]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.c
* symtab.c: Remove trailing whitespace throughout the file.
[thirdparty/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 /* Prototypes for local functions */
65
66 static void completion_list_add_name (char *, char *, int, char *, char *);
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static void output_source_filename (const char *, int *);
79
80 static int find_line_common (struct linetable *, int, int *);
81
82 /* This one is used by linespec.c */
83
84 char *operator_chars (char *p, char **end);
85
86 static struct symbol *lookup_symbol_aux (const char *name,
87 const char *linkage_name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language,
91 int *is_a_field_of_this);
92
93 static
94 struct symbol *lookup_symbol_aux_local (const char *name,
95 const char *linkage_name,
96 const struct block *block,
97 const domain_enum domain);
98
99 static
100 struct symbol *lookup_symbol_aux_symtabs (int block_index,
101 const char *name,
102 const char *linkage_name,
103 const domain_enum domain);
104
105 static
106 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
107 const char *name,
108 const char *linkage_name,
109 const domain_enum domain);
110
111 static int file_matches (char *, char **, int);
112
113 static void print_symbol_info (domain_enum,
114 struct symtab *, struct symbol *, int, char *);
115
116 static void print_msymbol_info (struct minimal_symbol *);
117
118 static void symtab_symbol_info (char *, domain_enum, int);
119
120 void _initialize_symtab (void);
121
122 /* */
123
124 /* Allow the user to configure the debugger behavior with respect
125 to multiple-choice menus when more than one symbol matches during
126 a symbol lookup. */
127
128 const char multiple_symbols_ask[] = "ask";
129 const char multiple_symbols_all[] = "all";
130 const char multiple_symbols_cancel[] = "cancel";
131 static const char *multiple_symbols_modes[] =
132 {
133 multiple_symbols_ask,
134 multiple_symbols_all,
135 multiple_symbols_cancel,
136 NULL
137 };
138 static const char *multiple_symbols_mode = multiple_symbols_all;
139
140 /* Read-only accessor to AUTO_SELECT_MODE. */
141
142 const char *
143 multiple_symbols_select_mode (void)
144 {
145 return multiple_symbols_mode;
146 }
147
148 /* The single non-language-specific builtin type */
149 struct type *builtin_type_error;
150
151 /* Block in which the most recently searched-for symbol was found.
152 Might be better to make this a parameter to lookup_symbol and
153 value_of_this. */
154
155 const struct block *block_found;
156
157 /* Check for a symtab of a specific name; first in symtabs, then in
158 psymtabs. *If* there is no '/' in the name, a match after a '/'
159 in the symtab filename will also work. */
160
161 struct symtab *
162 lookup_symtab (const char *name)
163 {
164 struct symtab *s;
165 struct partial_symtab *ps;
166 struct objfile *objfile;
167 char *real_path = NULL;
168 char *full_path = NULL;
169
170 /* Here we are interested in canonicalizing an absolute path, not
171 absolutizing a relative path. */
172 if (IS_ABSOLUTE_PATH (name))
173 {
174 full_path = xfullpath (name);
175 make_cleanup (xfree, full_path);
176 real_path = gdb_realpath (name);
177 make_cleanup (xfree, real_path);
178 }
179
180 got_symtab:
181
182 /* First, search for an exact match */
183
184 ALL_SYMTABS (objfile, s)
185 {
186 if (FILENAME_CMP (name, s->filename) == 0)
187 {
188 return s;
189 }
190
191 /* If the user gave us an absolute path, try to find the file in
192 this symtab and use its absolute path. */
193
194 if (full_path != NULL)
195 {
196 const char *fp = symtab_to_fullname (s);
197 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
198 {
199 return s;
200 }
201 }
202
203 if (real_path != NULL)
204 {
205 char *fullname = symtab_to_fullname (s);
206 if (fullname != NULL)
207 {
208 char *rp = gdb_realpath (fullname);
209 make_cleanup (xfree, rp);
210 if (FILENAME_CMP (real_path, rp) == 0)
211 {
212 return s;
213 }
214 }
215 }
216 }
217
218 /* Now, search for a matching tail (only if name doesn't have any dirs) */
219
220 if (lbasename (name) == name)
221 ALL_SYMTABS (objfile, s)
222 {
223 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
224 return s;
225 }
226
227 /* Same search rules as above apply here, but now we look thru the
228 psymtabs. */
229
230 ps = lookup_partial_symtab (name);
231 if (!ps)
232 return (NULL);
233
234 if (ps->readin)
235 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
236 ps->filename, name);
237
238 s = PSYMTAB_TO_SYMTAB (ps);
239
240 if (s)
241 return s;
242
243 /* At this point, we have located the psymtab for this file, but
244 the conversion to a symtab has failed. This usually happens
245 when we are looking up an include file. In this case,
246 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
247 been created. So, we need to run through the symtabs again in
248 order to find the file.
249 XXX - This is a crock, and should be fixed inside of the the
250 symbol parsing routines. */
251 goto got_symtab;
252 }
253
254 /* Lookup the partial symbol table of a source file named NAME.
255 *If* there is no '/' in the name, a match after a '/'
256 in the psymtab filename will also work. */
257
258 struct partial_symtab *
259 lookup_partial_symtab (const char *name)
260 {
261 struct partial_symtab *pst;
262 struct objfile *objfile;
263 char *full_path = NULL;
264 char *real_path = NULL;
265
266 /* Here we are interested in canonicalizing an absolute path, not
267 absolutizing a relative path. */
268 if (IS_ABSOLUTE_PATH (name))
269 {
270 full_path = xfullpath (name);
271 make_cleanup (xfree, full_path);
272 real_path = gdb_realpath (name);
273 make_cleanup (xfree, real_path);
274 }
275
276 ALL_PSYMTABS (objfile, pst)
277 {
278 if (FILENAME_CMP (name, pst->filename) == 0)
279 {
280 return (pst);
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (full_path != NULL)
286 {
287 psymtab_to_fullname (pst);
288 if (pst->fullname != NULL
289 && FILENAME_CMP (full_path, pst->fullname) == 0)
290 {
291 return pst;
292 }
293 }
294
295 if (real_path != NULL)
296 {
297 char *rp = NULL;
298 psymtab_to_fullname (pst);
299 if (pst->fullname != NULL)
300 {
301 rp = gdb_realpath (pst->fullname);
302 make_cleanup (xfree, rp);
303 }
304 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
305 {
306 return pst;
307 }
308 }
309 }
310
311 /* Now, search for a matching tail (only if name doesn't have any dirs) */
312
313 if (lbasename (name) == name)
314 ALL_PSYMTABS (objfile, pst)
315 {
316 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
317 return (pst);
318 }
319
320 return (NULL);
321 }
322 \f
323 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
324 full method name, which consist of the class name (from T), the unadorned
325 method name from METHOD_ID, and the signature for the specific overload,
326 specified by SIGNATURE_ID. Note that this function is g++ specific. */
327
328 char *
329 gdb_mangle_name (struct type *type, int method_id, int signature_id)
330 {
331 int mangled_name_len;
332 char *mangled_name;
333 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
334 struct fn_field *method = &f[signature_id];
335 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
336 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
337 char *newname = type_name_no_tag (type);
338
339 /* Does the form of physname indicate that it is the full mangled name
340 of a constructor (not just the args)? */
341 int is_full_physname_constructor;
342
343 int is_constructor;
344 int is_destructor = is_destructor_name (physname);
345 /* Need a new type prefix. */
346 char *const_prefix = method->is_const ? "C" : "";
347 char *volatile_prefix = method->is_volatile ? "V" : "";
348 char buf[20];
349 int len = (newname == NULL ? 0 : strlen (newname));
350
351 /* Nothing to do if physname already contains a fully mangled v3 abi name
352 or an operator name. */
353 if ((physname[0] == '_' && physname[1] == 'Z')
354 || is_operator_name (field_name))
355 return xstrdup (physname);
356
357 is_full_physname_constructor = is_constructor_name (physname);
358
359 is_constructor =
360 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
361
362 if (!is_destructor)
363 is_destructor = (strncmp (physname, "__dt", 4) == 0);
364
365 if (is_destructor || is_full_physname_constructor)
366 {
367 mangled_name = (char *) xmalloc (strlen (physname) + 1);
368 strcpy (mangled_name, physname);
369 return mangled_name;
370 }
371
372 if (len == 0)
373 {
374 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
375 }
376 else if (physname[0] == 't' || physname[0] == 'Q')
377 {
378 /* The physname for template and qualified methods already includes
379 the class name. */
380 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
381 newname = NULL;
382 len = 0;
383 }
384 else
385 {
386 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
387 }
388 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
389 + strlen (buf) + len + strlen (physname) + 1);
390
391 {
392 mangled_name = (char *) xmalloc (mangled_name_len);
393 if (is_constructor)
394 mangled_name[0] = '\0';
395 else
396 strcpy (mangled_name, field_name);
397 }
398 strcat (mangled_name, buf);
399 /* If the class doesn't have a name, i.e. newname NULL, then we just
400 mangle it using 0 for the length of the class. Thus it gets mangled
401 as something starting with `::' rather than `classname::'. */
402 if (newname != NULL)
403 strcat (mangled_name, newname);
404
405 strcat (mangled_name, physname);
406 return (mangled_name);
407 }
408
409 \f
410 /* Initialize the language dependent portion of a symbol
411 depending upon the language for the symbol. */
412 void
413 symbol_init_language_specific (struct general_symbol_info *gsymbol,
414 enum language language)
415 {
416 gsymbol->language = language;
417 if (gsymbol->language == language_cplus
418 || gsymbol->language == language_java
419 || gsymbol->language == language_objc)
420 {
421 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
422 }
423 else
424 {
425 memset (&gsymbol->language_specific, 0,
426 sizeof (gsymbol->language_specific));
427 }
428 }
429
430 /* Functions to initialize a symbol's mangled name. */
431
432 /* Create the hash table used for demangled names. Each hash entry is
433 a pair of strings; one for the mangled name and one for the demangled
434 name. The entry is hashed via just the mangled name. */
435
436 static void
437 create_demangled_names_hash (struct objfile *objfile)
438 {
439 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
440 The hash table code will round this up to the next prime number.
441 Choosing a much larger table size wastes memory, and saves only about
442 1% in symbol reading. */
443
444 objfile->demangled_names_hash = htab_create_alloc
445 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
446 NULL, xcalloc, xfree);
447 }
448
449 /* Try to determine the demangled name for a symbol, based on the
450 language of that symbol. If the language is set to language_auto,
451 it will attempt to find any demangling algorithm that works and
452 then set the language appropriately. The returned name is allocated
453 by the demangler and should be xfree'd. */
454
455 static char *
456 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
457 const char *mangled)
458 {
459 char *demangled = NULL;
460
461 if (gsymbol->language == language_unknown)
462 gsymbol->language = language_auto;
463
464 if (gsymbol->language == language_objc
465 || gsymbol->language == language_auto)
466 {
467 demangled =
468 objc_demangle (mangled, 0);
469 if (demangled != NULL)
470 {
471 gsymbol->language = language_objc;
472 return demangled;
473 }
474 }
475 if (gsymbol->language == language_cplus
476 || gsymbol->language == language_auto)
477 {
478 demangled =
479 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
480 if (demangled != NULL)
481 {
482 gsymbol->language = language_cplus;
483 return demangled;
484 }
485 }
486 if (gsymbol->language == language_java)
487 {
488 demangled =
489 cplus_demangle (mangled,
490 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
491 if (demangled != NULL)
492 {
493 gsymbol->language = language_java;
494 return demangled;
495 }
496 }
497 return NULL;
498 }
499
500 /* Set both the mangled and demangled (if any) names for GSYMBOL based
501 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
502 is used, and the memory comes from that objfile's objfile_obstack.
503 LINKAGE_NAME is copied, so the pointer can be discarded after
504 calling this function. */
505
506 /* We have to be careful when dealing with Java names: when we run
507 into a Java minimal symbol, we don't know it's a Java symbol, so it
508 gets demangled as a C++ name. This is unfortunate, but there's not
509 much we can do about it: but when demangling partial symbols and
510 regular symbols, we'd better not reuse the wrong demangled name.
511 (See PR gdb/1039.) We solve this by putting a distinctive prefix
512 on Java names when storing them in the hash table. */
513
514 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
515 don't mind the Java prefix so much: different languages have
516 different demangling requirements, so it's only natural that we
517 need to keep language data around in our demangling cache. But
518 it's not good that the minimal symbol has the wrong demangled name.
519 Unfortunately, I can't think of any easy solution to that
520 problem. */
521
522 #define JAVA_PREFIX "##JAVA$$"
523 #define JAVA_PREFIX_LEN 8
524
525 void
526 symbol_set_names (struct general_symbol_info *gsymbol,
527 const char *linkage_name, int len, struct objfile *objfile)
528 {
529 char **slot;
530 /* A 0-terminated copy of the linkage name. */
531 const char *linkage_name_copy;
532 /* A copy of the linkage name that might have a special Java prefix
533 added to it, for use when looking names up in the hash table. */
534 const char *lookup_name;
535 /* The length of lookup_name. */
536 int lookup_len;
537
538 if (objfile->demangled_names_hash == NULL)
539 create_demangled_names_hash (objfile);
540
541 if (gsymbol->language == language_ada)
542 {
543 /* In Ada, we do the symbol lookups using the mangled name, so
544 we can save some space by not storing the demangled name.
545
546 As a side note, we have also observed some overlap between
547 the C++ mangling and Ada mangling, similarly to what has
548 been observed with Java. Because we don't store the demangled
549 name with the symbol, we don't need to use the same trick
550 as Java. */
551 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
552 memcpy (gsymbol->name, linkage_name, len);
553 gsymbol->name[len] = '\0';
554 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
555
556 return;
557 }
558
559 /* The stabs reader generally provides names that are not
560 NUL-terminated; most of the other readers don't do this, so we
561 can just use the given copy, unless we're in the Java case. */
562 if (gsymbol->language == language_java)
563 {
564 char *alloc_name;
565 lookup_len = len + JAVA_PREFIX_LEN;
566
567 alloc_name = alloca (lookup_len + 1);
568 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
569 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
570 alloc_name[lookup_len] = '\0';
571
572 lookup_name = alloc_name;
573 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
574 }
575 else if (linkage_name[len] != '\0')
576 {
577 char *alloc_name;
578 lookup_len = len;
579
580 alloc_name = alloca (lookup_len + 1);
581 memcpy (alloc_name, linkage_name, len);
582 alloc_name[lookup_len] = '\0';
583
584 lookup_name = alloc_name;
585 linkage_name_copy = alloc_name;
586 }
587 else
588 {
589 lookup_len = len;
590 lookup_name = linkage_name;
591 linkage_name_copy = linkage_name;
592 }
593
594 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
595 lookup_name, INSERT);
596
597 /* If this name is not in the hash table, add it. */
598 if (*slot == NULL)
599 {
600 char *demangled_name = symbol_find_demangled_name (gsymbol,
601 linkage_name_copy);
602 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
603
604 /* If there is a demangled name, place it right after the mangled name.
605 Otherwise, just place a second zero byte after the end of the mangled
606 name. */
607 *slot = obstack_alloc (&objfile->objfile_obstack,
608 lookup_len + demangled_len + 2);
609 memcpy (*slot, lookup_name, lookup_len + 1);
610 if (demangled_name != NULL)
611 {
612 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
613 xfree (demangled_name);
614 }
615 else
616 (*slot)[lookup_len + 1] = '\0';
617 }
618
619 gsymbol->name = *slot + lookup_len - len;
620 if ((*slot)[lookup_len + 1] != '\0')
621 gsymbol->language_specific.cplus_specific.demangled_name
622 = &(*slot)[lookup_len + 1];
623 else
624 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
625 }
626
627 /* Return the source code name of a symbol. In languages where
628 demangling is necessary, this is the demangled name. */
629
630 char *
631 symbol_natural_name (const struct general_symbol_info *gsymbol)
632 {
633 switch (gsymbol->language)
634 {
635 case language_cplus:
636 case language_java:
637 case language_objc:
638 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
639 return gsymbol->language_specific.cplus_specific.demangled_name;
640 break;
641 case language_ada:
642 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
643 return gsymbol->language_specific.cplus_specific.demangled_name;
644 else
645 return ada_decode_symbol (gsymbol);
646 break;
647 default:
648 break;
649 }
650 return gsymbol->name;
651 }
652
653 /* Return the demangled name for a symbol based on the language for
654 that symbol. If no demangled name exists, return NULL. */
655 char *
656 symbol_demangled_name (const struct general_symbol_info *gsymbol)
657 {
658 switch (gsymbol->language)
659 {
660 case language_cplus:
661 case language_java:
662 case language_objc:
663 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
664 return gsymbol->language_specific.cplus_specific.demangled_name;
665 break;
666 case language_ada:
667 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
668 return gsymbol->language_specific.cplus_specific.demangled_name;
669 else
670 return ada_decode_symbol (gsymbol);
671 break;
672 default:
673 break;
674 }
675 return NULL;
676 }
677
678 /* Return the search name of a symbol---generally the demangled or
679 linkage name of the symbol, depending on how it will be searched for.
