]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.h
Remove ALL_COMPUNIT_FILETABS
[thirdparty/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include "gdb_vecs.h"
27 #include "gdbtypes.h"
28 #include "gdb_regex.h"
29 #include "common/enum-flags.h"
30 #include "common/function-view.h"
31 #include "common/gdb_optional.h"
32 #include "common/next-iterator.h"
33 #include "completer.h"
34
35 /* Opaque declarations. */
36 struct ui_file;
37 struct frame_info;
38 struct symbol;
39 struct obstack;
40 struct objfile;
41 struct block;
42 struct blockvector;
43 struct axs_value;
44 struct agent_expr;
45 struct program_space;
46 struct language_defn;
47 struct common_block;
48 struct obj_section;
49 struct cmd_list_element;
50 class probe;
51 struct lookup_name_info;
52
53 /* How to match a lookup name against a symbol search name. */
54 enum class symbol_name_match_type
55 {
56 /* Wild matching. Matches unqualified symbol names in all
57 namespace/module/packages, etc. */
58 WILD,
59
60 /* Full matching. The lookup name indicates a fully-qualified name,
61 and only matches symbol search names in the specified
62 namespace/module/package. */
63 FULL,
64
65 /* Search name matching. This is like FULL, but the search name did
66 not come from the user; instead it is already a search name
67 retrieved from a SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call.
68 For Ada, this avoids re-encoding an already-encoded search name
69 (which would potentially incorrectly lowercase letters in the
70 linkage/search name that should remain uppercase). For C++, it
71 avoids trying to demangle a name we already know is
72 demangled. */
73 SEARCH_NAME,
74
75 /* Expression matching. The same as FULL matching in most
76 languages. The same as WILD matching in Ada. */
77 EXPRESSION,
78 };
79
80 /* Hash the given symbol search name according to LANGUAGE's
81 rules. */
82 extern unsigned int search_name_hash (enum language language,
83 const char *search_name);
84
85 /* Ada-specific bits of a lookup_name_info object. This is lazily
86 constructed on demand. */
87
88 class ada_lookup_name_info final
89 {
90 public:
91 /* Construct. */
92 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
93
94 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
95 as name match type. Returns true if there's a match, false
96 otherwise. If non-NULL, store the matching results in MATCH. */
97 bool matches (const char *symbol_search_name,
98 symbol_name_match_type match_type,
99 completion_match_result *comp_match_res) const;
100
101 /* The Ada-encoded lookup name. */
102 const std::string &lookup_name () const
103 { return m_encoded_name; }
104
105 /* Return true if we're supposed to be doing a wild match look
106 up. */
107 bool wild_match_p () const
108 { return m_wild_match_p; }
109
110 /* Return true if we're looking up a name inside package
111 Standard. */
112 bool standard_p () const
113 { return m_standard_p; }
114
115 /* Return true if doing a verbatim match. */
116 bool verbatim_p () const
117 { return m_verbatim_p; }
118
119 private:
120 /* The Ada-encoded lookup name. */
121 std::string m_encoded_name;
122
123 /* Whether the user-provided lookup name was Ada encoded. If so,
124 then return encoded names in the 'matches' method's 'completion
125 match result' output. */
126 bool m_encoded_p : 1;
127
128 /* True if really doing wild matching. Even if the user requests
129 wild matching, some cases require full matching. */
130 bool m_wild_match_p : 1;
131
132 /* True if doing a verbatim match. This is true if the decoded
133 version of the symbol name is wrapped in '<'/'>'. This is an
134 escape hatch users can use to look up symbols the Ada encoding
135 does not understand. */
136 bool m_verbatim_p : 1;
137
138 /* True if the user specified a symbol name that is inside package
139 Standard. Symbol names inside package Standard are handled
140 specially. We always do a non-wild match of the symbol name
141 without the "standard__" prefix, and only search static and
142 global symbols. This was primarily introduced in order to allow
143 the user to specifically access the standard exceptions using,
144 for instance, Standard.Constraint_Error when Constraint_Error is
145 ambiguous (due to the user defining its own Constraint_Error
146 entity inside its program). */
147 bool m_standard_p : 1;
148 };
149
150 /* Language-specific bits of a lookup_name_info object, for languages
151 that do name searching using demangled names (C++/D/Go). This is
152 lazily constructed on demand. */
153
154 struct demangle_for_lookup_info final
155 {
156 public:
157 demangle_for_lookup_info (const lookup_name_info &lookup_name,
158 language lang);
159
160 /* The demangled lookup name. */
161 const std::string &lookup_name () const
162 { return m_demangled_name; }
163
164 private:
165 /* The demangled lookup name. */
166 std::string m_demangled_name;
167 };
168
169 /* Object that aggregates all information related to a symbol lookup
170 name. I.e., the name that is matched against the symbol's search
171 name. Caches per-language information so that it doesn't require
172 recomputing it for every symbol comparison, like for example the
173 Ada encoded name and the symbol's name hash for a given language.
174 The object is conceptually immutable once constructed, and thus has
175 no setters. This is to prevent some code path from tweaking some
176 property of the lookup name for some local reason and accidentally
177 altering the results of any continuing search(es).
178 lookup_name_info objects are generally passed around as a const
179 reference to reinforce that. (They're not passed around by value
180 because they're not small.) */
181 class lookup_name_info final
182 {
183 public:
184 /* Create a new object. */
185 lookup_name_info (std::string name,
186 symbol_name_match_type match_type,
187 bool completion_mode = false,
188 bool ignore_parameters = false)
189 : m_match_type (match_type),
190 m_completion_mode (completion_mode),
191 m_ignore_parameters (ignore_parameters),
192 m_name (std::move (name))
193 {}
194
195 /* Getters. See description of each corresponding field. */
196 symbol_name_match_type match_type () const { return m_match_type; }
197 bool completion_mode () const { return m_completion_mode; }
198 const std::string &name () const { return m_name; }
199 const bool ignore_parameters () const { return m_ignore_parameters; }
200
201 /* Return a version of this lookup name that is usable with
202 comparisons against symbols have no parameter info, such as
203 psymbols and GDB index symbols. */
204 lookup_name_info make_ignore_params () const
205 {
206 return lookup_name_info (m_name, m_match_type, m_completion_mode,
207 true /* ignore params */);
208 }
209
210 /* Get the search name hash for searches in language LANG. */
211 unsigned int search_name_hash (language lang) const
212 {
213 /* Only compute each language's hash once. */
214 if (!m_demangled_hashes_p[lang])
215 {
216 m_demangled_hashes[lang]
217 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
218 m_demangled_hashes_p[lang] = true;
219 }
220 return m_demangled_hashes[lang];
221 }
222
223 /* Get the search name for searches in language LANG. */
224 const std::string &language_lookup_name (language lang) const
225 {
226 switch (lang)
227 {
228 case language_ada:
229 return ada ().lookup_name ();
230 case language_cplus:
231 return cplus ().lookup_name ();
232 case language_d:
233 return d ().lookup_name ();
234 case language_go:
235 return go ().lookup_name ();
236 default:
237 return m_name;
238 }
239 }
240
241 /* Get the Ada-specific lookup info. */
242 const ada_lookup_name_info &ada () const
243 {
244 maybe_init (m_ada);
245 return *m_ada;
246 }
247
248 /* Get the C++-specific lookup info. */
249 const demangle_for_lookup_info &cplus () const
250 {
251 maybe_init (m_cplus, language_cplus);
252 return *m_cplus;
253 }
254
255 /* Get the D-specific lookup info. */
256 const demangle_for_lookup_info &d () const
257 {
258 maybe_init (m_d, language_d);
259 return *m_d;
260 }
261
262 /* Get the Go-specific lookup info. */
263 const demangle_for_lookup_info &go () const
264 {
265 maybe_init (m_go, language_go);
266 return *m_go;
267 }
268
269 /* Get a reference to a lookup_name_info object that matches any
270 symbol name. */
271 static const lookup_name_info &match_any ();
272
273 private:
274 /* Initialize FIELD, if not initialized yet. */
275 template<typename Field, typename... Args>
276 void maybe_init (Field &field, Args&&... args) const
277 {
278 if (!field)
279 field.emplace (*this, std::forward<Args> (args)...);
280 }
281
282 /* The lookup info as passed to the ctor. */
283 symbol_name_match_type m_match_type;
284 bool m_completion_mode;
285 bool m_ignore_parameters;
286 std::string m_name;
287
288 /* Language-specific info. These fields are filled lazily the first
289 time a lookup is done in the corresponding language. They're
290 mutable because lookup_name_info objects are typically passed
291 around by const reference (see intro), and they're conceptually
292 "cache" that can always be reconstructed from the non-mutable
293 fields. */
294 mutable gdb::optional<ada_lookup_name_info> m_ada;
295 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
296 mutable gdb::optional<demangle_for_lookup_info> m_d;
297 mutable gdb::optional<demangle_for_lookup_info> m_go;
298
299 /* The demangled hashes. Stored in an array with one entry for each
300 possible language. The second array records whether we've
301 already computed the each language's hash. (These are separate
302 arrays instead of a single array of optional<unsigned> to avoid
303 alignment padding). */
304 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
305 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
306 };
307
308 /* Comparison function for completion symbol lookup.
