]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
Remove some unused functions from guile code
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdbsupport/gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* When TRUE, ignore the prologue-end flag in linetable_entry when searching
292 for the SAL past a function prologue. */
293 static bool ignore_prologue_end_flag = false;
294
295 /* Read-only accessor to AUTO_SELECT_MODE. */
296
297 const char *
298 multiple_symbols_select_mode (void)
299 {
300 return multiple_symbols_mode;
301 }
302
303 /* Return the name of a domain_enum. */
304
305 const char *
306 domain_name (domain_enum e)
307 {
308 switch (e)
309 {
310 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
311 case VAR_DOMAIN: return "VAR_DOMAIN";
312 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
313 case MODULE_DOMAIN: return "MODULE_DOMAIN";
314 case LABEL_DOMAIN: return "LABEL_DOMAIN";
315 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
316 default: gdb_assert_not_reached ("bad domain_enum");
317 }
318 }
319
320 /* Return the name of a search_domain . */
321
322 const char *
323 search_domain_name (enum search_domain e)
324 {
325 switch (e)
326 {
327 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
328 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
329 case TYPES_DOMAIN: return "TYPES_DOMAIN";
330 case MODULES_DOMAIN: return "MODULES_DOMAIN";
331 case ALL_DOMAIN: return "ALL_DOMAIN";
332 default: gdb_assert_not_reached ("bad search_domain");
333 }
334 }
335
336 /* See symtab.h. */
337
338 call_site *
339 compunit_symtab::find_call_site (CORE_ADDR pc) const
340 {
341 if (m_call_site_htab == nullptr)
342 return nullptr;
343
344 CORE_ADDR delta
345 = this->objfile ()->section_offsets[this->block_line_section ()];
346 CORE_ADDR unrelocated_pc = pc - delta;
347
348 struct call_site call_site_local (unrelocated_pc, nullptr, nullptr);
349 void **slot
350 = htab_find_slot (m_call_site_htab, &call_site_local, NO_INSERT);
351 if (slot == nullptr)
352 return nullptr;
353
354 return (call_site *) *slot;
355 }
356
357 /* See symtab.h. */
358
359 void
360 compunit_symtab::set_call_site_htab (htab_t call_site_htab)
361 {
362 gdb_assert (m_call_site_htab == nullptr);
363 m_call_site_htab = call_site_htab;
364 }
365
366 /* See symtab.h. */
367
368 void
369 compunit_symtab::set_primary_filetab (symtab *primary_filetab)
370 {
371 symtab *prev_filetab = nullptr;
372
373 /* Move PRIMARY_FILETAB to the head of the filetab list. */
374 for (symtab *filetab : this->filetabs ())
375 {
376 if (filetab == primary_filetab)
377 {
378 if (prev_filetab != nullptr)
379 {
380 prev_filetab->next = primary_filetab->next;
381 primary_filetab->next = m_filetabs;
382 m_filetabs = primary_filetab;
383 }
384
385 break;
386 }
387
388 prev_filetab = filetab;
389 }
390
391 gdb_assert (primary_filetab == m_filetabs);
392 }
393
394 /* See symtab.h. */
395
396 struct symtab *
397 compunit_symtab::primary_filetab () const
398 {
399 gdb_assert (m_filetabs != nullptr);
400
401 /* The primary file symtab is the first one in the list. */
402 return m_filetabs;
403 }
404
405 /* See symtab.h. */
406
407 enum language
408 compunit_language (const struct compunit_symtab *cust)
409 {
410 struct symtab *symtab = cust->primary_filetab ();
411
412 /* The language of the compunit symtab is the language of its primary
413 source file. */
414 return symtab->language ();
415 }
416
417 /* The relocated address of the minimal symbol, using the section
418 offsets from OBJFILE. */
419
420 CORE_ADDR
421 minimal_symbol::value_address (objfile *objfile) const
422 {
423 if (this->maybe_copied)
424 return get_msymbol_address (objfile, this);
425 else
426 return (this->value_raw_address ()
427 + objfile->section_offsets[this->section_index ()]);
428 }
429
430 /* See symtab.h. */
431
432 bool
433 minimal_symbol::data_p () const
434 {
435 return m_type == mst_data
436 || m_type == mst_bss
437 || m_type == mst_abs
438 || m_type == mst_file_data
439 || m_type == mst_file_bss;
440 }
441
442 /* See symtab.h. */
443
444 bool
445 minimal_symbol::text_p () const
446 {
447 return m_type == mst_text
448 || m_type == mst_text_gnu_ifunc
449 || m_type == mst_data_gnu_ifunc
450 || m_type == mst_slot_got_plt
451 || m_type == mst_solib_trampoline
452 || m_type == mst_file_text;
453 }
454
455 /* See whether FILENAME matches SEARCH_NAME using the rule that we
456 advertise to the user. (The manual's description of linespecs
457 describes what we advertise). Returns true if they match, false
458 otherwise. */
459
460 bool
461 compare_filenames_for_search (const char *filename, const char *search_name)
462 {
463 int len = strlen (filename);
464 size_t search_len = strlen (search_name);
465
466 if (len < search_len)
467 return false;
468
469 /* The tail of FILENAME must match. */
470 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
471 return false;
472
473 /* Either the names must completely match, or the character
474 preceding the trailing SEARCH_NAME segment of FILENAME must be a
475 directory separator.
476
477 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
478 cannot match FILENAME "/path//dir/file.c" - as user has requested
479 absolute path. The sama applies for "c:\file.c" possibly
480 incorrectly hypothetically matching "d:\dir\c:\file.c".
481
482 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
483 compatible with SEARCH_NAME "file.c". In such case a compiler had
484 to put the "c:file.c" name into debug info. Such compatibility
485 works only on GDB built for DOS host. */
486 return (len == search_len
487 || (!IS_ABSOLUTE_PATH (search_name)
488 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
489 || (HAS_DRIVE_SPEC (filename)
490 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
491 }
492
493 /* Same as compare_filenames_for_search, but for glob-style patterns.
494 Heads up on the order of the arguments. They match the order of
495 compare_filenames_for_search, but it's the opposite of the order of
496 arguments to gdb_filename_fnmatch. */
497
498 bool
499 compare_glob_filenames_for_search (const char *filename,
500 const char *search_name)
501 {
502 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
503 all /s have to be explicitly specified. */
504 int file_path_elements = count_path_elements (filename);
505 int search_path_elements = count_path_elements (search_name);
506
507 if (search_path_elements > file_path_elements)
508 return false;
509
510 if (IS_ABSOLUTE_PATH (search_name))
511 {
512 return (search_path_elements == file_path_elements
513 && gdb_filename_fnmatch (search_name, filename,
514 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
515 }
516
517 {
518 const char *file_to_compare
519 = strip_leading_path_elements (filename,
520 file_path_elements - search_path_elements);
521
522 return gdb_filename_fnmatch (search_name, file_to_compare,
523 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
524 }
525 }
526
527 /* Check for a symtab of a specific name by searching some symtabs.
528 This is a helper function for callbacks of iterate_over_symtabs.
529
530 If NAME is not absolute, then REAL_PATH is NULL
531 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
532
533 The return value, NAME, REAL_PATH and CALLBACK are identical to the
534 `map_symtabs_matching_filename' method of quick_symbol_functions.
535
536 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
537 Each symtab within the specified compunit symtab is also searched.
538 AFTER_LAST is one past the last compunit symtab to search; NULL means to
539 search until the end of the list. */
540
541 bool
542 iterate_over_some_symtabs (const char *name,
543 const char *real_path,
544 struct compunit_symtab *first,
545 struct compunit_symtab *after_last,
546 gdb::function_view<bool (symtab *)> callback)
547 {
548 struct compunit_symtab *cust;
549 const char* base_name = lbasename (name);
550
551 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
552 {
553 for (symtab *s : cust->filetabs ())
554 {
555 if (compare_filenames_for_search (s->filename, name))
556 {
557 if (callback (s))
558 return true;
559 continue;
560 }
561
562 /* Before we invoke realpath, which can get expensive when many
563 files are involved, do a quick comparison of the basenames. */
564 if (! basenames_may_differ
565 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
566 continue;
567
568 if (compare_filenames_for_search (symtab_to_fullname (s), name))
569 {
570 if (callback (s))
571 return true;
572 continue;
573 }
574
575 /* If the user gave us an absolute path, try to find the file in
576 this symtab and use its absolute path. */
577 if (real_path != NULL)
578 {
579 const char *fullname = symtab_to_fullname (s);
580
581 gdb_assert (IS_ABSOLUTE_PATH (real_path));
582 gdb_assert (IS_ABSOLUTE_PATH (name));
583 gdb::unique_xmalloc_ptr<char> fullname_real_path
584 = gdb_realpath (fullname);
585 fullname = fullname_real_path.get ();
586 if (FILENAME_CMP (real_path, fullname) == 0)
587 {
588 if (callback (s))
589 return true;
590 continue;
591 }
592 }
593 }
594 }
595
596 return false;
597 }
598
599 /* Check for a symtab of a specific name; first in symtabs, then in
600 psymtabs. *If* there is no '/' in the name, a match after a '/'
601 in the symtab filename will also work.
602
603 Calls CALLBACK with each symtab that is found. If CALLBACK returns
604 true, the search stops. */
605
606 void
607 iterate_over_symtabs (const char *name,
608 gdb::function_view<bool (symtab *)> callback)
609 {
610 gdb::unique_xmalloc_ptr<char> real_path;
611
612 /* Here we are interested in canonicalizing an absolute path, not
613 absolutizing a relative path. */
614 if (IS_ABSOLUTE_PATH (name))
615 {
616 real_path = gdb_realpath (name);
617 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
618 }
619
620 for (objfile *objfile : current_program_space->objfiles ())
621 {
622 if (iterate_over_some_symtabs (name, real_path.get (),
623 objfile->compunit_symtabs, NULL,
624 callback))
625 return;
626 }
627
628 /* Same search rules as above apply here, but now we look thru the
629 psymtabs. */
630
631 for (objfile *objfile : current_program_space->objfiles ())
632 {
633 if (objfile->map_symtabs_matching_filename (name, real_path.get (),
634 callback))
635 return;
636 }
637 }
638
639 /* A wrapper for iterate_over_symtabs that returns the first matching
640 symtab, or NULL. */
641
642 struct symtab *
643 lookup_symtab (const char *name)
644 {
645 struct symtab *result = NULL;
646
647 iterate_over_symtabs (name, [&] (symtab *symtab)
648 {
649 result = symtab;
650 return true;
651 });
652
653 return result;
654 }
655
656 \f
657 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
658 full method name, which consist of the class name (from T), the unadorned
659 method name from METHOD_ID, and the signature for the specific overload,
660 specified by SIGNATURE_ID. Note that this function is g++ specific. */
661
662 char *
663 gdb_mangle_name (struct type *type, int method_id, int signature_id)
664 {
665 int mangled_name_len;
666 char *mangled_name;
667 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
668 struct fn_field *method = &f[signature_id];
669 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
670 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
671 const char *newname = type->name ();
672
673 /* Does the form of physname indicate that it is the full mangled name
674 of a constructor (not just the args)? */
675 int is_full_physname_constructor;
676
677 int is_constructor;
678 int is_destructor = is_destructor_name (physname);
679 /* Need a new type prefix. */
680 const char *const_prefix = method->is_const ? "C" : "";
681 const char *volatile_prefix = method->is_volatile ? "V" : "";
682 char buf[20];
683 int len = (newname == NULL ? 0 : strlen (newname));
684
685 /* Nothing to do if physname already contains a fully mangled v3 abi name
686 or an operator name. */
687 if ((physname[0] == '_' && physname[1] == 'Z')
688 || is_operator_name (field_name))
689 return xstrdup (physname);
690
691 is_full_physname_constructor = is_constructor_name (physname);
692
693 is_constructor = is_full_physname_constructor
694 || (newname && strcmp (field_name, newname) == 0);
695
696 if (!is_destructor)
697 is_destructor = (startswith (physname, "__dt"));
698
699 if (is_destructor || is_full_physname_constructor)
700 {
701 mangled_name = (char *) xmalloc (strlen (physname) + 1);
702 strcpy (mangled_name, physname);
703 return mangled_name;
704 }
705
706 if (len == 0)
707 {
708 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
709 }
710 else if (physname[0] == 't' || physname[0] == 'Q')
711 {
712 /* The physname for template and qualified methods already includes
713 the class name. */
714 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
715 newname = NULL;
716 len = 0;
717 }
718 else
719 {
720 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
721 volatile_prefix, len);
722 }
723 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
724 + strlen (buf) + len + strlen (physname) + 1);
725
726 mangled_name = (char *) xmalloc (mangled_name_len);
727 if (is_constructor)
728 mangled_name[0] = '\0';
729 else
730 strcpy (mangled_name, field_name);
731
732 strcat (mangled_name, buf);
733 /* If the class doesn't have a name, i.e. newname NULL, then we just
734 mangle it using 0 for the length of the class. Thus it gets mangled
735 as something starting with `::' rather than `classname::'. */
736 if (newname != NULL)
737 strcat (mangled_name, newname);
738
739 strcat (mangled_name, physname);
740 return (mangled_name);
741 }
742
743 /* See symtab.h. */
744
745 void
746 general_symbol_info::set_demangled_name (const char *name,
747 struct obstack *obstack)
748 {
749 if (language () == language_ada)
750 {
751 if (name == NULL)
752 {
753 ada_mangled = 0;
754 language_specific.obstack = obstack;
755 }
756 else
757 {
758 ada_mangled = 1;
759 language_specific.demangled_name = name;
760 }
761 }
762 else
763 language_specific.demangled_name = name;
764 }
765
766 \f
767 /* Initialize the language dependent portion of a symbol
768 depending upon the language for the symbol. */
769
770 void
771 general_symbol_info::set_language (enum language language,
772 struct obstack *obstack)
773 {
774 m_language = language;
775 if (language == language_cplus
776 || language == language_d
777 || language == language_go
778 || language == language_objc
779 || language == language_fortran)
780 {
781 set_demangled_name (NULL, obstack);
782 }
783 else if (language == language_ada)
784 {
785 gdb_assert (ada_mangled == 0);
786 language_specific.obstack = obstack;
787 }
788 else
789 {
790 memset (&language_specific, 0, sizeof (language_specific));
791 }
792 }
793
794 /* Functions to initialize a symbol's mangled name. */
795
796 /* Objects of this type are stored in the demangled name hash table. */
797 struct demangled_name_entry
798 {
799 demangled_name_entry (gdb::string_view mangled_name)
800 : mangled (mangled_name) {}
801
802 gdb::string_view mangled;
803 enum language language;
804 gdb::unique_xmalloc_ptr<char> demangled;
805 };
806
807 /* Hash function for the demangled name hash. */
808
809 static hashval_t
810 hash_demangled_name_entry (const void *data)
811 {
812 const struct demangled_name_entry *e
813 = (const struct demangled_name_entry *) data;
814
815 return fast_hash (e->mangled.data (), e->mangled.length ());
816 }
817
818 /* Equality function for the demangled name hash. */
819
820 static int
821 eq_demangled_name_entry (const void *a, const void *b)
822 {
823 const struct demangled_name_entry *da
824 = (const struct demangled_name_entry *) a;
825 const struct demangled_name_entry *db
826 = (const struct demangled_name_entry *) b;
827
828 return da->mangled == db->mangled;
829 }
830
831 static void
832 free_demangled_name_entry (void *data)
833 {
834 struct demangled_name_entry *e
835 = (struct demangled_name_entry *) data;
836
837 e->~demangled_name_entry();
838 }
839
840 /* Create the hash table used for demangled names. Each hash entry is
841 a pair of strings; one for the mangled name and one for the demangled
842 name. The entry is hashed via just the mangled name. */
843
844 static void
845 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
846 {
847 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
848 The hash table code will round this up to the next prime number.
849 Choosing a much larger table size wastes memory, and saves only about
850 1% in symbol reading. However, if the minsym count is already
851 initialized (e.g. because symbol name setting was deferred to
852 a background thread) we can initialize the hashtable with a count
853 based on that, because we will almost certainly have at least that
854 many entries. If we have a nonzero number but less than 256,
855 we still stay with 256 to have some space for psymbols, etc. */
856
857 /* htab will expand the table when it is 3/4th full, so we account for that
858 here. +2 to round up. */
859 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
860 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
861
862 per_bfd->demangled_names_hash.reset (htab_create_alloc
863 (count, hash_demangled_name_entry, eq_demangled_name_entry,
864 free_demangled_name_entry, xcalloc, xfree));
865 }
866
867 /* See symtab.h */
868
869 gdb::unique_xmalloc_ptr<char>
870 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
871 const char *mangled)
872 {
873 gdb::unique_xmalloc_ptr<char> demangled;
874 int i;
875
876 if (gsymbol->language () == language_unknown)
877 gsymbol->m_language = language_auto;
878
879 if (gsymbol->language () != language_auto)
880 {
881 const struct language_defn *lang = language_def (gsymbol->language ());
882
883 lang->sniff_from_mangled_name (mangled, &demangled);
884 return demangled;
885 }
886
887 for (i = language_unknown; i < nr_languages; ++i)
888 {
889 enum language l = (enum language) i;
890 const struct language_defn *lang = language_def (l);
891
892 if (lang->sniff_from_mangled_name (mangled, &demangled))
893 {
894 gsymbol->m_language = l;
895 return demangled;
896 }
897 }
898
899 return NULL;
900 }
901
902 /* Set both the mangled and demangled (if any) names for GSYMBOL based
903 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
904 objfile's obstack; but if COPY_NAME is 0 and if NAME is
905 NUL-terminated, then this function assumes that NAME is already
906 correctly saved (either permanently or with a lifetime tied to the
907 objfile), and it will not be copied.
908
909 The hash table corresponding to OBJFILE is used, and the memory
910 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
911 so the pointer can be discarded after calling this function. */
912
913 void
914 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
915 bool copy_name,
916 objfile_per_bfd_storage *per_bfd,
917 gdb::optional<hashval_t> hash)
918 {
919 struct demangled_name_entry **slot;
920
921 if (language () == language_ada)
922 {
923 /* In Ada, we do the symbol lookups using the mangled name, so
924 we can save some space by not storing the demangled name. */
925 if (!copy_name)
926 m_name = linkage_name.data ();
927 else
928 m_name = obstack_strndup (&per_bfd->storage_obstack,
929 linkage_name.data (),
930 linkage_name.length ());
931 set_demangled_name (NULL, &per_bfd->storage_obstack);
932
933 return;
934 }
935
936 if (per_bfd->demangled_names_hash == NULL)
937 create_demangled_names_hash (per_bfd);
938
939 struct demangled_name_entry entry (linkage_name);
940 if (!hash.has_value ())
941 hash = hash_demangled_name_entry (&entry);
942 slot = ((struct demangled_name_entry **)
943 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
944 &entry, *hash, INSERT));
945
946 /* The const_cast is safe because the only reason it is already
947 initialized is if we purposefully set it from a background
948 thread to avoid doing the work here. However, it is still
949 allocated from the heap and needs to be freed by us, just
950 like if we called symbol_find_demangled_name here. If this is
951 nullptr, we call symbol_find_demangled_name below, but we put
952 this smart pointer here to be sure that we don't leak this name. */
953 gdb::unique_xmalloc_ptr<char> demangled_name
954 (const_cast<char *> (language_specific.demangled_name));
955
956 /* If this name is not in the hash table, add it. */
957 if (*slot == NULL
958 /* A C version of the symbol may have already snuck into the table.
959 This happens to, e.g., main.init (__go_init_main). Cope. */
960 || (language () == language_go && (*slot)->demangled == nullptr))
961 {
962 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
963 to true if the string might not be nullterminated. We have to make
964 this copy because demangling needs a nullterminated string. */
965 gdb::string_view linkage_name_copy;
966 if (copy_name)
967 {
968 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
969 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
970 alloc_name[linkage_name.length ()] = '\0';
971
972 linkage_name_copy = gdb::string_view (alloc_name,
973 linkage_name.length ());
974 }
975 else
976 linkage_name_copy = linkage_name;
977
978 if (demangled_name.get () == nullptr)
979 demangled_name
980 = symbol_find_demangled_name (this, linkage_name_copy.data ());
981
982 /* Suppose we have demangled_name==NULL, copy_name==0, and
983 linkage_name_copy==linkage_name. In this case, we already have the
984 mangled name saved, and we don't have a demangled name. So,
985 you might think we could save a little space by not recording
986 this in the hash table at all.
987
988 It turns out that it is actually important to still save such
989 an entry in the hash table, because storing this name gives
990 us better bcache hit rates for partial symbols. */
991 if (!copy_name)
992 {
993 *slot
994 = ((struct demangled_name_entry *)
995 obstack_alloc (&per_bfd->storage_obstack,
996 sizeof (demangled_name_entry)));
997 new (*slot) demangled_name_entry (linkage_name);
998 }
999 else
1000 {
1001 /* If we must copy the mangled name, put it directly after
1002 the struct so we can have a single allocation. */
1003 *slot
1004 = ((struct demangled_name_entry *)
1005 obstack_alloc (&per_bfd->storage_obstack,
1006 sizeof (demangled_name_entry)
1007 + linkage_name.length () + 1));
1008 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
1009 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
1010 mangled_ptr [linkage_name.length ()] = '\0';
1011 new (*slot) demangled_name_entry
1012 (gdb::string_view (mangled_ptr, linkage_name.length ()));
1013 }
1014 (*slot)->demangled = std::move (demangled_name);
1015 (*slot)->language = language ();
1016 }
1017 else if (language () == language_unknown || language () == language_auto)
1018 m_language = (*slot)->language;
1019
1020 m_name = (*slot)->mangled.data ();
1021 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
1022 }
1023
1024 /* See symtab.h. */
1025
1026 const char *
1027 general_symbol_info::natural_name () const
1028 {
1029 switch (language ())
1030 {
1031 case language_cplus:
1032 case language_d:
1033 case language_go:
1034 case language_objc:
1035 case language_fortran:
1036 case language_rust:
1037 if (language_specific.demangled_name != nullptr)
1038 return language_specific.demangled_name;
1039 break;
1040 case language_ada:
1041 return ada_decode_symbol (this);
1042 default:
1043 break;
1044 }
1045 return linkage_name ();
1046 }
1047
1048 /* See symtab.h. */
1049
1050 const char *
1051 general_symbol_info::demangled_name () const
1052 {
1053 const char *dem_name = NULL;
1054
1055 switch (language ())
1056 {
1057 case language_cplus:
1058 case language_d:
1059 case language_go:
1060 case language_objc:
1061 case language_fortran:
1062 case language_rust:
1063 dem_name = language_specific.demangled_name;
1064 break;
1065 case language_ada:
1066 dem_name = ada_decode_symbol (this);
1067 break;
1068 default:
1069 break;
1070 }
1071 return dem_name;
1072 }
1073
1074 /* See symtab.h. */
1075
1076 const char *
1077 general_symbol_info::search_name () const
1078 {
1079 if (language () == language_ada)
1080 return linkage_name ();
1081 else
1082 return natural_name ();
1083 }
1084
1085 /* See symtab.h. */
1086
1087 struct obj_section *
1088 general_symbol_info::obj_section (const struct objfile *objfile) const
1089 {
1090 if (section_index () >= 0)
1091 return &objfile->sections[section_index ()];
1092 return nullptr;
1093 }
1094
1095 /* See symtab.h. */
1096
1097 bool
1098 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1099 const lookup_name_info &name)
1100 {
1101 symbol_name_matcher_ftype *name_match
1102 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1103 return name_match (gsymbol->search_name (), name, NULL);
1104 }
1105
1106 \f
1107
1108 /* Return true if the two sections are the same, or if they could
1109 plausibly be copies of each other, one in an original object
1110 file and another in a separated debug file. */
1111
1112 bool
1113 matching_obj_sections (struct obj_section *obj_first,
1114 struct obj_section *obj_second)
1115 {
1116 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1117 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1118
1119 /* If they're the same section, then they match. */
1120 if (first == second)
1121 return true;
1122
1123 /* If either is NULL, give up. */
1124 if (first == NULL || second == NULL)
1125 return false;
1126
1127 /* This doesn't apply to absolute symbols. */
1128 if (first->owner == NULL || second->owner == NULL)
1129 return false;
1130
1131 /* If they're in the same object file, they must be different sections. */
1132 if (first->owner == second->owner)
1133 return false;
1134
1135 /* Check whether the two sections are potentially corresponding. They must
1136 have the same size, address, and name. We can't compare section indexes,
1137 which would be more reliable, because some sections may have been
1138 stripped. */
1139 if (bfd_section_size (first) != bfd_section_size (second))
1140 return false;
1141
1142 /* In-memory addresses may start at a different offset, relativize them. */
1143 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1144 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1145 return false;
1146
1147 if (bfd_section_name (first) == NULL
1148 || bfd_section_name (second) == NULL
1149 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1150 return false;
1151
1152 /* Otherwise check that they are in corresponding objfiles. */
1153
1154 struct objfile *obj = NULL;
1155 for (objfile *objfile : current_program_space->objfiles ())
1156 if (objfile->obfd == first->owner)
1157 {
1158 obj = objfile;
1159 break;
1160 }
1161 gdb_assert (obj != NULL);
1162
1163 if (obj->separate_debug_objfile != NULL
1164 && obj->separate_debug_objfile->obfd == second->owner)
1165 return true;
1166 if (obj->separate_debug_objfile_backlink != NULL
1167 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1168 return true;
1169
1170 return false;
1171 }
1172
1173 /* See symtab.h. */
1174
1175 void
1176 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1177 {
1178 struct bound_minimal_symbol msymbol;
1179
1180 /* If we know that this is not a text address, return failure. This is
1181 necessary because we loop based on texthigh and textlow, which do
1182 not include the data ranges. */
1183 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1184 if (msymbol.minsym && msymbol.minsym->data_p ())
1185 return;
1186
1187 for (objfile *objfile : current_program_space->objfiles ())
1188 {
1189 struct compunit_symtab *cust
1190 = objfile->find_pc_sect_compunit_symtab (msymbol, pc, section, 0);
1191 if (cust)
1192 return;
1193 }
1194 }
1195 \f
1196 /* Hash function for the symbol cache. */
1197
1198 static unsigned int
1199 hash_symbol_entry (const struct objfile *objfile_context,
1200 const char *name, domain_enum domain)
1201 {
1202 unsigned int hash = (uintptr_t) objfile_context;
1203
1204 if (name != NULL)
1205 hash += htab_hash_string (name);
1206
1207 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1208 to map to the same slot. */
1209 if (domain == STRUCT_DOMAIN)
1210 hash += VAR_DOMAIN * 7;
1211 else
1212 hash += domain * 7;
1213
1214 return hash;
1215 }
1216
1217 /* Equality function for the symbol cache. */
1218
1219 static int
1220 eq_symbol_entry (const struct symbol_cache_slot *slot,
1221 const struct objfile *objfile_context,
1222 const char *name, domain_enum domain)
1223 {
1224 const char *slot_name;
1225 domain_enum slot_domain;
1226
1227 if (slot->state == SYMBOL_SLOT_UNUSED)
1228 return 0;
1229
1230 if (slot->objfile_context != objfile_context)
1231 return 0;
1232
1233 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1234 {
1235 slot_name = slot->value.not_found.name;
1236 slot_domain = slot->value.not_found.domain;
1237 }
1238 else
1239 {
1240 slot_name = slot->value.found.symbol->search_name ();
1241 slot_domain = slot->value.found.symbol->domain ();
1242 }
1243
1244 /* NULL names match. */
1245 if (slot_name == NULL && name == NULL)
1246 {
1247 /* But there's no point in calling symbol_matches_domain in the
1248 SYMBOL_SLOT_FOUND case. */
1249 if (slot_domain != domain)
1250 return 0;
1251 }
1252 else if (slot_name != NULL && name != NULL)
1253 {
1254 /* It's important that we use the same comparison that was done
1255 the first time through. If the slot records a found symbol,
1256 then this means using the symbol name comparison function of
1257 the symbol's language with symbol->search_name (). See
1258 dictionary.c. It also means using symbol_matches_domain for
1259 found symbols. See block.c.