680 If there is no distinct demangled name, then returns the same value
681 (same pointer) as SYMBOL_LINKAGE_NAME. */
682 char *
683 symbol_search_name (const struct general_symbol_info *gsymbol)
684 {
685 if (gsymbol->language == language_ada)
686 return gsymbol->name;
687 else
688 return symbol_natural_name (gsymbol);
689 }
690
691 /* Initialize the structure fields to zero values. */
692 void
693 init_sal (struct symtab_and_line *sal)
694 {
695 sal->symtab = 0;
696 sal->section = 0;
697 sal->line = 0;
698 sal->pc = 0;
699 sal->end = 0;
700 sal->explicit_pc = 0;
701 sal->explicit_line = 0;
702 }
703 \f
704
705 /* Return 1 if the two sections are the same, or if they could
706 plausibly be copies of each other, one in an original object
707 file and another in a separated debug file. */
708
709 int
710 matching_obj_sections (struct obj_section *obj_first,
711 struct obj_section *obj_second)
712 {
713 asection *first = obj_first? obj_first->the_bfd_section : NULL;
714 asection *second = obj_second? obj_second->the_bfd_section : NULL;
715 struct objfile *obj;
716
717 /* If they're the same section, then they match. */
718 if (first == second)
719 return 1;
720
721 /* If either is NULL, give up. */
722 if (first == NULL || second == NULL)
723 return 0;
724
725 /* This doesn't apply to absolute symbols. */
726 if (first->owner == NULL || second->owner == NULL)
727 return 0;
728
729 /* If they're in the same object file, they must be different sections. */
730 if (first->owner == second->owner)
731 return 0;
732
733 /* Check whether the two sections are potentially corresponding. They must
734 have the same size, address, and name. We can't compare section indexes,
735 which would be more reliable, because some sections may have been
736 stripped. */
737 if (bfd_get_section_size (first) != bfd_get_section_size (second))
738 return 0;
739
740 /* In-memory addresses may start at a different offset, relativize them. */
741 if (bfd_get_section_vma (first->owner, first)
742 - bfd_get_start_address (first->owner)
743 != bfd_get_section_vma (second->owner, second)
744 - bfd_get_start_address (second->owner))
745 return 0;
746
747 if (bfd_get_section_name (first->owner, first) == NULL
748 || bfd_get_section_name (second->owner, second) == NULL
749 || strcmp (bfd_get_section_name (first->owner, first),
750 bfd_get_section_name (second->owner, second)) != 0)
751 return 0;
752
753 /* Otherwise check that they are in corresponding objfiles. */
754
755 ALL_OBJFILES (obj)
756 if (obj->obfd == first->owner)
757 break;
758 gdb_assert (obj != NULL);
759
760 if (obj->separate_debug_objfile != NULL
761 && obj->separate_debug_objfile->obfd == second->owner)
762 return 1;
763 if (obj->separate_debug_objfile_backlink != NULL
764 && obj->separate_debug_objfile_backlink->obfd == second->owner)
765 return 1;
766
767 return 0;
768 }
769
770 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
771 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
772
773 static struct partial_symtab *
774 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
775 struct partial_symtab *pst,
776 struct minimal_symbol *msymbol)
777 {
778 struct objfile *objfile = pst->objfile;
779 struct partial_symtab *tpst;
780 struct partial_symtab *best_pst = pst;
781 CORE_ADDR best_addr = pst->textlow;
782
783 /* An objfile that has its functions reordered might have
784 many partial symbol tables containing the PC, but
785 we want the partial symbol table that contains the
786 function containing the PC. */
787 if (!(objfile->flags & OBJF_REORDERED) &&
788 section == 0) /* can't validate section this way */
789 return pst;
790
791 if (msymbol == NULL)
792 return (pst);
793
794 /* The code range of partial symtabs sometimes overlap, so, in
795 the loop below, we need to check all partial symtabs and
796 find the one that fits better for the given PC address. We
797 select the partial symtab that contains a symbol whose
798 address is closest to the PC address. By closest we mean
799 that find_pc_sect_symbol returns the symbol with address
800 that is closest and still less than the given PC. */
801 for (tpst = pst; tpst != NULL; tpst = tpst->next)
802 {
803 if (pc >= tpst->textlow && pc < tpst->texthigh)
804 {
805 struct partial_symbol *p;
806 CORE_ADDR this_addr;
807
808 /* NOTE: This assumes that every psymbol has a
809 corresponding msymbol, which is not necessarily
810 true; the debug info might be much richer than the
811 object's symbol table. */
812 p = find_pc_sect_psymbol (tpst, pc, section);
813 if (p != NULL
814 && SYMBOL_VALUE_ADDRESS (p)
815 == SYMBOL_VALUE_ADDRESS (msymbol))
816 return tpst;
817
818 /* Also accept the textlow value of a psymtab as a
819 "symbol", to provide some support for partial
820 symbol tables with line information but no debug
821 symbols (e.g. those produced by an assembler). */
822 if (p != NULL)
823 this_addr = SYMBOL_VALUE_ADDRESS (p);
824 else
825 this_addr = tpst->textlow;
826
827 /* Check whether it is closer than our current
828 BEST_ADDR. Since this symbol address is
829 necessarily lower or equal to PC, the symbol closer
830 to PC is the symbol which address is the highest.
831 This way we return the psymtab which contains such
832 best match symbol. This can help in cases where the
833 symbol information/debuginfo is not complete, like
834 for instance on IRIX6 with gcc, where no debug info
835 is emitted for statics. (See also the nodebug.exp
836 testcase.) */
837 if (this_addr > best_addr)
838 {
839 best_addr = this_addr;
840 best_pst = tpst;
841 }
842 }
843 }
844 return best_pst;
845 }
846
847 /* Find which partial symtab contains PC and SECTION. Return 0 if
848 none. We return the psymtab that contains a symbol whose address
849 exactly matches PC, or, if we cannot find an exact match, the
850 psymtab that contains a symbol whose address is closest to PC. */
851 struct partial_symtab *
852 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
853 {
854 struct objfile *objfile;
855 struct minimal_symbol *msymbol;
856
857 /* If we know that this is not a text address, return failure. This is
858 necessary because we loop based on texthigh and textlow, which do
859 not include the data ranges. */
860 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
861 if (msymbol
862 && (MSYMBOL_TYPE (msymbol) == mst_data
863 || MSYMBOL_TYPE (msymbol) == mst_bss
864 || MSYMBOL_TYPE (msymbol) == mst_abs
865 || MSYMBOL_TYPE (msymbol) == mst_file_data
866 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
867 return NULL;
868
869 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
870 than the later used TEXTLOW/TEXTHIGH one. */
871
872 ALL_OBJFILES (objfile)
873 if (objfile->psymtabs_addrmap != NULL)
874 {
875 struct partial_symtab *pst;
876
877 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
878 if (pst != NULL)
879 {
880 /* FIXME: addrmaps currently do not handle overlayed sections,
881 so fall back to the non-addrmap case if we're debugging
882 overlays and the addrmap returned the wrong section. */
883 if (overlay_debugging && msymbol && section)
884 {
885 struct partial_symbol *p;
886 /* NOTE: This assumes that every psymbol has a
887 corresponding msymbol, which is not necessarily
888 true; the debug info might be much richer than the
889 object's symbol table. */
890 p = find_pc_sect_psymbol (pst, pc, section);
891 if (!p
892 || SYMBOL_VALUE_ADDRESS (p)
893 != SYMBOL_VALUE_ADDRESS (msymbol))
894 continue;
895 }
896
897 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
898 PSYMTABS_ADDRMAP we used has already the best 1-byte
899 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
900 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
901 overlap. */
902
903 return pst;
904 }
905 }
906
907 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
908 which still have no corresponding full SYMTABs read. But it is not
909 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
910 so far. */
911
912 ALL_OBJFILES (objfile)
913 {
914 struct partial_symtab *pst;
915
916 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
917 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
918 debug info type in single OBJFILE. */
919
920 ALL_OBJFILE_PSYMTABS (objfile, pst)
921 if (pc >= pst->textlow && pc < pst->texthigh)
922 {
923 struct partial_symtab *best_pst;
924
925 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
926 msymbol);
927 if (best_pst != NULL)
928 return best_pst;
929 }
930 }
931
932 return NULL;
933 }
934
935 /* Find which partial symtab contains PC. Return 0 if none.
936 Backward compatibility, no section */
937
938 struct partial_symtab *
939 find_pc_psymtab (CORE_ADDR pc)
940 {
941 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
942 }
943
944 /* Find which partial symbol within a psymtab matches PC and SECTION.
945 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
946
947 struct partial_symbol *
948 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
949 struct obj_section *section)
950 {
951 struct partial_symbol *best = NULL, *p, **pp;
952 CORE_ADDR best_pc;
953
954 if (!psymtab)
955 psymtab = find_pc_sect_psymtab (pc, section);
956 if (!psymtab)
957 return 0;
958
959 /* Cope with programs that start at address 0 */
960 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
961
962 /* Search the global symbols as well as the static symbols, so that
963 find_pc_partial_function doesn't use a minimal symbol and thus
964 cache a bad endaddr. */
965 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
966 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
967 < psymtab->n_global_syms);
968 pp++)
969 {
970 p = *pp;
971 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
972 && SYMBOL_CLASS (p) == LOC_BLOCK
973 && pc >= SYMBOL_VALUE_ADDRESS (p)
974 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
975 || (psymtab->textlow == 0
976 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
977 {
978 if (section) /* match on a specific section */
979 {
980 fixup_psymbol_section (p, psymtab->objfile);
981 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
982 continue;
983 }
984 best_pc = SYMBOL_VALUE_ADDRESS (p);
985 best = p;
986 }
987 }
988
989 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
990 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
991 < psymtab->n_static_syms);
992 pp++)
993 {
994 p = *pp;
995 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
996 && SYMBOL_CLASS (p) == LOC_BLOCK
997 && pc >= SYMBOL_VALUE_ADDRESS (p)
998 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
999 || (psymtab->textlow == 0
1000 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1001 {
1002 if (section) /* match on a specific section */
1003 {
1004 fixup_psymbol_section (p, psymtab->objfile);
1005 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1006 continue;
1007 }
1008 best_pc = SYMBOL_VALUE_ADDRESS (p);
1009 best = p;
1010 }
1011 }
1012
1013 return best;
1014 }
1015
1016 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1017 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1018
1019 struct partial_symbol *
1020 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1021 {
1022 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1023 }
1024 \f
1025 /* Debug symbols usually don't have section information. We need to dig that
1026 out of the minimal symbols and stash that in the debug symbol. */
1027
1028 static void
1029 fixup_section (struct general_symbol_info *ginfo,
1030 CORE_ADDR addr, struct objfile *objfile)
1031 {
1032 struct minimal_symbol *msym;
1033
1034 /* First, check whether a minimal symbol with the same name exists
1035 and points to the same address. The address check is required
1036 e.g. on PowerPC64, where the minimal symbol for a function will
1037 point to the function descriptor, while the debug symbol will
1038 point to the actual function code. */
1039 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1040 if (msym)
1041 {
1042 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1043 ginfo->section = SYMBOL_SECTION (msym);
1044 }
1045 else
1046 {
1047 /* Static, function-local variables do appear in the linker
1048 (minimal) symbols, but are frequently given names that won't
1049 be found via lookup_minimal_symbol(). E.g., it has been
1050 observed in frv-uclinux (ELF) executables that a static,
1051 function-local variable named "foo" might appear in the
1052 linker symbols as "foo.6" or "foo.3". Thus, there is no
1053 point in attempting to extend the lookup-by-name mechanism to
1054 handle this case due to the fact that there can be multiple
1055 names.
1056
1057 So, instead, search the section table when lookup by name has
1058 failed. The ``addr'' and ``endaddr'' fields may have already
1059 been relocated. If so, the relocation offset (i.e. the
1060 ANOFFSET value) needs to be subtracted from these values when
1061 performing the comparison. We unconditionally subtract it,
1062 because, when no relocation has been performed, the ANOFFSET
1063 value will simply be zero.
1064
1065 The address of the symbol whose section we're fixing up HAS
1066 NOT BEEN adjusted (relocated) yet. It can't have been since
1067 the section isn't yet known and knowing the section is
1068 necessary in order to add the correct relocation value. In
1069 other words, we wouldn't even be in this function (attempting
1070 to compute the section) if it were already known.
1071
1072 Note that it is possible to search the minimal symbols
1073 (subtracting the relocation value if necessary) to find the
1074 matching minimal symbol, but this is overkill and much less
1075 efficient. It is not necessary to find the matching minimal
1076 symbol, only its section.
1077
1078 Note that this technique (of doing a section table search)
1079 can fail when unrelocated section addresses overlap. For
1080 this reason, we still attempt a lookup by name prior to doing
1081 a search of the section table. */
1082
1083 struct obj_section *s;
1084 ALL_OBJFILE_OSECTIONS (objfile, s)
1085 {
1086 int idx = s->the_bfd_section->index;
1087 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1088
1089 if (obj_section_addr (s) - offset <= addr
1090 && addr < obj_section_endaddr (s) - offset)
1091 {
1092 ginfo->obj_section = s;
1093 ginfo->section = idx;
1094 return;
1095 }
1096 }
1097 }
1098 }
1099
1100 struct symbol *
1101 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1102 {
1103 CORE_ADDR addr;
1104
1105 if (!sym)
1106 return NULL;
1107
1108 if (SYMBOL_OBJ_SECTION (sym))
1109 return sym;
1110
1111 /* We either have an OBJFILE, or we can get at it from the sym's
1112 symtab. Anything else is a bug. */
1113 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1114
1115 if (objfile == NULL)
1116 objfile = SYMBOL_SYMTAB (sym)->objfile;
1117
1118 /* We should have an objfile by now. */
1119 gdb_assert (objfile);
1120
1121 switch (SYMBOL_CLASS (sym))
1122 {
1123 case LOC_STATIC:
1124 case LOC_LABEL:
1125 addr = SYMBOL_VALUE_ADDRESS (sym);
1126 break;
1127 case LOC_BLOCK:
1128 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1129 break;
1130
1131 default:
1132 /* Nothing else will be listed in the minsyms -- no use looking
1133 it up. */
1134 return sym;
1135 }
1136
1137 fixup_section (&sym->ginfo, addr, objfile);
1138
1139 return sym;
1140 }
1141
1142 struct partial_symbol *
1143 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1144 {
1145 CORE_ADDR addr;
1146
1147 if (!psym)
1148 return NULL;
1149
1150 if (SYMBOL_OBJ_SECTION (psym))
1151 return psym;
1152
1153 gdb_assert (objfile);
1154
1155 switch (SYMBOL_CLASS (psym))
1156 {
1157 case LOC_STATIC:
1158 case LOC_LABEL:
1159 case LOC_BLOCK:
1160 addr = SYMBOL_VALUE_ADDRESS (psym);
1161 break;
1162 default:
1163 /* Nothing else will be listed in the minsyms -- no use looking
1164 it up. */
1165 return psym;
1166 }
1167
1168 fixup_section (&psym->ginfo, addr, objfile);
1169
1170 return psym;
1171 }
1172
1173 /* Find the definition for a specified symbol name NAME
1174 in domain DOMAIN, visible from lexical block BLOCK.
1175 Returns the struct symbol pointer, or zero if no symbol is found.
1176 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1177 NAME is a field of the current implied argument `this'. If so set
1178 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1179 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1180 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1181
1182 /* This function has a bunch of loops in it and it would seem to be
1183 attractive to put in some QUIT's (though I'm not really sure
1184 whether it can run long enough to be really important). But there
1185 are a few calls for which it would appear to be bad news to quit
1186 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1187 that there is C++ code below which can error(), but that probably
1188 doesn't affect these calls since they are looking for a known
1189 variable and thus can probably assume it will never hit the C++
1190 code). */
1191
1192 struct symbol *
1193 lookup_symbol_in_language (const char *name, const struct block *block,
1194 const domain_enum domain, enum language lang,
1195 int *is_a_field_of_this)
1196 {
1197 char *demangled_name = NULL;
1198 const char *modified_name = NULL;
1199 const char *mangled_name = NULL;
1200 int needtofreename = 0;
1201 struct symbol *returnval;
1202
1203 modified_name = name;
1204
1205 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1206 we can always binary search. */
1207 if (lang == language_cplus)
1208 {
1209 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1210 if (demangled_name)
1211 {
1212 mangled_name = name;
1213 modified_name = demangled_name;
1214 needtofreename = 1;
1215 }
1216 }
1217 else if (lang == language_java)
1218 {
1219 demangled_name = cplus_demangle (name,
1220 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1221 if (demangled_name)
1222 {
1223 mangled_name = name;
1224 modified_name = demangled_name;
1225 needtofreename = 1;
1226 }
1227 }
1228
1229 if (case_sensitivity == case_sensitive_off)
1230 {
1231 char *copy;
1232 int len, i;
1233
1234 len = strlen (name);
1235 copy = (char *) alloca (len + 1);
1236 for (i= 0; i < len; i++)
1237 copy[i] = tolower (name[i]);
1238 copy[len] = 0;
1239 modified_name = copy;
1240 }
1241
1242 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1243 domain, lang, is_a_field_of_this);
1244 if (needtofreename)
1245 xfree (demangled_name);
1246
1247 return returnval;
1248 }
1249
1250 /* Behave like lookup_symbol_in_language, but performed with the
1251 current language. */
1252
1253 struct symbol *
1254 lookup_symbol (const char *name, const struct block *block,
1255 domain_enum domain, int *is_a_field_of_this)
1256 {
1257 return lookup_symbol_in_language (name, block, domain,
1258 current_language->la_language,
1259 is_a_field_of_this);
1260 }
1261
1262 /* Behave like lookup_symbol except that NAME is the natural name
1263 of the symbol that we're looking for and, if LINKAGE_NAME is
1264 non-NULL, ensure that the symbol's linkage name matches as
1265 well. */
1266
1267 static struct symbol *
1268 lookup_symbol_aux (const char *name, const char *linkage_name,
1269 const struct block *block, const domain_enum domain,
1270 enum language language, int *is_a_field_of_this)
1271 {
1272 struct symbol *sym;
1273 const struct language_defn *langdef;
1274
1275 /* Make sure we do something sensible with is_a_field_of_this, since
1276 the callers that set this parameter to some non-null value will
1277 certainly use it later and expect it to be either 0 or 1.