309
310 Returns true if the symbol name matches against LOOKUP_NAME.
311
312 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
313
314 On success and if non-NULL, COMP_MATCH_RES->match is set to point
315 to the symbol name as should be presented to the user as a
316 completion match list element. In most languages, this is the same
317 as the symbol's search name, but in some, like Ada, the display
318 name is dynamically computed within the comparison routine.
319
320 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
321 points the part of SYMBOL_SEARCH_NAME that was considered to match
322 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
323 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
324 points to "function()" inside SYMBOL_SEARCH_NAME. */
325 typedef bool (symbol_name_matcher_ftype)
326 (const char *symbol_search_name,
327 const lookup_name_info &lookup_name,
328 completion_match_result *comp_match_res);
329
330 /* Some of the structures in this file are space critical.
331 The space-critical structures are:
332
333 struct general_symbol_info
334 struct symbol
335 struct partial_symbol
336
337 These structures are laid out to encourage good packing.
338 They use ENUM_BITFIELD and short int fields, and they order the
339 structure members so that fields less than a word are next
340 to each other so they can be packed together. */
341
342 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
343 all the space critical structures (plus struct minimal_symbol).
344 Memory usage dropped from 99360768 bytes to 90001408 bytes.
345 I measured this with before-and-after tests of
346 "HEAD-old-gdb -readnow HEAD-old-gdb" and
347 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
348 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
349 typing "maint space 1" at the first command prompt.
350
351 Here is another measurement (from andrew c):
352 # no /usr/lib/debug, just plain glibc, like a normal user
353 gdb HEAD-old-gdb
354 (gdb) break internal_error
355 (gdb) run
356 (gdb) maint internal-error
357 (gdb) backtrace
358 (gdb) maint space 1
359
360 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
361 gdb HEAD 2003-08-19 space used: 8904704
362 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
363 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
364
365 The third line shows the savings from the optimizations in symtab.h.
366 The fourth line shows the savings from the optimizations in
367 gdbtypes.h. Both optimizations are in gdb HEAD now.
368
369 --chastain 2003-08-21 */
370
371 /* Define a structure for the information that is common to all symbol types,
372 including minimal symbols, partial symbols, and full symbols. In a
373 multilanguage environment, some language specific information may need to
374 be recorded along with each symbol. */
375
376 /* This structure is space critical. See space comments at the top. */
377
378 struct general_symbol_info
379 {
380 /* Name of the symbol. This is a required field. Storage for the
381 name is allocated on the objfile_obstack for the associated
382 objfile. For languages like C++ that make a distinction between
383 the mangled name and demangled name, this is the mangled
384 name. */
385
386 const char *name;
387
388 /* Value of the symbol. Which member of this union to use, and what
389 it means, depends on what kind of symbol this is and its
390 SYMBOL_CLASS. See comments there for more details. All of these
391 are in host byte order (though what they point to might be in
392 target byte order, e.g. LOC_CONST_BYTES). */
393
394 union
395 {
396 LONGEST ivalue;
397
398 const struct block *block;
399
400 const gdb_byte *bytes;
401
402 CORE_ADDR address;
403
404 /* A common block. Used with LOC_COMMON_BLOCK. */
405
406 const struct common_block *common_block;
407
408 /* For opaque typedef struct chain. */
409
410 struct symbol *chain;
411 }
412 value;
413
414 /* Since one and only one language can apply, wrap the language specific
415 information inside a union. */
416
417 union
418 {
419 /* A pointer to an obstack that can be used for storage associated
420 with this symbol. This is only used by Ada, and only when the
421 'ada_mangled' field is zero. */
422 struct obstack *obstack;
423
424 /* This is used by languages which wish to store a demangled name.
425 currently used by Ada, C++, and Objective C. */
426 const char *demangled_name;
427 }
428 language_specific;
429
430 /* Record the source code language that applies to this symbol.
431 This is used to select one of the fields from the language specific
432 union above. */
433
434 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
435
436 /* This is only used by Ada. If set, then the 'demangled_name' field
437 of language_specific is valid. Otherwise, the 'obstack' field is
438 valid. */
439 unsigned int ada_mangled : 1;
440
441 /* Which section is this symbol in? This is an index into
442 section_offsets for this objfile. Negative means that the symbol
443 does not get relocated relative to a section. */
444
445 short section;
446 };
447
448 extern void symbol_set_demangled_name (struct general_symbol_info *,
449 const char *,
450 struct obstack *);
451
452 extern const char *symbol_get_demangled_name
453 (const struct general_symbol_info *);
454
455 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
456
457 /* Note that all the following SYMBOL_* macros are used with the
458 SYMBOL argument being either a partial symbol or
459 a full symbol. Both types have a ginfo field. In particular
460 the SYMBOL_SET_LANGUAGE, SYMBOL_DEMANGLED_NAME, etc.
461 macros cannot be entirely substituted by
462 functions, unless the callers are changed to pass in the ginfo
463 field only, instead of the SYMBOL parameter. */
464
465 #define SYMBOL_VALUE(symbol) (symbol)->ginfo.value.ivalue
466 #define SYMBOL_VALUE_ADDRESS(symbol) (symbol)->ginfo.value.address
467 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->ginfo.value.bytes
468 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->ginfo.value.common_block
469 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->ginfo.value.block
470 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->ginfo.value.chain
471 #define SYMBOL_LANGUAGE(symbol) (symbol)->ginfo.language
472 #define SYMBOL_SECTION(symbol) (symbol)->ginfo.section
473 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
474 (((symbol)->ginfo.section >= 0) \
475 ? (&(((objfile)->sections)[(symbol)->ginfo.section])) \
476 : NULL)
477
478 /* Initializes the language dependent portion of a symbol
479 depending upon the language for the symbol. */
480 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
481 (symbol_set_language (&(symbol)->ginfo, (language), (obstack)))
482 extern void symbol_set_language (struct general_symbol_info *symbol,
483 enum language language,
484 struct obstack *obstack);
485
486 /* Set just the linkage name of a symbol; do not try to demangle
487 it. Used for constructs which do not have a mangled name,
488 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
489 be terminated and either already on the objfile's obstack or
490 permanently allocated. */
491 #define SYMBOL_SET_LINKAGE_NAME(symbol,linkage_name) \
492 (symbol)->ginfo.name = (linkage_name)
493
494 /* Set the linkage and natural names of a symbol, by demangling
495 the linkage name. */
496 #define SYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
497 symbol_set_names (&(symbol)->ginfo, linkage_name, len, copy_name, objfile)
498 extern void symbol_set_names (struct general_symbol_info *symbol,
499 const char *linkage_name, int len, int copy_name,
500 struct objfile *objfile);
501
502 /* Now come lots of name accessor macros. Short version as to when to
503 use which: Use SYMBOL_NATURAL_NAME to refer to the name of the
504 symbol in the original source code. Use SYMBOL_LINKAGE_NAME if you
505 want to know what the linker thinks the symbol's name is. Use
506 SYMBOL_PRINT_NAME for output. Use SYMBOL_DEMANGLED_NAME if you
507 specifically need to know whether SYMBOL_NATURAL_NAME and
508 SYMBOL_LINKAGE_NAME are different. */
509
510 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
511 the original source code. In languages like C++ where symbols may
512 be mangled for ease of manipulation by the linker, this is the
513 demangled name. */
514
515 #define SYMBOL_NATURAL_NAME(symbol) \
516 (symbol_natural_name (&(symbol)->ginfo))
517 extern const char *symbol_natural_name
518 (const struct general_symbol_info *symbol);
519
520 /* Return SYMBOL's name from the point of view of the linker. In
521 languages like C++ where symbols may be mangled for ease of
522 manipulation by the linker, this is the mangled name; otherwise,
523 it's the same as SYMBOL_NATURAL_NAME. */
524
525 #define SYMBOL_LINKAGE_NAME(symbol) (symbol)->ginfo.name
526
527 /* Return the demangled name for a symbol based on the language for
528 that symbol. If no demangled name exists, return NULL. */
529 #define SYMBOL_DEMANGLED_NAME(symbol) \
530 (symbol_demangled_name (&(symbol)->ginfo))
531 extern const char *symbol_demangled_name
532 (const struct general_symbol_info *symbol);
533
534 /* Macro that returns a version of the name of a symbol that is
535 suitable for output. In C++ this is the "demangled" form of the
536 name if demangle is on and the "mangled" form of the name if
537 demangle is off. In other languages this is just the symbol name.
538 The result should never be NULL. Don't use this for internal
539 purposes (e.g. storing in a hashtable): it's only suitable for output.
540
541 N.B. symbol may be anything with a ginfo member,
542 e.g., struct symbol or struct minimal_symbol. */
543
544 #define SYMBOL_PRINT_NAME(symbol) \
545 (demangle ? SYMBOL_NATURAL_NAME (symbol) : SYMBOL_LINKAGE_NAME (symbol))
546 extern int demangle;
547
548 /* Macro that returns the name to be used when sorting and searching symbols.
