]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
Replace some $ARCH_{get,set}_pc with linux_{get,set}_pc_32bit
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state = terminal_is_ours;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 int
470 target_terminal_is_ours (void)
471 {
472 return (terminal_state == terminal_is_ours);
473 }
474
475 /* See target.h. */
476
477 void
478 target_terminal_inferior (void)
479 {
480 /* A background resume (``run&'') should leave GDB in control of the
481 terminal. Use target_can_async_p, not target_is_async_p, since at
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
485 return;
486
487 if (terminal_state == terminal_is_inferior)
488 return;
489
490 /* If GDB is resuming the inferior in the foreground, install
491 inferior's terminal modes. */
492 (*current_target.to_terminal_inferior) (&current_target);
493 terminal_state = terminal_is_inferior;
494 }
495
496 /* See target.h. */
497
498 void
499 target_terminal_ours (void)
500 {
501 if (terminal_state == terminal_is_ours)
502 return;
503
504 (*current_target.to_terminal_ours) (&current_target);
505 terminal_state = terminal_is_ours;
506 }
507
508 /* See target.h. */
509
510 void
511 target_terminal_ours_for_output (void)
512 {
513 if (terminal_state != terminal_is_inferior)
514 return;
515 (*current_target.to_terminal_ours_for_output) (&current_target);
516 terminal_state = terminal_is_ours_for_output;
517 }
518
519 /* See target.h. */
520
521 int
522 target_supports_terminal_ours (void)
523 {
524 struct target_ops *t;
525
526 for (t = current_target.beneath; t != NULL; t = t->beneath)
527 {
528 if (t->to_terminal_ours != delegate_terminal_ours
529 && t->to_terminal_ours != tdefault_terminal_ours)
530 return 1;
531 }
532
533 return 0;
534 }
535
536 /* Restore the terminal to its previous state (helper for
537 make_cleanup_restore_target_terminal). */
538
539 static void
540 cleanup_restore_target_terminal (void *arg)
541 {
542 enum terminal_state *previous_state = (enum terminal_state *) arg;
543
544 switch (*previous_state)
545 {
546 case terminal_is_ours:
547 target_terminal_ours ();
548 break;
549 case terminal_is_ours_for_output:
550 target_terminal_ours_for_output ();
551 break;
552 case terminal_is_inferior:
553 target_terminal_inferior ();
554 break;
555 }
556 }
557
558 /* See target.h. */
559
560 struct cleanup *
561 make_cleanup_restore_target_terminal (void)
562 {
563 enum terminal_state *ts = XNEW (enum terminal_state);
564
565 *ts = terminal_state;
566
567 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
568 }
569
570 static void
571 tcomplain (void)
572 {
573 error (_("You can't do that when your target is `%s'"),
574 current_target.to_shortname);
575 }
576
577 void
578 noprocess (void)
579 {
580 error (_("You can't do that without a process to debug."));
581 }
582
583 static void
584 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
585 {
586 printf_unfiltered (_("No saved terminal information.\n"));
587 }
588
589 /* A default implementation for the to_get_ada_task_ptid target method.
590
591 This function builds the PTID by using both LWP and TID as part of
592 the PTID lwp and tid elements. The pid used is the pid of the
593 inferior_ptid. */
594
595 static ptid_t
596 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
597 {
598 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
599 }
600
601 static enum exec_direction_kind
602 default_execution_direction (struct target_ops *self)
603 {
604 if (!target_can_execute_reverse)
605 return EXEC_FORWARD;
606 else if (!target_can_async_p ())
607 return EXEC_FORWARD;
608 else
609 gdb_assert_not_reached ("\
610 to_execution_direction must be implemented for reverse async");
611 }
612
613 /* Go through the target stack from top to bottom, copying over zero
614 entries in current_target, then filling in still empty entries. In
615 effect, we are doing class inheritance through the pushed target
616 vectors.
617
618 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
619 is currently implemented, is that it discards any knowledge of
620 which target an inherited method originally belonged to.
621 Consequently, new new target methods should instead explicitly and
622 locally search the target stack for the target that can handle the
623 request. */
624
625 static void
626 update_current_target (void)
627 {
628 struct target_ops *t;
629
630 /* First, reset current's contents. */
631 memset (&current_target, 0, sizeof (current_target));
632
633 /* Install the delegators. */
634 install_delegators (&current_target);
635
636 current_target.to_stratum = target_stack->to_stratum;
637
638 #define INHERIT(FIELD, TARGET) \
639 if (!current_target.FIELD) \
640 current_target.FIELD = (TARGET)->FIELD
641
642 /* Do not add any new INHERITs here. Instead, use the delegation
643 mechanism provided by make-target-delegates. */
644 for (t = target_stack; t; t = t->beneath)
645 {
646 INHERIT (to_shortname, t);
647 INHERIT (to_longname, t);
648 INHERIT (to_attach_no_wait, t);
649 INHERIT (to_have_steppable_watchpoint, t);
650 INHERIT (to_have_continuable_watchpoint, t);
651 INHERIT (to_has_thread_control, t);
652 }
653 #undef INHERIT
654
655 /* Finally, position the target-stack beneath the squashed
656 "current_target". That way code looking for a non-inherited
657 target method can quickly and simply find it. */
658 current_target.beneath = target_stack;
659
660 if (targetdebug)
661 setup_target_debug ();
662 }
663
664 /* Push a new target type into the stack of the existing target accessors,
665 possibly superseding some of the existing accessors.
666
667 Rather than allow an empty stack, we always have the dummy target at
668 the bottom stratum, so we can call the function vectors without
669 checking them. */
670
671 void
672 push_target (struct target_ops *t)
673 {
674 struct target_ops **cur;
675
676 /* Check magic number. If wrong, it probably means someone changed
677 the struct definition, but not all the places that initialize one. */
678 if (t->to_magic != OPS_MAGIC)
679 {
680 fprintf_unfiltered (gdb_stderr,
681 "Magic number of %s target struct wrong\n",
682 t->to_shortname);
683 internal_error (__FILE__, __LINE__,
684 _("failed internal consistency check"));
685 }
686
687 /* Find the proper stratum to install this target in. */
688 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
689 {
690 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
691 break;
692 }
693
694 /* If there's already targets at this stratum, remove them. */
695 /* FIXME: cagney/2003-10-15: I think this should be popping all
696 targets to CUR, and not just those at this stratum level. */
697 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
698 {
699 /* There's already something at this stratum level. Close it,
700 and un-hook it from the stack. */
701 struct target_ops *tmp = (*cur);
702
703 (*cur) = (*cur)->beneath;
704 tmp->beneath = NULL;
705 target_close (tmp);
706 }
707
708 /* We have removed all targets in our stratum, now add the new one. */
709 t->beneath = (*cur);
710 (*cur) = t;
711
712 update_current_target ();
713 }
714
715 /* Remove a target_ops vector from the stack, wherever it may be.
716 Return how many times it was removed (0 or 1). */
717
718 int
719 unpush_target (struct target_ops *t)
720 {
721 struct target_ops **cur;
722 struct target_ops *tmp;
723
724 if (t->to_stratum == dummy_stratum)
725 internal_error (__FILE__, __LINE__,
726 _("Attempt to unpush the dummy target"));
727
728 /* Look for the specified target. Note that we assume that a target
729 can only occur once in the target stack. */
730
731 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
732 {
733 if ((*cur) == t)
734 break;
735 }
736
737 /* If we don't find target_ops, quit. Only open targets should be
738 closed. */
739 if ((*cur) == NULL)
740 return 0;
741
742 /* Unchain the target. */
743 tmp = (*cur);
744 (*cur) = (*cur)->beneath;
745 tmp->beneath = NULL;
746
747 update_current_target ();
748
749 /* Finally close the target. Note we do this after unchaining, so
750 any target method calls from within the target_close
751 implementation don't end up in T anymore. */
752 target_close (t);
753
754 return 1;
755 }
756
757 /* Unpush TARGET and assert that it worked. */
758
759 static void
760 unpush_target_and_assert (struct target_ops *target)
761 {
762 if (!unpush_target (target))
763 {
764 fprintf_unfiltered (gdb_stderr,
765 "pop_all_targets couldn't find target %s\n",
766 target->to_shortname);
767 internal_error (__FILE__, __LINE__,
768 _("failed internal consistency check"));
769 }
770 }
771
772 void
773 pop_all_targets_above (enum strata above_stratum)
774 {
775 while ((int) (current_target.to_stratum) > (int) above_stratum)
776 unpush_target_and_assert (target_stack);
777 }
778
779 /* See target.h. */
780
781 void
782 pop_all_targets_at_and_above (enum strata stratum)
783 {
784 while ((int) (current_target.to_stratum) >= (int) stratum)
785 unpush_target_and_assert (target_stack);
786 }
787
788 void
789 pop_all_targets (void)
790 {
791 pop_all_targets_above (dummy_stratum);
792 }
793
794 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
795
796 int
797 target_is_pushed (struct target_ops *t)
798 {
799 struct target_ops *cur;
800
801 /* Check magic number. If wrong, it probably means someone changed
802 the struct definition, but not all the places that initialize one. */
803 if (t->to_magic != OPS_MAGIC)
804 {
805 fprintf_unfiltered (gdb_stderr,
806 "Magic number of %s target struct wrong\n",
807 t->to_shortname);
808 internal_error (__FILE__, __LINE__,
809 _("failed internal consistency check"));
810 }
811
812 for (cur = target_stack; cur != NULL; cur = cur->beneath)
813 if (cur == t)
814 return 1;
815
816 return 0;
817 }
818
819 /* Default implementation of to_get_thread_local_address. */
820
821 static void
822 generic_tls_error (void)
823 {
824 throw_error (TLS_GENERIC_ERROR,
825 _("Cannot find thread-local variables on this target"));
826 }
827
828 /* Using the objfile specified in OBJFILE, find the address for the
829 current thread's thread-local storage with offset OFFSET. */
830 CORE_ADDR
831 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
832 {
833 volatile CORE_ADDR addr = 0;
834 struct target_ops *target = &current_target;
835
836 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
837 {
838 ptid_t ptid = inferior_ptid;
839
840 TRY
841 {
842 CORE_ADDR lm_addr;
843
844 /* Fetch the load module address for this objfile. */
845 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
846 objfile);
847
848 addr = target->to_get_thread_local_address (target, ptid,
849 lm_addr, offset);
850 }
851 /* If an error occurred, print TLS related messages here. Otherwise,
852 throw the error to some higher catcher. */
853 CATCH (ex, RETURN_MASK_ALL)
854 {
855 int objfile_is_library = (objfile->flags & OBJF_SHARED);
856
857 switch (ex.error)
858 {
859 case TLS_NO_LIBRARY_SUPPORT_ERROR:
860 error (_("Cannot find thread-local variables "
861 "in this thread library."));
862 break;
863 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find shared library `%s' in dynamic"
866 " linker's load module list"), objfile_name (objfile));
867 else
868 error (_("Cannot find executable file `%s' in dynamic"
869 " linker's load module list"), objfile_name (objfile));
870 break;
871 case TLS_NOT_ALLOCATED_YET_ERROR:
872 if (objfile_is_library)
873 error (_("The inferior has not yet allocated storage for"
874 " thread-local variables in\n"
875 "the shared library `%s'\n"
876 "for %s"),
877 objfile_name (objfile), target_pid_to_str (ptid));
878 else
879 error (_("The inferior has not yet allocated storage for"
880 " thread-local variables in\n"
881 "the executable `%s'\n"
882 "for %s"),
883 objfile_name (objfile), target_pid_to_str (ptid));
884 break;
885 case TLS_GENERIC_ERROR:
886 if (objfile_is_library)
887 error (_("Cannot find thread-local storage for %s, "
888 "shared library %s:\n%s"),
889 target_pid_to_str (ptid),
890 objfile_name (objfile), ex.message);
891 else
892 error (_("Cannot find thread-local storage for %s, "
893 "executable file %s:\n%s"),
894 target_pid_to_str (ptid),
895 objfile_name (objfile), ex.message);
896 break;
897 default:
898 throw_exception (ex);
899 break;
900 }
901 }
902 END_CATCH
903 }
904 /* It wouldn't be wrong here to try a gdbarch method, too; finding
905 TLS is an ABI-specific thing. But we don't do that yet. */
906 else
907 error (_("Cannot find thread-local variables on this target"));
908
909 return addr;
910 }
911
912 const char *
913 target_xfer_status_to_string (enum target_xfer_status status)
914 {
915 #define CASE(X) case X: return #X
916 switch (status)
917 {
918 CASE(TARGET_XFER_E_IO);
919 CASE(TARGET_XFER_UNAVAILABLE);
920 default:
921 return "<unknown>";
922 }
923 #undef CASE
924 };
925
926
927 #undef MIN
928 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
929
930 /* target_read_string -- read a null terminated string, up to LEN bytes,
931 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
932 Set *STRING to a pointer to malloc'd memory containing the data; the caller
933 is responsible for freeing it. Return the number of bytes successfully
934 read. */
935
936 int
937 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
938 {
939 int tlen, offset, i;
940 gdb_byte buf[4];
941 int errcode = 0;
942 char *buffer;
943 int buffer_allocated;
944 char *bufptr;
945 unsigned int nbytes_read = 0;
946
947 gdb_assert (string);
948
949 /* Small for testing. */
950 buffer_allocated = 4;
951 buffer = (char *) xmalloc (buffer_allocated);
952 bufptr = buffer;
953
954 while (len > 0)
955 {
956 tlen = MIN (len, 4 - (memaddr & 3));
957 offset = memaddr & 3;
958
959 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
960 if (errcode != 0)
961 {
962 /* The transfer request might have crossed the boundary to an
963 unallocated region of memory. Retry the transfer, requesting
964 a single byte. */
965 tlen = 1;
966 offset = 0;
967 errcode = target_read_memory (memaddr, buf, 1);
968 if (errcode != 0)
969 goto done;
970 }
971
972 if (bufptr - buffer + tlen > buffer_allocated)
973 {
974 unsigned int bytes;
975
976 bytes = bufptr - buffer;
977 buffer_allocated *= 2;
978 buffer = (char *) xrealloc (buffer, buffer_allocated);
979 bufptr = buffer + bytes;
980 }
981
982 for (i = 0; i < tlen; i++)
983 {
984 *bufptr++ = buf[i + offset];
985 if (buf[i + offset] == '\000')
986 {
987 nbytes_read += i + 1;
988 goto done;
989 }
990 }
991
992 memaddr += tlen;
993 len -= tlen;
994 nbytes_read += tlen;
995 }
996 done:
997 *string = buffer;
998 if (errnop != NULL)
999 *errnop = errcode;
1000 return nbytes_read;
1001 }
1002
1003 struct target_section_table *
1004 target_get_section_table (struct target_ops *target)
1005 {
1006 return (*target->to_get_section_table) (target);
1007 }
1008
1009 /* Find a section containing ADDR. */
1010
1011 struct target_section *
1012 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1013 {
1014 struct target_section_table *table = target_get_section_table (target);
1015 struct target_section *secp;
1016
1017 if (table == NULL)
1018 return NULL;
1019
1020 for (secp = table->sections; secp < table->sections_end; secp++)
1021 {
1022 if (addr >= secp->addr && addr < secp->endaddr)
1023 return secp;
1024 }
1025 return NULL;
1026 }
1027
1028
1029 /* Helper for the memory xfer routines. Checks the attributes of the
1030 memory region of MEMADDR against the read or write being attempted.