1278 If we don't set it, the contents of is_a_field_of_this are
1279 undefined. */
1280 if (is_a_field_of_this != NULL)
1281 *is_a_field_of_this = 0;
1282
1283 /* Search specified block and its superiors. Don't search
1284 STATIC_BLOCK or GLOBAL_BLOCK. */
1285
1286 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1287 if (sym != NULL)
1288 return sym;
1289
1290 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1291 check to see if NAME is a field of `this'. */
1292
1293 langdef = language_def (language);
1294
1295 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1296 && block != NULL)
1297 {
1298 struct symbol *sym = NULL;
1299 /* 'this' is only defined in the function's block, so find the
1300 enclosing function block. */
1301 for (; block && !BLOCK_FUNCTION (block);
1302 block = BLOCK_SUPERBLOCK (block));
1303
1304 if (block && !dict_empty (BLOCK_DICT (block)))
1305 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1306 NULL, VAR_DOMAIN);
1307 if (sym)
1308 {
1309 struct type *t = sym->type;
1310
1311 /* I'm not really sure that type of this can ever
1312 be typedefed; just be safe. */
1313 CHECK_TYPEDEF (t);
1314 if (TYPE_CODE (t) == TYPE_CODE_PTR
1315 || TYPE_CODE (t) == TYPE_CODE_REF)
1316 t = TYPE_TARGET_TYPE (t);
1317
1318 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1319 && TYPE_CODE (t) != TYPE_CODE_UNION)
1320 error (_("Internal error: `%s' is not an aggregate"),
1321 langdef->la_name_of_this);
1322
1323 if (check_field (t, name))
1324 {
1325 *is_a_field_of_this = 1;
1326 return NULL;
1327 }
1328 }
1329 }
1330
1331 /* Now do whatever is appropriate for LANGUAGE to look
1332 up static and global variables. */
1333
1334 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1335 if (sym != NULL)
1336 return sym;
1337
1338 /* Now search all static file-level symbols. Not strictly correct,
1339 but more useful than an error. Do the symtabs first, then check
1340 the psymtabs. If a psymtab indicates the existence of the
1341 desired name as a file-level static, then do psymtab-to-symtab
1342 conversion on the fly and return the found symbol. */
1343
1344 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1345 if (sym != NULL)
1346 return sym;
1347
1348 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1349 if (sym != NULL)
1350 return sym;
1351
1352 return NULL;
1353 }
1354
1355 /* Check to see if the symbol is defined in BLOCK or its superiors.
1356 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1357
1358 static struct symbol *
1359 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1360 const struct block *block,
1361 const domain_enum domain)
1362 {
1363 struct symbol *sym;
1364 const struct block *static_block = block_static_block (block);
1365
1366 /* Check if either no block is specified or it's a global block. */
1367
1368 if (static_block == NULL)
1369 return NULL;
1370
1371 while (block != static_block)
1372 {
1373 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1374 if (sym != NULL)
1375 return sym;
1376 block = BLOCK_SUPERBLOCK (block);
1377 }
1378
1379 /* We've reached the static block without finding a result. */
1380
1381 return NULL;
1382 }
1383
1384 /* Look up OBJFILE to BLOCK. */
1385
1386 static struct objfile *
1387 lookup_objfile_from_block (const struct block *block)
1388 {
1389 struct objfile *obj;
1390 struct symtab *s;
1391
1392 if (block == NULL)
1393 return NULL;
1394
1395 block = block_global_block (block);
1396 /* Go through SYMTABS. */
1397 ALL_SYMTABS (obj, s)
1398 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1399 return obj;
1400
1401 return NULL;
1402 }
1403
1404 /* Look up a symbol in a block; if found, fixup the symbol, and set
1405 block_found appropriately. */
1406
1407 struct symbol *
1408 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1409 const struct block *block,
1410 const domain_enum domain)
1411 {
1412 struct symbol *sym;
1413
1414 sym = lookup_block_symbol (block, name, linkage_name, domain);
1415 if (sym)
1416 {
1417 block_found = block;
1418 return fixup_symbol_section (sym, NULL);
1419 }
1420
1421 return NULL;
1422 }
1423
1424 /* Check all global symbols in OBJFILE in symtabs and
1425 psymtabs. */
1426
1427 struct symbol *
1428 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1429 const char *name,
1430 const char *linkage_name,
1431 const domain_enum domain)
1432 {
1433 struct symbol *sym;
1434 struct blockvector *bv;
1435 const struct block *block;
1436 struct symtab *s;
1437 struct partial_symtab *ps;
1438
1439 /* Go through symtabs. */
1440 ALL_OBJFILE_SYMTABS (objfile, s)
1441 {
1442 bv = BLOCKVECTOR (s);
1443 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1444 sym = lookup_block_symbol (block, name, linkage_name, domain);
1445 if (sym)
1446 {
1447 block_found = block;
1448 return fixup_symbol_section (sym, (struct objfile *)objfile);
1449 }
1450 }
1451
1452 /* Now go through psymtabs. */
1453 ALL_OBJFILE_PSYMTABS (objfile, ps)
1454 {
1455 if (!ps->readin
1456 && lookup_partial_symbol (ps, name, linkage_name,
1457 1, domain))
1458 {
1459 s = PSYMTAB_TO_SYMTAB (ps);
1460 bv = BLOCKVECTOR (s);
1461 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1462 sym = lookup_block_symbol (block, name, linkage_name, domain);
1463 return fixup_symbol_section (sym, (struct objfile *)objfile);
1464 }
1465 }
1466
1467 if (objfile->separate_debug_objfile)
1468 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1469 name, linkage_name, domain);
1470
1471 return NULL;
1472 }
1473
1474 /* Check to see if the symbol is defined in one of the symtabs.
1475 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1476 depending on whether or not we want to search global symbols or
1477 static symbols. */
1478
1479 static struct symbol *
1480 lookup_symbol_aux_symtabs (int block_index,
1481 const char *name, const char *linkage_name,
1482 const domain_enum domain)
1483 {
1484 struct symbol *sym;
1485 struct objfile *objfile;
1486 struct blockvector *bv;
1487 const struct block *block;
1488 struct symtab *s;
1489
1490 ALL_PRIMARY_SYMTABS (objfile, s)
1491 {
1492 bv = BLOCKVECTOR (s);
1493 block = BLOCKVECTOR_BLOCK (bv, block_index);
1494 sym = lookup_block_symbol (block, name, linkage_name, domain);
1495 if (sym)
1496 {
1497 block_found = block;
1498 return fixup_symbol_section (sym, objfile);
1499 }
1500 }
1501
1502 return NULL;
1503 }
1504
1505 /* Check to see if the symbol is defined in one of the partial
1506 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1507 STATIC_BLOCK, depending on whether or not we want to search global
1508 symbols or static symbols. */
1509
1510 static struct symbol *
1511 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1512 const char *linkage_name,
1513 const domain_enum domain)
1514 {
1515 struct symbol *sym;
1516 struct objfile *objfile;
1517 struct blockvector *bv;
1518 const struct block *block;
1519 struct partial_symtab *ps;
1520 struct symtab *s;
1521 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1522
1523 ALL_PSYMTABS (objfile, ps)
1524 {
1525 if (!ps->readin
1526 && lookup_partial_symbol (ps, name, linkage_name,
1527 psymtab_index, domain))
1528 {
1529 s = PSYMTAB_TO_SYMTAB (ps);
1530 bv = BLOCKVECTOR (s);
1531 block = BLOCKVECTOR_BLOCK (bv, block_index);
1532 sym = lookup_block_symbol (block, name, linkage_name, domain);
1533 if (!sym)
1534 {
1535 /* This shouldn't be necessary, but as a last resort try
1536 looking in the statics even though the psymtab claimed
1537 the symbol was global, or vice-versa. It's possible
1538 that the psymtab gets it wrong in some cases. */
1539
1540 /* FIXME: carlton/2002-09-30: Should we really do that?
1541 If that happens, isn't it likely to be a GDB error, in
1542 which case we should fix the GDB error rather than
1543 silently dealing with it here? So I'd vote for
1544 removing the check for the symbol in the other
1545 block. */
1546 block = BLOCKVECTOR_BLOCK (bv,
1547 block_index == GLOBAL_BLOCK ?
1548 STATIC_BLOCK : GLOBAL_BLOCK);
1549 sym = lookup_block_symbol (block, name, linkage_name, domain);
1550 if (!sym)
1551 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1552 block_index == GLOBAL_BLOCK ? "global" : "static",
1553 name, ps->filename, name, name);
1554 }
1555 return fixup_symbol_section (sym, objfile);
1556 }
1557 }
1558
1559 return NULL;
1560 }
1561
1562 /* A default version of lookup_symbol_nonlocal for use by languages
1563 that can't think of anything better to do. This implements the C
1564 lookup rules. */
1565
1566 struct symbol *
1567 basic_lookup_symbol_nonlocal (const char *name,
1568 const char *linkage_name,
1569 const struct block *block,
1570 const domain_enum domain)
1571 {
1572 struct symbol *sym;
1573
1574 /* NOTE: carlton/2003-05-19: The comments below were written when
1575 this (or what turned into this) was part of lookup_symbol_aux;
1576 I'm much less worried about these questions now, since these
1577 decisions have turned out well, but I leave these comments here
1578 for posterity. */
1579
1580 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1581 not it would be appropriate to search the current global block
1582 here as well. (That's what this code used to do before the
1583 is_a_field_of_this check was moved up.) On the one hand, it's
1584 redundant with the lookup_symbol_aux_symtabs search that happens
1585 next. On the other hand, if decode_line_1 is passed an argument
1586 like filename:var, then the user presumably wants 'var' to be
1587 searched for in filename. On the third hand, there shouldn't be
1588 multiple global variables all of which are named 'var', and it's
1589 not like decode_line_1 has ever restricted its search to only
1590 global variables in a single filename. All in all, only
1591 searching the static block here seems best: it's correct and it's
1592 cleanest. */
1593
1594 /* NOTE: carlton/2002-12-05: There's also a possible performance
1595 issue here: if you usually search for global symbols in the
1596 current file, then it would be slightly better to search the
1597 current global block before searching all the symtabs. But there
1598 are other factors that have a much greater effect on performance
1599 than that one, so I don't think we should worry about that for
1600 now. */
1601
1602 sym = lookup_symbol_static (name, linkage_name, block, domain);
1603 if (sym != NULL)
1604 return sym;
1605
1606 return lookup_symbol_global (name, linkage_name, block, domain);
1607 }
1608
1609 /* Lookup a symbol in the static block associated to BLOCK, if there
1610 is one; do nothing if BLOCK is NULL or a global block. */
1611
1612 struct symbol *
1613 lookup_symbol_static (const char *name,
1614 const char *linkage_name,
1615 const struct block *block,
1616 const domain_enum domain)
1617 {
1618 const struct block *static_block = block_static_block (block);
1619
1620 if (static_block != NULL)
1621 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1622 else
1623 return NULL;
1624 }
1625
1626 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1627 necessary). */
1628
1629 struct symbol *
1630 lookup_symbol_global (const char *name,
1631 const char *linkage_name,
1632 const struct block *block,
1633 const domain_enum domain)
1634 {
1635 struct symbol *sym = NULL;
1636 struct objfile *objfile = NULL;
1637
1638 /* Call library-specific lookup procedure. */
1639 objfile = lookup_objfile_from_block (block);
1640 if (objfile != NULL)
1641 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1642 if (sym != NULL)
1643 return sym;
1644
1645 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1646 if (sym != NULL)
1647 return sym;
1648
1649 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1650 }
1651
1652 int
1653 symbol_matches_domain (enum language symbol_language,
1654 domain_enum symbol_domain,
1655 domain_enum domain)
1656 {
1657 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1658 A Java class declaration also defines a typedef for the class.
1659 Similarly, any Ada type declaration implicitly defines a typedef. */
1660 if (symbol_language == language_cplus
1661 || symbol_language == language_java
1662 || symbol_language == language_ada)
1663 {
1664 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1665 && symbol_domain == STRUCT_DOMAIN)
1666 return 1;
1667 }
1668 /* For all other languages, strict match is required. */
1669 return (symbol_domain == domain);
1670 }
1671
1672 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1673 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1674 linkage name matches it. Check the global symbols if GLOBAL, the
1675 static symbols if not */
1676
1677 struct partial_symbol *
1678 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1679 const char *linkage_name, int global,
1680 domain_enum domain)
1681 {
1682 struct partial_symbol *temp;
1683 struct partial_symbol **start, **psym;
1684 struct partial_symbol **top, **real_top, **bottom, **center;
1685 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1686 int do_linear_search = 1;
1687
1688 if (length == 0)
1689 {
1690 return (NULL);
1691 }
1692 start = (global ?
1693 pst->objfile->global_psymbols.list + pst->globals_offset :
1694 pst->objfile->static_psymbols.list + pst->statics_offset);
1695
1696 if (global) /* This means we can use a binary search. */
1697 {
1698 do_linear_search = 0;
1699
1700 /* Binary search. This search is guaranteed to end with center
1701 pointing at the earliest partial symbol whose name might be
1702 correct. At that point *all* partial symbols with an
1703 appropriate name will be checked against the correct
1704 domain. */
1705
1706 bottom = start;
1707 top = start + length - 1;
1708 real_top = top;
1709 while (top > bottom)
1710 {
1711 center = bottom + (top - bottom) / 2;
1712 if (!(center < top))
1713 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1714 if (!do_linear_search
1715 && (SYMBOL_LANGUAGE (*center) == language_java))
1716 {
1717 do_linear_search = 1;
1718 }
1719 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1720 {
1721 top = center;
1722 }
1723 else
1724 {
1725 bottom = center + 1;
1726 }
1727 }
1728 if (!(top == bottom))
1729 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1730
1731 while (top <= real_top
1732 && (linkage_name != NULL
1733 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1734 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1735 {
1736 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1737 SYMBOL_DOMAIN (*top), domain))
1738 return (*top);
1739 top++;
1740 }
1741 }
1742
1743 /* Can't use a binary search or else we found during the binary search that
1744 we should also do a linear search. */
1745
1746 if (do_linear_search)
1747 {
1748 for (psym = start; psym < start + length; psym++)
1749 {
1750 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1751 SYMBOL_DOMAIN (*psym), domain))
1752 {
1753 if (linkage_name != NULL
1754 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1755 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1756 {
1757 return (*psym);
1758 }
1759 }
1760 }
1761 }
1762
1763 return (NULL);
1764 }
1765
1766 /* Look up a type named NAME in the struct_domain. The type returned
1767 must not be opaque -- i.e., must have at least one field
1768 defined. */
1769
1770 struct type *
1771 lookup_transparent_type (const char *name)
1772 {
1773 return current_language->la_lookup_transparent_type (name);
1774 }
1775
1776 /* The standard implementation of lookup_transparent_type. This code
1777 was modeled on lookup_symbol -- the parts not relevant to looking
1778 up types were just left out. In particular it's assumed here that
1779 types are available in struct_domain and only at file-static or
1780 global blocks. */
1781
1782 struct type *
1783 basic_lookup_transparent_type (const char *name)
1784 {
1785 struct symbol *sym;
1786 struct symtab *s = NULL;
1787 struct partial_symtab *ps;
1788 struct blockvector *bv;
1789 struct objfile *objfile;
1790 struct block *block;
1791
1792 /* Now search all the global symbols. Do the symtab's first, then
1793 check the psymtab's. If a psymtab indicates the existence
1794 of the desired name as a global, then do psymtab-to-symtab
1795 conversion on the fly and return the found symbol. */
1796
1797 ALL_PRIMARY_SYMTABS (objfile, s)
1798 {
1799 bv = BLOCKVECTOR (s);
1800 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1801 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1802 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1803 {
1804 return SYMBOL_TYPE (sym);
1805 }
1806 }
1807
1808 ALL_PSYMTABS (objfile, ps)
1809 {
1810 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1811 1, STRUCT_DOMAIN))
1812 {
1813 s = PSYMTAB_TO_SYMTAB (ps);
1814 bv = BLOCKVECTOR (s);
1815 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1816 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1817 if (!sym)
1818 {
1819 /* This shouldn't be necessary, but as a last resort
1820 * try looking in the statics even though the psymtab
1821 * claimed the symbol was global. It's possible that
1822 * the psymtab gets it wrong in some cases.