549 In C++, we search for the demangled form of a name,
550 and so sort symbols accordingly. In Ada, however, we search by mangled
551 name. If there is no distinct demangled name, then SYMBOL_SEARCH_NAME
552 returns the same value (same pointer) as SYMBOL_LINKAGE_NAME. */
553 #define SYMBOL_SEARCH_NAME(symbol) \
554 (symbol_search_name (&(symbol)->ginfo))
555 extern const char *symbol_search_name (const struct general_symbol_info *ginfo);
556
557 /* Return true if NAME matches the "search" name of SYMBOL, according
558 to the symbol's language. */
559 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
560 symbol_matches_search_name (&(symbol)->ginfo, (name))
561
562 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
563 and psymbols. */
564 extern bool symbol_matches_search_name
565 (const struct general_symbol_info *gsymbol,
566 const lookup_name_info &name);
567
568 /* Compute the hash of the given symbol search name of a symbol of
569 language LANGUAGE. */
570 extern unsigned int search_name_hash (enum language language,
571 const char *search_name);
572
573 /* Classification types for a minimal symbol. These should be taken as
574 "advisory only", since if gdb can't easily figure out a
575 classification it simply selects mst_unknown. It may also have to
576 guess when it can't figure out which is a better match between two
577 types (mst_data versus mst_bss) for example. Since the minimal
578 symbol info is sometimes derived from the BFD library's view of a
579 file, we need to live with what information bfd supplies. */
580
581 enum minimal_symbol_type
582 {
583 mst_unknown = 0, /* Unknown type, the default */
584 mst_text, /* Generally executable instructions */
585
586 /* A GNU ifunc symbol, in the .text section. GDB uses to know
587 whether the user is setting a breakpoint on a GNU ifunc function,
588 and thus GDB needs to actually set the breakpoint on the target
589 function. It is also used to know whether the program stepped
590 into an ifunc resolver -- the resolver may get a separate
591 symbol/alias under a different name, but it'll have the same
592 address as the ifunc symbol. */
593 mst_text_gnu_ifunc, /* Executable code returning address
594 of executable code */
595
596 /* A GNU ifunc function descriptor symbol, in a data section
597 (typically ".opd"). Seen on architectures that use function
598 descriptors, like PPC64/ELFv1. In this case, this symbol's value
599 is the address of the descriptor. There'll be a corresponding
600 mst_text_gnu_ifunc synthetic symbol for the text/entry
601 address. */
602 mst_data_gnu_ifunc, /* Executable code returning address
603 of executable code */
604
605 mst_slot_got_plt, /* GOT entries for .plt sections */
606 mst_data, /* Generally initialized data */
607 mst_bss, /* Generally uninitialized data */
608 mst_abs, /* Generally absolute (nonrelocatable) */
609 /* GDB uses mst_solib_trampoline for the start address of a shared
610 library trampoline entry. Breakpoints for shared library functions
611 are put there if the shared library is not yet loaded.
612 After the shared library is loaded, lookup_minimal_symbol will
613 prefer the minimal symbol from the shared library (usually
614 a mst_text symbol) over the mst_solib_trampoline symbol, and the
615 breakpoints will be moved to their true address in the shared
616 library via breakpoint_re_set. */
617 mst_solib_trampoline, /* Shared library trampoline code */
618 /* For the mst_file* types, the names are only guaranteed to be unique
619 within a given .o file. */
620 mst_file_text, /* Static version of mst_text */
621 mst_file_data, /* Static version of mst_data */
622 mst_file_bss, /* Static version of mst_bss */
623 nr_minsym_types
624 };
625
626 /* The number of enum minimal_symbol_type values, with some padding for
627 reasonable growth. */
628 #define MINSYM_TYPE_BITS 4
629 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
630
631 /* Define a simple structure used to hold some very basic information about
632 all defined global symbols (text, data, bss, abs, etc). The only required
633 information is the general_symbol_info.
634
635 In many cases, even if a file was compiled with no special options for
636 debugging at all, as long as was not stripped it will contain sufficient
637 information to build a useful minimal symbol table using this structure.
638 Even when a file contains enough debugging information to build a full
639 symbol table, these minimal symbols are still useful for quickly mapping
640 between names and addresses, and vice versa. They are also sometimes
641 used to figure out what full symbol table entries need to be read in. */
642
643 struct minimal_symbol
644 {
645
646 /* The general symbol info required for all types of symbols.
647
648 The SYMBOL_VALUE_ADDRESS contains the address that this symbol
649 corresponds to. */
650
651 struct general_symbol_info mginfo;
652
653 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
654 information to calculate the end of the partial symtab based on the
655 address of the last symbol plus the size of the last symbol. */
656
657 unsigned long size;
658
659 /* Which source file is this symbol in? Only relevant for mst_file_*. */
660 const char *filename;
661
662 /* Classification type for this minimal symbol. */
663
664 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
665
666 /* Non-zero if this symbol was created by gdb.
667 Such symbols do not appear in the output of "info var|fun". */
668 unsigned int created_by_gdb : 1;
669
670 /* Two flag bits provided for the use of the target. */
671 unsigned int target_flag_1 : 1;
672 unsigned int target_flag_2 : 1;
673
674 /* Nonzero iff the size of the minimal symbol has been set.
675 Symbol size information can sometimes not be determined, because
676 the object file format may not carry that piece of information. */
677 unsigned int has_size : 1;
678
679 /* Minimal symbols with the same hash key are kept on a linked
680 list. This is the link. */
681
682 struct minimal_symbol *hash_next;
683
684 /* Minimal symbols are stored in two different hash tables. This is
685 the `next' pointer for the demangled hash table. */
686
687 struct minimal_symbol *demangled_hash_next;
688 };
689
690 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
691 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
692 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
693 #define SET_MSYMBOL_SIZE(msymbol, sz) \
694 do \
695 { \
696 (msymbol)->size = sz; \
697 (msymbol)->has_size = 1; \
698 } while (0)
699 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
700 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
701
702 #define MSYMBOL_VALUE(symbol) (symbol)->mginfo.value.ivalue
703 /* The unrelocated address of the minimal symbol. */
704 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->mginfo.value.address + 0)
705 /* The relocated address of the minimal symbol, using the section
706 offsets from OBJFILE. */
707 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
708 ((symbol)->mginfo.value.address \
709 + ANOFFSET ((objfile)->section_offsets, ((symbol)->mginfo.section)))
710 /* For a bound minsym, we can easily compute the address directly. */
711 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
712 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
713 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
714 ((symbol)->mginfo.value.address = (new_value))
715 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->mginfo.value.bytes
716 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->mginfo.value.block
717 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->mginfo.value.chain
718 #define MSYMBOL_LANGUAGE(symbol) (symbol)->mginfo.language
719 #define MSYMBOL_SECTION(symbol) (symbol)->mginfo.section
720 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
721 (((symbol)->mginfo.section >= 0) \
722 ? (&(((objfile)->sections)[(symbol)->mginfo.section])) \
723 : NULL)
724
725 #define MSYMBOL_NATURAL_NAME(symbol) \
726 (symbol_natural_name (&(symbol)->mginfo))
727 #define MSYMBOL_LINKAGE_NAME(symbol) (symbol)->mginfo.name
728 #define MSYMBOL_PRINT_NAME(symbol) \
729 (demangle ? MSYMBOL_NATURAL_NAME (symbol) : MSYMBOL_LINKAGE_NAME (symbol))
730 #define MSYMBOL_DEMANGLED_NAME(symbol) \
731 (symbol_demangled_name (&(symbol)->mginfo))
732 #define MSYMBOL_SET_LANGUAGE(symbol,language,obstack) \
733 (symbol_set_language (&(symbol)->mginfo, (language), (obstack)))
734 #define MSYMBOL_SEARCH_NAME(symbol) \
735 (symbol_search_name (&(symbol)->mginfo))
736 #define MSYMBOL_SET_NAMES(symbol,linkage_name,len,copy_name,objfile) \
737 symbol_set_names (&(symbol)->mginfo, linkage_name, len, copy_name, objfile)
738
739 #include "minsyms.h"
740
741 \f
742
743 /* Represent one symbol name; a variable, constant, function or typedef. */
744
745 /* Different name domains for symbols. Looking up a symbol specifies a
746 domain and ignores symbol definitions in other name domains. */
747
748 typedef enum domain_enum_tag
749 {
750 /* UNDEF_DOMAIN is used when a domain has not been discovered or
751 none of the following apply. This usually indicates an error either
752 in the symbol information or in gdb's handling of symbols. */
753
754 UNDEF_DOMAIN,
755
756 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
757 function names, typedef names and enum type values. */
758
759 VAR_DOMAIN,
760
761 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
762 Thus, if `struct foo' is used in a C program, it produces a symbol named
763 `foo' in the STRUCT_DOMAIN. */
764
765 STRUCT_DOMAIN,
766
767 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
768
769 MODULE_DOMAIN,
770
771 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
772
773 LABEL_DOMAIN,
774
775 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
776 They also always use LOC_COMMON_BLOCK. */
777 COMMON_BLOCK_DOMAIN,
778
779 /* This must remain last. */
780 NR_DOMAINS
781 } domain_enum;
782
783 /* The number of bits in a symbol used to represent the domain. */
784
785 #define SYMBOL_DOMAIN_BITS 3
786 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
787
788 extern const char *domain_name (domain_enum);
789
790 /* Searching domains, used for `search_symbols'. Element numbers are
791 hardcoded in GDB, check all enum uses before changing it. */
792
793 enum search_domain
794 {
795 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
796 TYPES_DOMAIN. */
797 VARIABLES_DOMAIN = 0,
798
799 /* All functions -- for some reason not methods, though. */
800 FUNCTIONS_DOMAIN = 1,
801
802 /* All defined types */
803 TYPES_DOMAIN = 2,
804
805 /* Any type. */
806 ALL_DOMAIN = 3
807 };
808
809 extern const char *search_domain_name (enum search_domain);
810
811 /* An address-class says where to find the value of a symbol. */
812
813 enum address_class
814 {
815 /* Not used; catches errors. */
816
817 LOC_UNDEF,
818
819 /* Value is constant int SYMBOL_VALUE, host byteorder. */
820
821 LOC_CONST,
822
823 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
824
825 LOC_STATIC,
826
827 /* Value is in register. SYMBOL_VALUE is the register number
828 in the original debug format. SYMBOL_REGISTER_OPS holds a
829 function that can be called to transform this into the
830 actual register number this represents in a specific target
831 architecture (gdbarch).
