1285 make_cleanup (xfree, demangled_name);
1286 }
1287 }
1288 }
1289 else if (lang == language_java)
1290 {
1291 demangled_name = cplus_demangle (name,
1292 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1293 if (demangled_name)
1294 {
1295 mangled_name = name;
1296 modified_name = demangled_name;
1297 make_cleanup (xfree, demangled_name);
1298 }
1299 }
1300
1301 if (case_sensitivity == case_sensitive_off)
1302 {
1303 char *copy;
1304 int len, i;
1305
1306 len = strlen (name);
1307 copy = (char *) alloca (len + 1);
1308 for (i= 0; i < len; i++)
1309 copy[i] = tolower (name[i]);
1310 copy[len] = 0;
1311 modified_name = copy;
1312 }
1313
1314 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1315 domain, lang, is_a_field_of_this);
1316 do_cleanups (cleanup);
1317
1318 return returnval;
1319 }
1320
1321 /* Behave like lookup_symbol_in_language, but performed with the
1322 current language. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain, int *is_a_field_of_this)
1327 {
1328 return lookup_symbol_in_language (name, block, domain,
1329 current_language->la_language,
1330 is_a_field_of_this);
1331 }
1332
1333 /* Behave like lookup_symbol except that NAME is the natural name
1334 of the symbol that we're looking for and, if LINKAGE_NAME is
1335 non-NULL, ensure that the symbol's linkage name matches as
1336 well. */
1337
1338 static struct symbol *
1339 lookup_symbol_aux (const char *name, const char *linkage_name,
1340 const struct block *block, const domain_enum domain,
1341 enum language language, int *is_a_field_of_this)
1342 {
1343 struct symbol *sym;
1344 const struct language_defn *langdef;
1345
1346 /* Make sure we do something sensible with is_a_field_of_this, since
1347 the callers that set this parameter to some non-null value will
1348 certainly use it later and expect it to be either 0 or 1.
1349 If we don't set it, the contents of is_a_field_of_this are
1350 undefined. */
1351 if (is_a_field_of_this != NULL)
1352 *is_a_field_of_this = 0;
1353
1354 /* Search specified block and its superiors. Don't search
1355 STATIC_BLOCK or GLOBAL_BLOCK. */
1356
1357 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1358 if (sym != NULL)
1359 return sym;
1360
1361 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1362 check to see if NAME is a field of `this'. */
1363
1364 langdef = language_def (language);
1365
1366 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1367 && block != NULL)
1368 {
1369 struct symbol *sym = NULL;
1370 const struct block *function_block = block;
1371 /* 'this' is only defined in the function's block, so find the
1372 enclosing function block. */
1373 for (; function_block && !BLOCK_FUNCTION (function_block);
1374 function_block = BLOCK_SUPERBLOCK (function_block));
1375
1376 if (function_block && !dict_empty (BLOCK_DICT (function_block)))
1377 sym = lookup_block_symbol (function_block, langdef->la_name_of_this,
1378 NULL, VAR_DOMAIN);
1379 if (sym)
1380 {
1381 struct type *t = sym->type;
1382
1383 /* I'm not really sure that type of this can ever
1384 be typedefed; just be safe. */
1385 CHECK_TYPEDEF (t);
1386 if (TYPE_CODE (t) == TYPE_CODE_PTR
1387 || TYPE_CODE (t) == TYPE_CODE_REF)
1388 t = TYPE_TARGET_TYPE (t);
1389
1390 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1391 && TYPE_CODE (t) != TYPE_CODE_UNION)
1392 error (_("Internal error: `%s' is not an aggregate"),
1393 langdef->la_name_of_this);
1394
1395 if (check_field (t, name))
1396 {
1397 *is_a_field_of_this = 1;
1398 return NULL;
1399 }
1400 }
1401 }
1402
1403 /* Now do whatever is appropriate for LANGUAGE to look
1404 up static and global variables. */
1405
1406 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1407 if (sym != NULL)
1408 return sym;
1409
1410 /* Now search all static file-level symbols. Not strictly correct,
1411 but more useful than an error. Do the symtabs first, then check
1412 the psymtabs. If a psymtab indicates the existence of the
1413 desired name as a file-level static, then do psymtab-to-symtab
1414 conversion on the fly and return the found symbol. */
1415
1416 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1417 if (sym != NULL)
1418 return sym;
1419
1420 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1421 if (sym != NULL)
1422 return sym;
1423
1424 return NULL;
1425 }
1426
1427 /* Check to see if the symbol is defined in BLOCK or its superiors.
1428 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1429
1430 static struct symbol *
1431 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1432 const struct block *block,
1433 const domain_enum domain)
1434 {
1435 struct symbol *sym;
1436 const struct block *static_block = block_static_block (block);
1437
1438 /* Check if either no block is specified or it's a global block. */
1439
1440 if (static_block == NULL)
1441 return NULL;
1442
1443 while (block != static_block)
1444 {
1445 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1446 if (sym != NULL)
1447 return sym;
1448
1449 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1450 break;
1451 block = BLOCK_SUPERBLOCK (block);
1452 }
1453
1454 /* We've reached the edge of the function without finding a result. */
1455
1456 return NULL;
1457 }
1458
1459 /* Look up OBJFILE to BLOCK. */
1460
1461 static struct objfile *
1462 lookup_objfile_from_block (const struct block *block)
1463 {
1464 struct objfile *obj;
1465 struct symtab *s;
1466
1467 if (block == NULL)
1468 return NULL;
1469
1470 block = block_global_block (block);
1471 /* Go through SYMTABS. */
1472 ALL_SYMTABS (obj, s)
1473 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1474 {
1475 if (obj->separate_debug_objfile_backlink)
1476 obj = obj->separate_debug_objfile_backlink;
1477
1478 return obj;
1479 }
1480
1481 return NULL;
1482 }
1483
1484 /* Look up a symbol in a block; if found, fixup the symbol, and set
1485 block_found appropriately. */
1486
1487 struct symbol *
1488 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1489 const struct block *block,
1490 const domain_enum domain)
1491 {
1492 struct symbol *sym;
1493
1494 sym = lookup_block_symbol (block, name, linkage_name, domain);
1495 if (sym)
1496 {
1497 block_found = block;
1498 return fixup_symbol_section (sym, NULL);
1499 }
1500
1501 return NULL;
1502 }
1503
1504 /* Check all global symbols in OBJFILE in symtabs and
1505 psymtabs. */
1506
1507 struct symbol *
1508 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1509 const char *name,
1510 const char *linkage_name,
1511 const domain_enum domain)
1512 {
1513 const struct objfile *objfile;
1514 struct symbol *sym;
1515 struct blockvector *bv;
1516 const struct block *block;
1517 struct symtab *s;
1518 struct partial_symtab *ps;
1519
1520 for (objfile = main_objfile;
1521 objfile;
1522 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1523 {
1524 /* Go through symtabs. */
1525 ALL_OBJFILE_SYMTABS (objfile, s)
1526 {
1527 bv = BLOCKVECTOR (s);
1528 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1529 sym = lookup_block_symbol (block, name, linkage_name, domain);
1530 if (sym)
1531 {
1532 block_found = block;
1533 return fixup_symbol_section (sym, (struct objfile *)objfile);
1534 }
1535 }
1536
1537 /* Now go through psymtabs. */
1538 ALL_OBJFILE_PSYMTABS (objfile, ps)
1539 {
1540 if (!ps->readin
1541 && lookup_partial_symbol (ps, name, linkage_name,
1542 1, domain))
1543 {
1544 s = PSYMTAB_TO_SYMTAB (ps);
1545 bv = BLOCKVECTOR (s);
1546 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1547 sym = lookup_block_symbol (block, name, linkage_name, domain);
1548 return fixup_symbol_section (sym, (struct objfile *)objfile);
1549 }
1550 }
1551 }
1552
1553 return NULL;
1554 }
1555
1556 /* Check to see if the symbol is defined in one of the symtabs.
1557 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1558 depending on whether or not we want to search global symbols or
1559 static symbols. */
1560
1561 static struct symbol *
1562 lookup_symbol_aux_symtabs (int block_index,
1563 const char *name, const char *linkage_name,
1564 const domain_enum domain)
1565 {
1566 struct symbol *sym;
1567 struct objfile *objfile;
1568 struct blockvector *bv;
1569 const struct block *block;
1570 struct symtab *s;
1571
1572 ALL_PRIMARY_SYMTABS (objfile, s)
1573 {
1574 bv = BLOCKVECTOR (s);
1575 block = BLOCKVECTOR_BLOCK (bv, block_index);
1576 sym = lookup_block_symbol (block, name, linkage_name, domain);
1577 if (sym)
1578 {
1579 block_found = block;
1580 return fixup_symbol_section (sym, objfile);
1581 }
1582 }
1583
1584 return NULL;
1585 }
1586
1587 /* Check to see if the symbol is defined in one of the partial
1588 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1589 STATIC_BLOCK, depending on whether or not we want to search global
1590 symbols or static symbols. */
1591
1592 static struct symbol *
1593 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1594 const char *linkage_name,
1595 const domain_enum domain)
1596 {
1597 struct symbol *sym;
1598 struct objfile *objfile;
1599 struct blockvector *bv;
1600 const struct block *block;
1601 struct partial_symtab *ps;
1602 struct symtab *s;
1603 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1604
1605 ALL_PSYMTABS (objfile, ps)
1606 {
1607 if (!ps->readin
1608 && lookup_partial_symbol (ps, name, linkage_name,
1609 psymtab_index, domain))
1610 {
1611 s = PSYMTAB_TO_SYMTAB (ps);
1612 bv = BLOCKVECTOR (s);
1613 block = BLOCKVECTOR_BLOCK (bv, block_index);
1614 sym = lookup_block_symbol (block, name, linkage_name, domain);
1615 if (!sym)
1616 {
1617 /* This shouldn't be necessary, but as a last resort try
1618 looking in the statics even though the psymtab claimed
1619 the symbol was global, or vice-versa. It's possible
1620 that the psymtab gets it wrong in some cases. */
1621
1622 /* FIXME: carlton/2002-09-30: Should we really do that?
1623 If that happens, isn't it likely to be a GDB error, in
1624 which case we should fix the GDB error rather than
1625 silently dealing with it here? So I'd vote for
1626 removing the check for the symbol in the other
1627 block. */
1628 block = BLOCKVECTOR_BLOCK (bv,
1629 block_index == GLOBAL_BLOCK ?
1630 STATIC_BLOCK : GLOBAL_BLOCK);
1631 sym = lookup_block_symbol (block, name, linkage_name, domain);
1632 if (!sym)
1633 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1634 block_index == GLOBAL_BLOCK ? "global" : "static",
1635 name, ps->filename, name, name);
1636 }
1637 return fixup_symbol_section (sym, objfile);
1638 }
1639 }
1640
1641 return NULL;
1642 }
1643
1644 /* A default version of lookup_symbol_nonlocal for use by languages
1645 that can't think of anything better to do. This implements the C
1646 lookup rules. */
1647
1648 struct symbol *
1649 basic_lookup_symbol_nonlocal (const char *name,
1650 const char *linkage_name,
1651 const struct block *block,
1652 const domain_enum domain)
1653 {
1654 struct symbol *sym;
1655
1656 /* NOTE: carlton/2003-05-19: The comments below were written when
1657 this (or what turned into this) was part of lookup_symbol_aux;
1658 I'm much less worried about these questions now, since these
1659 decisions have turned out well, but I leave these comments here
1660 for posterity. */
1661
1662 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1663 not it would be appropriate to search the current global block
1664 here as well. (That's what this code used to do before the
1665 is_a_field_of_this check was moved up.) On the one hand, it's
1666 redundant with the lookup_symbol_aux_symtabs search that happens
1667 next. On the other hand, if decode_line_1 is passed an argument
1668 like filename:var, then the user presumably wants 'var' to be
1669 searched for in filename. On the third hand, there shouldn't be
1670 multiple global variables all of which are named 'var', and it's
1671 not like decode_line_1 has ever restricted its search to only
1672 global variables in a single filename. All in all, only
1673 searching the static block here seems best: it's correct and it's
1674 cleanest. */
1675
1676 /* NOTE: carlton/2002-12-05: There's also a possible performance
1677 issue here: if you usually search for global symbols in the
1678 current file, then it would be slightly better to search the
1679 current global block before searching all the symtabs. But there
1680 are other factors that have a much greater effect on performance
1681 than that one, so I don't think we should worry about that for
1682 now. */
1683
1684 sym = lookup_symbol_static (name, linkage_name, block, domain);
1685 if (sym != NULL)
1686 return sym;
1687
1688 return lookup_symbol_global (name, linkage_name, block, domain);
1689 }
1690
1691 /* Lookup a symbol in the static block associated to BLOCK, if there
1692 is one; do nothing if BLOCK is NULL or a global block. */
1693
1694 struct symbol *
1695 lookup_symbol_static (const char *name,
1696 const char *linkage_name,
1697 const struct block *block,
1698 const domain_enum domain)
1699 {
1700 const struct block *static_block = block_static_block (block);
1701
1702 if (static_block != NULL)
1703 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1704 else
1705 return NULL;
1706 }
1707
1708 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1709 necessary). */
1710
1711 struct symbol *
1712 lookup_symbol_global (const char *name,
1713 const char *linkage_name,
1714 const struct block *block,
1715 const domain_enum domain)
1716 {
1717 struct symbol *sym = NULL;
1718 struct objfile *objfile = NULL;
1719
1720 /* Call library-specific lookup procedure. */
1721 objfile = lookup_objfile_from_block (block);
1722 if (objfile != NULL)
1723 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1724 if (sym != NULL)
1725 return sym;
1726
1727 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1728 if (sym != NULL)
1729 return sym;
1730
1731 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1732 }
1733
1734 int
1735 symbol_matches_domain (enum language symbol_language,
1736 domain_enum symbol_domain,
1737 domain_enum domain)
1738 {
1739 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1740 A Java class declaration also defines a typedef for the class.