1260
1261 If the slot records a not-found symbol, then require a precise match.
1262 We could still be lax with whitespace like strcmp_iw though. */
1263
1264 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1265 {
1266 if (strcmp (slot_name, name) != 0)
1267 return 0;
1268 if (slot_domain != domain)
1269 return 0;
1270 }
1271 else
1272 {
1273 struct symbol *sym = slot->value.found.symbol;
1274 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1275
1276 if (!symbol_matches_search_name (sym, lookup_name))
1277 return 0;
1278
1279 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1280 return 0;
1281 }
1282 }
1283 else
1284 {
1285 /* Only one name is NULL. */
1286 return 0;
1287 }
1288
1289 return 1;
1290 }
1291
1292 /* Given a cache of size SIZE, return the size of the struct (with variable
1293 length array) in bytes. */
1294
1295 static size_t
1296 symbol_cache_byte_size (unsigned int size)
1297 {
1298 return (sizeof (struct block_symbol_cache)
1299 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1300 }
1301
1302 /* Resize CACHE. */
1303
1304 static void
1305 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1306 {
1307 /* If there's no change in size, don't do anything.
1308 All caches have the same size, so we can just compare with the size
1309 of the global symbols cache. */
1310 if ((cache->global_symbols != NULL
1311 && cache->global_symbols->size == new_size)
1312 || (cache->global_symbols == NULL
1313 && new_size == 0))
1314 return;
1315
1316 destroy_block_symbol_cache (cache->global_symbols);
1317 destroy_block_symbol_cache (cache->static_symbols);
1318
1319 if (new_size == 0)
1320 {
1321 cache->global_symbols = NULL;
1322 cache->static_symbols = NULL;
1323 }
1324 else
1325 {
1326 size_t total_size = symbol_cache_byte_size (new_size);
1327
1328 cache->global_symbols
1329 = (struct block_symbol_cache *) xcalloc (1, total_size);
1330 cache->static_symbols
1331 = (struct block_symbol_cache *) xcalloc (1, total_size);
1332 cache->global_symbols->size = new_size;
1333 cache->static_symbols->size = new_size;
1334 }
1335 }
1336
1337 /* Return the symbol cache of PSPACE.
1338 Create one if it doesn't exist yet. */
1339
1340 static struct symbol_cache *
1341 get_symbol_cache (struct program_space *pspace)
1342 {
1343 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1344
1345 if (cache == NULL)
1346 {
1347 cache = symbol_cache_key.emplace (pspace);
1348 resize_symbol_cache (cache, symbol_cache_size);
1349 }
1350
1351 return cache;
1352 }
1353
1354 /* Set the size of the symbol cache in all program spaces. */
1355
1356 static void
1357 set_symbol_cache_size (unsigned int new_size)
1358 {
1359 for (struct program_space *pspace : program_spaces)
1360 {
1361 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1362
1363 /* The pspace could have been created but not have a cache yet. */
1364 if (cache != NULL)
1365 resize_symbol_cache (cache, new_size);
1366 }
1367 }
1368
1369 /* Called when symbol-cache-size is set. */
1370
1371 static void
1372 set_symbol_cache_size_handler (const char *args, int from_tty,
1373 struct cmd_list_element *c)
1374 {
1375 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1376 {
1377 /* Restore the previous value.
1378 This is the value the "show" command prints. */
1379 new_symbol_cache_size = symbol_cache_size;
1380
1381 error (_("Symbol cache size is too large, max is %u."),
1382 MAX_SYMBOL_CACHE_SIZE);
1383 }
1384 symbol_cache_size = new_symbol_cache_size;
1385
1386 set_symbol_cache_size (symbol_cache_size);
1387 }
1388
1389 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1390 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1391 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1392 failed (and thus this one will too), or NULL if the symbol is not present
1393 in the cache.
1394 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1395 can be used to save the result of a full lookup attempt. */
1396
1397 static struct block_symbol
1398 symbol_cache_lookup (struct symbol_cache *cache,
1399 struct objfile *objfile_context, enum block_enum block,
1400 const char *name, domain_enum domain,
1401 struct block_symbol_cache **bsc_ptr,
1402 struct symbol_cache_slot **slot_ptr)
1403 {
1404 struct block_symbol_cache *bsc;
1405 unsigned int hash;
1406 struct symbol_cache_slot *slot;
1407
1408 if (block == GLOBAL_BLOCK)
1409 bsc = cache->global_symbols;
1410 else
1411 bsc = cache->static_symbols;
1412 if (bsc == NULL)
1413 {
1414 *bsc_ptr = NULL;
1415 *slot_ptr = NULL;
1416 return {};
1417 }
1418
1419 hash = hash_symbol_entry (objfile_context, name, domain);
1420 slot = bsc->symbols + hash % bsc->size;
1421
1422 *bsc_ptr = bsc;
1423 *slot_ptr = slot;
1424
1425 if (eq_symbol_entry (slot, objfile_context, name, domain))
1426 {
1427 if (symbol_lookup_debug)
1428 gdb_printf (gdb_stdlog,
1429 "%s block symbol cache hit%s for %s, %s\n",
1430 block == GLOBAL_BLOCK ? "Global" : "Static",
1431 slot->state == SYMBOL_SLOT_NOT_FOUND
1432 ? " (not found)" : "",
1433 name, domain_name (domain));
1434 ++bsc->hits;
1435 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1436 return SYMBOL_LOOKUP_FAILED;
1437 return slot->value.found;
1438 }
1439
1440 /* Symbol is not present in the cache. */
1441
1442 if (symbol_lookup_debug)
1443 {
1444 gdb_printf (gdb_stdlog,
1445 "%s block symbol cache miss for %s, %s\n",
1446 block == GLOBAL_BLOCK ? "Global" : "Static",
1447 name, domain_name (domain));
1448 }
1449 ++bsc->misses;
1450 return {};
1451 }
1452
1453 /* Mark SYMBOL as found in SLOT.
1454 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1455 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1456 necessarily the objfile the symbol was found in. */
1457
1458 static void
1459 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1460 struct symbol_cache_slot *slot,
1461 struct objfile *objfile_context,
1462 struct symbol *symbol,
1463 const struct block *block)
1464 {
1465 if (bsc == NULL)
1466 return;
1467 if (slot->state != SYMBOL_SLOT_UNUSED)
1468 {
1469 ++bsc->collisions;
1470 symbol_cache_clear_slot (slot);
1471 }
1472 slot->state = SYMBOL_SLOT_FOUND;
1473 slot->objfile_context = objfile_context;
1474 slot->value.found.symbol = symbol;
1475 slot->value.found.block = block;
1476 }
1477
1478 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1479 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1480 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1481
1482 static void
1483 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1484 struct symbol_cache_slot *slot,
1485 struct objfile *objfile_context,
1486 const char *name, domain_enum domain)
1487 {
1488 if (bsc == NULL)
1489 return;
1490 if (slot->state != SYMBOL_SLOT_UNUSED)
1491 {
1492 ++bsc->collisions;
1493 symbol_cache_clear_slot (slot);
1494 }
1495 slot->state = SYMBOL_SLOT_NOT_FOUND;
1496 slot->objfile_context = objfile_context;
1497 slot->value.not_found.name = xstrdup (name);
1498 slot->value.not_found.domain = domain;
1499 }
1500
1501 /* Flush the symbol cache of PSPACE. */
1502
1503 static void
1504 symbol_cache_flush (struct program_space *pspace)
1505 {
1506 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1507 int pass;
1508
1509 if (cache == NULL)
1510 return;
1511 if (cache->global_symbols == NULL)
1512 {
1513 gdb_assert (symbol_cache_size == 0);
1514 gdb_assert (cache->static_symbols == NULL);
1515 return;
1516 }
1517
1518 /* If the cache is untouched since the last flush, early exit.
1519 This is important for performance during the startup of a program linked
1520 with 100s (or 1000s) of shared libraries. */
1521 if (cache->global_symbols->misses == 0
1522 && cache->static_symbols->misses == 0)
1523 return;
1524
1525 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1526 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1527
1528 for (pass = 0; pass < 2; ++pass)
1529 {
1530 struct block_symbol_cache *bsc
1531 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1532 unsigned int i;
1533
1534 for (i = 0; i < bsc->size; ++i)
1535 symbol_cache_clear_slot (&bsc->symbols[i]);
1536 }
1537
1538 cache->global_symbols->hits = 0;
1539 cache->global_symbols->misses = 0;
1540 cache->global_symbols->collisions = 0;
1541 cache->static_symbols->hits = 0;
1542 cache->static_symbols->misses = 0;
1543 cache->static_symbols->collisions = 0;
1544 }
1545
1546 /* Dump CACHE. */
1547
1548 static void
1549 symbol_cache_dump (const struct symbol_cache *cache)
1550 {
1551 int pass;
1552
1553 if (cache->global_symbols == NULL)
1554 {
1555 gdb_printf (" <disabled>\n");
1556 return;
1557 }
1558
1559 for (pass = 0; pass < 2; ++pass)
1560 {
1561 const struct block_symbol_cache *bsc
1562 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1563 unsigned int i;
1564
1565 if (pass == 0)
1566 gdb_printf ("Global symbols:\n");
1567 else
1568 gdb_printf ("Static symbols:\n");
1569
1570 for (i = 0; i < bsc->size; ++i)
1571 {
1572 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1573
1574 QUIT;
1575
1576 switch (slot->state)
1577 {
1578 case SYMBOL_SLOT_UNUSED:
1579 break;
1580 case SYMBOL_SLOT_NOT_FOUND:
1581 gdb_printf (" [%4u] = %s, %s %s (not found)\n", i,
1582 host_address_to_string (slot->objfile_context),
1583 slot->value.not_found.name,
1584 domain_name (slot->value.not_found.domain));
1585 break;
1586 case SYMBOL_SLOT_FOUND:
1587 {
1588 struct symbol *found = slot->value.found.symbol;
1589 const struct objfile *context = slot->objfile_context;
1590
1591 gdb_printf (" [%4u] = %s, %s %s\n", i,
1592 host_address_to_string (context),
1593 found->print_name (),
1594 domain_name (found->domain ()));
1595 break;
1596 }
1597 }
1598 }
1599 }
1600 }
1601
1602 /* The "mt print symbol-cache" command. */
1603
1604 static void
1605 maintenance_print_symbol_cache (const char *args, int from_tty)
1606 {
1607 for (struct program_space *pspace : program_spaces)
1608 {
1609 struct symbol_cache *cache;
1610
1611 gdb_printf (_("Symbol cache for pspace %d\n%s:\n"),
1612 pspace->num,
1613 pspace->symfile_object_file != NULL
1614 ? objfile_name (pspace->symfile_object_file)
1615 : "(no object file)");
1616
1617 /* If the cache hasn't been created yet, avoid creating one. */
1618 cache = symbol_cache_key.get (pspace);
1619 if (cache == NULL)
1620 gdb_printf (" <empty>\n");
1621 else
1622 symbol_cache_dump (cache);
1623 }
1624 }
1625
1626 /* The "mt flush-symbol-cache" command. */
1627
1628 static void
1629 maintenance_flush_symbol_cache (const char *args, int from_tty)
1630 {
1631 for (struct program_space *pspace : program_spaces)
1632 {
1633 symbol_cache_flush (pspace);
1634 }
1635 }
1636
1637 /* Print usage statistics of CACHE. */
1638
1639 static void
1640 symbol_cache_stats (struct symbol_cache *cache)
1641 {
1642 int pass;
1643
1644 if (cache->global_symbols == NULL)
1645 {
1646 gdb_printf (" <disabled>\n");
1647 return;
1648 }
1649
1650 for (pass = 0; pass < 2; ++pass)
1651 {
1652 const struct block_symbol_cache *bsc
1653 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1654
1655 QUIT;
1656
1657 if (pass == 0)
1658 gdb_printf ("Global block cache stats:\n");
1659 else
1660 gdb_printf ("Static block cache stats:\n");
1661
1662 gdb_printf (" size: %u\n", bsc->size);
1663 gdb_printf (" hits: %u\n", bsc->hits);
1664 gdb_printf (" misses: %u\n", bsc->misses);
1665 gdb_printf (" collisions: %u\n", bsc->collisions);
1666 }
1667 }
1668
1669 /* The "mt print symbol-cache-statistics" command. */
1670
1671 static void
1672 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1673 {
1674 for (struct program_space *pspace : program_spaces)
1675 {
1676 struct symbol_cache *cache;
1677
1678 gdb_printf (_("Symbol cache statistics for pspace %d\n%s:\n"),
1679 pspace->num,
1680 pspace->symfile_object_file != NULL
1681 ? objfile_name (pspace->symfile_object_file)
1682 : "(no object file)");
1683
1684 /* If the cache hasn't been created yet, avoid creating one. */
1685 cache = symbol_cache_key.get (pspace);
1686 if (cache == NULL)
1687 gdb_printf (" empty, no stats available\n");
1688 else
1689 symbol_cache_stats (cache);
1690 }
1691 }
1692
1693 /* This module's 'new_objfile' observer. */
1694
1695 static void
1696 symtab_new_objfile_observer (struct objfile *objfile)
1697 {
1698 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1699 symbol_cache_flush (current_program_space);
1700 }
1701
1702 /* This module's 'free_objfile' observer. */
1703
1704 static void
1705 symtab_free_objfile_observer (struct objfile *objfile)
1706 {
1707 symbol_cache_flush (objfile->pspace);
1708 }
1709 \f
1710 /* Debug symbols usually don't have section information. We need to dig that
1711 out of the minimal symbols and stash that in the debug symbol. */
1712
1713 void
1714 fixup_section (struct general_symbol_info *ginfo,
1715 CORE_ADDR addr, struct objfile *objfile)
1716 {
1717 struct minimal_symbol *msym;
1718
1719 /* First, check whether a minimal symbol with the same name exists
1720 and points to the same address. The address check is required
1721 e.g. on PowerPC64, where the minimal symbol for a function will
1722 point to the function descriptor, while the debug symbol will
1723 point to the actual function code. */
1724 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1725 objfile);
1726 if (msym)
1727 ginfo->set_section_index (msym->section_index ());
1728 else
1729 {
1730 /* Static, function-local variables do appear in the linker
1731 (minimal) symbols, but are frequently given names that won't
1732 be found via lookup_minimal_symbol(). E.g., it has been
1733 observed in frv-uclinux (ELF) executables that a static,
1734 function-local variable named "foo" might appear in the
1735 linker symbols as "foo.6" or "foo.3". Thus, there is no
1736 point in attempting to extend the lookup-by-name mechanism to
1737 handle this case due to the fact that there can be multiple
1738 names.
1739
1740 So, instead, search the section table when lookup by name has
1741 failed. The ``addr'' and ``endaddr'' fields may have already
1742 been relocated. If so, the relocation offset needs to be
1743 subtracted from these values when performing the comparison.
1744 We unconditionally subtract it, because, when no relocation
1745 has been performed, the value will simply be zero.
1746
1747 The address of the symbol whose section we're fixing up HAS
1748 NOT BEEN adjusted (relocated) yet. It can't have been since
1749 the section isn't yet known and knowing the section is
1750 necessary in order to add the correct relocation value. In
1751 other words, we wouldn't even be in this function (attempting
1752 to compute the section) if it were already known.
1753
1754 Note that it is possible to search the minimal symbols
1755 (subtracting the relocation value if necessary) to find the
1756 matching minimal symbol, but this is overkill and much less
1757 efficient. It is not necessary to find the matching minimal
1758 symbol, only its section.
1759
1760 Note that this technique (of doing a section table search)
1761 can fail when unrelocated section addresses overlap. For
1762 this reason, we still attempt a lookup by name prior to doing
1763 a search of the section table. */
1764
1765 struct obj_section *s;
1766 int fallback = -1;
1767
1768 ALL_OBJFILE_OSECTIONS (objfile, s)
1769 {
1770 int idx = s - objfile->sections;
1771 CORE_ADDR offset = objfile->section_offsets[idx];
1772
1773 if (fallback == -1)
1774 fallback = idx;
1775
1776 if (s->addr () - offset <= addr && addr < s->endaddr () - offset)
1777 {
1778 ginfo->set_section_index (idx);
1779 return;
1780 }
1781 }
1782
1783 /* If we didn't find the section, assume it is in the first
1784 section. If there is no allocated section, then it hardly
1785 matters what we pick, so just pick zero. */
1786 if (fallback == -1)
1787 ginfo->set_section_index (0);
1788 else
1789 ginfo->set_section_index (fallback);
1790 }
1791 }
1792
1793 struct symbol *
1794 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1795 {
1796 CORE_ADDR addr;
1797
1798 if (!sym)
1799 return NULL;
1800
1801 if (!sym->is_objfile_owned ())
1802 return sym;
1803
1804 /* We either have an OBJFILE, or we can get at it from the sym's
1805 symtab. Anything else is a bug. */
1806 gdb_assert (objfile || sym->symtab ());
1807
1808 if (objfile == NULL)
1809 objfile = sym->objfile ();
1810
1811 if (sym->obj_section (objfile) != nullptr)
1812 return sym;
1813
1814 /* We should have an objfile by now. */
1815 gdb_assert (objfile);
1816
1817 switch (sym->aclass ())
1818 {
1819 case LOC_STATIC:
1820 case LOC_LABEL:
1821 addr = sym->value_address ();
1822 break;
1823 case LOC_BLOCK:
1824 addr = sym->value_block ()->entry_pc ();
1825 break;
1826
1827 default:
1828 /* Nothing else will be listed in the minsyms -- no use looking
1829 it up. */
1830 return sym;
1831 }
1832
1833 fixup_section (sym, addr, objfile);
1834
1835 return sym;
1836 }
1837
1838 /* See symtab.h. */
1839
1840 demangle_for_lookup_info::demangle_for_lookup_info
1841 (const lookup_name_info &lookup_name, language lang)
1842 {
1843 demangle_result_storage storage;
1844
1845 if (lookup_name.ignore_parameters () && lang == language_cplus)
1846 {
1847 gdb::unique_xmalloc_ptr<char> without_params
1848 = cp_remove_params_if_any (lookup_name.c_str (),
1849 lookup_name.completion_mode ());
1850
1851 if (without_params != NULL)
1852 {
1853 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1854 m_demangled_name = demangle_for_lookup (without_params.get (),
1855 lang, storage);
1856 return;
1857 }
1858 }
1859
1860 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1861 m_demangled_name = lookup_name.c_str ();
1862 else
1863 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1864 lang, storage);
1865 }
1866
1867 /* See symtab.h. */
1868
1869 const lookup_name_info &
1870 lookup_name_info::match_any ()
1871 {
1872 /* Lookup any symbol that "" would complete. I.e., this matches all
1873 symbol names. */
1874 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1875 true);
1876
1877 return lookup_name;
1878 }
1879
1880 /* Compute the demangled form of NAME as used by the various symbol
1881 lookup functions. The result can either be the input NAME
1882 directly, or a pointer to a buffer owned by the STORAGE object.
1883
1884 For Ada, this function just returns NAME, unmodified.
1885 Normally, Ada symbol lookups are performed using the encoded name
1886 rather than the demangled name, and so it might seem to make sense
1887 for this function to return an encoded version of NAME.
1888 Unfortunately, we cannot do this, because this function is used in
1889 circumstances where it is not appropriate to try to encode NAME.
1890 For instance, when displaying the frame info, we demangle the name
1891 of each parameter, and then perform a symbol lookup inside our
1892 function using that demangled name. In Ada, certain functions
1893 have internally-generated parameters whose name contain uppercase
1894 characters. Encoding those name would result in those uppercase
1895 characters to become lowercase, and thus cause the symbol lookup
1896 to fail. */
1897
1898 const char *
1899 demangle_for_lookup (const char *name, enum language lang,
1900 demangle_result_storage &storage)
1901 {
1902 /* If we are using C++, D, or Go, demangle the name before doing a
1903 lookup, so we can always binary search. */
1904 if (lang == language_cplus)
1905 {
1906 gdb::unique_xmalloc_ptr<char> demangled_name
1907 = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1908 if (demangled_name != NULL)
1909 return storage.set_malloc_ptr (std::move (demangled_name));
1910
1911 /* If we were given a non-mangled name, canonicalize it
1912 according to the language (so far only for C++). */
1913 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1914 if (canon != nullptr)
1915 return storage.set_malloc_ptr (std::move (canon));
1916 }
1917 else if (lang == language_d)
1918 {
1919 gdb::unique_xmalloc_ptr<char> demangled_name = d_demangle (name, 0);
1920 if (demangled_name != NULL)
1921 return storage.set_malloc_ptr (std::move (demangled_name));
1922 }
1923 else if (lang == language_go)
1924 {
1925 gdb::unique_xmalloc_ptr<char> demangled_name
1926 = language_def (language_go)->demangle_symbol (name, 0);
1927 if (demangled_name != NULL)
1928 return storage.set_malloc_ptr (std::move (demangled_name));
1929 }
1930
1931 return name;
1932 }
1933
1934 /* See symtab.h. */
1935
1936 unsigned int
1937 search_name_hash (enum language language, const char *search_name)
1938 {
1939 return language_def (language)->search_name_hash (search_name);
1940 }
1941
1942 /* See symtab.h.