832
833 For some symbol formats (stabs, for some compilers at least),
834 the compiler generates two symbols, an argument and a register.
835 In some cases we combine them to a single LOC_REGISTER in symbol
836 reading, but currently not for all cases (e.g. it's passed on the
837 stack and then loaded into a register). */
838
839 LOC_REGISTER,
840
841 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
842
843 LOC_ARG,
844
845 /* Value address is at SYMBOL_VALUE offset in arglist. */
846
847 LOC_REF_ARG,
848
849 /* Value is in specified register. Just like LOC_REGISTER except the
850 register holds the address of the argument instead of the argument
851 itself. This is currently used for the passing of structs and unions
852 on sparc and hppa. It is also used for call by reference where the
853 address is in a register, at least by mipsread.c. */
854
855 LOC_REGPARM_ADDR,
856
857 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
858
859 LOC_LOCAL,
860
861 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
862 STRUCT_DOMAIN all have this class. */
863
864 LOC_TYPEDEF,
865
866 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
867
868 LOC_LABEL,
869
870 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
871 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
872 of the block. Function names have this class. */
873
874 LOC_BLOCK,
875
876 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
877 target byte order. */
878
879 LOC_CONST_BYTES,
880
881 /* Value is at fixed address, but the address of the variable has
882 to be determined from the minimal symbol table whenever the
883 variable is referenced.
884 This happens if debugging information for a global symbol is
885 emitted and the corresponding minimal symbol is defined
886 in another object file or runtime common storage.
887 The linker might even remove the minimal symbol if the global
888 symbol is never referenced, in which case the symbol remains
889 unresolved.
890
891 GDB would normally find the symbol in the minimal symbol table if it will
892 not find it in the full symbol table. But a reference to an external
893 symbol in a local block shadowing other definition requires full symbol
894 without possibly having its address available for LOC_STATIC. Testcase
895 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
896
897 This is also used for thread local storage (TLS) variables. In this case,
898 the address of the TLS variable must be determined when the variable is
899 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
900 of the TLS variable in the thread local storage of the shared
901 library/object. */
902
903 LOC_UNRESOLVED,
904
905 /* The variable does not actually exist in the program.
906 The value is ignored. */
907
908 LOC_OPTIMIZED_OUT,
909
910 /* The variable's address is computed by a set of location
911 functions (see "struct symbol_computed_ops" below). */
912 LOC_COMPUTED,
913
914 /* The variable uses general_symbol_info->value->common_block field.
915 It also always uses COMMON_BLOCK_DOMAIN. */
916 LOC_COMMON_BLOCK,
917
918 /* Not used, just notes the boundary of the enum. */
919 LOC_FINAL_VALUE
920 };
921
922 /* The number of bits needed for values in enum address_class, with some
923 padding for reasonable growth, and room for run-time registered address
924 classes. See symtab.c:MAX_SYMBOL_IMPLS.
925 This is a #define so that we can have a assertion elsewhere to
926 verify that we have reserved enough space for synthetic address
927 classes. */
928 #define SYMBOL_ACLASS_BITS 5
929 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
930
931 /* The methods needed to implement LOC_COMPUTED. These methods can
932 use the symbol's .aux_value for additional per-symbol information.
933
934 At present this is only used to implement location expressions. */
935
936 struct symbol_computed_ops
937 {
938
939 /* Return the value of the variable SYMBOL, relative to the stack
940 frame FRAME. If the variable has been optimized out, return
941 zero.
942
943 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
944 FRAME may be zero. */
945
946 struct value *(*read_variable) (struct symbol * symbol,
947 struct frame_info * frame);
948
949 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
950 entry. SYMBOL should be a function parameter, otherwise
951 NO_ENTRY_VALUE_ERROR will be thrown. */
952 struct value *(*read_variable_at_entry) (struct symbol *symbol,
953 struct frame_info *frame);
954
955 /* Find the "symbol_needs_kind" value for the given symbol. This
956 value determines whether reading the symbol needs memory (e.g., a
957 global variable), just registers (a thread-local), or a frame (a
958 local variable). */
959 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
960
961 /* Write to STREAM a natural-language description of the location of
962 SYMBOL, in the context of ADDR. */
963 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
964 struct ui_file * stream);
965
966 /* Non-zero if this symbol's address computation is dependent on PC. */
967 unsigned char location_has_loclist;
968
969 /* Tracepoint support. Append bytecodes to the tracepoint agent
970 expression AX that push the address of the object SYMBOL. Set
971 VALUE appropriately. Note --- for objects in registers, this
972 needn't emit any code; as long as it sets VALUE properly, then
973 the caller will generate the right code in the process of
974 treating this as an lvalue or rvalue. */
975
976 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
977 struct axs_value *value);
978
979 /* Generate C code to compute the location of SYMBOL. The C code is
980 emitted to STREAM. GDBARCH is the current architecture and PC is
981 the PC at which SYMBOL's location should be evaluated.
982 REGISTERS_USED is a vector indexed by register number; the
983 generator function should set an element in this vector if the
984 corresponding register is needed by the location computation.
985 The generated C code must assign the location to a local
986 variable; this variable's name is RESULT_NAME. */
987
988 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
989 struct gdbarch *gdbarch,
990 unsigned char *registers_used,
991 CORE_ADDR pc, const char *result_name);
992
993 };
994
995 /* The methods needed to implement LOC_BLOCK for inferior functions.
996 These methods can use the symbol's .aux_value for additional
997 per-symbol information. */
998
999 struct symbol_block_ops
1000 {
1001 /* Fill in *START and *LENGTH with DWARF block data of function
1002 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1003 zero if such location is not valid for PC; *START is left
1004 uninitialized in such case. */
1005 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1006 const gdb_byte **start, size_t *length);
1007
1008 /* Return the frame base address. FRAME is the frame for which we want to
1009 compute the base address while FRAMEFUNC is the symbol for the
1010 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1011 information we need).
1012
1013 This method is designed to work with static links (nested functions
1014 handling). Static links are function properties whose evaluation returns
1015 the frame base address for the enclosing frame. However, there are
1016 multiple definitions for "frame base": the content of the frame base
1017 register, the CFA as defined by DWARF unwinding information, ...
1018
1019 So this specific method is supposed to compute the frame base address such
1020 as for nested fuctions, the static link computes the same address. For
1021 instance, considering DWARF debugging information, the static link is
1022 computed with DW_AT_static_link and this method must be used to compute
1023 the corresponding DW_AT_frame_base attribute. */
1024 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1025 struct frame_info *frame);
1026 };
1027
1028 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1029
1030 struct symbol_register_ops
1031 {
1032 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1033 };
1034
1035 /* Objects of this type are used to find the address class and the
1036 various computed ops vectors of a symbol. */
1037
1038 struct symbol_impl
1039 {
1040 enum address_class aclass;
1041
1042 /* Used with LOC_COMPUTED. */
1043 const struct symbol_computed_ops *ops_computed;
1044
1045 /* Used with LOC_BLOCK. */
1046 const struct symbol_block_ops *ops_block;
1047
1048 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1049 const struct symbol_register_ops *ops_register;
1050 };
1051
1052 /* struct symbol has some subclasses. This enum is used to
1053 differentiate between them. */
1054
1055 enum symbol_subclass_kind
1056 {
1057 /* Plain struct symbol. */
1058 SYMBOL_NONE,
1059
1060 /* struct template_symbol. */
1061 SYMBOL_TEMPLATE,
1062
1063 /* struct rust_vtable_symbol. */
1064 SYMBOL_RUST_VTABLE
1065 };
1066
1067 /* This structure is space critical. See space comments at the top. */
1068
1069 struct symbol
1070 {
1071
1072 /* The general symbol info required for all types of symbols. */
1073
1074 struct general_symbol_info ginfo;
1075
1076 /* Data type of value */
1077
1078 struct type *type;
1079
1080 /* The owner of this symbol.