1823 */
1824 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1825 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1826 if (!sym)
1827 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1828 %s may be an inlined function, or may be a template function\n\
1829 (if a template, try specifying an instantiation: %s<type>)."),
1830 name, ps->filename, name, name);
1831 }
1832 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1833 return SYMBOL_TYPE (sym);
1834 }
1835 }
1836
1837 /* Now search the static file-level symbols.
1838 Not strictly correct, but more useful than an error.
1839 Do the symtab's first, then
1840 check the psymtab's. If a psymtab indicates the existence
1841 of the desired name as a file-level static, then do psymtab-to-symtab
1842 conversion on the fly and return the found symbol.
1843 */
1844
1845 ALL_PRIMARY_SYMTABS (objfile, s)
1846 {
1847 bv = BLOCKVECTOR (s);
1848 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1849 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1850 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1851 {
1852 return SYMBOL_TYPE (sym);
1853 }
1854 }
1855
1856 ALL_PSYMTABS (objfile, ps)
1857 {
1858 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1859 {
1860 s = PSYMTAB_TO_SYMTAB (ps);
1861 bv = BLOCKVECTOR (s);
1862 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1863 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1864 if (!sym)
1865 {
1866 /* This shouldn't be necessary, but as a last resort
1867 * try looking in the globals even though the psymtab
1868 * claimed the symbol was static. It's possible that
1869 * the psymtab gets it wrong in some cases.
1870 */
1871 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1872 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1873 if (!sym)
1874 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1875 %s may be an inlined function, or may be a template function\n\
1876 (if a template, try specifying an instantiation: %s<type>)."),
1877 name, ps->filename, name, name);
1878 }
1879 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1880 return SYMBOL_TYPE (sym);
1881 }
1882 }
1883 return (struct type *) 0;
1884 }
1885
1886
1887 /* Find the psymtab containing main(). */
1888 /* FIXME: What about languages without main() or specially linked
1889 executables that have no main() ? */
1890
1891 struct partial_symtab *
1892 find_main_psymtab (void)
1893 {
1894 struct partial_symtab *pst;
1895 struct objfile *objfile;
1896
1897 ALL_PSYMTABS (objfile, pst)
1898 {
1899 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1900 {
1901 return (pst);
1902 }
1903 }
1904 return (NULL);
1905 }
1906
1907 /* Search BLOCK for symbol NAME in DOMAIN.
1908
1909 Note that if NAME is the demangled form of a C++ symbol, we will fail
1910 to find a match during the binary search of the non-encoded names, but
1911 for now we don't worry about the slight inefficiency of looking for
1912 a match we'll never find, since it will go pretty quick. Once the
1913 binary search terminates, we drop through and do a straight linear
1914 search on the symbols. Each symbol which is marked as being a ObjC/C++
1915 symbol (language_cplus or language_objc set) has both the encoded and
1916 non-encoded names tested for a match.
1917
1918 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1919 particular mangled name.
1920 */
1921
1922 struct symbol *
1923 lookup_block_symbol (const struct block *block, const char *name,
1924 const char *linkage_name,
1925 const domain_enum domain)
1926 {
1927 struct dict_iterator iter;
1928 struct symbol *sym;
1929
1930 if (!BLOCK_FUNCTION (block))
1931 {
1932 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1933 sym != NULL;
1934 sym = dict_iter_name_next (name, &iter))
1935 {
1936 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1937 SYMBOL_DOMAIN (sym), domain)
1938 && (linkage_name != NULL
1939 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1940 return sym;
1941 }
1942 return NULL;
1943 }
1944 else
1945 {
1946 /* Note that parameter symbols do not always show up last in the
1947 list; this loop makes sure to take anything else other than
1948 parameter symbols first; it only uses parameter symbols as a
1949 last resort. Note that this only takes up extra computation
1950 time on a match. */
1951
1952 struct symbol *sym_found = NULL;
1953
1954 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1955 sym != NULL;
1956 sym = dict_iter_name_next (name, &iter))
1957 {
1958 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1959 SYMBOL_DOMAIN (sym), domain)
1960 && (linkage_name != NULL
1961 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1962 {
1963 sym_found = sym;
1964 if (!SYMBOL_IS_ARGUMENT (sym))
1965 {
1966 break;
1967 }
1968 }
1969 }
1970 return (sym_found); /* Will be NULL if not found. */
1971 }
1972 }
1973
1974 /* Find the symtab associated with PC and SECTION. Look through the
1975 psymtabs and read in another symtab if necessary. */
1976
1977 struct symtab *
1978 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1979 {
1980 struct block *b;
1981 struct blockvector *bv;
1982 struct symtab *s = NULL;
1983 struct symtab *best_s = NULL;
1984 struct partial_symtab *ps;
1985 struct objfile *objfile;
1986 CORE_ADDR distance = 0;
1987 struct minimal_symbol *msymbol;
1988
1989 /* If we know that this is not a text address, return failure. This is
1990 necessary because we loop based on the block's high and low code
1991 addresses, which do not include the data ranges, and because
1992 we call find_pc_sect_psymtab which has a similar restriction based
1993 on the partial_symtab's texthigh and textlow. */
1994 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1995 if (msymbol
1996 && (MSYMBOL_TYPE (msymbol) == mst_data
1997 || MSYMBOL_TYPE (msymbol) == mst_bss
1998 || MSYMBOL_TYPE (msymbol) == mst_abs
1999 || MSYMBOL_TYPE (msymbol) == mst_file_data
2000 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2001 return NULL;
2002
2003 /* Search all symtabs for the one whose file contains our address, and which
2004 is the smallest of all the ones containing the address. This is designed
2005 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2006 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2007 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2008
2009 This happens for native ecoff format, where code from included files
2010 gets its own symtab. The symtab for the included file should have
2011 been read in already via the dependency mechanism.
2012 It might be swifter to create several symtabs with the same name
2013 like xcoff does (I'm not sure).
2014
2015 It also happens for objfiles that have their functions reordered.
2016 For these, the symtab we are looking for is not necessarily read in. */
2017
2018 ALL_PRIMARY_SYMTABS (objfile, s)
2019 {
2020 bv = BLOCKVECTOR (s);
2021 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2022
2023 if (BLOCK_START (b) <= pc
2024 && BLOCK_END (b) > pc
2025 && (distance == 0
2026 || BLOCK_END (b) - BLOCK_START (b) < distance))
2027 {
2028 /* For an objfile that has its functions reordered,
2029 find_pc_psymtab will find the proper partial symbol table
2030 and we simply return its corresponding symtab. */
2031 /* In order to better support objfiles that contain both
2032 stabs and coff debugging info, we continue on if a psymtab
2033 can't be found. */
2034 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2035 {
2036 ps = find_pc_sect_psymtab (pc, section);
2037 if (ps)
2038 return PSYMTAB_TO_SYMTAB (ps);
2039 }
2040 if (section != 0)
2041 {
2042 struct dict_iterator iter;
2043 struct symbol *sym = NULL;
2044
2045 ALL_BLOCK_SYMBOLS (b, iter, sym)
2046 {
2047 fixup_symbol_section (sym, objfile);
2048 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2049 break;
2050 }
2051 if (sym == NULL)
2052 continue; /* no symbol in this symtab matches section */
2053 }
2054 distance = BLOCK_END (b) - BLOCK_START (b);
2055 best_s = s;
2056 }
2057 }
2058
2059 if (best_s != NULL)
2060 return (best_s);
2061
2062 s = NULL;
2063 ps = find_pc_sect_psymtab (pc, section);
2064 if (ps)
2065 {
2066 if (ps->readin)
2067 /* Might want to error() here (in case symtab is corrupt and
2068 will cause a core dump), but maybe we can successfully
2069 continue, so let's not. */
2070 warning (_("\
2071 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2072 paddr_nz (pc));
2073 s = PSYMTAB_TO_SYMTAB (ps);
2074 }
2075 return (s);
2076 }
2077
2078 /* Find the symtab associated with PC. Look through the psymtabs and
2079 read in another symtab if necessary. Backward compatibility, no section */
2080
2081 struct symtab *
2082 find_pc_symtab (CORE_ADDR pc)
2083 {
2084 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2085 }
2086 \f
2087
2088 /* Find the source file and line number for a given PC value and SECTION.
2089 Return a structure containing a symtab pointer, a line number,
2090 and a pc range for the entire source line.
2091 The value's .pc field is NOT the specified pc.
2092 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2093 use the line that ends there. Otherwise, in that case, the line
2094 that begins there is used. */
2095
2096 /* The big complication here is that a line may start in one file, and end just
2097 before the start of another file. This usually occurs when you #include
2098 code in the middle of a subroutine. To properly find the end of a line's PC
2099 range, we must search all symtabs associated with this compilation unit, and
2100 find the one whose first PC is closer than that of the next line in this
2101 symtab. */
2102
2103 /* If it's worth the effort, we could be using a binary search. */
2104
2105 struct symtab_and_line
2106 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2107 {
2108 struct symtab *s;
2109 struct linetable *l;
2110 int len;
2111 int i;
2112 struct linetable_entry *item;
2113 struct symtab_and_line val;
2114 struct blockvector *bv;
2115 struct minimal_symbol *msymbol;
2116 struct minimal_symbol *mfunsym;
2117
2118 /* Info on best line seen so far, and where it starts, and its file. */
2119
2120 struct linetable_entry *best = NULL;
2121 CORE_ADDR best_end = 0;
2122 struct symtab *best_symtab = 0;
2123
2124 /* Store here the first line number
2125 of a file which contains the line at the smallest pc after PC.
2126 If we don't find a line whose range contains PC,
2127 we will use a line one less than this,
2128 with a range from the start of that file to the first line's pc. */
2129 struct linetable_entry *alt = NULL;
2130 struct symtab *alt_symtab = 0;
2131
2132 /* Info on best line seen in this file. */
2133
2134 struct linetable_entry *prev;
2135
2136 /* If this pc is not from the current frame,
2137 it is the address of the end of a call instruction.
2138 Quite likely that is the start of the following statement.
2139 But what we want is the statement containing the instruction.
2140 Fudge the pc to make sure we get that. */
2141
2142 init_sal (&val); /* initialize to zeroes */
2143
2144 /* It's tempting to assume that, if we can't find debugging info for
2145 any function enclosing PC, that we shouldn't search for line
2146 number info, either. However, GAS can emit line number info for
2147 assembly files --- very helpful when debugging hand-written
2148 assembly code. In such a case, we'd have no debug info for the
2149 function, but we would have line info. */
2150
2151 if (notcurrent)
2152 pc -= 1;
2153
2154 /* elz: added this because this function returned the wrong
2155 information if the pc belongs to a stub (import/export)
2156 to call a shlib function. This stub would be anywhere between
2157 two functions in the target, and the line info was erroneously
2158 taken to be the one of the line before the pc.
2159 */
2160 /* RT: Further explanation:
2161
2162 * We have stubs (trampolines) inserted between procedures.
2163 *
2164 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2165 * exists in the main image.
2166 *
2167 * In the minimal symbol table, we have a bunch of symbols
2168 * sorted by start address. The stubs are marked as "trampoline",
2169 * the others appear as text. E.g.:
2170 *
2171 * Minimal symbol table for main image
2172 * main: code for main (text symbol)
2173 * shr1: stub (trampoline symbol)
2174 * foo: code for foo (text symbol)
2175 * ...
2176 * Minimal symbol table for "shr1" image:
2177 * ...
2178 * shr1: code for shr1 (text symbol)
2179 * ...
2180 *
2181 * So the code below is trying to detect if we are in the stub
2182 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2183 * and if found, do the symbolization from the real-code address
2184 * rather than the stub address.
2185 *
2186 * Assumptions being made about the minimal symbol table:
2187 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2188 * if we're really in the trampoline. If we're beyond it (say
2189 * we're in "foo" in the above example), it'll have a closer
2190 * symbol (the "foo" text symbol for example) and will not
2191 * return the trampoline.
2192 * 2. lookup_minimal_symbol_text() will find a real text symbol
2193 * corresponding to the trampoline, and whose address will
2194 * be different than the trampoline address. I put in a sanity
2195 * check for the address being the same, to avoid an
2196 * infinite recursion.
2197 */
2198 msymbol = lookup_minimal_symbol_by_pc (pc);
2199 if (msymbol != NULL)
2200 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2201 {
2202 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2203 NULL);
2204 if (mfunsym == NULL)
2205 /* I eliminated this warning since it is coming out
2206 * in the following situation:
2207 * gdb shmain // test program with shared libraries
2208 * (gdb) break shr1 // function in shared lib
2209 * Warning: In stub for ...
2210 * In the above situation, the shared lib is not loaded yet,
2211 * so of course we can't find the real func/line info,
2212 * but the "break" still works, and the warning is annoying.
2213 * So I commented out the warning. RT */
2214 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2215 /* fall through */
2216 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2217 /* Avoid infinite recursion */
2218 /* See above comment about why warning is commented out */
2219 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2220 /* fall through */
2221 else
2222 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2223 }
2224
2225
2226 s = find_pc_sect_symtab (pc, section);
2227 if (!s)
2228 {
2229 /* if no symbol information, return previous pc */
2230 if (notcurrent)
2231 pc++;
2232 val.pc = pc;
2233 return val;
2234 }
2235
2236 bv = BLOCKVECTOR (s);
2237
2238 /* Look at all the symtabs that share this blockvector.
2239 They all have the same apriori range, that we found was right;
2240 but they have different line tables. */
2241
2242 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2243 {
2244 /* Find the best line in this symtab. */
2245 l = LINETABLE (s);
2246 if (!l)
2247 continue;
2248 len = l->nitems;
2249 if (len <= 0)
2250 {
2251 /* I think len can be zero if the symtab lacks line numbers
2252 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2253 I'm not sure which, and maybe it depends on the symbol
2254 reader). */
2255 continue;
2256 }
2257
2258 prev = NULL;
2259 item = l->item; /* Get first line info */
2260
2261 /* Is this file's first line closer than the first lines of other files?
2262 If so, record this file, and its first line, as best alternate. */
2263 if (item->pc > pc && (!alt || item->pc < alt->pc))
2264 {
2265 alt = item;
2266 alt_symtab = s;
2267 }
2268
2269 for (i = 0; i < len; i++, item++)
2270 {
2271 /* Leave prev pointing to the linetable entry for the last line
2272 that started at or before PC. */
2273 if (item->pc > pc)
2274 break;
2275
2276 prev = item;
2277 }
2278
2279 /* At this point, prev points at the line whose start addr is <= pc, and
2280 item points at the next line. If we ran off the end of the linetable
2281 (pc >= start of the last line), then prev == item. If pc < start of
2282 the first line, prev will not be set. */
2283
2284 /* Is this file's best line closer than the best in the other files?
2285 If so, record this file, and its best line, as best so far. Don't
2286 save prev if it represents the end of a function (i.e. line number
2287 0) instead of a real line. */
2288
2289 if (prev && prev->line && (!best || prev->pc > best->pc))
2290 {
2291 best = prev;
2292 best_symtab = s;
2293
2294 /* Discard BEST_END if it's before the PC of the current BEST. */
2295 if (best_end <= best->pc)
2296 best_end = 0;
2297 }
2298
2299 /* If another line (denoted by ITEM) is in the linetable and its
2300 PC is after BEST's PC, but before the current BEST_END, then
2301 use ITEM's PC as the new best_end. */
2302 if (best && i < len && item->pc > best->pc
2303 && (best_end == 0 || best_end > item->pc))
2304 best_end = item->pc;
2305 }
2306
2307 if (!best_symtab)
2308 {
2309 /* If we didn't find any line number info, just return zeros.
2310 We used to return alt->line - 1 here, but that could be
2311 anywhere; if we don't have line number info for this PC,
2312 don't make some up. */
2313 val.pc = pc;
2314 }
2315 else if (best->line == 0)
2316 {
2317 /* If our best fit is in a range of PC's for which no line
2318 number info is available (line number is zero) then we didn't
2319 find any valid line information. */
2320 val.pc = pc;
2321 }
2322 else
2323 {
2324 val.symtab = best_symtab;
2325 val.line = best->line;
2326 val.pc = best->pc;
2327 if (best_end && (!alt || best_end < alt->pc))
2328 val.end = best_end;
2329 else if (alt)
2330 val.end = alt->pc;
2331 else
2332 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2333 }
2334 val.section = section;
2335 return val;
2336 }
2337
2338 /* Backward compatibility (no section) */
2339
2340 struct symtab_and_line
2341 find_pc_line (CORE_ADDR pc, int notcurrent)
2342 {
2343 struct obj_section *section;
2344
2345 section = find_pc_overlay (pc);
2346 if (pc_in_unmapped_range (pc, section))
2347 pc = overlay_mapped_address (pc, section);
2348 return find_pc_sect_line (pc, section, notcurrent);
2349 }
2350 \f
2351 /* Find line number LINE in any symtab whose name is the same as
2352 SYMTAB.
2353
2354 If found, return the symtab that contains the linetable in which it was
2355 found, set *INDEX to the index in the linetable of the best entry
2356 found, and set *EXACT_MATCH nonzero if the value returned is an
2357 exact match.
