]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
convert to_get_bookmark
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static void tcomplain (void) ATTRIBUTE_NORETURN;
61
62 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
63
64 static int return_zero (void);
65
66 static int return_minus_one (void);
67
68 static void *return_null (void);
69
70 void target_ignore (void);
71
72 static void target_command (char *, int);
73
74 static struct target_ops *find_default_run_target (char *);
75
76 static target_xfer_partial_ftype default_xfer_partial;
77
78 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
79 ptid_t ptid);
80
81 static int dummy_find_memory_regions (struct target_ops *self,
82 find_memory_region_ftype ignore1,
83 void *ignore2);
84
85 static char *dummy_make_corefile_notes (struct target_ops *self,
86 bfd *ignore1, int *ignore2);
87
88 static int find_default_can_async_p (struct target_ops *ignore);
89
90 static int find_default_is_async_p (struct target_ops *ignore);
91
92 #include "target-delegates.c"
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_prepare_to_store (struct target_ops *self,
101 struct regcache *);
102
103 static void debug_to_files_info (struct target_ops *);
104
105 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
106 struct bp_target_info *);
107
108 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
109 struct bp_target_info *);
110
111 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
112 int, int, int);
113
114 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
115 struct gdbarch *,
116 struct bp_target_info *);
117
118 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
119 struct gdbarch *,
120 struct bp_target_info *);
121
122 static int debug_to_insert_watchpoint (struct target_ops *self,
123 CORE_ADDR, int, int,
124 struct expression *);
125
126 static int debug_to_remove_watchpoint (struct target_ops *self,
127 CORE_ADDR, int, int,
128 struct expression *);
129
130 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
131
132 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
133 CORE_ADDR, CORE_ADDR, int);
134
135 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
136 CORE_ADDR, int);
137
138 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
139 CORE_ADDR, int, int,
140 struct expression *);
141
142 static void debug_to_terminal_init (struct target_ops *self);
143
144 static void debug_to_terminal_inferior (struct target_ops *self);
145
146 static void debug_to_terminal_ours_for_output (struct target_ops *self);
147
148 static void debug_to_terminal_save_ours (struct target_ops *self);
149
150 static void debug_to_terminal_ours (struct target_ops *self);
151
152 static void debug_to_load (struct target_ops *self, char *, int);
153
154 static int debug_to_can_run (struct target_ops *self);
155
156 static void debug_to_stop (struct target_ops *self, ptid_t);
157
158 /* Pointer to array of target architecture structures; the size of the
159 array; the current index into the array; the allocated size of the
160 array. */
161 struct target_ops **target_structs;
162 unsigned target_struct_size;
163 unsigned target_struct_allocsize;
164 #define DEFAULT_ALLOCSIZE 10
165
166 /* The initial current target, so that there is always a semi-valid
167 current target. */
168
169 static struct target_ops dummy_target;
170
171 /* Top of target stack. */
172
173 static struct target_ops *target_stack;
174
175 /* The target structure we are currently using to talk to a process
176 or file or whatever "inferior" we have. */
177
178 struct target_ops current_target;
179
180 /* Command list for target. */
181
182 static struct cmd_list_element *targetlist = NULL;
183
184 /* Nonzero if we should trust readonly sections from the
185 executable when reading memory. */
186
187 static int trust_readonly = 0;
188
189 /* Nonzero if we should show true memory content including
190 memory breakpoint inserted by gdb. */
191
192 static int show_memory_breakpoints = 0;
193
194 /* These globals control whether GDB attempts to perform these
195 operations; they are useful for targets that need to prevent
196 inadvertant disruption, such as in non-stop mode. */
197
198 int may_write_registers = 1;
199
200 int may_write_memory = 1;
201
202 int may_insert_breakpoints = 1;
203
204 int may_insert_tracepoints = 1;
205
206 int may_insert_fast_tracepoints = 1;
207
208 int may_stop = 1;
209
210 /* Non-zero if we want to see trace of target level stuff. */
211
212 static unsigned int targetdebug = 0;
213 static void
214 show_targetdebug (struct ui_file *file, int from_tty,
215 struct cmd_list_element *c, const char *value)
216 {
217 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
218 }
219
220 static void setup_target_debug (void);
221
222 /* The user just typed 'target' without the name of a target. */
223
224 static void
225 target_command (char *arg, int from_tty)
226 {
227 fputs_filtered ("Argument required (target name). Try `help target'\n",
228 gdb_stdout);
229 }
230
231 /* Default target_has_* methods for process_stratum targets. */
232
233 int
234 default_child_has_all_memory (struct target_ops *ops)
235 {
236 /* If no inferior selected, then we can't read memory here. */
237 if (ptid_equal (inferior_ptid, null_ptid))
238 return 0;
239
240 return 1;
241 }
242
243 int
244 default_child_has_memory (struct target_ops *ops)
245 {
246 /* If no inferior selected, then we can't read memory here. */
247 if (ptid_equal (inferior_ptid, null_ptid))
248 return 0;
249
250 return 1;
251 }
252
253 int
254 default_child_has_stack (struct target_ops *ops)
255 {
256 /* If no inferior selected, there's no stack. */
257 if (ptid_equal (inferior_ptid, null_ptid))
258 return 0;
259
260 return 1;
261 }
262
263 int
264 default_child_has_registers (struct target_ops *ops)
265 {
266 /* Can't read registers from no inferior. */
267 if (ptid_equal (inferior_ptid, null_ptid))
268 return 0;
269
270 return 1;
271 }
272
273 int
274 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
275 {
276 /* If there's no thread selected, then we can't make it run through
277 hoops. */
278 if (ptid_equal (the_ptid, null_ptid))
279 return 0;
280
281 return 1;
282 }
283
284
285 int
286 target_has_all_memory_1 (void)
287 {
288 struct target_ops *t;
289
290 for (t = current_target.beneath; t != NULL; t = t->beneath)
291 if (t->to_has_all_memory (t))
292 return 1;
293
294 return 0;
295 }
296
297 int
298 target_has_memory_1 (void)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_memory (t))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_stack_1 (void)
311 {
312 struct target_ops *t;
313
314 for (t = current_target.beneath; t != NULL; t = t->beneath)
315 if (t->to_has_stack (t))
316 return 1;
317
318 return 0;
319 }
320
321 int
322 target_has_registers_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_registers (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_execution_1 (ptid_t the_ptid)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_execution (t, the_ptid))
340 return 1;
341
342 return 0;
343 }
344
345 int
346 target_has_execution_current (void)
347 {
348 return target_has_execution_1 (inferior_ptid);
349 }
350
351 /* Complete initialization of T. This ensures that various fields in
352 T are set, if needed by the target implementation. */
353
354 void
355 complete_target_initialization (struct target_ops *t)
356 {
357 /* Provide default values for all "must have" methods. */
358 if (t->to_xfer_partial == NULL)
359 t->to_xfer_partial = default_xfer_partial;
360
361 if (t->to_has_all_memory == NULL)
362 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
363
364 if (t->to_has_memory == NULL)
365 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
366
367 if (t->to_has_stack == NULL)
368 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
369
370 if (t->to_has_registers == NULL)
371 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_execution == NULL)
374 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
375
376 install_delegators (t);
377 }
378
379 /* Add possible target architecture T to the list and add a new
380 command 'target T->to_shortname'. Set COMPLETER as the command's
381 completer if not NULL. */
382
383 void
384 add_target_with_completer (struct target_ops *t,
385 completer_ftype *completer)
386 {
387 struct cmd_list_element *c;
388
389 complete_target_initialization (t);
390
391 if (!target_structs)
392 {
393 target_struct_allocsize = DEFAULT_ALLOCSIZE;
394 target_structs = (struct target_ops **) xmalloc
395 (target_struct_allocsize * sizeof (*target_structs));
396 }
397 if (target_struct_size >= target_struct_allocsize)
398 {
399 target_struct_allocsize *= 2;
400 target_structs = (struct target_ops **)
401 xrealloc ((char *) target_structs,
402 target_struct_allocsize * sizeof (*target_structs));
403 }
404 target_structs[target_struct_size++] = t;
405
406 if (targetlist == NULL)
407 add_prefix_cmd ("target", class_run, target_command, _("\
408 Connect to a target machine or process.\n\
409 The first argument is the type or protocol of the target machine.\n\
410 Remaining arguments are interpreted by the target protocol. For more\n\
411 information on the arguments for a particular protocol, type\n\
412 `help target ' followed by the protocol name."),
413 &targetlist, "target ", 0, &cmdlist);
414 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
415 &targetlist);
416 if (completer != NULL)
417 set_cmd_completer (c, completer);
418 }
419
420 /* Add a possible target architecture to the list. */
421
422 void
423 add_target (struct target_ops *t)
424 {
425 add_target_with_completer (t, NULL);
426 }
427
428 /* See target.h. */
429
430 void
431 add_deprecated_target_alias (struct target_ops *t, char *alias)
432 {
433 struct cmd_list_element *c;
434 char *alt;
435
436 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
437 see PR cli/15104. */
438 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
439 alt = xstrprintf ("target %s", t->to_shortname);
440 deprecate_cmd (c, alt);
441 }
442
443 /* Stub functions */
444
445 void
446 target_ignore (void)
447 {
448 }
449
450 void
451 target_kill (void)
452 {
453 struct target_ops *t;
454
455 for (t = current_target.beneath; t != NULL; t = t->beneath)
456 if (t->to_kill != NULL)
457 {
458 if (targetdebug)
459 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
460
461 t->to_kill (t);
462 return;
463 }
464
465 noprocess ();
466 }
467
468 void
469 target_load (char *arg, int from_tty)
470 {
471 target_dcache_invalidate ();
472 (*current_target.to_load) (&current_target, arg, from_tty);
473 }
474
475 void
476 target_create_inferior (char *exec_file, char *args,
477 char **env, int from_tty)
478 {
479 struct target_ops *t;
480
481 for (t = current_target.beneath; t != NULL; t = t->beneath)
482 {
483 if (t->to_create_inferior != NULL)
484 {
485 t->to_create_inferior (t, exec_file, args, env, from_tty);
486 if (targetdebug)
487 fprintf_unfiltered (gdb_stdlog,
488 "target_create_inferior (%s, %s, xxx, %d)\n",
489 exec_file, args, from_tty);
490 return;
491 }
492 }
493
494 internal_error (__FILE__, __LINE__,
495 _("could not find a target to create inferior"));
496 }
497
498 void
499 target_terminal_inferior (void)
500 {
501 /* A background resume (``run&'') should leave GDB in control of the
502 terminal. Use target_can_async_p, not target_is_async_p, since at
503 this point the target is not async yet. However, if sync_execution
504 is not set, we know it will become async prior to resume. */
505 if (target_can_async_p () && !sync_execution)
506 return;
507
508 /* If GDB is resuming the inferior in the foreground, install
509 inferior's terminal modes. */
510 (*current_target.to_terminal_inferior) (&current_target);
511 }
512
513 static int
514 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
515 struct target_ops *t)
516 {
517 errno = EIO; /* Can't read/write this location. */
518 return 0; /* No bytes handled. */
519 }
520
521 static void
522 tcomplain (void)
523 {
524 error (_("You can't do that when your target is `%s'"),
525 current_target.to_shortname);
526 }
527
528 void
529 noprocess (void)
530 {
531 error (_("You can't do that without a process to debug."));
532 }
533
534 static void
535 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
536 {
537 printf_unfiltered (_("No saved terminal information.\n"));
538 }
539
540 /* A default implementation for the to_get_ada_task_ptid target method.
541
542 This function builds the PTID by using both LWP and TID as part of
543 the PTID lwp and tid elements. The pid used is the pid of the
544 inferior_ptid. */
545
546 static ptid_t
547 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
548 {
549 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
550 }
551
552 static enum exec_direction_kind
553 default_execution_direction (struct target_ops *self)
554 {
555 if (!target_can_execute_reverse)
556 return EXEC_FORWARD;
557 else if (!target_can_async_p ())
558 return EXEC_FORWARD;
559 else
560 gdb_assert_not_reached ("\
561 to_execution_direction must be implemented for reverse async");
562 }
563
564 /* Go through the target stack from top to bottom, copying over zero
565 entries in current_target, then filling in still empty entries. In
566 effect, we are doing class inheritance through the pushed target
567 vectors.
568
569 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
570 is currently implemented, is that it discards any knowledge of
571 which target an inherited method originally belonged to.
572 Consequently, new new target methods should instead explicitly and
573 locally search the target stack for the target that can handle the
574 request. */
575
576 static void
577 update_current_target (void)
578 {
579 struct target_ops *t;
580
581 /* First, reset current's contents. */
582 memset (&current_target, 0, sizeof (current_target));
583
584 /* Install the delegators. */
585 install_delegators (&current_target);
586
587 #define INHERIT(FIELD, TARGET) \
588 if (!current_target.FIELD) \
589 current_target.FIELD = (TARGET)->FIELD
590
591 for (t = target_stack; t; t = t->beneath)
592 {
593 INHERIT (to_shortname, t);
594 INHERIT (to_longname, t);
595 INHERIT (to_doc, t);
596 /* Do not inherit to_open. */
597 /* Do not inherit to_close. */
598 /* Do not inherit to_attach. */
599 /* Do not inherit to_post_attach. */
600 INHERIT (to_attach_no_wait, t);
601 /* Do not inherit to_detach. */
602 /* Do not inherit to_disconnect. */
603 /* Do not inherit to_resume. */
604 /* Do not inherit to_wait. */
605 /* Do not inherit to_fetch_registers. */
606 /* Do not inherit to_store_registers. */
607 /* Do not inherit to_prepare_to_store. */
608 INHERIT (deprecated_xfer_memory, t);
609 /* Do not inherit to_files_info. */
610 /* Do not inherit to_insert_breakpoint. */
611 /* Do not inherit to_remove_breakpoint. */
612 /* Do not inherit to_can_use_hw_breakpoint. */
613 /* Do not inherit to_insert_hw_breakpoint. */
614 /* Do not inherit to_remove_hw_breakpoint. */
615 /* Do not inherit to_ranged_break_num_registers. */
616 /* Do not inherit to_insert_watchpoint. */
617 /* Do not inherit to_remove_watchpoint. */
618 /* Do not inherit to_insert_mask_watchpoint. */
619 /* Do not inherit to_remove_mask_watchpoint. */
620 /* Do not inherit to_stopped_data_address. */
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 /* Do not inherit to_stopped_by_watchpoint. */
624 /* Do not inherit to_watchpoint_addr_within_range. */
625 /* Do not inherit to_region_ok_for_hw_watchpoint. */
626 /* Do not inherit to_can_accel_watchpoint_condition. */
627 /* Do not inherit to_masked_watch_num_registers. */
628 /* Do not inherit to_terminal_init. */
629 /* Do not inherit to_terminal_inferior. */
630 /* Do not inherit to_terminal_ours_for_output. */
631 /* Do not inherit to_terminal_ours. */
632 /* Do not inherit to_terminal_save_ours. */
633 /* Do not inherit to_terminal_info. */
634 /* Do not inherit to_kill. */
635 /* Do not inherit to_load. */
636 /* Do no inherit to_create_inferior. */
637 /* Do not inherit to_post_startup_inferior. */
638 /* Do not inherit to_insert_fork_catchpoint. */
639 /* Do not inherit to_remove_fork_catchpoint. */
640 /* Do not inherit to_insert_vfork_catchpoint. */
641 /* Do not inherit to_remove_vfork_catchpoint. */
642 /* Do not inherit to_follow_fork. */
643 /* Do not inherit to_insert_exec_catchpoint. */
644 /* Do not inherit to_remove_exec_catchpoint. */
645 /* Do not inherit to_set_syscall_catchpoint. */
646 /* Do not inherit to_has_exited. */
647 /* Do not inherit to_mourn_inferior. */
648 INHERIT (to_can_run, t);
649 /* Do not inherit to_pass_signals. */
650 /* Do not inherit to_program_signals. */
651 /* Do not inherit to_thread_alive. */
652 /* Do not inherit to_find_new_threads. */
653 /* Do not inherit to_pid_to_str. */
654 /* Do not inherit to_extra_thread_info. */
655 /* Do not inherit to_thread_name. */
656 INHERIT (to_stop, t);
657 /* Do not inherit to_xfer_partial. */
658 /* Do not inherit to_rcmd. */
659 /* Do not inherit to_pid_to_exec_file. */
660 /* Do not inherit to_log_command. */
661 INHERIT (to_stratum, t);
662 /* Do not inherit to_has_all_memory. */
663 /* Do not inherit to_has_memory. */
664 /* Do not inherit to_has_stack. */
665 /* Do not inherit to_has_registers. */
666 /* Do not inherit to_has_execution. */
667 INHERIT (to_has_thread_control, t);
668 /* Do not inherit to_can_async_p. */
669 /* Do not inherit to_is_async_p. */
670 /* Do not inherit to_async. */
671 /* Do not inherit to_find_memory_regions. */
672 /* Do not inherit to_make_corefile_notes. */
673 /* Do not inherit to_get_bookmark. */
674 INHERIT (to_goto_bookmark, t);
675 /* Do not inherit to_get_thread_local_address. */
676 INHERIT (to_can_execute_reverse, t);
677 INHERIT (to_execution_direction, t);
678 INHERIT (to_thread_architecture, t);
679 /* Do not inherit to_read_description. */
680 INHERIT (to_get_ada_task_ptid, t);
681 /* Do not inherit to_search_memory. */
682 INHERIT (to_supports_multi_process, t);
683 INHERIT (to_supports_enable_disable_tracepoint, t);