1081 Which one to use is defined by symbol.is_objfile_owned. */
1082
1083 union
1084 {
1085 /* The symbol table containing this symbol. This is the file associated
1086 with LINE. It can be NULL during symbols read-in but it is never NULL
1087 during normal operation. */
1088 struct symtab *symtab;
1089
1090 /* For types defined by the architecture. */
1091 struct gdbarch *arch;
1092 } owner;
1093
1094 /* Domain code. */
1095
1096 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1097
1098 /* Address class. This holds an index into the 'symbol_impls'
1099 table. The actual enum address_class value is stored there,
1100 alongside any per-class ops vectors. */
1101
1102 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1103
1104 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1105 Otherwise symbol is arch-owned, use owner.arch. */
1106
1107 unsigned int is_objfile_owned : 1;
1108
1109 /* Whether this is an argument. */
1110
1111 unsigned is_argument : 1;
1112
1113 /* Whether this is an inlined function (class LOC_BLOCK only). */
1114 unsigned is_inlined : 1;
1115
1116 /* The concrete type of this symbol. */
1117
1118 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1119
1120 /* Line number of this symbol's definition, except for inlined
1121 functions. For an inlined function (class LOC_BLOCK and
1122 SYMBOL_INLINED set) this is the line number of the function's call
1123 site. Inlined function symbols are not definitions, and they are
1124 never found by symbol table lookup.
1125 If this symbol is arch-owned, LINE shall be zero.
1126
1127 FIXME: Should we really make the assumption that nobody will try
1128 to debug files longer than 64K lines? What about machine
1129 generated programs? */
1130
1131 unsigned short line;
1132
1133 /* An arbitrary data pointer, allowing symbol readers to record
1134 additional information on a per-symbol basis. Note that this data
1135 must be allocated using the same obstack as the symbol itself. */
1136 /* So far it is only used by:
1137 LOC_COMPUTED: to find the location information
1138 LOC_BLOCK (DWARF2 function): information used internally by the
1139 DWARF 2 code --- specifically, the location expression for the frame
1140 base for this function. */
1141 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1142 to add a magic symbol to the block containing this information,
1143 or to have a generic debug info annotation slot for symbols. */
1144
1145 void *aux_value;
1146
1147 struct symbol *hash_next;
1148 };
1149
1150 /* Several lookup functions return both a symbol and the block in which the
1151 symbol is found. This structure is used in these cases. */
1152
1153 struct block_symbol
1154 {
1155 /* The symbol that was found, or NULL if no symbol was found. */
1156 struct symbol *symbol;
1157
1158 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1159 defined. */
1160 const struct block *block;
1161 };
1162
1163 extern const struct symbol_impl *symbol_impls;
1164
1165 /* For convenience. All fields are NULL. This means "there is no
1166 symbol". */
1167 extern const struct block_symbol null_block_symbol;
1168
1169 /* Note: There is no accessor macro for symbol.owner because it is
1170 "private". */
1171
1172 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1173 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1174 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1175 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1176 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1177 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1178 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1179 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1180 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1181 #define SYMBOL_TYPE(symbol) (symbol)->type
1182 #define SYMBOL_LINE(symbol) (symbol)->line
1183 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1184 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1185 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1186 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1187
1188 extern int register_symbol_computed_impl (enum address_class,
1189 const struct symbol_computed_ops *);
1190
1191 extern int register_symbol_block_impl (enum address_class aclass,
1192 const struct symbol_block_ops *ops);
1193
1194 extern int register_symbol_register_impl (enum address_class,
1195 const struct symbol_register_ops *);
1196
1197 /* Return the OBJFILE of SYMBOL.
1198 It is an error to call this if symbol.is_objfile_owned is false, which
1199 only happens for architecture-provided types. */
1200
1201 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1202
1203 /* Return the ARCH of SYMBOL. */
1204
1205 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1206
1207 /* Return the SYMTAB of SYMBOL.
1208 It is an error to call this if symbol.is_objfile_owned is false, which
1209 only happens for architecture-provided types. */
1210
1211 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1212
1213 /* Set the symtab of SYMBOL to SYMTAB.
1214 It is an error to call this if symbol.is_objfile_owned is false, which
1215 only happens for architecture-provided types. */
1216
1217 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1218
1219 /* An instance of this type is used to represent a C++ template
1220 function. A symbol is really of this type iff
1221 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1222
1223 struct template_symbol : public symbol
1224 {
1225 /* The number of template arguments. */
1226 int n_template_arguments;
1227
1228 /* The template arguments. This is an array with
1229 N_TEMPLATE_ARGUMENTS elements. */
1230 struct symbol **template_arguments;
1231 };
1232
1233 /* A symbol that represents a Rust virtual table object. */
1234
1235 struct rust_vtable_symbol : public symbol
1236 {
1237 /* The concrete type for which this vtable was created; that is, in
1238 "impl Trait for Type", this is "Type". */
1239 struct type *concrete_type;
1240 };
1241
1242 \f
1243 /* Each item represents a line-->pc (or the reverse) mapping. This is
1244 somewhat more wasteful of space than one might wish, but since only
1245 the files which are actually debugged are read in to core, we don't
1246 waste much space. */
1247
1248 struct linetable_entry
1249 {
1250 int line;
1251 CORE_ADDR pc;
1252 };
1253
1254 /* The order of entries in the linetable is significant. They should
1255 be sorted by increasing values of the pc field. If there is more than
1256 one entry for a given pc, then I'm not sure what should happen (and
1257 I not sure whether we currently handle it the best way).
1258
1259 Example: a C for statement generally looks like this
1260
1261 10 0x100 - for the init/test part of a for stmt.
1262 20 0x200
1263 30 0x300
1264 10 0x400 - for the increment part of a for stmt.
1265
1266 If an entry has a line number of zero, it marks the start of a PC
1267 range for which no line number information is available. It is
1268 acceptable, though wasteful of table space, for such a range to be
1269 zero length. */
1270
1271 struct linetable
1272 {
1273 int nitems;
1274
1275 /* Actually NITEMS elements. If you don't like this use of the
1276 `struct hack', you can shove it up your ANSI (seriously, if the
1277 committee tells us how to do it, we can probably go along). */
1278 struct linetable_entry item[1];
1279 };
1280
1281 /* How to relocate the symbols from each section in a symbol file.
1282 Each struct contains an array of offsets.
1283 The ordering and meaning of the offsets is file-type-dependent;
1284 typically it is indexed by section numbers or symbol types or
1285 something like that.
1286
1287 To give us flexibility in changing the internal representation
1288 of these offsets, the ANOFFSET macro must be used to insert and
1289 extract offset values in the struct. */
1290
1291 struct section_offsets
1292 {
1293 CORE_ADDR offsets[1]; /* As many as needed. */
1294 };
1295
1296 #define ANOFFSET(secoff, whichone) \
1297 ((whichone == -1) \
1298 ? (internal_error (__FILE__, __LINE__, \
1299 _("Section index is uninitialized")), -1) \
1300 : secoff->offsets[whichone])
1301
1302 /* The size of a section_offsets table for N sections. */
1303 #define SIZEOF_N_SECTION_OFFSETS(n) \
1304 (sizeof (struct section_offsets) \
1305 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1306
1307 /* Each source file or header is represented by a struct symtab.
1308 The name "symtab" is historical, another name for it is "filetab".
1309 These objects are chained through the `next' field. */
1310
1311 struct symtab
1312 {
1313 /* Unordered chain of all filetabs in the compunit, with the exception
1314 that the "main" source file is the first entry in the list. */
1315
1316 struct symtab *next;
1317
1318 /* Backlink to containing compunit symtab. */
1319
1320 struct compunit_symtab *compunit_symtab;
1321
1322 /* Table mapping core addresses to line numbers for this file.
1323 Can be NULL if none. Never shared between different symtabs. */
1324
1325 struct linetable *linetable;
1326
1327 /* Name of this source file. This pointer is never NULL. */
1328
1329 const char *filename;
1330
1331 /* Total number of lines found in source file. */
1332
1333 int nlines;
1334
1335 /* line_charpos[N] is the position of the (N-1)th line of the
1336 source file. "position" means something we can lseek() to; it
1337 is not guaranteed to be useful any other way. */
1338
1339 int *line_charpos;
1340
1341 /* Language of this source file. */
1342
1343 enum language language;
1344
1345 /* Full name of file as found by searching the source path.