1943
1944 This function (or rather its subordinates) have a bunch of loops and
1945 it would seem to be attractive to put in some QUIT's (though I'm not really
1946 sure whether it can run long enough to be really important). But there
1947 are a few calls for which it would appear to be bad news to quit
1948 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1949 that there is C++ code below which can error(), but that probably
1950 doesn't affect these calls since they are looking for a known
1951 variable and thus can probably assume it will never hit the C++
1952 code). */
1953
1954 struct block_symbol
1955 lookup_symbol_in_language (const char *name, const struct block *block,
1956 const domain_enum domain, enum language lang,
1957 struct field_of_this_result *is_a_field_of_this)
1958 {
1959 demangle_result_storage storage;
1960 const char *modified_name = demangle_for_lookup (name, lang, storage);
1961
1962 return lookup_symbol_aux (modified_name,
1963 symbol_name_match_type::FULL,
1964 block, domain, lang,
1965 is_a_field_of_this);
1966 }
1967
1968 /* See symtab.h. */
1969
1970 struct block_symbol
1971 lookup_symbol (const char *name, const struct block *block,
1972 domain_enum domain,
1973 struct field_of_this_result *is_a_field_of_this)
1974 {
1975 return lookup_symbol_in_language (name, block, domain,
1976 current_language->la_language,
1977 is_a_field_of_this);
1978 }
1979
1980 /* See symtab.h. */
1981
1982 struct block_symbol
1983 lookup_symbol_search_name (const char *search_name, const struct block *block,
1984 domain_enum domain)
1985 {
1986 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1987 block, domain, language_asm, NULL);
1988 }
1989
1990 /* See symtab.h. */
1991
1992 struct block_symbol
1993 lookup_language_this (const struct language_defn *lang,
1994 const struct block *block)
1995 {
1996 if (lang->name_of_this () == NULL || block == NULL)
1997 return {};
1998
1999 if (symbol_lookup_debug > 1)
2000 {
2001 struct objfile *objfile = block_objfile (block);
2002
2003 gdb_printf (gdb_stdlog,
2004 "lookup_language_this (%s, %s (objfile %s))",
2005 lang->name (), host_address_to_string (block),
2006 objfile_debug_name (objfile));
2007 }
2008
2009 while (block)
2010 {
2011 struct symbol *sym;
2012
2013 sym = block_lookup_symbol (block, lang->name_of_this (),
2014 symbol_name_match_type::SEARCH_NAME,
2015 VAR_DOMAIN);
2016 if (sym != NULL)
2017 {
2018 if (symbol_lookup_debug > 1)
2019 {
2020 gdb_printf (gdb_stdlog, " = %s (%s, block %s)\n",
2021 sym->print_name (),
2022 host_address_to_string (sym),
2023 host_address_to_string (block));
2024 }
2025 return (struct block_symbol) {sym, block};
2026 }
2027 if (block->function ())
2028 break;
2029 block = block->superblock ();
2030 }
2031
2032 if (symbol_lookup_debug > 1)
2033 gdb_printf (gdb_stdlog, " = NULL\n");
2034 return {};
2035 }
2036
2037 /* Given TYPE, a structure/union,
2038 return 1 if the component named NAME from the ultimate target
2039 structure/union is defined, otherwise, return 0. */
2040
2041 static int
2042 check_field (struct type *type, const char *name,
2043 struct field_of_this_result *is_a_field_of_this)
2044 {
2045 int i;
2046
2047 /* The type may be a stub. */
2048 type = check_typedef (type);
2049
2050 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
2051 {
2052 const char *t_field_name = type->field (i).name ();
2053
2054 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2055 {
2056 is_a_field_of_this->type = type;
2057 is_a_field_of_this->field = &type->field (i);
2058 return 1;
2059 }
2060 }
2061
2062 /* C++: If it was not found as a data field, then try to return it
2063 as a pointer to a method. */
2064
2065 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2066 {
2067 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2068 {
2069 is_a_field_of_this->type = type;
2070 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2071 return 1;
2072 }
2073 }
2074
2075 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2076 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2077 return 1;
2078
2079 return 0;
2080 }
2081
2082 /* Behave like lookup_symbol except that NAME is the natural name
2083 (e.g., demangled name) of the symbol that we're looking for. */
2084
2085 static struct block_symbol
2086 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2087 const struct block *block,
2088 const domain_enum domain, enum language language,
2089 struct field_of_this_result *is_a_field_of_this)
2090 {
2091 struct block_symbol result;
2092 const struct language_defn *langdef;
2093
2094 if (symbol_lookup_debug)
2095 {
2096 struct objfile *objfile = (block == nullptr
2097 ? nullptr : block_objfile (block));
2098
2099 gdb_printf (gdb_stdlog,
2100 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2101 name, host_address_to_string (block),
2102 objfile != NULL
2103 ? objfile_debug_name (objfile) : "NULL",
2104 domain_name (domain), language_str (language));
2105 }
2106
2107 /* Make sure we do something sensible with is_a_field_of_this, since
2108 the callers that set this parameter to some non-null value will
2109 certainly use it later. If we don't set it, the contents of
2110 is_a_field_of_this are undefined. */
2111 if (is_a_field_of_this != NULL)
2112 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2113
2114 /* Search specified block and its superiors. Don't search
2115 STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 result = lookup_local_symbol (name, match_type, block, domain, language);
2118 if (result.symbol != NULL)
2119 {
2120 if (symbol_lookup_debug)
2121 {
2122 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2123 host_address_to_string (result.symbol));
2124 }
2125 return result;
2126 }
2127
2128 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2129 check to see if NAME is a field of `this'. */
2130
2131 langdef = language_def (language);
2132
2133 /* Don't do this check if we are searching for a struct. It will
2134 not be found by check_field, but will be found by other
2135 means. */
2136 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2137 {
2138 result = lookup_language_this (langdef, block);
2139
2140 if (result.symbol)
2141 {
2142 struct type *t = result.symbol->type ();
2143
2144 /* I'm not really sure that type of this can ever
2145 be typedefed; just be safe. */
2146 t = check_typedef (t);
2147 if (t->is_pointer_or_reference ())
2148 t = TYPE_TARGET_TYPE (t);
2149
2150 if (t->code () != TYPE_CODE_STRUCT
2151 && t->code () != TYPE_CODE_UNION)
2152 error (_("Internal error: `%s' is not an aggregate"),
2153 langdef->name_of_this ());
2154
2155 if (check_field (t, name, is_a_field_of_this))
2156 {
2157 if (symbol_lookup_debug)
2158 {
2159 gdb_printf (gdb_stdlog,
2160 "lookup_symbol_aux (...) = NULL\n");
2161 }
2162 return {};
2163 }
2164 }
2165 }
2166
2167 /* Now do whatever is appropriate for LANGUAGE to look
2168 up static and global variables. */
2169
2170 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2171 if (result.symbol != NULL)
2172 {
2173 if (symbol_lookup_debug)
2174 {
2175 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2176 host_address_to_string (result.symbol));
2177 }
2178 return result;
2179 }
2180
2181 /* Now search all static file-level symbols. Not strictly correct,
2182 but more useful than an error. */
2183
2184 result = lookup_static_symbol (name, domain);
2185 if (symbol_lookup_debug)
2186 {
2187 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2188 result.symbol != NULL
2189 ? host_address_to_string (result.symbol)
2190 : "NULL");
2191 }
2192 return result;
2193 }
2194
2195 /* Check to see if the symbol is defined in BLOCK or its superiors.
2196 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2197
2198 static struct block_symbol
2199 lookup_local_symbol (const char *name,
2200 symbol_name_match_type match_type,
2201 const struct block *block,
2202 const domain_enum domain,
2203 enum language language)
2204 {
2205 struct symbol *sym;
2206 const struct block *static_block = block_static_block (block);
2207 const char *scope = block_scope (block);
2208
2209 /* Check if either no block is specified or it's a global block. */
2210
2211 if (static_block == NULL)
2212 return {};
2213
2214 while (block != static_block)
2215 {
2216 sym = lookup_symbol_in_block (name, match_type, block, domain);
2217 if (sym != NULL)
2218 return (struct block_symbol) {sym, block};
2219
2220 if (language == language_cplus || language == language_fortran)
2221 {
2222 struct block_symbol blocksym
2223 = cp_lookup_symbol_imports_or_template (scope, name, block,
2224 domain);
2225
2226 if (blocksym.symbol != NULL)
2227 return blocksym;
2228 }
2229
2230 if (block->function () != NULL && block_inlined_p (block))
2231 break;
2232 block = block->superblock ();
2233 }
2234
2235 /* We've reached the end of the function without finding a result. */
2236
2237 return {};
2238 }
2239
2240 /* See symtab.h. */
2241
2242 struct symbol *
2243 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2244 const struct block *block,
2245 const domain_enum domain)
2246 {
2247 struct symbol *sym;
2248
2249 if (symbol_lookup_debug > 1)
2250 {
2251 struct objfile *objfile = (block == nullptr
2252 ? nullptr : block_objfile (block));
2253
2254 gdb_printf (gdb_stdlog,
2255 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2256 name, host_address_to_string (block),
2257 objfile_debug_name (objfile),
2258 domain_name (domain));
2259 }
2260
2261 sym = block_lookup_symbol (block, name, match_type, domain);
2262 if (sym)
2263 {
2264 if (symbol_lookup_debug > 1)
2265 {
2266 gdb_printf (gdb_stdlog, " = %s\n",
2267 host_address_to_string (sym));
2268 }
2269 return fixup_symbol_section (sym, NULL);
2270 }
2271
2272 if (symbol_lookup_debug > 1)
2273 gdb_printf (gdb_stdlog, " = NULL\n");
2274 return NULL;
2275 }
2276
2277 /* See symtab.h. */
2278
2279 struct block_symbol
2280 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2281 enum block_enum block_index,
2282 const char *name,
2283 const domain_enum domain)
2284 {
2285 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2286
2287 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2288 {
2289 struct block_symbol result
2290 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2291
2292 if (result.symbol != nullptr)
2293 return result;
2294 }
2295
2296 return {};
2297 }
2298
2299 /* Check to see if the symbol is defined in one of the OBJFILE's
2300 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2301 depending on whether or not we want to search global symbols or
2302 static symbols. */
2303
2304 static struct block_symbol
2305 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2306 enum block_enum block_index, const char *name,
2307 const domain_enum domain)
2308 {
2309 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2310
2311 if (symbol_lookup_debug > 1)
2312 {
2313 gdb_printf (gdb_stdlog,
2314 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2315 objfile_debug_name (objfile),
2316 block_index == GLOBAL_BLOCK
2317 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2318 name, domain_name (domain));
2319 }
2320
2321 struct block_symbol other;
2322 other.symbol = NULL;
2323 for (compunit_symtab *cust : objfile->compunits ())
2324 {
2325 const struct blockvector *bv;
2326 const struct block *block;
2327 struct block_symbol result;
2328
2329 bv = cust->blockvector ();
2330 block = bv->block (block_index);
2331 result.symbol = block_lookup_symbol_primary (block, name, domain);
2332 result.block = block;
2333 if (result.symbol == NULL)
2334 continue;
2335 if (best_symbol (result.symbol, domain))
2336 {
2337 other = result;
2338 break;
2339 }
2340 if (symbol_matches_domain (result.symbol->language (),
2341 result.symbol->domain (), domain))
2342 {
2343 struct symbol *better
2344 = better_symbol (other.symbol, result.symbol, domain);
2345 if (better != other.symbol)
2346 {
2347 other.symbol = better;
2348 other.block = block;
2349 }
2350 }
2351 }
2352
2353 if (other.symbol != NULL)
2354 {
2355 if (symbol_lookup_debug > 1)
2356 {
2357 gdb_printf (gdb_stdlog, " = %s (block %s)\n",
2358 host_address_to_string (other.symbol),
2359 host_address_to_string (other.block));
2360 }
2361 other.symbol = fixup_symbol_section (other.symbol, objfile);
2362 return other;
2363 }
2364
2365 if (symbol_lookup_debug > 1)
2366 gdb_printf (gdb_stdlog, " = NULL\n");
2367 return {};
2368 }
2369
2370 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2371 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2372 and all associated separate debug objfiles.
2373
2374 Normally we only look in OBJFILE, and not any separate debug objfiles
2375 because the outer loop will cause them to be searched too. This case is
2376 different. Here we're called from search_symbols where it will only
2377 call us for the objfile that contains a matching minsym. */
2378
2379 static struct block_symbol
2380 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2381 const char *linkage_name,
2382 domain_enum domain)
2383 {
2384 enum language lang = current_language->la_language;
2385 struct objfile *main_objfile;
2386
2387 demangle_result_storage storage;
2388 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2389
2390 if (objfile->separate_debug_objfile_backlink)
2391 main_objfile = objfile->separate_debug_objfile_backlink;
2392 else
2393 main_objfile = objfile;
2394
2395 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2396 {
2397 struct block_symbol result;
2398
2399 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2400 modified_name, domain);
2401 if (result.symbol == NULL)
2402 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2403 modified_name, domain);
2404 if (result.symbol != NULL)
2405 return result;
2406 }
2407
2408 return {};
2409 }
2410
2411 /* A helper function that throws an exception when a symbol was found
2412 in a psymtab but not in a symtab. */
2413
2414 static void ATTRIBUTE_NORETURN
2415 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2416 struct compunit_symtab *cust)
2417 {
2418 error (_("\
2419 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2420 %s may be an inlined function, or may be a template function\n \
2421 (if a template, try specifying an instantiation: %s<type>)."),
2422 block_index == GLOBAL_BLOCK ? "global" : "static",
2423 name,
2424 symtab_to_filename_for_display (cust->primary_filetab ()),
2425 name, name);
2426 }
2427
2428 /* A helper function for various lookup routines that interfaces with
2429 the "quick" symbol table functions. */
2430
2431 static struct block_symbol
2432 lookup_symbol_via_quick_fns (struct objfile *objfile,
2433 enum block_enum block_index, const char *name,
2434 const domain_enum domain)
2435 {
2436 struct compunit_symtab *cust;
2437 const struct blockvector *bv;
2438 const struct block *block;
2439 struct block_symbol result;
2440
2441 if (symbol_lookup_debug > 1)
2442 {
2443 gdb_printf (gdb_stdlog,
2444 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2445 objfile_debug_name (objfile),
2446 block_index == GLOBAL_BLOCK
2447 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2448 name, domain_name (domain));
2449 }
2450
2451 cust = objfile->lookup_symbol (block_index, name, domain);
2452 if (cust == NULL)
2453 {
2454 if (symbol_lookup_debug > 1)
2455 {
2456 gdb_printf (gdb_stdlog,
2457 "lookup_symbol_via_quick_fns (...) = NULL\n");
2458 }
2459 return {};
2460 }
2461
2462 bv = cust->blockvector ();
2463 block = bv->block (block_index);
2464 result.symbol = block_lookup_symbol (block, name,
2465 symbol_name_match_type::FULL, domain);
2466 if (result.symbol == NULL)
2467 error_in_psymtab_expansion (block_index, name, cust);
2468
2469 if (symbol_lookup_debug > 1)
2470 {
2471 gdb_printf (gdb_stdlog,
2472 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2473 host_address_to_string (result.symbol),
2474 host_address_to_string (block));
2475 }
2476
2477 result.symbol = fixup_symbol_section (result.symbol, objfile);
2478 result.block = block;
2479 return result;
2480 }
2481
2482 /* See language.h. */
2483
2484 struct block_symbol
2485 language_defn::lookup_symbol_nonlocal (const char *name,
2486 const struct block *block,
2487 const domain_enum domain) const
2488 {
2489 struct block_symbol result;
2490
2491 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2492 the current objfile. Searching the current objfile first is useful
2493 for both matching user expectations as well as performance. */
2494
2495 result = lookup_symbol_in_static_block (name, block, domain);
2496 if (result.symbol != NULL)
2497 return result;
2498
2499 /* If we didn't find a definition for a builtin type in the static block,
2500 search for it now. This is actually the right thing to do and can be
2501 a massive performance win. E.g., when debugging a program with lots of
2502 shared libraries we could search all of them only to find out the
2503 builtin type isn't defined in any of them. This is common for types
2504 like "void". */
2505 if (domain == VAR_DOMAIN)
2506 {
2507 struct gdbarch *gdbarch;
2508
2509 if (block == NULL)
2510 gdbarch = target_gdbarch ();
2511 else
2512 gdbarch = block_gdbarch (block);
2513 result.symbol = language_lookup_primitive_type_as_symbol (this,
2514 gdbarch, name);
2515 result.block = NULL;
2516 if (result.symbol != NULL)
2517 return result;
2518 }
2519
2520 return lookup_global_symbol (name, block, domain);
2521 }
2522
2523 /* See symtab.h. */
2524
2525 struct block_symbol
2526 lookup_symbol_in_static_block (const char *name,
2527 const struct block *block,
2528 const domain_enum domain)
2529 {
2530 const struct block *static_block = block_static_block (block);
2531 struct symbol *sym;
2532
2533 if (static_block == NULL)
2534 return {};
2535
2536 if (symbol_lookup_debug)
2537 {
2538 struct objfile *objfile = (block == nullptr
2539 ? nullptr : block_objfile (block));
2540
2541 gdb_printf (gdb_stdlog,
2542 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2543 " %s)\n",
2544 name,
2545 host_address_to_string (block),
2546 objfile_debug_name (objfile),
2547 domain_name (domain));
2548 }
2549
2550 sym = lookup_symbol_in_block (name,
2551 symbol_name_match_type::FULL,
2552 static_block, domain);
2553 if (symbol_lookup_debug)
2554 {
2555 gdb_printf (gdb_stdlog,
2556 "lookup_symbol_in_static_block (...) = %s\n",
2557 sym != NULL ? host_address_to_string (sym) : "NULL");
2558 }
2559 return (struct block_symbol) {sym, static_block};
2560 }
2561
2562 /* Perform the standard symbol lookup of NAME in OBJFILE:
2563 1) First search expanded symtabs, and if not found
2564 2) Search the "quick" symtabs (partial or .gdb_index).
2565 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2566
2567 static struct block_symbol
2568 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2569 const char *name, const domain_enum domain)
2570 {
2571 struct block_symbol result;
2572
2573 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2574
2575 if (symbol_lookup_debug)
2576 {
2577 gdb_printf (gdb_stdlog,
2578 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2579 objfile_debug_name (objfile),
2580 block_index == GLOBAL_BLOCK
2581 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2582 name, domain_name (domain));
2583 }
2584
2585 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2586 name, domain);
2587 if (result.symbol != NULL)
2588 {
2589 if (symbol_lookup_debug)
2590 {
2591 gdb_printf (gdb_stdlog,
2592 "lookup_symbol_in_objfile (...) = %s"
2593 " (in symtabs)\n",
2594 host_address_to_string (result.symbol));
2595 }
2596 return result;
2597 }
2598
2599 result = lookup_symbol_via_quick_fns (objfile, block_index,
2600 name, domain);
2601 if (symbol_lookup_debug)
2602 {
2603 gdb_printf (gdb_stdlog,
2604 "lookup_symbol_in_objfile (...) = %s%s\n",
2605 result.symbol != NULL
2606 ? host_address_to_string (result.symbol)
2607 : "NULL",
2608 result.symbol != NULL ? " (via quick fns)" : "");
2609 }
2610 return result;
2611 }
2612
2613 /* Find the language for partial symbol with NAME. */
2614
2615 static enum language
2616 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2617 {
2618 for (objfile *objfile : current_program_space->objfiles ())
2619 {
2620 bool symbol_found_p;
2621 enum language lang
2622 = objfile->lookup_global_symbol_language (name, domain, &symbol_found_p);
2623 if (symbol_found_p)
2624 return lang;
2625 }
2626
2627 return language_unknown;
2628 }
2629
2630 /* This function contains the common code of lookup_{global,static}_symbol.
2631 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2632 the objfile to start the lookup in. */
2633
2634 static struct block_symbol
2635 lookup_global_or_static_symbol (const char *name,
2636 enum block_enum block_index,
2637 struct objfile *objfile,
2638 const domain_enum domain)
2639 {
2640 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2641 struct block_symbol result;
2642 struct block_symbol_cache *bsc;
2643 struct symbol_cache_slot *slot;
2644
2645 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2646 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2647
2648 /* First see if we can find the symbol in the cache.
2649 This works because we use the current objfile to qualify the lookup. */
2650 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2651 &bsc, &slot);
2652 if (result.symbol != NULL)
2653 {
2654 if (SYMBOL_LOOKUP_FAILED_P (result))
2655 return {};
2656 return result;
2657 }
2658
2659 /* Do a global search (of global blocks, heh). */
2660 if (result.symbol == NULL)
2661 gdbarch_iterate_over_objfiles_in_search_order
2662 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2663 [&result, block_index, name, domain] (struct objfile *objfile_iter)
2664 {
2665 result = lookup_symbol_in_objfile (objfile_iter, block_index,
2666 name, domain);
2667 return result.symbol != nullptr;
2668 },
2669 objfile);
2670
2671 if (result.symbol != NULL)
2672 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2673 else
2674 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2675
2676 return result;
2677 }
2678
2679 /* See symtab.h. */
2680
2681 struct block_symbol
2682 lookup_static_symbol (const char *name, const domain_enum domain)
2683 {
2684 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2685 }
2686
2687 /* See symtab.h. */
2688
2689 struct block_symbol
2690 lookup_global_symbol (const char *name,
2691 const struct block *block,
2692 const domain_enum domain)
2693 {
2694 /* If a block was passed in, we want to search the corresponding
2695 global block first. This yields "more expected" behavior, and is
2696 needed to support 'FILENAME'::VARIABLE lookups. */
2697 const struct block *global_block = block_global_block (block);
2698 symbol *sym = NULL;
2699 if (global_block != nullptr)
2700 {
2701 sym = lookup_symbol_in_block (name,
2702 symbol_name_match_type::FULL,
2703 global_block, domain);
2704 if (sym != NULL && best_symbol (sym, domain))
2705 return { sym, global_block };
2706 }
2707
2708 struct objfile *objfile = nullptr;
2709 if (block != nullptr)
2710 {
2711 objfile = block_objfile (block);
2712 if (objfile->separate_debug_objfile_backlink != nullptr)
2713 objfile = objfile->separate_debug_objfile_backlink;
2714 }
2715
2716 block_symbol bs
2717 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2718 if (better_symbol (sym, bs.symbol, domain) == sym)
2719 return { sym, global_block };
2720 else
2721 return bs;
2722 }
2723
2724 bool
2725 symbol_matches_domain (enum language symbol_language,
2726 domain_enum symbol_domain,
2727 domain_enum domain)
2728 {
2729 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2730 Similarly, any Ada type declaration implicitly defines a typedef. */
2731 if (symbol_language == language_cplus
2732 || symbol_language == language_d
2733 || symbol_language == language_ada
2734 || symbol_language == language_rust)
2735 {
2736 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2737 && symbol_domain == STRUCT_DOMAIN)
2738 return true;
2739 }
2740 /* For all other languages, strict match is required. */
2741 return (symbol_domain == domain);
2742 }
2743
2744 /* See symtab.h. */
2745
2746 struct type *
2747 lookup_transparent_type (const char *name)
2748 {
2749 return current_language->lookup_transparent_type (name);
2750 }
2751
2752 /* A helper for basic_lookup_transparent_type that interfaces with the
2753 "quick" symbol table functions. */
2754
2755 static struct type *
2756 basic_lookup_transparent_type_quick (struct objfile *objfile,
2757 enum block_enum block_index,
2758 const char *name)
2759 {
2760 struct compunit_symtab *cust;
2761 const struct blockvector *bv;
2762 const struct block *block;
2763 struct symbol *sym;
2764
2765 cust = objfile->lookup_symbol (block_index, name, STRUCT_DOMAIN);
2766 if (cust == NULL)
2767 return NULL;
2768
2769 bv = cust->blockvector ();
2770 block = bv->block (block_index);
2771 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2772 block_find_non_opaque_type, NULL);
2773 if (sym == NULL)
2774 error_in_psymtab_expansion (block_index, name, cust);
2775 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2776 return sym->type ();
2777 }
2778
2779 /* Subroutine of basic_lookup_transparent_type to simplify it.
2780 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2781 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2782
2783 static struct type *
2784 basic_lookup_transparent_type_1 (struct objfile *objfile,
2785 enum block_enum block_index,
2786 const char *name)
2787 {
2788 const struct blockvector *bv;
2789 const struct block *block;
2790 const struct symbol *sym;
2791
2792 for (compunit_symtab *cust : objfile->compunits ())
2793 {
2794 bv = cust->blockvector ();
2795 block = bv->block (block_index);
2796 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2797 block_find_non_opaque_type, NULL);
2798 if (sym != NULL)
2799 {
2800 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2801 return sym->type ();
2802 }
2803 }
2804
2805 return NULL;
2806 }
2807
2808 /* The standard implementation of lookup_transparent_type. This code
2809 was modeled on lookup_symbol -- the parts not relevant to looking
2810 up types were just left out. In particular it's assumed here that
2811 types are available in STRUCT_DOMAIN and only in file-static or
2812 global blocks. */
2813
2814 struct type *
2815 basic_lookup_transparent_type (const char *name)
2816 {
2817 struct type *t;
2818
2819 /* Now search all the global symbols. Do the symtab's first, then
2820 check the psymtab's. If a psymtab indicates the existence
2821 of the desired name as a global, then do psymtab-to-symtab
2822 conversion on the fly and return the found symbol. */
2823
2824 for (objfile *objfile : current_program_space->objfiles ())
2825 {
2826 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2827 if (t)
2828 return t;
2829 }
2830
2831 for (objfile *objfile : current_program_space->objfiles ())
2832 {
2833 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2834 if (t)
2835 return t;
2836 }
2837
2838 /* Now search the static file-level symbols.
2839 Not strictly correct, but more useful than an error.
2840 Do the symtab's first, then
2841 check the psymtab's. If a psymtab indicates the existence
2842 of the desired name as a file-level static, then do psymtab-to-symtab
2843 conversion on the fly and return the found symbol. */
2844
2845 for (objfile *objfile : current_program_space->objfiles ())
2846 {
2847 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2848 if (t)
2849 return t;
2850 }
2851
2852 for (objfile *objfile : current_program_space->objfiles ())
2853 {
2854 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2855 if (t)
2856 return t;
2857 }
2858
2859 return (struct type *) 0;
2860 }
2861
2862 /* See symtab.h. */
2863
2864 bool
2865 iterate_over_symbols (const struct block *block,
2866 const lookup_name_info &name,
2867 const domain_enum domain,
2868 gdb::function_view<symbol_found_callback_ftype> callback)
2869 {
2870 struct block_iterator iter;
2871 struct symbol *sym;
2872
2873 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2874 {
2875 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
2876 {
2877 struct block_symbol block_sym = {sym, block};
2878
2879 if (!callback (&block_sym))
2880 return false;
2881 }
2882 }
2883 return true;
2884 }
2885
2886 /* See symtab.h. */
2887
2888 bool
2889 iterate_over_symbols_terminated
2890 (const struct block *block,
2891 const lookup_name_info &name,
2892 const domain_enum domain,
2893 gdb::function_view<symbol_found_callback_ftype> callback)
2894 {
2895 if (!iterate_over_symbols (block, name, domain, callback))
2896 return false;
2897 struct block_symbol block_sym = {nullptr, block};
2898 return callback (&block_sym);
2899 }
2900
2901 /* Find the compunit symtab associated with PC and SECTION.
2902 This will read in debug info as necessary. */
2903
2904 struct compunit_symtab *
2905 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2906 {
2907 struct compunit_symtab *best_cust = NULL;
2908 CORE_ADDR best_cust_range = 0;
2909 struct bound_minimal_symbol msymbol;
2910
2911 /* If we know that this is not a text address, return failure. This is
2912 necessary because we loop based on the block's high and low code
2913 addresses, which do not include the data ranges, and because
2914 we call find_pc_sect_psymtab which has a similar restriction based
2915 on the partial_symtab's texthigh and textlow. */
2916 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2917 if (msymbol.minsym && msymbol.minsym->data_p ())
2918 return NULL;
2919
2920 /* Search all symtabs for the one whose file contains our address, and which
2921 is the smallest of all the ones containing the address. This is designed
2922 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2923 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2924 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2925
2926 This happens for native ecoff format, where code from included files
2927 gets its own symtab. The symtab for the included file should have
2928 been read in already via the dependency mechanism.
2929 It might be swifter to create several symtabs with the same name
2930 like xcoff does (I'm not sure).