684 INHERIT (to_supports_string_tracing, t);
685 INHERIT (to_trace_init, t);
686 INHERIT (to_download_tracepoint, t);
687 INHERIT (to_can_download_tracepoint, t);
688 INHERIT (to_download_trace_state_variable, t);
689 INHERIT (to_enable_tracepoint, t);
690 INHERIT (to_disable_tracepoint, t);
691 INHERIT (to_trace_set_readonly_regions, t);
692 INHERIT (to_trace_start, t);
693 INHERIT (to_get_trace_status, t);
694 INHERIT (to_get_tracepoint_status, t);
695 INHERIT (to_trace_stop, t);
696 INHERIT (to_trace_find, t);
697 INHERIT (to_get_trace_state_variable_value, t);
698 INHERIT (to_save_trace_data, t);
699 INHERIT (to_upload_tracepoints, t);
700 INHERIT (to_upload_trace_state_variables, t);
701 INHERIT (to_get_raw_trace_data, t);
702 INHERIT (to_get_min_fast_tracepoint_insn_len, t);
703 INHERIT (to_set_disconnected_tracing, t);
704 INHERIT (to_set_circular_trace_buffer, t);
705 INHERIT (to_set_trace_buffer_size, t);
706 INHERIT (to_set_trace_notes, t);
707 INHERIT (to_get_tib_address, t);
708 INHERIT (to_set_permissions, t);
709 INHERIT (to_static_tracepoint_marker_at, t);
710 INHERIT (to_static_tracepoint_markers_by_strid, t);
711 INHERIT (to_traceframe_info, t);
712 INHERIT (to_use_agent, t);
713 INHERIT (to_can_use_agent, t);
714 INHERIT (to_augmented_libraries_svr4_read, t);
715 INHERIT (to_magic, t);
716 INHERIT (to_supports_evaluation_of_breakpoint_conditions, t);
717 INHERIT (to_can_run_breakpoint_commands, t);
718 /* Do not inherit to_memory_map. */
719 /* Do not inherit to_flash_erase. */
720 /* Do not inherit to_flash_done. */
721 }
722 #undef INHERIT
723
724 /* Clean up a target struct so it no longer has any zero pointers in
725 it. Some entries are defaulted to a method that print an error,
726 others are hard-wired to a standard recursive default. */
727
728 #define de_fault(field, value) \
729 if (!current_target.field) \
730 current_target.field = value
731
732 de_fault (to_open,
733 (void (*) (char *, int))
734 tcomplain);
735 de_fault (to_close,
736 (void (*) (struct target_ops *))
737 target_ignore);
738 de_fault (deprecated_xfer_memory,
739 (int (*) (CORE_ADDR, gdb_byte *, int, int,
740 struct mem_attrib *, struct target_ops *))
741 nomemory);
742 de_fault (to_can_run,
743 (int (*) (struct target_ops *))
744 return_zero);
745 de_fault (to_stop,
746 (void (*) (struct target_ops *, ptid_t))
747 target_ignore);
748 de_fault (to_thread_architecture,
749 default_thread_architecture);
750 current_target.to_read_description = NULL;
751 de_fault (to_get_ada_task_ptid,
752 (ptid_t (*) (struct target_ops *, long, long))
753 default_get_ada_task_ptid);
754 de_fault (to_supports_multi_process,
755 (int (*) (struct target_ops *))
756 return_zero);
757 de_fault (to_supports_enable_disable_tracepoint,
758 (int (*) (struct target_ops *))
759 return_zero);
760 de_fault (to_supports_string_tracing,
761 (int (*) (struct target_ops *))
762 return_zero);
763 de_fault (to_trace_init,
764 (void (*) (struct target_ops *))
765 tcomplain);
766 de_fault (to_download_tracepoint,
767 (void (*) (struct target_ops *, struct bp_location *))
768 tcomplain);
769 de_fault (to_can_download_tracepoint,
770 (int (*) (struct target_ops *))
771 return_zero);
772 de_fault (to_download_trace_state_variable,
773 (void (*) (struct target_ops *, struct trace_state_variable *))
774 tcomplain);
775 de_fault (to_enable_tracepoint,
776 (void (*) (struct target_ops *, struct bp_location *))
777 tcomplain);
778 de_fault (to_disable_tracepoint,
779 (void (*) (struct target_ops *, struct bp_location *))
780 tcomplain);
781 de_fault (to_trace_set_readonly_regions,
782 (void (*) (struct target_ops *))
783 tcomplain);
784 de_fault (to_trace_start,
785 (void (*) (struct target_ops *))
786 tcomplain);
787 de_fault (to_get_trace_status,
788 (int (*) (struct target_ops *, struct trace_status *))
789 return_minus_one);
790 de_fault (to_get_tracepoint_status,
791 (void (*) (struct target_ops *, struct breakpoint *,
792 struct uploaded_tp *))
793 tcomplain);
794 de_fault (to_trace_stop,
795 (void (*) (struct target_ops *))
796 tcomplain);
797 de_fault (to_trace_find,
798 (int (*) (struct target_ops *,
799 enum trace_find_type, int, CORE_ADDR, CORE_ADDR, int *))
800 return_minus_one);
801 de_fault (to_get_trace_state_variable_value,
802 (int (*) (struct target_ops *, int, LONGEST *))
803 return_zero);
804 de_fault (to_save_trace_data,
805 (int (*) (struct target_ops *, const char *))
806 tcomplain);
807 de_fault (to_upload_tracepoints,
808 (int (*) (struct target_ops *, struct uploaded_tp **))
809 return_zero);
810 de_fault (to_upload_trace_state_variables,
811 (int (*) (struct target_ops *, struct uploaded_tsv **))
812 return_zero);
813 de_fault (to_get_raw_trace_data,
814 (LONGEST (*) (struct target_ops *, gdb_byte *, ULONGEST, LONGEST))
815 tcomplain);
816 de_fault (to_get_min_fast_tracepoint_insn_len,
817 (int (*) (struct target_ops *))
818 return_minus_one);
819 de_fault (to_set_disconnected_tracing,
820 (void (*) (struct target_ops *, int))
821 target_ignore);
822 de_fault (to_set_circular_trace_buffer,
823 (void (*) (struct target_ops *, int))
824 target_ignore);
825 de_fault (to_set_trace_buffer_size,
826 (void (*) (struct target_ops *, LONGEST))
827 target_ignore);
828 de_fault (to_set_trace_notes,
829 (int (*) (struct target_ops *,
830 const char *, const char *, const char *))
831 return_zero);
832 de_fault (to_get_tib_address,
833 (int (*) (struct target_ops *, ptid_t, CORE_ADDR *))
834 tcomplain);
835 de_fault (to_set_permissions,
836 (void (*) (struct target_ops *))
837 target_ignore);
838 de_fault (to_static_tracepoint_marker_at,
839 (int (*) (struct target_ops *,
840 CORE_ADDR, struct static_tracepoint_marker *))
841 return_zero);
842 de_fault (to_static_tracepoint_markers_by_strid,
843 (VEC(static_tracepoint_marker_p) * (*) (struct target_ops *,
844 const char *))
845 tcomplain);
846 de_fault (to_traceframe_info,
847 (struct traceframe_info * (*) (struct target_ops *))
848 return_null);
849 de_fault (to_supports_evaluation_of_breakpoint_conditions,
850 (int (*) (struct target_ops *))
851 return_zero);
852 de_fault (to_can_run_breakpoint_commands,
853 (int (*) (struct target_ops *))
854 return_zero);
855 de_fault (to_use_agent,
856 (int (*) (struct target_ops *, int))
857 tcomplain);
858 de_fault (to_can_use_agent,
859 (int (*) (struct target_ops *))
860 return_zero);
861 de_fault (to_augmented_libraries_svr4_read,
862 (int (*) (struct target_ops *))
863 return_zero);
864 de_fault (to_execution_direction, default_execution_direction);
865
866 #undef de_fault
867
868 /* Finally, position the target-stack beneath the squashed
869 "current_target". That way code looking for a non-inherited
870 target method can quickly and simply find it. */
871 current_target.beneath = target_stack;
872
873 if (targetdebug)
874 setup_target_debug ();
875 }
876
877 /* Push a new target type into the stack of the existing target accessors,
878 possibly superseding some of the existing accessors.
879
880 Rather than allow an empty stack, we always have the dummy target at
881 the bottom stratum, so we can call the function vectors without
882 checking them. */
883
884 void
885 push_target (struct target_ops *t)
886 {
887 struct target_ops **cur;
888
889 /* Check magic number. If wrong, it probably means someone changed
890 the struct definition, but not all the places that initialize one. */
891 if (t->to_magic != OPS_MAGIC)
892 {
893 fprintf_unfiltered (gdb_stderr,
894 "Magic number of %s target struct wrong\n",
895 t->to_shortname);
896 internal_error (__FILE__, __LINE__,
897 _("failed internal consistency check"));
898 }
899
900 /* Find the proper stratum to install this target in. */
901 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
902 {
903 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
904 break;
905 }
906
907 /* If there's already targets at this stratum, remove them. */
908 /* FIXME: cagney/2003-10-15: I think this should be popping all
909 targets to CUR, and not just those at this stratum level. */
910 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
911 {
912 /* There's already something at this stratum level. Close it,
913 and un-hook it from the stack. */
914 struct target_ops *tmp = (*cur);
915
916 (*cur) = (*cur)->beneath;
917 tmp->beneath = NULL;
918 target_close (tmp);
919 }
920
921 /* We have removed all targets in our stratum, now add the new one. */
922 t->beneath = (*cur);
923 (*cur) = t;
924
925 update_current_target ();
926 }
927
928 /* Remove a target_ops vector from the stack, wherever it may be.
929 Return how many times it was removed (0 or 1). */
930
931 int
932 unpush_target (struct target_ops *t)
933 {
934 struct target_ops **cur;
935 struct target_ops *tmp;
936
937 if (t->to_stratum == dummy_stratum)
938 internal_error (__FILE__, __LINE__,
939 _("Attempt to unpush the dummy target"));
940
941 /* Look for the specified target. Note that we assume that a target
942 can only occur once in the target stack. */
943
944 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
945 {
946 if ((*cur) == t)
947 break;
948 }
949
950 /* If we don't find target_ops, quit. Only open targets should be
951 closed. */
952 if ((*cur) == NULL)
953 return 0;
954
955 /* Unchain the target. */
956 tmp = (*cur);
957 (*cur) = (*cur)->beneath;
958 tmp->beneath = NULL;
959
960 update_current_target ();
961
962 /* Finally close the target. Note we do this after unchaining, so
963 any target method calls from within the target_close
964 implementation don't end up in T anymore. */
965 target_close (t);
966
967 return 1;
968 }
969
970 void
971 pop_all_targets_above (enum strata above_stratum)
972 {
973 while ((int) (current_target.to_stratum) > (int) above_stratum)
974 {
975 if (!unpush_target (target_stack))
976 {
977 fprintf_unfiltered (gdb_stderr,
978 "pop_all_targets couldn't find target %s\n",
979 target_stack->to_shortname);
980 internal_error (__FILE__, __LINE__,
981 _("failed internal consistency check"));
982 break;
983 }
984 }
985 }
986
987 void
988 pop_all_targets (void)
989 {
990 pop_all_targets_above (dummy_stratum);
991 }
992
993 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
994
995 int
996 target_is_pushed (struct target_ops *t)
997 {
998 struct target_ops **cur;
999
1000 /* Check magic number. If wrong, it probably means someone changed
1001 the struct definition, but not all the places that initialize one. */
1002 if (t->to_magic != OPS_MAGIC)
1003 {
1004 fprintf_unfiltered (gdb_stderr,
1005 "Magic number of %s target struct wrong\n",
1006 t->to_shortname);
1007 internal_error (__FILE__, __LINE__,
1008 _("failed internal consistency check"));
1009 }
1010
1011 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
1012 if (*cur == t)
1013 return 1;
1014
1015 return 0;
1016 }
1017
1018 /* Using the objfile specified in OBJFILE, find the address for the
1019 current thread's thread-local storage with offset OFFSET. */
1020 CORE_ADDR
1021 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
1022 {
1023 volatile CORE_ADDR addr = 0;
1024 struct target_ops *target;
1025
1026 for (target = current_target.beneath;
1027 target != NULL;
1028 target = target->beneath)
1029 {
1030 if (target->to_get_thread_local_address != NULL)
1031 break;
1032 }
1033
1034 if (target != NULL
1035 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
1036 {
1037 ptid_t ptid = inferior_ptid;
1038 volatile struct gdb_exception ex;
1039
1040 TRY_CATCH (ex, RETURN_MASK_ALL)
1041 {
1042 CORE_ADDR lm_addr;
1043
1044 /* Fetch the load module address for this objfile. */
1045 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
1046 objfile);
1047 /* If it's 0, throw the appropriate exception. */
1048 if (lm_addr == 0)
1049 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
1050 _("TLS load module not found"));
1051
1052 addr = target->to_get_thread_local_address (target, ptid,
1053 lm_addr, offset);
1054 }
1055 /* If an error occurred, print TLS related messages here. Otherwise,
1056 throw the error to some higher catcher. */
1057 if (ex.reason < 0)
1058 {
1059 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1060
1061 switch (ex.error)
1062 {
1063 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1064 error (_("Cannot find thread-local variables "
1065 "in this thread library."));
1066 break;
1067 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1068 if (objfile_is_library)
1069 error (_("Cannot find shared library `%s' in dynamic"
1070 " linker's load module list"), objfile_name (objfile));
1071 else
1072 error (_("Cannot find executable file `%s' in dynamic"
1073 " linker's load module list"), objfile_name (objfile));
1074 break;
1075 case TLS_NOT_ALLOCATED_YET_ERROR:
1076 if (objfile_is_library)
1077 error (_("The inferior has not yet allocated storage for"
1078 " thread-local variables in\n"
1079 "the shared library `%s'\n"
1080 "for %s"),
1081 objfile_name (objfile), target_pid_to_str (ptid));
1082 else
1083 error (_("The inferior has not yet allocated storage for"
1084 " thread-local variables in\n"
1085 "the executable `%s'\n"
1086 "for %s"),
1087 objfile_name (objfile), target_pid_to_str (ptid));
1088 break;
1089 case TLS_GENERIC_ERROR:
1090 if (objfile_is_library)
1091 error (_("Cannot find thread-local storage for %s, "
1092 "shared library %s:\n%s"),
1093 target_pid_to_str (ptid),
1094 objfile_name (objfile), ex.message);
1095 else
1096 error (_("Cannot find thread-local storage for %s, "
1097 "executable file %s:\n%s"),
1098 target_pid_to_str (ptid),
1099 objfile_name (objfile), ex.message);
1100 break;
1101 default:
1102 throw_exception (ex);
1103 break;
1104 }
1105 }
1106 }
1107 /* It wouldn't be wrong here to try a gdbarch method, too; finding
1108 TLS is an ABI-specific thing. But we don't do that yet. */
1109 else
1110 error (_("Cannot find thread-local variables on this target"));
1111
1112 return addr;
1113 }
1114
1115 const char *
1116 target_xfer_status_to_string (enum target_xfer_status err)
1117 {
1118 #define CASE(X) case X: return #X
1119 switch (err)
1120 {
1121 CASE(TARGET_XFER_E_IO);
1122 CASE(TARGET_XFER_E_UNAVAILABLE);
1123 default:
1124 return "<unknown>";
1125 }
1126 #undef CASE
1127 };
1128
1129
1130 #undef MIN
1131 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1132
1133 /* target_read_string -- read a null terminated string, up to LEN bytes,
1134 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1135 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1136 is responsible for freeing it. Return the number of bytes successfully
1137 read. */
1138
1139 int
1140 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1141 {
1142 int tlen, offset, i;
1143 gdb_byte buf[4];
1144 int errcode = 0;
1145 char *buffer;
1146 int buffer_allocated;
1147 char *bufptr;
1148 unsigned int nbytes_read = 0;
1149
1150 gdb_assert (string);
1151
1152 /* Small for testing. */
1153 buffer_allocated = 4;
1154 buffer = xmalloc (buffer_allocated);
1155 bufptr = buffer;
1156
1157 while (len > 0)
1158 {
1159 tlen = MIN (len, 4 - (memaddr & 3));
1160 offset = memaddr & 3;
1161
1162 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1163 if (errcode != 0)
1164 {
1165 /* The transfer request might have crossed the boundary to an
1166 unallocated region of memory. Retry the transfer, requesting
1167 a single byte. */
1168 tlen = 1;
1169 offset = 0;
1170 errcode = target_read_memory (memaddr, buf, 1);
1171 if (errcode != 0)
1172 goto done;
1173 }
1174
1175 if (bufptr - buffer + tlen > buffer_allocated)
1176 {
1177 unsigned int bytes;
1178
1179 bytes = bufptr - buffer;
1180 buffer_allocated *= 2;
1181 buffer = xrealloc (buffer, buffer_allocated);
1182 bufptr = buffer + bytes;
1183 }
1184
1185 for (i = 0; i < tlen; i++)
1186 {
1187 *bufptr++ = buf[i + offset];
1188 if (buf[i + offset] == '\000')
1189 {
1190 nbytes_read += i + 1;
1191 goto done;
1192 }
1193 }
1194
1195 memaddr += tlen;
1196 len -= tlen;
1197 nbytes_read += tlen;
1198 }
1199 done:
1200 *string = buffer;
1201 if (errnop != NULL)
1202 *errnop = errcode;
1203 return nbytes_read;
1204 }
1205
1206 struct target_section_table *
1207 target_get_section_table (struct target_ops *target)
1208 {
1209 struct target_ops *t;
1210
1211 if (targetdebug)
1212 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1213
1214 for (t = target; t != NULL; t = t->beneath)
1215 if (t->to_get_section_table != NULL)
1216 return (*t->to_get_section_table) (t);
1217
1218 return NULL;
1219 }
1220
1221 /* Find a section containing ADDR. */
1222
1223 struct target_section *
1224 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1225 {
1226 struct target_section_table *table = target_get_section_table (target);
1227 struct target_section *secp;
1228
1229 if (table == NULL)
1230 return NULL;
1231
1232 for (secp = table->sections; secp < table->sections_end; secp++)
1233 {
1234 if (addr >= secp->addr && addr < secp->endaddr)
1235 return secp;
1236 }
1237 return NULL;
1238 }
1239
1240 /* Read memory from the live target, even if currently inspecting a
1241 traceframe. The return is the same as that of target_read. */
1242
1243 static enum target_xfer_status
1244 target_read_live_memory (enum target_object object,
1245 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1246 ULONGEST *xfered_len)
1247 {
1248 enum target_xfer_status ret;
1249 struct cleanup *cleanup;
1250
1251 /* Switch momentarily out of tfind mode so to access live memory.
1252 Note that this must not clear global state, such as the frame
1253 cache, which must still remain valid for the previous traceframe.
1254 We may be _building_ the frame cache at this point. */
1255 cleanup = make_cleanup_restore_traceframe_number ();
1256 set_traceframe_number (-1);
1257
1258 ret = target_xfer_partial (current_target.beneath, object, NULL,
1259 myaddr, NULL, memaddr, len, xfered_len);
1260
1261 do_cleanups (cleanup);
1262 return ret;
1263 }
1264
1265 /* Using the set of read-only target sections of OPS, read live
1266 read-only memory. Note that the actual reads start from the
1267 top-most target again.