1031 If the access is permitted returns true, otherwise returns false.
1032 REGION_P is an optional output parameter. If not-NULL, it is
1033 filled with a pointer to the memory region of MEMADDR. REG_LEN
1034 returns LEN trimmed to the end of the region. This is how much the
1035 caller can continue requesting, if the access is permitted. A
1036 single xfer request must not straddle memory region boundaries. */
1037
1038 static int
1039 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1040 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1041 struct mem_region **region_p)
1042 {
1043 struct mem_region *region;
1044
1045 region = lookup_mem_region (memaddr);
1046
1047 if (region_p != NULL)
1048 *region_p = region;
1049
1050 switch (region->attrib.mode)
1051 {
1052 case MEM_RO:
1053 if (writebuf != NULL)
1054 return 0;
1055 break;
1056
1057 case MEM_WO:
1058 if (readbuf != NULL)
1059 return 0;
1060 break;
1061
1062 case MEM_FLASH:
1063 /* We only support writing to flash during "load" for now. */
1064 if (writebuf != NULL)
1065 error (_("Writing to flash memory forbidden in this context"));
1066 break;
1067
1068 case MEM_NONE:
1069 return 0;
1070 }
1071
1072 /* region->hi == 0 means there's no upper bound. */
1073 if (memaddr + len < region->hi || region->hi == 0)
1074 *reg_len = len;
1075 else
1076 *reg_len = region->hi - memaddr;
1077
1078 return 1;
1079 }
1080
1081 /* Read memory from more than one valid target. A core file, for
1082 instance, could have some of memory but delegate other bits to
1083 the target below it. So, we must manually try all targets. */
1084
1085 enum target_xfer_status
1086 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1087 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1088 ULONGEST *xfered_len)
1089 {
1090 enum target_xfer_status res;
1091
1092 do
1093 {
1094 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1095 readbuf, writebuf, memaddr, len,
1096 xfered_len);
1097 if (res == TARGET_XFER_OK)
1098 break;
1099
1100 /* Stop if the target reports that the memory is not available. */
1101 if (res == TARGET_XFER_UNAVAILABLE)
1102 break;
1103
1104 /* We want to continue past core files to executables, but not
1105 past a running target's memory. */
1106 if (ops->to_has_all_memory (ops))
1107 break;
1108
1109 ops = ops->beneath;
1110 }
1111 while (ops != NULL);
1112
1113 /* The cache works at the raw memory level. Make sure the cache
1114 gets updated with raw contents no matter what kind of memory
1115 object was originally being written. Note we do write-through
1116 first, so that if it fails, we don't write to the cache contents
1117 that never made it to the target. */
1118 if (writebuf != NULL
1119 && !ptid_equal (inferior_ptid, null_ptid)
1120 && target_dcache_init_p ()
1121 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1122 {
1123 DCACHE *dcache = target_dcache_get ();
1124
1125 /* Note that writing to an area of memory which wasn't present
1126 in the cache doesn't cause it to be loaded in. */
1127 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1128 }
1129
1130 return res;
1131 }
1132
1133 /* Perform a partial memory transfer.
1134 For docs see target.h, to_xfer_partial. */
1135
1136 static enum target_xfer_status
1137 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1138 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1139 ULONGEST len, ULONGEST *xfered_len)
1140 {
1141 enum target_xfer_status res;
1142 ULONGEST reg_len;
1143 struct mem_region *region;
1144 struct inferior *inf;
1145
1146 /* For accesses to unmapped overlay sections, read directly from
1147 files. Must do this first, as MEMADDR may need adjustment. */
1148 if (readbuf != NULL && overlay_debugging)
1149 {
1150 struct obj_section *section = find_pc_overlay (memaddr);
1151
1152 if (pc_in_unmapped_range (memaddr, section))
1153 {
1154 struct target_section_table *table
1155 = target_get_section_table (ops);
1156 const char *section_name = section->the_bfd_section->name;
1157
1158 memaddr = overlay_mapped_address (memaddr, section);
1159 return section_table_xfer_memory_partial (readbuf, writebuf,
1160 memaddr, len, xfered_len,
1161 table->sections,
1162 table->sections_end,
1163 section_name);
1164 }
1165 }
1166
1167 /* Try the executable files, if "trust-readonly-sections" is set. */
1168 if (readbuf != NULL && trust_readonly)
1169 {
1170 struct target_section *secp;
1171 struct target_section_table *table;
1172
1173 secp = target_section_by_addr (ops, memaddr);
1174 if (secp != NULL
1175 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1176 secp->the_bfd_section)
1177 & SEC_READONLY))
1178 {
1179 table = target_get_section_table (ops);
1180 return section_table_xfer_memory_partial (readbuf, writebuf,
1181 memaddr, len, xfered_len,
1182 table->sections,
1183 table->sections_end,
1184 NULL);
1185 }
1186 }
1187
1188 /* Try GDB's internal data cache. */
1189
1190 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1191 &region))
1192 return TARGET_XFER_E_IO;
1193
1194 if (!ptid_equal (inferior_ptid, null_ptid))
1195 inf = find_inferior_ptid (inferior_ptid);
1196 else
1197 inf = NULL;
1198
1199 if (inf != NULL
1200 && readbuf != NULL
1201 /* The dcache reads whole cache lines; that doesn't play well
1202 with reading from a trace buffer, because reading outside of
1203 the collected memory range fails. */
1204 && get_traceframe_number () == -1
1205 && (region->attrib.cache
1206 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1207 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1208 {
1209 DCACHE *dcache = target_dcache_get_or_init ();
1210
1211 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1212 reg_len, xfered_len);
1213 }
1214
1215 /* If none of those methods found the memory we wanted, fall back
1216 to a target partial transfer. Normally a single call to
1217 to_xfer_partial is enough; if it doesn't recognize an object
1218 it will call the to_xfer_partial of the next target down.
1219 But for memory this won't do. Memory is the only target
1220 object which can be read from more than one valid target.
1221 A core file, for instance, could have some of memory but
1222 delegate other bits to the target below it. So, we must
1223 manually try all targets. */
1224
1225 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1226 xfered_len);
1227
1228 /* If we still haven't got anything, return the last error. We
1229 give up. */
1230 return res;
1231 }
1232
1233 /* Perform a partial memory transfer. For docs see target.h,
1234 to_xfer_partial. */
1235
1236 static enum target_xfer_status
1237 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1238 gdb_byte *readbuf, const gdb_byte *writebuf,
1239 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1240 {
1241 enum target_xfer_status res;
1242
1243 /* Zero length requests are ok and require no work. */
1244 if (len == 0)
1245 return TARGET_XFER_EOF;
1246
1247 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1248 breakpoint insns, thus hiding out from higher layers whether
1249 there are software breakpoints inserted in the code stream. */
1250 if (readbuf != NULL)
1251 {
1252 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1253 xfered_len);
1254
1255 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1256 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1257 }
1258 else
1259 {
1260 gdb_byte *buf;
1261 struct cleanup *old_chain;
1262
1263 /* A large write request is likely to be partially satisfied
1264 by memory_xfer_partial_1. We will continually malloc
1265 and free a copy of the entire write request for breakpoint
1266 shadow handling even though we only end up writing a small
1267 subset of it. Cap writes to 4KB to mitigate this. */
1268 len = min (4096, len);
1269
1270 buf = (gdb_byte *) xmalloc (len);
1271 old_chain = make_cleanup (xfree, buf);
1272 memcpy (buf, writebuf, len);
1273
1274 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1275 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1276 xfered_len);
1277
1278 do_cleanups (old_chain);
1279 }
1280
1281 return res;
1282 }
1283
1284 static void
1285 restore_show_memory_breakpoints (void *arg)
1286 {
1287 show_memory_breakpoints = (uintptr_t) arg;
1288 }
1289
1290 struct cleanup *
1291 make_show_memory_breakpoints_cleanup (int show)
1292 {
1293 int current = show_memory_breakpoints;
1294
1295 show_memory_breakpoints = show;
1296 return make_cleanup (restore_show_memory_breakpoints,
1297 (void *) (uintptr_t) current);
1298 }
1299
1300 /* For docs see target.h, to_xfer_partial. */
1301
1302 enum target_xfer_status
1303 target_xfer_partial (struct target_ops *ops,
1304 enum target_object object, const char *annex,
1305 gdb_byte *readbuf, const gdb_byte *writebuf,
1306 ULONGEST offset, ULONGEST len,
1307 ULONGEST *xfered_len)
1308 {
1309 enum target_xfer_status retval;
1310
1311 gdb_assert (ops->to_xfer_partial != NULL);
1312
1313 /* Transfer is done when LEN is zero. */
1314 if (len == 0)
1315 return TARGET_XFER_EOF;
1316
1317 if (writebuf && !may_write_memory)
1318 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1319 core_addr_to_string_nz (offset), plongest (len));
1320
1321 *xfered_len = 0;
1322
1323 /* If this is a memory transfer, let the memory-specific code
1324 have a look at it instead. Memory transfers are more
1325 complicated. */
1326 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1327 || object == TARGET_OBJECT_CODE_MEMORY)
1328 retval = memory_xfer_partial (ops, object, readbuf,
1329 writebuf, offset, len, xfered_len);
1330 else if (object == TARGET_OBJECT_RAW_MEMORY)
1331 {
1332 /* Skip/avoid accessing the target if the memory region
1333 attributes block the access. Check this here instead of in
1334 raw_memory_xfer_partial as otherwise we'd end up checking
1335 this twice in the case of the memory_xfer_partial path is
1336 taken; once before checking the dcache, and another in the
1337 tail call to raw_memory_xfer_partial. */
1338 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1339 NULL))
1340 return TARGET_XFER_E_IO;
1341
1342 /* Request the normal memory object from other layers. */
1343 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1344 xfered_len);
1345 }
1346 else
1347 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1348 writebuf, offset, len, xfered_len);
1349
1350 if (targetdebug)
1351 {
1352 const unsigned char *myaddr = NULL;
1353
1354 fprintf_unfiltered (gdb_stdlog,
1355 "%s:target_xfer_partial "
1356 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1357 ops->to_shortname,
1358 (int) object,
1359 (annex ? annex : "(null)"),
1360 host_address_to_string (readbuf),
1361 host_address_to_string (writebuf),
1362 core_addr_to_string_nz (offset),
1363 pulongest (len), retval,
1364 pulongest (*xfered_len));
1365
1366 if (readbuf)
1367 myaddr = readbuf;
1368 if (writebuf)
1369 myaddr = writebuf;
1370 if (retval == TARGET_XFER_OK && myaddr != NULL)
1371 {
1372 int i;
1373
1374 fputs_unfiltered (", bytes =", gdb_stdlog);
1375 for (i = 0; i < *xfered_len; i++)
1376 {
1377 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1378 {
1379 if (targetdebug < 2 && i > 0)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, " ...");
1382 break;
1383 }
1384 fprintf_unfiltered (gdb_stdlog, "\n");
1385 }
1386
1387 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1388 }
1389 }
1390
1391 fputc_unfiltered ('\n', gdb_stdlog);
1392 }
1393
1394 /* Check implementations of to_xfer_partial update *XFERED_LEN
1395 properly. Do assertion after printing debug messages, so that we
1396 can find more clues on assertion failure from debugging messages. */
1397 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1398 gdb_assert (*xfered_len > 0);
1399
1400 return retval;
1401 }
1402
1403 /* Read LEN bytes of target memory at address MEMADDR, placing the
1404 results in GDB's memory at MYADDR. Returns either 0 for success or
1405 -1 if any error occurs.