1741 Similarly, any Ada type declaration implicitly defines a typedef. */
1742 if (symbol_language == language_cplus
1743 || symbol_language == language_java
1744 || symbol_language == language_ada)
1745 {
1746 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1747 && symbol_domain == STRUCT_DOMAIN)
1748 return 1;
1749 }
1750 /* For all other languages, strict match is required. */
1751 return (symbol_domain == domain);
1752 }
1753
1754 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1755 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1756 linkage name matches it. Check the global symbols if GLOBAL, the
1757 static symbols if not */
1758
1759 struct partial_symbol *
1760 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1761 const char *linkage_name, int global,
1762 domain_enum domain)
1763 {
1764 struct partial_symbol *temp;
1765 struct partial_symbol **start, **psym;
1766 struct partial_symbol **top, **real_top, **bottom, **center;
1767 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1768 int do_linear_search = 1;
1769
1770 if (length == 0)
1771 {
1772 return (NULL);
1773 }
1774 start = (global ?
1775 pst->objfile->global_psymbols.list + pst->globals_offset :
1776 pst->objfile->static_psymbols.list + pst->statics_offset);
1777
1778 if (global) /* This means we can use a binary search. */
1779 {
1780 do_linear_search = 0;
1781
1782 /* Binary search. This search is guaranteed to end with center
1783 pointing at the earliest partial symbol whose name might be
1784 correct. At that point *all* partial symbols with an
1785 appropriate name will be checked against the correct
1786 domain. */
1787
1788 bottom = start;
1789 top = start + length - 1;
1790 real_top = top;
1791 while (top > bottom)
1792 {
1793 center = bottom + (top - bottom) / 2;
1794 if (!(center < top))
1795 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1796 if (!do_linear_search
1797 && (SYMBOL_LANGUAGE (*center) == language_java))
1798 {
1799 do_linear_search = 1;
1800 }
1801 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1802 {
1803 top = center;
1804 }
1805 else
1806 {
1807 bottom = center + 1;
1808 }
1809 }
1810 if (!(top == bottom))
1811 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1812
1813 while (top <= real_top
1814 && (linkage_name != NULL
1815 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1816 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1817 {
1818 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1819 SYMBOL_DOMAIN (*top), domain))
1820 return (*top);
1821 top++;
1822 }
1823 }
1824
1825 /* Can't use a binary search or else we found during the binary search that
1826 we should also do a linear search. */
1827
1828 if (do_linear_search)
1829 {
1830 for (psym = start; psym < start + length; psym++)
1831 {
1832 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1833 SYMBOL_DOMAIN (*psym), domain))
1834 {
1835 if (linkage_name != NULL
1836 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1837 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1838 {
1839 return (*psym);
1840 }
1841 }
1842 }
1843 }
1844
1845 return (NULL);
1846 }
1847
1848 /* Look up a type named NAME in the struct_domain. The type returned
1849 must not be opaque -- i.e., must have at least one field
1850 defined. */
1851
1852 struct type *
1853 lookup_transparent_type (const char *name)
1854 {
1855 return current_language->la_lookup_transparent_type (name);
1856 }
1857
1858 /* The standard implementation of lookup_transparent_type. This code
1859 was modeled on lookup_symbol -- the parts not relevant to looking
1860 up types were just left out. In particular it's assumed here that
1861 types are available in struct_domain and only at file-static or
1862 global blocks. */
1863
1864 struct type *
1865 basic_lookup_transparent_type (const char *name)
1866 {
1867 struct symbol *sym;
1868 struct symtab *s = NULL;
1869 struct partial_symtab *ps;
1870 struct blockvector *bv;
1871 struct objfile *objfile;
1872 struct block *block;
1873
1874 /* Now search all the global symbols. Do the symtab's first, then
1875 check the psymtab's. If a psymtab indicates the existence
1876 of the desired name as a global, then do psymtab-to-symtab
1877 conversion on the fly and return the found symbol. */
1878
1879 ALL_PRIMARY_SYMTABS (objfile, s)
1880 {
1881 bv = BLOCKVECTOR (s);
1882 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1883 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1884 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1885 {
1886 return SYMBOL_TYPE (sym);
1887 }
1888 }
1889
1890 ALL_PSYMTABS (objfile, ps)
1891 {
1892 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1893 1, STRUCT_DOMAIN))
1894 {
1895 s = PSYMTAB_TO_SYMTAB (ps);
1896 bv = BLOCKVECTOR (s);
1897 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1898 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1899 if (!sym)
1900 {
1901 /* This shouldn't be necessary, but as a last resort
1902 * try looking in the statics even though the psymtab
1903 * claimed the symbol was global. It's possible that
1904 * the psymtab gets it wrong in some cases.
1905 */
1906 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1907 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1908 if (!sym)
1909 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1910 %s may be an inlined function, or may be a template function\n\
1911 (if a template, try specifying an instantiation: %s<type>)."),
1912 name, ps->filename, name, name);
1913 }
1914 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1915 return SYMBOL_TYPE (sym);
1916 }
1917 }
1918
1919 /* Now search the static file-level symbols.
1920 Not strictly correct, but more useful than an error.
1921 Do the symtab's first, then
1922 check the psymtab's. If a psymtab indicates the existence
1923 of the desired name as a file-level static, then do psymtab-to-symtab
1924 conversion on the fly and return the found symbol.
1925 */
1926
1927 ALL_PRIMARY_SYMTABS (objfile, s)
1928 {
1929 bv = BLOCKVECTOR (s);
1930 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1931 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1932 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1933 {
1934 return SYMBOL_TYPE (sym);
1935 }
1936 }
1937
1938 ALL_PSYMTABS (objfile, ps)
1939 {
1940 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1941 {
1942 s = PSYMTAB_TO_SYMTAB (ps);
1943 bv = BLOCKVECTOR (s);
1944 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1945 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1946 if (!sym)
1947 {
1948 /* This shouldn't be necessary, but as a last resort
1949 * try looking in the globals even though the psymtab
1950 * claimed the symbol was static. It's possible that
1951 * the psymtab gets it wrong in some cases.
1952 */
1953 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1954 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1955 if (!sym)
1956 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1957 %s may be an inlined function, or may be a template function\n\
1958 (if a template, try specifying an instantiation: %s<type>)."),
1959 name, ps->filename, name, name);
1960 }
1961 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1962 return SYMBOL_TYPE (sym);
1963 }
1964 }
1965 return (struct type *) 0;
1966 }
1967
1968
1969 /* Find the psymtab containing main(). */
1970 /* FIXME: What about languages without main() or specially linked
1971 executables that have no main() ? */
1972
1973 struct partial_symtab *
1974 find_main_psymtab (void)
1975 {
1976 struct partial_symtab *pst;
1977 struct objfile *objfile;
1978
1979 ALL_PSYMTABS (objfile, pst)
1980 {
1981 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1982 {
1983 return (pst);
1984 }
1985 }
1986 return (NULL);
1987 }
1988
1989 /* Search BLOCK for symbol NAME in DOMAIN.
1990
1991 Note that if NAME is the demangled form of a C++ symbol, we will fail
1992 to find a match during the binary search of the non-encoded names, but
1993 for now we don't worry about the slight inefficiency of looking for
1994 a match we'll never find, since it will go pretty quick. Once the
1995 binary search terminates, we drop through and do a straight linear
1996 search on the symbols. Each symbol which is marked as being a ObjC/C++
1997 symbol (language_cplus or language_objc set) has both the encoded and
1998 non-encoded names tested for a match.
1999
2000 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
2001 particular mangled name.
2002 */
2003
2004 struct symbol *
2005 lookup_block_symbol (const struct block *block, const char *name,
2006 const char *linkage_name,
2007 const domain_enum domain)
2008 {
2009 struct dict_iterator iter;
2010 struct symbol *sym;
2011
2012 if (!BLOCK_FUNCTION (block))
2013 {
2014 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2015 sym != NULL;
2016 sym = dict_iter_name_next (name, &iter))
2017 {
2018 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2019 SYMBOL_DOMAIN (sym), domain)
2020 && (linkage_name != NULL
2021 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2022 return sym;
2023 }
2024 return NULL;
2025 }
2026 else
2027 {
2028 /* Note that parameter symbols do not always show up last in the
2029 list; this loop makes sure to take anything else other than
2030 parameter symbols first; it only uses parameter symbols as a
2031 last resort. Note that this only takes up extra computation
2032 time on a match. */
2033
2034 struct symbol *sym_found = NULL;
2035
2036 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
2037 sym != NULL;
2038 sym = dict_iter_name_next (name, &iter))
2039 {
2040 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2041 SYMBOL_DOMAIN (sym), domain)
2042 && (linkage_name != NULL
2043 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
2044 {
2045 sym_found = sym;
2046 if (!SYMBOL_IS_ARGUMENT (sym))
2047 {
2048 break;
2049 }
2050 }
2051 }
2052 return (sym_found); /* Will be NULL if not found. */
2053 }
2054 }
2055
2056 /* Find the symtab associated with PC and SECTION. Look through the
2057 psymtabs and read in another symtab if necessary. */
2058
2059 struct symtab *
2060 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2061 {
2062 struct block *b;
2063 struct blockvector *bv;
2064 struct symtab *s = NULL;
2065 struct symtab *best_s = NULL;
2066 struct partial_symtab *ps;
2067 struct objfile *objfile;
2068 struct program_space *pspace;
2069 CORE_ADDR distance = 0;
2070 struct minimal_symbol *msymbol;
2071
2072 pspace = current_program_space;
2073
2074 /* If we know that this is not a text address, return failure. This is
2075 necessary because we loop based on the block's high and low code
2076 addresses, which do not include the data ranges, and because
2077 we call find_pc_sect_psymtab which has a similar restriction based
2078 on the partial_symtab's texthigh and textlow. */
2079 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2080 if (msymbol
2081 && (MSYMBOL_TYPE (msymbol) == mst_data
2082 || MSYMBOL_TYPE (msymbol) == mst_bss
2083 || MSYMBOL_TYPE (msymbol) == mst_abs
2084 || MSYMBOL_TYPE (msymbol) == mst_file_data
2085 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2086 return NULL;
2087
2088 /* Search all symtabs for the one whose file contains our address, and which
2089 is the smallest of all the ones containing the address. This is designed
2090 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2091 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2092 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2093
2094 This happens for native ecoff format, where code from included files
2095 gets its own symtab. The symtab for the included file should have
2096 been read in already via the dependency mechanism.
2097 It might be swifter to create several symtabs with the same name
2098 like xcoff does (I'm not sure).
2099
2100 It also happens for objfiles that have their functions reordered.
2101 For these, the symtab we are looking for is not necessarily read in. */
2102
2103 ALL_PRIMARY_SYMTABS (objfile, s)
2104 {
2105 bv = BLOCKVECTOR (s);
2106 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2107
2108 if (BLOCK_START (b) <= pc
2109 && BLOCK_END (b) > pc
2110 && (distance == 0
2111 || BLOCK_END (b) - BLOCK_START (b) < distance))
2112 {
2113 /* For an objfile that has its functions reordered,
2114 find_pc_psymtab will find the proper partial symbol table
2115 and we simply return its corresponding symtab. */
2116 /* In order to better support objfiles that contain both
2117 stabs and coff debugging info, we continue on if a psymtab
2118 can't be found. */
2119 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2120 {
2121 ps = find_pc_sect_psymtab (pc, section);
2122 if (ps)
2123 return PSYMTAB_TO_SYMTAB (ps);
2124 }
2125 if (section != 0)
2126 {
2127 struct dict_iterator iter;
2128 struct symbol *sym = NULL;
2129
2130 ALL_BLOCK_SYMBOLS (b, iter, sym)
2131 {
2132 fixup_symbol_section (sym, objfile);
2133 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2134 break;
2135 }
2136 if (sym == NULL)
2137 continue; /* no symbol in this symtab matches section */
2138 }
2139 distance = BLOCK_END (b) - BLOCK_START (b);
2140 best_s = s;
2141 }
2142 }
2143
2144 if (best_s != NULL)
2145 return (best_s);
2146
2147 s = NULL;
2148 ps = find_pc_sect_psymtab (pc, section);
2149 if (ps)
2150 {
2151 if (ps->readin)
2152 /* Might want to error() here (in case symtab is corrupt and
2153 will cause a core dump), but maybe we can successfully
2154 continue, so let's not. */
2155 warning (_("\
2156 (Internal error: pc %s in read in psymtab, but not in symtab.)\n"),
2157 paddress (get_objfile_arch (ps->objfile), pc));
2158 s = PSYMTAB_TO_SYMTAB (ps);
2159 }
2160 return (s);
2161 }
2162
2163 /* Find the symtab associated with PC. Look through the psymtabs and
2164 read in another symtab if necessary. Backward compatibility, no section */
2165
2166 struct symtab *
2167 find_pc_symtab (CORE_ADDR pc)
2168 {
2169 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2170 }
2171 \f
2172
2173 /* Find the source file and line number for a given PC value and SECTION.
2174 Return a structure containing a symtab pointer, a line number,
2175 and a pc range for the entire source line.