1346 NULL if not yet known. */
1347
1348 char *fullname;
1349 };
1350
1351 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1352 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1353 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1354 #define SYMTAB_BLOCKVECTOR(symtab) \
1355 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1356 #define SYMTAB_OBJFILE(symtab) \
1357 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1358 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1359 #define SYMTAB_DIRNAME(symtab) \
1360 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1361
1362 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1363 as the list of all source files (what gdb has historically associated with
1364 the term "symtab").
1365 Additional information is recorded here that is common to all symtabs in a
1366 compilation unit (DWARF or otherwise).
1367
1368 Example:
1369 For the case of a program built out of these files:
1370
1371 foo.c
1372 foo1.h
1373 foo2.h
1374 bar.c
1375 foo1.h
1376 bar.h
1377
1378 This is recorded as:
1379
1380 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1381 | |
1382 v v
1383 foo.c bar.c
1384 | |
1385 v v
1386 foo1.h foo1.h
1387 | |
1388 v v
1389 foo2.h bar.h
1390 | |
1391 v v
1392 NULL NULL
1393
1394 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1395 and the files foo.c, etc. are struct symtab objects. */
1396
1397 struct compunit_symtab
1398 {
1399 /* Unordered chain of all compunit symtabs of this objfile. */
1400 struct compunit_symtab *next;
1401
1402 /* Object file from which this symtab information was read. */
1403 struct objfile *objfile;
1404
1405 /* Name of the symtab.
1406 This is *not* intended to be a usable filename, and is
1407 for debugging purposes only. */
1408 const char *name;
1409
1410 /* Unordered list of file symtabs, except that by convention the "main"
1411 source file (e.g., .c, .cc) is guaranteed to be first.
1412 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1413 or header (e.g., .h). */
1414 struct symtab *filetabs;
1415
1416 /* Last entry in FILETABS list.
1417 Subfiles are added to the end of the list so they accumulate in order,
1418 with the main source subfile living at the front.
1419 The main reason is so that the main source file symtab is at the head
1420 of the list, and the rest appear in order for debugging convenience. */
1421 struct symtab *last_filetab;
1422
1423 /* Non-NULL string that identifies the format of the debugging information,
1424 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1425 for automated testing of gdb but may also be information that is
1426 useful to the user. */
1427 const char *debugformat;
1428
1429 /* String of producer version information, or NULL if we don't know. */
1430 const char *producer;
1431
1432 /* Directory in which it was compiled, or NULL if we don't know. */
1433 const char *dirname;
1434
1435 /* List of all symbol scope blocks for this symtab. It is shared among
1436 all symtabs in a given compilation unit. */
1437 const struct blockvector *blockvector;
1438
1439 /* Section in objfile->section_offsets for the blockvector and
1440 the linetable. Probably always SECT_OFF_TEXT. */
1441 int block_line_section;
1442
1443 /* Symtab has been compiled with both optimizations and debug info so that
1444 GDB may stop skipping prologues as variables locations are valid already
1445 at function entry points. */
1446 unsigned int locations_valid : 1;
1447
1448 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1449 instruction). This is supported by GCC since 4.5.0. */
1450 unsigned int epilogue_unwind_valid : 1;
1451
1452 /* struct call_site entries for this compilation unit or NULL. */
1453 htab_t call_site_htab;
1454
1455 /* The macro table for this symtab. Like the blockvector, this
1456 is shared between different symtabs in a given compilation unit.
1457 It's debatable whether it *should* be shared among all the symtabs in
1458 the given compilation unit, but it currently is. */
1459 struct macro_table *macro_table;
1460
1461 /* If non-NULL, then this points to a NULL-terminated vector of
1462 included compunits. When searching the static or global
1463 block of this compunit, the corresponding block of all
1464 included compunits will also be searched. Note that this
1465 list must be flattened -- the symbol reader is responsible for
1466 ensuring that this vector contains the transitive closure of all
1467 included compunits. */
1468 struct compunit_symtab **includes;
1469
1470 /* If this is an included compunit, this points to one includer
1471 of the table. This user is considered the canonical compunit
1472 containing this one. An included compunit may itself be
1473 included by another. */
1474 struct compunit_symtab *user;
1475 };
1476
1477 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1478 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1479 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1480 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1481 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1482 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1483 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1484 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1485 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1486 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1487 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1488
1489 /* A range adapter to allowing iterating over all the file tables
1490 within a compunit. */
1491
1492 struct compunit_filetabs : public next_adapter<struct symtab>
1493 {
1494 compunit_filetabs (struct compunit_symtab *cu)
1495 : next_adapter<struct symtab> (cu->filetabs)
1496 {
1497 }
1498 };
1499
1500 /* Return the primary symtab of CUST. */
1501
1502 extern struct symtab *
1503 compunit_primary_filetab (const struct compunit_symtab *cust);
1504
1505 /* Return the language of CUST. */
1506
1507 extern enum language compunit_language (const struct compunit_symtab *cust);
1508
1509 \f
1510
1511 /* The virtual function table is now an array of structures which have the
1512 form { int16 offset, delta; void *pfn; }.
1513
1514 In normal virtual function tables, OFFSET is unused.
1515 DELTA is the amount which is added to the apparent object's base
1516 address in order to point to the actual object to which the
1517 virtual function should be applied.
1518 PFN is a pointer to the virtual function.
1519
1520 Note that this macro is g++ specific (FIXME). */
1521
1522 #define VTBL_FNADDR_OFFSET 2
1523
1524 /* External variables and functions for the objects described above. */
1525
1526 /* True if we are nested inside psymtab_to_symtab. */
1527
1528 extern int currently_reading_symtab;
1529
1530 /* symtab.c lookup functions */
1531
1532 extern const char multiple_symbols_ask[];
1533 extern const char multiple_symbols_all[];
1534 extern const char multiple_symbols_cancel[];
1535
1536 const char *multiple_symbols_select_mode (void);
1537
1538 int symbol_matches_domain (enum language symbol_language,
1539 domain_enum symbol_domain,
1540 domain_enum domain);
1541
1542 /* lookup a symbol table by source file name. */
1543
1544 extern struct symtab *lookup_symtab (const char *);
1545
1546 /* An object of this type is passed as the 'is_a_field_of_this'
1547 argument to lookup_symbol and lookup_symbol_in_language. */
1548
1549 struct field_of_this_result
1550 {
1551 /* The type in which the field was found. If this is NULL then the
1552 symbol was not found in 'this'. If non-NULL, then one of the
1553 other fields will be non-NULL as well. */
1554
1555 struct type *type;
1556
1557 /* If the symbol was found as an ordinary field of 'this', then this
1558 is non-NULL and points to the particular field. */
1559
1560 struct field *field;
1561
1562 /* If the symbol was found as a function field of 'this', then this
1563 is non-NULL and points to the particular field. */
1564
1565 struct fn_fieldlist *fn_field;
1566 };
1567
1568 /* Find the definition for a specified symbol name NAME
1569 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1570 if non-NULL or from global/static blocks if BLOCK is NULL.
1571 Returns the struct symbol pointer, or NULL if no symbol is found.
1572 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1573 NAME is a field of the current implied argument `this'. If so fill in the
1574 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1575 The symbol's section is fixed up if necessary. */
1576
1577 extern struct block_symbol
1578 lookup_symbol_in_language (const char *,
1579 const struct block *,
1580 const domain_enum,
1581 enum language,
1582 struct field_of_this_result *);
1583
1584 /* Same as lookup_symbol_in_language, but using the current language. */
1585
1586 extern struct block_symbol lookup_symbol (const char *,
1587 const struct block *,
1588 const domain_enum,
1589 struct field_of_this_result *);
1590
1591 /* Find the definition for a specified symbol search name in domain
1592 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1593 global/static blocks if BLOCK is NULL. The passed-in search name
1594 should not come from the user; instead it should already be a
1595 search name as retrieved from a
1596 SYMBOL_SEARCH_NAME/MSYMBOL_SEARCH_NAME call. See definition of
1597 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1598 pointer, or NULL if no symbol is found. The symbol's section is
1599 fixed up if necessary. */
1600
1601 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1602 const struct block *block,
1603 domain_enum domain);
1604
1605 /* A default version of lookup_symbol_nonlocal for use by languages
1606 that can't think of anything better to do.
1607 This implements the C lookup rules. */
1608
1609 extern struct block_symbol
1610 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1611 const char *,
1612 const struct block *,
1613 const domain_enum);
1614
1615 /* Some helper functions for languages that need to write their own
1616 lookup_symbol_nonlocal functions. */
1617
1618 /* Lookup a symbol in the static block associated to BLOCK, if there
1619 is one; do nothing if BLOCK is NULL or a global block.
1620 Upon success fixes up the symbol's section if necessary. */
1621
1622 extern struct block_symbol
1623 lookup_symbol_in_static_block (const char *name,
1624 const struct block *block,
1625 const domain_enum domain);
1626
1627 /* Search all static file-level symbols for NAME from DOMAIN.
1628 Upon success fixes up the symbol's section if necessary. */
1629
1630 extern struct block_symbol lookup_static_symbol (const char *name,
1631 const domain_enum domain);
1632
1633 /* Lookup a symbol in all files' global blocks.