1406
1407 If an error occurs, no guarantee is made about the contents of the data at
1408 MYADDR. In particular, the caller should not depend upon partial reads
1409 filling the buffer with good data. There is no way for the caller to know
1410 how much good data might have been transfered anyway. Callers that can
1411 deal with partial reads should call target_read (which will retry until
1412 it makes no progress, and then return how much was transferred). */
1413
1414 int
1415 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1416 {
1417 /* Dispatch to the topmost target, not the flattened current_target.
1418 Memory accesses check target->to_has_(all_)memory, and the
1419 flattened target doesn't inherit those. */
1420 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1421 myaddr, memaddr, len) == len)
1422 return 0;
1423 else
1424 return -1;
1425 }
1426
1427 /* See target/target.h. */
1428
1429 int
1430 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1431 {
1432 gdb_byte buf[4];
1433 int r;
1434
1435 r = target_read_memory (memaddr, buf, sizeof buf);
1436 if (r != 0)
1437 return r;
1438 *result = extract_unsigned_integer (buf, sizeof buf,
1439 gdbarch_byte_order (target_gdbarch ()));
1440 return 0;
1441 }
1442
1443 /* Like target_read_memory, but specify explicitly that this is a read
1444 from the target's raw memory. That is, this read bypasses the
1445 dcache, breakpoint shadowing, etc. */
1446
1447 int
1448 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1449 {
1450 /* See comment in target_read_memory about why the request starts at
1451 current_target.beneath. */
1452 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1453 myaddr, memaddr, len) == len)
1454 return 0;
1455 else
1456 return -1;
1457 }
1458
1459 /* Like target_read_memory, but specify explicitly that this is a read from
1460 the target's stack. This may trigger different cache behavior. */
1461
1462 int
1463 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1464 {
1465 /* See comment in target_read_memory about why the request starts at
1466 current_target.beneath. */
1467 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1468 myaddr, memaddr, len) == len)
1469 return 0;
1470 else
1471 return -1;
1472 }
1473
1474 /* Like target_read_memory, but specify explicitly that this is a read from
1475 the target's code. This may trigger different cache behavior. */
1476
1477 int
1478 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1479 {
1480 /* See comment in target_read_memory about why the request starts at
1481 current_target.beneath. */
1482 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1483 myaddr, memaddr, len) == len)
1484 return 0;
1485 else
1486 return -1;
1487 }
1488
1489 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1490 Returns either 0 for success or -1 if any error occurs. If an
1491 error occurs, no guarantee is made about how much data got written.
1492 Callers that can deal with partial writes should call
1493 target_write. */
1494
1495 int
1496 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1497 {
1498 /* See comment in target_read_memory about why the request starts at
1499 current_target.beneath. */
1500 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1501 myaddr, memaddr, len) == len)
1502 return 0;
1503 else
1504 return -1;
1505 }
1506
1507 /* Write LEN bytes from MYADDR to target raw memory at address
1508 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1509 If an error occurs, no guarantee is made about how much data got
1510 written. Callers that can deal with partial writes should call
1511 target_write. */
1512
1513 int
1514 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1515 {
1516 /* See comment in target_read_memory about why the request starts at
1517 current_target.beneath. */
1518 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1519 myaddr, memaddr, len) == len)
1520 return 0;
1521 else
1522 return -1;
1523 }
1524
1525 /* Fetch the target's memory map. */
1526
1527 VEC(mem_region_s) *
1528 target_memory_map (void)
1529 {
1530 VEC(mem_region_s) *result;
1531 struct mem_region *last_one, *this_one;
1532 int ix;
1533 struct target_ops *t;
1534
1535 result = current_target.to_memory_map (&current_target);
1536 if (result == NULL)
1537 return NULL;
1538
1539 qsort (VEC_address (mem_region_s, result),
1540 VEC_length (mem_region_s, result),
1541 sizeof (struct mem_region), mem_region_cmp);
1542
1543 /* Check that regions do not overlap. Simultaneously assign
1544 a numbering for the "mem" commands to use to refer to
1545 each region. */
1546 last_one = NULL;
1547 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1548 {
1549 this_one->number = ix;
1550
1551 if (last_one && last_one->hi > this_one->lo)
1552 {
1553 warning (_("Overlapping regions in memory map: ignoring"));
1554 VEC_free (mem_region_s, result);
1555 return NULL;
1556 }
1557 last_one = this_one;
1558 }
1559
1560 return result;
1561 }
1562
1563 void
1564 target_flash_erase (ULONGEST address, LONGEST length)
1565 {
1566 current_target.to_flash_erase (&current_target, address, length);
1567 }
1568
1569 void
1570 target_flash_done (void)
1571 {
1572 current_target.to_flash_done (&current_target);
1573 }
1574
1575 static void
1576 show_trust_readonly (struct ui_file *file, int from_tty,
1577 struct cmd_list_element *c, const char *value)
1578 {
1579 fprintf_filtered (file,
1580 _("Mode for reading from readonly sections is %s.\n"),
1581 value);
1582 }
1583
1584 /* Target vector read/write partial wrapper functions. */
1585
1586 static enum target_xfer_status
1587 target_read_partial (struct target_ops *ops,
1588 enum target_object object,
1589 const char *annex, gdb_byte *buf,
1590 ULONGEST offset, ULONGEST len,
1591 ULONGEST *xfered_len)
1592 {
1593 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1594 xfered_len);
1595 }
1596
1597 static enum target_xfer_status
1598 target_write_partial (struct target_ops *ops,
1599 enum target_object object,
1600 const char *annex, const gdb_byte *buf,
1601 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1602 {
1603 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1604 xfered_len);
1605 }
1606
1607 /* Wrappers to perform the full transfer. */
1608
1609 /* For docs on target_read see target.h. */
1610
1611 LONGEST
1612 target_read (struct target_ops *ops,
1613 enum target_object object,
1614 const char *annex, gdb_byte *buf,
1615 ULONGEST offset, LONGEST len)
1616 {
1617 LONGEST xfered_total = 0;
1618 int unit_size = 1;
1619
1620 /* If we are reading from a memory object, find the length of an addressable
1621 unit for that architecture. */
1622 if (object == TARGET_OBJECT_MEMORY
1623 || object == TARGET_OBJECT_STACK_MEMORY
1624 || object == TARGET_OBJECT_CODE_MEMORY
1625 || object == TARGET_OBJECT_RAW_MEMORY)
1626 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1627
1628 while (xfered_total < len)
1629 {
1630 ULONGEST xfered_partial;
1631 enum target_xfer_status status;
1632
1633 status = target_read_partial (ops, object, annex,
1634 buf + xfered_total * unit_size,
1635 offset + xfered_total, len - xfered_total,
1636 &xfered_partial);
1637
1638 /* Call an observer, notifying them of the xfer progress? */
1639 if (status == TARGET_XFER_EOF)
1640 return xfered_total;
1641 else if (status == TARGET_XFER_OK)
1642 {
1643 xfered_total += xfered_partial;
1644 QUIT;
1645 }
1646 else
1647 return TARGET_XFER_E_IO;
1648
1649 }
1650 return len;
1651 }
1652
1653 /* Assuming that the entire [begin, end) range of memory cannot be
1654 read, try to read whatever subrange is possible to read.
1655
1656 The function returns, in RESULT, either zero or one memory block.
1657 If there's a readable subrange at the beginning, it is completely
1658 read and returned. Any further readable subrange will not be read.
1659 Otherwise, if there's a readable subrange at the end, it will be
1660 completely read and returned. Any readable subranges before it
1661 (obviously, not starting at the beginning), will be ignored. In
1662 other cases -- either no readable subrange, or readable subrange(s)
1663 that is neither at the beginning, or end, nothing is returned.
1664
1665 The purpose of this function is to handle a read across a boundary
1666 of accessible memory in a case when memory map is not available.
1667 The above restrictions are fine for this case, but will give
1668 incorrect results if the memory is 'patchy'. However, supporting
1669 'patchy' memory would require trying to read every single byte,
1670 and it seems unacceptable solution. Explicit memory map is
1671 recommended for this case -- and target_read_memory_robust will
1672 take care of reading multiple ranges then. */
1673
1674 static void
1675 read_whatever_is_readable (struct target_ops *ops,
1676 const ULONGEST begin, const ULONGEST end,
1677 int unit_size,
1678 VEC(memory_read_result_s) **result)
1679 {
1680 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1681 ULONGEST current_begin = begin;
1682 ULONGEST current_end = end;
1683 int forward;
1684 memory_read_result_s r;
1685 ULONGEST xfered_len;
1686
1687 /* If we previously failed to read 1 byte, nothing can be done here. */
1688 if (end - begin <= 1)
1689 {
1690 xfree (buf);
1691 return;
1692 }
1693
1694 /* Check that either first or the last byte is readable, and give up
1695 if not. This heuristic is meant to permit reading accessible memory
1696 at the boundary of accessible region. */
1697 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1698 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1699 {
1700 forward = 1;
1701 ++current_begin;
1702 }
1703 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1704 buf + (end - begin) - 1, end - 1, 1,
1705 &xfered_len) == TARGET_XFER_OK)
1706 {
1707 forward = 0;
1708 --current_end;
1709 }
1710 else
1711 {
1712 xfree (buf);
1713 return;
1714 }
1715
1716 /* Loop invariant is that the [current_begin, current_end) was previously
1717 found to be not readable as a whole.
1718
1719 Note loop condition -- if the range has 1 byte, we can't divide the range
1720 so there's no point trying further. */
1721 while (current_end - current_begin > 1)
1722 {
1723 ULONGEST first_half_begin, first_half_end;
1724 ULONGEST second_half_begin, second_half_end;
1725 LONGEST xfer;
1726 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1727
1728 if (forward)
1729 {
1730 first_half_begin = current_begin;
1731 first_half_end = middle;
1732 second_half_begin = middle;
1733 second_half_end = current_end;
1734 }
1735 else
1736 {
1737 first_half_begin = middle;
1738 first_half_end = current_end;
1739 second_half_begin = current_begin;
1740 second_half_end = middle;
1741 }
1742
1743 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1744 buf + (first_half_begin - begin) * unit_size,
1745 first_half_begin,
1746 first_half_end - first_half_begin);
1747
1748 if (xfer == first_half_end - first_half_begin)
1749 {
1750 /* This half reads up fine. So, the error must be in the
1751 other half. */
1752 current_begin = second_half_begin;
1753 current_end = second_half_end;
1754 }
1755 else
1756 {
1757 /* This half is not readable. Because we've tried one byte, we
1758 know some part of this half if actually readable. Go to the next
1759 iteration to divide again and try to read.