2176 The value's .pc field is NOT the specified pc.
2177 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2178 use the line that ends there. Otherwise, in that case, the line
2179 that begins there is used. */
2180
2181 /* The big complication here is that a line may start in one file, and end just
2182 before the start of another file. This usually occurs when you #include
2183 code in the middle of a subroutine. To properly find the end of a line's PC
2184 range, we must search all symtabs associated with this compilation unit, and
2185 find the one whose first PC is closer than that of the next line in this
2186 symtab. */
2187
2188 /* If it's worth the effort, we could be using a binary search. */
2189
2190 struct symtab_and_line
2191 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2192 {
2193 struct symtab *s;
2194 struct linetable *l;
2195 int len;
2196 int i;
2197 struct linetable_entry *item;
2198 struct symtab_and_line val;
2199 struct blockvector *bv;
2200 struct minimal_symbol *msymbol;
2201 struct minimal_symbol *mfunsym;
2202
2203 /* Info on best line seen so far, and where it starts, and its file. */
2204
2205 struct linetable_entry *best = NULL;
2206 CORE_ADDR best_end = 0;
2207 struct symtab *best_symtab = 0;
2208
2209 /* Store here the first line number
2210 of a file which contains the line at the smallest pc after PC.
2211 If we don't find a line whose range contains PC,
2212 we will use a line one less than this,
2213 with a range from the start of that file to the first line's pc. */
2214 struct linetable_entry *alt = NULL;
2215 struct symtab *alt_symtab = 0;
2216
2217 /* Info on best line seen in this file. */
2218
2219 struct linetable_entry *prev;
2220
2221 /* If this pc is not from the current frame,
2222 it is the address of the end of a call instruction.
2223 Quite likely that is the start of the following statement.
2224 But what we want is the statement containing the instruction.
2225 Fudge the pc to make sure we get that. */
2226
2227 init_sal (&val); /* initialize to zeroes */
2228
2229 val.pspace = current_program_space;
2230
2231 /* It's tempting to assume that, if we can't find debugging info for
2232 any function enclosing PC, that we shouldn't search for line
2233 number info, either. However, GAS can emit line number info for
2234 assembly files --- very helpful when debugging hand-written
2235 assembly code. In such a case, we'd have no debug info for the
2236 function, but we would have line info. */
2237
2238 if (notcurrent)
2239 pc -= 1;
2240
2241 /* elz: added this because this function returned the wrong
2242 information if the pc belongs to a stub (import/export)
2243 to call a shlib function. This stub would be anywhere between
2244 two functions in the target, and the line info was erroneously
2245 taken to be the one of the line before the pc.
2246 */
2247 /* RT: Further explanation:
2248
2249 * We have stubs (trampolines) inserted between procedures.
2250 *
2251 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2252 * exists in the main image.
2253 *
2254 * In the minimal symbol table, we have a bunch of symbols
2255 * sorted by start address. The stubs are marked as "trampoline",
2256 * the others appear as text. E.g.:
2257 *
2258 * Minimal symbol table for main image
2259 * main: code for main (text symbol)
2260 * shr1: stub (trampoline symbol)
2261 * foo: code for foo (text symbol)
2262 * ...
2263 * Minimal symbol table for "shr1" image:
2264 * ...
2265 * shr1: code for shr1 (text symbol)
2266 * ...
2267 *
2268 * So the code below is trying to detect if we are in the stub
2269 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2270 * and if found, do the symbolization from the real-code address
2271 * rather than the stub address.
2272 *
2273 * Assumptions being made about the minimal symbol table:
2274 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2275 * if we're really in the trampoline. If we're beyond it (say
2276 * we're in "foo" in the above example), it'll have a closer
2277 * symbol (the "foo" text symbol for example) and will not
2278 * return the trampoline.
2279 * 2. lookup_minimal_symbol_text() will find a real text symbol
2280 * corresponding to the trampoline, and whose address will
2281 * be different than the trampoline address. I put in a sanity
2282 * check for the address being the same, to avoid an
2283 * infinite recursion.
2284 */
2285 msymbol = lookup_minimal_symbol_by_pc (pc);
2286 if (msymbol != NULL)
2287 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2288 {
2289 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2290 NULL);
2291 if (mfunsym == NULL)
2292 /* I eliminated this warning since it is coming out
2293 * in the following situation:
2294 * gdb shmain // test program with shared libraries
2295 * (gdb) break shr1 // function in shared lib
2296 * Warning: In stub for ...
2297 * In the above situation, the shared lib is not loaded yet,
2298 * so of course we can't find the real func/line info,
2299 * but the "break" still works, and the warning is annoying.
2300 * So I commented out the warning. RT */
2301 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2302 /* fall through */
2303 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2304 /* Avoid infinite recursion */
2305 /* See above comment about why warning is commented out */
2306 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2307 /* fall through */
2308 else
2309 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2310 }
2311
2312
2313 s = find_pc_sect_symtab (pc, section);
2314 if (!s)
2315 {
2316 /* if no symbol information, return previous pc */
2317 if (notcurrent)
2318 pc++;
2319 val.pc = pc;
2320 return val;
2321 }
2322
2323 bv = BLOCKVECTOR (s);
2324
2325 /* Look at all the symtabs that share this blockvector.
2326 They all have the same apriori range, that we found was right;
2327 but they have different line tables. */
2328
2329 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2330 {
2331 /* Find the best line in this symtab. */
2332 l = LINETABLE (s);
2333 if (!l)
2334 continue;
2335 len = l->nitems;
2336 if (len <= 0)
2337 {
2338 /* I think len can be zero if the symtab lacks line numbers
2339 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2340 I'm not sure which, and maybe it depends on the symbol
2341 reader). */
2342 continue;
2343 }
2344
2345 prev = NULL;
2346 item = l->item; /* Get first line info */
2347
2348 /* Is this file's first line closer than the first lines of other files?
2349 If so, record this file, and its first line, as best alternate. */
2350 if (item->pc > pc && (!alt || item->pc < alt->pc))
2351 {
2352 alt = item;
2353 alt_symtab = s;
2354 }
2355
2356 for (i = 0; i < len; i++, item++)
2357 {
2358 /* Leave prev pointing to the linetable entry for the last line
2359 that started at or before PC. */
2360 if (item->pc > pc)
2361 break;
2362
2363 prev = item;
2364 }
2365
2366 /* At this point, prev points at the line whose start addr is <= pc, and
2367 item points at the next line. If we ran off the end of the linetable
2368 (pc >= start of the last line), then prev == item. If pc < start of
2369 the first line, prev will not be set. */
2370
2371 /* Is this file's best line closer than the best in the other files?
2372 If so, record this file, and its best line, as best so far. Don't
2373 save prev if it represents the end of a function (i.e. line number
2374 0) instead of a real line. */
2375
2376 if (prev && prev->line && (!best || prev->pc > best->pc))
2377 {
2378 best = prev;
2379 best_symtab = s;
2380
2381 /* Discard BEST_END if it's before the PC of the current BEST. */
2382 if (best_end <= best->pc)
2383 best_end = 0;
2384 }
2385
2386 /* If another line (denoted by ITEM) is in the linetable and its
2387 PC is after BEST's PC, but before the current BEST_END, then
2388 use ITEM's PC as the new best_end. */
2389 if (best && i < len && item->pc > best->pc
2390 && (best_end == 0 || best_end > item->pc))
2391 best_end = item->pc;
2392 }
2393
2394 if (!best_symtab)
2395 {
2396 /* If we didn't find any line number info, just return zeros.
2397 We used to return alt->line - 1 here, but that could be
2398 anywhere; if we don't have line number info for this PC,
2399 don't make some up. */
2400 val.pc = pc;
2401 }
2402 else if (best->line == 0)
2403 {
2404 /* If our best fit is in a range of PC's for which no line
2405 number info is available (line number is zero) then we didn't
2406 find any valid line information. */
2407 val.pc = pc;
2408 }
2409 else
2410 {
2411 val.symtab = best_symtab;
2412 val.line = best->line;
2413 val.pc = best->pc;
2414 if (best_end && (!alt || best_end < alt->pc))
2415 val.end = best_end;
2416 else if (alt)
2417 val.end = alt->pc;
2418 else
2419 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2420 }
2421 val.section = section;
2422 return val;
2423 }
2424
2425 /* Backward compatibility (no section) */
2426
2427 struct symtab_and_line
2428 find_pc_line (CORE_ADDR pc, int notcurrent)
2429 {
2430 struct obj_section *section;
2431
2432 section = find_pc_overlay (pc);
2433 if (pc_in_unmapped_range (pc, section))
2434 pc = overlay_mapped_address (pc, section);
2435 return find_pc_sect_line (pc, section, notcurrent);
2436 }
2437 \f
2438 /* Find line number LINE in any symtab whose name is the same as
2439 SYMTAB.
2440
2441 If found, return the symtab that contains the linetable in which it was
2442 found, set *INDEX to the index in the linetable of the best entry
2443 found, and set *EXACT_MATCH nonzero if the value returned is an
2444 exact match.
2445
2446 If not found, return NULL. */
2447
2448 struct symtab *
2449 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2450 {
2451 int exact = 0; /* Initialized here to avoid a compiler warning. */
2452
2453 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2454 so far seen. */
2455
2456 int best_index;
2457 struct linetable *best_linetable;
2458 struct symtab *best_symtab;
2459
2460 /* First try looking it up in the given symtab. */
2461 best_linetable = LINETABLE (symtab);
2462 best_symtab = symtab;
2463 best_index = find_line_common (best_linetable, line, &exact);
2464 if (best_index < 0 || !exact)
2465 {
2466 /* Didn't find an exact match. So we better keep looking for
2467 another symtab with the same name. In the case of xcoff,
2468 multiple csects for one source file (produced by IBM's FORTRAN
2469 compiler) produce multiple symtabs (this is unavoidable
2470 assuming csects can be at arbitrary places in memory and that
2471 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2472
2473 /* BEST is the smallest linenumber > LINE so far seen,
2474 or 0 if none has been seen so far.
2475 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2476 int best;
2477
2478 struct objfile *objfile;
2479 struct symtab *s;
2480 struct partial_symtab *p;
2481
2482 if (best_index >= 0)
2483 best = best_linetable->item[best_index].line;
2484 else
2485 best = 0;
2486
2487 ALL_PSYMTABS (objfile, p)
2488 {
2489 if (FILENAME_CMP (symtab->filename, p->filename) != 0)
2490 continue;
2491 PSYMTAB_TO_SYMTAB (p);
2492 }
2493
2494 /* Get symbol full file name if possible. */
2495 symtab_to_fullname (symtab);
2496
2497 ALL_SYMTABS (objfile, s)
2498 {
2499 struct linetable *l;
2500 int ind;
2501
2502 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2503 continue;
2504 if (symtab->fullname != NULL
2505 && symtab_to_fullname (s) != NULL
2506 && FILENAME_CMP (symtab->fullname, s->fullname) != 0)
2507 continue;
2508 l = LINETABLE (s);
2509 ind = find_line_common (l, line, &exact);
2510 if (ind >= 0)
2511 {
2512 if (exact)
2513 {
2514 best_index = ind;
2515 best_linetable = l;
2516 best_symtab = s;
2517 goto done;
2518 }
2519 if (best == 0 || l->item[ind].line < best)
2520 {
2521 best = l->item[ind].line;
2522 best_index = ind;
2523 best_linetable = l;
2524 best_symtab = s;
2525 }
2526 }
2527 }
2528 }
2529 done:
2530 if (best_index < 0)
2531 return NULL;
2532
2533 if (index)
2534 *index = best_index;
2535 if (exact_match)
2536 *exact_match = exact;
2537
2538 return best_symtab;
2539 }
2540 \f
2541 /* Set the PC value for a given source file and line number and return true.
2542 Returns zero for invalid line number (and sets the PC to 0).
2543 The source file is specified with a struct symtab. */
2544
2545 int
2546 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2547 {
2548 struct linetable *l;
2549 int ind;
2550
2551 *pc = 0;
2552 if (symtab == 0)
2553 return 0;
2554
2555 symtab = find_line_symtab (symtab, line, &ind, NULL);
2556 if (symtab != NULL)
2557 {
2558 l = LINETABLE (symtab);
2559 *pc = l->item[ind].pc;
2560 return 1;
2561 }
2562 else
2563 return 0;
2564 }
2565
2566 /* Find the range of pc values in a line.
2567 Store the starting pc of the line into *STARTPTR
2568 and the ending pc (start of next line) into *ENDPTR.
2569 Returns 1 to indicate success.
2570 Returns 0 if could not find the specified line. */
2571
2572 int
2573 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2574 CORE_ADDR *endptr)
2575 {
2576 CORE_ADDR startaddr;
2577 struct symtab_and_line found_sal;
2578
2579 startaddr = sal.pc;
2580 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2581 return 0;
2582
2583 /* This whole function is based on address. For example, if line 10 has
2584 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2585 "info line *0x123" should say the line goes from 0x100 to 0x200
2586 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2587 This also insures that we never give a range like "starts at 0x134
2588 and ends at 0x12c". */
2589
2590 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2591 if (found_sal.line != sal.line)
2592 {
2593 /* The specified line (sal) has zero bytes. */
2594 *startptr = found_sal.pc;
2595 *endptr = found_sal.pc;
2596 }
2597 else
2598 {
2599 *startptr = found_sal.pc;
2600 *endptr = found_sal.end;
2601 }
2602 return 1;
2603 }
2604
2605 /* Given a line table and a line number, return the index into the line
2606 table for the pc of the nearest line whose number is >= the specified one.
2607 Return -1 if none is found. The value is >= 0 if it is an index.
2608
2609 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2610
2611 static int
2612 find_line_common (struct linetable *l, int lineno,
2613 int *exact_match)
2614 {
2615 int i;
2616 int len;
2617
2618 /* BEST is the smallest linenumber > LINENO so far seen,
2619 or 0 if none has been seen so far.