2931
2932 It also happens for objfiles that have their functions reordered.
2933 For these, the symtab we are looking for is not necessarily read in. */
2934
2935 for (objfile *obj_file : current_program_space->objfiles ())
2936 {
2937 for (compunit_symtab *cust : obj_file->compunits ())
2938 {
2939 const struct blockvector *bv = cust->blockvector ();
2940 const struct block *global_block = bv->global_block ();
2941 CORE_ADDR start = global_block->start ();
2942 CORE_ADDR end = global_block->end ();
2943 bool in_range_p = start <= pc && pc < end;
2944 if (!in_range_p)
2945 continue;
2946
2947 if (bv->map () != nullptr)
2948 {
2949 if (bv->map ()->find (pc) == nullptr)
2950 continue;
2951
2952 return cust;
2953 }
2954
2955 CORE_ADDR range = end - start;
2956 if (best_cust != nullptr
2957 && range >= best_cust_range)
2958 /* Cust doesn't have a smaller range than best_cust, skip it. */
2959 continue;
2960
2961 /* For an objfile that has its functions reordered,
2962 find_pc_psymtab will find the proper partial symbol table
2963 and we simply return its corresponding symtab. */
2964 /* In order to better support objfiles that contain both
2965 stabs and coff debugging info, we continue on if a psymtab
2966 can't be found. */
2967 if ((obj_file->flags & OBJF_REORDERED) != 0)
2968 {
2969 struct compunit_symtab *result;
2970
2971 result
2972 = obj_file->find_pc_sect_compunit_symtab (msymbol,
2973 pc,
2974 section,
2975 0);
2976 if (result != NULL)
2977 return result;
2978 }
2979
2980 if (section != 0)
2981 {
2982 struct symbol *sym = NULL;
2983 struct block_iterator iter;
2984
2985 for (int b_index = GLOBAL_BLOCK;
2986 b_index <= STATIC_BLOCK && sym == NULL;
2987 ++b_index)
2988 {
2989 const struct block *b = bv->block (b_index);
2990 ALL_BLOCK_SYMBOLS (b, iter, sym)
2991 {
2992 fixup_symbol_section (sym, obj_file);
2993 if (matching_obj_sections (sym->obj_section (obj_file),
2994 section))
2995 break;
2996 }
2997 }
2998 if (sym == NULL)
2999 continue; /* No symbol in this symtab matches
3000 section. */
3001 }
3002
3003 /* Cust is best found sofar, save it. */
3004 best_cust = cust;
3005 best_cust_range = range;
3006 }
3007 }
3008
3009 if (best_cust != NULL)
3010 return best_cust;
3011
3012 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3013
3014 for (objfile *objf : current_program_space->objfiles ())
3015 {
3016 struct compunit_symtab *result
3017 = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1);
3018 if (result != NULL)
3019 return result;
3020 }
3021
3022 return NULL;
3023 }
3024
3025 /* Find the compunit symtab associated with PC.
3026 This will read in debug info as necessary.
3027 Backward compatibility, no section. */
3028
3029 struct compunit_symtab *
3030 find_pc_compunit_symtab (CORE_ADDR pc)
3031 {
3032 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3033 }
3034
3035 /* See symtab.h. */
3036
3037 struct symbol *
3038 find_symbol_at_address (CORE_ADDR address)
3039 {
3040 /* A helper function to search a given symtab for a symbol matching
3041 ADDR. */
3042 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3043 {
3044 const struct blockvector *bv = symtab->blockvector ();
3045
3046 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3047 {
3048 const struct block *b = bv->block (i);
3049 struct block_iterator iter;
3050 struct symbol *sym;
3051
3052 ALL_BLOCK_SYMBOLS (b, iter, sym)
3053 {
3054 if (sym->aclass () == LOC_STATIC
3055 && sym->value_address () == addr)
3056 return sym;
3057 }
3058 }
3059 return nullptr;
3060 };
3061
3062 for (objfile *objfile : current_program_space->objfiles ())
3063 {
3064 /* If this objfile was read with -readnow, then we need to
3065 search the symtabs directly. */
3066 if ((objfile->flags & OBJF_READNOW) != 0)
3067 {
3068 for (compunit_symtab *symtab : objfile->compunits ())
3069 {
3070 struct symbol *sym = search_symtab (symtab, address);
3071 if (sym != nullptr)
3072 return sym;
3073 }
3074 }
3075 else
3076 {
3077 struct compunit_symtab *symtab
3078 = objfile->find_compunit_symtab_by_address (address);
3079 if (symtab != NULL)
3080 {
3081 struct symbol *sym = search_symtab (symtab, address);
3082 if (sym != nullptr)
3083 return sym;
3084 }
3085 }
3086 }
3087
3088 return NULL;
3089 }
3090
3091 \f
3092
3093 /* Find the source file and line number for a given PC value and SECTION.
3094 Return a structure containing a symtab pointer, a line number,
3095 and a pc range for the entire source line.
3096 The value's .pc field is NOT the specified pc.
3097 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3098 use the line that ends there. Otherwise, in that case, the line
3099 that begins there is used. */
3100
3101 /* The big complication here is that a line may start in one file, and end just
3102 before the start of another file. This usually occurs when you #include
3103 code in the middle of a subroutine. To properly find the end of a line's PC
3104 range, we must search all symtabs associated with this compilation unit, and
3105 find the one whose first PC is closer than that of the next line in this
3106 symtab. */
3107
3108 struct symtab_and_line
3109 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3110 {
3111 struct compunit_symtab *cust;
3112 struct linetable *l;
3113 int len;
3114 struct linetable_entry *item;
3115 const struct blockvector *bv;
3116 struct bound_minimal_symbol msymbol;
3117
3118 /* Info on best line seen so far, and where it starts, and its file. */
3119
3120 struct linetable_entry *best = NULL;
3121 CORE_ADDR best_end = 0;
3122 struct symtab *best_symtab = 0;
3123
3124 /* Store here the first line number
3125 of a file which contains the line at the smallest pc after PC.
3126 If we don't find a line whose range contains PC,
3127 we will use a line one less than this,
3128 with a range from the start of that file to the first line's pc. */
3129 struct linetable_entry *alt = NULL;
3130
3131 /* Info on best line seen in this file. */
3132
3133 struct linetable_entry *prev;
3134
3135 /* If this pc is not from the current frame,
3136 it is the address of the end of a call instruction.
3137 Quite likely that is the start of the following statement.
3138 But what we want is the statement containing the instruction.
3139 Fudge the pc to make sure we get that. */
3140
3141 /* It's tempting to assume that, if we can't find debugging info for
3142 any function enclosing PC, that we shouldn't search for line
3143 number info, either. However, GAS can emit line number info for
3144 assembly files --- very helpful when debugging hand-written
3145 assembly code. In such a case, we'd have no debug info for the
3146 function, but we would have line info. */
3147
3148 if (notcurrent)
3149 pc -= 1;
3150
3151 /* elz: added this because this function returned the wrong
3152 information if the pc belongs to a stub (import/export)
3153 to call a shlib function. This stub would be anywhere between
3154 two functions in the target, and the line info was erroneously
3155 taken to be the one of the line before the pc. */
3156
3157 /* RT: Further explanation:
3158
3159 * We have stubs (trampolines) inserted between procedures.
3160 *
3161 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3162 * exists in the main image.
3163 *
3164 * In the minimal symbol table, we have a bunch of symbols
3165 * sorted by start address. The stubs are marked as "trampoline",
3166 * the others appear as text. E.g.:
3167 *
3168 * Minimal symbol table for main image
3169 * main: code for main (text symbol)
3170 * shr1: stub (trampoline symbol)
3171 * foo: code for foo (text symbol)
3172 * ...
3173 * Minimal symbol table for "shr1" image:
3174 * ...
3175 * shr1: code for shr1 (text symbol)
3176 * ...
3177 *
3178 * So the code below is trying to detect if we are in the stub
3179 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3180 * and if found, do the symbolization from the real-code address
3181 * rather than the stub address.
3182 *
3183 * Assumptions being made about the minimal symbol table:
3184 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3185 * if we're really in the trampoline.s If we're beyond it (say
3186 * we're in "foo" in the above example), it'll have a closer
3187 * symbol (the "foo" text symbol for example) and will not
3188 * return the trampoline.
3189 * 2. lookup_minimal_symbol_text() will find a real text symbol
3190 * corresponding to the trampoline, and whose address will
3191 * be different than the trampoline address. I put in a sanity
3192 * check for the address being the same, to avoid an
3193 * infinite recursion.
3194 */
3195 msymbol = lookup_minimal_symbol_by_pc (pc);
3196 if (msymbol.minsym != NULL)
3197 if (msymbol.minsym->type () == mst_solib_trampoline)
3198 {
3199 struct bound_minimal_symbol mfunsym
3200 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3201 NULL);
3202
3203 if (mfunsym.minsym == NULL)
3204 /* I eliminated this warning since it is coming out
3205 * in the following situation:
3206 * gdb shmain // test program with shared libraries
3207 * (gdb) break shr1 // function in shared lib
3208 * Warning: In stub for ...
3209 * In the above situation, the shared lib is not loaded yet,
3210 * so of course we can't find the real func/line info,
3211 * but the "break" still works, and the warning is annoying.
3212 * So I commented out the warning. RT */
3213 /* warning ("In stub for %s; unable to find real function/line info",
3214 msymbol->linkage_name ()); */
3215 ;
3216 /* fall through */
3217 else if (mfunsym.value_address ()
3218 == msymbol.value_address ())
3219 /* Avoid infinite recursion */
3220 /* See above comment about why warning is commented out. */
3221 /* warning ("In stub for %s; unable to find real function/line info",
3222 msymbol->linkage_name ()); */
3223 ;
3224 /* fall through */
3225 else
3226 {
3227 /* Detect an obvious case of infinite recursion. If this
3228 should occur, we'd like to know about it, so error out,
3229 fatally. */
3230 if (mfunsym.value_address () == pc)
3231 internal_error (__FILE__, __LINE__,
3232 _("Infinite recursion detected in find_pc_sect_line;"
3233 "please file a bug report"));
3234
3235 return find_pc_line (mfunsym.value_address (), 0);
3236 }
3237 }
3238
3239 symtab_and_line val;
3240 val.pspace = current_program_space;
3241
3242 cust = find_pc_sect_compunit_symtab (pc, section);
3243 if (cust == NULL)
3244 {
3245 /* If no symbol information, return previous pc. */
3246 if (notcurrent)
3247 pc++;
3248 val.pc = pc;
3249 return val;
3250 }
3251
3252 bv = cust->blockvector ();
3253
3254 /* Look at all the symtabs that share this blockvector.
3255 They all have the same apriori range, that we found was right;
3256 but they have different line tables. */
3257
3258 for (symtab *iter_s : cust->filetabs ())
3259 {
3260 /* Find the best line in this symtab. */
3261 l = iter_s->linetable ();
3262 if (!l)
3263 continue;
3264 len = l->nitems;
3265 if (len <= 0)
3266 {
3267 /* I think len can be zero if the symtab lacks line numbers
3268 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3269 I'm not sure which, and maybe it depends on the symbol
3270 reader). */
3271 continue;
3272 }
3273
3274 prev = NULL;
3275 item = l->item; /* Get first line info. */
3276
3277 /* Is this file's first line closer than the first lines of other files?
3278 If so, record this file, and its first line, as best alternate. */
3279 if (item->pc > pc && (!alt || item->pc < alt->pc))
3280 alt = item;
3281
3282 auto pc_compare = [](const CORE_ADDR & comp_pc,
3283 const struct linetable_entry & lhs)->bool
3284 {
3285 return comp_pc < lhs.pc;
3286 };
3287
3288 struct linetable_entry *first = item;
3289 struct linetable_entry *last = item + len;
3290 item = std::upper_bound (first, last, pc, pc_compare);
3291 if (item != first)
3292 prev = item - 1; /* Found a matching item. */
3293
3294 /* At this point, prev points at the line whose start addr is <= pc, and
3295 item points at the next line. If we ran off the end of the linetable
3296 (pc >= start of the last line), then prev == item. If pc < start of
3297 the first line, prev will not be set. */
3298
3299 /* Is this file's best line closer than the best in the other files?
3300 If so, record this file, and its best line, as best so far. Don't
3301 save prev if it represents the end of a function (i.e. line number
3302 0) instead of a real line. */
3303
3304 if (prev && prev->line && (!best || prev->pc > best->pc))
3305 {
3306 best = prev;
3307 best_symtab = iter_s;
3308
3309 /* If during the binary search we land on a non-statement entry,
3310 scan backward through entries at the same address to see if
3311 there is an entry marked as is-statement. In theory this
3312 duplication should have been removed from the line table
3313 during construction, this is just a double check. If the line
3314 table has had the duplication removed then this should be
3315 pretty cheap. */
3316 if (!best->is_stmt)
3317 {
3318 struct linetable_entry *tmp = best;
3319 while (tmp > first && (tmp - 1)->pc == tmp->pc
3320 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3321 --tmp;
3322 if (tmp->is_stmt)
3323 best = tmp;
3324 }
3325
3326 /* Discard BEST_END if it's before the PC of the current BEST. */
3327 if (best_end <= best->pc)
3328 best_end = 0;
3329 }
3330
3331 /* If another line (denoted by ITEM) is in the linetable and its
3332 PC is after BEST's PC, but before the current BEST_END, then
3333 use ITEM's PC as the new best_end. */
3334 if (best && item < last && item->pc > best->pc
3335 && (best_end == 0 || best_end > item->pc))
3336 best_end = item->pc;
3337 }
3338
3339 if (!best_symtab)
3340 {
3341 /* If we didn't find any line number info, just return zeros.
3342 We used to return alt->line - 1 here, but that could be
3343 anywhere; if we don't have line number info for this PC,
3344 don't make some up. */
3345 val.pc = pc;
3346 }
3347 else if (best->line == 0)
3348 {
3349 /* If our best fit is in a range of PC's for which no line
3350 number info is available (line number is zero) then we didn't
3351 find any valid line information. */
3352 val.pc = pc;
3353 }
3354 else
3355 {
3356 val.is_stmt = best->is_stmt;
3357 val.symtab = best_symtab;
3358 val.line = best->line;
3359 val.pc = best->pc;
3360 if (best_end && (!alt || best_end < alt->pc))
3361 val.end = best_end;
3362 else if (alt)
3363 val.end = alt->pc;
3364 else
3365 val.end = bv->global_block ()->end ();
3366 }
3367 val.section = section;
3368 return val;
3369 }
3370
3371 /* Backward compatibility (no section). */
3372
3373 struct symtab_and_line
3374 find_pc_line (CORE_ADDR pc, int notcurrent)
3375 {
3376 struct obj_section *section;
3377
3378 section = find_pc_overlay (pc);
3379 if (!pc_in_unmapped_range (pc, section))
3380 return find_pc_sect_line (pc, section, notcurrent);
3381
3382 /* If the original PC was an unmapped address then we translate this to a
3383 mapped address in order to lookup the sal. However, as the user
3384 passed us an unmapped address it makes more sense to return a result
3385 that has the pc and end fields translated to unmapped addresses. */
3386 pc = overlay_mapped_address (pc, section);
3387 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3388 sal.pc = overlay_unmapped_address (sal.pc, section);
3389 sal.end = overlay_unmapped_address (sal.end, section);
3390 return sal;
3391 }
3392
3393 /* See symtab.h. */
3394
3395 struct symtab *
3396 find_pc_line_symtab (CORE_ADDR pc)
3397 {
3398 struct symtab_and_line sal;
3399
3400 /* This always passes zero for NOTCURRENT to find_pc_line.
3401 There are currently no callers that ever pass non-zero. */
3402 sal = find_pc_line (pc, 0);
3403 return sal.symtab;
3404 }
3405 \f
3406 /* Find line number LINE in any symtab whose name is the same as
3407 SYMTAB.
3408
3409 If found, return the symtab that contains the linetable in which it was
3410 found, set *INDEX to the index in the linetable of the best entry
3411 found, and set *EXACT_MATCH to true if the value returned is an
3412 exact match.
3413
3414 If not found, return NULL. */
3415
3416 struct symtab *
3417 find_line_symtab (struct symtab *sym_tab, int line,
3418 int *index, bool *exact_match)
3419 {
3420 int exact = 0; /* Initialized here to avoid a compiler warning. */
3421
3422 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3423 so far seen. */
3424
3425 int best_index;
3426 struct linetable *best_linetable;
3427 struct symtab *best_symtab;
3428
3429 /* First try looking it up in the given symtab. */
3430 best_linetable = sym_tab->linetable ();
3431 best_symtab = sym_tab;
3432 best_index = find_line_common (best_linetable, line, &exact, 0);
3433 if (best_index < 0 || !exact)
3434 {
3435 /* Didn't find an exact match. So we better keep looking for
3436 another symtab with the same name. In the case of xcoff,
3437 multiple csects for one source file (produced by IBM's FORTRAN
3438 compiler) produce multiple symtabs (this is unavoidable
3439 assuming csects can be at arbitrary places in memory and that
3440 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3441
3442 /* BEST is the smallest linenumber > LINE so far seen,
3443 or 0 if none has been seen so far.
3444 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3445 int best;
3446
3447 if (best_index >= 0)
3448 best = best_linetable->item[best_index].line;
3449 else
3450 best = 0;
3451
3452 for (objfile *objfile : current_program_space->objfiles ())
3453 objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab));
3454
3455 for (objfile *objfile : current_program_space->objfiles ())
3456 {
3457 for (compunit_symtab *cu : objfile->compunits ())
3458 {
3459 for (symtab *s : cu->filetabs ())
3460 {
3461 struct linetable *l;
3462 int ind;
3463
3464 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3465 continue;
3466 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3467 symtab_to_fullname (s)) != 0)
3468 continue;
3469 l = s->linetable ();
3470 ind = find_line_common (l, line, &exact, 0);
3471 if (ind >= 0)
3472 {
3473 if (exact)
3474 {
3475 best_index = ind;
3476 best_linetable = l;
3477 best_symtab = s;
3478 goto done;
3479 }
3480 if (best == 0 || l->item[ind].line < best)
3481 {
3482 best = l->item[ind].line;
3483 best_index = ind;
3484 best_linetable = l;
3485 best_symtab = s;
3486 }
3487 }
3488 }
3489 }
3490 }
3491 }
3492 done:
3493 if (best_index < 0)
3494 return NULL;
3495
3496 if (index)
3497 *index = best_index;
3498 if (exact_match)
3499 *exact_match = (exact != 0);
3500
3501 return best_symtab;
3502 }
3503
3504 /* Given SYMTAB, returns all the PCs function in the symtab that
3505 exactly match LINE. Returns an empty vector if there are no exact
3506 matches, but updates BEST_ITEM in this case. */
3507
3508 std::vector<CORE_ADDR>
3509 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3510 struct linetable_entry **best_item)
3511 {
3512 int start = 0;
3513 std::vector<CORE_ADDR> result;
3514
3515 /* First, collect all the PCs that are at this line. */
3516 while (1)
3517 {
3518 int was_exact;
3519 int idx;
3520
3521 idx = find_line_common (symtab->linetable (), line, &was_exact,
3522 start);
3523 if (idx < 0)
3524 break;
3525
3526 if (!was_exact)
3527 {
3528 struct linetable_entry *item = &symtab->linetable ()->item[idx];
3529
3530 if (*best_item == NULL
3531 || (item->line < (*best_item)->line && item->is_stmt))
3532 *best_item = item;
3533
3534 break;
3535 }
3536
3537 result.push_back (symtab->linetable ()->item[idx].pc);
3538 start = idx + 1;
3539 }
3540
3541 return result;
3542 }
3543
3544 \f
3545 /* Set the PC value for a given source file and line number and return true.
3546 Returns false for invalid line number (and sets the PC to 0).
3547 The source file is specified with a struct symtab. */
3548
3549 bool
3550 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3551 {
3552 struct linetable *l;
3553 int ind;
3554
3555 *pc = 0;
3556 if (symtab == 0)
3557 return false;
3558
3559 symtab = find_line_symtab (symtab, line, &ind, NULL);
3560 if (symtab != NULL)
3561 {
3562 l = symtab->linetable ();
3563 *pc = l->item[ind].pc;
3564 return true;
3565 }
3566 else
3567 return false;
3568 }
3569
3570 /* Find the range of pc values in a line.
3571 Store the starting pc of the line into *STARTPTR
3572 and the ending pc (start of next line) into *ENDPTR.
3573 Returns true to indicate success.
3574 Returns false if could not find the specified line. */
3575
3576 bool
3577 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3578 CORE_ADDR *endptr)
3579 {
3580 CORE_ADDR startaddr;
3581 struct symtab_and_line found_sal;
3582
3583 startaddr = sal.pc;
3584 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3585 return false;
3586
3587 /* This whole function is based on address. For example, if line 10 has
3588 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3589 "info line *0x123" should say the line goes from 0x100 to 0x200
3590 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3591 This also insures that we never give a range like "starts at 0x134
3592 and ends at 0x12c". */
3593
3594 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3595 if (found_sal.line != sal.line)
3596 {
3597 /* The specified line (sal) has zero bytes. */
3598 *startptr = found_sal.pc;
3599 *endptr = found_sal.pc;
3600 }
3601 else
3602 {
3603 *startptr = found_sal.pc;
3604 *endptr = found_sal.end;
3605 }
3606 return true;
3607 }
3608
3609 /* Given a line table and a line number, return the index into the line
3610 table for the pc of the nearest line whose number is >= the specified one.
3611 Return -1 if none is found. The value is >= 0 if it is an index.
3612 START is the index at which to start searching the line table.
3613
3614 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3615
3616 static int
3617 find_line_common (struct linetable *l, int lineno,
3618 int *exact_match, int start)
3619 {
3620 int i;
3621 int len;
3622
3623 /* BEST is the smallest linenumber > LINENO so far seen,
3624 or 0 if none has been seen so far.
3625 BEST_INDEX identifies the item for it. */
3626
3627 int best_index = -1;
3628 int best = 0;
3629
3630 *exact_match = 0;
3631
3632 if (lineno <= 0)
3633 return -1;
3634 if (l == 0)
3635 return -1;
3636
3637 len = l->nitems;
3638 for (i = start; i < len; i++)
3639 {
3640 struct linetable_entry *item = &(l->item[i]);
3641
3642 /* Ignore non-statements. */
3643 if (!item->is_stmt)
3644 continue;
3645
3646 if (item->line == lineno)
3647 {
3648 /* Return the first (lowest address) entry which matches. */
3649 *exact_match = 1;
3650 return i;
3651 }
3652
3653 if (item->line > lineno && (best == 0 || item->line < best))
3654 {
3655 best = item->line;
3656 best_index = i;
3657 }
3658 }
3659
3660 /* If we got here, we didn't get an exact match. */
3661 return best_index;
3662 }
3663
3664 bool
3665 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3666 {
3667 struct symtab_and_line sal;
3668
3669 sal = find_pc_line (pc, 0);
3670 *startptr = sal.pc;
3671 *endptr = sal.end;
3672 return sal.symtab != 0;
3673 }
3674
3675 /* Helper for find_function_start_sal. Does most of the work, except
3676 setting the sal's symbol. */
3677
3678 static symtab_and_line
3679 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3680 bool funfirstline)
3681 {
3682 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3683
3684 if (funfirstline && sal.symtab != NULL
3685 && (sal.symtab->compunit ()->locations_valid ()
3686 || sal.symtab->language () == language_asm))
3687 {
3688 struct gdbarch *gdbarch = sal.symtab->compunit ()->objfile ()->arch ();
3689
3690 sal.pc = func_addr;
3691 if (gdbarch_skip_entrypoint_p (gdbarch))
3692 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3693 return sal;
3694 }
3695
3696 /* We always should have a line for the function start address.
3697 If we don't, something is odd. Create a plain SAL referring
3698 just the PC and hope that skip_prologue_sal (if requested)
3699 can find a line number for after the prologue. */
3700 if (sal.pc < func_addr)
3701 {
3702 sal = {};
3703 sal.pspace = current_program_space;
3704 sal.pc = func_addr;
3705 sal.section = section;
3706 }
3707
3708 if (funfirstline)
3709 skip_prologue_sal (&sal);
3710
3711 return sal;
3712 }
3713
3714 /* See symtab.h. */
3715
3716 symtab_and_line
3717 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3718 bool funfirstline)
3719 {
3720 symtab_and_line sal
3721 = find_function_start_sal_1 (func_addr, section, funfirstline);
3722
3723 /* find_function_start_sal_1 does a linetable search, so it finds
3724 the symtab and linenumber, but not a symbol. Fill in the
3725 function symbol too. */
3726 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3727
3728 return sal;
3729 }
3730
3731 /* See symtab.h. */
3732
3733 symtab_and_line
3734 find_function_start_sal (symbol *sym, bool funfirstline)
3735 {
3736 fixup_symbol_section (sym, NULL);
3737 symtab_and_line sal
3738 = find_function_start_sal_1 (sym->value_block ()->entry_pc (),
3739 sym->obj_section (sym->objfile ()),
3740 funfirstline);
3741 sal.symbol = sym;
3742 return sal;
3743 }
3744
3745
3746 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3747 address for that function that has an entry in SYMTAB's line info
3748 table. If such an entry cannot be found, return FUNC_ADDR
3749 unaltered. */
3750
3751 static CORE_ADDR
3752 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3753 {
3754 CORE_ADDR func_start, func_end;
3755 struct linetable *l;
3756 int i;
3757
3758 /* Give up if this symbol has no lineinfo table. */
3759 l = symtab->linetable ();
3760 if (l == NULL)
3761 return func_addr;
3762
3763 /* Get the range for the function's PC values, or give up if we
3764 cannot, for some reason. */
3765 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3766 return func_addr;
3767
3768 /* Linetable entries are ordered by PC values, see the commentary in
3769 symtab.h where `struct linetable' is defined. Thus, the first
3770 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3771 address we are looking for. */
3772 for (i = 0; i < l->nitems; i++)
3773 {
3774 struct linetable_entry *item = &(l->item[i]);
3775
3776 /* Don't use line numbers of zero, they mark special entries in
3777 the table. See the commentary on symtab.h before the
3778 definition of struct linetable. */
3779 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3780 return item->pc;
3781 }
3782
3783 return func_addr;
3784 }
3785
3786 /* Try to locate the address where a breakpoint should be placed past the
3787 prologue of function starting at FUNC_ADDR using the line table.