2358
2359 If not found, return NULL. */
2360
2361 struct symtab *
2362 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2363 {
2364 int exact = 0; /* Initialized here to avoid a compiler warning. */
2365
2366 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2367 so far seen. */
2368
2369 int best_index;
2370 struct linetable *best_linetable;
2371 struct symtab *best_symtab;
2372
2373 /* First try looking it up in the given symtab. */
2374 best_linetable = LINETABLE (symtab);
2375 best_symtab = symtab;
2376 best_index = find_line_common (best_linetable, line, &exact);
2377 if (best_index < 0 || !exact)
2378 {
2379 /* Didn't find an exact match. So we better keep looking for
2380 another symtab with the same name. In the case of xcoff,
2381 multiple csects for one source file (produced by IBM's FORTRAN
2382 compiler) produce multiple symtabs (this is unavoidable
2383 assuming csects can be at arbitrary places in memory and that
2384 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2385
2386 /* BEST is the smallest linenumber > LINE so far seen,
2387 or 0 if none has been seen so far.
2388 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2389 int best;
2390
2391 struct objfile *objfile;
2392 struct symtab *s;
2393 struct partial_symtab *p;
2394
2395 if (best_index >= 0)
2396 best = best_linetable->item[best_index].line;
2397 else
2398 best = 0;
2399
2400 ALL_PSYMTABS (objfile, p)
2401 {
2402 if (strcmp (symtab->filename, p->filename) != 0)
2403 continue;
2404 PSYMTAB_TO_SYMTAB (p);
2405 }
2406
2407 ALL_SYMTABS (objfile, s)
2408 {
2409 struct linetable *l;
2410 int ind;
2411
2412 if (strcmp (symtab->filename, s->filename) != 0)
2413 continue;
2414 l = LINETABLE (s);
2415 ind = find_line_common (l, line, &exact);
2416 if (ind >= 0)
2417 {
2418 if (exact)
2419 {
2420 best_index = ind;
2421 best_linetable = l;
2422 best_symtab = s;
2423 goto done;
2424 }
2425 if (best == 0 || l->item[ind].line < best)
2426 {
2427 best = l->item[ind].line;
2428 best_index = ind;
2429 best_linetable = l;
2430 best_symtab = s;
2431 }
2432 }
2433 }
2434 }
2435 done:
2436 if (best_index < 0)
2437 return NULL;
2438
2439 if (index)
2440 *index = best_index;
2441 if (exact_match)
2442 *exact_match = exact;
2443
2444 return best_symtab;
2445 }
2446 \f
2447 /* Set the PC value for a given source file and line number and return true.
2448 Returns zero for invalid line number (and sets the PC to 0).
2449 The source file is specified with a struct symtab. */
2450
2451 int
2452 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2453 {
2454 struct linetable *l;
2455 int ind;
2456
2457 *pc = 0;
2458 if (symtab == 0)
2459 return 0;
2460
2461 symtab = find_line_symtab (symtab, line, &ind, NULL);
2462 if (symtab != NULL)
2463 {
2464 l = LINETABLE (symtab);
2465 *pc = l->item[ind].pc;
2466 return 1;
2467 }
2468 else
2469 return 0;
2470 }
2471
2472 /* Find the range of pc values in a line.
2473 Store the starting pc of the line into *STARTPTR
2474 and the ending pc (start of next line) into *ENDPTR.
2475 Returns 1 to indicate success.
2476 Returns 0 if could not find the specified line. */
2477
2478 int
2479 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2480 CORE_ADDR *endptr)
2481 {
2482 CORE_ADDR startaddr;
2483 struct symtab_and_line found_sal;
2484
2485 startaddr = sal.pc;
2486 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2487 return 0;
2488
2489 /* This whole function is based on address. For example, if line 10 has
2490 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2491 "info line *0x123" should say the line goes from 0x100 to 0x200
2492 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2493 This also insures that we never give a range like "starts at 0x134
2494 and ends at 0x12c". */
2495
2496 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2497 if (found_sal.line != sal.line)
2498 {
2499 /* The specified line (sal) has zero bytes. */
2500 *startptr = found_sal.pc;
2501 *endptr = found_sal.pc;
2502 }
2503 else
2504 {
2505 *startptr = found_sal.pc;
2506 *endptr = found_sal.end;
2507 }
2508 return 1;
2509 }
2510
2511 /* Given a line table and a line number, return the index into the line
2512 table for the pc of the nearest line whose number is >= the specified one.
2513 Return -1 if none is found. The value is >= 0 if it is an index.
2514
2515 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2516
2517 static int
2518 find_line_common (struct linetable *l, int lineno,
2519 int *exact_match)
2520 {
2521 int i;
2522 int len;
2523
2524 /* BEST is the smallest linenumber > LINENO so far seen,
2525 or 0 if none has been seen so far.
2526 BEST_INDEX identifies the item for it. */
2527
2528 int best_index = -1;
2529 int best = 0;
2530
2531 *exact_match = 0;
2532
2533 if (lineno <= 0)
2534 return -1;
2535 if (l == 0)
2536 return -1;
2537
2538 len = l->nitems;
2539 for (i = 0; i < len; i++)
2540 {
2541 struct linetable_entry *item = &(l->item[i]);
2542
2543 if (item->line == lineno)
2544 {
2545 /* Return the first (lowest address) entry which matches. */
2546 *exact_match = 1;
2547 return i;
2548 }
2549
2550 if (item->line > lineno && (best == 0 || item->line < best))
2551 {
2552 best = item->line;
2553 best_index = i;
2554 }
2555 }
2556
2557 /* If we got here, we didn't get an exact match. */
2558 return best_index;
2559 }
2560
2561 int
2562 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2563 {
2564 struct symtab_and_line sal;
2565 sal = find_pc_line (pc, 0);
2566 *startptr = sal.pc;
2567 *endptr = sal.end;
2568 return sal.symtab != 0;
2569 }
2570
2571 /* Given a function start address PC and SECTION, find the first
2572 address after the function prologue. */
2573 CORE_ADDR
2574 find_function_start_pc (struct gdbarch *gdbarch,
2575 CORE_ADDR pc, struct obj_section *section)
2576 {
2577 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2578 so that gdbarch_skip_prologue has something unique to work on. */
2579 if (section_is_overlay (section) && !section_is_mapped (section))
2580 pc = overlay_unmapped_address (pc, section);
2581
2582 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2583 pc = gdbarch_skip_prologue (gdbarch, pc);
2584
2585 /* For overlays, map pc back into its mapped VMA range. */
2586 pc = overlay_mapped_address (pc, section);
2587
2588 return pc;
2589 }
2590
2591 /* Given a function symbol SYM, find the symtab and line for the start
2592 of the function.
2593 If the argument FUNFIRSTLINE is nonzero, we want the first line
2594 of real code inside the function. */
2595
2596 struct symtab_and_line
2597 find_function_start_sal (struct symbol *sym, int funfirstline)
2598 {
2599 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2600 struct objfile *objfile = lookup_objfile_from_block (block);
2601 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2602
2603 CORE_ADDR pc;
2604 struct symtab_and_line sal;
2605
2606 pc = BLOCK_START (block);
2607 fixup_symbol_section (sym, objfile);
2608 if (funfirstline)
2609 {
2610 /* Skip "first line" of function (which is actually its prologue). */
2611 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2612 }
2613 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2614
2615 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2616 line is still part of the same function. */
2617 if (sal.pc != pc
2618 && BLOCK_START (block) <= sal.end
2619 && sal.end < BLOCK_END (block))
2620 {
2621 /* First pc of next line */
2622 pc = sal.end;
2623 /* Recalculate the line number (might not be N+1). */
2624 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2625 }
2626
2627 /* On targets with executable formats that don't have a concept of
2628 constructors (ELF with .init has, PE doesn't), gcc emits a call
2629 to `__main' in `main' between the prologue and before user
2630 code. */
2631 if (funfirstline
2632 && gdbarch_skip_main_prologue_p (current_gdbarch)
2633 && SYMBOL_LINKAGE_NAME (sym)
2634 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2635 {
2636 pc = gdbarch_skip_main_prologue (current_gdbarch, pc);
2637 /* Recalculate the line number (might not be N+1). */
2638 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2639 }
2640
2641 sal.pc = pc;
2642
2643 return sal;
2644 }
2645
2646 /* If P is of the form "operator[ \t]+..." where `...' is
2647 some legitimate operator text, return a pointer to the
2648 beginning of the substring of the operator text.
2649 Otherwise, return "". */
2650 char *
2651 operator_chars (char *p, char **end)
2652 {
2653 *end = "";
2654 if (strncmp (p, "operator", 8))
2655 return *end;
2656 p += 8;
2657
2658 /* Don't get faked out by `operator' being part of a longer
2659 identifier. */
2660 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2661 return *end;
2662
2663 /* Allow some whitespace between `operator' and the operator symbol. */
2664 while (*p == ' ' || *p == '\t')
2665 p++;
2666
2667 /* Recognize 'operator TYPENAME'. */
2668
2669 if (isalpha (*p) || *p == '_' || *p == '$')
2670 {
2671 char *q = p + 1;
2672 while (isalnum (*q) || *q == '_' || *q == '$')
2673 q++;
2674 *end = q;
2675 return p;
2676 }
2677
2678 while (*p)
2679 switch (*p)
2680 {
2681 case '\\': /* regexp quoting */
2682 if (p[1] == '*')
2683 {
2684 if (p[2] == '=') /* 'operator\*=' */
2685 *end = p + 3;
2686 else /* 'operator\*' */
2687 *end = p + 2;
2688 return p;
2689 }
2690 else if (p[1] == '[')
2691 {
2692 if (p[2] == ']')
2693 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2694 else if (p[2] == '\\' && p[3] == ']')
2695 {
2696 *end = p + 4; /* 'operator\[\]' */
2697 return p;
2698 }
2699 else
2700 error (_("nothing is allowed between '[' and ']'"));
2701 }
2702 else
2703 {
2704 /* Gratuitous qoute: skip it and move on. */
2705 p++;
2706 continue;
2707 }
2708 break;
2709 case '!':
2710 case '=':
2711 case '*':
2712 case '/':
2713 case '%':
2714 case '^':
2715 if (p[1] == '=')
2716 *end = p + 2;
2717 else
2718 *end = p + 1;
2719 return p;
2720 case '<':
2721 case '>':
2722 case '+':
2723 case '-':
2724 case '&':
2725 case '|':
2726 if (p[0] == '-' && p[1] == '>')
2727 {
2728 /* Struct pointer member operator 'operator->'. */
2729 if (p[2] == '*')
2730 {
2731 *end = p + 3; /* 'operator->*' */
2732 return p;
2733 }
2734 else if (p[2] == '\\')
2735 {
2736 *end = p + 4; /* Hopefully 'operator->\*' */
2737 return p;
2738 }
2739 else
2740 {
2741 *end = p + 2; /* 'operator->' */
2742 return p;
2743 }
2744 }
2745 if (p[1] == '=' || p[1] == p[0])
2746 *end = p + 2;
2747 else
2748 *end = p + 1;
2749 return p;
2750 case '~':
2751 case ',':
2752 *end = p + 1;
2753 return p;
2754 case '(':
2755 if (p[1] != ')')
2756 error (_("`operator ()' must be specified without whitespace in `()'"));
2757 *end = p + 2;
2758 return p;
2759 case '?':
2760 if (p[1] != ':')
2761 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2762 *end = p + 2;
2763 return p;
2764 case '[':
2765 if (p[1] != ']')
2766 error (_("`operator []' must be specified without whitespace in `[]'"));
2767 *end = p + 2;
2768 return p;
2769 default:
2770 error (_("`operator %s' not supported"), p);
2771 break;
2772 }
2773
2774 *end = "";
2775 return *end;
2776 }
2777 \f
2778
2779 /* If FILE is not already in the table of files, return zero;
2780 otherwise return non-zero. Optionally add FILE to the table if ADD
2781 is non-zero. If *FIRST is non-zero, forget the old table
2782 contents. */
2783 static int
2784 filename_seen (const char *file, int add, int *first)
2785 {
2786 /* Table of files seen so far. */
2787 static const char **tab = NULL;
2788 /* Allocated size of tab in elements.
2789 Start with one 256-byte block (when using GNU malloc.c).
2790 24 is the malloc overhead when range checking is in effect. */
2791 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2792 /* Current size of tab in elements. */
2793 static int tab_cur_size;
2794 const char **p;
2795
2796 if (*first)
2797 {
2798 if (tab == NULL)
2799 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2800 tab_cur_size = 0;
2801 }
2802
2803 /* Is FILE in tab? */
2804 for (p = tab; p < tab + tab_cur_size; p++)
2805 if (strcmp (*p, file) == 0)
2806 return 1;
2807
2808 /* No; maybe add it to tab. */
2809 if (add)
2810 {
2811 if (tab_cur_size == tab_alloc_size)
2812 {
2813 tab_alloc_size *= 2;
2814 tab = (const char **) xrealloc ((char *) tab,
2815 tab_alloc_size * sizeof (*tab));
2816 }
2817 tab[tab_cur_size++] = file;
2818 }
2819
2820 return 0;
2821 }
2822
2823 /* Slave routine for sources_info. Force line breaks at ,'s.
2824 NAME is the name to print and *FIRST is nonzero if this is the first
2825 name printed. Set *FIRST to zero. */
2826 static void
2827 output_source_filename (const char *name, int *first)
2828 {
2829 /* Since a single source file can result in several partial symbol
2830 tables, we need to avoid printing it more than once. Note: if
2831 some of the psymtabs are read in and some are not, it gets
2832 printed both under "Source files for which symbols have been
2833 read" and "Source files for which symbols will be read in on
2834 demand". I consider this a reasonable way to deal with the
2835 situation. I'm not sure whether this can also happen for
2836 symtabs; it doesn't hurt to check. */
2837
2838 /* Was NAME already seen? */
2839 if (filename_seen (name, 1, first))
2840 {
2841 /* Yes; don't print it again. */
2842 return;
2843 }
2844 /* No; print it and reset *FIRST. */
2845 if (*first)
2846 {
2847 *first = 0;
2848 }
2849 else
2850 {
2851 printf_filtered (", ");
2852 }
2853
2854 wrap_here ("");
2855 fputs_filtered (name, gdb_stdout);
2856 }
2857
2858 static void
2859 sources_info (char *ignore, int from_tty)
2860 {
2861 struct symtab *s;
2862 struct partial_symtab *ps;
2863 struct objfile *objfile;
2864 int first;
2865
2866 if (!have_full_symbols () && !have_partial_symbols ())
2867 {
2868 error (_("No symbol table is loaded. Use the \"file\" command."));
2869 }
2870
2871 printf_filtered ("Source files for which symbols have been read in:\n\n");
2872
2873 first = 1;
2874 ALL_SYMTABS (objfile, s)
2875 {
2876 const char *fullname = symtab_to_fullname (s);
2877 output_source_filename (fullname ? fullname : s->filename, &first);
2878 }
2879 printf_filtered ("\n\n");
2880
2881 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2882
2883 first = 1;
2884 ALL_PSYMTABS (objfile, ps)
2885 {
2886 if (!ps->readin)
2887 {
2888 const char *fullname = psymtab_to_fullname (ps);
2889 output_source_filename (fullname ? fullname : ps->filename, &first);
2890 }
2891 }
2892 printf_filtered ("\n");
2893 }
2894
2895 static int
2896 file_matches (char *file, char *files[], int nfiles)
2897 {
2898 int i;
2899
2900 if (file != NULL && nfiles != 0)
2901 {
2902 for (i = 0; i < nfiles; i++)
2903 {
2904 if (strcmp (files[i], lbasename (file)) == 0)
2905 return 1;
2906 }
2907 }
2908 else if (nfiles == 0)
2909 return 1;
2910 return 0;
2911 }
2912
2913 /* Free any memory associated with a search. */
2914 void
2915 free_search_symbols (struct symbol_search *symbols)
2916 {
2917 struct symbol_search *p;
2918 struct symbol_search *next;
2919
2920 for (p = symbols; p != NULL; p = next)
2921 {
2922 next = p->next;
2923 xfree (p);
2924 }
2925 }
2926
2927 static void
2928 do_free_search_symbols_cleanup (void *symbols)
2929 {
2930 free_search_symbols (symbols);
2931 }
2932
2933 struct cleanup *
2934 make_cleanup_free_search_symbols (struct symbol_search *symbols)
2935 {
2936 return make_cleanup (do_free_search_symbols_cleanup, symbols);
2937 }
2938
2939 /* Helper function for sort_search_symbols and qsort. Can only
2940 sort symbols, not minimal symbols. */
2941 static int
2942 compare_search_syms (const void *sa, const void *sb)
2943 {
2944 struct symbol_search **sym_a = (struct symbol_search **) sa;
2945 struct symbol_search **sym_b = (struct symbol_search **) sb;
2946
2947 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
2948 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
2949 }
2950
2951 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
2952 prevtail where it is, but update its next pointer to point to
2953 the first of the sorted symbols. */
2954 static struct symbol_search *
2955 sort_search_symbols (struct symbol_search *prevtail, int nfound)
2956 {
2957 struct symbol_search **symbols, *symp, *old_next;
2958 int i;
2959
2960 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
2961 * nfound);
2962 symp = prevtail->next;
2963 for (i = 0; i < nfound; i++)
2964 {
2965 symbols[i] = symp;
2966 symp = symp->next;
2967 }
2968 /* Generally NULL. */
2969 old_next = symp;
2970
2971 qsort (symbols, nfound, sizeof (struct symbol_search *),
2972 compare_search_syms);
2973
2974 symp = prevtail;
2975 for (i = 0; i < nfound; i++)
2976 {
2977 symp->next = symbols[i];
2978 symp = symp->next;
2979 }
2980 symp->next = old_next;
2981
2982 xfree (symbols);
2983 return symp;
2984 }
2985
2986 /* Search the symbol table for matches to the regular expression REGEXP,
2987 returning the results in *MATCHES.