2620 BEST_INDEX identifies the item for it. */
2621
2622 int best_index = -1;
2623 int best = 0;
2624
2625 *exact_match = 0;
2626
2627 if (lineno <= 0)
2628 return -1;
2629 if (l == 0)
2630 return -1;
2631
2632 len = l->nitems;
2633 for (i = 0; i < len; i++)
2634 {
2635 struct linetable_entry *item = &(l->item[i]);
2636
2637 if (item->line == lineno)
2638 {
2639 /* Return the first (lowest address) entry which matches. */
2640 *exact_match = 1;
2641 return i;
2642 }
2643
2644 if (item->line > lineno && (best == 0 || item->line < best))
2645 {
2646 best = item->line;
2647 best_index = i;
2648 }
2649 }
2650
2651 /* If we got here, we didn't get an exact match. */
2652 return best_index;
2653 }
2654
2655 int
2656 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2657 {
2658 struct symtab_and_line sal;
2659 sal = find_pc_line (pc, 0);
2660 *startptr = sal.pc;
2661 *endptr = sal.end;
2662 return sal.symtab != 0;
2663 }
2664
2665 /* Given a function start address PC and SECTION, find the first
2666 address after the function prologue. */
2667 CORE_ADDR
2668 find_function_start_pc (struct gdbarch *gdbarch,
2669 CORE_ADDR pc, struct obj_section *section)
2670 {
2671 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2672 so that gdbarch_skip_prologue has something unique to work on. */
2673 if (section_is_overlay (section) && !section_is_mapped (section))
2674 pc = overlay_unmapped_address (pc, section);
2675
2676 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2677 pc = gdbarch_skip_prologue (gdbarch, pc);
2678
2679 /* For overlays, map pc back into its mapped VMA range. */
2680 pc = overlay_mapped_address (pc, section);
2681
2682 return pc;
2683 }
2684
2685 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2686 address for that function that has an entry in SYMTAB's line info
2687 table. If such an entry cannot be found, return FUNC_ADDR
2688 unaltered. */
2689 CORE_ADDR
2690 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2691 {
2692 CORE_ADDR func_start, func_end;
2693 struct linetable *l;
2694 int ind, i, len;
2695 int best_lineno = 0;
2696 CORE_ADDR best_pc = func_addr;
2697
2698 /* Give up if this symbol has no lineinfo table. */
2699 l = LINETABLE (symtab);
2700 if (l == NULL)
2701 return func_addr;
2702
2703 /* Get the range for the function's PC values, or give up if we
2704 cannot, for some reason. */
2705 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2706 return func_addr;
2707
2708 /* Linetable entries are ordered by PC values, see the commentary in
2709 symtab.h where `struct linetable' is defined. Thus, the first
2710 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2711 address we are looking for. */
2712 for (i = 0; i < l->nitems; i++)
2713 {
2714 struct linetable_entry *item = &(l->item[i]);
2715
2716 /* Don't use line numbers of zero, they mark special entries in
2717 the table. See the commentary on symtab.h before the
2718 definition of struct linetable. */
2719 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2720 return item->pc;
2721 }
2722
2723 return func_addr;
2724 }
2725
2726 /* Given a function symbol SYM, find the symtab and line for the start
2727 of the function.
2728 If the argument FUNFIRSTLINE is nonzero, we want the first line
2729 of real code inside the function. */
2730
2731 struct symtab_and_line
2732 find_function_start_sal (struct symbol *sym, int funfirstline)
2733 {
2734 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2735 struct objfile *objfile = lookup_objfile_from_block (block);
2736 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2737
2738 CORE_ADDR pc;
2739 struct symtab_and_line sal;
2740 struct block *b, *function_block;
2741
2742 struct cleanup *old_chain;
2743
2744 old_chain = save_current_space_and_thread ();
2745 switch_to_program_space_and_thread (objfile->pspace);
2746
2747 pc = BLOCK_START (block);
2748 fixup_symbol_section (sym, objfile);
2749 if (funfirstline)
2750 {
2751 /* Skip "first line" of function (which is actually its prologue). */
2752 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2753 }
2754 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2755
2756 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2757 line is still part of the same function. */
2758 if (sal.pc != pc
2759 && BLOCK_START (block) <= sal.end
2760 && sal.end < BLOCK_END (block))
2761 {
2762 /* First pc of next line */
2763 pc = sal.end;
2764 /* Recalculate the line number (might not be N+1). */
2765 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2766 }
2767
2768 /* On targets with executable formats that don't have a concept of
2769 constructors (ELF with .init has, PE doesn't), gcc emits a call
2770 to `__main' in `main' between the prologue and before user
2771 code. */
2772 if (funfirstline
2773 && gdbarch_skip_main_prologue_p (gdbarch)
2774 && SYMBOL_LINKAGE_NAME (sym)
2775 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2776 {
2777 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2778 /* Recalculate the line number (might not be N+1). */
2779 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2780 }
2781
2782 /* If we still don't have a valid source line, try to find the first
2783 PC in the lineinfo table that belongs to the same function. This
2784 happens with COFF debug info, which does not seem to have an
2785 entry in lineinfo table for the code after the prologue which has
2786 no direct relation to source. For example, this was found to be
2787 the case with the DJGPP target using "gcc -gcoff" when the
2788 compiler inserted code after the prologue to make sure the stack
2789 is aligned. */
2790 if (funfirstline && sal.symtab == NULL)
2791 {
2792 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2793 /* Recalculate the line number. */
2794 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2795 }
2796
2797 sal.pc = pc;
2798 sal.pspace = objfile->pspace;
2799
2800 /* Check if we are now inside an inlined function. If we can,
2801 use the call site of the function instead. */
2802 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2803 function_block = NULL;
2804 while (b != NULL)
2805 {
2806 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2807 function_block = b;
2808 else if (BLOCK_FUNCTION (b) != NULL)
2809 break;
2810 b = BLOCK_SUPERBLOCK (b);
2811 }
2812 if (function_block != NULL
2813 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2814 {
2815 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2816 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2817 }
2818
2819 do_cleanups (old_chain);
2820 return sal;
2821 }
2822
2823 /* If P is of the form "operator[ \t]+..." where `...' is
2824 some legitimate operator text, return a pointer to the
2825 beginning of the substring of the operator text.
2826 Otherwise, return "". */
2827 char *
2828 operator_chars (char *p, char **end)
2829 {
2830 *end = "";
2831 if (strncmp (p, "operator", 8))
2832 return *end;
2833 p += 8;
2834
2835 /* Don't get faked out by `operator' being part of a longer
2836 identifier. */
2837 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2838 return *end;
2839
2840 /* Allow some whitespace between `operator' and the operator symbol. */
2841 while (*p == ' ' || *p == '\t')
2842 p++;
2843
2844 /* Recognize 'operator TYPENAME'. */
2845
2846 if (isalpha (*p) || *p == '_' || *p == '$')
2847 {
2848 char *q = p + 1;
2849 while (isalnum (*q) || *q == '_' || *q == '$')
2850 q++;
2851 *end = q;
2852 return p;
2853 }
2854
2855 while (*p)
2856 switch (*p)
2857 {
2858 case '\\': /* regexp quoting */
2859 if (p[1] == '*')
2860 {
2861 if (p[2] == '=') /* 'operator\*=' */
2862 *end = p + 3;
2863 else /* 'operator\*' */
2864 *end = p + 2;
2865 return p;
2866 }
2867 else if (p[1] == '[')
2868 {
2869 if (p[2] == ']')
2870 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2871 else if (p[2] == '\\' && p[3] == ']')
2872 {
2873 *end = p + 4; /* 'operator\[\]' */
2874 return p;
2875 }
2876 else
2877 error (_("nothing is allowed between '[' and ']'"));
2878 }
2879 else
2880 {
2881 /* Gratuitous qoute: skip it and move on. */
2882 p++;
2883 continue;
2884 }
2885 break;
2886 case '!':
2887 case '=':
2888 case '*':
2889 case '/':
2890 case '%':
2891 case '^':
2892 if (p[1] == '=')
2893 *end = p + 2;
2894 else
2895 *end = p + 1;
2896 return p;
2897 case '<':
2898 case '>':
2899 case '+':
2900 case '-':
2901 case '&':
2902 case '|':
2903 if (p[0] == '-' && p[1] == '>')
2904 {
2905 /* Struct pointer member operator 'operator->'. */
2906 if (p[2] == '*')
2907 {
2908 *end = p + 3; /* 'operator->*' */
2909 return p;
2910 }
2911 else if (p[2] == '\\')
2912 {
2913 *end = p + 4; /* Hopefully 'operator->\*' */
2914 return p;
2915 }
2916 else
2917 {
2918 *end = p + 2; /* 'operator->' */
2919 return p;
2920 }
2921 }
2922 if (p[1] == '=' || p[1] == p[0])
2923 *end = p + 2;
2924 else
2925 *end = p + 1;
2926 return p;
2927 case '~':
2928 case ',':
2929 *end = p + 1;
2930 return p;
2931 case '(':
2932 if (p[1] != ')')
2933 error (_("`operator ()' must be specified without whitespace in `()'"));
2934 *end = p + 2;
2935 return p;
2936 case '?':
2937 if (p[1] != ':')
2938 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2939 *end = p + 2;
2940 return p;
2941 case '[':
2942 if (p[1] != ']')
2943 error (_("`operator []' must be specified without whitespace in `[]'"));
2944 *end = p + 2;
2945 return p;
2946 default:
2947 error (_("`operator %s' not supported"), p);
2948 break;
2949 }
2950
2951 *end = "";
2952 return *end;
2953 }
2954 \f
2955
2956 /* If FILE is not already in the table of files, return zero;
2957 otherwise return non-zero. Optionally add FILE to the table if ADD
2958 is non-zero. If *FIRST is non-zero, forget the old table
2959 contents. */
2960 static int
2961 filename_seen (const char *file, int add, int *first)
2962 {
2963 /* Table of files seen so far. */
2964 static const char **tab = NULL;
2965 /* Allocated size of tab in elements.
2966 Start with one 256-byte block (when using GNU malloc.c).
2967 24 is the malloc overhead when range checking is in effect. */
2968 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2969 /* Current size of tab in elements. */
2970 static int tab_cur_size;
2971 const char **p;
2972
2973 if (*first)
2974 {
2975 if (tab == NULL)
2976 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2977 tab_cur_size = 0;
2978 }
2979
2980 /* Is FILE in tab? */
2981 for (p = tab; p < tab + tab_cur_size; p++)
2982 if (strcmp (*p, file) == 0)
2983 return 1;
2984
2985 /* No; maybe add it to tab. */
2986 if (add)
2987 {
2988 if (tab_cur_size == tab_alloc_size)
2989 {
2990 tab_alloc_size *= 2;
2991 tab = (const char **) xrealloc ((char *) tab,
2992 tab_alloc_size * sizeof (*tab));
2993 }
2994 tab[tab_cur_size++] = file;
2995 }
2996
2997 return 0;
2998 }
2999
3000 /* Slave routine for sources_info. Force line breaks at ,'s.
3001 NAME is the name to print and *FIRST is nonzero if this is the first
3002 name printed. Set *FIRST to zero. */
3003 static void
3004 output_source_filename (const char *name, int *first)
3005 {
3006 /* Since a single source file can result in several partial symbol
3007 tables, we need to avoid printing it more than once. Note: if
3008 some of the psymtabs are read in and some are not, it gets
3009 printed both under "Source files for which symbols have been
3010 read" and "Source files for which symbols will be read in on
3011 demand". I consider this a reasonable way to deal with the
3012 situation. I'm not sure whether this can also happen for
3013 symtabs; it doesn't hurt to check. */
3014
3015 /* Was NAME already seen? */
3016 if (filename_seen (name, 1, first))
3017 {
3018 /* Yes; don't print it again. */
3019 return;
3020 }
3021 /* No; print it and reset *FIRST. */
3022 if (*first)
3023 {
3024 *first = 0;
3025 }
3026 else
3027 {
3028 printf_filtered (", ");
3029 }
3030
3031 wrap_here ("");
3032 fputs_filtered (name, gdb_stdout);
3033 }
3034
3035 static void
3036 sources_info (char *ignore, int from_tty)
3037 {
3038 struct symtab *s;
3039 struct partial_symtab *ps;
3040 struct objfile *objfile;
3041 int first;
3042
3043 if (!have_full_symbols () && !have_partial_symbols ())
3044 {
3045 error (_("No symbol table is loaded. Use the \"file\" command."));
3046 }
3047
3048 printf_filtered ("Source files for which symbols have been read in:\n\n");
3049
3050 first = 1;
3051 ALL_SYMTABS (objfile, s)
3052 {
3053 const char *fullname = symtab_to_fullname (s);
3054 output_source_filename (fullname ? fullname : s->filename, &first);
3055 }
3056 printf_filtered ("\n\n");
3057
3058 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
3059
3060 first = 1;
3061 ALL_PSYMTABS (objfile, ps)
3062 {
3063 if (!ps->readin)
3064 {
3065 const char *fullname = psymtab_to_fullname (ps);
3066 output_source_filename (fullname ? fullname : ps->filename, &first);
3067 }
3068 }
3069 printf_filtered ("\n");
3070 }
3071
3072 static int
3073 file_matches (char *file, char *files[], int nfiles)
3074 {
3075 int i;
3076
3077 if (file != NULL && nfiles != 0)
3078 {
3079 for (i = 0; i < nfiles; i++)
3080 {
3081 if (strcmp (files[i], lbasename (file)) == 0)
3082 return 1;
3083 }
3084 }
3085 else if (nfiles == 0)
3086 return 1;
3087 return 0;
3088 }
3089
3090 /* Free any memory associated with a search. */
3091 void
3092 free_search_symbols (struct symbol_search *symbols)
3093 {
3094 struct symbol_search *p;
3095 struct symbol_search *next;
3096
3097 for (p = symbols; p != NULL; p = next)
3098 {
3099 next = p->next;
3100 xfree (p);
3101 }
3102 }
3103
3104 static void
3105 do_free_search_symbols_cleanup (void *symbols)
3106 {
3107 free_search_symbols (symbols);
3108 }
3109
3110 struct cleanup *
3111 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3112 {
3113 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3114 }
3115
3116 /* Helper function for sort_search_symbols and qsort. Can only
3117 sort symbols, not minimal symbols. */
3118 static int
3119 compare_search_syms (const void *sa, const void *sb)
3120 {
3121 struct symbol_search **sym_a = (struct symbol_search **) sa;
3122 struct symbol_search **sym_b = (struct symbol_search **) sb;
3123
3124 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3125 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3126 }
3127
3128 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3129 prevtail where it is, but update its next pointer to point to
3130 the first of the sorted symbols. */
3131 static struct symbol_search *
3132 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3133 {
3134 struct symbol_search **symbols, *symp, *old_next;
3135 int i;
3136
3137 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3138 * nfound);
3139 symp = prevtail->next;
3140 for (i = 0; i < nfound; i++)
3141 {
3142 symbols[i] = symp;
3143 symp = symp->next;
3144 }
3145 /* Generally NULL. */
3146 old_next = symp;
3147
3148 qsort (symbols, nfound, sizeof (struct symbol_search *),
3149 compare_search_syms);
3150
3151 symp = prevtail;
3152 for (i = 0; i < nfound; i++)
3153 {
3154 symp->next = symbols[i];
3155 symp = symp->next;
3156 }
3157 symp->next = old_next;
3158
3159 xfree (symbols);
3160 return symp;
3161 }
3162
3163 /* Search the symbol table for matches to the regular expression REGEXP,
3164 returning the results in *MATCHES.