3788
3789 Return the address associated with the first entry in the line-table for
3790 the function starting at FUNC_ADDR which has prologue_end set to true if
3791 such entry exist, otherwise return an empty optional. */
3792
3793 static gdb::optional<CORE_ADDR>
3794 skip_prologue_using_linetable (CORE_ADDR func_addr)
3795 {
3796 CORE_ADDR start_pc, end_pc;
3797
3798 if (!find_pc_partial_function (func_addr, nullptr, &start_pc, &end_pc))
3799 return {};
3800
3801 const struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
3802 if (prologue_sal.symtab != nullptr
3803 && prologue_sal.symtab->language () != language_asm)
3804 {
3805 struct linetable *linetable = prologue_sal.symtab->linetable ();
3806
3807 auto it = std::lower_bound
3808 (linetable->item, linetable->item + linetable->nitems, start_pc,
3809 [] (const linetable_entry &lte, CORE_ADDR pc) -> bool
3810 {
3811 return lte.pc < pc;
3812 });
3813
3814 for (;
3815 it < linetable->item + linetable->nitems && it->pc <= end_pc;
3816 it++)
3817 if (it->prologue_end)
3818 return {it->pc};
3819 }
3820
3821 return {};
3822 }
3823
3824 /* Adjust SAL to the first instruction past the function prologue.
3825 If the PC was explicitly specified, the SAL is not changed.
3826 If the line number was explicitly specified then the SAL can still be
3827 updated, unless the language for SAL is assembler, in which case the SAL
3828 will be left unchanged.
3829 If SAL is already past the prologue, then do nothing. */
3830
3831 void
3832 skip_prologue_sal (struct symtab_and_line *sal)
3833 {
3834 struct symbol *sym;
3835 struct symtab_and_line start_sal;
3836 CORE_ADDR pc, saved_pc;
3837 struct obj_section *section;
3838 const char *name;
3839 struct objfile *objfile;
3840 struct gdbarch *gdbarch;
3841 const struct block *b, *function_block;
3842 int force_skip, skip;
3843
3844 /* Do not change the SAL if PC was specified explicitly. */
3845 if (sal->explicit_pc)
3846 return;
3847
3848 /* In assembly code, if the user asks for a specific line then we should
3849 not adjust the SAL. The user already has instruction level
3850 visibility in this case, so selecting a line other than one requested
3851 is likely to be the wrong choice. */
3852 if (sal->symtab != nullptr
3853 && sal->explicit_line
3854 && sal->symtab->language () == language_asm)
3855 return;
3856
3857 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3858
3859 switch_to_program_space_and_thread (sal->pspace);
3860
3861 sym = find_pc_sect_function (sal->pc, sal->section);
3862 if (sym != NULL)
3863 {
3864 fixup_symbol_section (sym, NULL);
3865
3866 objfile = sym->objfile ();
3867 pc = sym->value_block ()->entry_pc ();
3868 section = sym->obj_section (objfile);
3869 name = sym->linkage_name ();
3870 }
3871 else
3872 {
3873 struct bound_minimal_symbol msymbol
3874 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3875
3876 if (msymbol.minsym == NULL)
3877 return;
3878
3879 objfile = msymbol.objfile;
3880 pc = msymbol.value_address ();
3881 section = msymbol.minsym->obj_section (objfile);
3882 name = msymbol.minsym->linkage_name ();
3883 }
3884
3885 gdbarch = objfile->arch ();
3886
3887 /* Process the prologue in two passes. In the first pass try to skip the
3888 prologue (SKIP is true) and verify there is a real need for it (indicated
3889 by FORCE_SKIP). If no such reason was found run a second pass where the
3890 prologue is not skipped (SKIP is false). */
3891
3892 skip = 1;
3893 force_skip = 1;
3894
3895 /* Be conservative - allow direct PC (without skipping prologue) only if we
3896 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3897 have to be set by the caller so we use SYM instead. */
3898 if (sym != NULL
3899 && sym->symtab ()->compunit ()->locations_valid ())
3900 force_skip = 0;
3901
3902 saved_pc = pc;
3903 do
3904 {
3905 pc = saved_pc;
3906
3907 /* Check if the compiler explicitly indicated where a breakpoint should
3908 be placed to skip the prologue. */
3909 if (!ignore_prologue_end_flag && skip)
3910 {
3911 gdb::optional<CORE_ADDR> linetable_pc
3912 = skip_prologue_using_linetable (pc);
3913 if (linetable_pc)
3914 {
3915 pc = *linetable_pc;
3916 start_sal = find_pc_sect_line (pc, section, 0);
3917 force_skip = 1;
3918 continue;
3919 }
3920 }
3921
3922 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3923 so that gdbarch_skip_prologue has something unique to work on. */
3924 if (section_is_overlay (section) && !section_is_mapped (section))
3925 pc = overlay_unmapped_address (pc, section);
3926
3927 /* Skip "first line" of function (which is actually its prologue). */
3928 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3929 if (gdbarch_skip_entrypoint_p (gdbarch))
3930 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3931 if (skip)
3932 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3933
3934 /* For overlays, map pc back into its mapped VMA range. */
3935 pc = overlay_mapped_address (pc, section);
3936
3937 /* Calculate line number. */
3938 start_sal = find_pc_sect_line (pc, section, 0);
3939
3940 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3941 line is still part of the same function. */
3942 if (skip && start_sal.pc != pc
3943 && (sym ? (sym->value_block ()->entry_pc () <= start_sal.end
3944 && start_sal.end < sym->value_block()->end ())
3945 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3946 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3947 {
3948 /* First pc of next line */
3949 pc = start_sal.end;
3950 /* Recalculate the line number (might not be N+1). */
3951 start_sal = find_pc_sect_line (pc, section, 0);
3952 }
3953
3954 /* On targets with executable formats that don't have a concept of
3955 constructors (ELF with .init has, PE doesn't), gcc emits a call
3956 to `__main' in `main' between the prologue and before user
3957 code. */
3958 if (gdbarch_skip_main_prologue_p (gdbarch)
3959 && name && strcmp_iw (name, "main") == 0)
3960 {
3961 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3962 /* Recalculate the line number (might not be N+1). */
3963 start_sal = find_pc_sect_line (pc, section, 0);
3964 force_skip = 1;
3965 }
3966 }
3967 while (!force_skip && skip--);
3968
3969 /* If we still don't have a valid source line, try to find the first
3970 PC in the lineinfo table that belongs to the same function. This
3971 happens with COFF debug info, which does not seem to have an
3972 entry in lineinfo table for the code after the prologue which has
3973 no direct relation to source. For example, this was found to be
3974 the case with the DJGPP target using "gcc -gcoff" when the
3975 compiler inserted code after the prologue to make sure the stack
3976 is aligned. */
3977 if (!force_skip && sym && start_sal.symtab == NULL)
3978 {
3979 pc = skip_prologue_using_lineinfo (pc, sym->symtab ());
3980 /* Recalculate the line number. */
3981 start_sal = find_pc_sect_line (pc, section, 0);
3982 }
3983
3984 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3985 forward SAL to the end of the prologue. */
3986 if (sal->pc >= pc)
3987 return;
3988
3989 sal->pc = pc;
3990 sal->section = section;
3991 sal->symtab = start_sal.symtab;
3992 sal->line = start_sal.line;
3993 sal->end = start_sal.end;
3994
3995 /* Check if we are now inside an inlined function. If we can,
3996 use the call site of the function instead. */
3997 b = block_for_pc_sect (sal->pc, sal->section);
3998 function_block = NULL;
3999 while (b != NULL)
4000 {
4001 if (b->function () != NULL && block_inlined_p (b))
4002 function_block = b;
4003 else if (b->function () != NULL)
4004 break;
4005 b = b->superblock ();
4006 }
4007 if (function_block != NULL
4008 && function_block->function ()->line () != 0)
4009 {
4010 sal->line = function_block->function ()->line ();
4011 sal->symtab = function_block->function ()->symtab ();
4012 }
4013 }
4014
4015 /* Given PC at the function's start address, attempt to find the
4016 prologue end using SAL information. Return zero if the skip fails.
4017
4018 A non-optimized prologue traditionally has one SAL for the function
4019 and a second for the function body. A single line function has
4020 them both pointing at the same line.
4021
4022 An optimized prologue is similar but the prologue may contain
4023 instructions (SALs) from the instruction body. Need to skip those
4024 while not getting into the function body.
4025
4026 The functions end point and an increasing SAL line are used as
4027 indicators of the prologue's endpoint.
4028
4029 This code is based on the function refine_prologue_limit
4030 (found in ia64). */
4031
4032 CORE_ADDR
4033 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4034 {
4035 struct symtab_and_line prologue_sal;
4036 CORE_ADDR start_pc;
4037 CORE_ADDR end_pc;
4038 const struct block *bl;
4039
4040 /* Get an initial range for the function. */
4041 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4042 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4043
4044 prologue_sal = find_pc_line (start_pc, 0);
4045 if (prologue_sal.line != 0)
4046 {
4047 /* For languages other than assembly, treat two consecutive line
4048 entries at the same address as a zero-instruction prologue.
4049 The GNU assembler emits separate line notes for each instruction
4050 in a multi-instruction macro, but compilers generally will not
4051 do this. */
4052 if (prologue_sal.symtab->language () != language_asm)
4053 {
4054 struct linetable *linetable = prologue_sal.symtab->linetable ();
4055 int idx = 0;
4056
4057 /* Skip any earlier lines, and any end-of-sequence marker
4058 from a previous function. */
4059 while (linetable->item[idx].pc != prologue_sal.pc
4060 || linetable->item[idx].line == 0)
4061 idx++;
4062
4063 if (idx+1 < linetable->nitems
4064 && linetable->item[idx+1].line != 0
4065 && linetable->item[idx+1].pc == start_pc)
4066 return start_pc;
4067 }
4068
4069 /* If there is only one sal that covers the entire function,
4070 then it is probably a single line function, like
4071 "foo(){}". */
4072 if (prologue_sal.end >= end_pc)
4073 return 0;
4074
4075 while (prologue_sal.end < end_pc)
4076 {
4077 struct symtab_and_line sal;
4078
4079 sal = find_pc_line (prologue_sal.end, 0);
4080 if (sal.line == 0)
4081 break;
4082 /* Assume that a consecutive SAL for the same (or larger)
4083 line mark the prologue -> body transition. */
4084 if (sal.line >= prologue_sal.line)
4085 break;
4086 /* Likewise if we are in a different symtab altogether
4087 (e.g. within a file included via #include).  */
4088 if (sal.symtab != prologue_sal.symtab)
4089 break;
4090
4091 /* The line number is smaller. Check that it's from the
4092 same function, not something inlined. If it's inlined,
4093 then there is no point comparing the line numbers. */
4094 bl = block_for_pc (prologue_sal.end);
4095 while (bl)
4096 {
4097 if (block_inlined_p (bl))
4098 break;
4099 if (bl->function ())
4100 {
4101 bl = NULL;
4102 break;
4103 }
4104 bl = bl->superblock ();
4105 }
4106 if (bl != NULL)
4107 break;
4108
4109 /* The case in which compiler's optimizer/scheduler has
4110 moved instructions into the prologue. We look ahead in
4111 the function looking for address ranges whose
4112 corresponding line number is less the first one that we
4113 found for the function. This is more conservative then
4114 refine_prologue_limit which scans a large number of SALs
4115 looking for any in the prologue. */
4116 prologue_sal = sal;
4117 }
4118 }
4119
4120 if (prologue_sal.end < end_pc)
4121 /* Return the end of this line, or zero if we could not find a
4122 line. */
4123 return prologue_sal.end;
4124 else
4125 /* Don't return END_PC, which is past the end of the function. */
4126 return prologue_sal.pc;
4127 }
4128
4129 /* See symtab.h. */
4130
4131 symbol *
4132 find_function_alias_target (bound_minimal_symbol msymbol)
4133 {
4134 CORE_ADDR func_addr;
4135 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4136 return NULL;
4137
4138 symbol *sym = find_pc_function (func_addr);
4139 if (sym != NULL
4140 && sym->aclass () == LOC_BLOCK
4141 && sym->value_block ()->entry_pc () == func_addr)
4142 return sym;
4143
4144 return NULL;
4145 }
4146
4147 \f
4148 /* If P is of the form "operator[ \t]+..." where `...' is
4149 some legitimate operator text, return a pointer to the
4150 beginning of the substring of the operator text.
4151 Otherwise, return "". */
4152
4153 static const char *
4154 operator_chars (const char *p, const char **end)
4155 {
4156 *end = "";
4157 if (!startswith (p, CP_OPERATOR_STR))
4158 return *end;
4159 p += CP_OPERATOR_LEN;
4160
4161 /* Don't get faked out by `operator' being part of a longer
4162 identifier. */
4163 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4164 return *end;
4165
4166 /* Allow some whitespace between `operator' and the operator symbol. */
4167 while (*p == ' ' || *p == '\t')
4168 p++;
4169
4170 /* Recognize 'operator TYPENAME'. */
4171
4172 if (isalpha (*p) || *p == '_' || *p == '$')
4173 {
4174 const char *q = p + 1;
4175
4176 while (isalnum (*q) || *q == '_' || *q == '$')
4177 q++;
4178 *end = q;
4179 return p;
4180 }
4181
4182 while (*p)
4183 switch (*p)
4184 {
4185 case '\\': /* regexp quoting */
4186 if (p[1] == '*')
4187 {
4188 if (p[2] == '=') /* 'operator\*=' */
4189 *end = p + 3;
4190 else /* 'operator\*' */
4191 *end = p + 2;
4192 return p;
4193 }
4194 else if (p[1] == '[')
4195 {
4196 if (p[2] == ']')
4197 error (_("mismatched quoting on brackets, "
4198 "try 'operator\\[\\]'"));
4199 else if (p[2] == '\\' && p[3] == ']')
4200 {
4201 *end = p + 4; /* 'operator\[\]' */
4202 return p;
4203 }
4204 else
4205 error (_("nothing is allowed between '[' and ']'"));
4206 }
4207 else
4208 {
4209 /* Gratuitous quote: skip it and move on. */
4210 p++;
4211 continue;
4212 }
4213 break;
4214 case '!':
4215 case '=':
4216 case '*':
4217 case '/':
4218 case '%':
4219 case '^':
4220 if (p[1] == '=')
4221 *end = p + 2;
4222 else
4223 *end = p + 1;
4224 return p;
4225 case '<':
4226 case '>':
4227 case '+':
4228 case '-':
4229 case '&':
4230 case '|':
4231 if (p[0] == '-' && p[1] == '>')
4232 {
4233 /* Struct pointer member operator 'operator->'. */
4234 if (p[2] == '*')
4235 {
4236 *end = p + 3; /* 'operator->*' */
4237 return p;
4238 }
4239 else if (p[2] == '\\')
4240 {
4241 *end = p + 4; /* Hopefully 'operator->\*' */
4242 return p;
4243 }
4244 else
4245 {
4246 *end = p + 2; /* 'operator->' */
4247 return p;
4248 }
4249 }
4250 if (p[1] == '=' || p[1] == p[0])
4251 *end = p + 2;
4252 else
4253 *end = p + 1;
4254 return p;
4255 case '~':
4256 case ',':
4257 *end = p + 1;
4258 return p;
4259 case '(':
4260 if (p[1] != ')')
4261 error (_("`operator ()' must be specified "
4262 "without whitespace in `()'"));
4263 *end = p + 2;
4264 return p;
4265 case '?':
4266 if (p[1] != ':')
4267 error (_("`operator ?:' must be specified "
4268 "without whitespace in `?:'"));
4269 *end = p + 2;
4270 return p;
4271 case '[':
4272 if (p[1] != ']')
4273 error (_("`operator []' must be specified "
4274 "without whitespace in `[]'"));
4275 *end = p + 2;
4276 return p;
4277 default:
4278 error (_("`operator %s' not supported"), p);
4279 break;
4280 }
4281
4282 *end = "";
4283 return *end;
4284 }
4285 \f
4286
4287 /* See class declaration. */
4288
4289 info_sources_filter::info_sources_filter (match_on match_type,
4290 const char *regexp)
4291 : m_match_type (match_type),
4292 m_regexp (regexp)
4293 {
4294 /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */
4295 if (m_regexp != nullptr && *m_regexp != '\0')
4296 {
4297 gdb_assert (m_regexp != nullptr);
4298
4299 int cflags = REG_NOSUB;
4300 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4301 cflags |= REG_ICASE;
4302 #endif
4303 m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp"));
4304 }
4305 }
4306
4307 /* See class declaration. */
4308
4309 bool
4310 info_sources_filter::matches (const char *fullname) const
4311 {
4312 /* Does it match regexp? */
4313 if (m_c_regexp.has_value ())
4314 {
4315 const char *to_match;
4316 std::string dirname;
4317
4318 switch (m_match_type)
4319 {
4320 case match_on::DIRNAME:
4321 dirname = ldirname (fullname);
4322 to_match = dirname.c_str ();
4323 break;
4324 case match_on::BASENAME:
4325 to_match = lbasename (fullname);
4326 break;
4327 case match_on::FULLNAME:
4328 to_match = fullname;
4329 break;
4330 default:
4331 gdb_assert_not_reached ("bad m_match_type");
4332 }
4333
4334 if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0)
4335 return false;
4336 }
4337
4338 return true;
4339 }
4340
4341 /* Data structure to maintain the state used for printing the results of
4342 the 'info sources' command. */
4343
4344 struct output_source_filename_data
4345 {
4346 /* Create an object for displaying the results of the 'info sources'
4347 command to UIOUT. FILTER must remain valid and unchanged for the
4348 lifetime of this object as this object retains a reference to FILTER. */
4349 output_source_filename_data (struct ui_out *uiout,
4350 const info_sources_filter &filter)
4351 : m_filter (filter),
4352 m_uiout (uiout)
4353 { /* Nothing. */ }
4354
4355 DISABLE_COPY_AND_ASSIGN (output_source_filename_data);
4356
4357 /* Reset enough state of this object so we can match against a new set of
4358 files. The existing regular expression is retained though. */
4359 void reset_output ()
4360 {
4361 m_first = true;
4362 m_filename_seen_cache.clear ();
4363 }
4364
4365 /* Worker for sources_info, outputs the file name formatted for either
4366 cli or mi (based on the current_uiout). In cli mode displays
4367 FULLNAME with a comma separating this name from any previously
4368 printed name (line breaks are added at the comma). In MI mode
4369 outputs a tuple containing DISP_NAME (the files display name),
4370 FULLNAME, and EXPANDED_P (true when this file is from a fully
4371 expanded symtab, otherwise false). */
4372 void output (const char *disp_name, const char *fullname, bool expanded_p);
4373
4374 /* An overload suitable for use as a callback to
4375 quick_symbol_functions::map_symbol_filenames. */
4376 void operator() (const char *filename, const char *fullname)
4377 {
4378 /* The false here indicates that this file is from an unexpanded
4379 symtab. */
4380 output (filename, fullname, false);
4381 }
4382
4383 /* Return true if at least one filename has been printed (after a call to
4384 output) since either this object was created, or the last call to
4385 reset_output. */
4386 bool printed_filename_p () const
4387 {
4388 return !m_first;
4389 }
4390
4391 private:
4392
4393 /* Flag of whether we're printing the first one. */
4394 bool m_first = true;
4395
4396 /* Cache of what we've seen so far. */
4397 filename_seen_cache m_filename_seen_cache;
4398
4399 /* How source filename should be filtered. */
4400 const info_sources_filter &m_filter;
4401
4402 /* The object to which output is sent. */
4403 struct ui_out *m_uiout;
4404 };
4405
4406 /* See comment in class declaration above. */
4407
4408 void
4409 output_source_filename_data::output (const char *disp_name,
4410 const char *fullname,
4411 bool expanded_p)
4412 {
4413 /* Since a single source file can result in several partial symbol
4414 tables, we need to avoid printing it more than once. Note: if
4415 some of the psymtabs are read in and some are not, it gets
4416 printed both under "Source files for which symbols have been
4417 read" and "Source files for which symbols will be read in on
4418 demand". I consider this a reasonable way to deal with the
4419 situation. I'm not sure whether this can also happen for
4420 symtabs; it doesn't hurt to check. */
4421
4422 /* Was NAME already seen? If so, then don't print it again. */
4423 if (m_filename_seen_cache.seen (fullname))
4424 return;
4425
4426 /* If the filter rejects this file then don't print it. */
4427 if (!m_filter.matches (fullname))
4428 return;
4429
4430 ui_out_emit_tuple ui_emitter (m_uiout, nullptr);
4431
4432 /* Print it and reset *FIRST. */
4433 if (!m_first)
4434 m_uiout->text (", ");
4435 m_first = false;
4436
4437 m_uiout->wrap_hint (0);
4438 if (m_uiout->is_mi_like_p ())
4439 {
4440 m_uiout->field_string ("file", disp_name, file_name_style.style ());
4441 if (fullname != nullptr)
4442 m_uiout->field_string ("fullname", fullname,
4443 file_name_style.style ());
4444 m_uiout->field_string ("debug-fully-read",
4445 (expanded_p ? "true" : "false"));
4446 }
4447 else
4448 {
4449 if (fullname == nullptr)
4450 fullname = disp_name;
4451 m_uiout->field_string ("fullname", fullname,
4452 file_name_style.style ());
4453 }
4454 }
4455
4456 /* For the 'info sources' command, what part of the file names should we be
4457 matching the user supplied regular expression against? */
4458
4459 struct filename_partial_match_opts
4460 {
4461 /* Only match the directory name part. */
4462 bool dirname = false;
4463
4464 /* Only match the basename part. */
4465 bool basename = false;
4466 };
4467
4468 using isrc_flag_option_def
4469 = gdb::option::flag_option_def<filename_partial_match_opts>;
4470
4471 static const gdb::option::option_def info_sources_option_defs[] = {
4472
4473 isrc_flag_option_def {
4474 "dirname",
4475 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4476 N_("Show only the files having a dirname matching REGEXP."),
4477 },
4478
4479 isrc_flag_option_def {
4480 "basename",
4481 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4482 N_("Show only the files having a basename matching REGEXP."),
4483 },
4484
4485 };
4486
4487 /* Create an option_def_group for the "info sources" options, with
4488 ISRC_OPTS as context. */
4489
4490 static inline gdb::option::option_def_group
4491 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4492 {
4493 return {{info_sources_option_defs}, isrc_opts};
4494 }
4495
4496 /* Completer for "info sources". */
4497
4498 static void
4499 info_sources_command_completer (cmd_list_element *ignore,
4500 completion_tracker &tracker,
4501 const char *text, const char *word)
4502 {
4503 const auto group = make_info_sources_options_def_group (nullptr);
4504 if (gdb::option::complete_options
4505 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4506 return;
4507 }
4508
4509 /* See symtab.h. */
4510
4511 void
4512 info_sources_worker (struct ui_out *uiout,
4513 bool group_by_objfile,
4514 const info_sources_filter &filter)
4515 {
4516 output_source_filename_data data (uiout, filter);
4517
4518 ui_out_emit_list results_emitter (uiout, "files");
4519 gdb::optional<ui_out_emit_tuple> output_tuple;
4520 gdb::optional<ui_out_emit_list> sources_list;
4521
4522 gdb_assert (group_by_objfile || uiout->is_mi_like_p ());
4523
4524 for (objfile *objfile : current_program_space->objfiles ())
4525 {
4526 if (group_by_objfile)
4527 {
4528 output_tuple.emplace (uiout, nullptr);
4529 uiout->field_string ("filename", objfile_name (objfile),
4530 file_name_style.style ());
4531 uiout->text (":\n");
4532 bool debug_fully_readin = !objfile->has_unexpanded_symtabs ();
4533 if (uiout->is_mi_like_p ())
4534 {
4535 const char *debug_info_state;
4536 if (objfile_has_symbols (objfile))
4537 {
4538 if (debug_fully_readin)
4539 debug_info_state = "fully-read";
4540 else
4541 debug_info_state = "partially-read";
4542 }
4543 else
4544 debug_info_state = "none";
4545 current_uiout->field_string ("debug-info", debug_info_state);
4546 }
4547 else
4548 {
4549 if (!debug_fully_readin)
4550 uiout->text ("(Full debug information has not yet been read "
4551 "for this file.)\n");
4552 if (!objfile_has_symbols (objfile))
4553 uiout->text ("(Objfile has no debug information.)\n");
4554 uiout->text ("\n");
4555 }
4556 sources_list.emplace (uiout, "sources");
4557 }
4558
4559 for (compunit_symtab *cu : objfile->compunits ())
4560 {
4561 for (symtab *s : cu->filetabs ())
4562 {
4563 const char *file = symtab_to_filename_for_display (s);
4564 const char *fullname = symtab_to_fullname (s);
4565 data.output (file, fullname, true);
4566 }
4567 }
4568
4569 if (group_by_objfile)
4570 {
4571 objfile->map_symbol_filenames (data, true /* need_fullname */);
4572 if (data.printed_filename_p ())
4573 uiout->text ("\n\n");
4574 data.reset_output ();
4575 sources_list.reset ();
4576 output_tuple.reset ();
4577 }
4578 }
4579
4580 if (!group_by_objfile)
4581 {
4582 data.reset_output ();
4583 map_symbol_filenames (data, true /*need_fullname*/);
4584 }
4585 }
4586
4587 /* Implement the 'info sources' command. */
4588
4589 static void
4590 info_sources_command (const char *args, int from_tty)
4591 {
4592 if (!have_full_symbols () && !have_partial_symbols ())
4593 error (_("No symbol table is loaded. Use the \"file\" command."));
4594
4595 filename_partial_match_opts match_opts;
4596 auto group = make_info_sources_options_def_group (&match_opts);
4597 gdb::option::process_options
4598 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4599
4600 if (match_opts.dirname && match_opts.basename)
4601 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4602
4603 const char *regex = nullptr;
4604 if (args != NULL && *args != '\000')
4605 regex = args;
4606
4607 if ((match_opts.dirname || match_opts.basename) && regex == nullptr)
4608 error (_("Missing REGEXP for 'info sources'."));
4609
4610 info_sources_filter::match_on match_type;
4611 if (match_opts.dirname)
4612 match_type = info_sources_filter::match_on::DIRNAME;
4613 else if (match_opts.basename)
4614 match_type = info_sources_filter::match_on::BASENAME;
4615 else
4616 match_type = info_sources_filter::match_on::FULLNAME;
4617
4618 info_sources_filter filter (match_type, regex);
4619 info_sources_worker (current_uiout, true, filter);
4620 }
4621
4622 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4623 true compare only lbasename of FILENAMES. */
4624
4625 static bool
4626 file_matches (const char *file, const std::vector<const char *> &filenames,
4627 bool basenames)
4628 {
4629 if (filenames.empty ())
4630 return true;
4631
4632 for (const char *name : filenames)
4633 {
4634 name = (basenames ? lbasename (name) : name);
4635 if (compare_filenames_for_search (file, name))
4636 return true;
4637 }
4638
4639 return false;
4640 }
4641
4642 /* Helper function for std::sort on symbol_search objects. Can only sort
4643 symbols, not minimal symbols. */
4644
4645 int
4646 symbol_search::compare_search_syms (const symbol_search &sym_a,
4647 const symbol_search &sym_b)
4648 {
4649 int c;
4650
4651 c = FILENAME_CMP (sym_a.symbol->symtab ()->filename,
4652 sym_b.symbol->symtab ()->filename);
4653 if (c != 0)
4654 return c;
4655
4656 if (sym_a.block != sym_b.block)
4657 return sym_a.block - sym_b.block;
4658
4659 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4660 }
4661
4662 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4663 If SYM has no symbol_type or symbol_name, returns false. */
4664
4665 bool
4666 treg_matches_sym_type_name (const compiled_regex &treg,
4667 const struct symbol *sym)
4668 {
4669 struct type *sym_type;
4670 std::string printed_sym_type_name;
4671
4672 if (symbol_lookup_debug > 1)
4673 {
4674 gdb_printf (gdb_stdlog,
4675 "treg_matches_sym_type_name\n sym %s\n",
4676 sym->natural_name ());
4677 }
4678
4679 sym_type = sym->type ();
4680 if (sym_type == NULL)
4681 return false;
4682
4683 {
4684 scoped_switch_to_sym_language_if_auto l (sym);
4685
4686 printed_sym_type_name = type_to_string (sym_type);
4687 }
4688
4689
4690 if (symbol_lookup_debug > 1)
4691 {
4692 gdb_printf (gdb_stdlog,
4693 " sym_type_name %s\n",
4694 printed_sym_type_name.c_str ());
4695 }
4696
4697
4698 if (printed_sym_type_name.empty ())
4699 return false;
4700
4701 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4702 }
4703
4704 /* See symtab.h. */
4705
4706 bool
4707 global_symbol_searcher::is_suitable_msymbol
4708 (const enum search_domain kind, const minimal_symbol *msymbol)
4709 {
4710 switch (msymbol->type ())
4711 {
4712 case mst_data:
4713 case mst_bss:
4714 case mst_file_data:
4715 case mst_file_bss:
4716 return kind == VARIABLES_DOMAIN;
4717 case mst_text:
4718 case mst_file_text:
4719 case mst_solib_trampoline:
4720 case mst_text_gnu_ifunc:
4721 return kind == FUNCTIONS_DOMAIN;
4722 default:
4723 return false;
4724 }
4725 }
4726
4727 /* See symtab.h. */
4728
4729 bool
4730 global_symbol_searcher::expand_symtabs
4731 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4732 {
4733 enum search_domain kind = m_kind;
4734 bool found_msymbol = false;
4735
4736 auto do_file_match = [&] (const char *filename, bool basenames)
4737 {
4738 return file_matches (filename, filenames, basenames);
4739 };
4740 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher = nullptr;
4741 if (!filenames.empty ())
4742 file_matcher = do_file_match;
4743
4744 objfile->expand_symtabs_matching
4745 (file_matcher,
4746 &lookup_name_info::match_any (),
4747 [&] (const char *symname)
4748 {
4749 return (!preg.has_value ()
4750 || preg->exec (symname, 0, NULL, 0) == 0);
4751 },
4752 NULL,
4753 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
4754 UNDEF_DOMAIN,
4755 kind);
4756
4757 /* Here, we search through the minimal symbol tables for functions and
4758 variables that match, and force their symbols to be read. This is in
4759 particular necessary for demangled variable names, which are no longer
4760 put into the partial symbol tables. The symbol will then be found
4761 during the scan of symtabs later.