1268
1269 For interface/parameters/return description see target.h,
1270 to_xfer_partial. */
1271
1272 static enum target_xfer_status
1273 memory_xfer_live_readonly_partial (struct target_ops *ops,
1274 enum target_object object,
1275 gdb_byte *readbuf, ULONGEST memaddr,
1276 ULONGEST len, ULONGEST *xfered_len)
1277 {
1278 struct target_section *secp;
1279 struct target_section_table *table;
1280
1281 secp = target_section_by_addr (ops, memaddr);
1282 if (secp != NULL
1283 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1284 secp->the_bfd_section)
1285 & SEC_READONLY))
1286 {
1287 struct target_section *p;
1288 ULONGEST memend = memaddr + len;
1289
1290 table = target_get_section_table (ops);
1291
1292 for (p = table->sections; p < table->sections_end; p++)
1293 {
1294 if (memaddr >= p->addr)
1295 {
1296 if (memend <= p->endaddr)
1297 {
1298 /* Entire transfer is within this section. */
1299 return target_read_live_memory (object, memaddr,
1300 readbuf, len, xfered_len);
1301 }
1302 else if (memaddr >= p->endaddr)
1303 {
1304 /* This section ends before the transfer starts. */
1305 continue;
1306 }
1307 else
1308 {
1309 /* This section overlaps the transfer. Just do half. */
1310 len = p->endaddr - memaddr;
1311 return target_read_live_memory (object, memaddr,
1312 readbuf, len, xfered_len);
1313 }
1314 }
1315 }
1316 }
1317
1318 return TARGET_XFER_EOF;
1319 }
1320
1321 /* Read memory from more than one valid target. A core file, for
1322 instance, could have some of memory but delegate other bits to
1323 the target below it. So, we must manually try all targets. */
1324
1325 static enum target_xfer_status
1326 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1327 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1328 ULONGEST *xfered_len)
1329 {
1330 enum target_xfer_status res;
1331
1332 do
1333 {
1334 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1335 readbuf, writebuf, memaddr, len,
1336 xfered_len);
1337 if (res == TARGET_XFER_OK)
1338 break;
1339
1340 /* Stop if the target reports that the memory is not available. */
1341 if (res == TARGET_XFER_E_UNAVAILABLE)
1342 break;
1343
1344 /* We want to continue past core files to executables, but not
1345 past a running target's memory. */
1346 if (ops->to_has_all_memory (ops))
1347 break;
1348
1349 ops = ops->beneath;
1350 }
1351 while (ops != NULL);
1352
1353 return res;
1354 }
1355
1356 /* Perform a partial memory transfer.
1357 For docs see target.h, to_xfer_partial. */
1358
1359 static enum target_xfer_status
1360 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1361 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1362 ULONGEST len, ULONGEST *xfered_len)
1363 {
1364 enum target_xfer_status res;
1365 int reg_len;
1366 struct mem_region *region;
1367 struct inferior *inf;
1368
1369 /* For accesses to unmapped overlay sections, read directly from
1370 files. Must do this first, as MEMADDR may need adjustment. */
1371 if (readbuf != NULL && overlay_debugging)
1372 {
1373 struct obj_section *section = find_pc_overlay (memaddr);
1374
1375 if (pc_in_unmapped_range (memaddr, section))
1376 {
1377 struct target_section_table *table
1378 = target_get_section_table (ops);
1379 const char *section_name = section->the_bfd_section->name;
1380
1381 memaddr = overlay_mapped_address (memaddr, section);
1382 return section_table_xfer_memory_partial (readbuf, writebuf,
1383 memaddr, len, xfered_len,
1384 table->sections,
1385 table->sections_end,
1386 section_name);
1387 }
1388 }
1389
1390 /* Try the executable files, if "trust-readonly-sections" is set. */
1391 if (readbuf != NULL && trust_readonly)
1392 {
1393 struct target_section *secp;
1394 struct target_section_table *table;
1395
1396 secp = target_section_by_addr (ops, memaddr);
1397 if (secp != NULL
1398 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1399 secp->the_bfd_section)
1400 & SEC_READONLY))
1401 {
1402 table = target_get_section_table (ops);
1403 return section_table_xfer_memory_partial (readbuf, writebuf,
1404 memaddr, len, xfered_len,
1405 table->sections,
1406 table->sections_end,
1407 NULL);
1408 }
1409 }
1410
1411 /* If reading unavailable memory in the context of traceframes, and
1412 this address falls within a read-only section, fallback to
1413 reading from live memory. */
1414 if (readbuf != NULL && get_traceframe_number () != -1)
1415 {
1416 VEC(mem_range_s) *available;
1417
1418 /* If we fail to get the set of available memory, then the
1419 target does not support querying traceframe info, and so we
1420 attempt reading from the traceframe anyway (assuming the
1421 target implements the old QTro packet then). */
1422 if (traceframe_available_memory (&available, memaddr, len))
1423 {
1424 struct cleanup *old_chain;
1425
1426 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1427
1428 if (VEC_empty (mem_range_s, available)
1429 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1430 {
1431 /* Don't read into the traceframe's available
1432 memory. */
1433 if (!VEC_empty (mem_range_s, available))
1434 {
1435 LONGEST oldlen = len;
1436
1437 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1438 gdb_assert (len <= oldlen);
1439 }
1440
1441 do_cleanups (old_chain);
1442
1443 /* This goes through the topmost target again. */
1444 res = memory_xfer_live_readonly_partial (ops, object,
1445 readbuf, memaddr,
1446 len, xfered_len);
1447 if (res == TARGET_XFER_OK)
1448 return TARGET_XFER_OK;
1449 else
1450 {
1451 /* No use trying further, we know some memory starting
1452 at MEMADDR isn't available. */
1453 *xfered_len = len;
1454 return TARGET_XFER_E_UNAVAILABLE;
1455 }
1456 }
1457
1458 /* Don't try to read more than how much is available, in
1459 case the target implements the deprecated QTro packet to
1460 cater for older GDBs (the target's knowledge of read-only
1461 sections may be outdated by now). */
1462 len = VEC_index (mem_range_s, available, 0)->length;
1463
1464 do_cleanups (old_chain);
1465 }
1466 }
1467
1468 /* Try GDB's internal data cache. */
1469 region = lookup_mem_region (memaddr);
1470 /* region->hi == 0 means there's no upper bound. */
1471 if (memaddr + len < region->hi || region->hi == 0)
1472 reg_len = len;
1473 else
1474 reg_len = region->hi - memaddr;
1475
1476 switch (region->attrib.mode)
1477 {
1478 case MEM_RO:
1479 if (writebuf != NULL)
1480 return TARGET_XFER_E_IO;
1481 break;
1482
1483 case MEM_WO:
1484 if (readbuf != NULL)
1485 return TARGET_XFER_E_IO;
1486 break;
1487
1488 case MEM_FLASH:
1489 /* We only support writing to flash during "load" for now. */
1490 if (writebuf != NULL)
1491 error (_("Writing to flash memory forbidden in this context"));
1492 break;
1493
1494 case MEM_NONE:
1495 return TARGET_XFER_E_IO;
1496 }
1497
1498 if (!ptid_equal (inferior_ptid, null_ptid))
1499 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1500 else
1501 inf = NULL;
1502
1503 if (inf != NULL
1504 /* The dcache reads whole cache lines; that doesn't play well
1505 with reading from a trace buffer, because reading outside of
1506 the collected memory range fails. */
1507 && get_traceframe_number () == -1
1508 && (region->attrib.cache
1509 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1510 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1511 {
1512 DCACHE *dcache = target_dcache_get_or_init ();
1513 int l;
1514
1515 if (readbuf != NULL)
1516 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1517 else
1518 /* FIXME drow/2006-08-09: If we're going to preserve const
1519 correctness dcache_xfer_memory should take readbuf and
1520 writebuf. */
1521 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1522 reg_len, 1);
1523 if (l <= 0)
1524 return TARGET_XFER_E_IO;
1525 else
1526 {
1527 *xfered_len = (ULONGEST) l;
1528 return TARGET_XFER_OK;
1529 }
1530 }
1531
1532 /* If none of those methods found the memory we wanted, fall back
1533 to a target partial transfer. Normally a single call to
1534 to_xfer_partial is enough; if it doesn't recognize an object
1535 it will call the to_xfer_partial of the next target down.
1536 But for memory this won't do. Memory is the only target
1537 object which can be read from more than one valid target.
1538 A core file, for instance, could have some of memory but
1539 delegate other bits to the target below it. So, we must
1540 manually try all targets. */
1541
1542 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1543 xfered_len);
1544
1545 /* Make sure the cache gets updated no matter what - if we are writing
1546 to the stack. Even if this write is not tagged as such, we still need
1547 to update the cache. */
1548
1549 if (res == TARGET_XFER_OK
1550 && inf != NULL
1551 && writebuf != NULL
1552 && target_dcache_init_p ()
1553 && !region->attrib.cache
1554 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1555 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1556 {
1557 DCACHE *dcache = target_dcache_get ();
1558
1559 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1560 }
1561
1562 /* If we still haven't got anything, return the last error. We
1563 give up. */
1564 return res;
1565 }
1566
1567 /* Perform a partial memory transfer. For docs see target.h,
1568 to_xfer_partial. */
1569
1570 static enum target_xfer_status
1571 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1572 gdb_byte *readbuf, const gdb_byte *writebuf,
1573 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1574 {
1575 enum target_xfer_status res;
1576
1577 /* Zero length requests are ok and require no work. */
1578 if (len == 0)
1579 return TARGET_XFER_EOF;
1580
1581 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1582 breakpoint insns, thus hiding out from higher layers whether
1583 there are software breakpoints inserted in the code stream. */
1584 if (readbuf != NULL)
1585 {
1586 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1587 xfered_len);
1588
1589 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1590 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1591 }
1592 else
1593 {
1594 void *buf;
1595 struct cleanup *old_chain;
1596
1597 /* A large write request is likely to be partially satisfied
1598 by memory_xfer_partial_1. We will continually malloc
1599 and free a copy of the entire write request for breakpoint
1600 shadow handling even though we only end up writing a small
1601 subset of it. Cap writes to 4KB to mitigate this. */
1602 len = min (4096, len);
1603
1604 buf = xmalloc (len);
1605 old_chain = make_cleanup (xfree, buf);
1606 memcpy (buf, writebuf, len);
1607
1608 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1609 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1610 xfered_len);
1611
1612 do_cleanups (old_chain);
1613 }
1614
1615 return res;
1616 }
1617
1618 static void
1619 restore_show_memory_breakpoints (void *arg)
1620 {
1621 show_memory_breakpoints = (uintptr_t) arg;
1622 }
1623
1624 struct cleanup *
1625 make_show_memory_breakpoints_cleanup (int show)
1626 {
1627 int current = show_memory_breakpoints;
1628
1629 show_memory_breakpoints = show;
1630 return make_cleanup (restore_show_memory_breakpoints,
1631 (void *) (uintptr_t) current);
1632 }
1633
1634 /* For docs see target.h, to_xfer_partial. */
1635
1636 enum target_xfer_status
1637 target_xfer_partial (struct target_ops *ops,
1638 enum target_object object, const char *annex,
1639 gdb_byte *readbuf, const gdb_byte *writebuf,
1640 ULONGEST offset, ULONGEST len,
1641 ULONGEST *xfered_len)
1642 {
1643 enum target_xfer_status retval;
1644
1645 gdb_assert (ops->to_xfer_partial != NULL);
1646
1647 /* Transfer is done when LEN is zero. */
1648 if (len == 0)
1649 return TARGET_XFER_EOF;
1650
1651 if (writebuf && !may_write_memory)
1652 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1653 core_addr_to_string_nz (offset), plongest (len));
1654
1655 *xfered_len = 0;
1656
1657 /* If this is a memory transfer, let the memory-specific code
1658 have a look at it instead. Memory transfers are more
1659 complicated. */
1660 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1661 || object == TARGET_OBJECT_CODE_MEMORY)
1662 retval = memory_xfer_partial (ops, object, readbuf,
1663 writebuf, offset, len, xfered_len);
1664 else if (object == TARGET_OBJECT_RAW_MEMORY)
1665 {
1666 /* Request the normal memory object from other layers. */
1667 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1668 xfered_len);
1669 }
1670 else
1671 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1672 writebuf, offset, len, xfered_len);
1673
1674 if (targetdebug)
1675 {
1676 const unsigned char *myaddr = NULL;
1677
1678 fprintf_unfiltered (gdb_stdlog,
1679 "%s:target_xfer_partial "
1680 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1681 ops->to_shortname,
1682 (int) object,
1683 (annex ? annex : "(null)"),
1684 host_address_to_string (readbuf),
1685 host_address_to_string (writebuf),
1686 core_addr_to_string_nz (offset),
1687 pulongest (len), retval,
1688 pulongest (*xfered_len));
1689
1690 if (readbuf)
1691 myaddr = readbuf;
1692 if (writebuf)
1693 myaddr = writebuf;
1694 if (retval == TARGET_XFER_OK && myaddr != NULL)
1695 {
1696 int i;
1697
1698 fputs_unfiltered (", bytes =", gdb_stdlog);
1699 for (i = 0; i < *xfered_len; i++)
1700 {
1701 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1702 {
1703 if (targetdebug < 2 && i > 0)
1704 {
1705 fprintf_unfiltered (gdb_stdlog, " ...");
1706 break;
1707 }
1708 fprintf_unfiltered (gdb_stdlog, "\n");
1709 }
1710
1711 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1712 }
1713 }
1714
1715 fputc_unfiltered ('\n', gdb_stdlog);
1716 }
1717
1718 /* Check implementations of to_xfer_partial update *XFERED_LEN
1719 properly. Do assertion after printing debug messages, so that we
1720 can find more clues on assertion failure from debugging messages. */
1721 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1722 gdb_assert (*xfered_len > 0);
1723
1724 return retval;
1725 }
1726
1727 /* Read LEN bytes of target memory at address MEMADDR, placing the
1728 results in GDB's memory at MYADDR. Returns either 0 for success or
1729 TARGET_XFER_E_IO if any error occurs.
1730
1731 If an error occurs, no guarantee is made about the contents of the data at
1732 MYADDR. In particular, the caller should not depend upon partial reads
1733 filling the buffer with good data. There is no way for the caller to know
1734 how much good data might have been transfered anyway. Callers that can
1735 deal with partial reads should call target_read (which will retry until
1736 it makes no progress, and then return how much was transferred). */
1737
1738 int
1739 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1740 {
1741 /* Dispatch to the topmost target, not the flattened current_target.