3165
3166 Only symbols of KIND are searched:
3167 FUNCTIONS_DOMAIN - search all functions
3168 TYPES_DOMAIN - search all type names
3169 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3170 and constants (enums)
3171
3172 free_search_symbols should be called when *MATCHES is no longer needed.
3173
3174 The results are sorted locally; each symtab's global and static blocks are
3175 separately alphabetized.
3176 */
3177 void
3178 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3179 struct symbol_search **matches)
3180 {
3181 struct symtab *s;
3182 struct partial_symtab *ps;
3183 struct blockvector *bv;
3184 struct block *b;
3185 int i = 0;
3186 struct dict_iterator iter;
3187 struct symbol *sym;
3188 struct partial_symbol **psym;
3189 struct objfile *objfile;
3190 struct minimal_symbol *msymbol;
3191 char *val;
3192 int found_misc = 0;
3193 static enum minimal_symbol_type types[]
3194 =
3195 {mst_data, mst_text, mst_abs, mst_unknown};
3196 static enum minimal_symbol_type types2[]
3197 =
3198 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3199 static enum minimal_symbol_type types3[]
3200 =
3201 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3202 static enum minimal_symbol_type types4[]
3203 =
3204 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3205 enum minimal_symbol_type ourtype;
3206 enum minimal_symbol_type ourtype2;
3207 enum minimal_symbol_type ourtype3;
3208 enum minimal_symbol_type ourtype4;
3209 struct symbol_search *sr;
3210 struct symbol_search *psr;
3211 struct symbol_search *tail;
3212 struct cleanup *old_chain = NULL;
3213
3214 if (kind < VARIABLES_DOMAIN)
3215 error (_("must search on specific domain"));
3216
3217 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3218 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3219 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3220 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3221
3222 sr = *matches = NULL;
3223 tail = NULL;
3224
3225 if (regexp != NULL)
3226 {
3227 /* Make sure spacing is right for C++ operators.
3228 This is just a courtesy to make the matching less sensitive
3229 to how many spaces the user leaves between 'operator'
3230 and <TYPENAME> or <OPERATOR>. */
3231 char *opend;
3232 char *opname = operator_chars (regexp, &opend);
3233 if (*opname)
3234 {
3235 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3236 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3237 {
3238 /* There should 1 space between 'operator' and 'TYPENAME'. */
3239 if (opname[-1] != ' ' || opname[-2] == ' ')
3240 fix = 1;
3241 }
3242 else
3243 {
3244 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3245 if (opname[-1] == ' ')
3246 fix = 0;
3247 }
3248 /* If wrong number of spaces, fix it. */
3249 if (fix >= 0)
3250 {
3251 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3252 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3253 regexp = tmp;
3254 }
3255 }
3256
3257 if (0 != (val = re_comp (regexp)))
3258 error (_("Invalid regexp (%s): %s"), val, regexp);
3259 }
3260
3261 /* Search through the partial symtabs *first* for all symbols
3262 matching the regexp. That way we don't have to reproduce all of
3263 the machinery below. */
3264
3265 ALL_PSYMTABS (objfile, ps)
3266 {
3267 struct partial_symbol **bound, **gbound, **sbound;
3268 int keep_going = 1;
3269
3270 if (ps->readin)
3271 continue;
3272
3273 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3274 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3275 bound = gbound;
3276
3277 /* Go through all of the symbols stored in a partial
3278 symtab in one loop. */
3279 psym = objfile->global_psymbols.list + ps->globals_offset;
3280 while (keep_going)
3281 {
3282 if (psym >= bound)
3283 {
3284 if (bound == gbound && ps->n_static_syms != 0)
3285 {
3286 psym = objfile->static_psymbols.list + ps->statics_offset;
3287 bound = sbound;
3288 }
3289 else
3290 keep_going = 0;
3291 continue;
3292 }
3293 else
3294 {
3295 QUIT;
3296
3297 /* If it would match (logic taken from loop below)
3298 load the file and go on to the next one. We check the
3299 filename here, but that's a bit bogus: we don't know
3300 what file it really comes from until we have full
3301 symtabs. The symbol might be in a header file included by
3302 this psymtab. This only affects Insight. */
3303 if (file_matches (ps->filename, files, nfiles)
3304 && ((regexp == NULL
3305 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3306 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3307 && SYMBOL_CLASS (*psym) != LOC_UNRESOLVED
3308 && SYMBOL_CLASS (*psym) != LOC_BLOCK
3309 && SYMBOL_CLASS (*psym) != LOC_CONST)
3310 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3311 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3312 {
3313 PSYMTAB_TO_SYMTAB (ps);
3314 keep_going = 0;
3315 }
3316 }
3317 psym++;
3318 }
3319 }
3320
3321 /* Here, we search through the minimal symbol tables for functions
3322 and variables that match, and force their symbols to be read.
3323 This is in particular necessary for demangled variable names,
3324 which are no longer put into the partial symbol tables.
3325 The symbol will then be found during the scan of symtabs below.
3326
3327 For functions, find_pc_symtab should succeed if we have debug info
3328 for the function, for variables we have to call lookup_symbol
3329 to determine if the variable has debug info.
3330 If the lookup fails, set found_misc so that we will rescan to print
3331 any matching symbols without debug info.
3332 */
3333
3334 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3335 {
3336 ALL_MSYMBOLS (objfile, msymbol)
3337 {
3338 QUIT;
3339
3340 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3341 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3342 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3343 MSYMBOL_TYPE (msymbol) == ourtype4)
3344 {
3345 if (regexp == NULL
3346 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3347 {
3348 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3349 {
3350 /* FIXME: carlton/2003-02-04: Given that the
3351 semantics of lookup_symbol keeps on changing
3352 slightly, it would be a nice idea if we had a
3353 function lookup_symbol_minsym that found the
3354 symbol associated to a given minimal symbol (if
3355 any). */
3356 if (kind == FUNCTIONS_DOMAIN
3357 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3358 (struct block *) NULL,
3359 VAR_DOMAIN, 0)
3360 == NULL)
3361 found_misc = 1;
3362 }
3363 }
3364 }
3365 }
3366 }
3367
3368 ALL_PRIMARY_SYMTABS (objfile, s)
3369 {
3370 bv = BLOCKVECTOR (s);
3371 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3372 {
3373 struct symbol_search *prevtail = tail;
3374 int nfound = 0;
3375 b = BLOCKVECTOR_BLOCK (bv, i);
3376 ALL_BLOCK_SYMBOLS (b, iter, sym)
3377 {
3378 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3379 QUIT;
3380
3381 if (file_matches (real_symtab->filename, files, nfiles)
3382 && ((regexp == NULL
3383 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3384 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3385 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3386 && SYMBOL_CLASS (sym) != LOC_BLOCK
3387 && SYMBOL_CLASS (sym) != LOC_CONST)
3388 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3389 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3390 {
3391 /* match */
3392 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3393 psr->block = i;
3394 psr->symtab = real_symtab;
3395 psr->symbol = sym;
3396 psr->msymbol = NULL;
3397 psr->next = NULL;
3398 if (tail == NULL)
3399 sr = psr;
3400 else
3401 tail->next = psr;
3402 tail = psr;
3403 nfound ++;
3404 }
3405 }
3406 if (nfound > 0)
3407 {
3408 if (prevtail == NULL)
3409 {
3410 struct symbol_search dummy;
3411
3412 dummy.next = sr;
3413 tail = sort_search_symbols (&dummy, nfound);
3414 sr = dummy.next;
3415
3416 old_chain = make_cleanup_free_search_symbols (sr);
3417 }
3418 else
3419 tail = sort_search_symbols (prevtail, nfound);
3420 }
3421 }
3422 }
3423
3424 /* If there are no eyes, avoid all contact. I mean, if there are
3425 no debug symbols, then print directly from the msymbol_vector. */
3426
3427 if (found_misc || kind != FUNCTIONS_DOMAIN)
3428 {
3429 ALL_MSYMBOLS (objfile, msymbol)
3430 {
3431 QUIT;
3432
3433 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3434 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3435 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3436 MSYMBOL_TYPE (msymbol) == ourtype4)
3437 {
3438 if (regexp == NULL
3439 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3440 {
3441 /* Functions: Look up by address. */
3442 if (kind != FUNCTIONS_DOMAIN ||
3443 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3444 {
3445 /* Variables/Absolutes: Look up by name */
3446 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3447 (struct block *) NULL, VAR_DOMAIN, 0)
3448 == NULL)
3449 {
3450 /* match */
3451 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3452 psr->block = i;
3453 psr->msymbol = msymbol;
3454 psr->symtab = NULL;
3455 psr->symbol = NULL;
3456 psr->next = NULL;
3457 if (tail == NULL)
3458 {
3459 sr = psr;
3460 old_chain = make_cleanup_free_search_symbols (sr);
3461 }
3462 else
3463 tail->next = psr;
3464 tail = psr;
3465 }
3466 }
3467 }
3468 }
3469 }
3470 }
3471
3472 *matches = sr;
3473 if (sr != NULL)
3474 discard_cleanups (old_chain);
3475 }
3476
3477 /* Helper function for symtab_symbol_info, this function uses
3478 the data returned from search_symbols() to print information
3479 regarding the match to gdb_stdout.
3480 */
3481 static void
3482 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3483 int block, char *last)
3484 {
3485 if (last == NULL || strcmp (last, s->filename) != 0)
3486 {
3487 fputs_filtered ("\nFile ", gdb_stdout);
3488 fputs_filtered (s->filename, gdb_stdout);
3489 fputs_filtered (":\n", gdb_stdout);
3490 }
3491
3492 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3493 printf_filtered ("static ");
3494
3495 /* Typedef that is not a C++ class */
3496 if (kind == TYPES_DOMAIN
3497 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3498 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3499 /* variable, func, or typedef-that-is-c++-class */
3500 else if (kind < TYPES_DOMAIN ||
3501 (kind == TYPES_DOMAIN &&
3502 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3503 {
3504 type_print (SYMBOL_TYPE (sym),
3505 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3506 ? "" : SYMBOL_PRINT_NAME (sym)),
3507 gdb_stdout, 0);
3508
3509 printf_filtered (";\n");
3510 }
3511 }
3512
3513 /* This help function for symtab_symbol_info() prints information
3514 for non-debugging symbols to gdb_stdout.
3515 */
3516 static void
3517 print_msymbol_info (struct minimal_symbol *msymbol)
3518 {
3519 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3520 char *tmp;
3521
3522 if (gdbarch_addr_bit (gdbarch) <= 32)
3523 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3524 & (CORE_ADDR) 0xffffffff,
3525 8);
3526 else
3527 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3528 16);
3529 printf_filtered ("%s %s\n",
3530 tmp, SYMBOL_PRINT_NAME (msymbol));
3531 }
3532
3533 /* This is the guts of the commands "info functions", "info types", and
3534 "info variables". It calls search_symbols to find all matches and then
3535 print_[m]symbol_info to print out some useful information about the
3536 matches.