2988
2989 Only symbols of KIND are searched:
2990 FUNCTIONS_DOMAIN - search all functions
2991 TYPES_DOMAIN - search all type names
2992 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
2993 and constants (enums)
2994
2995 free_search_symbols should be called when *MATCHES is no longer needed.
2996
2997 The results are sorted locally; each symtab's global and static blocks are
2998 separately alphabetized.
2999 */
3000 void
3001 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3002 struct symbol_search **matches)
3003 {
3004 struct symtab *s;
3005 struct partial_symtab *ps;
3006 struct blockvector *bv;
3007 struct block *b;
3008 int i = 0;
3009 struct dict_iterator iter;
3010 struct symbol *sym;
3011 struct partial_symbol **psym;
3012 struct objfile *objfile;
3013 struct minimal_symbol *msymbol;
3014 char *val;
3015 int found_misc = 0;
3016 static enum minimal_symbol_type types[]
3017 =
3018 {mst_data, mst_text, mst_abs, mst_unknown};
3019 static enum minimal_symbol_type types2[]
3020 =
3021 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3022 static enum minimal_symbol_type types3[]
3023 =
3024 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3025 static enum minimal_symbol_type types4[]
3026 =
3027 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3028 enum minimal_symbol_type ourtype;
3029 enum minimal_symbol_type ourtype2;
3030 enum minimal_symbol_type ourtype3;
3031 enum minimal_symbol_type ourtype4;
3032 struct symbol_search *sr;
3033 struct symbol_search *psr;
3034 struct symbol_search *tail;
3035 struct cleanup *old_chain = NULL;
3036
3037 if (kind < VARIABLES_DOMAIN)
3038 error (_("must search on specific domain"));
3039
3040 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3041 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3042 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3043 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3044
3045 sr = *matches = NULL;
3046 tail = NULL;
3047
3048 if (regexp != NULL)
3049 {
3050 /* Make sure spacing is right for C++ operators.
3051 This is just a courtesy to make the matching less sensitive
3052 to how many spaces the user leaves between 'operator'
3053 and <TYPENAME> or <OPERATOR>. */
3054 char *opend;
3055 char *opname = operator_chars (regexp, &opend);
3056 if (*opname)
3057 {
3058 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3059 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3060 {
3061 /* There should 1 space between 'operator' and 'TYPENAME'. */
3062 if (opname[-1] != ' ' || opname[-2] == ' ')
3063 fix = 1;
3064 }
3065 else
3066 {
3067 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3068 if (opname[-1] == ' ')
3069 fix = 0;
3070 }
3071 /* If wrong number of spaces, fix it. */
3072 if (fix >= 0)
3073 {
3074 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3075 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3076 regexp = tmp;
3077 }
3078 }
3079
3080 if (0 != (val = re_comp (regexp)))
3081 error (_("Invalid regexp (%s): %s"), val, regexp);
3082 }
3083
3084 /* Search through the partial symtabs *first* for all symbols
3085 matching the regexp. That way we don't have to reproduce all of
3086 the machinery below. */
3087
3088 ALL_PSYMTABS (objfile, ps)
3089 {
3090 struct partial_symbol **bound, **gbound, **sbound;
3091 int keep_going = 1;
3092
3093 if (ps->readin)
3094 continue;
3095
3096 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3097 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3098 bound = gbound;
3099
3100 /* Go through all of the symbols stored in a partial
3101 symtab in one loop. */
3102 psym = objfile->global_psymbols.list + ps->globals_offset;
3103 while (keep_going)
3104 {
3105 if (psym >= bound)
3106 {
3107 if (bound == gbound && ps->n_static_syms != 0)
3108 {
3109 psym = objfile->static_psymbols.list + ps->statics_offset;
3110 bound = sbound;
3111 }
3112 else
3113 keep_going = 0;
3114 continue;
3115 }
3116 else
3117 {
3118 QUIT;
3119
3120 /* If it would match (logic taken from loop below)
3121 load the file and go on to the next one. We check the
3122 filename here, but that's a bit bogus: we don't know
3123 what file it really comes from until we have full
3124 symtabs. The symbol might be in a header file included by
3125 this psymtab. This only affects Insight. */
3126 if (file_matches (ps->filename, files, nfiles)
3127 && ((regexp == NULL
3128 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3129 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3130 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3131 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3132 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3133 {
3134 PSYMTAB_TO_SYMTAB (ps);
3135 keep_going = 0;
3136 }
3137 }
3138 psym++;
3139 }
3140 }
3141
3142 /* Here, we search through the minimal symbol tables for functions
3143 and variables that match, and force their symbols to be read.
3144 This is in particular necessary for demangled variable names,
3145 which are no longer put into the partial symbol tables.
3146 The symbol will then be found during the scan of symtabs below.
3147
3148 For functions, find_pc_symtab should succeed if we have debug info
3149 for the function, for variables we have to call lookup_symbol
3150 to determine if the variable has debug info.
3151 If the lookup fails, set found_misc so that we will rescan to print
3152 any matching symbols without debug info.
3153 */
3154
3155 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3156 {
3157 ALL_MSYMBOLS (objfile, msymbol)
3158 {
3159 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3160 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3161 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3162 MSYMBOL_TYPE (msymbol) == ourtype4)
3163 {
3164 if (regexp == NULL
3165 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3166 {
3167 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3168 {
3169 /* FIXME: carlton/2003-02-04: Given that the
3170 semantics of lookup_symbol keeps on changing
3171 slightly, it would be a nice idea if we had a
3172 function lookup_symbol_minsym that found the
3173 symbol associated to a given minimal symbol (if
3174 any). */
3175 if (kind == FUNCTIONS_DOMAIN
3176 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3177 (struct block *) NULL,
3178 VAR_DOMAIN, 0)
3179 == NULL)
3180 found_misc = 1;
3181 }
3182 }
3183 }
3184 }
3185 }
3186
3187 ALL_PRIMARY_SYMTABS (objfile, s)
3188 {
3189 bv = BLOCKVECTOR (s);
3190 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3191 {
3192 struct symbol_search *prevtail = tail;
3193 int nfound = 0;
3194 b = BLOCKVECTOR_BLOCK (bv, i);
3195 ALL_BLOCK_SYMBOLS (b, iter, sym)
3196 {
3197 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3198 QUIT;
3199
3200 if (file_matches (real_symtab->filename, files, nfiles)
3201 && ((regexp == NULL
3202 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3203 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3204 && SYMBOL_CLASS (sym) != LOC_BLOCK
3205 && SYMBOL_CLASS (sym) != LOC_CONST)
3206 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3207 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3208 {
3209 /* match */
3210 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3211 psr->block = i;
3212 psr->symtab = real_symtab;
3213 psr->symbol = sym;
3214 psr->msymbol = NULL;
3215 psr->next = NULL;
3216 if (tail == NULL)
3217 sr = psr;
3218 else
3219 tail->next = psr;
3220 tail = psr;
3221 nfound ++;
3222 }
3223 }
3224 if (nfound > 0)
3225 {
3226 if (prevtail == NULL)
3227 {
3228 struct symbol_search dummy;
3229
3230 dummy.next = sr;
3231 tail = sort_search_symbols (&dummy, nfound);
3232 sr = dummy.next;
3233
3234 old_chain = make_cleanup_free_search_symbols (sr);
3235 }
3236 else
3237 tail = sort_search_symbols (prevtail, nfound);
3238 }
3239 }
3240 }
3241
3242 /* If there are no eyes, avoid all contact. I mean, if there are
3243 no debug symbols, then print directly from the msymbol_vector. */
3244
3245 if (found_misc || kind != FUNCTIONS_DOMAIN)
3246 {
3247 ALL_MSYMBOLS (objfile, msymbol)
3248 {
3249 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3250 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3251 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3252 MSYMBOL_TYPE (msymbol) == ourtype4)
3253 {
3254 if (regexp == NULL
3255 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3256 {
3257 /* Functions: Look up by address. */
3258 if (kind != FUNCTIONS_DOMAIN ||
3259 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3260 {
3261 /* Variables/Absolutes: Look up by name */
3262 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3263 (struct block *) NULL, VAR_DOMAIN, 0)
3264 == NULL)
3265 {
3266 /* match */
3267 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3268 psr->block = i;
3269 psr->msymbol = msymbol;
3270 psr->symtab = NULL;
3271 psr->symbol = NULL;
3272 psr->next = NULL;
3273 if (tail == NULL)
3274 {
3275 sr = psr;
3276 old_chain = make_cleanup_free_search_symbols (sr);
3277 }
3278 else
3279 tail->next = psr;
3280 tail = psr;
3281 }
3282 }
3283 }
3284 }
3285 }
3286 }
3287
3288 *matches = sr;
3289 if (sr != NULL)
3290 discard_cleanups (old_chain);
3291 }
3292
3293 /* Helper function for symtab_symbol_info, this function uses
3294 the data returned from search_symbols() to print information
3295 regarding the match to gdb_stdout.
3296 */
3297 static void
3298 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3299 int block, char *last)
3300 {
3301 if (last == NULL || strcmp (last, s->filename) != 0)
3302 {
3303 fputs_filtered ("\nFile ", gdb_stdout);
3304 fputs_filtered (s->filename, gdb_stdout);
3305 fputs_filtered (":\n", gdb_stdout);
3306 }
3307
3308 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3309 printf_filtered ("static ");
3310
3311 /* Typedef that is not a C++ class */
3312 if (kind == TYPES_DOMAIN
3313 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3314 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3315 /* variable, func, or typedef-that-is-c++-class */
3316 else if (kind < TYPES_DOMAIN ||
3317 (kind == TYPES_DOMAIN &&
3318 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3319 {
3320 type_print (SYMBOL_TYPE (sym),
3321 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3322 ? "" : SYMBOL_PRINT_NAME (sym)),
3323 gdb_stdout, 0);
3324
3325 printf_filtered (";\n");
3326 }
3327 }
3328
3329 /* This help function for symtab_symbol_info() prints information
3330 for non-debugging symbols to gdb_stdout.
3331 */
3332 static void
3333 print_msymbol_info (struct minimal_symbol *msymbol)
3334 {
3335 char *tmp;
3336
3337 if (gdbarch_addr_bit (current_gdbarch) <= 32)
3338 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3339 & (CORE_ADDR) 0xffffffff,
3340 8);
3341 else
3342 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3343 16);
3344 printf_filtered ("%s %s\n",
3345 tmp, SYMBOL_PRINT_NAME (msymbol));
3346 }
3347
3348 /* This is the guts of the commands "info functions", "info types", and
3349 "info variables". It calls search_symbols to find all matches and then
3350 print_[m]symbol_info to print out some useful information about the
3351 matches.
3352 */
3353 static void
3354 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3355 {
3356 static char *classnames[]
3357 =
3358 {"variable", "function", "type", "method"};
3359 struct symbol_search *symbols;
3360 struct symbol_search *p;
3361 struct cleanup *old_chain;
3362 char *last_filename = NULL;
3363 int first = 1;
3364
3365 /* must make sure that if we're interrupted, symbols gets freed */
3366 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3367 old_chain = make_cleanup_free_search_symbols (symbols);
3368
3369 printf_filtered (regexp
3370 ? "All %ss matching regular expression \"%s\":\n"
3371 : "All defined %ss:\n",
3372 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3373
3374 for (p = symbols; p != NULL; p = p->next)
3375 {
3376 QUIT;
3377
3378 if (p->msymbol != NULL)
3379 {
3380 if (first)
3381 {
3382 printf_filtered ("\nNon-debugging symbols:\n");
3383 first = 0;
3384 }
3385 print_msymbol_info (p->msymbol);
3386 }
3387 else
3388 {
3389 print_symbol_info (kind,
3390 p->symtab,
3391 p->symbol,
3392 p->block,
3393 last_filename);
3394 last_filename = p->symtab->filename;
3395 }
3396 }
3397
3398 do_cleanups (old_chain);
3399 }
3400
3401 static void
3402 variables_info (char *regexp, int from_tty)
3403 {
3404 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3405 }
3406
3407 static void
3408 functions_info (char *regexp, int from_tty)
3409 {
3410 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3411 }
3412
3413
3414 static void
3415 types_info (char *regexp, int from_tty)
3416 {
3417 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3418 }
3419
3420 /* Breakpoint all functions matching regular expression. */
3421
3422 void
3423 rbreak_command_wrapper (char *regexp, int from_tty)
3424 {
3425 rbreak_command (regexp, from_tty);
3426 }
3427
3428 static void
3429 rbreak_command (char *regexp, int from_tty)
3430 {
3431 struct symbol_search *ss;
3432 struct symbol_search *p;
3433 struct cleanup *old_chain;
3434
3435 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3436 old_chain = make_cleanup_free_search_symbols (ss);
3437
3438 for (p = ss; p != NULL; p = p->next)
3439 {
3440 if (p->msymbol == NULL)
3441 {
3442 char *string = alloca (strlen (p->symtab->filename)
3443 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3444 + 4);
3445 strcpy (string, p->symtab->filename);
3446 strcat (string, ":'");
3447 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3448 strcat (string, "'");
3449 break_command (string, from_tty);
3450 print_symbol_info (FUNCTIONS_DOMAIN,
3451 p->symtab,
3452 p->symbol,
3453 p->block,
3454 p->symtab->filename);
3455 }
3456 else
3457 {
3458 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3459 + 3);
3460 strcpy (string, "'");
3461 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3462 strcat (string, "'");
3463
3464 break_command (string, from_tty);
3465 printf_filtered ("<function, no debug info> %s;\n",
3466 SYMBOL_PRINT_NAME (p->msymbol));
3467 }
3468 }
3469
3470 do_cleanups (old_chain);
3471 }
3472 \f
3473
3474 /* Helper routine for make_symbol_completion_list. */
3475
3476 static int return_val_size;
3477 static int return_val_index;
3478 static char **return_val;
3479
3480 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3481 completion_list_add_name \
3482 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3483
3484 /* Test to see if the symbol specified by SYMNAME (which is already
3485 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3486 characters. If so, add it to the current completion list. */
3487
3488 static void
3489 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3490 char *text, char *word)
3491 {
3492 int newsize;
3493 int i;
3494
3495 /* clip symbols that cannot match */
3496
3497 if (strncmp (symname, sym_text, sym_text_len) != 0)
3498 {
3499 return;
3500 }
3501
3502 /* We have a match for a completion, so add SYMNAME to the current list
3503 of matches. Note that the name is moved to freshly malloc'd space. */
3504
3505 {
3506 char *new;
3507 if (word == sym_text)
3508 {
3509 new = xmalloc (strlen (symname) + 5);
3510 strcpy (new, symname);
3511 }
3512 else if (word > sym_text)
3513 {
3514 /* Return some portion of symname. */
3515 new = xmalloc (strlen (symname) + 5);
3516 strcpy (new, symname + (word - sym_text));
3517 }
3518 else
3519 {
3520 /* Return some of SYM_TEXT plus symname. */
3521 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3522 strncpy (new, word, sym_text - word);
3523 new[sym_text - word] = '\0';
3524 strcat (new, symname);
3525 }
3526
3527 if (return_val_index + 3 > return_val_size)
3528 {
3529 newsize = (return_val_size *= 2) * sizeof (char *);
3530 return_val = (char **) xrealloc ((char *) return_val, newsize);
3531 }
3532 return_val[return_val_index++] = new;
3533 return_val[return_val_index] = NULL;
3534 }
3535 }
3536
3537 /* ObjC: In case we are completing on a selector, look as the msymbol
3538 again and feed all the selectors into the mill. */
3539
3540 static void
3541 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3542 int sym_text_len, char *text, char *word)
3543 {
3544 static char *tmp = NULL;
3545 static unsigned int tmplen = 0;
3546
3547 char *method, *category, *selector;
3548 char *tmp2 = NULL;
3549
3550 method = SYMBOL_NATURAL_NAME (msymbol);
3551
3552 /* Is it a method? */
3553 if ((method[0] != '-') && (method[0] != '+'))
3554 return;
3555
3556 if (sym_text[0] == '[')
3557 /* Complete on shortened method method. */
3558 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3559
3560 while ((strlen (method) + 1) >= tmplen)
3561 {
3562 if (tmplen == 0)
3563 tmplen = 1024;
3564 else
3565 tmplen *= 2;
3566 tmp = xrealloc (tmp, tmplen);
3567 }
3568 selector = strchr (method, ' ');
3569 if (selector != NULL)
3570 selector++;
3571
3572 category = strchr (method, '(');
3573
3574 if ((category != NULL) && (selector != NULL))
3575 {
3576 memcpy (tmp, method, (category - method));
3577 tmp[category - method] = ' ';
3578 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3579 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3580 if (sym_text[0] == '[')
3581 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3582 }
3583
3584 if (selector != NULL)
3585 {
3586 /* Complete on selector only. */
3587 strcpy (tmp, selector);
3588 tmp2 = strchr (tmp, ']');
3589 if (tmp2 != NULL)
3590 *tmp2 = '\0';
3591
3592 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3593 }
3594 }
3595
3596 /* Break the non-quoted text based on the characters which are in
3597 symbols. FIXME: This should probably be language-specific. */
3598
3599 static char *
3600 language_search_unquoted_string (char *text, char *p)
3601 {
3602 for (; p > text; --p)
3603 {
3604 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3605 continue;
3606 else
3607 {
3608 if ((current_language->la_language == language_objc))
3609 {
3610 if (p[-1] == ':') /* might be part of a method name */
3611 continue;
3612 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3613 p -= 2; /* beginning of a method name */
3614 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3615 { /* might be part of a method name */
3616 char *t = p;
3617
3618 /* Seeing a ' ' or a '(' is not conclusive evidence
3619 that we are in the middle of a method name. However,
3620 finding "-[" or "+[" should be pretty un-ambiguous.