1742 Memory accesses check target->to_has_(all_)memory, and the
1743 flattened target doesn't inherit those. */
1744 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1745 myaddr, memaddr, len) == len)
1746 return 0;
1747 else
1748 return TARGET_XFER_E_IO;
1749 }
1750
1751 /* Like target_read_memory, but specify explicitly that this is a read
1752 from the target's raw memory. That is, this read bypasses the
1753 dcache, breakpoint shadowing, etc. */
1754
1755 int
1756 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1757 {
1758 /* See comment in target_read_memory about why the request starts at
1759 current_target.beneath. */
1760 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1761 myaddr, memaddr, len) == len)
1762 return 0;
1763 else
1764 return TARGET_XFER_E_IO;
1765 }
1766
1767 /* Like target_read_memory, but specify explicitly that this is a read from
1768 the target's stack. This may trigger different cache behavior. */
1769
1770 int
1771 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1772 {
1773 /* See comment in target_read_memory about why the request starts at
1774 current_target.beneath. */
1775 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1776 myaddr, memaddr, len) == len)
1777 return 0;
1778 else
1779 return TARGET_XFER_E_IO;
1780 }
1781
1782 /* Like target_read_memory, but specify explicitly that this is a read from
1783 the target's code. This may trigger different cache behavior. */
1784
1785 int
1786 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1787 {
1788 /* See comment in target_read_memory about why the request starts at
1789 current_target.beneath. */
1790 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1791 myaddr, memaddr, len) == len)
1792 return 0;
1793 else
1794 return TARGET_XFER_E_IO;
1795 }
1796
1797 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1798 Returns either 0 for success or TARGET_XFER_E_IO if any
1799 error occurs. If an error occurs, no guarantee is made about how
1800 much data got written. Callers that can deal with partial writes
1801 should call target_write. */
1802
1803 int
1804 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1805 {
1806 /* See comment in target_read_memory about why the request starts at
1807 current_target.beneath. */
1808 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1809 myaddr, memaddr, len) == len)
1810 return 0;
1811 else
1812 return TARGET_XFER_E_IO;
1813 }
1814
1815 /* Write LEN bytes from MYADDR to target raw memory at address
1816 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1817 if any error occurs. If an error occurs, no guarantee is made
1818 about how much data got written. Callers that can deal with
1819 partial writes should call target_write. */
1820
1821 int
1822 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1823 {
1824 /* See comment in target_read_memory about why the request starts at
1825 current_target.beneath. */
1826 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1827 myaddr, memaddr, len) == len)
1828 return 0;
1829 else
1830 return TARGET_XFER_E_IO;
1831 }
1832
1833 /* Fetch the target's memory map. */
1834
1835 VEC(mem_region_s) *
1836 target_memory_map (void)
1837 {
1838 VEC(mem_region_s) *result;
1839 struct mem_region *last_one, *this_one;
1840 int ix;
1841 struct target_ops *t;
1842
1843 if (targetdebug)
1844 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1845
1846 for (t = current_target.beneath; t != NULL; t = t->beneath)
1847 if (t->to_memory_map != NULL)
1848 break;
1849
1850 if (t == NULL)
1851 return NULL;
1852
1853 result = t->to_memory_map (t);
1854 if (result == NULL)
1855 return NULL;
1856
1857 qsort (VEC_address (mem_region_s, result),
1858 VEC_length (mem_region_s, result),
1859 sizeof (struct mem_region), mem_region_cmp);
1860
1861 /* Check that regions do not overlap. Simultaneously assign
1862 a numbering for the "mem" commands to use to refer to
1863 each region. */
1864 last_one = NULL;
1865 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1866 {
1867 this_one->number = ix;
1868
1869 if (last_one && last_one->hi > this_one->lo)
1870 {
1871 warning (_("Overlapping regions in memory map: ignoring"));
1872 VEC_free (mem_region_s, result);
1873 return NULL;
1874 }
1875 last_one = this_one;
1876 }
1877
1878 return result;
1879 }
1880
1881 void
1882 target_flash_erase (ULONGEST address, LONGEST length)
1883 {
1884 struct target_ops *t;
1885
1886 for (t = current_target.beneath; t != NULL; t = t->beneath)
1887 if (t->to_flash_erase != NULL)
1888 {
1889 if (targetdebug)
1890 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1891 hex_string (address), phex (length, 0));
1892 t->to_flash_erase (t, address, length);
1893 return;
1894 }
1895
1896 tcomplain ();
1897 }
1898
1899 void
1900 target_flash_done (void)
1901 {
1902 struct target_ops *t;
1903
1904 for (t = current_target.beneath; t != NULL; t = t->beneath)
1905 if (t->to_flash_done != NULL)
1906 {
1907 if (targetdebug)
1908 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1909 t->to_flash_done (t);
1910 return;
1911 }
1912
1913 tcomplain ();
1914 }
1915
1916 static void
1917 show_trust_readonly (struct ui_file *file, int from_tty,
1918 struct cmd_list_element *c, const char *value)
1919 {
1920 fprintf_filtered (file,
1921 _("Mode for reading from readonly sections is %s.\n"),
1922 value);
1923 }
1924
1925 /* More generic transfers. */
1926
1927 static enum target_xfer_status
1928 default_xfer_partial (struct target_ops *ops, enum target_object object,
1929 const char *annex, gdb_byte *readbuf,
1930 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1931 ULONGEST *xfered_len)
1932 {
1933 if (object == TARGET_OBJECT_MEMORY
1934 && ops->deprecated_xfer_memory != NULL)
1935 /* If available, fall back to the target's
1936 "deprecated_xfer_memory" method. */
1937 {
1938 int xfered = -1;
1939
1940 errno = 0;
1941 if (writebuf != NULL)
1942 {
1943 void *buffer = xmalloc (len);
1944 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1945
1946 memcpy (buffer, writebuf, len);
1947 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1948 1/*write*/, NULL, ops);
1949 do_cleanups (cleanup);
1950 }
1951 if (readbuf != NULL)
1952 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1953 0/*read*/, NULL, ops);
1954 if (xfered > 0)
1955 {
1956 *xfered_len = (ULONGEST) xfered;
1957 return TARGET_XFER_E_IO;
1958 }
1959 else if (xfered == 0 && errno == 0)
1960 /* "deprecated_xfer_memory" uses 0, cross checked against
1961 ERRNO as one indication of an error. */
1962 return TARGET_XFER_EOF;
1963 else
1964 return TARGET_XFER_E_IO;
1965 }
1966 else
1967 {
1968 gdb_assert (ops->beneath != NULL);
1969 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1970 readbuf, writebuf, offset, len,
1971 xfered_len);
1972 }
1973 }
1974
1975 /* Target vector read/write partial wrapper functions. */
1976
1977 static enum target_xfer_status
1978 target_read_partial (struct target_ops *ops,
1979 enum target_object object,
1980 const char *annex, gdb_byte *buf,
1981 ULONGEST offset, ULONGEST len,
1982 ULONGEST *xfered_len)
1983 {
1984 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1985 xfered_len);
1986 }
1987
1988 static enum target_xfer_status
1989 target_write_partial (struct target_ops *ops,
1990 enum target_object object,
1991 const char *annex, const gdb_byte *buf,
1992 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1993 {
1994 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1995 xfered_len);
1996 }
1997
1998 /* Wrappers to perform the full transfer. */
1999
2000 /* For docs on target_read see target.h. */
2001
2002 LONGEST
2003 target_read (struct target_ops *ops,
2004 enum target_object object,
2005 const char *annex, gdb_byte *buf,
2006 ULONGEST offset, LONGEST len)
2007 {
2008 LONGEST xfered = 0;
2009
2010 while (xfered < len)
2011 {
2012 ULONGEST xfered_len;
2013 enum target_xfer_status status;
2014
2015 status = target_read_partial (ops, object, annex,
2016 (gdb_byte *) buf + xfered,
2017 offset + xfered, len - xfered,
2018 &xfered_len);
2019
2020 /* Call an observer, notifying them of the xfer progress? */
2021 if (status == TARGET_XFER_EOF)
2022 return xfered;
2023 else if (status == TARGET_XFER_OK)
2024 {
2025 xfered += xfered_len;
2026 QUIT;
2027 }
2028 else
2029 return -1;
2030
2031 }
2032 return len;
2033 }
2034
2035 /* Assuming that the entire [begin, end) range of memory cannot be
2036 read, try to read whatever subrange is possible to read.
2037
2038 The function returns, in RESULT, either zero or one memory block.
2039 If there's a readable subrange at the beginning, it is completely
2040 read and returned. Any further readable subrange will not be read.
2041 Otherwise, if there's a readable subrange at the end, it will be
2042 completely read and returned. Any readable subranges before it
2043 (obviously, not starting at the beginning), will be ignored. In
2044 other cases -- either no readable subrange, or readable subrange(s)
2045 that is neither at the beginning, or end, nothing is returned.
2046
2047 The purpose of this function is to handle a read across a boundary
2048 of accessible memory in a case when memory map is not available.
2049 The above restrictions are fine for this case, but will give
2050 incorrect results if the memory is 'patchy'. However, supporting
2051 'patchy' memory would require trying to read every single byte,
2052 and it seems unacceptable solution. Explicit memory map is
2053 recommended for this case -- and target_read_memory_robust will
2054 take care of reading multiple ranges then. */
2055
2056 static void
2057 read_whatever_is_readable (struct target_ops *ops,
2058 ULONGEST begin, ULONGEST end,
2059 VEC(memory_read_result_s) **result)
2060 {
2061 gdb_byte *buf = xmalloc (end - begin);
2062 ULONGEST current_begin = begin;
2063 ULONGEST current_end = end;
2064 int forward;
2065 memory_read_result_s r;
2066 ULONGEST xfered_len;
2067
2068 /* If we previously failed to read 1 byte, nothing can be done here. */
2069 if (end - begin <= 1)
2070 {
2071 xfree (buf);
2072 return;
2073 }
2074
2075 /* Check that either first or the last byte is readable, and give up
2076 if not. This heuristic is meant to permit reading accessible memory
2077 at the boundary of accessible region. */
2078 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2079 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
2080 {
2081 forward = 1;
2082 ++current_begin;
2083 }
2084 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2085 buf + (end-begin) - 1, end - 1, 1,
2086 &xfered_len) == TARGET_XFER_OK)
2087 {
2088 forward = 0;
2089 --current_end;
2090 }
2091 else
2092 {
2093 xfree (buf);
2094 return;
2095 }
2096
2097 /* Loop invariant is that the [current_begin, current_end) was previously
2098 found to be not readable as a whole.
2099
2100 Note loop condition -- if the range has 1 byte, we can't divide the range
2101 so there's no point trying further. */
2102 while (current_end - current_begin > 1)
2103 {
2104 ULONGEST first_half_begin, first_half_end;
2105 ULONGEST second_half_begin, second_half_end;
2106 LONGEST xfer;
2107 ULONGEST middle = current_begin + (current_end - current_begin)/2;
2108
2109 if (forward)
2110 {
2111 first_half_begin = current_begin;
2112 first_half_end = middle;
2113 second_half_begin = middle;
2114 second_half_end = current_end;
2115 }
2116 else
2117 {
2118 first_half_begin = middle;
2119 first_half_end = current_end;
2120 second_half_begin = current_begin;
2121 second_half_end = middle;
2122 }
2123
2124 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2125 buf + (first_half_begin - begin),
2126 first_half_begin,
2127 first_half_end - first_half_begin);
2128
2129 if (xfer == first_half_end - first_half_begin)
2130 {
2131 /* This half reads up fine. So, the error must be in the
2132 other half. */
2133 current_begin = second_half_begin;
2134 current_end = second_half_end;
2135 }
2136 else
2137 {
2138 /* This half is not readable. Because we've tried one byte, we
2139 know some part of this half if actually redable. Go to the next
2140 iteration to divide again and try to read.
2141
2142 We don't handle the other half, because this function only tries
2143 to read a single readable subrange. */
2144 current_begin = first_half_begin;
2145 current_end = first_half_end;
2146 }
2147 }
2148
2149 if (forward)
2150 {
2151 /* The [begin, current_begin) range has been read. */
2152 r.begin = begin;
2153 r.end = current_begin;
2154 r.data = buf;
2155 }
2156 else
2157 {
2158 /* The [current_end, end) range has been read. */
2159 LONGEST rlen = end - current_end;
2160
2161 r.data = xmalloc (rlen);
2162 memcpy (r.data, buf + current_end - begin, rlen);
2163 r.begin = current_end;
2164 r.end = end;
2165 xfree (buf);
2166 }
2167 VEC_safe_push(memory_read_result_s, (*result), &r);
2168 }
2169
2170 void
2171 free_memory_read_result_vector (void *x)
2172 {
2173 VEC(memory_read_result_s) *v = x;
2174 memory_read_result_s *current;
2175 int ix;
2176
2177 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2178 {
2179 xfree (current->data);
2180 }
2181 VEC_free (memory_read_result_s, v);
2182 }
2183
2184 VEC(memory_read_result_s) *
2185 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2186 {
2187 VEC(memory_read_result_s) *result = 0;
2188
2189 LONGEST xfered = 0;
2190 while (xfered < len)
2191 {
2192 struct mem_region *region = lookup_mem_region (offset + xfered);
2193 LONGEST rlen;
2194
2195 /* If there is no explicit region, a fake one should be created. */
2196 gdb_assert (region);
2197
2198 if (region->hi == 0)
2199 rlen = len - xfered;
2200 else
2201 rlen = region->hi - offset;
2202
2203 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2204 {
2205 /* Cannot read this region. Note that we can end up here only
2206 if the region is explicitly marked inaccessible, or
2207 'inaccessible-by-default' is in effect. */
2208 xfered += rlen;
2209 }
2210 else
2211 {
2212 LONGEST to_read = min (len - xfered, rlen);
2213 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2214
2215 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2216 (gdb_byte *) buffer,
2217 offset + xfered, to_read);
2218 /* Call an observer, notifying them of the xfer progress? */
2219 if (xfer <= 0)
2220 {
2221 /* Got an error reading full chunk. See if maybe we can read
2222 some subrange. */
2223 xfree (buffer);
2224 read_whatever_is_readable (ops, offset + xfered,
2225 offset + xfered + to_read, &result);
2226 xfered += to_read;
2227 }
2228 else
2229 {
2230 struct memory_read_result r;
2231 r.data = buffer;
2232 r.begin = offset + xfered;
2233 r.end = r.begin + xfer;
2234 VEC_safe_push (memory_read_result_s, result, &r);
2235 xfered += xfer;
2236 }
2237 QUIT;
2238 }
2239 }
2240 return result;
2241 }
2242
2243
2244 /* An alternative to target_write with progress callbacks. */
2245
2246 LONGEST
2247 target_write_with_progress (struct target_ops *ops,
2248 enum target_object object,
2249 const char *annex, const gdb_byte *buf,
2250 ULONGEST offset, LONGEST len,
2251 void (*progress) (ULONGEST, void *), void *baton)
2252 {
2253 LONGEST xfered = 0;
2254
2255 /* Give the progress callback a chance to set up. */
2256 if (progress)
2257 (*progress) (0, baton);
2258
2259 while (xfered < len)
2260 {
2261 ULONGEST xfered_len;
2262 enum target_xfer_status status;
2263
2264 status = target_write_partial (ops, object, annex,
2265 (gdb_byte *) buf + xfered,
2266 offset + xfered, len - xfered,
2267 &xfered_len);
2268
2269 if (status == TARGET_XFER_EOF)
2270 return xfered;
2271 if (TARGET_XFER_STATUS_ERROR_P (status))
2272 return -1;
2273
2274 gdb_assert (status == TARGET_XFER_OK);
2275 if (progress)
2276 (*progress) (xfered_len, baton);
2277
2278 xfered += xfered_len;
2279 QUIT;
2280 }
2281 return len;
2282 }
2283
2284 /* For docs on target_write see target.h. */
2285
2286 LONGEST
2287 target_write (struct target_ops *ops,
2288 enum target_object object,
2289 const char *annex, const gdb_byte *buf,
2290 ULONGEST offset, LONGEST len)
2291 {
2292 return target_write_with_progress (ops, object, annex, buf, offset, len,
2293 NULL, NULL);
2294 }
2295
2296 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2297 the size of the transferred data. PADDING additional bytes are
2298 available in *BUF_P. This is a helper function for
2299 target_read_alloc; see the declaration of that function for more
2300 information. */
2301
2302 static LONGEST
2303 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2304 const char *annex, gdb_byte **buf_p, int padding)
2305 {
2306 size_t buf_alloc, buf_pos;
2307 gdb_byte *buf;
2308
2309 /* This function does not have a length parameter; it reads the
2310 entire OBJECT). Also, it doesn't support objects fetched partly
2311 from one target and partly from another (in a different stratum,
2312 e.g. a core file and an executable). Both reasons make it
2313 unsuitable for reading memory. */
2314 gdb_assert (object != TARGET_OBJECT_MEMORY);
2315
2316 /* Start by reading up to 4K at a time. The target will throttle
2317 this number down if necessary. */
2318 buf_alloc = 4096;
2319 buf = xmalloc (buf_alloc);
2320 buf_pos = 0;
2321 while (1)
2322 {
2323 ULONGEST xfered_len;
2324 enum target_xfer_status status;
2325
2326 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2327 buf_pos, buf_alloc - buf_pos - padding,
2328 &xfered_len);
2329
2330 if (status == TARGET_XFER_EOF)
2331 {
2332 /* Read all there was. */
2333 if (buf_pos == 0)
2334 xfree (buf);
2335 else
2336 *buf_p = buf;
2337 return buf_pos;
2338 }
2339 else if (status != TARGET_XFER_OK)
2340 {
2341 /* An error occurred. */
2342 xfree (buf);
2343 return TARGET_XFER_E_IO;
2344 }
2345
2346 buf_pos += xfered_len;
2347
2348 /* If the buffer is filling up, expand it. */
2349 if (buf_alloc < buf_pos * 2)
2350 {
2351 buf_alloc *= 2;
2352 buf = xrealloc (buf, buf_alloc);
2353 }
2354
2355 QUIT;
2356 }
2357 }
2358
2359 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2360 the size of the transferred data. See the declaration in "target.h"
2361 function for more information about the return value. */
2362
2363 LONGEST
2364 target_read_alloc (struct target_ops *ops, enum target_object object,
2365 const char *annex, gdb_byte **buf_p)
2366 {
2367 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2368 }
2369
2370 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2371 returned as a string, allocated using xmalloc. If an error occurs
2372 or the transfer is unsupported, NULL is returned. Empty objects
2373 are returned as allocated but empty strings. A warning is issued
2374 if the result contains any embedded NUL bytes. */
2375
2376 char *
2377 target_read_stralloc (struct target_ops *ops, enum target_object object,
2378 const char *annex)
2379 {
2380 gdb_byte *buffer;
2381 char *bufstr;
2382 LONGEST i, transferred;
2383
2384 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2385 bufstr = (char *) buffer;
2386
2387 if (transferred < 0)
2388 return NULL;
2389
2390 if (transferred == 0)
2391 return xstrdup ("");
2392
2393 bufstr[transferred] = 0;
2394
2395 /* Check for embedded NUL bytes; but allow trailing NULs. */
2396 for (i = strlen (bufstr); i < transferred; i++)
2397 if (bufstr[i] != 0)
2398 {
2399 warning (_("target object %d, annex %s, "
2400 "contained unexpected null characters"),
2401 (int) object, annex ? annex : "(none)");
2402 break;
2403 }
2404
2405 return bufstr;
2406 }
2407
2408 /* Memory transfer methods. */
2409
2410 void
2411 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2412 LONGEST len)
2413 {
2414 /* This method is used to read from an alternate, non-current
2415 target. This read must bypass the overlay support (as symbols
2416 don't match this target), and GDB's internal cache (wrong cache
2417 for this target). */
2418 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2419 != len)
2420 memory_error (TARGET_XFER_E_IO, addr);
2421 }
2422
2423 ULONGEST
2424 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2425 int len, enum bfd_endian byte_order)
2426 {
2427 gdb_byte buf[sizeof (ULONGEST)];
2428
2429 gdb_assert (len <= sizeof (buf));
2430 get_target_memory (ops, addr, buf, len);
2431 return extract_unsigned_integer (buf, len, byte_order);
2432 }
2433
2434 /* See target.h. */
2435
2436 int
2437 target_insert_breakpoint (struct gdbarch *gdbarch,
2438 struct bp_target_info *bp_tgt)
2439 {
2440 if (!may_insert_breakpoints)
2441 {
2442 warning (_("May not insert breakpoints"));
2443 return 1;
2444 }
2445
2446 return current_target.to_insert_breakpoint (&current_target,
2447 gdbarch, bp_tgt);
2448 }
2449
2450 /* See target.h. */
2451
2452 int
2453 target_remove_breakpoint (struct gdbarch *gdbarch,
2454 struct bp_target_info *bp_tgt)
2455 {
2456 /* This is kind of a weird case to handle, but the permission might
2457 have been changed after breakpoints were inserted - in which case
2458 we should just take the user literally and assume that any
2459 breakpoints should be left in place. */
2460 if (!may_insert_breakpoints)
2461 {
2462 warning (_("May not remove breakpoints"));
2463 return 1;
2464 }
2465
2466 return current_target.to_remove_breakpoint (&current_target,
2467 gdbarch, bp_tgt);
2468 }
2469
2470 static void
2471 target_info (char *args, int from_tty)
2472 {
2473 struct target_ops *t;
2474 int has_all_mem = 0;
2475
2476 if (symfile_objfile != NULL)
2477 printf_unfiltered (_("Symbols from \"%s\".\n"),
2478 objfile_name (symfile_objfile));
2479
2480 for (t = target_stack; t != NULL; t = t->beneath)
2481 {
2482 if (!(*t->to_has_memory) (t))
2483 continue;
2484
2485 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2486 continue;
2487 if (has_all_mem)
2488 printf_unfiltered (_("\tWhile running this, "
2489 "GDB does not access memory from...\n"));
2490 printf_unfiltered ("%s:\n", t->to_longname);
2491 (t->to_files_info) (t);
2492 has_all_mem = (*t->to_has_all_memory) (t);
2493 }
2494 }
2495
2496 /* This function is called before any new inferior is created, e.g.