1634
1635 If BLOCK is non-NULL then it is used for two things:
1636 1) If a target-specific lookup routine for libraries exists, then use the
1637 routine for the objfile of BLOCK, and
1638 2) The objfile of BLOCK is used to assist in determining the search order
1639 if the target requires it.
1640 See gdbarch_iterate_over_objfiles_in_search_order.
1641
1642 Upon success fixes up the symbol's section if necessary. */
1643
1644 extern struct block_symbol
1645 lookup_global_symbol (const char *name,
1646 const struct block *block,
1647 const domain_enum domain);
1648
1649 /* Lookup a symbol in block BLOCK.
1650 Upon success fixes up the symbol's section if necessary. */
1651
1652 extern struct symbol *
1653 lookup_symbol_in_block (const char *name,
1654 symbol_name_match_type match_type,
1655 const struct block *block,
1656 const domain_enum domain);
1657
1658 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1659 found, or NULL if not found. */
1660
1661 extern struct block_symbol
1662 lookup_language_this (const struct language_defn *lang,
1663 const struct block *block);
1664
1665 /* Lookup a [struct, union, enum] by name, within a specified block. */
1666
1667 extern struct type *lookup_struct (const char *, const struct block *);
1668
1669 extern struct type *lookup_union (const char *, const struct block *);
1670
1671 extern struct type *lookup_enum (const char *, const struct block *);
1672
1673 /* from blockframe.c: */
1674
1675 /* lookup the function symbol corresponding to the address. The
1676 return value will not be an inlined function; the containing
1677 function will be returned instead. */
1678
1679 extern struct symbol *find_pc_function (CORE_ADDR);
1680
1681 /* lookup the function corresponding to the address and section. The
1682 return value will not be an inlined function; the containing
1683 function will be returned instead. */
1684
1685 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1686
1687 /* lookup the function symbol corresponding to the address and
1688 section. The return value will be the closest enclosing function,
1689 which might be an inline function. */
1690
1691 extern struct symbol *find_pc_sect_containing_function
1692 (CORE_ADDR pc, struct obj_section *section);
1693
1694 /* Find the symbol at the given address. Returns NULL if no symbol
1695 found. Only exact matches for ADDRESS are considered. */
1696
1697 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1698
1699 /* Finds the "function" (text symbol) that is smaller than PC but
1700 greatest of all of the potential text symbols in SECTION. Sets
1701 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1702 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1703 function (exclusive). If the optional parameter BLOCK is non-null,
1704 then set *BLOCK to the address of the block corresponding to the
1705 function symbol, if such a symbol could be found during the lookup;
1706 nullptr is used as a return value for *BLOCK if no block is found.
1707 This function either succeeds or fails (not halfway succeeds). If
1708 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1709 information and returns 1. If it fails, it sets *NAME, *ADDRESS
1710 and *ENDADDR to zero and returns 0.
1711
1712 If the function in question occupies non-contiguous ranges,
1713 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1714 to the start and end of the range in which PC is found. Thus
1715 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1716 from other functions might be found).
1717
1718 This property allows find_pc_partial_function to be used (as it had
1719 been prior to the introduction of non-contiguous range support) by
1720 various tdep files for finding a start address and limit address
1721 for prologue analysis. This still isn't ideal, however, because we
1722 probably shouldn't be doing prologue analysis (in which
1723 instructions are scanned to determine frame size and stack layout)
1724 for any range that doesn't contain the entry pc. Moreover, a good
1725 argument can be made that prologue analysis ought to be performed
1726 starting from the entry pc even when PC is within some other range.
1727 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1728 limits of the entry pc range, but that will cause the
1729 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1730 callers of find_pc_partial_function expect this condition to hold.
1731
1732 Callers which require the start and/or end addresses for the range
1733 containing the entry pc should instead call
1734 find_function_entry_range_from_pc. */
1735
1736 extern int find_pc_partial_function (CORE_ADDR pc, const char **name,
1737 CORE_ADDR *address, CORE_ADDR *endaddr,
1738 const struct block **block = nullptr);
1739
1740 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1741 set to start and end addresses of the range containing the entry pc.
1742
1743 Note that it is not necessarily the case that (for non-NULL ADDRESS
1744 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1745 hold.
1746
1747 See comment for find_pc_partial_function, above, for further
1748 explanation. */
1749
1750 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1751 const char **name,
1752 CORE_ADDR *address,
1753 CORE_ADDR *endaddr);
1754
1755 /* Return the type of a function with its first instruction exactly at
1756 the PC address. Return NULL otherwise. */
1757
1758 extern struct type *find_function_type (CORE_ADDR pc);
1759
1760 /* See if we can figure out the function's actual type from the type
1761 that the resolver returns. RESOLVER_FUNADDR is the address of the
1762 ifunc resolver. */
1763
1764 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1765
1766 /* Find the GNU ifunc minimal symbol that matches SYM. */
1767 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1768
1769 extern void clear_pc_function_cache (void);
1770
1771 /* Expand symtab containing PC, SECTION if not already expanded. */
1772
1773 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1774
1775 /* lookup full symbol table by address. */
1776
1777 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1778
1779 /* lookup full symbol table by address and section. */
1780
1781 extern struct compunit_symtab *
1782 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1783
1784 extern int find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1785
1786 extern void reread_symbols (void);
1787
1788 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1789 The type returned must not be opaque -- i.e., must have at least one field
1790 defined. */
1791
1792 extern struct type *lookup_transparent_type (const char *);
1793
1794 extern struct type *basic_lookup_transparent_type (const char *);
1795
1796 /* Macro for name of symbol to indicate a file compiled with gcc. */
1797 #ifndef GCC_COMPILED_FLAG_SYMBOL
1798 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1799 #endif
1800
1801 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1802 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1803 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1804 #endif
1805
1806 extern int in_gnu_ifunc_stub (CORE_ADDR pc);
1807
1808 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1809 for ELF symbol files. */
1810
1811 struct gnu_ifunc_fns
1812 {
1813 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1814 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1815
1816 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1817 int (*gnu_ifunc_resolve_name) (const char *function_name,
1818 CORE_ADDR *function_address_p);
1819
1820 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1821 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1822
1823 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1824 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1825 };
1826
1827 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1828 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1829 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1830 #define gnu_ifunc_resolver_return_stop \
1831 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1832
1833 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1834
1835 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1836
1837 struct symtab_and_line
1838 {
1839 /* The program space of this sal. */
1840 struct program_space *pspace = NULL;
1841
1842 struct symtab *symtab = NULL;
1843 struct symbol *symbol = NULL;
1844 struct obj_section *section = NULL;
1845 struct minimal_symbol *msymbol = NULL;
1846 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1847 0 is never a valid line number; it is used to indicate that line number
1848 information is not available. */
1849 int line = 0;
1850
1851 CORE_ADDR pc = 0;
1852 CORE_ADDR end = 0;
1853 bool explicit_pc = false;
1854 bool explicit_line = false;
1855
1856 /* The probe associated with this symtab_and_line. */
1857 probe *prob = NULL;
1858 /* If PROBE is not NULL, then this is the objfile in which the probe
1859 originated. */
1860 struct objfile *objfile = NULL;
1861 };
1862
1863 \f
1864
1865 /* Given a pc value, return line number it is in. Second arg nonzero means
1866 if pc is on the boundary use the previous statement's line number. */
1867
1868 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1869
1870 /* Same function, but specify a section as well as an address. */
1871
1872 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1873 struct obj_section *, int);
1874
1875 /* Wrapper around find_pc_line to just return the symtab. */
1876
1877 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1878
1879 /* Given a symtab and line number, return the pc there. */
1880
1881 extern int find_line_pc (struct symtab *, int, CORE_ADDR *);
1882
1883 extern int find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1884 CORE_ADDR *);
1885
1886 extern void resolve_sal_pc (struct symtab_and_line *);
1887
1888 /* solib.c */
1889
1890 extern void clear_solib (void);
1891
1892 /* The reason we're calling into a completion match list collector
1893 function. */
1894 enum class complete_symbol_mode
1895 {
1896 /* Completing an expression. */
1897 EXPRESSION,
1898
1899 /* Completing a linespec. */
1900 LINESPEC,
1901 };
1902
1903 extern void default_collect_symbol_completion_matches_break_on