3537 */
3538 static void
3539 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3540 {
3541 static char *classnames[]
3542 =
3543 {"variable", "function", "type", "method"};
3544 struct symbol_search *symbols;
3545 struct symbol_search *p;
3546 struct cleanup *old_chain;
3547 char *last_filename = NULL;
3548 int first = 1;
3549
3550 /* must make sure that if we're interrupted, symbols gets freed */
3551 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3552 old_chain = make_cleanup_free_search_symbols (symbols);
3553
3554 printf_filtered (regexp
3555 ? "All %ss matching regular expression \"%s\":\n"
3556 : "All defined %ss:\n",
3557 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3558
3559 for (p = symbols; p != NULL; p = p->next)
3560 {
3561 QUIT;
3562
3563 if (p->msymbol != NULL)
3564 {
3565 if (first)
3566 {
3567 printf_filtered ("\nNon-debugging symbols:\n");
3568 first = 0;
3569 }
3570 print_msymbol_info (p->msymbol);
3571 }
3572 else
3573 {
3574 print_symbol_info (kind,
3575 p->symtab,
3576 p->symbol,
3577 p->block,
3578 last_filename);
3579 last_filename = p->symtab->filename;
3580 }
3581 }
3582
3583 do_cleanups (old_chain);
3584 }
3585
3586 static void
3587 variables_info (char *regexp, int from_tty)
3588 {
3589 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3590 }
3591
3592 static void
3593 functions_info (char *regexp, int from_tty)
3594 {
3595 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3596 }
3597
3598
3599 static void
3600 types_info (char *regexp, int from_tty)
3601 {
3602 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3603 }
3604
3605 /* Breakpoint all functions matching regular expression. */
3606
3607 void
3608 rbreak_command_wrapper (char *regexp, int from_tty)
3609 {
3610 rbreak_command (regexp, from_tty);
3611 }
3612
3613 static void
3614 rbreak_command (char *regexp, int from_tty)
3615 {
3616 struct symbol_search *ss;
3617 struct symbol_search *p;
3618 struct cleanup *old_chain;
3619
3620 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3621 old_chain = make_cleanup_free_search_symbols (ss);
3622
3623 for (p = ss; p != NULL; p = p->next)
3624 {
3625 if (p->msymbol == NULL)
3626 {
3627 char *string = alloca (strlen (p->symtab->filename)
3628 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3629 + 4);
3630 strcpy (string, p->symtab->filename);
3631 strcat (string, ":'");
3632 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3633 strcat (string, "'");
3634 break_command (string, from_tty);
3635 print_symbol_info (FUNCTIONS_DOMAIN,
3636 p->symtab,
3637 p->symbol,
3638 p->block,
3639 p->symtab->filename);
3640 }
3641 else
3642 {
3643 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3644 + 3);
3645 strcpy (string, "'");
3646 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3647 strcat (string, "'");
3648
3649 break_command (string, from_tty);
3650 printf_filtered ("<function, no debug info> %s;\n",
3651 SYMBOL_PRINT_NAME (p->msymbol));
3652 }
3653 }
3654
3655 do_cleanups (old_chain);
3656 }
3657 \f
3658
3659 /* Helper routine for make_symbol_completion_list. */
3660
3661 static int return_val_size;
3662 static int return_val_index;
3663 static char **return_val;
3664
3665 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3666 completion_list_add_name \
3667 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3668
3669 /* Test to see if the symbol specified by SYMNAME (which is already
3670 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3671 characters. If so, add it to the current completion list. */
3672
3673 static void
3674 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3675 char *text, char *word)
3676 {
3677 int newsize;
3678 int i;
3679
3680 /* clip symbols that cannot match */
3681
3682 if (strncmp (symname, sym_text, sym_text_len) != 0)
3683 {
3684 return;
3685 }
3686
3687 /* We have a match for a completion, so add SYMNAME to the current list
3688 of matches. Note that the name is moved to freshly malloc'd space. */
3689
3690 {
3691 char *new;
3692 if (word == sym_text)
3693 {
3694 new = xmalloc (strlen (symname) + 5);
3695 strcpy (new, symname);
3696 }
3697 else if (word > sym_text)
3698 {
3699 /* Return some portion of symname. */
3700 new = xmalloc (strlen (symname) + 5);
3701 strcpy (new, symname + (word - sym_text));
3702 }
3703 else
3704 {
3705 /* Return some of SYM_TEXT plus symname. */
3706 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3707 strncpy (new, word, sym_text - word);
3708 new[sym_text - word] = '\0';
3709 strcat (new, symname);
3710 }
3711
3712 if (return_val_index + 3 > return_val_size)
3713 {
3714 newsize = (return_val_size *= 2) * sizeof (char *);
3715 return_val = (char **) xrealloc ((char *) return_val, newsize);
3716 }
3717 return_val[return_val_index++] = new;
3718 return_val[return_val_index] = NULL;
3719 }
3720 }
3721
3722 /* ObjC: In case we are completing on a selector, look as the msymbol
3723 again and feed all the selectors into the mill. */
3724
3725 static void
3726 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3727 int sym_text_len, char *text, char *word)
3728 {
3729 static char *tmp = NULL;
3730 static unsigned int tmplen = 0;
3731
3732 char *method, *category, *selector;
3733 char *tmp2 = NULL;
3734
3735 method = SYMBOL_NATURAL_NAME (msymbol);
3736
3737 /* Is it a method? */
3738 if ((method[0] != '-') && (method[0] != '+'))
3739 return;
3740
3741 if (sym_text[0] == '[')
3742 /* Complete on shortened method method. */
3743 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3744
3745 while ((strlen (method) + 1) >= tmplen)
3746 {
3747 if (tmplen == 0)
3748 tmplen = 1024;
3749 else
3750 tmplen *= 2;
3751 tmp = xrealloc (tmp, tmplen);
3752 }
3753 selector = strchr (method, ' ');
3754 if (selector != NULL)
3755 selector++;
3756
3757 category = strchr (method, '(');
3758
3759 if ((category != NULL) && (selector != NULL))
3760 {
3761 memcpy (tmp, method, (category - method));
3762 tmp[category - method] = ' ';
3763 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3764 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3765 if (sym_text[0] == '[')
3766 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3767 }
3768
3769 if (selector != NULL)
3770 {
3771 /* Complete on selector only. */
3772 strcpy (tmp, selector);
3773 tmp2 = strchr (tmp, ']');
3774 if (tmp2 != NULL)
3775 *tmp2 = '\0';
3776
3777 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3778 }
3779 }
3780
3781 /* Break the non-quoted text based on the characters which are in
3782 symbols. FIXME: This should probably be language-specific. */
3783
3784 static char *
3785 language_search_unquoted_string (char *text, char *p)
3786 {
3787 for (; p > text; --p)
3788 {
3789 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3790 continue;
3791 else
3792 {
3793 if ((current_language->la_language == language_objc))
3794 {
3795 if (p[-1] == ':') /* might be part of a method name */
3796 continue;
3797 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3798 p -= 2; /* beginning of a method name */
3799 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3800 { /* might be part of a method name */
3801 char *t = p;
3802
3803 /* Seeing a ' ' or a '(' is not conclusive evidence
3804 that we are in the middle of a method name. However,
3805 finding "-[" or "+[" should be pretty un-ambiguous.
3806 Unfortunately we have to find it now to decide. */
3807
3808 while (t > text)
3809 if (isalnum (t[-1]) || t[-1] == '_' ||
3810 t[-1] == ' ' || t[-1] == ':' ||
3811 t[-1] == '(' || t[-1] == ')')
3812 --t;
3813 else
3814 break;
3815
3816 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3817 p = t - 2; /* method name detected */
3818 /* else we leave with p unchanged */
3819 }
3820 }
3821 break;
3822 }
3823 }
3824 return p;
3825 }
3826
3827 static void
3828 completion_list_add_fields (struct symbol *sym, char *sym_text,
3829 int sym_text_len, char *text, char *word)
3830 {
3831 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3832 {
3833 struct type *t = SYMBOL_TYPE (sym);
3834 enum type_code c = TYPE_CODE (t);
3835 int j;
3836
3837 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3838 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3839 if (TYPE_FIELD_NAME (t, j))
3840 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3841 sym_text, sym_text_len, text, word);
3842 }
3843 }
3844
3845 /* Type of the user_data argument passed to add_macro_name. The
3846 contents are simply whatever is needed by
3847 completion_list_add_name. */
3848 struct add_macro_name_data
3849 {
3850 char *sym_text;
3851 int sym_text_len;
3852 char *text;
3853 char *word;
3854 };
3855
3856 /* A callback used with macro_for_each and macro_for_each_in_scope.
3857 This adds a macro's name to the current completion list. */
3858 static void
3859 add_macro_name (const char *name, const struct macro_definition *ignore,
3860 void *user_data)
3861 {
3862 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3863 completion_list_add_name ((char *) name,
3864 datum->sym_text, datum->sym_text_len,
3865 datum->text, datum->word);
3866 }
3867
3868 char **
3869 default_make_symbol_completion_list (char *text, char *word)
3870 {
3871 /* Problem: All of the symbols have to be copied because readline
3872 frees them. I'm not going to worry about this; hopefully there
3873 won't be that many. */
3874
3875 struct symbol *sym;
3876 struct symtab *s;
3877 struct partial_symtab *ps;
3878 struct minimal_symbol *msymbol;
3879 struct objfile *objfile;
3880 struct block *b;
3881 const struct block *surrounding_static_block, *surrounding_global_block;
3882 struct dict_iterator iter;
3883 struct partial_symbol **psym;
3884 /* The symbol we are completing on. Points in same buffer as text. */
3885 char *sym_text;
3886 /* Length of sym_text. */
3887 int sym_text_len;
3888
3889 /* Now look for the symbol we are supposed to complete on. */
3890 {
3891 char *p;
3892 char quote_found;
3893 char *quote_pos = NULL;
3894
3895 /* First see if this is a quoted string. */
3896 quote_found = '\0';
3897 for (p = text; *p != '\0'; ++p)
3898 {
3899 if (quote_found != '\0')
3900 {
3901 if (*p == quote_found)
3902 /* Found close quote. */
3903 quote_found = '\0';
3904 else if (*p == '\\' && p[1] == quote_found)
3905 /* A backslash followed by the quote character
3906 doesn't end the string. */
3907 ++p;
3908 }
3909 else if (*p == '\'' || *p == '"')
3910 {
3911 quote_found = *p;
3912 quote_pos = p;
3913 }
3914 }
3915 if (quote_found == '\'')
3916 /* A string within single quotes can be a symbol, so complete on it. */
3917 sym_text = quote_pos + 1;
3918 else if (quote_found == '"')
3919 /* A double-quoted string is never a symbol, nor does it make sense
3920 to complete it any other way. */
3921 {
3922 return_val = (char **) xmalloc (sizeof (char *));
3923 return_val[0] = NULL;
3924 return return_val;
3925 }
3926 else
3927 {
3928 /* It is not a quoted string. Break it based on the characters
3929 which are in symbols. */
3930 while (p > text)
3931 {
3932 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
3933 || p[-1] == ':')
3934 --p;
3935 else
3936 break;
3937 }
3938 sym_text = p;
3939 }
3940 }
3941
3942 sym_text_len = strlen (sym_text);
3943
3944 return_val_size = 100;
3945 return_val_index = 0;
3946 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3947 return_val[0] = NULL;
3948
3949 /* Look through the partial symtabs for all symbols which begin
3950 by matching SYM_TEXT. Add each one that you find to the list. */
3951
3952 ALL_PSYMTABS (objfile, ps)
3953 {
3954 /* If the psymtab's been read in we'll get it when we search
3955 through the blockvector. */
3956 if (ps->readin)
3957 continue;
3958
3959 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3960 psym < (objfile->global_psymbols.list + ps->globals_offset
3961 + ps->n_global_syms);
3962 psym++)
3963 {
3964 /* If interrupted, then quit. */
3965 QUIT;
3966 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3967 }
3968
3969 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3970 psym < (objfile->static_psymbols.list + ps->statics_offset
3971 + ps->n_static_syms);
3972 psym++)
3973 {
3974 QUIT;
3975 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3976 }
3977 }
3978
3979 /* At this point scan through the misc symbol vectors and add each
3980 symbol you find to the list. Eventually we want to ignore
3981 anything that isn't a text symbol (everything else will be
3982 handled by the psymtab code above). */
3983
3984 ALL_MSYMBOLS (objfile, msymbol)
3985 {
3986 QUIT;
3987 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3988
3989 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3990 }
3991
3992 /* Search upwards from currently selected frame (so that we can
3993 complete on local vars). Also catch fields of types defined in
3994 this places which match our text string. Only complete on types
3995 visible from current context. */
3996
3997 b = get_selected_block (0);
3998 surrounding_static_block = block_static_block (b);
3999 surrounding_global_block = block_global_block (b);
4000 if (surrounding_static_block != NULL)
4001 while (b != surrounding_static_block)
4002 {
4003 QUIT;
4004
4005 ALL_BLOCK_SYMBOLS (b, iter, sym)
4006 {
4007 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4008 word);
4009 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4010 word);
4011 }
4012
4013 /* Stop when we encounter an enclosing function. Do not stop for
4014 non-inlined functions - the locals of the enclosing function
4015 are in scope for a nested function. */
4016 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4017 break;
4018 b = BLOCK_SUPERBLOCK (b);
4019 }
4020
4021 /* Add fields from the file's types; symbols will be added below. */
4022
4023 if (surrounding_static_block != NULL)
4024 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4025 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4026
4027 if (surrounding_global_block != NULL)
4028 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4029 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4030
4031 /* Go through the symtabs and check the externs and statics for
4032 symbols which match. */
4033
4034 ALL_PRIMARY_SYMTABS (objfile, s)
4035 {
4036 QUIT;
4037 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4038 ALL_BLOCK_SYMBOLS (b, iter, sym)
4039 {
4040 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4041 }
4042 }
4043
4044 ALL_PRIMARY_SYMTABS (objfile, s)
4045 {
4046 QUIT;
4047 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4048 ALL_BLOCK_SYMBOLS (b, iter, sym)
4049 {
4050 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4051 }
4052 }
4053
4054 if (current_language->la_macro_expansion == macro_expansion_c)
4055 {
4056 struct macro_scope *scope;
4057 struct add_macro_name_data datum;
4058
4059 datum.sym_text = sym_text;
4060 datum.sym_text_len = sym_text_len;
4061 datum.text = text;
4062 datum.word = word;
4063
4064 /* Add any macros visible in the default scope. Note that this
4065 may yield the occasional wrong result, because an expression
4066 might be evaluated in a scope other than the default. For
4067 example, if the user types "break file:line if <TAB>", the
4068 resulting expression will be evaluated at "file:line" -- but
4069 at there does not seem to be a way to detect this at
4070 completion time. */
4071 scope = default_macro_scope ();
4072 if (scope)
4073 {
4074 macro_for_each_in_scope (scope->file, scope->line,
4075 add_macro_name, &datum);
4076 xfree (scope);
4077 }
4078
4079 /* User-defined macros are always visible. */
4080 macro_for_each (macro_user_macros, add_macro_name, &datum);
4081 }
4082
4083 return (return_val);
4084 }
4085
4086 /* Return a NULL terminated array of all symbols (regardless of class)
4087 which begin by matching TEXT. If the answer is no symbols, then
4088 the return value is an array which contains only a NULL pointer. */
4089
4090 char **
4091 make_symbol_completion_list (char *text, char *word)
4092 {
4093 return current_language->la_make_symbol_completion_list (text, word);
4094 }
4095
4096 /* Like make_symbol_completion_list, but suitable for use as a
4097 completion function. */
4098
4099 char **
4100 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4101 char *text, char *word)
4102 {
4103 return make_symbol_completion_list (text, word);
4104 }
4105
4106 /* Like make_symbol_completion_list, but returns a list of symbols
4107 defined in a source file FILE. */
4108
4109 char **
4110 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4111 {
4112 struct symbol *sym;
4113 struct symtab *s;
4114 struct block *b;
4115 struct dict_iterator iter;
4116 /* The symbol we are completing on. Points in same buffer as text. */
4117 char *sym_text;
4118 /* Length of sym_text. */
4119 int sym_text_len;
4120
4121 /* Now look for the symbol we are supposed to complete on.