2497 by running a program, attaching, or connecting to a target.
2498 It cleans up any state from previous invocations which might
2499 change between runs. This is a subset of what target_preopen
2500 resets (things which might change between targets). */
2501
2502 void
2503 target_pre_inferior (int from_tty)
2504 {
2505 /* Clear out solib state. Otherwise the solib state of the previous
2506 inferior might have survived and is entirely wrong for the new
2507 target. This has been observed on GNU/Linux using glibc 2.3. How
2508 to reproduce:
2509
2510 bash$ ./foo&
2511 [1] 4711
2512 bash$ ./foo&
2513 [1] 4712
2514 bash$ gdb ./foo
2515 [...]
2516 (gdb) attach 4711
2517 (gdb) detach
2518 (gdb) attach 4712
2519 Cannot access memory at address 0xdeadbeef
2520 */
2521
2522 /* In some OSs, the shared library list is the same/global/shared
2523 across inferiors. If code is shared between processes, so are
2524 memory regions and features. */
2525 if (!gdbarch_has_global_solist (target_gdbarch ()))
2526 {
2527 no_shared_libraries (NULL, from_tty);
2528
2529 invalidate_target_mem_regions ();
2530
2531 target_clear_description ();
2532 }
2533
2534 agent_capability_invalidate ();
2535 }
2536
2537 /* Callback for iterate_over_inferiors. Gets rid of the given
2538 inferior. */
2539
2540 static int
2541 dispose_inferior (struct inferior *inf, void *args)
2542 {
2543 struct thread_info *thread;
2544
2545 thread = any_thread_of_process (inf->pid);
2546 if (thread)
2547 {
2548 switch_to_thread (thread->ptid);
2549
2550 /* Core inferiors actually should be detached, not killed. */
2551 if (target_has_execution)
2552 target_kill ();
2553 else
2554 target_detach (NULL, 0);
2555 }
2556
2557 return 0;
2558 }
2559
2560 /* This is to be called by the open routine before it does
2561 anything. */
2562
2563 void
2564 target_preopen (int from_tty)
2565 {
2566 dont_repeat ();
2567
2568 if (have_inferiors ())
2569 {
2570 if (!from_tty
2571 || !have_live_inferiors ()
2572 || query (_("A program is being debugged already. Kill it? ")))
2573 iterate_over_inferiors (dispose_inferior, NULL);
2574 else
2575 error (_("Program not killed."));
2576 }
2577
2578 /* Calling target_kill may remove the target from the stack. But if
2579 it doesn't (which seems like a win for UDI), remove it now. */
2580 /* Leave the exec target, though. The user may be switching from a
2581 live process to a core of the same program. */
2582 pop_all_targets_above (file_stratum);
2583
2584 target_pre_inferior (from_tty);
2585 }
2586
2587 /* Detach a target after doing deferred register stores. */
2588
2589 void
2590 target_detach (const char *args, int from_tty)
2591 {
2592 struct target_ops* t;
2593
2594 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2595 /* Don't remove global breakpoints here. They're removed on
2596 disconnection from the target. */
2597 ;
2598 else
2599 /* If we're in breakpoints-always-inserted mode, have to remove
2600 them before detaching. */
2601 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2602
2603 prepare_for_detach ();
2604
2605 current_target.to_detach (&current_target, args, from_tty);
2606 if (targetdebug)
2607 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2608 args, from_tty);
2609 }
2610
2611 void
2612 target_disconnect (char *args, int from_tty)
2613 {
2614 struct target_ops *t;
2615
2616 /* If we're in breakpoints-always-inserted mode or if breakpoints
2617 are global across processes, we have to remove them before
2618 disconnecting. */
2619 remove_breakpoints ();
2620
2621 for (t = current_target.beneath; t != NULL; t = t->beneath)
2622 if (t->to_disconnect != NULL)
2623 {
2624 if (targetdebug)
2625 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2626 args, from_tty);
2627 t->to_disconnect (t, args, from_tty);
2628 return;
2629 }
2630
2631 tcomplain ();
2632 }
2633
2634 ptid_t
2635 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2636 {
2637 struct target_ops *t;
2638 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2639 status, options);
2640
2641 if (targetdebug)
2642 {
2643 char *status_string;
2644 char *options_string;
2645
2646 status_string = target_waitstatus_to_string (status);
2647 options_string = target_options_to_string (options);
2648 fprintf_unfiltered (gdb_stdlog,
2649 "target_wait (%d, status, options={%s})"
2650 " = %d, %s\n",
2651 ptid_get_pid (ptid), options_string,
2652 ptid_get_pid (retval), status_string);
2653 xfree (status_string);
2654 xfree (options_string);
2655 }
2656
2657 return retval;
2658 }
2659
2660 char *
2661 target_pid_to_str (ptid_t ptid)
2662 {
2663 struct target_ops *t;
2664
2665 for (t = current_target.beneath; t != NULL; t = t->beneath)
2666 {
2667 if (t->to_pid_to_str != NULL)
2668 return (*t->to_pid_to_str) (t, ptid);
2669 }
2670
2671 return normal_pid_to_str (ptid);
2672 }
2673
2674 char *
2675 target_thread_name (struct thread_info *info)
2676 {
2677 return current_target.to_thread_name (&current_target, info);
2678 }
2679
2680 void
2681 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2682 {
2683 struct target_ops *t;
2684
2685 target_dcache_invalidate ();
2686
2687 current_target.to_resume (&current_target, ptid, step, signal);
2688 if (targetdebug)
2689 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2690 ptid_get_pid (ptid),
2691 step ? "step" : "continue",
2692 gdb_signal_to_name (signal));
2693
2694 registers_changed_ptid (ptid);
2695 set_executing (ptid, 1);
2696 set_running (ptid, 1);
2697 clear_inline_frame_state (ptid);
2698 }
2699
2700 void
2701 target_pass_signals (int numsigs, unsigned char *pass_signals)
2702 {
2703 struct target_ops *t;
2704
2705 for (t = current_target.beneath; t != NULL; t = t->beneath)
2706 {
2707 if (t->to_pass_signals != NULL)
2708 {
2709 if (targetdebug)
2710 {
2711 int i;
2712
2713 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2714 numsigs);
2715
2716 for (i = 0; i < numsigs; i++)
2717 if (pass_signals[i])
2718 fprintf_unfiltered (gdb_stdlog, " %s",
2719 gdb_signal_to_name (i));
2720
2721 fprintf_unfiltered (gdb_stdlog, " })\n");
2722 }
2723
2724 (*t->to_pass_signals) (t, numsigs, pass_signals);
2725 return;
2726 }
2727 }
2728 }
2729
2730 void
2731 target_program_signals (int numsigs, unsigned char *program_signals)
2732 {
2733 struct target_ops *t;
2734
2735 for (t = current_target.beneath; t != NULL; t = t->beneath)
2736 {
2737 if (t->to_program_signals != NULL)
2738 {
2739 if (targetdebug)
2740 {
2741 int i;
2742
2743 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2744 numsigs);
2745
2746 for (i = 0; i < numsigs; i++)
2747 if (program_signals[i])
2748 fprintf_unfiltered (gdb_stdlog, " %s",
2749 gdb_signal_to_name (i));
2750
2751 fprintf_unfiltered (gdb_stdlog, " })\n");
2752 }
2753
2754 (*t->to_program_signals) (t, numsigs, program_signals);
2755 return;
2756 }
2757 }
2758 }
2759
2760 /* Look through the list of possible targets for a target that can
2761 follow forks. */
2762
2763 int
2764 target_follow_fork (int follow_child, int detach_fork)
2765 {
2766 struct target_ops *t;
2767
2768 for (t = current_target.beneath; t != NULL; t = t->beneath)
2769 {
2770 if (t->to_follow_fork != NULL)
2771 {
2772 int retval = t->to_follow_fork (t, follow_child, detach_fork);
2773
2774 if (targetdebug)
2775 fprintf_unfiltered (gdb_stdlog,
2776 "target_follow_fork (%d, %d) = %d\n",
2777 follow_child, detach_fork, retval);
2778 return retval;
2779 }
2780 }
2781
2782 /* Some target returned a fork event, but did not know how to follow it. */
2783 internal_error (__FILE__, __LINE__,
2784 _("could not find a target to follow fork"));
2785 }
2786
2787 void
2788 target_mourn_inferior (void)
2789 {
2790 struct target_ops *t;
2791
2792 for (t = current_target.beneath; t != NULL; t = t->beneath)
2793 {
2794 if (t->to_mourn_inferior != NULL)
2795 {
2796 t->to_mourn_inferior (t);
2797 if (targetdebug)
2798 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2799
2800 /* We no longer need to keep handles on any of the object files.
2801 Make sure to release them to avoid unnecessarily locking any
2802 of them while we're not actually debugging. */
2803 bfd_cache_close_all ();
2804
2805 return;
2806 }
2807 }
2808
2809 internal_error (__FILE__, __LINE__,
2810 _("could not find a target to follow mourn inferior"));
2811 }
2812
2813 /* Look for a target which can describe architectural features, starting
2814 from TARGET. If we find one, return its description. */
2815
2816 const struct target_desc *
2817 target_read_description (struct target_ops *target)
2818 {
2819 struct target_ops *t;
2820
2821 for (t = target; t != NULL; t = t->beneath)
2822 if (t->to_read_description != NULL)
2823 {
2824 const struct target_desc *tdesc;
2825
2826 tdesc = t->to_read_description (t);
2827 if (tdesc)
2828 return tdesc;
2829 }
2830
2831 return NULL;
2832 }
2833
2834 /* The default implementation of to_search_memory.
2835 This implements a basic search of memory, reading target memory and
2836 performing the search here (as opposed to performing the search in on the
2837 target side with, for example, gdbserver). */
2838
2839 int
2840 simple_search_memory (struct target_ops *ops,
2841 CORE_ADDR start_addr, ULONGEST search_space_len,
2842 const gdb_byte *pattern, ULONGEST pattern_len,
2843 CORE_ADDR *found_addrp)
2844 {
2845 /* NOTE: also defined in find.c testcase. */
2846 #define SEARCH_CHUNK_SIZE 16000
2847 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2848 /* Buffer to hold memory contents for searching. */
2849 gdb_byte *search_buf;
2850 unsigned search_buf_size;
2851 struct cleanup *old_cleanups;
2852
2853 search_buf_size = chunk_size + pattern_len - 1;
2854
2855 /* No point in trying to allocate a buffer larger than the search space. */
2856 if (search_space_len < search_buf_size)
2857 search_buf_size = search_space_len;
2858
2859 search_buf = malloc (search_buf_size);
2860 if (search_buf == NULL)
2861 error (_("Unable to allocate memory to perform the search."));
2862 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2863
2864 /* Prime the search buffer. */
2865
2866 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2867 search_buf, start_addr, search_buf_size) != search_buf_size)
2868 {
2869 warning (_("Unable to access %s bytes of target "
2870 "memory at %s, halting search."),
2871 pulongest (search_buf_size), hex_string (start_addr));
2872 do_cleanups (old_cleanups);
2873 return -1;
2874 }
2875
2876 /* Perform the search.
2877
2878 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2879 When we've scanned N bytes we copy the trailing bytes to the start and
2880 read in another N bytes. */
2881
2882 while (search_space_len >= pattern_len)
2883 {
2884 gdb_byte *found_ptr;
2885 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2886
2887 found_ptr = memmem (search_buf, nr_search_bytes,
2888 pattern, pattern_len);
2889
2890 if (found_ptr != NULL)
2891 {
2892 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2893
2894 *found_addrp = found_addr;
2895 do_cleanups (old_cleanups);
2896 return 1;
2897 }
2898
2899 /* Not found in this chunk, skip to next chunk. */
2900
2901 /* Don't let search_space_len wrap here, it's unsigned. */
2902 if (search_space_len >= chunk_size)
2903 search_space_len -= chunk_size;
2904 else
2905 search_space_len = 0;
2906
2907 if (search_space_len >= pattern_len)
2908 {
2909 unsigned keep_len = search_buf_size - chunk_size;
2910 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2911 int nr_to_read;
2912
2913 /* Copy the trailing part of the previous iteration to the front
2914 of the buffer for the next iteration. */
2915 gdb_assert (keep_len == pattern_len - 1);
2916 memcpy (search_buf, search_buf + chunk_size, keep_len);
2917
2918 nr_to_read = min (search_space_len - keep_len, chunk_size);
2919
2920 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2921 search_buf + keep_len, read_addr,
2922 nr_to_read) != nr_to_read)
2923 {
2924 warning (_("Unable to access %s bytes of target "
2925 "memory at %s, halting search."),
2926 plongest (nr_to_read),
2927 hex_string (read_addr));
2928 do_cleanups (old_cleanups);
2929 return -1;
2930 }
2931
2932 start_addr += chunk_size;
2933 }
2934 }
2935
2936 /* Not found. */
2937
2938 do_cleanups (old_cleanups);
2939 return 0;
2940 }
2941
2942 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2943 sequence of bytes in PATTERN with length PATTERN_LEN.
2944
2945 The result is 1 if found, 0 if not found, and -1 if there was an error
2946 requiring halting of the search (e.g. memory read error).
2947 If the pattern is found the address is recorded in FOUND_ADDRP. */
2948
2949 int
2950 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2951 const gdb_byte *pattern, ULONGEST pattern_len,
2952 CORE_ADDR *found_addrp)
2953 {
2954 struct target_ops *t;
2955 int found;
2956
2957 /* We don't use INHERIT to set current_target.to_search_memory,
2958 so we have to scan the target stack and handle targetdebug
2959 ourselves. */
2960
2961 if (targetdebug)
2962 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2963 hex_string (start_addr));
2964
2965 for (t = current_target.beneath; t != NULL; t = t->beneath)
2966 if (t->to_search_memory != NULL)
2967 break;
2968
2969 if (t != NULL)
2970 {
2971 found = t->to_search_memory (t, start_addr, search_space_len,
2972 pattern, pattern_len, found_addrp);
2973 }
2974 else
2975 {
2976 /* If a special version of to_search_memory isn't available, use the
2977 simple version. */
2978 found = simple_search_memory (current_target.beneath,
2979 start_addr, search_space_len,
2980 pattern, pattern_len, found_addrp);
2981 }
2982
2983 if (targetdebug)
2984 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2985
2986 return found;
2987 }
2988
2989 /* Look through the currently pushed targets. If none of them will
2990 be able to restart the currently running process, issue an error
2991 message. */
2992
2993 void
2994 target_require_runnable (void)
2995 {
2996 struct target_ops *t;
2997
2998 for (t = target_stack; t != NULL; t = t->beneath)
2999 {
3000 /* If this target knows how to create a new program, then
3001 assume we will still be able to after killing the current
3002 one. Either killing and mourning will not pop T, or else
3003 find_default_run_target will find it again. */
3004 if (t->to_create_inferior != NULL)
3005 return;
3006
3007 /* Do not worry about thread_stratum targets that can not
3008 create inferiors. Assume they will be pushed again if
3009 necessary, and continue to the process_stratum. */
3010 if (t->to_stratum == thread_stratum
3011 || t->to_stratum == arch_stratum)
3012 continue;
3013
3014 error (_("The \"%s\" target does not support \"run\". "
3015 "Try \"help target\" or \"continue\"."),
3016 t->to_shortname);
3017 }
3018
3019 /* This function is only called if the target is running. In that
3020 case there should have been a process_stratum target and it
3021 should either know how to create inferiors, or not... */
3022 internal_error (__FILE__, __LINE__, _("No targets found"));
3023 }
3024
3025 /* Look through the list of possible targets for a target that can
3026 execute a run or attach command without any other data. This is
3027 used to locate the default process stratum.