4762
4763 For functions, find_pc_symtab should succeed if we have debug info for
4764 the function, for variables we have to call
4765 lookup_symbol_in_objfile_from_linkage_name to determine if the
4766 variable has debug info. If the lookup fails, set found_msymbol so
4767 that we will rescan to print any matching symbols without debug info.
4768 We only search the objfile the msymbol came from, we no longer search
4769 all objfiles. In large programs (1000s of shared libs) searching all
4770 objfiles is not worth the pain. */
4771 if (filenames.empty ()
4772 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4773 {
4774 for (minimal_symbol *msymbol : objfile->msymbols ())
4775 {
4776 QUIT;
4777
4778 if (msymbol->created_by_gdb)
4779 continue;
4780
4781 if (is_suitable_msymbol (kind, msymbol))
4782 {
4783 if (!preg.has_value ()
4784 || preg->exec (msymbol->natural_name (), 0,
4785 NULL, 0) == 0)
4786 {
4787 /* An important side-effect of these lookup functions is
4788 to expand the symbol table if msymbol is found, later
4789 in the process we will add matching symbols or
4790 msymbols to the results list, and that requires that
4791 the symbols tables are expanded. */
4792 if (kind == FUNCTIONS_DOMAIN
4793 ? (find_pc_compunit_symtab
4794 (msymbol->value_address (objfile)) == NULL)
4795 : (lookup_symbol_in_objfile_from_linkage_name
4796 (objfile, msymbol->linkage_name (),
4797 VAR_DOMAIN)
4798 .symbol == NULL))
4799 found_msymbol = true;
4800 }
4801 }
4802 }
4803 }
4804
4805 return found_msymbol;
4806 }
4807
4808 /* See symtab.h. */
4809
4810 bool
4811 global_symbol_searcher::add_matching_symbols
4812 (objfile *objfile,
4813 const gdb::optional<compiled_regex> &preg,
4814 const gdb::optional<compiled_regex> &treg,
4815 std::set<symbol_search> *result_set) const
4816 {
4817 enum search_domain kind = m_kind;
4818
4819 /* Add matching symbols (if not already present). */
4820 for (compunit_symtab *cust : objfile->compunits ())
4821 {
4822 const struct blockvector *bv = cust->blockvector ();
4823
4824 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4825 {
4826 struct block_iterator iter;
4827 struct symbol *sym;
4828 const struct block *b = bv->block (block);
4829
4830 ALL_BLOCK_SYMBOLS (b, iter, sym)
4831 {
4832 struct symtab *real_symtab = sym->symtab ();
4833
4834 QUIT;
4835
4836 /* Check first sole REAL_SYMTAB->FILENAME. It does
4837 not need to be a substring of symtab_to_fullname as
4838 it may contain "./" etc. */
4839 if ((file_matches (real_symtab->filename, filenames, false)
4840 || ((basenames_may_differ
4841 || file_matches (lbasename (real_symtab->filename),
4842 filenames, true))
4843 && file_matches (symtab_to_fullname (real_symtab),
4844 filenames, false)))
4845 && ((!preg.has_value ()
4846 || preg->exec (sym->natural_name (), 0,
4847 NULL, 0) == 0)
4848 && ((kind == VARIABLES_DOMAIN
4849 && sym->aclass () != LOC_TYPEDEF
4850 && sym->aclass () != LOC_UNRESOLVED
4851 && sym->aclass () != LOC_BLOCK
4852 /* LOC_CONST can be used for more than
4853 just enums, e.g., c++ static const
4854 members. We only want to skip enums
4855 here. */
4856 && !(sym->aclass () == LOC_CONST
4857 && (sym->type ()->code ()
4858 == TYPE_CODE_ENUM))
4859 && (!treg.has_value ()
4860 || treg_matches_sym_type_name (*treg, sym)))
4861 || (kind == FUNCTIONS_DOMAIN
4862 && sym->aclass () == LOC_BLOCK
4863 && (!treg.has_value ()
4864 || treg_matches_sym_type_name (*treg,
4865 sym)))
4866 || (kind == TYPES_DOMAIN
4867 && sym->aclass () == LOC_TYPEDEF
4868 && sym->domain () != MODULE_DOMAIN)
4869 || (kind == MODULES_DOMAIN
4870 && sym->domain () == MODULE_DOMAIN
4871 && sym->line () != 0))))
4872 {
4873 if (result_set->size () < m_max_search_results)
4874 {
4875 /* Match, insert if not already in the results. */
4876 symbol_search ss (block, sym);
4877 if (result_set->find (ss) == result_set->end ())
4878 result_set->insert (ss);
4879 }
4880 else
4881 return false;
4882 }
4883 }
4884 }
4885 }
4886
4887 return true;
4888 }
4889
4890 /* See symtab.h. */
4891
4892 bool
4893 global_symbol_searcher::add_matching_msymbols
4894 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4895 std::vector<symbol_search> *results) const
4896 {
4897 enum search_domain kind = m_kind;
4898
4899 for (minimal_symbol *msymbol : objfile->msymbols ())
4900 {
4901 QUIT;
4902
4903 if (msymbol->created_by_gdb)
4904 continue;
4905
4906 if (is_suitable_msymbol (kind, msymbol))
4907 {
4908 if (!preg.has_value ()
4909 || preg->exec (msymbol->natural_name (), 0,
4910 NULL, 0) == 0)
4911 {
4912 /* For functions we can do a quick check of whether the
4913 symbol might be found via find_pc_symtab. */
4914 if (kind != FUNCTIONS_DOMAIN
4915 || (find_pc_compunit_symtab
4916 (msymbol->value_address (objfile)) == NULL))
4917 {
4918 if (lookup_symbol_in_objfile_from_linkage_name
4919 (objfile, msymbol->linkage_name (),
4920 VAR_DOMAIN).symbol == NULL)
4921 {
4922 /* Matching msymbol, add it to the results list. */
4923 if (results->size () < m_max_search_results)
4924 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4925 else
4926 return false;
4927 }
4928 }
4929 }
4930 }
4931 }
4932
4933 return true;
4934 }
4935
4936 /* See symtab.h. */
4937
4938 std::vector<symbol_search>
4939 global_symbol_searcher::search () const
4940 {
4941 gdb::optional<compiled_regex> preg;
4942 gdb::optional<compiled_regex> treg;
4943
4944 gdb_assert (m_kind != ALL_DOMAIN);
4945
4946 if (m_symbol_name_regexp != NULL)
4947 {
4948 const char *symbol_name_regexp = m_symbol_name_regexp;
4949
4950 /* Make sure spacing is right for C++ operators.
4951 This is just a courtesy to make the matching less sensitive
4952 to how many spaces the user leaves between 'operator'
4953 and <TYPENAME> or <OPERATOR>. */
4954 const char *opend;
4955 const char *opname = operator_chars (symbol_name_regexp, &opend);
4956
4957 if (*opname)
4958 {
4959 int fix = -1; /* -1 means ok; otherwise number of
4960 spaces needed. */
4961
4962 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4963 {
4964 /* There should 1 space between 'operator' and 'TYPENAME'. */
4965 if (opname[-1] != ' ' || opname[-2] == ' ')
4966 fix = 1;
4967 }
4968 else
4969 {
4970 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4971 if (opname[-1] == ' ')
4972 fix = 0;
4973 }
4974 /* If wrong number of spaces, fix it. */
4975 if (fix >= 0)
4976 {
4977 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4978
4979 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4980 symbol_name_regexp = tmp;
4981 }
4982 }
4983
4984 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4985 ? REG_ICASE : 0);
4986 preg.emplace (symbol_name_regexp, cflags,
4987 _("Invalid regexp"));
4988 }
4989
4990 if (m_symbol_type_regexp != NULL)
4991 {
4992 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4993 ? REG_ICASE : 0);
4994 treg.emplace (m_symbol_type_regexp, cflags,
4995 _("Invalid regexp"));
4996 }
4997
4998 bool found_msymbol = false;
4999 std::set<symbol_search> result_set;
5000 for (objfile *objfile : current_program_space->objfiles ())
5001 {
5002 /* Expand symtabs within objfile that possibly contain matching
5003 symbols. */
5004 found_msymbol |= expand_symtabs (objfile, preg);
5005
5006 /* Find matching symbols within OBJFILE and add them in to the
5007 RESULT_SET set. Use a set here so that we can easily detect
5008 duplicates as we go, and can therefore track how many unique
5009 matches we have found so far. */
5010 if (!add_matching_symbols (objfile, preg, treg, &result_set))
5011 break;
5012 }
5013
5014 /* Convert the result set into a sorted result list, as std::set is
5015 defined to be sorted then no explicit call to std::sort is needed. */
5016 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
5017
5018 /* If there are no debug symbols, then add matching minsyms. But if the
5019 user wants to see symbols matching a type regexp, then never give a
5020 minimal symbol, as we assume that a minimal symbol does not have a
5021 type. */
5022 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
5023 && !m_exclude_minsyms
5024 && !treg.has_value ())
5025 {
5026 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
5027 for (objfile *objfile : current_program_space->objfiles ())
5028 if (!add_matching_msymbols (objfile, preg, &result))
5029 break;
5030 }
5031
5032 return result;
5033 }
5034
5035 /* See symtab.h. */
5036
5037 std::string
5038 symbol_to_info_string (struct symbol *sym, int block,
5039 enum search_domain kind)
5040 {
5041 std::string str;
5042
5043 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
5044
5045 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
5046 str += "static ";
5047
5048 /* Typedef that is not a C++ class. */
5049 if (kind == TYPES_DOMAIN
5050 && sym->domain () != STRUCT_DOMAIN)
5051 {
5052 string_file tmp_stream;
5053
5054 /* FIXME: For C (and C++) we end up with a difference in output here
5055 between how a typedef is printed, and non-typedefs are printed.
5056 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
5057 appear C-like, while TYPE_PRINT doesn't.
5058
5059 For the struct printing case below, things are worse, we force
5060 printing of the ";" in this function, which is going to be wrong
5061 for languages that don't require a ";" between statements. */
5062 if (sym->type ()->code () == TYPE_CODE_TYPEDEF)
5063 typedef_print (sym->type (), sym, &tmp_stream);
5064 else
5065 type_print (sym->type (), "", &tmp_stream, -1);
5066 str += tmp_stream.string ();
5067 }
5068 /* variable, func, or typedef-that-is-c++-class. */
5069 else if (kind < TYPES_DOMAIN
5070 || (kind == TYPES_DOMAIN
5071 && sym->domain () == STRUCT_DOMAIN))
5072 {
5073 string_file tmp_stream;
5074
5075 type_print (sym->type (),
5076 (sym->aclass () == LOC_TYPEDEF
5077 ? "" : sym->print_name ()),
5078 &tmp_stream, 0);
5079
5080 str += tmp_stream.string ();
5081 str += ";";
5082 }
5083 /* Printing of modules is currently done here, maybe at some future
5084 point we might want a language specific method to print the module
5085 symbol so that we can customise the output more. */
5086 else if (kind == MODULES_DOMAIN)
5087 str += sym->print_name ();
5088
5089 return str;
5090 }
5091
5092 /* Helper function for symbol info commands, for example 'info functions',
5093 'info variables', etc. KIND is the kind of symbol we searched for, and
5094 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
5095 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
5096 print file and line number information for the symbol as well. Skip
5097 printing the filename if it matches LAST. */
5098
5099 static void
5100 print_symbol_info (enum search_domain kind,
5101 struct symbol *sym,
5102 int block, const char *last)
5103 {
5104 scoped_switch_to_sym_language_if_auto l (sym);
5105 struct symtab *s = sym->symtab ();
5106
5107 if (last != NULL)
5108 {
5109 const char *s_filename = symtab_to_filename_for_display (s);
5110
5111 if (filename_cmp (last, s_filename) != 0)
5112 {
5113 gdb_printf (_("\nFile %ps:\n"),
5114 styled_string (file_name_style.style (),
5115 s_filename));
5116 }
5117
5118 if (sym->line () != 0)
5119 gdb_printf ("%d:\t", sym->line ());
5120 else
5121 gdb_puts ("\t");
5122 }
5123
5124 std::string str = symbol_to_info_string (sym, block, kind);
5125 gdb_printf ("%s\n", str.c_str ());
5126 }
5127
5128 /* This help function for symtab_symbol_info() prints information
5129 for non-debugging symbols to gdb_stdout. */
5130
5131 static void
5132 print_msymbol_info (struct bound_minimal_symbol msymbol)
5133 {
5134 struct gdbarch *gdbarch = msymbol.objfile->arch ();
5135 char *tmp;
5136
5137 if (gdbarch_addr_bit (gdbarch) <= 32)
5138 tmp = hex_string_custom (msymbol.value_address ()
5139 & (CORE_ADDR) 0xffffffff,
5140 8);
5141 else
5142 tmp = hex_string_custom (msymbol.value_address (),
5143 16);
5144
5145 ui_file_style sym_style = (msymbol.minsym->text_p ()
5146 ? function_name_style.style ()
5147 : ui_file_style ());
5148
5149 gdb_printf (_("%ps %ps\n"),
5150 styled_string (address_style.style (), tmp),
5151 styled_string (sym_style, msymbol.minsym->print_name ()));
5152 }
5153
5154 /* This is the guts of the commands "info functions", "info types", and
5155 "info variables". It calls search_symbols to find all matches and then
5156 print_[m]symbol_info to print out some useful information about the
5157 matches. */
5158
5159 static void
5160 symtab_symbol_info (bool quiet, bool exclude_minsyms,
5161 const char *regexp, enum search_domain kind,
5162 const char *t_regexp, int from_tty)
5163 {
5164 static const char * const classnames[] =
5165 {"variable", "function", "type", "module"};
5166 const char *last_filename = "";
5167 int first = 1;
5168
5169 gdb_assert (kind != ALL_DOMAIN);
5170
5171 if (regexp != nullptr && *regexp == '\0')
5172 regexp = nullptr;
5173
5174 global_symbol_searcher spec (kind, regexp);
5175 spec.set_symbol_type_regexp (t_regexp);
5176 spec.set_exclude_minsyms (exclude_minsyms);
5177 std::vector<symbol_search> symbols = spec.search ();
5178
5179 if (!quiet)
5180 {
5181 if (regexp != NULL)
5182 {
5183 if (t_regexp != NULL)
5184 gdb_printf
5185 (_("All %ss matching regular expression \"%s\""
5186 " with type matching regular expression \"%s\":\n"),
5187 classnames[kind], regexp, t_regexp);
5188 else
5189 gdb_printf (_("All %ss matching regular expression \"%s\":\n"),
5190 classnames[kind], regexp);
5191 }
5192 else
5193 {
5194 if (t_regexp != NULL)
5195 gdb_printf
5196 (_("All defined %ss"
5197 " with type matching regular expression \"%s\" :\n"),
5198 classnames[kind], t_regexp);
5199 else
5200 gdb_printf (_("All defined %ss:\n"), classnames[kind]);
5201 }
5202 }
5203
5204 for (const symbol_search &p : symbols)
5205 {
5206 QUIT;
5207
5208 if (p.msymbol.minsym != NULL)
5209 {
5210 if (first)
5211 {
5212 if (!quiet)
5213 gdb_printf (_("\nNon-debugging symbols:\n"));
5214 first = 0;
5215 }
5216 print_msymbol_info (p.msymbol);
5217 }
5218 else
5219 {
5220 print_symbol_info (kind,
5221 p.symbol,
5222 p.block,
5223 last_filename);
5224 last_filename
5225 = symtab_to_filename_for_display (p.symbol->symtab ());
5226 }
5227 }
5228 }
5229
5230 /* Structure to hold the values of the options used by the 'info variables'
5231 and 'info functions' commands. These correspond to the -q, -t, and -n
5232 options. */
5233
5234 struct info_vars_funcs_options
5235 {
5236 bool quiet = false;
5237 bool exclude_minsyms = false;
5238 std::string type_regexp;
5239 };
5240
5241 /* The options used by the 'info variables' and 'info functions'
5242 commands. */
5243
5244 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5245 gdb::option::boolean_option_def<info_vars_funcs_options> {
5246 "q",
5247 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5248 nullptr, /* show_cmd_cb */
5249 nullptr /* set_doc */
5250 },
5251
5252 gdb::option::boolean_option_def<info_vars_funcs_options> {
5253 "n",
5254 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5255 nullptr, /* show_cmd_cb */
5256 nullptr /* set_doc */
5257 },
5258
5259 gdb::option::string_option_def<info_vars_funcs_options> {
5260 "t",
5261 [] (info_vars_funcs_options *opt) { return &opt->type_regexp; },
5262 nullptr, /* show_cmd_cb */
5263 nullptr /* set_doc */
5264 }
5265 };
5266
5267 /* Returns the option group used by 'info variables' and 'info
5268 functions'. */
5269
5270 static gdb::option::option_def_group
5271 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5272 {
5273 return {{info_vars_funcs_options_defs}, opts};
5274 }
5275
5276 /* Command completer for 'info variables' and 'info functions'. */
5277
5278 static void
5279 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5280 completion_tracker &tracker,
5281 const char *text, const char * /* word */)
5282 {
5283 const auto group
5284 = make_info_vars_funcs_options_def_group (nullptr);
5285 if (gdb::option::complete_options
5286 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5287 return;
5288
5289 const char *word = advance_to_expression_complete_word_point (tracker, text);
5290 symbol_completer (ignore, tracker, text, word);
5291 }
5292
5293 /* Implement the 'info variables' command. */
5294
5295 static void
5296 info_variables_command (const char *args, int from_tty)
5297 {
5298 info_vars_funcs_options opts;
5299 auto grp = make_info_vars_funcs_options_def_group (&opts);
5300 gdb::option::process_options
5301 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5302 if (args != nullptr && *args == '\0')
5303 args = nullptr;
5304
5305 symtab_symbol_info
5306 (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5307 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5308 from_tty);
5309 }
5310
5311 /* Implement the 'info functions' command. */
5312
5313 static void
5314 info_functions_command (const char *args, int from_tty)
5315 {
5316 info_vars_funcs_options opts;
5317
5318 auto grp = make_info_vars_funcs_options_def_group (&opts);
5319 gdb::option::process_options
5320 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5321 if (args != nullptr && *args == '\0')
5322 args = nullptr;
5323
5324 symtab_symbol_info
5325 (opts.quiet, opts.exclude_minsyms, args, FUNCTIONS_DOMAIN,
5326 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5327 from_tty);
5328 }
5329
5330 /* Holds the -q option for the 'info types' command. */
5331
5332 struct info_types_options
5333 {
5334 bool quiet = false;
5335 };
5336
5337 /* The options used by the 'info types' command. */
5338
5339 static const gdb::option::option_def info_types_options_defs[] = {
5340 gdb::option::boolean_option_def<info_types_options> {
5341 "q",
5342 [] (info_types_options *opt) { return &opt->quiet; },
5343 nullptr, /* show_cmd_cb */
5344 nullptr /* set_doc */
5345 }
5346 };
5347
5348 /* Returns the option group used by 'info types'. */
5349
5350 static gdb::option::option_def_group
5351 make_info_types_options_def_group (info_types_options *opts)
5352 {
5353 return {{info_types_options_defs}, opts};
5354 }
5355
5356 /* Implement the 'info types' command. */
5357
5358 static void
5359 info_types_command (const char *args, int from_tty)
5360 {
5361 info_types_options opts;
5362
5363 auto grp = make_info_types_options_def_group (&opts);
5364 gdb::option::process_options
5365 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5366 if (args != nullptr && *args == '\0')
5367 args = nullptr;
5368 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5369 }
5370
5371 /* Command completer for 'info types' command. */
5372
5373 static void
5374 info_types_command_completer (struct cmd_list_element *ignore,
5375 completion_tracker &tracker,
5376 const char *text, const char * /* word */)
5377 {
5378 const auto group
5379 = make_info_types_options_def_group (nullptr);
5380 if (gdb::option::complete_options
5381 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5382 return;
5383
5384 const char *word = advance_to_expression_complete_word_point (tracker, text);
5385 symbol_completer (ignore, tracker, text, word);
5386 }
5387
5388 /* Implement the 'info modules' command. */
5389
5390 static void
5391 info_modules_command (const char *args, int from_tty)
5392 {
5393 info_types_options opts;
5394
5395 auto grp = make_info_types_options_def_group (&opts);
5396 gdb::option::process_options
5397 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5398 if (args != nullptr && *args == '\0')
5399 args = nullptr;
5400 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5401 from_tty);
5402 }
5403
5404 static void
5405 rbreak_command (const char *regexp, int from_tty)
5406 {
5407 std::string string;
5408 const char *file_name = nullptr;
5409
5410 if (regexp != nullptr)
5411 {
5412 const char *colon = strchr (regexp, ':');
5413
5414 /* Ignore the colon if it is part of a Windows drive. */
5415 if (HAS_DRIVE_SPEC (regexp)
5416 && (regexp[2] == '/' || regexp[2] == '\\'))
5417 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5418
5419 if (colon && *(colon + 1) != ':')
5420 {
5421 int colon_index;
5422 char *local_name;
5423
5424 colon_index = colon - regexp;
5425 local_name = (char *) alloca (colon_index + 1);
5426 memcpy (local_name, regexp, colon_index);
5427 local_name[colon_index--] = 0;
5428 while (isspace (local_name[colon_index]))
5429 local_name[colon_index--] = 0;
5430 file_name = local_name;
5431 regexp = skip_spaces (colon + 1);
5432 }
5433 }
5434
5435 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5436 if (file_name != nullptr)
5437 spec.filenames.push_back (file_name);
5438 std::vector<symbol_search> symbols = spec.search ();
5439
5440 scoped_rbreak_breakpoints finalize;
5441 for (const symbol_search &p : symbols)
5442 {
5443 if (p.msymbol.minsym == NULL)
5444 {
5445 struct symtab *symtab = p.symbol->symtab ();
5446 const char *fullname = symtab_to_fullname (symtab);
5447
5448 string = string_printf ("%s:'%s'", fullname,
5449 p.symbol->linkage_name ());
5450 break_command (&string[0], from_tty);
5451 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5452 }
5453 else
5454 {
5455 string = string_printf ("'%s'",
5456 p.msymbol.minsym->linkage_name ());
5457
5458 break_command (&string[0], from_tty);
5459 gdb_printf ("<function, no debug info> %s;\n",
5460 p.msymbol.minsym->print_name ());
5461 }
5462 }
5463 }
5464 \f
5465
5466 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5467
5468 static int
5469 compare_symbol_name (const char *symbol_name, language symbol_language,
5470 const lookup_name_info &lookup_name,
5471 completion_match_result &match_res)
5472 {
5473 const language_defn *lang = language_def (symbol_language);
5474
5475 symbol_name_matcher_ftype *name_match
5476 = lang->get_symbol_name_matcher (lookup_name);
5477
5478 return name_match (symbol_name, lookup_name, &match_res);
5479 }
5480
5481 /* See symtab.h. */
5482
5483 bool
5484 completion_list_add_name (completion_tracker &tracker,
5485 language symbol_language,
5486 const char *symname,
5487 const lookup_name_info &lookup_name,
5488 const char *text, const char *word)
5489 {
5490 completion_match_result &match_res
5491 = tracker.reset_completion_match_result ();
5492
5493 /* Clip symbols that cannot match. */
5494 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5495 return false;
5496
5497 /* Refresh SYMNAME from the match string. It's potentially
5498 different depending on language. (E.g., on Ada, the match may be
5499 the encoded symbol name wrapped in "<>"). */
5500 symname = match_res.match.match ();
5501 gdb_assert (symname != NULL);
5502
5503 /* We have a match for a completion, so add SYMNAME to the current list
5504 of matches. Note that the name is moved to freshly malloc'd space. */
5505
5506 {
5507 gdb::unique_xmalloc_ptr<char> completion
5508 = make_completion_match_str (symname, text, word);
5509
5510 /* Here we pass the match-for-lcd object to add_completion. Some
5511 languages match the user text against substrings of symbol
5512 names in some cases. E.g., in C++, "b push_ba" completes to
5513 "std::vector::push_back", "std::string::push_back", etc., and
5514 in this case we want the completion lowest common denominator
5515 to be "push_back" instead of "std::". */
5516 tracker.add_completion (std::move (completion),
5517 &match_res.match_for_lcd, text, word);
5518 }
5519
5520 return true;
5521 }
5522
5523 /* completion_list_add_name wrapper for struct symbol. */
5524
5525 static void
5526 completion_list_add_symbol (completion_tracker &tracker,
5527 symbol *sym,
5528 const lookup_name_info &lookup_name,
5529 const char *text, const char *word)
5530 {
5531 if (!completion_list_add_name (tracker, sym->language (),
5532 sym->natural_name (),
5533 lookup_name, text, word))
5534 return;
5535
5536 /* C++ function symbols include the parameters within both the msymbol
5537 name and the symbol name. The problem is that the msymbol name will
5538 describe the parameters in the most basic way, with typedefs stripped
5539 out, while the symbol name will represent the types as they appear in
5540 the program. This means we will see duplicate entries in the
5541 completion tracker. The following converts the symbol name back to
5542 the msymbol name and removes the msymbol name from the completion
5543 tracker. */
5544 if (sym->language () == language_cplus
5545 && sym->domain () == VAR_DOMAIN
5546 && sym->aclass () == LOC_BLOCK)
5547 {
5548 /* The call to canonicalize returns the empty string if the input
5549 string is already in canonical form, thanks to this we don't
5550 remove the symbol we just added above. */
5551 gdb::unique_xmalloc_ptr<char> str
5552 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5553 if (str != nullptr)
5554 tracker.remove_completion (str.get ());
5555 }
5556 }
5557
5558 /* completion_list_add_name wrapper for struct minimal_symbol. */
5559
5560 static void
5561 completion_list_add_msymbol (completion_tracker &tracker,
5562 minimal_symbol *sym,
5563 const lookup_name_info &lookup_name,
5564 const char *text, const char *word)
5565 {
5566 completion_list_add_name (tracker, sym->language (),
5567 sym->natural_name (),
5568 lookup_name, text, word);
5569 }
5570
5571
5572 /* ObjC: In case we are completing on a selector, look as the msymbol
5573 again and feed all the selectors into the mill. */
5574
5575 static void
5576 completion_list_objc_symbol (completion_tracker &tracker,
5577 struct minimal_symbol *msymbol,
5578 const lookup_name_info &lookup_name,
5579 const char *text, const char *word)
5580 {
5581 static char *tmp = NULL;
5582 static unsigned int tmplen = 0;
5583
5584 const char *method, *category, *selector;
5585 char *tmp2 = NULL;
5586
5587 method = msymbol->natural_name ();
5588
5589 /* Is it a method? */
5590 if ((method[0] != '-') && (method[0] != '+'))
5591 return;
5592
5593 if (text[0] == '[')
5594 /* Complete on shortened method method. */
5595 completion_list_add_name (tracker, language_objc,
5596 method + 1,
5597 lookup_name,
5598 text, word);
5599
5600 while ((strlen (method) + 1) >= tmplen)
5601 {
5602 if (tmplen == 0)
5603 tmplen = 1024;
5604 else
5605 tmplen *= 2;
5606 tmp = (char *) xrealloc (tmp, tmplen);
5607 }
5608 selector = strchr (method, ' ');
5609 if (selector != NULL)
5610 selector++;
5611
5612 category = strchr (method, '(');
5613
5614 if ((category != NULL) && (selector != NULL))
5615 {
5616 memcpy (tmp, method, (category - method));
5617 tmp[category - method] = ' ';
5618 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5619 completion_list_add_name (tracker, language_objc, tmp,
5620 lookup_name, text, word);
5621 if (text[0] == '[')
5622 completion_list_add_name (tracker, language_objc, tmp + 1,
5623 lookup_name, text, word);
5624 }
5625
5626 if (selector != NULL)
5627 {
5628 /* Complete on selector only. */
5629 strcpy (tmp, selector);
5630 tmp2 = strchr (tmp, ']');
5631 if (tmp2 != NULL)
5632 *tmp2 = '\0';
5633
5634 completion_list_add_name (tracker, language_objc, tmp,
5635 lookup_name, text, word);
5636 }
5637 }
5638
5639 /* Break the non-quoted text based on the characters which are in
5640 symbols. FIXME: This should probably be language-specific. */
5641
5642 static const char *
5643 language_search_unquoted_string (const char *text, const char *p)
5644 {
5645 for (; p > text; --p)
5646 {
5647 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5648 continue;
5649 else
5650 {
5651 if ((current_language->la_language == language_objc))
5652 {
5653 if (p[-1] == ':') /* Might be part of a method name. */
5654 continue;
5655 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5656 p -= 2; /* Beginning of a method name. */
5657 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5658 { /* Might be part of a method name. */
5659 const char *t = p;
5660
5661 /* Seeing a ' ' or a '(' is not conclusive evidence
5662 that we are in the middle of a method name. However,
5663 finding "-[" or "+[" should be pretty un-ambiguous.