3621 Unfortunately we have to find it now to decide. */
3622
3623 while (t > text)
3624 if (isalnum (t[-1]) || t[-1] == '_' ||
3625 t[-1] == ' ' || t[-1] == ':' ||
3626 t[-1] == '(' || t[-1] == ')')
3627 --t;
3628 else
3629 break;
3630
3631 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3632 p = t - 2; /* method name detected */
3633 /* else we leave with p unchanged */
3634 }
3635 }
3636 break;
3637 }
3638 }
3639 return p;
3640 }
3641
3642 /* Type of the user_data argument passed to add_macro_name. The
3643 contents are simply whatever is needed by
3644 completion_list_add_name. */
3645 struct add_macro_name_data
3646 {
3647 char *sym_text;
3648 int sym_text_len;
3649 char *text;
3650 char *word;
3651 };
3652
3653 /* A callback used with macro_for_each and macro_for_each_in_scope.
3654 This adds a macro's name to the current completion list. */
3655 static void
3656 add_macro_name (const char *name, const struct macro_definition *ignore,
3657 void *user_data)
3658 {
3659 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3660 completion_list_add_name ((char *) name,
3661 datum->sym_text, datum->sym_text_len,
3662 datum->text, datum->word);
3663 }
3664
3665 char **
3666 default_make_symbol_completion_list (char *text, char *word)
3667 {
3668 /* Problem: All of the symbols have to be copied because readline
3669 frees them. I'm not going to worry about this; hopefully there
3670 won't be that many. */
3671
3672 struct symbol *sym;
3673 struct symtab *s;
3674 struct partial_symtab *ps;
3675 struct minimal_symbol *msymbol;
3676 struct objfile *objfile;
3677 struct block *b, *surrounding_static_block = 0;
3678 struct dict_iterator iter;
3679 int j;
3680 struct partial_symbol **psym;
3681 /* The symbol we are completing on. Points in same buffer as text. */
3682 char *sym_text;
3683 /* Length of sym_text. */
3684 int sym_text_len;
3685
3686 /* Now look for the symbol we are supposed to complete on. */
3687 {
3688 char *p;
3689 char quote_found;
3690 char *quote_pos = NULL;
3691
3692 /* First see if this is a quoted string. */
3693 quote_found = '\0';
3694 for (p = text; *p != '\0'; ++p)
3695 {
3696 if (quote_found != '\0')
3697 {
3698 if (*p == quote_found)
3699 /* Found close quote. */
3700 quote_found = '\0';
3701 else if (*p == '\\' && p[1] == quote_found)
3702 /* A backslash followed by the quote character
3703 doesn't end the string. */
3704 ++p;
3705 }
3706 else if (*p == '\'' || *p == '"')
3707 {
3708 quote_found = *p;
3709 quote_pos = p;
3710 }
3711 }
3712 if (quote_found == '\'')
3713 /* A string within single quotes can be a symbol, so complete on it. */
3714 sym_text = quote_pos + 1;
3715 else if (quote_found == '"')
3716 /* A double-quoted string is never a symbol, nor does it make sense
3717 to complete it any other way. */
3718 {
3719 return_val = (char **) xmalloc (sizeof (char *));
3720 return_val[0] = NULL;
3721 return return_val;
3722 }
3723 else
3724 {
3725 /* It is not a quoted string. Break it based on the characters
3726 which are in symbols. */
3727 while (p > text)
3728 {
3729 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3730 --p;
3731 else
3732 break;
3733 }
3734 sym_text = p;
3735 }
3736 }
3737
3738 sym_text_len = strlen (sym_text);
3739
3740 return_val_size = 100;
3741 return_val_index = 0;
3742 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3743 return_val[0] = NULL;
3744
3745 /* Look through the partial symtabs for all symbols which begin
3746 by matching SYM_TEXT. Add each one that you find to the list. */
3747
3748 ALL_PSYMTABS (objfile, ps)
3749 {
3750 /* If the psymtab's been read in we'll get it when we search
3751 through the blockvector. */
3752 if (ps->readin)
3753 continue;
3754
3755 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3756 psym < (objfile->global_psymbols.list + ps->globals_offset
3757 + ps->n_global_syms);
3758 psym++)
3759 {
3760 /* If interrupted, then quit. */
3761 QUIT;
3762 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3763 }
3764
3765 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3766 psym < (objfile->static_psymbols.list + ps->statics_offset
3767 + ps->n_static_syms);
3768 psym++)
3769 {
3770 QUIT;
3771 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3772 }
3773 }
3774
3775 /* At this point scan through the misc symbol vectors and add each
3776 symbol you find to the list. Eventually we want to ignore
3777 anything that isn't a text symbol (everything else will be
3778 handled by the psymtab code above). */
3779
3780 ALL_MSYMBOLS (objfile, msymbol)
3781 {
3782 QUIT;
3783 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3784
3785 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3786 }
3787
3788 /* Search upwards from currently selected frame (so that we can
3789 complete on local vars. */
3790
3791 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
3792 {
3793 if (!BLOCK_SUPERBLOCK (b))
3794 {
3795 surrounding_static_block = b; /* For elmin of dups */
3796 }
3797
3798 /* Also catch fields of types defined in this places which match our
3799 text string. Only complete on types visible from current context. */
3800
3801 ALL_BLOCK_SYMBOLS (b, iter, sym)
3802 {
3803 QUIT;
3804 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3805 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3806 {
3807 struct type *t = SYMBOL_TYPE (sym);
3808 enum type_code c = TYPE_CODE (t);
3809
3810 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3811 {
3812 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3813 {
3814 if (TYPE_FIELD_NAME (t, j))
3815 {
3816 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3817 sym_text, sym_text_len, text, word);
3818 }
3819 }
3820 }
3821 }
3822 }
3823 }
3824
3825 /* Go through the symtabs and check the externs and statics for
3826 symbols which match. */
3827
3828 ALL_PRIMARY_SYMTABS (objfile, s)
3829 {
3830 QUIT;
3831 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3832 ALL_BLOCK_SYMBOLS (b, iter, sym)
3833 {
3834 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3835 }
3836 }
3837
3838 ALL_PRIMARY_SYMTABS (objfile, s)
3839 {
3840 QUIT;
3841 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3842 /* Don't do this block twice. */
3843 if (b == surrounding_static_block)
3844 continue;
3845 ALL_BLOCK_SYMBOLS (b, iter, sym)
3846 {
3847 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3848 }
3849 }
3850
3851 if (current_language->la_macro_expansion == macro_expansion_c)
3852 {
3853 struct macro_scope *scope;
3854 struct add_macro_name_data datum;
3855
3856 datum.sym_text = sym_text;
3857 datum.sym_text_len = sym_text_len;
3858 datum.text = text;
3859 datum.word = word;
3860
3861 /* Add any macros visible in the default scope. Note that this
3862 may yield the occasional wrong result, because an expression
3863 might be evaluated in a scope other than the default. For
3864 example, if the user types "break file:line if <TAB>", the
3865 resulting expression will be evaluated at "file:line" -- but
3866 at there does not seem to be a way to detect this at
3867 completion time. */
3868 scope = default_macro_scope ();
3869 if (scope)
3870 {
3871 macro_for_each_in_scope (scope->file, scope->line,
3872 add_macro_name, &datum);
3873 xfree (scope);
3874 }
3875
3876 /* User-defined macros are always visible. */
3877 macro_for_each (macro_user_macros, add_macro_name, &datum);
3878 }
3879
3880 return (return_val);
3881 }
3882
3883 /* Return a NULL terminated array of all symbols (regardless of class)
3884 which begin by matching TEXT. If the answer is no symbols, then
3885 the return value is an array which contains only a NULL pointer. */
3886
3887 char **
3888 make_symbol_completion_list (char *text, char *word)
3889 {
3890 return current_language->la_make_symbol_completion_list (text, word);
3891 }
3892
3893 /* Like make_symbol_completion_list, but suitable for use as a
3894 completion function. */
3895
3896 char **
3897 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
3898 char *text, char *word)
3899 {
3900 return make_symbol_completion_list (text, word);
3901 }
3902
3903 /* Like make_symbol_completion_list, but returns a list of symbols
3904 defined in a source file FILE. */
3905
3906 char **
3907 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
3908 {
3909 struct symbol *sym;
3910 struct symtab *s;
3911 struct block *b;
3912 struct dict_iterator iter;
3913 /* The symbol we are completing on. Points in same buffer as text. */
3914 char *sym_text;
3915 /* Length of sym_text. */
3916 int sym_text_len;
3917
3918 /* Now look for the symbol we are supposed to complete on.
3919 FIXME: This should be language-specific. */
3920 {
3921 char *p;
3922 char quote_found;
3923 char *quote_pos = NULL;
3924
3925 /* First see if this is a quoted string. */
3926 quote_found = '\0';
3927 for (p = text; *p != '\0'; ++p)
3928 {
3929 if (quote_found != '\0')
3930 {
3931 if (*p == quote_found)
3932 /* Found close quote. */
3933 quote_found = '\0';
3934 else if (*p == '\\' && p[1] == quote_found)
3935 /* A backslash followed by the quote character
3936 doesn't end the string. */
3937 ++p;
3938 }
3939 else if (*p == '\'' || *p == '"')
3940 {
3941 quote_found = *p;
3942 quote_pos = p;
3943 }
3944 }
3945 if (quote_found == '\'')
3946 /* A string within single quotes can be a symbol, so complete on it. */
3947 sym_text = quote_pos + 1;
3948 else if (quote_found == '"')
3949 /* A double-quoted string is never a symbol, nor does it make sense
3950 to complete it any other way. */
3951 {
3952 return_val = (char **) xmalloc (sizeof (char *));
3953 return_val[0] = NULL;
3954 return return_val;
3955 }
3956 else
3957 {
3958 /* Not a quoted string. */
3959 sym_text = language_search_unquoted_string (text, p);
3960 }
3961 }
3962
3963 sym_text_len = strlen (sym_text);
3964
3965 return_val_size = 10;
3966 return_val_index = 0;
3967 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3968 return_val[0] = NULL;
3969
3970 /* Find the symtab for SRCFILE (this loads it if it was not yet read
3971 in). */
3972 s = lookup_symtab (srcfile);
3973 if (s == NULL)
3974 {
3975 /* Maybe they typed the file with leading directories, while the
3976 symbol tables record only its basename. */
3977 const char *tail = lbasename (srcfile);
3978
3979 if (tail > srcfile)
3980 s = lookup_symtab (tail);
3981 }
3982
3983 /* If we have no symtab for that file, return an empty list. */
3984 if (s == NULL)
3985 return (return_val);
3986
3987 /* Go through this symtab and check the externs and statics for
3988 symbols which match. */
3989
3990 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3991 ALL_BLOCK_SYMBOLS (b, iter, sym)
3992 {
3993 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3994 }
3995
3996 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3997 ALL_BLOCK_SYMBOLS (b, iter, sym)
3998 {
3999 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4000 }
4001
4002 return (return_val);
4003 }
4004
4005 /* A helper function for make_source_files_completion_list. It adds
4006 another file name to a list of possible completions, growing the
4007 list as necessary. */
4008
4009 static void
4010 add_filename_to_list (const char *fname, char *text, char *word,
4011 char ***list, int *list_used, int *list_alloced)
4012 {
4013 char *new;
4014 size_t fnlen = strlen (fname);
4015
4016 if (*list_used + 1 >= *list_alloced)
4017 {
4018 *list_alloced *= 2;
4019 *list = (char **) xrealloc ((char *) *list,
4020 *list_alloced * sizeof (char *));
4021 }
4022
4023 if (word == text)
4024 {
4025 /* Return exactly fname. */
4026 new = xmalloc (fnlen + 5);
4027 strcpy (new, fname);
4028 }
4029 else if (word > text)
4030 {
4031 /* Return some portion of fname. */
4032 new = xmalloc (fnlen + 5);
4033 strcpy (new, fname + (word - text));
4034 }
4035 else
4036 {
4037 /* Return some of TEXT plus fname. */
4038 new = xmalloc (fnlen + (text - word) + 5);
4039 strncpy (new, word, text - word);
4040 new[text - word] = '\0';
4041 strcat (new, fname);
4042 }
4043 (*list)[*list_used] = new;
4044 (*list)[++*list_used] = NULL;
4045 }
4046
4047 static int
4048 not_interesting_fname (const char *fname)
4049 {
4050 static const char *illegal_aliens[] = {
4051 "_globals_", /* inserted by coff_symtab_read */
4052 NULL
4053 };
4054 int i;
4055
4056 for (i = 0; illegal_aliens[i]; i++)
4057 {
4058 if (strcmp (fname, illegal_aliens[i]) == 0)
4059 return 1;
4060 }
4061 return 0;
4062 }
4063
4064 /* Return a NULL terminated array of all source files whose names
4065 begin with matching TEXT. The file names are looked up in the
4066 symbol tables of this program. If the answer is no matchess, then
4067 the return value is an array which contains only a NULL pointer. */
4068
4069 char **
4070 make_source_files_completion_list (char *text, char *word)
4071 {
4072 struct symtab *s;
4073 struct partial_symtab *ps;
4074 struct objfile *objfile;
4075 int first = 1;
4076 int list_alloced = 1;
4077 int list_used = 0;
4078 size_t text_len = strlen (text);
4079 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4080 const char *base_name;
4081
4082 list[0] = NULL;
4083
4084 if (!have_full_symbols () && !have_partial_symbols ())
4085 return list;
4086
4087 ALL_SYMTABS (objfile, s)
4088 {
4089 if (not_interesting_fname (s->filename))
4090 continue;
4091 if (!filename_seen (s->filename, 1, &first)
4092 #if HAVE_DOS_BASED_FILE_SYSTEM
4093 && strncasecmp (s->filename, text, text_len) == 0
4094 #else
4095 && strncmp (s->filename, text, text_len) == 0
4096 #endif
4097 )
4098 {
4099 /* This file matches for a completion; add it to the current
4100 list of matches. */
4101 add_filename_to_list (s->filename, text, word,
4102 &list, &list_used, &list_alloced);
4103 }
4104 else
4105 {
4106 /* NOTE: We allow the user to type a base name when the
4107 debug info records leading directories, but not the other
4108 way around. This is what subroutines of breakpoint
4109 command do when they parse file names. */
4110 base_name = lbasename (s->filename);
4111 if (base_name != s->filename
4112 && !filename_seen (base_name, 1, &first)
4113 #if HAVE_DOS_BASED_FILE_SYSTEM
4114 && strncasecmp (base_name, text, text_len) == 0
4115 #else
4116 && strncmp (base_name, text, text_len) == 0
4117 #endif
4118 )
4119 add_filename_to_list (base_name, text, word,
4120 &list, &list_used, &list_alloced);
4121 }
4122 }
4123
4124 ALL_PSYMTABS (objfile, ps)
4125 {
4126 if (not_interesting_fname (ps->filename))
4127 continue;
4128 if (!ps->readin)
4129 {
4130 if (!filename_seen (ps->filename, 1, &first)
4131 #if HAVE_DOS_BASED_FILE_SYSTEM
4132 && strncasecmp (ps->filename, text, text_len) == 0
4133 #else
4134 && strncmp (ps->filename, text, text_len) == 0
4135 #endif
4136 )
4137 {
4138 /* This file matches for a completion; add it to the
4139 current list of matches. */
4140 add_filename_to_list (ps->filename, text, word,
4141 &list, &list_used, &list_alloced);
4142
4143 }
4144 else
4145 {
4146 base_name = lbasename (ps->filename);
4147 if (base_name != ps->filename
4148 && !filename_seen (base_name, 1, &first)
4149 #if HAVE_DOS_BASED_FILE_SYSTEM
4150 && strncasecmp (base_name, text, text_len) == 0
4151 #else
4152 && strncmp (base_name, text, text_len) == 0
4153 #endif
4154 )
4155 add_filename_to_list (base_name, text, word,
4156 &list, &list_used, &list_alloced);
4157 }
4158 }
4159 }
4160
4161 return list;
4162 }
4163
4164 /* Determine if PC is in the prologue of a function. The prologue is the area
4165 between the first instruction of a function, and the first executable line.