3028
3029 If DO_MESG is not NULL, the result is always valid (error() is
3030 called for errors); else, return NULL on error. */
3031
3032 static struct target_ops *
3033 find_default_run_target (char *do_mesg)
3034 {
3035 struct target_ops **t;
3036 struct target_ops *runable = NULL;
3037 int count;
3038
3039 count = 0;
3040
3041 for (t = target_structs; t < target_structs + target_struct_size;
3042 ++t)
3043 {
3044 if ((*t)->to_can_run && target_can_run (*t))
3045 {
3046 runable = *t;
3047 ++count;
3048 }
3049 }
3050
3051 if (count != 1)
3052 {
3053 if (do_mesg)
3054 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
3055 else
3056 return NULL;
3057 }
3058
3059 return runable;
3060 }
3061
3062 void
3063 find_default_attach (struct target_ops *ops, char *args, int from_tty)
3064 {
3065 struct target_ops *t;
3066
3067 t = find_default_run_target ("attach");
3068 (t->to_attach) (t, args, from_tty);
3069 return;
3070 }
3071
3072 void
3073 find_default_create_inferior (struct target_ops *ops,
3074 char *exec_file, char *allargs, char **env,
3075 int from_tty)
3076 {
3077 struct target_ops *t;
3078
3079 t = find_default_run_target ("run");
3080 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
3081 return;
3082 }
3083
3084 static int
3085 find_default_can_async_p (struct target_ops *ignore)
3086 {
3087 struct target_ops *t;
3088
3089 /* This may be called before the target is pushed on the stack;
3090 look for the default process stratum. If there's none, gdb isn't
3091 configured with a native debugger, and target remote isn't
3092 connected yet. */
3093 t = find_default_run_target (NULL);
3094 if (t && t->to_can_async_p != delegate_can_async_p)
3095 return (t->to_can_async_p) (t);
3096 return 0;
3097 }
3098
3099 static int
3100 find_default_is_async_p (struct target_ops *ignore)
3101 {
3102 struct target_ops *t;
3103
3104 /* This may be called before the target is pushed on the stack;
3105 look for the default process stratum. If there's none, gdb isn't
3106 configured with a native debugger, and target remote isn't
3107 connected yet. */
3108 t = find_default_run_target (NULL);
3109 if (t && t->to_is_async_p != delegate_is_async_p)
3110 return (t->to_is_async_p) (t);
3111 return 0;
3112 }
3113
3114 static int
3115 find_default_supports_non_stop (struct target_ops *self)
3116 {
3117 struct target_ops *t;
3118
3119 t = find_default_run_target (NULL);
3120 if (t && t->to_supports_non_stop)
3121 return (t->to_supports_non_stop) (t);
3122 return 0;
3123 }
3124
3125 int
3126 target_supports_non_stop (void)
3127 {
3128 struct target_ops *t;
3129
3130 for (t = &current_target; t != NULL; t = t->beneath)
3131 if (t->to_supports_non_stop)
3132 return t->to_supports_non_stop (t);
3133
3134 return 0;
3135 }
3136
3137 /* Implement the "info proc" command. */
3138
3139 int
3140 target_info_proc (char *args, enum info_proc_what what)
3141 {
3142 struct target_ops *t;
3143
3144 /* If we're already connected to something that can get us OS
3145 related data, use it. Otherwise, try using the native
3146 target. */
3147 if (current_target.to_stratum >= process_stratum)
3148 t = current_target.beneath;
3149 else
3150 t = find_default_run_target (NULL);
3151
3152 for (; t != NULL; t = t->beneath)
3153 {
3154 if (t->to_info_proc != NULL)
3155 {
3156 t->to_info_proc (t, args, what);
3157
3158 if (targetdebug)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "target_info_proc (\"%s\", %d)\n", args, what);
3161
3162 return 1;
3163 }
3164 }
3165
3166 return 0;
3167 }
3168
3169 static int
3170 find_default_supports_disable_randomization (struct target_ops *self)
3171 {
3172 struct target_ops *t;
3173
3174 t = find_default_run_target (NULL);
3175 if (t && t->to_supports_disable_randomization)
3176 return (t->to_supports_disable_randomization) (t);
3177 return 0;
3178 }
3179
3180 int
3181 target_supports_disable_randomization (void)
3182 {
3183 struct target_ops *t;
3184
3185 for (t = &current_target; t != NULL; t = t->beneath)
3186 if (t->to_supports_disable_randomization)
3187 return t->to_supports_disable_randomization (t);
3188
3189 return 0;
3190 }
3191
3192 char *
3193 target_get_osdata (const char *type)
3194 {
3195 struct target_ops *t;
3196
3197 /* If we're already connected to something that can get us OS
3198 related data, use it. Otherwise, try using the native
3199 target. */
3200 if (current_target.to_stratum >= process_stratum)
3201 t = current_target.beneath;
3202 else
3203 t = find_default_run_target ("get OS data");
3204
3205 if (!t)
3206 return NULL;
3207
3208 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3209 }
3210
3211 /* Determine the current address space of thread PTID. */
3212
3213 struct address_space *
3214 target_thread_address_space (ptid_t ptid)
3215 {
3216 struct address_space *aspace;
3217 struct inferior *inf;
3218 struct target_ops *t;
3219
3220 for (t = current_target.beneath; t != NULL; t = t->beneath)
3221 {
3222 if (t->to_thread_address_space != NULL)
3223 {
3224 aspace = t->to_thread_address_space (t, ptid);
3225 gdb_assert (aspace);
3226
3227 if (targetdebug)
3228 fprintf_unfiltered (gdb_stdlog,
3229 "target_thread_address_space (%s) = %d\n",
3230 target_pid_to_str (ptid),
3231 address_space_num (aspace));
3232 return aspace;
3233 }
3234 }
3235
3236 /* Fall-back to the "main" address space of the inferior. */
3237 inf = find_inferior_pid (ptid_get_pid (ptid));
3238
3239 if (inf == NULL || inf->aspace == NULL)
3240 internal_error (__FILE__, __LINE__,
3241 _("Can't determine the current "
3242 "address space of thread %s\n"),
3243 target_pid_to_str (ptid));
3244
3245 return inf->aspace;
3246 }
3247
3248
3249 /* Target file operations. */
3250
3251 static struct target_ops *
3252 default_fileio_target (void)
3253 {
3254 /* If we're already connected to something that can perform
3255 file I/O, use it. Otherwise, try using the native target. */
3256 if (current_target.to_stratum >= process_stratum)
3257 return current_target.beneath;
3258 else
3259 return find_default_run_target ("file I/O");
3260 }
3261
3262 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3263 target file descriptor, or -1 if an error occurs (and set
3264 *TARGET_ERRNO). */
3265 int
3266 target_fileio_open (const char *filename, int flags, int mode,
3267 int *target_errno)
3268 {
3269 struct target_ops *t;
3270
3271 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3272 {
3273 if (t->to_fileio_open != NULL)
3274 {
3275 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3276
3277 if (targetdebug)
3278 fprintf_unfiltered (gdb_stdlog,
3279 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3280 filename, flags, mode,
3281 fd, fd != -1 ? 0 : *target_errno);
3282 return fd;
3283 }
3284 }
3285
3286 *target_errno = FILEIO_ENOSYS;
3287 return -1;
3288 }
3289
3290 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3291 Return the number of bytes written, or -1 if an error occurs
3292 (and set *TARGET_ERRNO). */
3293 int
3294 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3295 ULONGEST offset, int *target_errno)
3296 {
3297 struct target_ops *t;
3298
3299 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3300 {
3301 if (t->to_fileio_pwrite != NULL)
3302 {
3303 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3304 target_errno);
3305
3306 if (targetdebug)
3307 fprintf_unfiltered (gdb_stdlog,
3308 "target_fileio_pwrite (%d,...,%d,%s) "
3309 "= %d (%d)\n",
3310 fd, len, pulongest (offset),
3311 ret, ret != -1 ? 0 : *target_errno);
3312 return ret;
3313 }
3314 }
3315
3316 *target_errno = FILEIO_ENOSYS;
3317 return -1;
3318 }
3319
3320 /* Read up to LEN bytes FD on the target into READ_BUF.
3321 Return the number of bytes read, or -1 if an error occurs
3322 (and set *TARGET_ERRNO). */
3323 int
3324 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3325 ULONGEST offset, int *target_errno)
3326 {
3327 struct target_ops *t;
3328
3329 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3330 {
3331 if (t->to_fileio_pread != NULL)
3332 {
3333 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3334 target_errno);
3335
3336 if (targetdebug)
3337 fprintf_unfiltered (gdb_stdlog,
3338 "target_fileio_pread (%d,...,%d,%s) "
3339 "= %d (%d)\n",
3340 fd, len, pulongest (offset),
3341 ret, ret != -1 ? 0 : *target_errno);
3342 return ret;
3343 }
3344 }
3345
3346 *target_errno = FILEIO_ENOSYS;
3347 return -1;
3348 }
3349
3350 /* Close FD on the target. Return 0, or -1 if an error occurs
3351 (and set *TARGET_ERRNO). */
3352 int
3353 target_fileio_close (int fd, int *target_errno)
3354 {
3355 struct target_ops *t;
3356
3357 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3358 {
3359 if (t->to_fileio_close != NULL)
3360 {
3361 int ret = t->to_fileio_close (t, fd, target_errno);
3362
3363 if (targetdebug)
3364 fprintf_unfiltered (gdb_stdlog,
3365 "target_fileio_close (%d) = %d (%d)\n",
3366 fd, ret, ret != -1 ? 0 : *target_errno);
3367 return ret;
3368 }
3369 }
3370
3371 *target_errno = FILEIO_ENOSYS;
3372 return -1;
3373 }
3374
3375 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3376 occurs (and set *TARGET_ERRNO). */
3377 int
3378 target_fileio_unlink (const char *filename, int *target_errno)
3379 {
3380 struct target_ops *t;
3381
3382 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3383 {
3384 if (t->to_fileio_unlink != NULL)
3385 {
3386 int ret = t->to_fileio_unlink (t, filename, target_errno);
3387
3388 if (targetdebug)
3389 fprintf_unfiltered (gdb_stdlog,
3390 "target_fileio_unlink (%s) = %d (%d)\n",
3391 filename, ret, ret != -1 ? 0 : *target_errno);
3392 return ret;
3393 }
3394 }
3395
3396 *target_errno = FILEIO_ENOSYS;
3397 return -1;
3398 }
3399
3400 /* Read value of symbolic link FILENAME on the target. Return a
3401 null-terminated string allocated via xmalloc, or NULL if an error
3402 occurs (and set *TARGET_ERRNO). */
3403 char *
3404 target_fileio_readlink (const char *filename, int *target_errno)
3405 {
3406 struct target_ops *t;
3407
3408 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3409 {
3410 if (t->to_fileio_readlink != NULL)
3411 {
3412 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3413
3414 if (targetdebug)
3415 fprintf_unfiltered (gdb_stdlog,
3416 "target_fileio_readlink (%s) = %s (%d)\n",
3417 filename, ret? ret : "(nil)",
3418 ret? 0 : *target_errno);
3419 return ret;
3420 }
3421 }
3422
3423 *target_errno = FILEIO_ENOSYS;
3424 return NULL;
3425 }
3426
3427 static void
3428 target_fileio_close_cleanup (void *opaque)
3429 {
3430 int fd = *(int *) opaque;
3431 int target_errno;
3432
3433 target_fileio_close (fd, &target_errno);
3434 }
3435
3436 /* Read target file FILENAME. Store the result in *BUF_P and
3437 return the size of the transferred data. PADDING additional bytes are
3438 available in *BUF_P. This is a helper function for
3439 target_fileio_read_alloc; see the declaration of that function for more
3440 information. */
3441
3442 static LONGEST
3443 target_fileio_read_alloc_1 (const char *filename,
3444 gdb_byte **buf_p, int padding)
3445 {
3446 struct cleanup *close_cleanup;
3447 size_t buf_alloc, buf_pos;
3448 gdb_byte *buf;
3449 LONGEST n;
3450 int fd;
3451 int target_errno;
3452
3453 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3454 if (fd == -1)
3455 return -1;
3456
3457 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3458
3459 /* Start by reading up to 4K at a time. The target will throttle
3460 this number down if necessary. */
3461 buf_alloc = 4096;
3462 buf = xmalloc (buf_alloc);
3463 buf_pos = 0;
3464 while (1)
3465 {
3466 n = target_fileio_pread (fd, &buf[buf_pos],
3467 buf_alloc - buf_pos - padding, buf_pos,
3468 &target_errno);
3469 if (n < 0)
3470 {
3471 /* An error occurred. */
3472 do_cleanups (close_cleanup);
3473 xfree (buf);
3474 return -1;
3475 }
3476 else if (n == 0)
3477 {
3478 /* Read all there was. */
3479 do_cleanups (close_cleanup);
3480 if (buf_pos == 0)
3481 xfree (buf);
3482 else
3483 *buf_p = buf;
3484 return buf_pos;
3485 }
3486
3487 buf_pos += n;
3488
3489 /* If the buffer is filling up, expand it. */
3490 if (buf_alloc < buf_pos * 2)
3491 {
3492 buf_alloc *= 2;
3493 buf = xrealloc (buf, buf_alloc);
3494 }
3495
3496 QUIT;
3497 }
3498 }
3499
3500 /* Read target file FILENAME. Store the result in *BUF_P and return
3501 the size of the transferred data. See the declaration in "target.h"
3502 function for more information about the return value. */
3503
3504 LONGEST
3505 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3506 {
3507 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3508 }
3509
3510 /* Read target file FILENAME. The result is NUL-terminated and
3511 returned as a string, allocated using xmalloc. If an error occurs
3512 or the transfer is unsupported, NULL is returned. Empty objects
3513 are returned as allocated but empty strings. A warning is issued
3514 if the result contains any embedded NUL bytes. */
3515
3516 char *
3517 target_fileio_read_stralloc (const char *filename)
3518 {
3519 gdb_byte *buffer;
3520 char *bufstr;
3521 LONGEST i, transferred;
3522
3523 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3524 bufstr = (char *) buffer;
3525
3526 if (transferred < 0)
3527 return NULL;
3528
3529 if (transferred == 0)
3530 return xstrdup ("");
3531
3532 bufstr[transferred] = 0;
3533
3534 /* Check for embedded NUL bytes; but allow trailing NULs. */
3535 for (i = strlen (bufstr); i < transferred; i++)
3536 if (bufstr[i] != 0)
3537 {
3538 warning (_("target file %s "
3539 "contained unexpected null characters"),
3540 filename);
3541 break;
3542 }
3543
3544 return bufstr;
3545 }
3546
3547
3548 static int
3549 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3550 CORE_ADDR addr, int len)
3551 {
3552 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3553 }
3554
3555 static int
3556 default_watchpoint_addr_within_range (struct target_ops *target,
3557 CORE_ADDR addr,
3558 CORE_ADDR start, int length)
3559 {
3560 return addr >= start && addr < start + length;
3561 }
3562
3563 static struct gdbarch *
3564 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3565 {
3566 return target_gdbarch ();
3567 }
3568
3569 static int
3570 return_zero (void)
3571 {
3572 return 0;
3573 }
3574
3575 static int
3576 return_minus_one (void)
3577 {
3578 return -1;
3579 }
3580
3581 static void *
3582 return_null (void)
3583 {
3584 return 0;
3585 }
3586
3587 /*
3588 * Find the next target down the stack from the specified target.