5664 Unfortunately we have to find it now to decide. */
5665
5666 while (t > text)
5667 if (isalnum (t[-1]) || t[-1] == '_' ||
5668 t[-1] == ' ' || t[-1] == ':' ||
5669 t[-1] == '(' || t[-1] == ')')
5670 --t;
5671 else
5672 break;
5673
5674 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5675 p = t - 2; /* Method name detected. */
5676 /* Else we leave with p unchanged. */
5677 }
5678 }
5679 break;
5680 }
5681 }
5682 return p;
5683 }
5684
5685 static void
5686 completion_list_add_fields (completion_tracker &tracker,
5687 struct symbol *sym,
5688 const lookup_name_info &lookup_name,
5689 const char *text, const char *word)
5690 {
5691 if (sym->aclass () == LOC_TYPEDEF)
5692 {
5693 struct type *t = sym->type ();
5694 enum type_code c = t->code ();
5695 int j;
5696
5697 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5698 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5699 if (t->field (j).name ())
5700 completion_list_add_name (tracker, sym->language (),
5701 t->field (j).name (),
5702 lookup_name, text, word);
5703 }
5704 }
5705
5706 /* See symtab.h. */
5707
5708 bool
5709 symbol_is_function_or_method (symbol *sym)
5710 {
5711 switch (sym->type ()->code ())
5712 {
5713 case TYPE_CODE_FUNC:
5714 case TYPE_CODE_METHOD:
5715 return true;
5716 default:
5717 return false;
5718 }
5719 }
5720
5721 /* See symtab.h. */
5722
5723 bool
5724 symbol_is_function_or_method (minimal_symbol *msymbol)
5725 {
5726 switch (msymbol->type ())
5727 {
5728 case mst_text:
5729 case mst_text_gnu_ifunc:
5730 case mst_solib_trampoline:
5731 case mst_file_text:
5732 return true;
5733 default:
5734 return false;
5735 }
5736 }
5737
5738 /* See symtab.h. */
5739
5740 bound_minimal_symbol
5741 find_gnu_ifunc (const symbol *sym)
5742 {
5743 if (sym->aclass () != LOC_BLOCK)
5744 return {};
5745
5746 lookup_name_info lookup_name (sym->search_name (),
5747 symbol_name_match_type::SEARCH_NAME);
5748 struct objfile *objfile = sym->objfile ();
5749
5750 CORE_ADDR address = sym->value_block ()->entry_pc ();
5751 minimal_symbol *ifunc = NULL;
5752
5753 iterate_over_minimal_symbols (objfile, lookup_name,
5754 [&] (minimal_symbol *minsym)
5755 {
5756 if (minsym->type () == mst_text_gnu_ifunc
5757 || minsym->type () == mst_data_gnu_ifunc)
5758 {
5759 CORE_ADDR msym_addr = minsym->value_address (objfile);
5760 if (minsym->type () == mst_data_gnu_ifunc)
5761 {
5762 struct gdbarch *gdbarch = objfile->arch ();
5763 msym_addr = gdbarch_convert_from_func_ptr_addr
5764 (gdbarch, msym_addr, current_inferior ()->top_target ());
5765 }
5766 if (msym_addr == address)
5767 {
5768 ifunc = minsym;
5769 return true;
5770 }
5771 }
5772 return false;
5773 });
5774
5775 if (ifunc != NULL)
5776 return {ifunc, objfile};
5777 return {};
5778 }
5779
5780 /* Add matching symbols from SYMTAB to the current completion list. */
5781
5782 static void
5783 add_symtab_completions (struct compunit_symtab *cust,
5784 completion_tracker &tracker,
5785 complete_symbol_mode mode,
5786 const lookup_name_info &lookup_name,
5787 const char *text, const char *word,
5788 enum type_code code)
5789 {
5790 struct symbol *sym;
5791 struct block_iterator iter;
5792 int i;
5793
5794 if (cust == NULL)
5795 return;
5796
5797 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5798 {
5799 QUIT;
5800
5801 const struct block *b = cust->blockvector ()->block (i);
5802 ALL_BLOCK_SYMBOLS (b, iter, sym)
5803 {
5804 if (completion_skip_symbol (mode, sym))
5805 continue;
5806
5807 if (code == TYPE_CODE_UNDEF
5808 || (sym->domain () == STRUCT_DOMAIN
5809 && sym->type ()->code () == code))
5810 completion_list_add_symbol (tracker, sym,
5811 lookup_name,
5812 text, word);
5813 }
5814 }
5815 }
5816
5817 void
5818 default_collect_symbol_completion_matches_break_on
5819 (completion_tracker &tracker, complete_symbol_mode mode,
5820 symbol_name_match_type name_match_type,
5821 const char *text, const char *word,
5822 const char *break_on, enum type_code code)
5823 {
5824 /* Problem: All of the symbols have to be copied because readline
5825 frees them. I'm not going to worry about this; hopefully there
5826 won't be that many. */
5827
5828 struct symbol *sym;
5829 const struct block *b;
5830 const struct block *surrounding_static_block, *surrounding_global_block;
5831 struct block_iterator iter;
5832 /* The symbol we are completing on. Points in same buffer as text. */
5833 const char *sym_text;
5834
5835 /* Now look for the symbol we are supposed to complete on. */
5836 if (mode == complete_symbol_mode::LINESPEC)
5837 sym_text = text;
5838 else
5839 {
5840 const char *p;
5841 char quote_found;
5842 const char *quote_pos = NULL;
5843
5844 /* First see if this is a quoted string. */
5845 quote_found = '\0';
5846 for (p = text; *p != '\0'; ++p)
5847 {
5848 if (quote_found != '\0')
5849 {
5850 if (*p == quote_found)
5851 /* Found close quote. */
5852 quote_found = '\0';
5853 else if (*p == '\\' && p[1] == quote_found)
5854 /* A backslash followed by the quote character
5855 doesn't end the string. */
5856 ++p;
5857 }
5858 else if (*p == '\'' || *p == '"')
5859 {
5860 quote_found = *p;
5861 quote_pos = p;
5862 }
5863 }
5864 if (quote_found == '\'')
5865 /* A string within single quotes can be a symbol, so complete on it. */
5866 sym_text = quote_pos + 1;
5867 else if (quote_found == '"')
5868 /* A double-quoted string is never a symbol, nor does it make sense
5869 to complete it any other way. */
5870 {
5871 return;
5872 }
5873 else
5874 {
5875 /* It is not a quoted string. Break it based on the characters
5876 which are in symbols. */
5877 while (p > text)
5878 {
5879 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5880 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5881 --p;
5882 else
5883 break;
5884 }
5885 sym_text = p;
5886 }
5887 }
5888
5889 lookup_name_info lookup_name (sym_text, name_match_type, true);
5890
5891 /* At this point scan through the misc symbol vectors and add each
5892 symbol you find to the list. Eventually we want to ignore
5893 anything that isn't a text symbol (everything else will be
5894 handled by the psymtab code below). */
5895
5896 if (code == TYPE_CODE_UNDEF)
5897 {
5898 for (objfile *objfile : current_program_space->objfiles ())
5899 {
5900 for (minimal_symbol *msymbol : objfile->msymbols ())
5901 {
5902 QUIT;
5903
5904 if (completion_skip_symbol (mode, msymbol))
5905 continue;
5906
5907 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5908 sym_text, word);
5909
5910 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5911 sym_text, word);
5912 }
5913 }
5914 }
5915
5916 /* Add completions for all currently loaded symbol tables. */
5917 for (objfile *objfile : current_program_space->objfiles ())
5918 {
5919 for (compunit_symtab *cust : objfile->compunits ())
5920 add_symtab_completions (cust, tracker, mode, lookup_name,
5921 sym_text, word, code);
5922 }
5923
5924 /* Look through the partial symtabs for all symbols which begin by
5925 matching SYM_TEXT. Expand all CUs that you find to the list. */
5926 expand_symtabs_matching (NULL,
5927 lookup_name,
5928 NULL,
5929 [&] (compunit_symtab *symtab) /* expansion notify */
5930 {
5931 add_symtab_completions (symtab,
5932 tracker, mode, lookup_name,
5933 sym_text, word, code);
5934 return true;
5935 },
5936 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
5937 ALL_DOMAIN);
5938
5939 /* Search upwards from currently selected frame (so that we can
5940 complete on local vars). Also catch fields of types defined in
5941 this places which match our text string. Only complete on types
5942 visible from current context. */
5943
5944 b = get_selected_block (0);
5945 surrounding_static_block = block_static_block (b);
5946 surrounding_global_block = block_global_block (b);
5947 if (surrounding_static_block != NULL)
5948 while (b != surrounding_static_block)
5949 {
5950 QUIT;
5951
5952 ALL_BLOCK_SYMBOLS (b, iter, sym)
5953 {
5954 if (code == TYPE_CODE_UNDEF)
5955 {
5956 completion_list_add_symbol (tracker, sym, lookup_name,
5957 sym_text, word);
5958 completion_list_add_fields (tracker, sym, lookup_name,
5959 sym_text, word);
5960 }
5961 else if (sym->domain () == STRUCT_DOMAIN
5962 && sym->type ()->code () == code)
5963 completion_list_add_symbol (tracker, sym, lookup_name,
5964 sym_text, word);
5965 }
5966
5967 /* Stop when we encounter an enclosing function. Do not stop for
5968 non-inlined functions - the locals of the enclosing function
5969 are in scope for a nested function. */
5970 if (b->function () != NULL && block_inlined_p (b))
5971 break;
5972 b = b->superblock ();
5973 }
5974
5975 /* Add fields from the file's types; symbols will be added below. */
5976
5977 if (code == TYPE_CODE_UNDEF)
5978 {
5979 if (surrounding_static_block != NULL)
5980 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5981 completion_list_add_fields (tracker, sym, lookup_name,
5982 sym_text, word);
5983
5984 if (surrounding_global_block != NULL)
5985 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5986 completion_list_add_fields (tracker, sym, lookup_name,
5987 sym_text, word);
5988 }
5989
5990 /* Skip macros if we are completing a struct tag -- arguable but
5991 usually what is expected. */
5992 if (current_language->macro_expansion () == macro_expansion_c
5993 && code == TYPE_CODE_UNDEF)
5994 {
5995 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5996
5997 /* This adds a macro's name to the current completion list. */
5998 auto add_macro_name = [&] (const char *macro_name,
5999 const macro_definition *,
6000 macro_source_file *,
6001 int)
6002 {
6003 completion_list_add_name (tracker, language_c, macro_name,
6004 lookup_name, sym_text, word);
6005 };
6006
6007 /* Add any macros visible in the default scope. Note that this
6008 may yield the occasional wrong result, because an expression
6009 might be evaluated in a scope other than the default. For
6010 example, if the user types "break file:line if <TAB>", the
6011 resulting expression will be evaluated at "file:line" -- but
6012 at there does not seem to be a way to detect this at
6013 completion time. */
6014 scope = default_macro_scope ();
6015 if (scope)
6016 macro_for_each_in_scope (scope->file, scope->line,
6017 add_macro_name);
6018
6019 /* User-defined macros are always visible. */
6020 macro_for_each (macro_user_macros, add_macro_name);
6021 }
6022 }
6023
6024 /* Collect all symbols (regardless of class) which begin by matching
6025 TEXT. */
6026
6027 void
6028 collect_symbol_completion_matches (completion_tracker &tracker,
6029 complete_symbol_mode mode,
6030 symbol_name_match_type name_match_type,
6031 const char *text, const char *word)
6032 {
6033 current_language->collect_symbol_completion_matches (tracker, mode,
6034 name_match_type,
6035 text, word,
6036 TYPE_CODE_UNDEF);
6037 }
6038
6039 /* Like collect_symbol_completion_matches, but only collect
6040 STRUCT_DOMAIN symbols whose type code is CODE. */
6041
6042 void
6043 collect_symbol_completion_matches_type (completion_tracker &tracker,
6044 const char *text, const char *word,
6045 enum type_code code)
6046 {
6047 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
6048 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
6049
6050 gdb_assert (code == TYPE_CODE_UNION
6051 || code == TYPE_CODE_STRUCT
6052 || code == TYPE_CODE_ENUM);
6053 current_language->collect_symbol_completion_matches (tracker, mode,
6054 name_match_type,
6055 text, word, code);
6056 }
6057
6058 /* Like collect_symbol_completion_matches, but collects a list of
6059 symbols defined in all source files named SRCFILE. */
6060
6061 void
6062 collect_file_symbol_completion_matches (completion_tracker &tracker,
6063 complete_symbol_mode mode,
6064 symbol_name_match_type name_match_type,
6065 const char *text, const char *word,
6066 const char *srcfile)
6067 {
6068 /* The symbol we are completing on. Points in same buffer as text. */
6069 const char *sym_text;
6070
6071 /* Now look for the symbol we are supposed to complete on.
6072 FIXME: This should be language-specific. */
6073 if (mode == complete_symbol_mode::LINESPEC)
6074 sym_text = text;
6075 else
6076 {
6077 const char *p;
6078 char quote_found;
6079 const char *quote_pos = NULL;
6080
6081 /* First see if this is a quoted string. */
6082 quote_found = '\0';
6083 for (p = text; *p != '\0'; ++p)
6084 {
6085 if (quote_found != '\0')
6086 {
6087 if (*p == quote_found)
6088 /* Found close quote. */
6089 quote_found = '\0';
6090 else if (*p == '\\' && p[1] == quote_found)
6091 /* A backslash followed by the quote character
6092 doesn't end the string. */
6093 ++p;
6094 }
6095 else if (*p == '\'' || *p == '"')
6096 {
6097 quote_found = *p;
6098 quote_pos = p;
6099 }
6100 }
6101 if (quote_found == '\'')
6102 /* A string within single quotes can be a symbol, so complete on it. */
6103 sym_text = quote_pos + 1;
6104 else if (quote_found == '"')
6105 /* A double-quoted string is never a symbol, nor does it make sense
6106 to complete it any other way. */
6107 {
6108 return;
6109 }
6110 else
6111 {
6112 /* Not a quoted string. */
6113 sym_text = language_search_unquoted_string (text, p);
6114 }
6115 }
6116
6117 lookup_name_info lookup_name (sym_text, name_match_type, true);
6118
6119 /* Go through symtabs for SRCFILE and check the externs and statics
6120 for symbols which match. */
6121 iterate_over_symtabs (srcfile, [&] (symtab *s)
6122 {
6123 add_symtab_completions (s->compunit (),
6124 tracker, mode, lookup_name,
6125 sym_text, word, TYPE_CODE_UNDEF);
6126 return false;
6127 });
6128 }
6129
6130 /* A helper function for make_source_files_completion_list. It adds
6131 another file name to a list of possible completions, growing the
6132 list as necessary. */
6133
6134 static void
6135 add_filename_to_list (const char *fname, const char *text, const char *word,
6136 completion_list *list)
6137 {
6138 list->emplace_back (make_completion_match_str (fname, text, word));
6139 }
6140
6141 static int
6142 not_interesting_fname (const char *fname)
6143 {
6144 static const char *illegal_aliens[] = {
6145 "_globals_", /* inserted by coff_symtab_read */
6146 NULL
6147 };
6148 int i;
6149
6150 for (i = 0; illegal_aliens[i]; i++)
6151 {
6152 if (filename_cmp (fname, illegal_aliens[i]) == 0)
6153 return 1;
6154 }
6155 return 0;
6156 }
6157
6158 /* An object of this type is passed as the callback argument to
6159 map_partial_symbol_filenames. */
6160 struct add_partial_filename_data
6161 {
6162 struct filename_seen_cache *filename_seen_cache;
6163 const char *text;
6164 const char *word;
6165 int text_len;
6166 completion_list *list;
6167
6168 void operator() (const char *filename, const char *fullname);
6169 };
6170
6171 /* A callback for map_partial_symbol_filenames. */
6172
6173 void
6174 add_partial_filename_data::operator() (const char *filename,
6175 const char *fullname)
6176 {
6177 if (not_interesting_fname (filename))
6178 return;
6179 if (!filename_seen_cache->seen (filename)
6180 && filename_ncmp (filename, text, text_len) == 0)
6181 {
6182 /* This file matches for a completion; add it to the
6183 current list of matches. */
6184 add_filename_to_list (filename, text, word, list);
6185 }
6186 else
6187 {
6188 const char *base_name = lbasename (filename);
6189
6190 if (base_name != filename
6191 && !filename_seen_cache->seen (base_name)
6192 && filename_ncmp (base_name, text, text_len) == 0)
6193 add_filename_to_list (base_name, text, word, list);
6194 }
6195 }
6196
6197 /* Return a list of all source files whose names begin with matching
6198 TEXT. The file names are looked up in the symbol tables of this
6199 program. */
6200
6201 completion_list
6202 make_source_files_completion_list (const char *text, const char *word)
6203 {
6204 size_t text_len = strlen (text);
6205 completion_list list;
6206 const char *base_name;
6207 struct add_partial_filename_data datum;
6208
6209 if (!have_full_symbols () && !have_partial_symbols ())
6210 return list;
6211
6212 filename_seen_cache filenames_seen;
6213
6214 for (objfile *objfile : current_program_space->objfiles ())
6215 {
6216 for (compunit_symtab *cu : objfile->compunits ())
6217 {
6218 for (symtab *s : cu->filetabs ())
6219 {
6220 if (not_interesting_fname (s->filename))
6221 continue;
6222 if (!filenames_seen.seen (s->filename)
6223 && filename_ncmp (s->filename, text, text_len) == 0)
6224 {
6225 /* This file matches for a completion; add it to the current
6226 list of matches. */
6227 add_filename_to_list (s->filename, text, word, &list);
6228 }
6229 else
6230 {
6231 /* NOTE: We allow the user to type a base name when the
6232 debug info records leading directories, but not the other
6233 way around. This is what subroutines of breakpoint
6234 command do when they parse file names. */
6235 base_name = lbasename (s->filename);
6236 if (base_name != s->filename
6237 && !filenames_seen.seen (base_name)
6238 && filename_ncmp (base_name, text, text_len) == 0)
6239 add_filename_to_list (base_name, text, word, &list);
6240 }
6241 }
6242 }
6243 }
6244
6245 datum.filename_seen_cache = &filenames_seen;
6246 datum.text = text;
6247 datum.word = word;
6248 datum.text_len = text_len;
6249 datum.list = &list;
6250 map_symbol_filenames (datum, false /*need_fullname*/);
6251
6252 return list;
6253 }
6254 \f
6255 /* Track MAIN */
6256
6257 /* Return the "main_info" object for the current program space. If
6258 the object has not yet been created, create it and fill in some
6259 default values. */
6260
6261 static struct main_info *
6262 get_main_info (void)
6263 {
6264 struct main_info *info = main_progspace_key.get (current_program_space);
6265
6266 if (info == NULL)
6267 {
6268 /* It may seem strange to store the main name in the progspace
6269 and also in whatever objfile happens to see a main name in
6270 its debug info. The reason for this is mainly historical:
6271 gdb returned "main" as the name even if no function named
6272 "main" was defined the program; and this approach lets us
6273 keep compatibility. */
6274 info = main_progspace_key.emplace (current_program_space);
6275 }
6276
6277 return info;
6278 }
6279
6280 static void
6281 set_main_name (const char *name, enum language lang)
6282 {
6283 struct main_info *info = get_main_info ();
6284
6285 if (info->name_of_main != NULL)
6286 {
6287 xfree (info->name_of_main);
6288 info->name_of_main = NULL;
6289 info->language_of_main = language_unknown;
6290 }
6291 if (name != NULL)
6292 {
6293 info->name_of_main = xstrdup (name);
6294 info->language_of_main = lang;
6295 }
6296 }
6297
6298 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6299 accordingly. */
6300
6301 static void
6302 find_main_name (void)
6303 {
6304 const char *new_main_name;
6305
6306 /* First check the objfiles to see whether a debuginfo reader has
6307 picked up the appropriate main name. Historically the main name
6308 was found in a more or less random way; this approach instead
6309 relies on the order of objfile creation -- which still isn't
6310 guaranteed to get the correct answer, but is just probably more
6311 accurate. */
6312 for (objfile *objfile : current_program_space->objfiles ())
6313 {
6314 if (objfile->per_bfd->name_of_main != NULL)
6315 {
6316 set_main_name (objfile->per_bfd->name_of_main,
6317 objfile->per_bfd->language_of_main);
6318 return;
6319 }
6320 }
6321
6322 /* Try to see if the main procedure is in Ada. */
6323 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6324 be to add a new method in the language vector, and call this
6325 method for each language until one of them returns a non-empty
6326 name. This would allow us to remove this hard-coded call to
6327 an Ada function. It is not clear that this is a better approach
6328 at this point, because all methods need to be written in a way
6329 such that false positives never be returned. For instance, it is
6330 important that a method does not return a wrong name for the main
6331 procedure if the main procedure is actually written in a different
6332 language. It is easy to guaranty this with Ada, since we use a
6333 special symbol generated only when the main in Ada to find the name
6334 of the main procedure. It is difficult however to see how this can
6335 be guarantied for languages such as C, for instance. This suggests
6336 that order of call for these methods becomes important, which means
6337 a more complicated approach. */
6338 new_main_name = ada_main_name ();
6339 if (new_main_name != NULL)
6340 {
6341 set_main_name (new_main_name, language_ada);
6342 return;
6343 }
6344
6345 new_main_name = d_main_name ();
6346 if (new_main_name != NULL)
6347 {
6348 set_main_name (new_main_name, language_d);
6349 return;
6350 }
6351
6352 new_main_name = go_main_name ();
6353 if (new_main_name != NULL)
6354 {
6355 set_main_name (new_main_name, language_go);
6356 return;
6357 }
6358
6359 new_main_name = pascal_main_name ();
6360 if (new_main_name != NULL)
6361 {
6362 set_main_name (new_main_name, language_pascal);
6363 return;
6364 }
6365
6366 /* The languages above didn't identify the name of the main procedure.