4122 FIXME: This should be language-specific. */
4123 {
4124 char *p;
4125 char quote_found;
4126 char *quote_pos = NULL;
4127
4128 /* First see if this is a quoted string. */
4129 quote_found = '\0';
4130 for (p = text; *p != '\0'; ++p)
4131 {
4132 if (quote_found != '\0')
4133 {
4134 if (*p == quote_found)
4135 /* Found close quote. */
4136 quote_found = '\0';
4137 else if (*p == '\\' && p[1] == quote_found)
4138 /* A backslash followed by the quote character
4139 doesn't end the string. */
4140 ++p;
4141 }
4142 else if (*p == '\'' || *p == '"')
4143 {
4144 quote_found = *p;
4145 quote_pos = p;
4146 }
4147 }
4148 if (quote_found == '\'')
4149 /* A string within single quotes can be a symbol, so complete on it. */
4150 sym_text = quote_pos + 1;
4151 else if (quote_found == '"')
4152 /* A double-quoted string is never a symbol, nor does it make sense
4153 to complete it any other way. */
4154 {
4155 return_val = (char **) xmalloc (sizeof (char *));
4156 return_val[0] = NULL;
4157 return return_val;
4158 }
4159 else
4160 {
4161 /* Not a quoted string. */
4162 sym_text = language_search_unquoted_string (text, p);
4163 }
4164 }
4165
4166 sym_text_len = strlen (sym_text);
4167
4168 return_val_size = 10;
4169 return_val_index = 0;
4170 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4171 return_val[0] = NULL;
4172
4173 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4174 in). */
4175 s = lookup_symtab (srcfile);
4176 if (s == NULL)
4177 {
4178 /* Maybe they typed the file with leading directories, while the
4179 symbol tables record only its basename. */
4180 const char *tail = lbasename (srcfile);
4181
4182 if (tail > srcfile)
4183 s = lookup_symtab (tail);
4184 }
4185
4186 /* If we have no symtab for that file, return an empty list. */
4187 if (s == NULL)
4188 return (return_val);
4189
4190 /* Go through this symtab and check the externs and statics for
4191 symbols which match. */
4192
4193 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4194 ALL_BLOCK_SYMBOLS (b, iter, sym)
4195 {
4196 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4197 }
4198
4199 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4200 ALL_BLOCK_SYMBOLS (b, iter, sym)
4201 {
4202 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4203 }
4204
4205 return (return_val);
4206 }
4207
4208 /* A helper function for make_source_files_completion_list. It adds
4209 another file name to a list of possible completions, growing the
4210 list as necessary. */
4211
4212 static void
4213 add_filename_to_list (const char *fname, char *text, char *word,
4214 char ***list, int *list_used, int *list_alloced)
4215 {
4216 char *new;
4217 size_t fnlen = strlen (fname);
4218
4219 if (*list_used + 1 >= *list_alloced)
4220 {
4221 *list_alloced *= 2;
4222 *list = (char **) xrealloc ((char *) *list,
4223 *list_alloced * sizeof (char *));
4224 }
4225
4226 if (word == text)
4227 {
4228 /* Return exactly fname. */
4229 new = xmalloc (fnlen + 5);
4230 strcpy (new, fname);
4231 }
4232 else if (word > text)
4233 {
4234 /* Return some portion of fname. */
4235 new = xmalloc (fnlen + 5);
4236 strcpy (new, fname + (word - text));
4237 }
4238 else
4239 {
4240 /* Return some of TEXT plus fname. */
4241 new = xmalloc (fnlen + (text - word) + 5);
4242 strncpy (new, word, text - word);
4243 new[text - word] = '\0';
4244 strcat (new, fname);
4245 }
4246 (*list)[*list_used] = new;
4247 (*list)[++*list_used] = NULL;
4248 }
4249
4250 static int
4251 not_interesting_fname (const char *fname)
4252 {
4253 static const char *illegal_aliens[] = {
4254 "_globals_", /* inserted by coff_symtab_read */
4255 NULL
4256 };
4257 int i;
4258
4259 for (i = 0; illegal_aliens[i]; i++)
4260 {
4261 if (strcmp (fname, illegal_aliens[i]) == 0)
4262 return 1;
4263 }
4264 return 0;
4265 }
4266
4267 /* Return a NULL terminated array of all source files whose names
4268 begin with matching TEXT. The file names are looked up in the
4269 symbol tables of this program. If the answer is no matchess, then
4270 the return value is an array which contains only a NULL pointer. */
4271
4272 char **
4273 make_source_files_completion_list (char *text, char *word)
4274 {
4275 struct symtab *s;
4276 struct partial_symtab *ps;
4277 struct objfile *objfile;
4278 int first = 1;
4279 int list_alloced = 1;
4280 int list_used = 0;
4281 size_t text_len = strlen (text);
4282 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4283 const char *base_name;
4284
4285 list[0] = NULL;
4286
4287 if (!have_full_symbols () && !have_partial_symbols ())
4288 return list;
4289
4290 ALL_SYMTABS (objfile, s)
4291 {
4292 if (not_interesting_fname (s->filename))
4293 continue;
4294 if (!filename_seen (s->filename, 1, &first)
4295 #if HAVE_DOS_BASED_FILE_SYSTEM
4296 && strncasecmp (s->filename, text, text_len) == 0
4297 #else
4298 && strncmp (s->filename, text, text_len) == 0
4299 #endif
4300 )
4301 {
4302 /* This file matches for a completion; add it to the current
4303 list of matches. */
4304 add_filename_to_list (s->filename, text, word,
4305 &list, &list_used, &list_alloced);
4306 }
4307 else
4308 {
4309 /* NOTE: We allow the user to type a base name when the
4310 debug info records leading directories, but not the other
4311 way around. This is what subroutines of breakpoint
4312 command do when they parse file names. */
4313 base_name = lbasename (s->filename);
4314 if (base_name != s->filename
4315 && !filename_seen (base_name, 1, &first)
4316 #if HAVE_DOS_BASED_FILE_SYSTEM
4317 && strncasecmp (base_name, text, text_len) == 0
4318 #else
4319 && strncmp (base_name, text, text_len) == 0
4320 #endif
4321 )
4322 add_filename_to_list (base_name, text, word,
4323 &list, &list_used, &list_alloced);
4324 }
4325 }
4326
4327 ALL_PSYMTABS (objfile, ps)
4328 {
4329 if (not_interesting_fname (ps->filename))
4330 continue;
4331 if (!ps->readin)
4332 {
4333 if (!filename_seen (ps->filename, 1, &first)
4334 #if HAVE_DOS_BASED_FILE_SYSTEM
4335 && strncasecmp (ps->filename, text, text_len) == 0
4336 #else
4337 && strncmp (ps->filename, text, text_len) == 0
4338 #endif
4339 )
4340 {
4341 /* This file matches for a completion; add it to the
4342 current list of matches. */
4343 add_filename_to_list (ps->filename, text, word,
4344 &list, &list_used, &list_alloced);
4345
4346 }
4347 else
4348 {
4349 base_name = lbasename (ps->filename);
4350 if (base_name != ps->filename
4351 && !filename_seen (base_name, 1, &first)
4352 #if HAVE_DOS_BASED_FILE_SYSTEM
4353 && strncasecmp (base_name, text, text_len) == 0
4354 #else
4355 && strncmp (base_name, text, text_len) == 0
4356 #endif
4357 )
4358 add_filename_to_list (base_name, text, word,
4359 &list, &list_used, &list_alloced);
4360 }
4361 }
4362 }
4363
4364 return list;
4365 }
4366
4367 /* Determine if PC is in the prologue of a function. The prologue is the area
4368 between the first instruction of a function, and the first executable line.
4369 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4370
4371 If non-zero, func_start is where we think the prologue starts, possibly
4372 by previous examination of symbol table information.
4373 */
4374
4375 int
4376 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4377 {
4378 struct symtab_and_line sal;
4379 CORE_ADDR func_addr, func_end;
4380
4381 /* We have several sources of information we can consult to figure
4382 this out.
4383 - Compilers usually emit line number info that marks the prologue
4384 as its own "source line". So the ending address of that "line"
4385 is the end of the prologue. If available, this is the most
4386 reliable method.
4387 - The minimal symbols and partial symbols, which can usually tell
4388 us the starting and ending addresses of a function.
4389 - If we know the function's start address, we can call the
4390 architecture-defined gdbarch_skip_prologue function to analyze the
4391 instruction stream and guess where the prologue ends.
4392 - Our `func_start' argument; if non-zero, this is the caller's
4393 best guess as to the function's entry point. At the time of
4394 this writing, handle_inferior_event doesn't get this right, so
4395 it should be our last resort. */
4396
4397 /* Consult the partial symbol table, to find which function
4398 the PC is in. */
4399 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4400 {
4401 CORE_ADDR prologue_end;
4402
4403 /* We don't even have minsym information, so fall back to using
4404 func_start, if given. */
4405 if (! func_start)
4406 return 1; /* We *might* be in a prologue. */
4407
4408 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4409
4410 return func_start <= pc && pc < prologue_end;
4411 }
4412
4413 /* If we have line number information for the function, that's
4414 usually pretty reliable. */
4415 sal = find_pc_line (func_addr, 0);
4416
4417 /* Now sal describes the source line at the function's entry point,
4418 which (by convention) is the prologue. The end of that "line",
4419 sal.end, is the end of the prologue.
4420
4421 Note that, for functions whose source code is all on a single
4422 line, the line number information doesn't always end up this way.
4423 So we must verify that our purported end-of-prologue address is
4424 *within* the function, not at its start or end. */
4425 if (sal.line == 0
4426 || sal.end <= func_addr
4427 || func_end <= sal.end)
4428 {
4429 /* We don't have any good line number info, so use the minsym
4430 information, together with the architecture-specific prologue
4431 scanning code. */
4432 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4433
4434 return func_addr <= pc && pc < prologue_end;
4435 }
4436
4437 /* We have line number info, and it looks good. */
4438 return func_addr <= pc && pc < sal.end;
4439 }
4440
4441 /* Given PC at the function's start address, attempt to find the
4442 prologue end using SAL information. Return zero if the skip fails.
4443
4444 A non-optimized prologue traditionally has one SAL for the function
4445 and a second for the function body. A single line function has
4446 them both pointing at the same line.
4447
4448 An optimized prologue is similar but the prologue may contain
4449 instructions (SALs) from the instruction body. Need to skip those
4450 while not getting into the function body.
4451
4452 The functions end point and an increasing SAL line are used as
4453 indicators of the prologue's endpoint.
4454
4455 This code is based on the function refine_prologue_limit (versions
4456 found in both ia64 and ppc). */
4457
4458 CORE_ADDR
4459 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4460 {
4461 struct symtab_and_line prologue_sal;
4462 CORE_ADDR start_pc;
4463 CORE_ADDR end_pc;
4464 struct block *bl;
4465
4466 /* Get an initial range for the function. */
4467 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4468 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4469
4470 prologue_sal = find_pc_line (start_pc, 0);
4471 if (prologue_sal.line != 0)
4472 {
4473 /* For langauges other than assembly, treat two consecutive line
4474 entries at the same address as a zero-instruction prologue.