3589 */
3590
3591 struct target_ops *
3592 find_target_beneath (struct target_ops *t)
3593 {
3594 return t->beneath;
3595 }
3596
3597 /* See target.h. */
3598
3599 struct target_ops *
3600 find_target_at (enum strata stratum)
3601 {
3602 struct target_ops *t;
3603
3604 for (t = current_target.beneath; t != NULL; t = t->beneath)
3605 if (t->to_stratum == stratum)
3606 return t;
3607
3608 return NULL;
3609 }
3610
3611 \f
3612 /* The inferior process has died. Long live the inferior! */
3613
3614 void
3615 generic_mourn_inferior (void)
3616 {
3617 ptid_t ptid;
3618
3619 ptid = inferior_ptid;
3620 inferior_ptid = null_ptid;
3621
3622 /* Mark breakpoints uninserted in case something tries to delete a
3623 breakpoint while we delete the inferior's threads (which would
3624 fail, since the inferior is long gone). */
3625 mark_breakpoints_out ();
3626
3627 if (!ptid_equal (ptid, null_ptid))
3628 {
3629 int pid = ptid_get_pid (ptid);
3630 exit_inferior (pid);
3631 }
3632
3633 /* Note this wipes step-resume breakpoints, so needs to be done
3634 after exit_inferior, which ends up referencing the step-resume
3635 breakpoints through clear_thread_inferior_resources. */
3636 breakpoint_init_inferior (inf_exited);
3637
3638 registers_changed ();
3639
3640 reopen_exec_file ();
3641 reinit_frame_cache ();
3642
3643 if (deprecated_detach_hook)
3644 deprecated_detach_hook ();
3645 }
3646 \f
3647 /* Convert a normal process ID to a string. Returns the string in a
3648 static buffer. */
3649
3650 char *
3651 normal_pid_to_str (ptid_t ptid)
3652 {
3653 static char buf[32];
3654
3655 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3656 return buf;
3657 }
3658
3659 static char *
3660 dummy_pid_to_str (struct target_ops *ops, ptid_t ptid)
3661 {
3662 return normal_pid_to_str (ptid);
3663 }
3664
3665 /* Error-catcher for target_find_memory_regions. */
3666 static int
3667 dummy_find_memory_regions (struct target_ops *self,
3668 find_memory_region_ftype ignore1, void *ignore2)
3669 {
3670 error (_("Command not implemented for this target."));
3671 return 0;
3672 }
3673
3674 /* Error-catcher for target_make_corefile_notes. */
3675 static char *
3676 dummy_make_corefile_notes (struct target_ops *self,
3677 bfd *ignore1, int *ignore2)
3678 {
3679 error (_("Command not implemented for this target."));
3680 return NULL;
3681 }
3682
3683 /* Error-catcher for target_goto_bookmark. */
3684 static void
3685 dummy_goto_bookmark (struct target_ops *self, gdb_byte *ignore, int from_tty)
3686 {
3687 tcomplain ();
3688 }
3689
3690 /* Set up the handful of non-empty slots needed by the dummy target
3691 vector. */
3692
3693 static void
3694 init_dummy_target (void)
3695 {
3696 dummy_target.to_shortname = "None";
3697 dummy_target.to_longname = "None";
3698 dummy_target.to_doc = "";
3699 dummy_target.to_create_inferior = find_default_create_inferior;
3700 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3701 dummy_target.to_supports_disable_randomization
3702 = find_default_supports_disable_randomization;
3703 dummy_target.to_pid_to_str = dummy_pid_to_str;
3704 dummy_target.to_stratum = dummy_stratum;
3705 dummy_target.to_goto_bookmark = dummy_goto_bookmark;
3706 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3707 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3708 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3709 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3710 dummy_target.to_has_execution
3711 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3712 dummy_target.to_magic = OPS_MAGIC;
3713
3714 install_dummy_methods (&dummy_target);
3715 }
3716 \f
3717 static void
3718 debug_to_open (char *args, int from_tty)
3719 {
3720 debug_target.to_open (args, from_tty);
3721
3722 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3723 }
3724
3725 void
3726 target_close (struct target_ops *targ)
3727 {
3728 gdb_assert (!target_is_pushed (targ));
3729
3730 if (targ->to_xclose != NULL)
3731 targ->to_xclose (targ);
3732 else if (targ->to_close != NULL)
3733 targ->to_close (targ);
3734
3735 if (targetdebug)
3736 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3737 }
3738
3739 void
3740 target_attach (char *args, int from_tty)
3741 {
3742 current_target.to_attach (&current_target, args, from_tty);
3743 if (targetdebug)
3744 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3745 args, from_tty);
3746 }
3747
3748 int
3749 target_thread_alive (ptid_t ptid)
3750 {
3751 struct target_ops *t;
3752
3753 for (t = current_target.beneath; t != NULL; t = t->beneath)
3754 {
3755 if (t->to_thread_alive != NULL)
3756 {
3757 int retval;
3758
3759 retval = t->to_thread_alive (t, ptid);
3760 if (targetdebug)
3761 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3762 ptid_get_pid (ptid), retval);
3763
3764 return retval;
3765 }
3766 }
3767
3768 return 0;
3769 }
3770
3771 void
3772 target_find_new_threads (void)
3773 {
3774 struct target_ops *t;
3775
3776 for (t = current_target.beneath; t != NULL; t = t->beneath)
3777 {
3778 if (t->to_find_new_threads != NULL)
3779 {
3780 t->to_find_new_threads (t);
3781 if (targetdebug)
3782 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3783
3784 return;
3785 }
3786 }
3787 }
3788
3789 void
3790 target_stop (ptid_t ptid)
3791 {
3792 if (!may_stop)
3793 {
3794 warning (_("May not interrupt or stop the target, ignoring attempt"));
3795 return;
3796 }
3797
3798 (*current_target.to_stop) (&current_target, ptid);
3799 }
3800
3801 static void
3802 debug_to_post_attach (struct target_ops *self, int pid)
3803 {
3804 debug_target.to_post_attach (&debug_target, pid);
3805
3806 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3807 }
3808
3809 /* Concatenate ELEM to LIST, a comma separate list, and return the
3810 result. The LIST incoming argument is released. */
3811
3812 static char *
3813 str_comma_list_concat_elem (char *list, const char *elem)
3814 {
3815 if (list == NULL)
3816 return xstrdup (elem);
3817 else
3818 return reconcat (list, list, ", ", elem, (char *) NULL);
3819 }
3820
3821 /* Helper for target_options_to_string. If OPT is present in
3822 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3823 Returns the new resulting string. OPT is removed from
3824 TARGET_OPTIONS. */
3825
3826 static char *
3827 do_option (int *target_options, char *ret,
3828 int opt, char *opt_str)
3829 {
3830 if ((*target_options & opt) != 0)
3831 {
3832 ret = str_comma_list_concat_elem (ret, opt_str);
3833 *target_options &= ~opt;
3834 }
3835
3836 return ret;
3837 }
3838
3839 char *
3840 target_options_to_string (int target_options)
3841 {
3842 char *ret = NULL;
3843
3844 #define DO_TARG_OPTION(OPT) \
3845 ret = do_option (&target_options, ret, OPT, #OPT)
3846
3847 DO_TARG_OPTION (TARGET_WNOHANG);
3848
3849 if (target_options != 0)
3850 ret = str_comma_list_concat_elem (ret, "unknown???");
3851
3852 if (ret == NULL)
3853 ret = xstrdup ("");
3854 return ret;
3855 }
3856
3857 static void
3858 debug_print_register (const char * func,
3859 struct regcache *regcache, int regno)
3860 {
3861 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3862
3863 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3864 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3865 && gdbarch_register_name (gdbarch, regno) != NULL
3866 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3867 fprintf_unfiltered (gdb_stdlog, "(%s)",
3868 gdbarch_register_name (gdbarch, regno));
3869 else
3870 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3871 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3872 {
3873 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3874 int i, size = register_size (gdbarch, regno);
3875 gdb_byte buf[MAX_REGISTER_SIZE];
3876
3877 regcache_raw_collect (regcache, regno, buf);
3878 fprintf_unfiltered (gdb_stdlog, " = ");
3879 for (i = 0; i < size; i++)
3880 {
3881 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3882 }
3883 if (size <= sizeof (LONGEST))
3884 {
3885 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3886
3887 fprintf_unfiltered (gdb_stdlog, " %s %s",
3888 core_addr_to_string_nz (val), plongest (val));
3889 }
3890 }
3891 fprintf_unfiltered (gdb_stdlog, "\n");
3892 }
3893
3894 void
3895 target_fetch_registers (struct regcache *regcache, int regno)
3896 {
3897 struct target_ops *t;
3898
3899 for (t = current_target.beneath; t != NULL; t = t->beneath)
3900 {
3901 if (t->to_fetch_registers != NULL)
3902 {
3903 t->to_fetch_registers (t, regcache, regno);
3904 if (targetdebug)
3905 debug_print_register ("target_fetch_registers", regcache, regno);
3906 return;
3907 }
3908 }
3909 }
3910
3911 void
3912 target_store_registers (struct regcache *regcache, int regno)
3913 {
3914 struct target_ops *t;
3915
3916 if (!may_write_registers)
3917 error (_("Writing to registers is not allowed (regno %d)"), regno);
3918
3919 current_target.to_store_registers (&current_target, regcache, regno);
3920 if (targetdebug)
3921 {
3922 debug_print_register ("target_store_registers", regcache, regno);
3923 }
3924 }
3925
3926 int
3927 target_core_of_thread (ptid_t ptid)
3928 {
3929 struct target_ops *t;
3930
3931 for (t = current_target.beneath; t != NULL; t = t->beneath)
3932 {
3933 if (t->to_core_of_thread != NULL)
3934 {
3935 int retval = t->to_core_of_thread (t, ptid);
3936
3937 if (targetdebug)
3938 fprintf_unfiltered (gdb_stdlog,
3939 "target_core_of_thread (%d) = %d\n",
3940 ptid_get_pid (ptid), retval);
3941 return retval;
3942 }
3943 }
3944
3945 return -1;
3946 }
3947
3948 int
3949 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3950 {
3951 struct target_ops *t;
3952
3953 for (t = current_target.beneath; t != NULL; t = t->beneath)
3954 {
3955 if (t->to_verify_memory != NULL)
3956 {
3957 int retval = t->to_verify_memory (t, data, memaddr, size);
3958
3959 if (targetdebug)
3960 fprintf_unfiltered (gdb_stdlog,
3961 "target_verify_memory (%s, %s) = %d\n",
3962 paddress (target_gdbarch (), memaddr),
3963 pulongest (size),
3964 retval);
3965 return retval;
3966 }
3967 }
3968
3969 tcomplain ();
3970 }
3971
3972 /* The documentation for this function is in its prototype declaration in
3973 target.h. */
3974
3975 int
3976 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3977 {
3978 struct target_ops *t;
3979
3980 for (t = current_target.beneath; t != NULL; t = t->beneath)
3981 if (t->to_insert_mask_watchpoint != NULL)
3982 {
3983 int ret;
3984
3985 ret = t->to_insert_mask_watchpoint (t, addr, mask, rw);
3986
3987 if (targetdebug)
3988 fprintf_unfiltered (gdb_stdlog, "\
3989 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3990 core_addr_to_string (addr),
3991 core_addr_to_string (mask), rw, ret);
3992
3993 return ret;
3994 }
3995
3996 return 1;
3997 }
3998
3999 /* The documentation for this function is in its prototype declaration in
4000 target.h. */
4001
4002 int
4003 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
4004 {
4005 struct target_ops *t;
4006
4007 for (t = current_target.beneath; t != NULL; t = t->beneath)
4008 if (t->to_remove_mask_watchpoint != NULL)
4009 {
4010 int ret;
4011
4012 ret = t->to_remove_mask_watchpoint (t, addr, mask, rw);
4013
4014 if (targetdebug)
4015 fprintf_unfiltered (gdb_stdlog, "\
4016 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
4017 core_addr_to_string (addr),
4018 core_addr_to_string (mask), rw, ret);
4019
4020 return ret;
4021 }
4022
4023 return 1;
4024 }
4025
4026 /* The documentation for this function is in its prototype declaration
4027 in target.h. */
4028
4029 int
4030 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4031 {
4032 struct target_ops *t;
4033
4034 for (t = current_target.beneath; t != NULL; t = t->beneath)
4035 if (t->to_masked_watch_num_registers != NULL)
4036 return t->to_masked_watch_num_registers (t, addr, mask);
4037
4038 return -1;
4039 }
4040
4041 /* The documentation for this function is in its prototype declaration
4042 in target.h. */
4043
4044 int
4045 target_ranged_break_num_registers (void)
4046 {
4047 struct target_ops *t;
4048
4049 for (t = current_target.beneath; t != NULL; t = t->beneath)
4050 if (t->to_ranged_break_num_registers != NULL)
4051 return t->to_ranged_break_num_registers (t);
4052
4053 return -1;
4054 }
4055
4056 /* See target.h. */
4057
4058 struct btrace_target_info *
4059 target_enable_btrace (ptid_t ptid)
4060 {
4061 struct target_ops *t;
4062
4063 for (t = current_target.beneath; t != NULL; t = t->beneath)
4064 if (t->to_enable_btrace != NULL)
4065 return t->to_enable_btrace (t, ptid);
4066
4067 tcomplain ();
4068 return NULL;
4069 }
4070
4071 /* See target.h. */
4072
4073 void
4074 target_disable_btrace (struct btrace_target_info *btinfo)
4075 {
4076 struct target_ops *t;
4077
4078 for (t = current_target.beneath; t != NULL; t = t->beneath)
4079 if (t->to_disable_btrace != NULL)
4080 {
4081 t->to_disable_btrace (t, btinfo);
4082 return;
4083 }
4084
4085 tcomplain ();
4086 }
4087
4088 /* See target.h. */
4089
4090 void
4091 target_teardown_btrace (struct btrace_target_info *btinfo)
4092 {
4093 struct target_ops *t;
4094
4095 for (t = current_target.beneath; t != NULL; t = t->beneath)
4096 if (t->to_teardown_btrace != NULL)
4097 {
4098 t->to_teardown_btrace (t, btinfo);
4099 return;
4100 }
4101
4102 tcomplain ();
4103 }
4104
4105 /* See target.h. */
4106
4107 enum btrace_error
4108 target_read_btrace (VEC (btrace_block_s) **btrace,
4109 struct btrace_target_info *btinfo,
4110 enum btrace_read_type type)
4111 {
4112 struct target_ops *t;
4113
4114 for (t = current_target.beneath; t != NULL; t = t->beneath)
4115 if (t->to_read_btrace != NULL)
4116 return t->to_read_btrace (t, btrace, btinfo, type);
4117
4118 tcomplain ();
4119 return BTRACE_ERR_NOT_SUPPORTED;
4120 }
4121
4122 /* See target.h. */
4123
4124 void
4125 target_stop_recording (void)
4126 {
4127 struct target_ops *t;
4128
4129 for (t = current_target.beneath; t != NULL; t = t->beneath)
4130 if (t->to_stop_recording != NULL)
4131 {
4132 t->to_stop_recording (t);
4133 return;
4134 }
4135
4136 /* This is optional. */
4137 }
4138
4139 /* See target.h. */
4140
4141 void
4142 target_info_record (void)
4143 {
4144 struct target_ops *t;
4145
4146 for (t = current_target.beneath; t != NULL; t = t->beneath)
4147 if (t->to_info_record != NULL)
4148 {
4149 t->to_info_record (t);
4150 return;
4151 }
4152
4153 tcomplain ();
4154 }
4155
4156 /* See target.h. */
4157
4158 void
4159 target_save_record (const char *filename)
4160 {
4161 struct target_ops *t;
4162
4163 for (t = current_target.beneath; t != NULL; t = t->beneath)
4164 if (t->to_save_record != NULL)
4165 {
4166 t->to_save_record (t, filename);
4167 return;
4168 }
4169
4170 tcomplain ();
4171 }
4172
4173 /* See target.h. */
4174
4175 int
4176 target_supports_delete_record (void)
4177 {
4178 struct target_ops *t;
4179
4180 for (t = current_target.beneath; t != NULL; t = t->beneath)
4181 if (t->to_delete_record != NULL)
4182 return 1;
4183
4184 return 0;
4185 }
4186
4187 /* See target.h. */
4188
4189 void
4190 target_delete_record (void)
4191 {
4192 struct target_ops *t;
4193
4194 for (t = current_target.beneath; t != NULL; t = t->beneath)
4195 if (t->to_delete_record != NULL)
4196 {
4197 t->to_delete_record (t);
4198 return;
4199 }
4200
4201 tcomplain ();
4202 }
4203
4204 /* See target.h. */
4205
4206 int
4207 target_record_is_replaying (void)
4208 {
4209 struct target_ops *t;
4210
4211 for (t = current_target.beneath; t != NULL; t = t->beneath)
4212 if (t->to_record_is_replaying != NULL)
4213 return t->to_record_is_replaying (t);
4214
4215 return 0;
4216 }
4217
4218 /* See target.h. */
4219
4220 void
4221 target_goto_record_begin (void)
4222 {
4223 struct target_ops *t;
4224
4225 for (t = current_target.beneath; t != NULL; t = t->beneath)
4226 if (t->to_goto_record_begin != NULL)
4227 {
4228 t->to_goto_record_begin (t);
4229 return;
4230 }
4231
4232 tcomplain ();
4233 }
4234
4235 /* See target.h. */
4236
4237 void
4238 target_goto_record_end (void)
4239 {
4240 struct target_ops *t;
4241
4242 for (t = current_target.beneath; t != NULL; t = t->beneath)
4243 if (t->to_goto_record_end != NULL)
4244 {
4245 t->to_goto_record_end (t);
4246 return;
4247 }
4248
4249 tcomplain ();
4250 }
4251
4252 /* See target.h. */
4253
4254 void
4255 target_goto_record (ULONGEST insn)
4256 {
4257 struct target_ops *t;
4258
4259 for (t = current_target.beneath; t != NULL; t = t->beneath)
4260 if (t->to_goto_record != NULL)
4261 {
4262 t->to_goto_record (t, insn);
4263 return;
4264 }
4265
4266 tcomplain ();
4267 }
4268
4269 /* See target.h. */
4270
4271 void
4272 target_insn_history (int size, int flags)
4273 {
4274 struct target_ops *t;
4275
4276 for (t = current_target.beneath; t != NULL; t = t->beneath)
4277 if (t->to_insn_history != NULL)
4278 {
4279 t->to_insn_history (t, size, flags);
4280 return;
4281 }
4282
4283 tcomplain ();
4284 }
4285
4286 /* See target.h. */
4287
4288 void
4289 target_insn_history_from (ULONGEST from, int size, int flags)
4290 {
4291 struct target_ops *t;
4292
4293 for (t = current_target.beneath; t != NULL; t = t->beneath)
4294 if (t->to_insn_history_from != NULL)
4295 {
4296 t->to_insn_history_from (t, from, size, flags);
4297 return;
4298 }
4299
4300 tcomplain ();
4301 }
4302
4303 /* See target.h. */
4304
4305 void
4306 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4307 {
4308 struct target_ops *t;
4309
4310 for (t = current_target.beneath; t != NULL; t = t->beneath)
4311 if (t->to_insn_history_range != NULL)
4312 {
4313 t->to_insn_history_range (t, begin, end, flags);
4314 return;
4315 }
4316
4317 tcomplain ();
4318 }
4319
4320 /* See target.h. */
4321
4322 void
4323 target_call_history (int size, int flags)
4324 {
4325 struct target_ops *t;
4326
4327 for (t = current_target.beneath; t != NULL; t = t->beneath)
4328 if (t->to_call_history != NULL)
4329 {
4330 t->to_call_history (t, size, flags);
4331 return;
4332 }
4333
4334 tcomplain ();
4335 }
4336
4337 /* See target.h. */
4338
4339 void
4340 target_call_history_from (ULONGEST begin, int size, int flags)
4341 {
4342 struct target_ops *t;
4343
4344 for (t = current_target.beneath; t != NULL; t = t->beneath)
4345 if (t->to_call_history_from != NULL)
4346 {
4347 t->to_call_history_from (t, begin, size, flags);
4348 return;
4349 }
4350
4351 tcomplain ();
4352 }
4353
4354 /* See target.h. */
4355
4356 void
4357 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4358 {
4359 struct target_ops *t;
4360
4361 for (t = current_target.beneath; t != NULL; t = t->beneath)
4362 if (t->to_call_history_range != NULL)
4363 {
4364 t->to_call_history_range (t, begin, end, flags);
4365 return;
4366 }
4367
4368 tcomplain ();
4369 }
4370
4371 static void
4372 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4373 {
4374 debug_target.to_prepare_to_store (&debug_target, regcache);
4375
4376 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4377 }
4378
4379 /* See target.h. */
4380
4381 const struct frame_unwind *
4382 target_get_unwinder (void)
4383 {
4384 struct target_ops *t;
4385
4386 for (t = current_target.beneath; t != NULL; t = t->beneath)
4387 if (t->to_get_unwinder != NULL)
4388 return t->to_get_unwinder;
4389
4390 return NULL;
4391 }
4392
4393 /* See target.h. */
4394
4395 const struct frame_unwind *
4396 target_get_tailcall_unwinder (void)
4397 {
4398 struct target_ops *t;
4399
4400 for (t = current_target.beneath; t != NULL; t = t->beneath)
4401 if (t->to_get_tailcall_unwinder != NULL)
4402 return t->to_get_tailcall_unwinder;
4403
4404 return NULL;
4405 }
4406
4407 /* See target.h. */
4408
4409 CORE_ADDR
4410 forward_target_decr_pc_after_break (struct target_ops *ops,
4411 struct gdbarch *gdbarch)
4412 {
4413 for (; ops != NULL; ops = ops->beneath)
4414 if (ops->to_decr_pc_after_break != NULL)
4415 return ops->to_decr_pc_after_break (ops, gdbarch);
4416
4417 return gdbarch_decr_pc_after_break (gdbarch);
4418 }
4419
4420 /* See target.h. */
4421
4422 CORE_ADDR
4423 target_decr_pc_after_break (struct gdbarch *gdbarch)
4424 {
4425 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4426 }
4427
4428 static int
4429 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4430 int write, struct mem_attrib *attrib,
4431 struct target_ops *target)
4432 {
4433 int retval;
4434
4435 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4436 attrib, target);
4437
4438 fprintf_unfiltered (gdb_stdlog,
4439 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4440 paddress (target_gdbarch (), memaddr), len,
4441 write ? "write" : "read", retval);
4442
4443 if (retval > 0)
4444 {
4445 int i;
4446
4447 fputs_unfiltered (", bytes =", gdb_stdlog);
4448 for (i = 0; i < retval; i++)
4449 {
4450 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4451 {
4452 if (targetdebug < 2 && i > 0)
4453 {
4454 fprintf_unfiltered (gdb_stdlog, " ...");
4455 break;
4456 }
4457 fprintf_unfiltered (gdb_stdlog, "\n");
4458 }
4459
4460 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4461 }
4462 }
4463
4464 fputc_unfiltered ('\n', gdb_stdlog);
4465
4466 return retval;
4467 }
4468
4469 static void
4470 debug_to_files_info (struct target_ops *target)
4471 {
4472 debug_target.to_files_info (target);
4473
4474 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4475 }
4476