6367 Fallback to "main". */
6368
6369 /* Try to find language for main in psymtabs. */
6370 enum language lang
6371 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6372 if (lang != language_unknown)
6373 {
6374 set_main_name ("main", lang);
6375 return;
6376 }
6377
6378 set_main_name ("main", language_unknown);
6379 }
6380
6381 /* See symtab.h. */
6382
6383 const char *
6384 main_name ()
6385 {
6386 struct main_info *info = get_main_info ();
6387
6388 if (info->name_of_main == NULL)
6389 find_main_name ();
6390
6391 return info->name_of_main;
6392 }
6393
6394 /* Return the language of the main function. If it is not known,
6395 return language_unknown. */
6396
6397 enum language
6398 main_language (void)
6399 {
6400 struct main_info *info = get_main_info ();
6401
6402 if (info->name_of_main == NULL)
6403 find_main_name ();
6404
6405 return info->language_of_main;
6406 }
6407
6408 /* Handle ``executable_changed'' events for the symtab module. */
6409
6410 static void
6411 symtab_observer_executable_changed (void)
6412 {
6413 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6414 set_main_name (NULL, language_unknown);
6415 }
6416
6417 /* Return 1 if the supplied producer string matches the ARM RealView
6418 compiler (armcc). */
6419
6420 bool
6421 producer_is_realview (const char *producer)
6422 {
6423 static const char *const arm_idents[] = {
6424 "ARM C Compiler, ADS",
6425 "Thumb C Compiler, ADS",
6426 "ARM C++ Compiler, ADS",
6427 "Thumb C++ Compiler, ADS",
6428 "ARM/Thumb C/C++ Compiler, RVCT",
6429 "ARM C/C++ Compiler, RVCT"
6430 };
6431
6432 if (producer == NULL)
6433 return false;
6434
6435 for (const char *ident : arm_idents)
6436 if (startswith (producer, ident))
6437 return true;
6438
6439 return false;
6440 }
6441
6442 \f
6443
6444 /* The next index to hand out in response to a registration request. */
6445
6446 static int next_aclass_value = LOC_FINAL_VALUE;
6447
6448 /* The maximum number of "aclass" registrations we support. This is
6449 constant for convenience. */
6450 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6451
6452 /* The objects representing the various "aclass" values. The elements
6453 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6454 elements are those registered at gdb initialization time. */
6455
6456 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6457
6458 /* The globally visible pointer. This is separate from 'symbol_impl'
6459 so that it can be const. */
6460
6461 gdb::array_view<const struct symbol_impl> symbol_impls (symbol_impl);
6462
6463 /* Make sure we saved enough room in struct symbol. */
6464
6465 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6466
6467 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6468 is the ops vector associated with this index. This returns the new
6469 index, which should be used as the aclass_index field for symbols
6470 of this type. */
6471
6472 int
6473 register_symbol_computed_impl (enum address_class aclass,
6474 const struct symbol_computed_ops *ops)
6475 {
6476 int result = next_aclass_value++;
6477
6478 gdb_assert (aclass == LOC_COMPUTED);
6479 gdb_assert (result < MAX_SYMBOL_IMPLS);
6480 symbol_impl[result].aclass = aclass;
6481 symbol_impl[result].ops_computed = ops;
6482
6483 /* Sanity check OPS. */
6484 gdb_assert (ops != NULL);
6485 gdb_assert (ops->tracepoint_var_ref != NULL);
6486 gdb_assert (ops->describe_location != NULL);
6487 gdb_assert (ops->get_symbol_read_needs != NULL);
6488 gdb_assert (ops->read_variable != NULL);
6489
6490 return result;
6491 }
6492
6493 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6494 OPS is the ops vector associated with this index. This returns the
6495 new index, which should be used as the aclass_index field for symbols
6496 of this type. */
6497
6498 int
6499 register_symbol_block_impl (enum address_class aclass,
6500 const struct symbol_block_ops *ops)
6501 {
6502 int result = next_aclass_value++;
6503
6504 gdb_assert (aclass == LOC_BLOCK);
6505 gdb_assert (result < MAX_SYMBOL_IMPLS);
6506 symbol_impl[result].aclass = aclass;
6507 symbol_impl[result].ops_block = ops;
6508
6509 /* Sanity check OPS. */
6510 gdb_assert (ops != NULL);
6511 gdb_assert (ops->find_frame_base_location != NULL);
6512
6513 return result;
6514 }
6515
6516 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6517 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6518 this index. This returns the new index, which should be used as
6519 the aclass_index field for symbols of this type. */
6520
6521 int
6522 register_symbol_register_impl (enum address_class aclass,
6523 const struct symbol_register_ops *ops)
6524 {
6525 int result = next_aclass_value++;
6526
6527 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6528 gdb_assert (result < MAX_SYMBOL_IMPLS);
6529 symbol_impl[result].aclass = aclass;
6530 symbol_impl[result].ops_register = ops;
6531
6532 return result;
6533 }
6534
6535 /* Initialize elements of 'symbol_impl' for the constants in enum
6536 address_class. */
6537
6538 static void
6539 initialize_ordinary_address_classes (void)
6540 {
6541 int i;
6542
6543 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6544 symbol_impl[i].aclass = (enum address_class) i;
6545 }
6546
6547 \f
6548
6549 /* See symtab.h. */
6550
6551 struct objfile *
6552 symbol::objfile () const
6553 {
6554 gdb_assert (is_objfile_owned ());
6555 return owner.symtab->compunit ()->objfile ();
6556 }
6557
6558 /* See symtab.h. */
6559
6560 struct gdbarch *
6561 symbol::arch () const
6562 {
6563 if (!is_objfile_owned ())
6564 return owner.arch;
6565 return owner.symtab->compunit ()->objfile ()->arch ();
6566 }
6567
6568 /* See symtab.h. */
6569
6570 struct symtab *
6571 symbol::symtab () const
6572 {
6573 gdb_assert (is_objfile_owned ());
6574 return owner.symtab;
6575 }
6576
6577 /* See symtab.h. */
6578
6579 void
6580 symbol::set_symtab (struct symtab *symtab)
6581 {
6582 gdb_assert (is_objfile_owned ());
6583 owner.symtab = symtab;
6584 }
6585
6586 /* See symtab.h. */
6587
6588 CORE_ADDR
6589 get_symbol_address (const struct symbol *sym)
6590 {
6591 gdb_assert (sym->maybe_copied);
6592 gdb_assert (sym->aclass () == LOC_STATIC);
6593
6594 const char *linkage_name = sym->linkage_name ();
6595
6596 for (objfile *objfile : current_program_space->objfiles ())
6597 {
6598 if (objfile->separate_debug_objfile_backlink != nullptr)
6599 continue;
6600
6601 bound_minimal_symbol minsym
6602 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6603 if (minsym.minsym != nullptr)
6604 return minsym.value_address ();
6605 }
6606 return sym->m_value.address;
6607 }
6608
6609 /* See symtab.h. */
6610
6611 CORE_ADDR
6612 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6613 {
6614 gdb_assert (minsym->maybe_copied);
6615 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6616
6617 const char *linkage_name = minsym->linkage_name ();
6618
6619 for (objfile *objfile : current_program_space->objfiles ())
6620 {
6621 if (objfile->separate_debug_objfile_backlink == nullptr
6622 && (objfile->flags & OBJF_MAINLINE) != 0)
6623 {
6624 bound_minimal_symbol found
6625 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6626 if (found.minsym != nullptr)
6627 return found.value_address ();
6628 }
6629 }
6630 return (minsym->m_value.address
6631 + objf->section_offsets[minsym->section_index ()]);
6632 }
6633
6634 \f
6635
6636 /* Hold the sub-commands of 'info module'. */
6637
6638 static struct cmd_list_element *info_module_cmdlist = NULL;
6639
6640 /* See symtab.h. */
6641
6642 std::vector<module_symbol_search>
6643 search_module_symbols (const char *module_regexp, const char *regexp,
6644 const char *type_regexp, search_domain kind)
6645 {
6646 std::vector<module_symbol_search> results;
6647
6648 /* Search for all modules matching MODULE_REGEXP. */
6649 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6650 spec1.set_exclude_minsyms (true);
6651 std::vector<symbol_search> modules = spec1.search ();
6652
6653 /* Now search for all symbols of the required KIND matching the required
6654 regular expressions. We figure out which ones are in which modules
6655 below. */
6656 global_symbol_searcher spec2 (kind, regexp);
6657 spec2.set_symbol_type_regexp (type_regexp);
6658 spec2.set_exclude_minsyms (true);
6659 std::vector<symbol_search> symbols = spec2.search ();
6660
6661 /* Now iterate over all MODULES, checking to see which items from
6662 SYMBOLS are in each module. */
6663 for (const symbol_search &p : modules)
6664 {
6665 QUIT;
6666
6667 /* This is a module. */
6668 gdb_assert (p.symbol != nullptr);
6669
6670 std::string prefix = p.symbol->print_name ();
6671 prefix += "::";
6672
6673 for (const symbol_search &q : symbols)
6674 {
6675 if (q.symbol == nullptr)
6676 continue;
6677
6678 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6679 prefix.size ()) != 0)
6680 continue;
6681
6682 results.push_back ({p, q});
6683 }
6684 }
6685
6686 return results;
6687 }
6688
6689 /* Implement the core of both 'info module functions' and 'info module
6690 variables'. */
6691
6692 static void
6693 info_module_subcommand (bool quiet, const char *module_regexp,
6694 const char *regexp, const char *type_regexp,
6695 search_domain kind)
6696 {
6697 /* Print a header line. Don't build the header line bit by bit as this
6698 prevents internationalisation. */
6699 if (!quiet)
6700 {
6701 if (module_regexp == nullptr)
6702 {
6703 if (type_regexp == nullptr)
6704 {
6705 if (regexp == nullptr)
6706 gdb_printf ((kind == VARIABLES_DOMAIN
6707 ? _("All variables in all modules:")
6708 : _("All functions in all modules:")));
6709 else
6710 gdb_printf
6711 ((kind == VARIABLES_DOMAIN
6712 ? _("All variables matching regular expression"
6713 " \"%s\" in all modules:")
6714 : _("All functions matching regular expression"
6715 " \"%s\" in all modules:")),
6716 regexp);
6717 }
6718 else
6719 {
6720 if (regexp == nullptr)
6721 gdb_printf
6722 ((kind == VARIABLES_DOMAIN
6723 ? _("All variables with type matching regular "
6724 "expression \"%s\" in all modules:")
6725 : _("All functions with type matching regular "
6726 "expression \"%s\" in all modules:")),
6727 type_regexp);
6728 else
6729 gdb_printf
6730 ((kind == VARIABLES_DOMAIN
6731 ? _("All variables matching regular expression "
6732 "\"%s\",\n\twith type matching regular "
6733 "expression \"%s\" in all modules:")
6734 : _("All functions matching regular expression "
6735 "\"%s\",\n\twith type matching regular "
6736 "expression \"%s\" in all modules:")),
6737 regexp, type_regexp);
6738 }
6739 }
6740 else
6741 {
6742 if (type_regexp == nullptr)
6743 {
6744 if (regexp == nullptr)
6745 gdb_printf
6746 ((kind == VARIABLES_DOMAIN
6747 ? _("All variables in all modules matching regular "
6748 "expression \"%s\":")
6749 : _("All functions in all modules matching regular "
6750 "expression \"%s\":")),
6751 module_regexp);
6752 else
6753 gdb_printf
6754 ((kind == VARIABLES_DOMAIN
6755 ? _("All variables matching regular expression "
6756 "\"%s\",\n\tin all modules matching regular "
6757 "expression \"%s\":")
6758 : _("All functions matching regular expression "
6759 "\"%s\",\n\tin all modules matching regular "
6760 "expression \"%s\":")),
6761 regexp, module_regexp);
6762 }
6763 else
6764 {
6765 if (regexp == nullptr)
6766 gdb_printf
6767 ((kind == VARIABLES_DOMAIN
6768 ? _("All variables with type matching regular "
6769 "expression \"%s\"\n\tin all modules matching "
6770 "regular expression \"%s\":")
6771 : _("All functions with type matching regular "
6772 "expression \"%s\"\n\tin all modules matching "
6773 "regular expression \"%s\":")),
6774 type_regexp, module_regexp);
6775 else
6776 gdb_printf
6777 ((kind == VARIABLES_DOMAIN
6778 ? _("All variables matching regular expression "
6779 "\"%s\",\n\twith type matching regular expression "
6780 "\"%s\",\n\tin all modules matching regular "
6781 "expression \"%s\":")
6782 : _("All functions matching regular expression "
6783 "\"%s\",\n\twith type matching regular expression "
6784 "\"%s\",\n\tin all modules matching regular "
6785 "expression \"%s\":")),
6786 regexp, type_regexp, module_regexp);
6787 }
6788 }
6789 gdb_printf ("\n");
6790 }
6791
6792 /* Find all symbols of type KIND matching the given regular expressions
6793 along with the symbols for the modules in which those symbols
6794 reside. */
6795 std::vector<module_symbol_search> module_symbols
6796 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6797
6798 std::sort (module_symbols.begin (), module_symbols.end (),
6799 [] (const module_symbol_search &a, const module_symbol_search &b)
6800 {
6801 if (a.first < b.first)
6802 return true;
6803 else if (a.first == b.first)
6804 return a.second < b.second;
6805 else
6806 return false;
6807 });
6808
6809 const char *last_filename = "";
6810 const symbol *last_module_symbol = nullptr;
6811 for (const module_symbol_search &ms : module_symbols)
6812 {
6813 const symbol_search &p = ms.first;
6814 const symbol_search &q = ms.second;
6815
6816 gdb_assert (q.symbol != nullptr);
6817
6818 if (last_module_symbol != p.symbol)
6819 {
6820 gdb_printf ("\n");
6821 gdb_printf (_("Module \"%s\":\n"), p.symbol->print_name ());
6822 last_module_symbol = p.symbol;
6823 last_filename = "";
6824 }
6825
6826 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6827 last_filename);
6828 last_filename
6829 = symtab_to_filename_for_display (q.symbol->symtab ());
6830 }
6831 }
6832
6833 /* Hold the option values for the 'info module .....' sub-commands. */
6834
6835 struct info_modules_var_func_options
6836 {
6837 bool quiet = false;
6838 std::string type_regexp;
6839 std::string module_regexp;
6840 };
6841
6842 /* The options used by 'info module variables' and 'info module functions'
6843 commands. */
6844
6845 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6846 gdb::option::boolean_option_def<info_modules_var_func_options> {
6847 "q",
6848 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6849 nullptr, /* show_cmd_cb */
6850 nullptr /* set_doc */
6851 },
6852
6853 gdb::option::string_option_def<info_modules_var_func_options> {
6854 "t",
6855 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6856 nullptr, /* show_cmd_cb */
6857 nullptr /* set_doc */
6858 },
6859
6860 gdb::option::string_option_def<info_modules_var_func_options> {
6861 "m",
6862 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6863 nullptr, /* show_cmd_cb */
6864 nullptr /* set_doc */
6865 }
6866 };
6867
6868 /* Return the option group used by the 'info module ...' sub-commands. */
6869
6870 static inline gdb::option::option_def_group
6871 make_info_modules_var_func_options_def_group
6872 (info_modules_var_func_options *opts)
6873 {
6874 return {{info_modules_var_func_options_defs}, opts};
6875 }
6876
6877 /* Implements the 'info module functions' command. */
6878
6879 static void
6880 info_module_functions_command (const char *args, int from_tty)
6881 {
6882 info_modules_var_func_options opts;
6883 auto grp = make_info_modules_var_func_options_def_group (&opts);
6884 gdb::option::process_options
6885 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6886 if (args != nullptr && *args == '\0')
6887 args = nullptr;
6888
6889 info_module_subcommand
6890 (opts.quiet,
6891 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6892 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6893 FUNCTIONS_DOMAIN);
6894 }
6895
6896 /* Implements the 'info module variables' command. */
6897
6898 static void
6899 info_module_variables_command (const char *args, int from_tty)
6900 {
6901 info_modules_var_func_options opts;
6902 auto grp = make_info_modules_var_func_options_def_group (&opts);
6903 gdb::option::process_options
6904 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6905 if (args != nullptr && *args == '\0')
6906 args = nullptr;
6907
6908 info_module_subcommand
6909 (opts.quiet,
6910 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6911 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6912 VARIABLES_DOMAIN);
6913 }
6914
6915 /* Command completer for 'info module ...' sub-commands. */
6916
6917 static void
6918 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6919 completion_tracker &tracker,
6920 const char *text,
6921 const char * /* word */)
6922 {
6923
6924 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6925 if (gdb::option::complete_options
6926 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6927 return;
6928
6929 const char *word = advance_to_expression_complete_word_point (tracker, text);
6930 symbol_completer (ignore, tracker, text, word);
6931 }
6932
6933 \f
6934
6935 void _initialize_symtab ();
6936 void
6937 _initialize_symtab ()
6938 {
6939 cmd_list_element *c;
6940
6941 initialize_ordinary_address_classes ();
6942
6943 c = add_info ("variables", info_variables_command,
6944 info_print_args_help (_("\
6945 All global and static variable names or those matching REGEXPs.\n\
6946 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6947 Prints the global and static variables.\n"),
6948 _("global and static variables"),
6949 true));
6950 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6951
6952 c = add_info ("functions", info_functions_command,
6953 info_print_args_help (_("\
6954 All function names or those matching REGEXPs.\n\
6955 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6956 Prints the functions.\n"),
6957 _("functions"),
6958 true));
6959 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6960
6961 c = add_info ("types", info_types_command, _("\
6962 All type names, or those matching REGEXP.\n\
6963 Usage: info types [-q] [REGEXP]\n\
6964 Print information about all types matching REGEXP, or all types if no\n\
6965 REGEXP is given. The optional flag -q disables printing of headers."));
6966 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6967
6968 const auto info_sources_opts
6969 = make_info_sources_options_def_group (nullptr);
6970
6971 static std::string info_sources_help
6972 = gdb::option::build_help (_("\
6973 All source files in the program or those matching REGEXP.\n\
6974 Usage: info sources [OPTION]... [REGEXP]\n\
6975 By default, REGEXP is used to match anywhere in the filename.\n\
6976 \n\
6977 Options:\n\
6978 %OPTIONS%"),
6979 info_sources_opts);
6980
6981 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6982 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6983
6984 c = add_info ("modules", info_modules_command,
6985 _("All module names, or those matching REGEXP."));
6986 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6987
6988 add_basic_prefix_cmd ("module", class_info, _("\
6989 Print information about modules."),
6990 &info_module_cmdlist, 0, &infolist);
6991
6992 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6993 Display functions arranged by modules.\n\
6994 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6995 Print a summary of all functions within each Fortran module, grouped by\n\
6996 module and file. For each function the line on which the function is\n\
6997 defined is given along with the type signature and name of the function.\n\
6998 \n\
6999 If REGEXP is provided then only functions whose name matches REGEXP are\n\
7000 listed. If MODREGEXP is provided then only functions in modules matching\n\
7001 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
7002 type signature matches TYPEREGEXP are listed.\n\
7003 \n\
7004 The -q flag suppresses printing some header information."),
7005 &info_module_cmdlist);
7006 set_cmd_completer_handle_brkchars
7007 (c, info_module_var_func_command_completer);
7008
7009 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
7010 Display variables arranged by modules.\n\
7011 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
7012 Print a summary of all variables within each Fortran module, grouped by\n\
7013 module and file. For each variable the line on which the variable is\n\
7014 defined is given along with the type and name of the variable.\n\
7015 \n\
7016 If REGEXP is provided then only variables whose name matches REGEXP are\n\
7017 listed. If MODREGEXP is provided then only variables in modules matching\n\
7018 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
7019 type matches TYPEREGEXP are listed.\n\
7020 \n\
7021 The -q flag suppresses printing some header information."),
7022 &info_module_cmdlist);
7023 set_cmd_completer_handle_brkchars
7024 (c, info_module_var_func_command_completer);
7025
7026 add_com ("rbreak", class_breakpoint, rbreak_command,
7027 _("Set a breakpoint for all functions matching REGEXP."));
7028
7029 add_setshow_enum_cmd ("multiple-symbols", no_class,
7030 multiple_symbols_modes, &multiple_symbols_mode,
7031 _("\
7032 Set how the debugger handles ambiguities in expressions."), _("\
7033 Show how the debugger handles ambiguities in expressions."), _("\
7034 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
7035 NULL, NULL, &setlist, &showlist);
7036
7037 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
7038 &basenames_may_differ, _("\
7039 Set whether a source file may have multiple base names."), _("\
7040 Show whether a source file may have multiple base names."), _("\
7041 (A \"base name\" is the name of a file with the directory part removed.\n\
7042 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
7043 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
7044 before comparing them. Canonicalization is an expensive operation,\n\
7045 but it allows the same file be known by more than one base name.\n\
7046 If not set (the default), all source files are assumed to have just\n\
7047 one base name, and gdb will do file name comparisons more efficiently."),
7048 NULL, NULL,
7049 &setlist, &showlist);
7050
7051 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
7052 _("Set debugging of symbol table creation."),
7053 _("Show debugging of symbol table creation."), _("\
7054 When enabled (non-zero), debugging messages are printed when building\n\
7055 symbol tables. A value of 1 (one) normally provides enough information.\n\
7056 A value greater than 1 provides more verbose information."),
7057 NULL,
7058 NULL,
7059 &setdebuglist, &showdebuglist);
7060
7061 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
7062 _("\
7063 Set debugging of symbol lookup."), _("\
7064 Show debugging of symbol lookup."), _("\
7065 When enabled (non-zero), symbol lookups are logged."),
7066 NULL, NULL,
7067 &setdebuglist, &showdebuglist);
7068
7069 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
7070 &new_symbol_cache_size,
7071 _("Set the size of the symbol cache."),
7072 _("Show the size of the symbol cache."), _("\
7073 The size of the symbol cache.\n\
7074 If zero then the symbol cache is disabled."),
7075 set_symbol_cache_size_handler, NULL,
7076 &maintenance_set_cmdlist,
7077 &maintenance_show_cmdlist);
7078
7079 add_setshow_boolean_cmd ("ignore-prologue-end-flag", no_class,
7080 &ignore_prologue_end_flag,
7081 _("Set if the PROLOGUE-END flag is ignored."),
7082 _("Show if the PROLOGUE-END flag is ignored."),
7083 _("\
7084 The PROLOGUE-END flag from the line-table entries is used to place \
7085 breakpoints past the prologue of functions. Disabeling its use use forces \
7086 the use of prologue scanners."),
7087 nullptr, nullptr,
7088 &maintenance_set_cmdlist,
7089 &maintenance_show_cmdlist);
7090
7091
7092 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
7093 _("Dump the symbol cache for each program space."),
7094 &maintenanceprintlist);
7095
7096 add_cmd ("symbol-cache-statistics", class_maintenance,
7097 maintenance_print_symbol_cache_statistics,
7098 _("Print symbol cache statistics for each program space."),
7099 &maintenanceprintlist);
7100
7101 cmd_list_element *maintenance_flush_symbol_cache_cmd
7102 = add_cmd ("symbol-cache", class_maintenance,
7103 maintenance_flush_symbol_cache,
7104 _("Flush the symbol cache for each program space."),
7105 &maintenanceflushlist);
7106 c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd,
7107 class_maintenance, 0, &maintenancelist);
7108 deprecate_cmd (c, "maintenancelist flush symbol-cache");
7109
7110 gdb::observers::executable_changed.attach (symtab_observer_executable_changed,
7111 "symtab");
7112 gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab");
7113 gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab");
7114 }