1760
1761 We don't handle the other half, because this function only tries
1762 to read a single readable subrange. */
1763 current_begin = first_half_begin;
1764 current_end = first_half_end;
1765 }
1766 }
1767
1768 if (forward)
1769 {
1770 /* The [begin, current_begin) range has been read. */
1771 r.begin = begin;
1772 r.end = current_begin;
1773 r.data = buf;
1774 }
1775 else
1776 {
1777 /* The [current_end, end) range has been read. */
1778 LONGEST region_len = end - current_end;
1779
1780 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1781 memcpy (r.data, buf + (current_end - begin) * unit_size,
1782 region_len * unit_size);
1783 r.begin = current_end;
1784 r.end = end;
1785 xfree (buf);
1786 }
1787 VEC_safe_push(memory_read_result_s, (*result), &r);
1788 }
1789
1790 void
1791 free_memory_read_result_vector (void *x)
1792 {
1793 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1794 memory_read_result_s *current;
1795 int ix;
1796
1797 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1798 {
1799 xfree (current->data);
1800 }
1801 VEC_free (memory_read_result_s, v);
1802 }
1803
1804 VEC(memory_read_result_s) *
1805 read_memory_robust (struct target_ops *ops,
1806 const ULONGEST offset, const LONGEST len)
1807 {
1808 VEC(memory_read_result_s) *result = 0;
1809 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1810
1811 LONGEST xfered_total = 0;
1812 while (xfered_total < len)
1813 {
1814 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1815 LONGEST region_len;
1816
1817 /* If there is no explicit region, a fake one should be created. */
1818 gdb_assert (region);
1819
1820 if (region->hi == 0)
1821 region_len = len - xfered_total;
1822 else
1823 region_len = region->hi - offset;
1824
1825 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1826 {
1827 /* Cannot read this region. Note that we can end up here only
1828 if the region is explicitly marked inaccessible, or
1829 'inaccessible-by-default' is in effect. */
1830 xfered_total += region_len;
1831 }
1832 else
1833 {
1834 LONGEST to_read = min (len - xfered_total, region_len);
1835 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1836
1837 LONGEST xfered_partial =
1838 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1839 (gdb_byte *) buffer,
1840 offset + xfered_total, to_read);
1841 /* Call an observer, notifying them of the xfer progress? */
1842 if (xfered_partial <= 0)
1843 {
1844 /* Got an error reading full chunk. See if maybe we can read
1845 some subrange. */
1846 xfree (buffer);
1847 read_whatever_is_readable (ops, offset + xfered_total,
1848 offset + xfered_total + to_read,
1849 unit_size, &result);
1850 xfered_total += to_read;
1851 }
1852 else
1853 {
1854 struct memory_read_result r;
1855 r.data = buffer;
1856 r.begin = offset + xfered_total;
1857 r.end = r.begin + xfered_partial;
1858 VEC_safe_push (memory_read_result_s, result, &r);
1859 xfered_total += xfered_partial;
1860 }
1861 QUIT;
1862 }
1863 }
1864 return result;
1865 }
1866
1867
1868 /* An alternative to target_write with progress callbacks. */
1869
1870 LONGEST
1871 target_write_with_progress (struct target_ops *ops,
1872 enum target_object object,
1873 const char *annex, const gdb_byte *buf,
1874 ULONGEST offset, LONGEST len,
1875 void (*progress) (ULONGEST, void *), void *baton)
1876 {
1877 LONGEST xfered_total = 0;
1878 int unit_size = 1;
1879
1880 /* If we are writing to a memory object, find the length of an addressable
1881 unit for that architecture. */
1882 if (object == TARGET_OBJECT_MEMORY
1883 || object == TARGET_OBJECT_STACK_MEMORY
1884 || object == TARGET_OBJECT_CODE_MEMORY
1885 || object == TARGET_OBJECT_RAW_MEMORY)
1886 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1887
1888 /* Give the progress callback a chance to set up. */
1889 if (progress)
1890 (*progress) (0, baton);
1891
1892 while (xfered_total < len)
1893 {
1894 ULONGEST xfered_partial;
1895 enum target_xfer_status status;
1896
1897 status = target_write_partial (ops, object, annex,
1898 buf + xfered_total * unit_size,
1899 offset + xfered_total, len - xfered_total,
1900 &xfered_partial);
1901
1902 if (status != TARGET_XFER_OK)
1903 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1904
1905 if (progress)
1906 (*progress) (xfered_partial, baton);
1907
1908 xfered_total += xfered_partial;
1909 QUIT;
1910 }
1911 return len;
1912 }
1913
1914 /* For docs on target_write see target.h. */
1915
1916 LONGEST
1917 target_write (struct target_ops *ops,
1918 enum target_object object,
1919 const char *annex, const gdb_byte *buf,
1920 ULONGEST offset, LONGEST len)
1921 {
1922 return target_write_with_progress (ops, object, annex, buf, offset, len,
1923 NULL, NULL);
1924 }
1925
1926 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1927 the size of the transferred data. PADDING additional bytes are
1928 available in *BUF_P. This is a helper function for
1929 target_read_alloc; see the declaration of that function for more
1930 information. */
1931
1932 static LONGEST
1933 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1934 const char *annex, gdb_byte **buf_p, int padding)
1935 {
1936 size_t buf_alloc, buf_pos;
1937 gdb_byte *buf;
1938
1939 /* This function does not have a length parameter; it reads the
1940 entire OBJECT). Also, it doesn't support objects fetched partly
1941 from one target and partly from another (in a different stratum,
1942 e.g. a core file and an executable). Both reasons make it
1943 unsuitable for reading memory. */
1944 gdb_assert (object != TARGET_OBJECT_MEMORY);
1945
1946 /* Start by reading up to 4K at a time. The target will throttle
1947 this number down if necessary. */
1948 buf_alloc = 4096;
1949 buf = (gdb_byte *) xmalloc (buf_alloc);
1950 buf_pos = 0;
1951 while (1)
1952 {
1953 ULONGEST xfered_len;
1954 enum target_xfer_status status;
1955
1956 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1957 buf_pos, buf_alloc - buf_pos - padding,
1958 &xfered_len);
1959
1960 if (status == TARGET_XFER_EOF)
1961 {
1962 /* Read all there was. */
1963 if (buf_pos == 0)
1964 xfree (buf);
1965 else
1966 *buf_p = buf;
1967 return buf_pos;
1968 }
1969 else if (status != TARGET_XFER_OK)
1970 {
1971 /* An error occurred. */
1972 xfree (buf);
1973 return TARGET_XFER_E_IO;
1974 }
1975
1976 buf_pos += xfered_len;
1977
1978 /* If the buffer is filling up, expand it. */
1979 if (buf_alloc < buf_pos * 2)
1980 {
1981 buf_alloc *= 2;
1982 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1983 }
1984
1985 QUIT;
1986 }
1987 }
1988
1989 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1990 the size of the transferred data. See the declaration in "target.h"
1991 function for more information about the return value. */
1992
1993 LONGEST
1994 target_read_alloc (struct target_ops *ops, enum target_object object,
1995 const char *annex, gdb_byte **buf_p)
1996 {
1997 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1998 }
1999
2000 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2001 returned as a string, allocated using xmalloc. If an error occurs
2002 or the transfer is unsupported, NULL is returned. Empty objects
2003 are returned as allocated but empty strings. A warning is issued
2004 if the result contains any embedded NUL bytes. */
2005
2006 char *
2007 target_read_stralloc (struct target_ops *ops, enum target_object object,
2008 const char *annex)
2009 {
2010 gdb_byte *buffer;
2011 char *bufstr;
2012 LONGEST i, transferred;
2013
2014 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2015 bufstr = (char *) buffer;
2016
2017 if (transferred < 0)
2018 return NULL;
2019
2020 if (transferred == 0)
2021 return xstrdup ("");
2022
2023 bufstr[transferred] = 0;
2024
2025 /* Check for embedded NUL bytes; but allow trailing NULs. */
2026 for (i = strlen (bufstr); i < transferred; i++)
2027 if (bufstr[i] != 0)
2028 {
2029 warning (_("target object %d, annex %s, "
2030 "contained unexpected null characters"),
2031 (int) object, annex ? annex : "(none)");
2032 break;
2033 }
2034
2035 return bufstr;
2036 }
2037
2038 /* Memory transfer methods. */
2039
2040 void
2041 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2042 LONGEST len)
2043 {
2044 /* This method is used to read from an alternate, non-current
2045 target. This read must bypass the overlay support (as symbols
2046 don't match this target), and GDB's internal cache (wrong cache
2047 for this target). */
2048 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2049 != len)
2050 memory_error (TARGET_XFER_E_IO, addr);
2051 }
2052
2053 ULONGEST
2054 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2055 int len, enum bfd_endian byte_order)
2056 {
2057 gdb_byte buf[sizeof (ULONGEST)];
2058
2059 gdb_assert (len <= sizeof (buf));
2060 get_target_memory (ops, addr, buf, len);
2061 return extract_unsigned_integer (buf, len, byte_order);
2062 }
2063
2064 /* See target.h. */
2065
2066 int
2067 target_insert_breakpoint (struct gdbarch *gdbarch,
2068 struct bp_target_info *bp_tgt)
2069 {
2070 if (!may_insert_breakpoints)
2071 {
2072 warning (_("May not insert breakpoints"));
2073 return 1;
2074 }
2075
2076 return current_target.to_insert_breakpoint (&current_target,
2077 gdbarch, bp_tgt);
2078 }
2079
2080 /* See target.h. */
2081
2082 int
2083 target_remove_breakpoint (struct gdbarch *gdbarch,
2084 struct bp_target_info *bp_tgt)
2085 {
2086 /* This is kind of a weird case to handle, but the permission might
2087 have been changed after breakpoints were inserted - in which case
2088 we should just take the user literally and assume that any
2089 breakpoints should be left in place. */
2090 if (!may_insert_breakpoints)
2091 {
2092 warning (_("May not remove breakpoints"));
2093 return 1;
2094 }
2095
2096 return current_target.to_remove_breakpoint (&current_target,
2097 gdbarch, bp_tgt);
2098 }
2099
2100 static void
2101 target_info (char *args, int from_tty)
2102 {
2103 struct target_ops *t;
2104 int has_all_mem = 0;
2105
2106 if (symfile_objfile != NULL)
2107 printf_unfiltered (_("Symbols from \"%s\".\n"),
2108 objfile_name (symfile_objfile));
2109
2110 for (t = target_stack; t != NULL; t = t->beneath)
2111 {
2112 if (!(*t->to_has_memory) (t))
2113 continue;
2114
2115 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2116 continue;
2117 if (has_all_mem)
2118 printf_unfiltered (_("\tWhile running this, "
2119 "GDB does not access memory from...\n"));
2120 printf_unfiltered ("%s:\n", t->to_longname);
2121 (t->to_files_info) (t);
2122 has_all_mem = (*t->to_has_all_memory) (t);
2123 }
2124 }
2125
2126 /* This function is called before any new inferior is created, e.g.
2127 by running a program, attaching, or connecting to a target.
2128 It cleans up any state from previous invocations which might
2129 change between runs. This is a subset of what target_preopen
2130 resets (things which might change between targets). */
2131
2132 void
2133 target_pre_inferior (int from_tty)
2134 {
2135 /* Clear out solib state. Otherwise the solib state of the previous
2136 inferior might have survived and is entirely wrong for the new
2137 target. This has been observed on GNU/Linux using glibc 2.3. How
2138 to reproduce:
2139
2140 bash$ ./foo&
2141 [1] 4711
2142 bash$ ./foo&
2143 [1] 4712
2144 bash$ gdb ./foo
2145 [...]
2146 (gdb) attach 4711
2147 (gdb) detach
2148 (gdb) attach 4712
2149 Cannot access memory at address 0xdeadbeef
2150 */
2151
2152 /* In some OSs, the shared library list is the same/global/shared
2153 across inferiors. If code is shared between processes, so are
2154 memory regions and features. */
2155 if (!gdbarch_has_global_solist (target_gdbarch ()))
2156 {
2157 no_shared_libraries (NULL, from_tty);
2158
2159 invalidate_target_mem_regions ();
2160
2161 target_clear_description ();
2162 }
2163
2164 /* attach_flag may be set if the previous process associated with
2165 the inferior was attached to. */
2166 current_inferior ()->attach_flag = 0;
2167
2168 current_inferior ()->highest_thread_num = 0;
2169
2170 agent_capability_invalidate ();
2171 }
2172
2173 /* Callback for iterate_over_inferiors. Gets rid of the given
2174 inferior. */
2175
2176 static int
2177 dispose_inferior (struct inferior *inf, void *args)
2178 {
2179 struct thread_info *thread;
2180
2181 thread = any_thread_of_process (inf->pid);
2182 if (thread)
2183 {
2184 switch_to_thread (thread->ptid);
2185
2186 /* Core inferiors actually should be detached, not killed. */
2187 if (target_has_execution)
2188 target_kill ();
2189 else
2190 target_detach (NULL, 0);
2191 }
2192
2193 return 0;
2194 }
2195
2196 /* This is to be called by the open routine before it does
2197 anything. */
2198
2199 void
2200 target_preopen (int from_tty)
2201 {
2202 dont_repeat ();
2203
2204 if (have_inferiors ())
2205 {
2206 if (!from_tty
2207 || !have_live_inferiors ()
2208 || query (_("A program is being debugged already. Kill it? ")))
2209 iterate_over_inferiors (dispose_inferior, NULL);
2210 else
2211 error (_("Program not killed."));
2212 }
2213
2214 /* Calling target_kill may remove the target from the stack. But if
2215 it doesn't (which seems like a win for UDI), remove it now. */
2216 /* Leave the exec target, though. The user may be switching from a
2217 live process to a core of the same program. */
2218 pop_all_targets_above (file_stratum);
2219
2220 target_pre_inferior (from_tty);
2221 }
2222
2223 /* Detach a target after doing deferred register stores. */
2224
2225 void
2226 target_detach (const char *args, int from_tty)
2227 {
2228 struct target_ops* t;
2229
2230 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2231 /* Don't remove global breakpoints here. They're removed on
2232 disconnection from the target. */
2233 ;
2234 else
2235 /* If we're in breakpoints-always-inserted mode, have to remove
2236 them before detaching. */
2237 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2238
2239 prepare_for_detach ();
2240
2241 current_target.to_detach (&current_target, args, from_tty);
2242 }
2243
2244 void
2245 target_disconnect (const char *args, int from_tty)
2246 {
2247 /* If we're in breakpoints-always-inserted mode or if breakpoints
2248 are global across processes, we have to remove them before
2249 disconnecting. */
2250 remove_breakpoints ();
2251
2252 current_target.to_disconnect (&current_target, args, from_tty);
2253 }
2254
2255 ptid_t
2256 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2257 {
2258 return (current_target.to_wait) (&current_target, ptid, status, options);
2259 }
2260
2261 /* See target.h. */
2262
2263 ptid_t
2264 default_target_wait (struct target_ops *ops,
2265 ptid_t ptid, struct target_waitstatus *status,
2266 int options)
2267 {
2268 status->kind = TARGET_WAITKIND_IGNORE;
2269 return minus_one_ptid;
2270 }
2271
2272 char *
2273 target_pid_to_str (ptid_t ptid)
2274 {
2275 return (*current_target.to_pid_to_str) (&current_target, ptid);
2276 }
2277
2278 const char *
2279 target_thread_name (struct thread_info *info)
2280 {
2281 return current_target.to_thread_name (&current_target, info);
2282 }
2283
2284 void
2285 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2286 {
2287 struct target_ops *t;
2288
2289 target_dcache_invalidate ();
2290
2291 current_target.to_resume (&current_target, ptid, step, signal);
2292
2293 registers_changed_ptid (ptid);
2294 /* We only set the internal executing state here. The user/frontend
2295 running state is set at a higher level. */
2296 set_executing (ptid, 1);
2297 clear_inline_frame_state (ptid);
2298 }
2299
2300 void
2301 target_pass_signals (int numsigs, unsigned char *pass_signals)
2302 {
2303 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2304 }
2305
2306 void
2307 target_program_signals (int numsigs, unsigned char *program_signals)
2308 {
2309 (*current_target.to_program_signals) (&current_target,
2310 numsigs, program_signals);
2311 }
2312
2313 static int
2314 default_follow_fork (struct target_ops *self, int follow_child,
2315 int detach_fork)
2316 {
2317 /* Some target returned a fork event, but did not know how to follow it. */
2318 internal_error (__FILE__, __LINE__,
2319 _("could not find a target to follow fork"));
2320 }
2321
2322 /* Look through the list of possible targets for a target that can
2323 follow forks. */
2324
2325 int
2326 target_follow_fork (int follow_child, int detach_fork)
2327 {
2328 return current_target.to_follow_fork (&current_target,
2329 follow_child, detach_fork);
2330 }
2331
2332 /* Target wrapper for follow exec hook. */
2333
2334 void
2335 target_follow_exec (struct inferior *inf, char *execd_pathname)
2336 {
2337 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2338 }
2339
2340 static void
2341 default_mourn_inferior (struct target_ops *self)
2342 {
2343 internal_error (__FILE__, __LINE__,
2344 _("could not find a target to follow mourn inferior"));
2345 }
2346
2347 void
2348 target_mourn_inferior (void)
2349 {
2350 current_target.to_mourn_inferior (&current_target);
2351
2352 /* We no longer need to keep handles on any of the object files.