4475 The GNU assembler emits separate line notes for each instruction
4476 in a multi-instruction macro, but compilers generally will not
4477 do this. */
4478 if (prologue_sal.symtab->language != language_asm)
4479 {
4480 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4481 int exact;
4482 int idx = 0;
4483
4484 /* Skip any earlier lines, and any end-of-sequence marker
4485 from a previous function. */
4486 while (linetable->item[idx].pc != prologue_sal.pc
4487 || linetable->item[idx].line == 0)
4488 idx++;
4489
4490 if (idx+1 < linetable->nitems
4491 && linetable->item[idx+1].line != 0
4492 && linetable->item[idx+1].pc == start_pc)
4493 return start_pc;
4494 }
4495
4496 /* If there is only one sal that covers the entire function,
4497 then it is probably a single line function, like
4498 "foo(){}". */
4499 if (prologue_sal.end >= end_pc)
4500 return 0;
4501
4502 while (prologue_sal.end < end_pc)
4503 {
4504 struct symtab_and_line sal;
4505
4506 sal = find_pc_line (prologue_sal.end, 0);
4507 if (sal.line == 0)
4508 break;
4509 /* Assume that a consecutive SAL for the same (or larger)
4510 line mark the prologue -> body transition. */
4511 if (sal.line >= prologue_sal.line)
4512 break;
4513
4514 /* The line number is smaller. Check that it's from the
4515 same function, not something inlined. If it's inlined,
4516 then there is no point comparing the line numbers. */
4517 bl = block_for_pc (prologue_sal.end);
4518 while (bl)
4519 {
4520 if (block_inlined_p (bl))
4521 break;
4522 if (BLOCK_FUNCTION (bl))
4523 {
4524 bl = NULL;
4525 break;
4526 }
4527 bl = BLOCK_SUPERBLOCK (bl);
4528 }
4529 if (bl != NULL)
4530 break;
4531
4532 /* The case in which compiler's optimizer/scheduler has
4533 moved instructions into the prologue. We look ahead in
4534 the function looking for address ranges whose
4535 corresponding line number is less the first one that we
4536 found for the function. This is more conservative then
4537 refine_prologue_limit which scans a large number of SALs
4538 looking for any in the prologue */
4539 prologue_sal = sal;
4540 }
4541 }
4542
4543 if (prologue_sal.end < end_pc)
4544 /* Return the end of this line, or zero if we could not find a
4545 line. */
4546 return prologue_sal.end;
4547 else
4548 /* Don't return END_PC, which is past the end of the function. */
4549 return prologue_sal.pc;
4550 }
4551 \f
4552 struct symtabs_and_lines
4553 decode_line_spec (char *string, int funfirstline)
4554 {
4555 struct symtabs_and_lines sals;
4556 struct symtab_and_line cursal;
4557
4558 if (string == 0)
4559 error (_("Empty line specification."));
4560
4561 /* We use whatever is set as the current source line. We do not try
4562 and get a default or it will recursively call us! */
4563 cursal = get_current_source_symtab_and_line ();
4564
4565 sals = decode_line_1 (&string, funfirstline,
4566 cursal.symtab, cursal.line,
4567 (char ***) NULL, NULL);
4568
4569 if (*string)
4570 error (_("Junk at end of line specification: %s"), string);
4571 return sals;
4572 }
4573
4574 /* Track MAIN */
4575 static char *name_of_main;
4576
4577 void
4578 set_main_name (const char *name)
4579 {
4580 if (name_of_main != NULL)
4581 {
4582 xfree (name_of_main);
4583 name_of_main = NULL;
4584 }
4585 if (name != NULL)
4586 {
4587 name_of_main = xstrdup (name);
4588 }
4589 }
4590
4591 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4592 accordingly. */
4593
4594 static void
4595 find_main_name (void)
4596 {
4597 const char *new_main_name;
4598
4599 /* Try to see if the main procedure is in Ada. */
4600 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4601 be to add a new method in the language vector, and call this
4602 method for each language until one of them returns a non-empty
4603 name. This would allow us to remove this hard-coded call to
4604 an Ada function. It is not clear that this is a better approach
4605 at this point, because all methods need to be written in a way
4606 such that false positives never be returned. For instance, it is
4607 important that a method does not return a wrong name for the main
4608 procedure if the main procedure is actually written in a different
4609 language. It is easy to guaranty this with Ada, since we use a
4610 special symbol generated only when the main in Ada to find the name
4611 of the main procedure. It is difficult however to see how this can
4612 be guarantied for languages such as C, for instance. This suggests
4613 that order of call for these methods becomes important, which means
4614 a more complicated approach. */
4615 new_main_name = ada_main_name ();
4616 if (new_main_name != NULL)
4617 {
4618 set_main_name (new_main_name);
4619 return;
4620 }
4621
4622 new_main_name = pascal_main_name ();
4623 if (new_main_name != NULL)
4624 {
4625 set_main_name (new_main_name);
4626 return;
4627 }
4628
4629 /* The languages above didn't identify the name of the main procedure.
4630 Fallback to "main". */
4631 set_main_name ("main");
4632 }
4633
4634 char *
4635 main_name (void)
4636 {
4637 if (name_of_main == NULL)
4638 find_main_name ();
4639
4640 return name_of_main;
4641 }
4642
4643 /* Handle ``executable_changed'' events for the symtab module. */
4644
4645 static void
4646 symtab_observer_executable_changed (void)
4647 {
4648 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4649 set_main_name (NULL);
4650 }
4651
4652 /* Helper to expand_line_sal below. Appends new sal to SAL,
4653 initializing it from SYMTAB, LINENO and PC. */
4654 static void
4655 append_expanded_sal (struct symtabs_and_lines *sal,
4656 struct program_space *pspace,
4657 struct symtab *symtab,
4658 int lineno, CORE_ADDR pc)
4659 {
4660 sal->sals = xrealloc (sal->sals,
4661 sizeof (sal->sals[0])
4662 * (sal->nelts + 1));
4663 init_sal (sal->sals + sal->nelts);
4664 sal->sals[sal->nelts].pspace = pspace;
4665 sal->sals[sal->nelts].symtab = symtab;
4666 sal->sals[sal->nelts].section = NULL;
4667 sal->sals[sal->nelts].end = 0;
4668 sal->sals[sal->nelts].line = lineno;
4669 sal->sals[sal->nelts].pc = pc;
4670 ++sal->nelts;
4671 }
4672
4673 /* Helper to expand_line_sal below. Search in the symtabs for any
4674 linetable entry that exactly matches FULLNAME and LINENO and append
4675 them to RET. If FULLNAME is NULL or if a symtab has no full name,
4676 use FILENAME and LINENO instead. If there is at least one match,
4677 return 1; otherwise, return 0, and return the best choice in BEST_ITEM
4678 and BEST_SYMTAB. */
4679
4680 static int
4681 append_exact_match_to_sals (char *filename, char *fullname, int lineno,
4682 struct symtabs_and_lines *ret,
4683 struct linetable_entry **best_item,
4684 struct symtab **best_symtab)
4685 {
4686 struct program_space *pspace;
4687 struct objfile *objfile;
4688 struct symtab *symtab;
4689 int exact = 0;
4690 int j;
4691 *best_item = 0;
4692 *best_symtab = 0;
4693
4694 ALL_PSPACES (pspace)
4695 ALL_PSPACE_SYMTABS (pspace, objfile, symtab)
4696 {
4697 if (FILENAME_CMP (filename, symtab->filename) == 0)
4698 {
4699 struct linetable *l;
4700 int len;
4701 if (fullname != NULL
4702 && symtab_to_fullname (symtab) != NULL
4703 && FILENAME_CMP (fullname, symtab->fullname) != 0)
4704 continue;
4705 l = LINETABLE (symtab);
4706 if (!l)
4707 continue;
4708 len = l->nitems;
4709
4710 for (j = 0; j < len; j++)
4711 {
4712 struct linetable_entry *item = &(l->item[j]);
4713
4714 if (item->line == lineno)
4715 {
4716 exact = 1;
4717 append_expanded_sal (ret, objfile->pspace,
4718 symtab, lineno, item->pc);
4719 }
4720 else if (!exact && item->line > lineno
4721 && (*best_item == NULL
4722 || item->line < (*best_item)->line))
4723 {
4724 *best_item = item;
4725 *best_symtab = symtab;
4726 }
4727 }
4728 }
4729 }
4730 return exact;
4731 }
4732
4733 /* Compute a set of all sals in all program spaces that correspond to
4734 same file and line as SAL and return those. If there are several
4735 sals that belong to the same block, only one sal for the block is
4736 included in results. */
4737
4738 struct symtabs_and_lines
4739 expand_line_sal (struct symtab_and_line sal)
4740 {
4741 struct symtabs_and_lines ret, this_line;
4742 int i, j;
4743 struct objfile *objfile;
4744 struct partial_symtab *psymtab;
4745 struct symtab *symtab;
4746 int lineno;
4747 int deleted = 0;
4748 struct block **blocks = NULL;
4749 int *filter;
4750 struct cleanup *old_chain;
4751
4752 ret.nelts = 0;
4753 ret.sals = NULL;
4754
4755 /* Only expand sals that represent file.c:line. */
4756 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4757 {
4758 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4759 ret.sals[0] = sal;
4760 ret.nelts = 1;
4761 return ret;
4762 }
4763 else
4764 {
4765 struct program_space *pspace;
4766 struct linetable_entry *best_item = 0;
4767 struct symtab *best_symtab = 0;
4768 int exact = 0;
4769 char *match_filename;
4770
4771 lineno = sal.line;
4772 match_filename = sal.symtab->filename;
4773
4774 /* We need to find all symtabs for a file which name
4775 is described by sal. We cannot just directly
4776 iterate over symtabs, since a symtab might not be
4777 yet created. We also cannot iterate over psymtabs,
4778 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4779 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4780 corresponding to an included file. Therefore, we do
4781 first pass over psymtabs, reading in those with
4782 the right name. Then, we iterate over symtabs, knowing
4783 that all symtabs we're interested in are loaded. */
4784
4785 old_chain = save_current_program_space ();
4786 ALL_PSPACES (pspace)
4787 ALL_PSPACE_PSYMTABS (pspace, objfile, psymtab)
4788 {
4789 if (FILENAME_CMP (match_filename, psymtab->filename) == 0)
4790 {
4791 set_current_program_space (pspace);
4792
4793 PSYMTAB_TO_SYMTAB (psymtab);
4794 }
4795 }
4796 do_cleanups (old_chain);
4797
4798 /* Now search the symtab for exact matches and append them. If
4799 none is found, append the best_item and all its exact
4800 matches. */
4801 symtab_to_fullname (sal.symtab);
4802 exact = append_exact_match_to_sals (sal.symtab->filename,
4803 sal.symtab->fullname, lineno,
4804 &ret, &best_item, &best_symtab);
4805 if (!exact && best_item)
4806 append_exact_match_to_sals (best_symtab->filename,
4807 best_symtab->fullname, best_item->line,
4808 &ret, &best_item, &best_symtab);
4809 }
4810
4811 /* For optimized code, compiler can scatter one source line accross
4812 disjoint ranges of PC values, even when no duplicate functions
4813 or inline functions are involved. For example, 'for (;;)' inside
4814 non-template non-inline non-ctor-or-dtor function can result
4815 in two PC ranges. In this case, we don't want to set breakpoint
4816 on first PC of each range. To filter such cases, we use containing
4817 blocks -- for each PC found above we see if there are other PCs
4818 that are in the same block. If yes, the other PCs are filtered out. */
4819
4820 old_chain = save_current_program_space ();
4821 filter = alloca (ret.nelts * sizeof (int));
4822 blocks = alloca (ret.nelts * sizeof (struct block *));
4823 for (i = 0; i < ret.nelts; ++i)
4824 {
4825 struct blockvector *bl;
4826 struct block *b;
4827
4828 set_current_program_space (ret.sals[i].pspace);
4829
4830 filter[i] = 1;
4831 blocks[i] = block_for_pc_sect (ret.sals[i].pc, ret.sals[i].section);
4832
4833 }
4834 do_cleanups (old_chain);
4835
4836 for (i = 0; i < ret.nelts; ++i)
4837 if (blocks[i] != NULL)
4838 for (j = i+1; j < ret.nelts; ++j)
4839 if (blocks[j] == blocks[i])
4840 {
4841 filter[j] = 0;
4842 ++deleted;
4843 break;
4844 }
4845
4846 {
4847 struct symtab_and_line *final =
4848 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4849
4850 for (i = 0, j = 0; i < ret.nelts; ++i)
4851 if (filter[i])
4852 final[j++] = ret.sals[i];
4853
4854 ret.nelts -= deleted;
4855 xfree (ret.sals);
4856 ret.sals = final;
4857 }
4858
4859 return ret;
4860 }
4861
4862
4863 void
4864 _initialize_symtab (void)
4865 {
4866 add_info ("variables", variables_info, _("\
4867 All global and static variable names, or those matching REGEXP."));
4868 if (dbx_commands)
4869 add_com ("whereis", class_info, variables_info, _("\
4870 All global and static variable names, or those matching REGEXP."));
4871
4872 add_info ("functions", functions_info,
4873 _("All function names, or those matching REGEXP."));
4874
4875 /* FIXME: This command has at least the following problems:
4876 1. It prints builtin types (in a very strange and confusing fashion).
4877 2. It doesn't print right, e.g. with
4878 typedef struct foo *FOO
4879 type_print prints "FOO" when we want to make it (in this situation)
4880 print "struct foo *".
4881 I also think "ptype" or "whatis" is more likely to be useful (but if
4882 there is much disagreement "info types" can be fixed). */
4883 add_info ("types", types_info,
4884 _("All type names, or those matching REGEXP."));
4885
4886 add_info ("sources", sources_info,
4887 _("Source files in the program."));
4888
4889 add_com ("rbreak", class_breakpoint, rbreak_command,
4890 _("Set a breakpoint for all functions matching REGEXP."));
4891
4892 if (xdb_commands)
4893 {
4894 add_com ("lf", class_info, sources_info,
4895 _("Source files in the program"));
4896 add_com ("lg", class_info, variables_info, _("\
4897 All global and static variable names, or those matching REGEXP."));
4898 }
4899
4900 add_setshow_enum_cmd ("multiple-symbols", no_class,
4901 multiple_symbols_modes, &multiple_symbols_mode,
4902 _("\
4903 Set the debugger behavior when more than one symbol are possible matches\n\
4904 in an expression."), _("\
4905 Show how the debugger handles ambiguities in expressions."), _("\
4906 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4907 NULL, NULL, &setlist, &showlist);
4908
4909 observer_attach_executable_changed (symtab_observer_executable_changed);
4910 }