1904 (completion_tracker &tracker,
1905 complete_symbol_mode mode,
1906 symbol_name_match_type name_match_type,
1907 const char *text, const char *word, const char *break_on,
1908 enum type_code code);
1909 extern void default_collect_symbol_completion_matches
1910 (completion_tracker &tracker,
1911 complete_symbol_mode,
1912 symbol_name_match_type name_match_type,
1913 const char *,
1914 const char *,
1915 enum type_code);
1916 extern void collect_symbol_completion_matches
1917 (completion_tracker &tracker,
1918 complete_symbol_mode mode,
1919 symbol_name_match_type name_match_type,
1920 const char *, const char *);
1921 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1922 const char *, const char *,
1923 enum type_code);
1924
1925 extern void collect_file_symbol_completion_matches
1926 (completion_tracker &tracker,
1927 complete_symbol_mode,
1928 symbol_name_match_type name_match_type,
1929 const char *, const char *, const char *);
1930
1931 extern completion_list
1932 make_source_files_completion_list (const char *, const char *);
1933
1934 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1935
1936 extern bool symbol_is_function_or_method (symbol *sym);
1937
1938 /* Return whether MSYMBOL is a function/method, as opposed to a data
1939 symbol */
1940
1941 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1942
1943 /* Return whether SYM should be skipped in completion mode MODE. In
1944 linespec mode, we're only interested in functions/methods. */
1945
1946 template<typename Symbol>
1947 static bool
1948 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1949 {
1950 return (mode == complete_symbol_mode::LINESPEC
1951 && !symbol_is_function_or_method (sym));
1952 }
1953
1954 /* symtab.c */
1955
1956 int matching_obj_sections (struct obj_section *, struct obj_section *);
1957
1958 extern struct symtab *find_line_symtab (struct symtab *, int, int *, int *);
1959
1960 /* Given a function symbol SYM, find the symtab and line for the start
1961 of the function. If FUNFIRSTLINE is true, we want the first line
1962 of real code inside the function. */
1963 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1964 funfirstline);
1965
1966 /* Same, but start with a function address/section instead of a
1967 symbol. */
1968 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1969 obj_section *section,
1970 bool funfirstline);
1971
1972 extern void skip_prologue_sal (struct symtab_and_line *);
1973
1974 /* symtab.c */
1975
1976 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
1977 CORE_ADDR func_addr);
1978
1979 extern struct symbol *fixup_symbol_section (struct symbol *,
1980 struct objfile *);
1981
1982 /* If MSYMBOL is an text symbol, look for a function debug symbol with
1983 the same address. Returns NULL if not found. This is necessary in
1984 case a function is an alias to some other function, because debug
1985 information is only emitted for the alias target function's
1986 definition, not for the alias. */
1987 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
1988
1989 /* Symbol searching */
1990 /* Note: struct symbol_search, search_symbols, et.al. are declared here,
1991 instead of making them local to symtab.c, for gdbtk's sake. */
1992
1993 /* When using search_symbols, a vector of the following structs is
1994 returned. */
1995 struct symbol_search
1996 {
1997 symbol_search (int block_, struct symbol *symbol_)
1998 : block (block_),
1999 symbol (symbol_)
2000 {
2001 msymbol.minsym = nullptr;
2002 msymbol.objfile = nullptr;
2003 }
2004
2005 symbol_search (int block_, struct minimal_symbol *minsym,
2006 struct objfile *objfile)
2007 : block (block_),
2008 symbol (nullptr)
2009 {
2010 msymbol.minsym = minsym;
2011 msymbol.objfile = objfile;
2012 }
2013
2014 bool operator< (const symbol_search &other) const
2015 {
2016 return compare_search_syms (*this, other) < 0;
2017 }
2018
2019 bool operator== (const symbol_search &other) const
2020 {
2021 return compare_search_syms (*this, other) == 0;
2022 }
2023
2024 /* The block in which the match was found. Could be, for example,
2025 STATIC_BLOCK or GLOBAL_BLOCK. */
2026 int block;
2027
2028 /* Information describing what was found.
2029
2030 If symbol is NOT NULL, then information was found for this match. */
2031 struct symbol *symbol;
2032
2033 /* If msymbol is non-null, then a match was made on something for
2034 which only minimal_symbols exist. */
2035 struct bound_minimal_symbol msymbol;
2036
2037 private:
2038
2039 static int compare_search_syms (const symbol_search &sym_a,
2040 const symbol_search &sym_b);
2041 };
2042
2043 extern std::vector<symbol_search> search_symbols (const char *,
2044 enum search_domain,
2045 const char *,
2046 int,
2047 const char **);
2048 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2049 const struct symbol *sym);
2050
2051 /* The name of the ``main'' function.
2052 FIXME: cagney/2001-03-20: Can't make main_name() const since some
2053 of the calling code currently assumes that the string isn't
2054 const. */
2055 extern /*const */ char *main_name (void);
2056 extern enum language main_language (void);
2057
2058 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global blocks.
2059 This searches MAIN_OBJFILE as well as any associated separate debug info
2060 objfiles of MAIN_OBJFILE.
2061 Upon success fixes up the symbol's section if necessary. */
2062
2063 extern struct block_symbol
2064 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2065 const char *name,
2066 const domain_enum domain);
2067
2068 /* Return 1 if the supplied producer string matches the ARM RealView
2069 compiler (armcc). */
2070 int producer_is_realview (const char *producer);
2071
2072 void fixup_section (struct general_symbol_info *ginfo,
2073 CORE_ADDR addr, struct objfile *objfile);
2074
2075 /* Look up objfile containing BLOCK. */
2076
2077 struct objfile *lookup_objfile_from_block (const struct block *block);
2078
2079 extern unsigned int symtab_create_debug;
2080
2081 extern unsigned int symbol_lookup_debug;
2082
2083 extern int basenames_may_differ;
2084
2085 int compare_filenames_for_search (const char *filename,
2086 const char *search_name);
2087
2088 int compare_glob_filenames_for_search (const char *filename,
2089 const char *search_name);
2090
2091 bool iterate_over_some_symtabs (const char *name,
2092 const char *real_path,
2093 struct compunit_symtab *first,
2094 struct compunit_symtab *after_last,
2095 gdb::function_view<bool (symtab *)> callback);
2096
2097 void iterate_over_symtabs (const char *name,
2098 gdb::function_view<bool (symtab *)> callback);
2099
2100
2101 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2102 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2103
2104 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2105 is called once per matching symbol SYM. The callback should return
2106 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2107 iterating, or false to indicate that the iteration should end. */
2108
2109 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2110
2111 void iterate_over_symbols (const struct block *block,
2112 const lookup_name_info &name,
2113 const domain_enum domain,
2114 gdb::function_view<symbol_found_callback_ftype> callback);
2115
2116 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2117 either returns a const char * pointer that points to either of the
2118 fields of this type, or a pointer to the input NAME. This is done
2119 this way because the underlying functions that demangle_for_lookup
2120 calls either return a std::string (e.g., cp_canonicalize_string) or
2121 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2122 unnecessary reallocation/string copying. */
2123 class demangle_result_storage
2124 {
2125 public:
2126
2127 /* Swap the std::string storage with STR, and return a pointer to
2128 the beginning of the new string. */
2129 const char *swap_string (std::string &str)
2130 {
2131 std::swap (m_string, str);
2132 return m_string.c_str ();
2133 }
2134
2135 /* Set the malloc storage to now point at PTR. Any previous malloc
2136 storage is released. */
2137 const char *set_malloc_ptr (char *ptr)
2138 {
2139 m_malloc.reset (ptr);
2140 return ptr;
2141 }
2142
2143 private:
2144
2145 /* The storage. */
2146 std::string m_string;
2147 gdb::unique_xmalloc_ptr<char> m_malloc;
2148 };
2149
2150 const char *
2151 demangle_for_lookup (const char *name, enum language lang,
2152 demangle_result_storage &storage);
2153
2154 struct symbol *allocate_symbol (struct objfile *);
2155
2156 void initialize_objfile_symbol (struct symbol *);
2157
2158 struct template_symbol *allocate_template_symbol (struct objfile *);
2159
2160 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2161 SYMNAME (which is already demangled for C++ symbols) matches
2162 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2163 the current completion list. */
2164 void completion_list_add_name (completion_tracker &tracker,
2165 language symbol_language,
2166 const char *symname,
2167 const lookup_name_info &lookup_name,
2168 const char *text, const char *word);
2169
2170 /* A simple symbol searching class. */
2171
2172 class symbol_searcher
2173 {
2174 public:
2175 /* Returns the symbols found for the search. */
2176 const std::vector<block_symbol> &
2177 matching_symbols () const
2178 {
2179 return m_symbols;
2180 }
2181
2182 /* Returns the minimal symbols found for the search. */
2183 const std::vector<bound_minimal_symbol> &
2184 matching_msymbols () const
2185 {
2186 return m_minimal_symbols;
2187 }
2188
2189 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2190 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2191 to search all symtabs and program spaces. */
2192 void find_all_symbols (const std::string &name,
2193 const struct language_defn *language,
2194 enum search_domain search_domain,
2195 std::vector<symtab *> *search_symtabs,
2196 struct program_space *search_pspace);
2197
2198 /* Reset this object to perform another search. */
2199 void reset ()
2200 {
2201 m_symbols.clear ();
2202 m_minimal_symbols.clear ();
2203 }
2204
2205 private:
2206 /* Matching debug symbols. */
2207 std::vector<block_symbol> m_symbols;
2208
2209 /* Matching non-debug symbols. */
2210 std::vector<bound_minimal_symbol> m_minimal_symbols;
2211 };
2212
2213 #endif /* !defined(SYMTAB_H) */