2353 Make sure to release them to avoid unnecessarily locking any
2354 of them while we're not actually debugging. */
2355 bfd_cache_close_all ();
2356 }
2357
2358 /* Look for a target which can describe architectural features, starting
2359 from TARGET. If we find one, return its description. */
2360
2361 const struct target_desc *
2362 target_read_description (struct target_ops *target)
2363 {
2364 return target->to_read_description (target);
2365 }
2366
2367 /* This implements a basic search of memory, reading target memory and
2368 performing the search here (as opposed to performing the search in on the
2369 target side with, for example, gdbserver). */
2370
2371 int
2372 simple_search_memory (struct target_ops *ops,
2373 CORE_ADDR start_addr, ULONGEST search_space_len,
2374 const gdb_byte *pattern, ULONGEST pattern_len,
2375 CORE_ADDR *found_addrp)
2376 {
2377 /* NOTE: also defined in find.c testcase. */
2378 #define SEARCH_CHUNK_SIZE 16000
2379 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2380 /* Buffer to hold memory contents for searching. */
2381 gdb_byte *search_buf;
2382 unsigned search_buf_size;
2383 struct cleanup *old_cleanups;
2384
2385 search_buf_size = chunk_size + pattern_len - 1;
2386
2387 /* No point in trying to allocate a buffer larger than the search space. */
2388 if (search_space_len < search_buf_size)
2389 search_buf_size = search_space_len;
2390
2391 search_buf = (gdb_byte *) malloc (search_buf_size);
2392 if (search_buf == NULL)
2393 error (_("Unable to allocate memory to perform the search."));
2394 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2395
2396 /* Prime the search buffer. */
2397
2398 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2399 search_buf, start_addr, search_buf_size) != search_buf_size)
2400 {
2401 warning (_("Unable to access %s bytes of target "
2402 "memory at %s, halting search."),
2403 pulongest (search_buf_size), hex_string (start_addr));
2404 do_cleanups (old_cleanups);
2405 return -1;
2406 }
2407
2408 /* Perform the search.
2409
2410 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2411 When we've scanned N bytes we copy the trailing bytes to the start and
2412 read in another N bytes. */
2413
2414 while (search_space_len >= pattern_len)
2415 {
2416 gdb_byte *found_ptr;
2417 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2418
2419 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2420 pattern, pattern_len);
2421
2422 if (found_ptr != NULL)
2423 {
2424 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2425
2426 *found_addrp = found_addr;
2427 do_cleanups (old_cleanups);
2428 return 1;
2429 }
2430
2431 /* Not found in this chunk, skip to next chunk. */
2432
2433 /* Don't let search_space_len wrap here, it's unsigned. */
2434 if (search_space_len >= chunk_size)
2435 search_space_len -= chunk_size;
2436 else
2437 search_space_len = 0;
2438
2439 if (search_space_len >= pattern_len)
2440 {
2441 unsigned keep_len = search_buf_size - chunk_size;
2442 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2443 int nr_to_read;
2444
2445 /* Copy the trailing part of the previous iteration to the front
2446 of the buffer for the next iteration. */
2447 gdb_assert (keep_len == pattern_len - 1);
2448 memcpy (search_buf, search_buf + chunk_size, keep_len);
2449
2450 nr_to_read = min (search_space_len - keep_len, chunk_size);
2451
2452 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2453 search_buf + keep_len, read_addr,
2454 nr_to_read) != nr_to_read)
2455 {
2456 warning (_("Unable to access %s bytes of target "
2457 "memory at %s, halting search."),
2458 plongest (nr_to_read),
2459 hex_string (read_addr));
2460 do_cleanups (old_cleanups);
2461 return -1;
2462 }
2463
2464 start_addr += chunk_size;
2465 }
2466 }
2467
2468 /* Not found. */
2469
2470 do_cleanups (old_cleanups);
2471 return 0;
2472 }
2473
2474 /* Default implementation of memory-searching. */
2475
2476 static int
2477 default_search_memory (struct target_ops *self,
2478 CORE_ADDR start_addr, ULONGEST search_space_len,
2479 const gdb_byte *pattern, ULONGEST pattern_len,
2480 CORE_ADDR *found_addrp)
2481 {
2482 /* Start over from the top of the target stack. */
2483 return simple_search_memory (current_target.beneath,
2484 start_addr, search_space_len,
2485 pattern, pattern_len, found_addrp);
2486 }
2487
2488 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2489 sequence of bytes in PATTERN with length PATTERN_LEN.
2490
2491 The result is 1 if found, 0 if not found, and -1 if there was an error
2492 requiring halting of the search (e.g. memory read error).
2493 If the pattern is found the address is recorded in FOUND_ADDRP. */
2494
2495 int
2496 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2497 const gdb_byte *pattern, ULONGEST pattern_len,
2498 CORE_ADDR *found_addrp)
2499 {
2500 return current_target.to_search_memory (&current_target, start_addr,
2501 search_space_len,
2502 pattern, pattern_len, found_addrp);
2503 }
2504
2505 /* Look through the currently pushed targets. If none of them will
2506 be able to restart the currently running process, issue an error
2507 message. */
2508
2509 void
2510 target_require_runnable (void)
2511 {
2512 struct target_ops *t;
2513
2514 for (t = target_stack; t != NULL; t = t->beneath)
2515 {
2516 /* If this target knows how to create a new program, then
2517 assume we will still be able to after killing the current
2518 one. Either killing and mourning will not pop T, or else
2519 find_default_run_target will find it again. */
2520 if (t->to_create_inferior != NULL)
2521 return;
2522
2523 /* Do not worry about targets at certain strata that can not
2524 create inferiors. Assume they will be pushed again if
2525 necessary, and continue to the process_stratum. */
2526 if (t->to_stratum == thread_stratum
2527 || t->to_stratum == record_stratum
2528 || t->to_stratum == arch_stratum)
2529 continue;
2530
2531 error (_("The \"%s\" target does not support \"run\". "
2532 "Try \"help target\" or \"continue\"."),
2533 t->to_shortname);
2534 }
2535
2536 /* This function is only called if the target is running. In that
2537 case there should have been a process_stratum target and it
2538 should either know how to create inferiors, or not... */
2539 internal_error (__FILE__, __LINE__, _("No targets found"));
2540 }
2541
2542 /* Whether GDB is allowed to fall back to the default run target for
2543 "run", "attach", etc. when no target is connected yet. */
2544 static int auto_connect_native_target = 1;
2545
2546 static void
2547 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2548 struct cmd_list_element *c, const char *value)
2549 {
2550 fprintf_filtered (file,
2551 _("Whether GDB may automatically connect to the "
2552 "native target is %s.\n"),
2553 value);
2554 }
2555
2556 /* Look through the list of possible targets for a target that can
2557 execute a run or attach command without any other data. This is
2558 used to locate the default process stratum.
2559
2560 If DO_MESG is not NULL, the result is always valid (error() is
2561 called for errors); else, return NULL on error. */
2562
2563 static struct target_ops *
2564 find_default_run_target (char *do_mesg)
2565 {
2566 struct target_ops *runable = NULL;
2567
2568 if (auto_connect_native_target)
2569 {
2570 struct target_ops *t;
2571 int count = 0;
2572 int i;
2573
2574 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2575 {
2576 if (t->to_can_run != delegate_can_run && target_can_run (t))
2577 {
2578 runable = t;
2579 ++count;
2580 }
2581 }
2582
2583 if (count != 1)
2584 runable = NULL;
2585 }
2586
2587 if (runable == NULL)
2588 {
2589 if (do_mesg)
2590 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2591 else
2592 return NULL;
2593 }
2594
2595 return runable;
2596 }
2597
2598 /* See target.h. */
2599
2600 struct target_ops *
2601 find_attach_target (void)
2602 {
2603 struct target_ops *t;
2604
2605 /* If a target on the current stack can attach, use it. */
2606 for (t = current_target.beneath; t != NULL; t = t->beneath)
2607 {
2608 if (t->to_attach != NULL)
2609 break;
2610 }
2611
2612 /* Otherwise, use the default run target for attaching. */
2613 if (t == NULL)
2614 t = find_default_run_target ("attach");
2615
2616 return t;
2617 }
2618
2619 /* See target.h. */
2620
2621 struct target_ops *
2622 find_run_target (void)
2623 {
2624 struct target_ops *t;
2625
2626 /* If a target on the current stack can attach, use it. */
2627 for (t = current_target.beneath; t != NULL; t = t->beneath)
2628 {
2629 if (t->to_create_inferior != NULL)
2630 break;
2631 }
2632
2633 /* Otherwise, use the default run target. */
2634 if (t == NULL)
2635 t = find_default_run_target ("run");
2636
2637 return t;
2638 }
2639
2640 /* Implement the "info proc" command. */
2641
2642 int
2643 target_info_proc (const char *args, enum info_proc_what what)
2644 {
2645 struct target_ops *t;
2646
2647 /* If we're already connected to something that can get us OS
2648 related data, use it. Otherwise, try using the native
2649 target. */
2650 if (current_target.to_stratum >= process_stratum)
2651 t = current_target.beneath;
2652 else
2653 t = find_default_run_target (NULL);
2654
2655 for (; t != NULL; t = t->beneath)
2656 {
2657 if (t->to_info_proc != NULL)
2658 {
2659 t->to_info_proc (t, args, what);
2660
2661 if (targetdebug)
2662 fprintf_unfiltered (gdb_stdlog,
2663 "target_info_proc (\"%s\", %d)\n", args, what);
2664
2665 return 1;
2666 }
2667 }
2668
2669 return 0;
2670 }
2671
2672 static int
2673 find_default_supports_disable_randomization (struct target_ops *self)
2674 {
2675 struct target_ops *t;
2676
2677 t = find_default_run_target (NULL);
2678 if (t && t->to_supports_disable_randomization)
2679 return (t->to_supports_disable_randomization) (t);
2680 return 0;
2681 }
2682
2683 int
2684 target_supports_disable_randomization (void)
2685 {
2686 struct target_ops *t;
2687
2688 for (t = &current_target; t != NULL; t = t->beneath)
2689 if (t->to_supports_disable_randomization)
2690 return t->to_supports_disable_randomization (t);
2691
2692 return 0;
2693 }
2694
2695 char *
2696 target_get_osdata (const char *type)
2697 {
2698 struct target_ops *t;
2699
2700 /* If we're already connected to something that can get us OS
2701 related data, use it. Otherwise, try using the native
2702 target. */
2703 if (current_target.to_stratum >= process_stratum)
2704 t = current_target.beneath;
2705 else
2706 t = find_default_run_target ("get OS data");
2707
2708 if (!t)
2709 return NULL;
2710
2711 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2712 }
2713
2714 static struct address_space *
2715 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2716 {
2717 struct inferior *inf;
2718
2719 /* Fall-back to the "main" address space of the inferior. */
2720 inf = find_inferior_ptid (ptid);
2721
2722 if (inf == NULL || inf->aspace == NULL)
2723 internal_error (__FILE__, __LINE__,
2724 _("Can't determine the current "
2725 "address space of thread %s\n"),
2726 target_pid_to_str (ptid));
2727
2728 return inf->aspace;
2729 }
2730
2731 /* Determine the current address space of thread PTID. */
2732
2733 struct address_space *
2734 target_thread_address_space (ptid_t ptid)
2735 {
2736 struct address_space *aspace;
2737
2738 aspace = current_target.to_thread_address_space (&current_target, ptid);
2739 gdb_assert (aspace != NULL);
2740
2741 return aspace;
2742 }
2743
2744