4477 static int
4478 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4479 struct bp_target_info *bp_tgt)
4480 {
4481 int retval;
4482
4483 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4484
4485 fprintf_unfiltered (gdb_stdlog,
4486 "target_insert_breakpoint (%s, xxx) = %ld\n",
4487 core_addr_to_string (bp_tgt->placed_address),
4488 (unsigned long) retval);
4489 return retval;
4490 }
4491
4492 static int
4493 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4494 struct bp_target_info *bp_tgt)
4495 {
4496 int retval;
4497
4498 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4499
4500 fprintf_unfiltered (gdb_stdlog,
4501 "target_remove_breakpoint (%s, xxx) = %ld\n",
4502 core_addr_to_string (bp_tgt->placed_address),
4503 (unsigned long) retval);
4504 return retval;
4505 }
4506
4507 static int
4508 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4509 int type, int cnt, int from_tty)
4510 {
4511 int retval;
4512
4513 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4514 type, cnt, from_tty);
4515
4516 fprintf_unfiltered (gdb_stdlog,
4517 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4518 (unsigned long) type,
4519 (unsigned long) cnt,
4520 (unsigned long) from_tty,
4521 (unsigned long) retval);
4522 return retval;
4523 }
4524
4525 static int
4526 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4527 CORE_ADDR addr, int len)
4528 {
4529 CORE_ADDR retval;
4530
4531 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4532 addr, len);
4533
4534 fprintf_unfiltered (gdb_stdlog,
4535 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4536 core_addr_to_string (addr), (unsigned long) len,
4537 core_addr_to_string (retval));
4538 return retval;
4539 }
4540
4541 static int
4542 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4543 CORE_ADDR addr, int len, int rw,
4544 struct expression *cond)
4545 {
4546 int retval;
4547
4548 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4549 addr, len,
4550 rw, cond);
4551
4552 fprintf_unfiltered (gdb_stdlog,
4553 "target_can_accel_watchpoint_condition "
4554 "(%s, %d, %d, %s) = %ld\n",
4555 core_addr_to_string (addr), len, rw,
4556 host_address_to_string (cond), (unsigned long) retval);
4557 return retval;
4558 }
4559
4560 static int
4561 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4562 {
4563 int retval;
4564
4565 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4566
4567 fprintf_unfiltered (gdb_stdlog,
4568 "target_stopped_by_watchpoint () = %ld\n",
4569 (unsigned long) retval);
4570 return retval;
4571 }
4572
4573 static int
4574 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4575 {
4576 int retval;
4577
4578 retval = debug_target.to_stopped_data_address (target, addr);
4579
4580 fprintf_unfiltered (gdb_stdlog,
4581 "target_stopped_data_address ([%s]) = %ld\n",
4582 core_addr_to_string (*addr),
4583 (unsigned long)retval);
4584 return retval;
4585 }
4586
4587 static int
4588 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4589 CORE_ADDR addr,
4590 CORE_ADDR start, int length)
4591 {
4592 int retval;
4593
4594 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4595 start, length);
4596
4597 fprintf_filtered (gdb_stdlog,
4598 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4599 core_addr_to_string (addr), core_addr_to_string (start),
4600 length, retval);
4601 return retval;
4602 }
4603
4604 static int
4605 debug_to_insert_hw_breakpoint (struct target_ops *self,
4606 struct gdbarch *gdbarch,
4607 struct bp_target_info *bp_tgt)
4608 {
4609 int retval;
4610
4611 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4612 gdbarch, bp_tgt);
4613
4614 fprintf_unfiltered (gdb_stdlog,
4615 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4616 core_addr_to_string (bp_tgt->placed_address),
4617 (unsigned long) retval);
4618 return retval;
4619 }
4620
4621 static int
4622 debug_to_remove_hw_breakpoint (struct target_ops *self,
4623 struct gdbarch *gdbarch,
4624 struct bp_target_info *bp_tgt)
4625 {
4626 int retval;
4627
4628 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4629 gdbarch, bp_tgt);
4630
4631 fprintf_unfiltered (gdb_stdlog,
4632 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4633 core_addr_to_string (bp_tgt->placed_address),
4634 (unsigned long) retval);
4635 return retval;
4636 }
4637
4638 static int
4639 debug_to_insert_watchpoint (struct target_ops *self,
4640 CORE_ADDR addr, int len, int type,
4641 struct expression *cond)
4642 {
4643 int retval;
4644
4645 retval = debug_target.to_insert_watchpoint (&debug_target,
4646 addr, len, type, cond);
4647
4648 fprintf_unfiltered (gdb_stdlog,
4649 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4650 core_addr_to_string (addr), len, type,
4651 host_address_to_string (cond), (unsigned long) retval);
4652 return retval;
4653 }
4654
4655 static int
4656 debug_to_remove_watchpoint (struct target_ops *self,
4657 CORE_ADDR addr, int len, int type,
4658 struct expression *cond)
4659 {
4660 int retval;
4661
4662 retval = debug_target.to_remove_watchpoint (&debug_target,
4663 addr, len, type, cond);
4664
4665 fprintf_unfiltered (gdb_stdlog,
4666 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4667 core_addr_to_string (addr), len, type,
4668 host_address_to_string (cond), (unsigned long) retval);
4669 return retval;
4670 }
4671
4672 static void
4673 debug_to_terminal_init (struct target_ops *self)
4674 {
4675 debug_target.to_terminal_init (&debug_target);
4676
4677 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4678 }
4679
4680 static void
4681 debug_to_terminal_inferior (struct target_ops *self)
4682 {
4683 debug_target.to_terminal_inferior (&debug_target);
4684
4685 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4686 }
4687
4688 static void
4689 debug_to_terminal_ours_for_output (struct target_ops *self)
4690 {
4691 debug_target.to_terminal_ours_for_output (&debug_target);
4692
4693 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4694 }
4695
4696 static void
4697 debug_to_terminal_ours (struct target_ops *self)
4698 {
4699 debug_target.to_terminal_ours (&debug_target);
4700
4701 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4702 }
4703
4704 static void
4705 debug_to_terminal_save_ours (struct target_ops *self)
4706 {
4707 debug_target.to_terminal_save_ours (&debug_target);
4708
4709 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4710 }
4711
4712 static void
4713 debug_to_terminal_info (struct target_ops *self,
4714 const char *arg, int from_tty)
4715 {
4716 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4717
4718 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4719 from_tty);
4720 }
4721
4722 static void
4723 debug_to_load (struct target_ops *self, char *args, int from_tty)
4724 {
4725 debug_target.to_load (&debug_target, args, from_tty);
4726
4727 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4728 }
4729
4730 static void
4731 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4732 {
4733 debug_target.to_post_startup_inferior (&debug_target, ptid);
4734
4735 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4736 ptid_get_pid (ptid));
4737 }
4738
4739 static int
4740 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4741 {
4742 int retval;
4743
4744 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4745
4746 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4747 pid, retval);
4748
4749 return retval;
4750 }
4751
4752 static int
4753 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4754 {
4755 int retval;
4756
4757 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4758
4759 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4760 pid, retval);
4761
4762 return retval;
4763 }
4764
4765 static int
4766 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4767 {
4768 int retval;
4769
4770 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4771
4772 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4773 pid, retval);
4774
4775 return retval;
4776 }
4777
4778 static int
4779 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4780 {
4781 int retval;
4782
4783 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4784
4785 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4786 pid, retval);
4787
4788 return retval;
4789 }
4790
4791 static int
4792 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4793 {
4794 int retval;
4795
4796 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4797
4798 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4799 pid, retval);
4800
4801 return retval;
4802 }
4803
4804 static int
4805 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4806 {
4807 int retval;
4808
4809 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4810
4811 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4812 pid, retval);
4813
4814 return retval;
4815 }
4816
4817 static int
4818 debug_to_has_exited (struct target_ops *self,
4819 int pid, int wait_status, int *exit_status)
4820 {
4821 int has_exited;
4822
4823 has_exited = debug_target.to_has_exited (&debug_target,
4824 pid, wait_status, exit_status);
4825
4826 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4827 pid, wait_status, *exit_status, has_exited);
4828
4829 return has_exited;
4830 }
4831
4832 static int
4833 debug_to_can_run (struct target_ops *self)
4834 {
4835 int retval;
4836
4837 retval = debug_target.to_can_run (&debug_target);
4838
4839 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4840
4841 return retval;
4842 }
4843
4844 static struct gdbarch *
4845 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4846 {
4847 struct gdbarch *retval;
4848
4849 retval = debug_target.to_thread_architecture (ops, ptid);
4850
4851 fprintf_unfiltered (gdb_stdlog,
4852 "target_thread_architecture (%s) = %s [%s]\n",
4853 target_pid_to_str (ptid),
4854 host_address_to_string (retval),
4855 gdbarch_bfd_arch_info (retval)->printable_name);
4856 return retval;
4857 }
4858
4859 static void
4860 debug_to_stop (struct target_ops *self, ptid_t ptid)
4861 {
4862 debug_target.to_stop (&debug_target, ptid);
4863
4864 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4865 target_pid_to_str (ptid));
4866 }
4867
4868 static void
4869 debug_to_rcmd (struct target_ops *self, char *command,
4870 struct ui_file *outbuf)
4871 {
4872 debug_target.to_rcmd (&debug_target, command, outbuf);
4873 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4874 }
4875
4876 static char *
4877 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4878 {
4879 char *exec_file;
4880
4881 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4882
4883 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4884 pid, exec_file);
4885
4886 return exec_file;
4887 }
4888
4889 static void
4890 setup_target_debug (void)
4891 {
4892 memcpy (&debug_target, &current_target, sizeof debug_target);
4893
4894 current_target.to_open = debug_to_open;
4895 current_target.to_post_attach = debug_to_post_attach;
4896 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4897 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4898 current_target.to_files_info = debug_to_files_info;
4899 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4900 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4901 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4902 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4903 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4904 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4905 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4906 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4907 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4908 current_target.to_watchpoint_addr_within_range
4909 = debug_to_watchpoint_addr_within_range;
4910 current_target.to_region_ok_for_hw_watchpoint
4911 = debug_to_region_ok_for_hw_watchpoint;
4912 current_target.to_can_accel_watchpoint_condition
4913 = debug_to_can_accel_watchpoint_condition;
4914 current_target.to_terminal_init = debug_to_terminal_init;
4915 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4916 current_target.to_terminal_ours_for_output
4917 = debug_to_terminal_ours_for_output;
4918 current_target.to_terminal_ours = debug_to_terminal_ours;
4919 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4920 current_target.to_terminal_info = debug_to_terminal_info;
4921 current_target.to_load = debug_to_load;
4922 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4923 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4924 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4925 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4926 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4927 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4928 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4929 current_target.to_has_exited = debug_to_has_exited;
4930 current_target.to_can_run = debug_to_can_run;
4931 current_target.to_stop = debug_to_stop;
4932 current_target.to_rcmd = debug_to_rcmd;
4933 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4934 current_target.to_thread_architecture = debug_to_thread_architecture;
4935 }
4936 \f
4937
4938 static char targ_desc[] =
4939 "Names of targets and files being debugged.\nShows the entire \
4940 stack of targets currently in use (including the exec-file,\n\
4941 core-file, and process, if any), as well as the symbol file name.";
4942
4943 static void
4944 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4945 {
4946 error (_("\"monitor\" command not supported by this target."));
4947 }
4948
4949 static void
4950 do_monitor_command (char *cmd,
4951 int from_tty)
4952 {
4953 target_rcmd (cmd, gdb_stdtarg);
4954 }
4955
4956 /* Print the name of each layers of our target stack. */
4957
4958 static void
4959 maintenance_print_target_stack (char *cmd, int from_tty)
4960 {
4961 struct target_ops *t;
4962
4963 printf_filtered (_("The current target stack is:\n"));
4964
4965 for (t = target_stack; t != NULL; t = t->beneath)
4966 {
4967 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4968 }
4969 }
4970
4971 /* Controls if async mode is permitted. */
4972 int target_async_permitted = 0;
4973
4974 /* The set command writes to this variable. If the inferior is
4975 executing, target_async_permitted is *not* updated. */
4976 static int target_async_permitted_1 = 0;
4977
4978 static void
4979 set_target_async_command (char *args, int from_tty,
4980 struct cmd_list_element *c)
4981 {
4982 if (have_live_inferiors ())
4983 {
4984 target_async_permitted_1 = target_async_permitted;
4985 error (_("Cannot change this setting while the inferior is running."));
4986 }
4987
4988 target_async_permitted = target_async_permitted_1;
4989 }
4990
4991 static void
4992 show_target_async_command (struct ui_file *file, int from_tty,
4993 struct cmd_list_element *c,
4994 const char *value)
4995 {
4996 fprintf_filtered (file,
4997 _("Controlling the inferior in "
4998 "asynchronous mode is %s.\n"), value);
4999 }
5000
5001 /* Temporary copies of permission settings. */
5002
5003 static int may_write_registers_1 = 1;
5004 static int may_write_memory_1 = 1;
5005 static int may_insert_breakpoints_1 = 1;
5006 static int may_insert_tracepoints_1 = 1;
5007 static int may_insert_fast_tracepoints_1 = 1;
5008 static int may_stop_1 = 1;
5009
5010 /* Make the user-set values match the real values again. */
5011
5012 void
5013 update_target_permissions (void)
5014 {
5015 may_write_registers_1 = may_write_registers;
5016 may_write_memory_1 = may_write_memory;
5017 may_insert_breakpoints_1 = may_insert_breakpoints;
5018 may_insert_tracepoints_1 = may_insert_tracepoints;
5019 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
5020 may_stop_1 = may_stop;
5021 }
5022
5023 /* The one function handles (most of) the permission flags in the same
5024 way. */
5025
5026 static void
5027 set_target_permissions (char *args, int from_tty,
5028 struct cmd_list_element *c)
5029 {
5030 if (target_has_execution)
5031 {
5032 update_target_permissions ();
5033 error (_("Cannot change this setting while the inferior is running."));
5034 }
5035
5036 /* Make the real values match the user-changed values. */
5037 may_write_registers = may_write_registers_1;
5038 may_insert_breakpoints = may_insert_breakpoints_1;
5039 may_insert_tracepoints = may_insert_tracepoints_1;
5040 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
5041 may_stop = may_stop_1;
5042 update_observer_mode ();
5043 }
5044
5045 /* Set memory write permission independently of observer mode. */
5046
5047 static void
5048 set_write_memory_permission (char *args, int from_tty,
5049 struct cmd_list_element *c)
5050 {
5051 /* Make the real values match the user-changed values. */
5052 may_write_memory = may_write_memory_1;
5053 update_observer_mode ();
5054 }
5055
5056
5057 void
5058 initialize_targets (void)
5059 {
5060 init_dummy_target ();
5061 push_target (&dummy_target);
5062
5063 add_info ("target", target_info, targ_desc);
5064 add_info ("files", target_info, targ_desc);
5065
5066 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
5067 Set target debugging."), _("\
5068 Show target debugging."), _("\
5069 When non-zero, target debugging is enabled. Higher numbers are more\n\
5070 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
5071 command."),
5072 NULL,
5073 show_targetdebug,
5074 &setdebuglist, &showdebuglist);
5075
5076 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
5077 &trust_readonly, _("\
5078 Set mode for reading from readonly sections."), _("\
5079 Show mode for reading from readonly sections."), _("\
5080 When this mode is on, memory reads from readonly sections (such as .text)\n\
5081 will be read from the object file instead of from the target. This will\n\
5082 result in significant performance improvement for remote targets."),
5083 NULL,
5084 show_trust_readonly,
5085 &setlist, &showlist);
5086
5087 add_com ("monitor", class_obscure, do_monitor_command,
5088 _("Send a command to the remote monitor (remote targets only)."));
5089
5090 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
5091 _("Print the name of each layer of the internal target stack."),
5092 &maintenanceprintlist);
5093
5094 add_setshow_boolean_cmd ("target-async", no_class,
5095 &target_async_permitted_1, _("\
5096 Set whether gdb controls the inferior in asynchronous mode."), _("\
5097 Show whether gdb controls the inferior in asynchronous mode."), _("\
5098 Tells gdb whether to control the inferior in asynchronous mode."),
5099 set_target_async_command,
5100 show_target_async_command,
5101 &setlist,
5102 &showlist);
5103
5104 add_setshow_boolean_cmd ("may-write-registers", class_support,
5105 &may_write_registers_1, _("\
5106 Set permission to write into registers."), _("\
5107 Show permission to write into registers."), _("\
5108 When this permission is on, GDB may write into the target's registers.\n\
5109 Otherwise, any sort of write attempt will result in an error."),
5110 set_target_permissions, NULL,
5111 &setlist, &showlist);
5112
5113 add_setshow_boolean_cmd ("may-write-memory", class_support,
5114 &may_write_memory_1, _("\
5115 Set permission to write into target memory."), _("\
5116 Show permission to write into target memory."), _("\
5117 When this permission is on, GDB may write into the target's memory.\n\
5118 Otherwise, any sort of write attempt will result in an error."),
5119 set_write_memory_permission, NULL,
5120 &setlist, &showlist);
5121
5122 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
5123 &may_insert_breakpoints_1, _("\
5124 Set permission to insert breakpoints in the target."), _("\
5125 Show permission to insert breakpoints in the target."), _("\
5126 When this permission is on, GDB may insert breakpoints in the program.\n\
5127 Otherwise, any sort of insertion attempt will result in an error."),
5128 set_target_permissions, NULL,
5129 &setlist, &showlist);
5130
5131 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
5132 &may_insert_tracepoints_1, _("\
5133 Set permission to insert tracepoints in the target."), _("\
5134 Show permission to insert tracepoints in the target."), _("\
5135 When this permission is on, GDB may insert tracepoints in the program.\n\
5136 Otherwise, any sort of insertion attempt will result in an error."),
5137 set_target_permissions, NULL,
5138 &setlist, &showlist);
5139
5140 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
5141 &may_insert_fast_tracepoints_1, _("\
5142 Set permission to insert fast tracepoints in the target."), _("\
5143 Show permission to insert fast tracepoints in the target."), _("\
5144 When this permission is on, GDB may insert fast tracepoints.\n\
5145 Otherwise, any sort of insertion attempt will result in an error."),
5146 set_target_permissions, NULL,
5147 &setlist, &showlist);
5148
5149 add_setshow_boolean_cmd ("may-interrupt", class_support,
5150 &may_stop_1, _("\
5151 Set permission to interrupt or signal the target."), _("\
5152 Show permission to interrupt or signal the target."), _("\
5153 When this permission is on, GDB may interrupt/stop the target's execution.\n\
5154 Otherwise, any attempt to interrupt or stop will be ignored."),
5155 set_target_permissions, NULL,
5156 &setlist, &showlist);
5157 }