4166 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4167
4168 If non-zero, func_start is where we think the prologue starts, possibly
4169 by previous examination of symbol table information.
4170 */
4171
4172 int
4173 in_prologue (CORE_ADDR pc, CORE_ADDR func_start)
4174 {
4175 struct symtab_and_line sal;
4176 CORE_ADDR func_addr, func_end;
4177
4178 /* We have several sources of information we can consult to figure
4179 this out.
4180 - Compilers usually emit line number info that marks the prologue
4181 as its own "source line". So the ending address of that "line"
4182 is the end of the prologue. If available, this is the most
4183 reliable method.
4184 - The minimal symbols and partial symbols, which can usually tell
4185 us the starting and ending addresses of a function.
4186 - If we know the function's start address, we can call the
4187 architecture-defined gdbarch_skip_prologue function to analyze the
4188 instruction stream and guess where the prologue ends.
4189 - Our `func_start' argument; if non-zero, this is the caller's
4190 best guess as to the function's entry point. At the time of
4191 this writing, handle_inferior_event doesn't get this right, so
4192 it should be our last resort. */
4193
4194 /* Consult the partial symbol table, to find which function
4195 the PC is in. */
4196 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4197 {
4198 CORE_ADDR prologue_end;
4199
4200 /* We don't even have minsym information, so fall back to using
4201 func_start, if given. */
4202 if (! func_start)
4203 return 1; /* We *might* be in a prologue. */
4204
4205 prologue_end = gdbarch_skip_prologue (current_gdbarch, func_start);
4206
4207 return func_start <= pc && pc < prologue_end;
4208 }
4209
4210 /* If we have line number information for the function, that's
4211 usually pretty reliable. */
4212 sal = find_pc_line (func_addr, 0);
4213
4214 /* Now sal describes the source line at the function's entry point,
4215 which (by convention) is the prologue. The end of that "line",
4216 sal.end, is the end of the prologue.
4217
4218 Note that, for functions whose source code is all on a single
4219 line, the line number information doesn't always end up this way.
4220 So we must verify that our purported end-of-prologue address is
4221 *within* the function, not at its start or end. */
4222 if (sal.line == 0
4223 || sal.end <= func_addr
4224 || func_end <= sal.end)
4225 {
4226 /* We don't have any good line number info, so use the minsym
4227 information, together with the architecture-specific prologue
4228 scanning code. */
4229 CORE_ADDR prologue_end = gdbarch_skip_prologue
4230 (current_gdbarch, func_addr);
4231
4232 return func_addr <= pc && pc < prologue_end;
4233 }
4234
4235 /* We have line number info, and it looks good. */
4236 return func_addr <= pc && pc < sal.end;
4237 }
4238
4239 /* Given PC at the function's start address, attempt to find the
4240 prologue end using SAL information. Return zero if the skip fails.
4241
4242 A non-optimized prologue traditionally has one SAL for the function
4243 and a second for the function body. A single line function has
4244 them both pointing at the same line.
4245
4246 An optimized prologue is similar but the prologue may contain
4247 instructions (SALs) from the instruction body. Need to skip those
4248 while not getting into the function body.
4249
4250 The functions end point and an increasing SAL line are used as
4251 indicators of the prologue's endpoint.
4252
4253 This code is based on the function refine_prologue_limit (versions
4254 found in both ia64 and ppc). */
4255
4256 CORE_ADDR
4257 skip_prologue_using_sal (CORE_ADDR func_addr)
4258 {
4259 struct symtab_and_line prologue_sal;
4260 CORE_ADDR start_pc;
4261 CORE_ADDR end_pc;
4262 struct block *bl;
4263
4264 /* Get an initial range for the function. */
4265 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4266 start_pc += gdbarch_deprecated_function_start_offset (current_gdbarch);
4267
4268 prologue_sal = find_pc_line (start_pc, 0);
4269 if (prologue_sal.line != 0)
4270 {
4271 /* For langauges other than assembly, treat two consecutive line
4272 entries at the same address as a zero-instruction prologue.
4273 The GNU assembler emits separate line notes for each instruction
4274 in a multi-instruction macro, but compilers generally will not
4275 do this. */
4276 if (prologue_sal.symtab->language != language_asm)
4277 {
4278 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4279 int exact;
4280 int idx = 0;
4281
4282 /* Skip any earlier lines, and any end-of-sequence marker
4283 from a previous function. */
4284 while (linetable->item[idx].pc != prologue_sal.pc
4285 || linetable->item[idx].line == 0)
4286 idx++;
4287
4288 if (idx+1 < linetable->nitems
4289 && linetable->item[idx+1].line != 0
4290 && linetable->item[idx+1].pc == start_pc)
4291 return start_pc;
4292 }
4293
4294 /* If there is only one sal that covers the entire function,
4295 then it is probably a single line function, like
4296 "foo(){}". */
4297 if (prologue_sal.end >= end_pc)
4298 return 0;
4299
4300 while (prologue_sal.end < end_pc)
4301 {
4302 struct symtab_and_line sal;
4303
4304 sal = find_pc_line (prologue_sal.end, 0);
4305 if (sal.line == 0)
4306 break;
4307 /* Assume that a consecutive SAL for the same (or larger)
4308 line mark the prologue -> body transition. */
4309 if (sal.line >= prologue_sal.line)
4310 break;
4311 /* The case in which compiler's optimizer/scheduler has
4312 moved instructions into the prologue. We look ahead in
4313 the function looking for address ranges whose
4314 corresponding line number is less the first one that we
4315 found for the function. This is more conservative then
4316 refine_prologue_limit which scans a large number of SALs
4317 looking for any in the prologue */
4318 prologue_sal = sal;
4319 }
4320 }
4321
4322 if (prologue_sal.end < end_pc)
4323 /* Return the end of this line, or zero if we could not find a
4324 line. */
4325 return prologue_sal.end;
4326 else
4327 /* Don't return END_PC, which is past the end of the function. */
4328 return prologue_sal.pc;
4329 }
4330 \f
4331 struct symtabs_and_lines
4332 decode_line_spec (char *string, int funfirstline)
4333 {
4334 struct symtabs_and_lines sals;
4335 struct symtab_and_line cursal;
4336
4337 if (string == 0)
4338 error (_("Empty line specification."));
4339
4340 /* We use whatever is set as the current source line. We do not try
4341 and get a default or it will recursively call us! */
4342 cursal = get_current_source_symtab_and_line ();
4343
4344 sals = decode_line_1 (&string, funfirstline,
4345 cursal.symtab, cursal.line,
4346 (char ***) NULL, NULL);
4347
4348 if (*string)
4349 error (_("Junk at end of line specification: %s"), string);
4350 return sals;
4351 }
4352
4353 /* Track MAIN */
4354 static char *name_of_main;
4355
4356 void
4357 set_main_name (const char *name)
4358 {
4359 if (name_of_main != NULL)
4360 {
4361 xfree (name_of_main);
4362 name_of_main = NULL;
4363 }
4364 if (name != NULL)
4365 {
4366 name_of_main = xstrdup (name);
4367 }
4368 }
4369
4370 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4371 accordingly. */
4372
4373 static void
4374 find_main_name (void)
4375 {
4376 const char *new_main_name;
4377
4378 /* Try to see if the main procedure is in Ada. */
4379 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4380 be to add a new method in the language vector, and call this
4381 method for each language until one of them returns a non-empty
4382 name. This would allow us to remove this hard-coded call to
4383 an Ada function. It is not clear that this is a better approach
4384 at this point, because all methods need to be written in a way
4385 such that false positives never be returned. For instance, it is
4386 important that a method does not return a wrong name for the main
4387 procedure if the main procedure is actually written in a different
4388 language. It is easy to guaranty this with Ada, since we use a
4389 special symbol generated only when the main in Ada to find the name
4390 of the main procedure. It is difficult however to see how this can
4391 be guarantied for languages such as C, for instance. This suggests
4392 that order of call for these methods becomes important, which means
4393 a more complicated approach. */
4394 new_main_name = ada_main_name ();
4395 if (new_main_name != NULL)
4396 {
4397 set_main_name (new_main_name);
4398 return;
4399 }
4400
4401 new_main_name = pascal_main_name ();
4402 if (new_main_name != NULL)
4403 {
4404 set_main_name (new_main_name);
4405 return;
4406 }
4407
4408 /* The languages above didn't identify the name of the main procedure.
4409 Fallback to "main". */
4410 set_main_name ("main");
4411 }
4412
4413 char *
4414 main_name (void)
4415 {
4416 if (name_of_main == NULL)
4417 find_main_name ();
4418
4419 return name_of_main;
4420 }
4421
4422 /* Handle ``executable_changed'' events for the symtab module. */
4423
4424 static void
4425 symtab_observer_executable_changed (void)
4426 {
4427 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4428 set_main_name (NULL);
4429 }
4430
4431 /* Helper to expand_line_sal below. Appends new sal to SAL,
4432 initializing it from SYMTAB, LINENO and PC. */
4433 static void
4434 append_expanded_sal (struct symtabs_and_lines *sal,
4435 struct symtab *symtab,
4436 int lineno, CORE_ADDR pc)
4437 {
4438 CORE_ADDR func_addr, func_end;
4439
4440 sal->sals = xrealloc (sal->sals,
4441 sizeof (sal->sals[0])
4442 * (sal->nelts + 1));
4443 init_sal (sal->sals + sal->nelts);
4444 sal->sals[sal->nelts].symtab = symtab;
4445 sal->sals[sal->nelts].section = NULL;
4446 sal->sals[sal->nelts].end = 0;
4447 sal->sals[sal->nelts].line = lineno;
4448 sal->sals[sal->nelts].pc = pc;
4449 ++sal->nelts;
4450 }
4451
4452 /* Compute a set of all sals in
4453 the entire program that correspond to same file
4454 and line as SAL and return those. If there
4455 are several sals that belong to the same block,
4456 only one sal for the block is included in results. */
4457
4458 struct symtabs_and_lines
4459 expand_line_sal (struct symtab_and_line sal)
4460 {
4461 struct symtabs_and_lines ret, this_line;
4462 int i, j;
4463 struct objfile *objfile;
4464 struct partial_symtab *psymtab;
4465 struct symtab *symtab;
4466 int lineno;
4467 int deleted = 0;
4468 struct block **blocks = NULL;
4469 int *filter;
4470
4471 ret.nelts = 0;
4472 ret.sals = NULL;
4473
4474 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4475 {
4476 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4477 ret.sals[0] = sal;
4478 ret.nelts = 1;
4479 return ret;
4480 }
4481 else
4482 {
4483 struct linetable_entry *best_item = 0;
4484 struct symtab *best_symtab = 0;
4485 int exact = 0;
4486
4487 lineno = sal.line;
4488
4489 /* We need to find all symtabs for a file which name
4490 is described by sal. We cannot just directly
4491 iterate over symtabs, since a symtab might not be
4492 yet created. We also cannot iterate over psymtabs,
4493 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4494 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4495 corresponding to an included file. Therefore, we do
4496 first pass over psymtabs, reading in those with
4497 the right name. Then, we iterate over symtabs, knowing
4498 that all symtabs we're interested in are loaded. */
4499
4500 ALL_PSYMTABS (objfile, psymtab)
4501 {
4502 if (strcmp (sal.symtab->filename,
4503 psymtab->filename) == 0)
4504 PSYMTAB_TO_SYMTAB (psymtab);
4505 }
4506
4507 /* For each symtab, we add all pcs to ret.sals. I'm actually
4508 not sure what to do if we have exact match in one symtab,
4509 and non-exact match on another symtab. */
4510
4511 ALL_SYMTABS (objfile, symtab)
4512 {
4513 if (strcmp (sal.symtab->filename,
4514 symtab->filename) == 0)
4515 {
4516 struct linetable *l;
4517 int len;
4518 l = LINETABLE (symtab);
4519 if (!l)
4520 continue;
4521 len = l->nitems;
4522
4523 for (j = 0; j < len; j++)
4524 {
4525 struct linetable_entry *item = &(l->item[j]);
4526
4527 if (item->line == lineno)
4528 {
4529 exact = 1;
4530 append_expanded_sal (&ret, symtab, lineno, item->pc);
4531 }
4532 else if (!exact && item->line > lineno
4533 && (best_item == NULL || item->line < best_item->line))
4534 {
4535 best_item = item;
4536 best_symtab = symtab;
4537 }
4538 }
4539 }
4540 }
4541 if (!exact && best_item)
4542 append_expanded_sal (&ret, best_symtab, lineno, best_item->pc);
4543 }
4544
4545 /* For optimized code, compiler can scatter one source line accross
4546 disjoint ranges of PC values, even when no duplicate functions
4547 or inline functions are involved. For example, 'for (;;)' inside
4548 non-template non-inline non-ctor-or-dtor function can result
4549 in two PC ranges. In this case, we don't want to set breakpoint
4550 on first PC of each range. To filter such cases, we use containing
4551 blocks -- for each PC found above we see if there are other PCs
4552 that are in the same block. If yes, the other PCs are filtered out. */
4553
4554 filter = alloca (ret.nelts * sizeof (int));
4555 blocks = alloca (ret.nelts * sizeof (struct block *));
4556 for (i = 0; i < ret.nelts; ++i)
4557 {
4558 filter[i] = 1;
4559 blocks[i] = block_for_pc (ret.sals[i].pc);
4560 }
4561
4562 for (i = 0; i < ret.nelts; ++i)
4563 if (blocks[i] != NULL)
4564 for (j = i+1; j < ret.nelts; ++j)
4565 if (blocks[j] == blocks[i])
4566 {
4567 filter[j] = 0;
4568 ++deleted;
4569 break;
4570 }
4571
4572 {
4573 struct symtab_and_line *final =
4574 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4575
4576 for (i = 0, j = 0; i < ret.nelts; ++i)
4577 if (filter[i])
4578 final[j++] = ret.sals[i];
4579
4580 ret.nelts -= deleted;
4581 xfree (ret.sals);
4582 ret.sals = final;
4583 }
4584
4585 return ret;
4586 }
4587
4588
4589 void
4590 _initialize_symtab (void)
4591 {
4592 add_info ("variables", variables_info, _("\
4593 All global and static variable names, or those matching REGEXP."));
4594 if (dbx_commands)
4595 add_com ("whereis", class_info, variables_info, _("\
4596 All global and static variable names, or those matching REGEXP."));
4597
4598 add_info ("functions", functions_info,
4599 _("All function names, or those matching REGEXP."));
4600
4601 /* FIXME: This command has at least the following problems:
4602 1. It prints builtin types (in a very strange and confusing fashion).
4603 2. It doesn't print right, e.g. with
4604 typedef struct foo *FOO
4605 type_print prints "FOO" when we want to make it (in this situation)
4606 print "struct foo *".
4607 I also think "ptype" or "whatis" is more likely to be useful (but if
4608 there is much disagreement "info types" can be fixed). */
4609 add_info ("types", types_info,
4610 _("All type names, or those matching REGEXP."));
4611
4612 add_info ("sources", sources_info,
4613 _("Source files in the program."));
4614
4615 add_com ("rbreak", class_breakpoint, rbreak_command,
4616 _("Set a breakpoint for all functions matching REGEXP."));
4617
4618 if (xdb_commands)
4619 {
4620 add_com ("lf", class_info, sources_info,
4621 _("Source files in the program"));
4622 add_com ("lg", class_info, variables_info, _("\
4623 All global and static variable names, or those matching REGEXP."));
4624 }
4625
4626 add_setshow_enum_cmd ("multiple-symbols", no_class,
4627 multiple_symbols_modes, &multiple_symbols_mode,
4628 _("\
4629 Set the debugger behavior when more than one symbol are possible matches\n\
4630 in an expression."), _("\
4631 Show how the debugger handles ambiguities in expressions."), _("\
4632 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4633 NULL, NULL, &setlist, &showlist);
4634
4635 /* Initialize the one built-in type that isn't language dependent... */
4636 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4637 "<unknown type>", (struct objfile *) NULL);
4638
4639 observer_attach_executable_changed (symtab_observer_executable_changed);
4640 }