2745 /* Target file operations. */
2746
2747 static struct target_ops *
2748 default_fileio_target (void)
2749 {
2750 /* If we're already connected to something that can perform
2751 file I/O, use it. Otherwise, try using the native target. */
2752 if (current_target.to_stratum >= process_stratum)
2753 return current_target.beneath;
2754 else
2755 return find_default_run_target ("file I/O");
2756 }
2757
2758 /* File handle for target file operations. */
2759
2760 typedef struct
2761 {
2762 /* The target on which this file is open. */
2763 struct target_ops *t;
2764
2765 /* The file descriptor on the target. */
2766 int fd;
2767 } fileio_fh_t;
2768
2769 DEF_VEC_O (fileio_fh_t);
2770
2771 /* Vector of currently open file handles. The value returned by
2772 target_fileio_open and passed as the FD argument to other
2773 target_fileio_* functions is an index into this vector. This
2774 vector's entries are never freed; instead, files are marked as
2775 closed, and the handle becomes available for reuse. */
2776 static VEC (fileio_fh_t) *fileio_fhandles;
2777
2778 /* Macro to check whether a fileio_fh_t represents a closed file. */
2779 #define is_closed_fileio_fh(fd) ((fd) < 0)
2780
2781 /* Index into fileio_fhandles of the lowest handle that might be
2782 closed. This permits handle reuse without searching the whole
2783 list each time a new file is opened. */
2784 static int lowest_closed_fd;
2785
2786 /* Acquire a target fileio file descriptor. */
2787
2788 static int
2789 acquire_fileio_fd (struct target_ops *t, int fd)
2790 {
2791 fileio_fh_t *fh, buf;
2792
2793 gdb_assert (!is_closed_fileio_fh (fd));
2794
2795 /* Search for closed handles to reuse. */
2796 for (;
2797 VEC_iterate (fileio_fh_t, fileio_fhandles,
2798 lowest_closed_fd, fh);
2799 lowest_closed_fd++)
2800 if (is_closed_fileio_fh (fh->fd))
2801 break;
2802
2803 /* Push a new handle if no closed handles were found. */
2804 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2805 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2806
2807 /* Fill in the handle. */
2808 fh->t = t;
2809 fh->fd = fd;
2810
2811 /* Return its index, and start the next lookup at
2812 the next index. */
2813 return lowest_closed_fd++;
2814 }
2815
2816 /* Release a target fileio file descriptor. */
2817
2818 static void
2819 release_fileio_fd (int fd, fileio_fh_t *fh)
2820 {
2821 fh->fd = -1;
2822 lowest_closed_fd = min (lowest_closed_fd, fd);
2823 }
2824
2825 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2826
2827 #define fileio_fd_to_fh(fd) \
2828 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2829
2830 /* Helper for target_fileio_open and
2831 target_fileio_open_warn_if_slow. */
2832
2833 static int
2834 target_fileio_open_1 (struct inferior *inf, const char *filename,
2835 int flags, int mode, int warn_if_slow,
2836 int *target_errno)
2837 {
2838 struct target_ops *t;
2839
2840 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2841 {
2842 if (t->to_fileio_open != NULL)
2843 {
2844 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2845 warn_if_slow, target_errno);
2846
2847 if (fd < 0)
2848 fd = -1;
2849 else
2850 fd = acquire_fileio_fd (t, fd);
2851
2852 if (targetdebug)
2853 fprintf_unfiltered (gdb_stdlog,
2854 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2855 " = %d (%d)\n",
2856 inf == NULL ? 0 : inf->num,
2857 filename, flags, mode,
2858 warn_if_slow, fd,
2859 fd != -1 ? 0 : *target_errno);
2860 return fd;
2861 }
2862 }
2863
2864 *target_errno = FILEIO_ENOSYS;
2865 return -1;
2866 }
2867
2868 /* See target.h. */
2869
2870 int
2871 target_fileio_open (struct inferior *inf, const char *filename,
2872 int flags, int mode, int *target_errno)
2873 {
2874 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2875 target_errno);
2876 }
2877
2878 /* See target.h. */
2879
2880 int
2881 target_fileio_open_warn_if_slow (struct inferior *inf,
2882 const char *filename,
2883 int flags, int mode, int *target_errno)
2884 {
2885 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2886 target_errno);
2887 }
2888
2889 /* See target.h. */
2890
2891 int
2892 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2893 ULONGEST offset, int *target_errno)
2894 {
2895 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2896 int ret = -1;
2897
2898 if (is_closed_fileio_fh (fh->fd))
2899 *target_errno = EBADF;
2900 else
2901 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2902 len, offset, target_errno);
2903
2904 if (targetdebug)
2905 fprintf_unfiltered (gdb_stdlog,
2906 "target_fileio_pwrite (%d,...,%d,%s) "
2907 "= %d (%d)\n",
2908 fd, len, pulongest (offset),
2909 ret, ret != -1 ? 0 : *target_errno);
2910 return ret;
2911 }
2912
2913 /* See target.h. */
2914
2915 int
2916 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2917 ULONGEST offset, int *target_errno)
2918 {
2919 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2920 int ret = -1;
2921
2922 if (is_closed_fileio_fh (fh->fd))
2923 *target_errno = EBADF;
2924 else
2925 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2926 len, offset, target_errno);
2927
2928 if (targetdebug)
2929 fprintf_unfiltered (gdb_stdlog,
2930 "target_fileio_pread (%d,...,%d,%s) "
2931 "= %d (%d)\n",
2932 fd, len, pulongest (offset),
2933 ret, ret != -1 ? 0 : *target_errno);
2934 return ret;
2935 }
2936
2937 /* See target.h. */
2938
2939 int
2940 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2941 {
2942 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2943 int ret = -1;
2944
2945 if (is_closed_fileio_fh (fh->fd))
2946 *target_errno = EBADF;
2947 else
2948 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2949
2950 if (targetdebug)
2951 fprintf_unfiltered (gdb_stdlog,
2952 "target_fileio_fstat (%d) = %d (%d)\n",
2953 fd, ret, ret != -1 ? 0 : *target_errno);
2954 return ret;
2955 }
2956
2957 /* See target.h. */
2958
2959 int
2960 target_fileio_close (int fd, int *target_errno)
2961 {
2962 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2963 int ret = -1;
2964
2965 if (is_closed_fileio_fh (fh->fd))
2966 *target_errno = EBADF;
2967 else
2968 {
2969 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2970 release_fileio_fd (fd, fh);
2971 }
2972
2973 if (targetdebug)
2974 fprintf_unfiltered (gdb_stdlog,
2975 "target_fileio_close (%d) = %d (%d)\n",
2976 fd, ret, ret != -1 ? 0 : *target_errno);
2977 return ret;
2978 }
2979
2980 /* See target.h. */
2981
2982 int
2983 target_fileio_unlink (struct inferior *inf, const char *filename,
2984 int *target_errno)
2985 {
2986 struct target_ops *t;
2987
2988 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2989 {
2990 if (t->to_fileio_unlink != NULL)
2991 {
2992 int ret = t->to_fileio_unlink (t, inf, filename,
2993 target_errno);
2994
2995 if (targetdebug)
2996 fprintf_unfiltered (gdb_stdlog,
2997 "target_fileio_unlink (%d,%s)"
2998 " = %d (%d)\n",
2999 inf == NULL ? 0 : inf->num, filename,
3000 ret, ret != -1 ? 0 : *target_errno);
3001 return ret;
3002 }
3003 }
3004
3005 *target_errno = FILEIO_ENOSYS;
3006 return -1;
3007 }
3008
3009 /* See target.h. */
3010
3011 char *
3012 target_fileio_readlink (struct inferior *inf, const char *filename,
3013 int *target_errno)
3014 {
3015 struct target_ops *t;
3016
3017 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3018 {
3019 if (t->to_fileio_readlink != NULL)
3020 {
3021 char *ret = t->to_fileio_readlink (t, inf, filename,
3022 target_errno);
3023
3024 if (targetdebug)
3025 fprintf_unfiltered (gdb_stdlog,
3026 "target_fileio_readlink (%d,%s)"
3027 " = %s (%d)\n",
3028 inf == NULL ? 0 : inf->num,
3029 filename, ret? ret : "(nil)",
3030 ret? 0 : *target_errno);
3031 return ret;
3032 }
3033 }
3034
3035 *target_errno = FILEIO_ENOSYS;
3036 return NULL;
3037 }
3038
3039 static void
3040 target_fileio_close_cleanup (void *opaque)
3041 {
3042 int fd = *(int *) opaque;
3043 int target_errno;
3044
3045 target_fileio_close (fd, &target_errno);
3046 }
3047
3048 /* Read target file FILENAME, in the filesystem as seen by INF. If
3049 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3050 remote targets, the remote stub). Store the result in *BUF_P and
3051 return the size of the transferred data. PADDING additional bytes
3052 are available in *BUF_P. This is a helper function for
3053 target_fileio_read_alloc; see the declaration of that function for
3054 more information. */
3055
3056 static LONGEST
3057 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3058 gdb_byte **buf_p, int padding)
3059 {
3060 struct cleanup *close_cleanup;
3061 size_t buf_alloc, buf_pos;
3062 gdb_byte *buf;
3063 LONGEST n;
3064 int fd;
3065 int target_errno;
3066
3067 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3068 &target_errno);
3069 if (fd == -1)
3070 return -1;
3071
3072 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3073
3074 /* Start by reading up to 4K at a time. The target will throttle
3075 this number down if necessary. */
3076 buf_alloc = 4096;
3077 buf = (gdb_byte *) xmalloc (buf_alloc);
3078 buf_pos = 0;
3079 while (1)
3080 {
3081 n = target_fileio_pread (fd, &buf[buf_pos],
3082 buf_alloc - buf_pos - padding, buf_pos,
3083 &target_errno);
3084 if (n < 0)
3085 {
3086 /* An error occurred. */
3087 do_cleanups (close_cleanup);
3088 xfree (buf);
3089 return -1;
3090 }
3091 else if (n == 0)
3092 {
3093 /* Read all there was. */
3094 do_cleanups (close_cleanup);
3095 if (buf_pos == 0)
3096 xfree (buf);
3097 else
3098 *buf_p = buf;
3099 return buf_pos;
3100 }
3101
3102 buf_pos += n;
3103
3104 /* If the buffer is filling up, expand it. */
3105 if (buf_alloc < buf_pos * 2)
3106 {
3107 buf_alloc *= 2;
3108 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3109 }
3110
3111 QUIT;
3112 }
3113 }
3114
3115 /* See target.h. */
3116
3117 LONGEST
3118 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3119 gdb_byte **buf_p)
3120 {
3121 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3122 }
3123
3124 /* See target.h. */
3125
3126 char *
3127 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3128 {
3129 gdb_byte *buffer;
3130 char *bufstr;
3131 LONGEST i, transferred;
3132
3133 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3134 bufstr = (char *) buffer;
3135
3136 if (transferred < 0)
3137 return NULL;
3138
3139 if (transferred == 0)
3140 return xstrdup ("");
3141
3142 bufstr[transferred] = 0;
3143
3144 /* Check for embedded NUL bytes; but allow trailing NULs. */
3145 for (i = strlen (bufstr); i < transferred; i++)
3146 if (bufstr[i] != 0)
3147 {
3148 warning (_("target file %s "
3149 "contained unexpected null characters"),
3150 filename);
3151 break;
3152 }
3153
3154 return bufstr;
3155 }
3156
3157
3158 static int
3159 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3160 CORE_ADDR addr, int len)
3161 {
3162 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3163 }
3164
3165 static int
3166 default_watchpoint_addr_within_range (struct target_ops *target,
3167 CORE_ADDR addr,
3168 CORE_ADDR start, int length)
3169 {
3170 return addr >= start && addr < start + length;
3171 }
3172
3173 static struct gdbarch *
3174 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3175 {
3176 return target_gdbarch ();
3177 }
3178
3179 static int
3180 return_zero (struct target_ops *ignore)
3181 {
3182 return 0;
3183 }
3184
3185 static int
3186 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3187 {
3188 return 0;
3189 }
3190
3191 /*
3192 * Find the next target down the stack from the specified target.
3193 */
3194
3195 struct target_ops *
3196 find_target_beneath (struct target_ops *t)
3197 {
3198 return t->beneath;
3199 }
3200
3201 /* See target.h. */
3202
3203 struct target_ops *
3204 find_target_at (enum strata stratum)
3205 {
3206 struct target_ops *t;
3207
3208 for (t = current_target.beneath; t != NULL; t = t->beneath)
3209 if (t->to_stratum == stratum)
3210 return t;
3211
3212 return NULL;
3213 }
3214
3215 \f
3216 /* The inferior process has died. Long live the inferior! */
3217
3218 void
3219 generic_mourn_inferior (void)
3220 {
3221 ptid_t ptid;
3222
3223 ptid = inferior_ptid;
3224 inferior_ptid = null_ptid;
3225
3226 /* Mark breakpoints uninserted in case something tries to delete a
3227 breakpoint while we delete the inferior's threads (which would
3228 fail, since the inferior is long gone). */
3229 mark_breakpoints_out ();
3230
3231 if (!ptid_equal (ptid, null_ptid))
3232 {
3233 int pid = ptid_get_pid (ptid);
3234 exit_inferior (pid);
3235 }
3236
3237 /* Note this wipes step-resume breakpoints, so needs to be done
3238 after exit_inferior, which ends up referencing the step-resume
3239 breakpoints through clear_thread_inferior_resources. */
3240 breakpoint_init_inferior (inf_exited);
3241
3242 registers_changed ();
3243
3244 reopen_exec_file ();
3245 reinit_frame_cache ();
3246
3247 if (deprecated_detach_hook)
3248 deprecated_detach_hook ();
3249 }
3250 \f
3251 /* Convert a normal process ID to a string. Returns the string in a
3252 static buffer. */
3253
3254 char *
3255 normal_pid_to_str (ptid_t ptid)
3256 {
3257 static char buf[32];
3258
3259 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3260 return buf;
3261 }
3262
3263 static char *
3264 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3265 {
3266 return normal_pid_to_str (ptid);
3267 }
3268
3269 /* Error-catcher for target_find_memory_regions. */
3270 static int
3271 dummy_find_memory_regions (struct target_ops *self,
3272 find_memory_region_ftype ignore1, void *ignore2)
3273 {
3274 error (_("Command not implemented for this target."));
3275 return 0;
3276 }
3277
3278 /* Error-catcher for target_make_corefile_notes. */
3279 static char *
3280 dummy_make_corefile_notes (struct target_ops *self,
3281 bfd *ignore1, int *ignore2)
3282 {
3283 error (_("Command not implemented for this target."));
3284 return NULL;
3285 }
3286
3287 /* Set up the handful of non-empty slots needed by the dummy target
3288 vector. */
3289
3290 static void
3291 init_dummy_target (void)
3292 {
3293 dummy_target.to_shortname = "None";
3294 dummy_target.to_longname = "None";
3295 dummy_target.to_doc = "";
3296 dummy_target.to_supports_disable_randomization
3297 = find_default_supports_disable_randomization;
3298 dummy_target.to_stratum = dummy_stratum;
3299 dummy_target.to_has_all_memory = return_zero;
3300 dummy_target.to_has_memory = return_zero;
3301 dummy_target.to_has_stack = return_zero;
3302 dummy_target.to_has_registers = return_zero;
3303 dummy_target.to_has_execution = return_zero_has_execution;
3304 dummy_target.to_magic = OPS_MAGIC;
3305
3306 install_dummy_methods (&dummy_target);
3307 }
3308 \f
3309
3310 void
3311 target_close (struct target_ops *targ)
3312 {
3313 gdb_assert (!target_is_pushed (targ));
3314
3315 if (targ->to_xclose != NULL)
3316 targ->to_xclose (targ);
3317 else if (targ->to_close != NULL)
3318 targ->to_close (targ);
3319
3320 if (targetdebug)
3321 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3322 }
3323
3324 int
3325 target_thread_alive (ptid_t ptid)
3326 {
3327 return current_target.to_thread_alive (&current_target, ptid);
3328 }
3329
3330 void
3331 target_update_thread_list (void)
3332 {
3333 current_target.to_update_thread_list (&current_target);
3334 }
3335
3336 void
3337 target_stop (ptid_t ptid)
3338 {
3339 if (!may_stop)
3340 {
3341 warning (_("May not interrupt or stop the target, ignoring attempt"));
3342 return;
3343 }
3344
3345 (*current_target.to_stop) (&current_target, ptid);
3346 }
3347
3348 void
3349 target_interrupt (ptid_t ptid)
3350 {
3351 if (!may_stop)
3352 {
3353 warning (_("May not interrupt or stop the target, ignoring attempt"));
3354 return;
3355 }
3356
3357 (*current_target.to_interrupt) (&current_target, ptid);
3358 }
3359
3360 /* See target.h. */
3361
3362 void
3363 target_check_pending_interrupt (void)
3364 {
3365 (*current_target.to_check_pending_interrupt) (&current_target);
3366 }
3367
3368 /* See target/target.h. */
3369
3370 void
3371 target_stop_and_wait (ptid_t ptid)
3372 {
3373 struct target_waitstatus status;
3374 int was_non_stop = non_stop;
3375
3376 non_stop = 1;
3377 target_stop (ptid);
3378
3379 memset (&status, 0, sizeof (status));
3380 target_wait (ptid, &status, 0);
3381
3382 non_stop = was_non_stop;
3383 }
3384
3385 /* See target/target.h. */
3386
3387 void
3388 target_continue_no_signal (ptid_t ptid)
3389 {
3390 target_resume (ptid, 0, GDB_SIGNAL_0);
3391 }
3392
3393 /* Concatenate ELEM to LIST, a comma separate list, and return the
3394 result. The LIST incoming argument is released. */
3395
3396 static char *
3397 str_comma_list_concat_elem (char *list, const char *elem)
3398 {
3399 if (list == NULL)
3400 return xstrdup (elem);
3401 else
3402 return reconcat (list, list, ", ", elem, (char *) NULL);
3403 }
3404
3405 /* Helper for target_options_to_string. If OPT is present in
3406 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3407 Returns the new resulting string. OPT is removed from
3408 TARGET_OPTIONS. */
3409
3410 static char *
3411 do_option (int *target_options, char *ret,
3412 int opt, char *opt_str)
3413 {
3414 if ((*target_options & opt) != 0)
3415 {
3416 ret = str_comma_list_concat_elem (ret, opt_str);
3417 *target_options &= ~opt;
3418 }
3419
3420 return ret;
3421 }
3422
3423 char *
3424 target_options_to_string (int target_options)
3425 {
3426 char *ret = NULL;
3427
3428 #define DO_TARG_OPTION(OPT) \
3429 ret = do_option (&target_options, ret, OPT, #OPT)
3430
3431 DO_TARG_OPTION (TARGET_WNOHANG);
3432
3433 if (target_options != 0)
3434 ret = str_comma_list_concat_elem (ret, "unknown???");
3435
3436 if (ret == NULL)
3437 ret = xstrdup ("");
3438 return ret;
3439 }
3440
3441 static void
3442 debug_print_register (const char * func,
3443 struct regcache *regcache, int regno)
3444 {
3445 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3446
3447 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3448 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3449 && gdbarch_register_name (gdbarch, regno) != NULL
3450 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3451 fprintf_unfiltered (gdb_stdlog, "(%s)",
3452 gdbarch_register_name (gdbarch, regno));
3453 else
3454 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3455 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3456 {
3457 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3458 int i, size = register_size (gdbarch, regno);
3459 gdb_byte buf[MAX_REGISTER_SIZE];
3460
3461 regcache_raw_collect (regcache, regno, buf);
3462 fprintf_unfiltered (gdb_stdlog, " = ");
3463 for (i = 0; i < size; i++)
3464 {
3465 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3466 }
3467 if (size <= sizeof (LONGEST))
3468 {
3469 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3470
3471 fprintf_unfiltered (gdb_stdlog, " %s %s",
3472 core_addr_to_string_nz (val), plongest (val));
3473 }
3474 }
3475 fprintf_unfiltered (gdb_stdlog, "\n");
3476 }
3477
3478 void
3479 target_fetch_registers (struct regcache *regcache, int regno)
3480 {
3481 current_target.to_fetch_registers (&current_target, regcache, regno);
3482 if (targetdebug)
3483 debug_print_register ("target_fetch_registers", regcache, regno);
3484 }
3485
3486 void
3487 target_store_registers (struct regcache *regcache, int regno)
3488 {
3489 struct target_ops *t;
3490
3491 if (!may_write_registers)
3492 error (_("Writing to registers is not allowed (regno %d)"), regno);
3493
3494 current_target.to_store_registers (&current_target, regcache, regno);
3495 if (targetdebug)
3496 {
3497 debug_print_register ("target_store_registers", regcache, regno);
3498 }
3499 }
3500
3501 int
3502 target_core_of_thread (ptid_t ptid)
3503 {
3504 return current_target.to_core_of_thread (&current_target, ptid);
3505 }
3506
3507 int
3508 simple_verify_memory (struct target_ops *ops,
3509 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3510 {
3511 LONGEST total_xfered = 0;
3512
3513 while (total_xfered < size)
3514 {
3515 ULONGEST xfered_len;
3516 enum target_xfer_status status;
3517 gdb_byte buf[1024];
3518 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3519
3520 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3521 buf, NULL, lma + total_xfered, howmuch,
3522 &xfered_len);
3523 if (status == TARGET_XFER_OK
3524 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3525 {
3526 total_xfered += xfered_len;
3527 QUIT;
3528 }
3529 else
3530 return 0;
3531 }
3532 return 1;
3533 }
3534
3535 /* Default implementation of memory verification. */
3536
3537 static int
3538 default_verify_memory (struct target_ops *self,
3539 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3540 {
3541 /* Start over from the top of the target stack. */
3542 return simple_verify_memory (current_target.beneath,
3543 data, memaddr, size);
3544 }
3545
3546 int
3547 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3548 {
3549 return current_target.to_verify_memory (&current_target,
3550 data, memaddr, size);
3551 }
3552
3553 /* The documentation for this function is in its prototype declaration in
3554 target.h. */
3555
3556 int
3557 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3558 enum target_hw_bp_type rw)
3559 {
3560 return current_target.to_insert_mask_watchpoint (&current_target,
3561 addr, mask, rw);
3562 }
3563
3564 /* The documentation for this function is in its prototype declaration in
3565 target.h. */
3566
3567 int
3568 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3569 enum target_hw_bp_type rw)
3570 {
3571 return current_target.to_remove_mask_watchpoint (&current_target,
3572 addr, mask, rw);
3573 }
3574
3575 /* The documentation for this function is in its prototype declaration
3576 in target.h. */
3577
3578 int
3579 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3580 {
3581 return current_target.to_masked_watch_num_registers (&current_target,
3582 addr, mask);
3583 }
3584
3585 /* The documentation for this function is in its prototype declaration
3586 in target.h. */
3587
3588 int
3589 target_ranged_break_num_registers (void)
3590 {
3591 return current_target.to_ranged_break_num_registers (&current_target);
3592 }
3593
3594 /* See target.h. */
3595
3596 int
3597 target_supports_btrace (enum btrace_format format)
3598 {
3599 return current_target.to_supports_btrace (&current_target, format);
3600 }
3601
3602 /* See target.h. */
3603
3604 struct btrace_target_info *
3605 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3606 {
3607 return current_target.to_enable_btrace (&current_target, ptid, conf);
3608 }
3609
3610 /* See target.h. */
3611
3612 void
3613 target_disable_btrace (struct btrace_target_info *btinfo)
3614 {
3615 current_target.to_disable_btrace (&current_target, btinfo);
3616 }
3617
3618 /* See target.h. */
3619
3620 void
3621 target_teardown_btrace (struct btrace_target_info *btinfo)
3622 {
3623 current_target.to_teardown_btrace (&current_target, btinfo);
3624 }
3625
3626 /* See target.h. */
3627
3628 enum btrace_error
3629 target_read_btrace (struct btrace_data *btrace,
3630 struct btrace_target_info *btinfo,
3631 enum btrace_read_type type)
3632 {
3633 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3634 }
3635
3636 /* See target.h. */
3637
3638 const struct btrace_config *
3639 target_btrace_conf (const struct btrace_target_info *btinfo)
3640 {
3641 return current_target.to_btrace_conf (&current_target, btinfo);
3642 }
3643
3644 /* See target.h. */
3645
3646 void
3647 target_stop_recording (void)
3648 {
3649 current_target.to_stop_recording (&current_target);
3650 }
3651
3652 /* See target.h. */
3653
3654 void
3655 target_save_record (const char *filename)
3656 {
3657 current_target.to_save_record (&current_target, filename);
3658 }
3659
3660 /* See target.h. */
3661
3662 int
3663 target_supports_delete_record (void)
3664 {
3665 struct target_ops *t;
3666
3667 for (t = current_target.beneath; t != NULL; t = t->beneath)
3668 if (t->to_delete_record != delegate_delete_record
3669 && t->to_delete_record != tdefault_delete_record)
3670 return 1;
3671
3672 return 0;
3673 }
3674
3675 /* See target.h. */
3676
3677 void
3678 target_delete_record (void)
3679 {
3680 current_target.to_delete_record (&current_target);
3681 }
3682
3683 /* See target.h. */
3684
3685 int
3686 target_record_is_replaying (ptid_t ptid)
3687 {
3688 return current_target.to_record_is_replaying (&current_target, ptid);
3689 }
3690
3691 /* See target.h. */
3692
3693 int
3694 target_record_will_replay (ptid_t ptid, int dir)
3695 {
3696 return current_target.to_record_will_replay (&current_target, ptid, dir);
3697 }
3698
3699 /* See target.h. */
3700
3701 void
3702 target_record_stop_replaying (void)
3703 {
3704 current_target.to_record_stop_replaying (&current_target);
3705 }
3706
3707 /* See target.h. */
3708
3709 void
3710 target_goto_record_begin (void)
3711 {
3712 current_target.to_goto_record_begin (&current_target);
3713 }
3714
3715 /* See target.h. */
3716
3717 void
3718 target_goto_record_end (void)
3719 {
3720 current_target.to_goto_record_end (&current_target);
3721 }
3722
3723 /* See target.h. */
3724
3725 void
3726 target_goto_record (ULONGEST insn)
3727 {
3728 current_target.to_goto_record (&current_target, insn);
3729 }
3730
3731 /* See target.h. */
3732
3733 void
3734 target_insn_history (int size, int flags)
3735 {
3736 current_target.to_insn_history (&current_target, size, flags);
3737 }
3738
3739 /* See target.h. */
3740
3741 void
3742 target_insn_history_from (ULONGEST from, int size, int flags)
3743 {
3744 current_target.to_insn_history_from (&current_target, from, size, flags);
3745 }
3746
3747 /* See target.h. */
3748
3749 void
3750 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3751 {
3752 current_target.to_insn_history_range (&current_target, begin, end, flags);
3753 }
3754
3755 /* See target.h. */
3756
3757 void
3758 target_call_history (int size, int flags)
3759 {
3760 current_target.to_call_history (&current_target, size, flags);
3761 }
3762
3763 /* See target.h. */
3764
3765 void
3766 target_call_history_from (ULONGEST begin, int size, int flags)
3767 {
3768 current_target.to_call_history_from (&current_target, begin, size, flags);
3769 }
3770
3771 /* See target.h. */
3772
3773 void
3774 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3775 {
3776 current_target.to_call_history_range (&current_target, begin, end, flags);
3777 }
3778
3779 /* See target.h. */
3780
3781 const struct frame_unwind *
3782 target_get_unwinder (void)
3783 {
3784 return current_target.to_get_unwinder (&current_target);
3785 }
3786
3787 /* See target.h. */
3788
3789 const struct frame_unwind *
3790 target_get_tailcall_unwinder (void)
3791 {
3792 return current_target.to_get_tailcall_unwinder (&current_target);
3793 }
3794
3795 /* See target.h. */
3796
3797 void
3798 target_prepare_to_generate_core (void)
3799 {
3800 current_target.to_prepare_to_generate_core (&current_target);
3801 }
3802
3803 /* See target.h. */
3804
3805 void
3806 target_done_generating_core (void)
3807 {
3808 current_target.to_done_generating_core (&current_target);
3809 }
3810
3811 static void
3812 setup_target_debug (void)
3813 {
3814 memcpy (&debug_target, &current_target, sizeof debug_target);
3815
3816 init_debug_target (&current_target);
3817 }
3818 \f
3819
3820 static char targ_desc[] =
3821 "Names of targets and files being debugged.\nShows the entire \
3822 stack of targets currently in use (including the exec-file,\n\
3823 core-file, and process, if any), as well as the symbol file name.";
3824
3825 static void
3826 default_rcmd (struct target_ops *self, const char *command,
3827 struct ui_file *output)
3828 {
3829 error (_("\"monitor\" command not supported by this target."));
3830 }
3831
3832 static void
3833 do_monitor_command (char *cmd,
3834 int from_tty)
3835 {
3836 target_rcmd (cmd, gdb_stdtarg);
3837 }
3838
3839 /* Print the name of each layers of our target stack. */
3840
3841 static void
3842 maintenance_print_target_stack (char *cmd, int from_tty)
3843 {
3844 struct target_ops *t;
3845
3846 printf_filtered (_("The current target stack is:\n"));
3847
3848 for (t = target_stack; t != NULL; t = t->beneath)
3849 {
3850 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3851 }
3852 }
3853
3854 /* See target.h. */
3855
3856 void
3857 target_async (int enable)
3858 {
3859 infrun_async (enable);
3860 current_target.to_async (&current_target, enable);
3861 }
3862
3863 /* See target.h. */
3864
3865 void
3866 target_thread_events (int enable)
3867 {
3868 current_target.to_thread_events (&current_target, enable);
3869 }
3870
3871 /* Controls if targets can report that they can/are async. This is
3872 just for maintainers to use when debugging gdb. */
3873 int target_async_permitted = 1;
3874
3875 /* The set command writes to this variable. If the inferior is
3876 executing, target_async_permitted is *not* updated. */
3877 static int target_async_permitted_1 = 1;
3878
3879 static void
3880 maint_set_target_async_command (char *args, int from_tty,
3881 struct cmd_list_element *c)
3882 {
3883 if (have_live_inferiors ())
3884 {
3885 target_async_permitted_1 = target_async_permitted;
3886 error (_("Cannot change this setting while the inferior is running."));
3887 }
3888
3889 target_async_permitted = target_async_permitted_1;
3890 }
3891
3892 static void
3893 maint_show_target_async_command (struct ui_file *file, int from_tty,
3894 struct cmd_list_element *c,
3895 const char *value)
3896 {
3897 fprintf_filtered (file,
3898 _("Controlling the inferior in "
3899 "asynchronous mode is %s.\n"), value);
3900 }
3901
3902 /* Return true if the target operates in non-stop mode even with "set
3903 non-stop off". */
3904
3905 static int
3906 target_always_non_stop_p (void)
3907 {
3908 return current_target.to_always_non_stop_p (&current_target);
3909 }
3910
3911 /* See target.h. */
3912
3913 int
3914 target_is_non_stop_p (void)
3915 {
3916 return (non_stop
3917 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3918 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3919 && target_always_non_stop_p ()));
3920 }
3921
3922 /* Controls if targets can report that they always run in non-stop
3923 mode. This is just for maintainers to use when debugging gdb. */
3924 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3925
3926 /* The set command writes to this variable. If the inferior is
3927 executing, target_non_stop_enabled is *not* updated. */
3928 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3929
3930 /* Implementation of "maint set target-non-stop". */
3931
3932 static void
3933 maint_set_target_non_stop_command (char *args, int from_tty,
3934 struct cmd_list_element *c)
3935 {
3936 if (have_live_inferiors ())
3937 {
3938 target_non_stop_enabled_1 = target_non_stop_enabled;
3939 error (_("Cannot change this setting while the inferior is running."));
3940 }
3941
3942 target_non_stop_enabled = target_non_stop_enabled_1;
3943 }
3944
3945 /* Implementation of "maint show target-non-stop". */
3946
3947 static void
3948 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3949 struct cmd_list_element *c,
3950 const char *value)
3951 {
3952 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3953 fprintf_filtered (file,
3954 _("Whether the target is always in non-stop mode "
3955 "is %s (currently %s).\n"), value,
3956 target_always_non_stop_p () ? "on" : "off");
3957 else
3958 fprintf_filtered (file,
3959 _("Whether the target is always in non-stop mode "
3960 "is %s.\n"), value);
3961 }
3962
3963 /* Temporary copies of permission settings. */
3964
3965 static int may_write_registers_1 = 1;
3966 static int may_write_memory_1 = 1;
3967 static int may_insert_breakpoints_1 = 1;
3968 static int may_insert_tracepoints_1 = 1;
3969 static int may_insert_fast_tracepoints_1 = 1;
3970 static int may_stop_1 = 1;
3971
3972 /* Make the user-set values match the real values again. */
3973
3974 void
3975 update_target_permissions (void)
3976 {
3977 may_write_registers_1 = may_write_registers;
3978 may_write_memory_1 = may_write_memory;
3979 may_insert_breakpoints_1 = may_insert_breakpoints;
3980 may_insert_tracepoints_1 = may_insert_tracepoints;
3981 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3982 may_stop_1 = may_stop;
3983 }
3984
3985 /* The one function handles (most of) the permission flags in the same
3986 way. */
3987
3988 static void
3989 set_target_permissions (char *args, int from_tty,
3990 struct cmd_list_element *c)
3991 {
3992 if (target_has_execution)
3993 {
3994 update_target_permissions ();
3995 error (_("Cannot change this setting while the inferior is running."));
3996 }
3997
3998 /* Make the real values match the user-changed values. */
3999 may_write_registers = may_write_registers_1;
4000 may_insert_breakpoints = may_insert_breakpoints_1;
4001 may_insert_tracepoints = may_insert_tracepoints_1;
4002 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4003 may_stop = may_stop_1;
4004 update_observer_mode ();
4005 }
4006
4007 /* Set memory write permission independently of observer mode. */
4008
4009 static void
4010 set_write_memory_permission (char *args, int from_tty,
4011 struct cmd_list_element *c)
4012 {
4013 /* Make the real values match the user-changed values. */
4014 may_write_memory = may_write_memory_1;
4015 update_observer_mode ();
4016 }
4017
4018
4019 void
4020 initialize_targets (void)
4021 {
4022 init_dummy_target ();
4023 push_target (&dummy_target);
4024
4025 add_info ("target", target_info, targ_desc);
4026 add_info ("files", target_info, targ_desc);
4027
4028 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4029 Set target debugging."), _("\
4030 Show target debugging."), _("\
4031 When non-zero, target debugging is enabled. Higher numbers are more\n\
4032 verbose."),
4033 set_targetdebug,
4034 show_targetdebug,
4035 &setdebuglist, &showdebuglist);
4036
4037 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4038 &trust_readonly, _("\
4039 Set mode for reading from readonly sections."), _("\
4040 Show mode for reading from readonly sections."), _("\
4041 When this mode is on, memory reads from readonly sections (such as .text)\n\
4042 will be read from the object file instead of from the target. This will\n\
4043 result in significant performance improvement for remote targets."),
4044 NULL,
4045 show_trust_readonly,
4046 &setlist, &showlist);
4047
4048 add_com ("monitor", class_obscure, do_monitor_command,
4049 _("Send a command to the remote monitor (remote targets only)."));
4050
4051 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4052 _("Print the name of each layer of the internal target stack."),
4053 &maintenanceprintlist);
4054
4055 add_setshow_boolean_cmd ("target-async", no_class,
4056 &target_async_permitted_1, _("\
4057 Set whether gdb controls the inferior in asynchronous mode."), _("\
4058 Show whether gdb controls the inferior in asynchronous mode."), _("\
4059 Tells gdb whether to control the inferior in asynchronous mode."),
4060 maint_set_target_async_command,
4061 maint_show_target_async_command,
4062 &maintenance_set_cmdlist,
4063 &maintenance_show_cmdlist);
4064
4065 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4066 &target_non_stop_enabled_1, _("\
4067 Set whether gdb always controls the inferior in non-stop mode."), _("\
4068 Show whether gdb always controls the inferior in non-stop mode."), _("\
4069 Tells gdb whether to control the inferior in non-stop mode."),
4070 maint_set_target_non_stop_command,
4071 maint_show_target_non_stop_command,
4072 &maintenance_set_cmdlist,
4073 &maintenance_show_cmdlist);
4074
4075 add_setshow_boolean_cmd ("may-write-registers", class_support,
4076 &may_write_registers_1, _("\
4077 Set permission to write into registers."), _("\
4078 Show permission to write into registers."), _("\
4079 When this permission is on, GDB may write into the target's registers.\n\
4080 Otherwise, any sort of write attempt will result in an error."),
4081 set_target_permissions, NULL,
4082 &setlist, &showlist);
4083
4084 add_setshow_boolean_cmd ("may-write-memory", class_support,
4085 &may_write_memory_1, _("\
4086 Set permission to write into target memory."), _("\
4087 Show permission to write into target memory."), _("\
4088 When this permission is on, GDB may write into the target's memory.\n\
4089 Otherwise, any sort of write attempt will result in an error."),
4090 set_write_memory_permission, NULL,
4091 &setlist, &showlist);
4092
4093 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4094 &may_insert_breakpoints_1, _("\
4095 Set permission to insert breakpoints in the target."), _("\
4096 Show permission to insert breakpoints in the target."), _("\
4097 When this permission is on, GDB may insert breakpoints in the program.\n\
4098 Otherwise, any sort of insertion attempt will result in an error."),
4099 set_target_permissions, NULL,
4100 &setlist, &showlist);
4101
4102 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4103 &may_insert_tracepoints_1, _("\
4104 Set permission to insert tracepoints in the target."), _("\
4105 Show permission to insert tracepoints in the target."), _("\
4106 When this permission is on, GDB may insert tracepoints in the program.\n\
4107 Otherwise, any sort of insertion attempt will result in an error."),
4108 set_target_permissions, NULL,
4109 &setlist, &showlist);
4110
4111 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4112 &may_insert_fast_tracepoints_1, _("\
4113 Set permission to insert fast tracepoints in the target."), _("\
4114 Show permission to insert fast tracepoints in the target."), _("\
4115 When this permission is on, GDB may insert fast tracepoints.\n\
4116 Otherwise, any sort of insertion attempt will result in an error."),
4117 set_target_permissions, NULL,
4118 &setlist, &showlist);
4119
4120 add_setshow_boolean_cmd ("may-interrupt", class_support,
4121 &may_stop_1, _("\
4122 Set permission to interrupt or signal the target."), _("\
4123 Show permission to interrupt or signal the target."), _("\
4124 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4125 Otherwise, any attempt to interrupt or stop will be ignored."),
4126 set_target_permissions, NULL,
4127 &setlist, &showlist);
4128
4129 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4130 &auto_connect_native_target, _("\
4131 Set whether GDB may automatically connect to the native target."), _("\
4132 Show whether GDB may automatically connect to the native target."), _("\
4133 When on, and GDB is not connected to a target yet, GDB\n\
4134 attempts \"run\" and other commands with the native target."),
4135 NULL, show_auto_connect_native_target,
4136 &setlist, &showlist);
4137 }