]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
remove trivialy unused variables
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = (struct target_ops *) get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state = terminal_is_ours;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 int
470 target_terminal_is_ours (void)
471 {
472 return (terminal_state == terminal_is_ours);
473 }
474
475 /* See target.h. */
476
477 void
478 target_terminal_inferior (void)
479 {
480 /* A background resume (``run&'') should leave GDB in control of the
481 terminal. Use target_can_async_p, not target_is_async_p, since at
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
485 return;
486
487 if (terminal_state == terminal_is_inferior)
488 return;
489
490 /* If GDB is resuming the inferior in the foreground, install
491 inferior's terminal modes. */
492 (*current_target.to_terminal_inferior) (&current_target);
493 terminal_state = terminal_is_inferior;
494
495 /* If the user hit C-c before, pretend that it was hit right
496 here. */
497 if (check_quit_flag ())
498 target_pass_ctrlc ();
499 }
500
501 /* See target.h. */
502
503 void
504 target_terminal_ours (void)
505 {
506 if (terminal_state == terminal_is_ours)
507 return;
508
509 (*current_target.to_terminal_ours) (&current_target);
510 terminal_state = terminal_is_ours;
511 }
512
513 /* See target.h. */
514
515 void
516 target_terminal_ours_for_output (void)
517 {
518 if (terminal_state != terminal_is_inferior)
519 return;
520 (*current_target.to_terminal_ours_for_output) (&current_target);
521 terminal_state = terminal_is_ours_for_output;
522 }
523
524 /* See target.h. */
525
526 int
527 target_supports_terminal_ours (void)
528 {
529 struct target_ops *t;
530
531 for (t = current_target.beneath; t != NULL; t = t->beneath)
532 {
533 if (t->to_terminal_ours != delegate_terminal_ours
534 && t->to_terminal_ours != tdefault_terminal_ours)
535 return 1;
536 }
537
538 return 0;
539 }
540
541 /* Restore the terminal to its previous state (helper for
542 make_cleanup_restore_target_terminal). */
543
544 static void
545 cleanup_restore_target_terminal (void *arg)
546 {
547 enum terminal_state *previous_state = (enum terminal_state *) arg;
548
549 switch (*previous_state)
550 {
551 case terminal_is_ours:
552 target_terminal_ours ();
553 break;
554 case terminal_is_ours_for_output:
555 target_terminal_ours_for_output ();
556 break;
557 case terminal_is_inferior:
558 target_terminal_inferior ();
559 break;
560 }
561 }
562
563 /* See target.h. */
564
565 struct cleanup *
566 make_cleanup_restore_target_terminal (void)
567 {
568 enum terminal_state *ts = XNEW (enum terminal_state);
569
570 *ts = terminal_state;
571
572 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
573 }
574
575 static void
576 tcomplain (void)
577 {
578 error (_("You can't do that when your target is `%s'"),
579 current_target.to_shortname);
580 }
581
582 void
583 noprocess (void)
584 {
585 error (_("You can't do that without a process to debug."));
586 }
587
588 static void
589 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
590 {
591 printf_unfiltered (_("No saved terminal information.\n"));
592 }
593
594 /* A default implementation for the to_get_ada_task_ptid target method.
595
596 This function builds the PTID by using both LWP and TID as part of
597 the PTID lwp and tid elements. The pid used is the pid of the
598 inferior_ptid. */
599
600 static ptid_t
601 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
602 {
603 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
604 }
605
606 static enum exec_direction_kind
607 default_execution_direction (struct target_ops *self)
608 {
609 if (!target_can_execute_reverse)
610 return EXEC_FORWARD;
611 else if (!target_can_async_p ())
612 return EXEC_FORWARD;
613 else
614 gdb_assert_not_reached ("\
615 to_execution_direction must be implemented for reverse async");
616 }
617
618 /* Go through the target stack from top to bottom, copying over zero
619 entries in current_target, then filling in still empty entries. In
620 effect, we are doing class inheritance through the pushed target
621 vectors.
622
623 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
624 is currently implemented, is that it discards any knowledge of
625 which target an inherited method originally belonged to.
626 Consequently, new new target methods should instead explicitly and
627 locally search the target stack for the target that can handle the
628 request. */
629
630 static void
631 update_current_target (void)
632 {
633 struct target_ops *t;
634
635 /* First, reset current's contents. */
636 memset (&current_target, 0, sizeof (current_target));
637
638 /* Install the delegators. */
639 install_delegators (&current_target);
640
641 current_target.to_stratum = target_stack->to_stratum;
642
643 #define INHERIT(FIELD, TARGET) \
644 if (!current_target.FIELD) \
645 current_target.FIELD = (TARGET)->FIELD
646
647 /* Do not add any new INHERITs here. Instead, use the delegation
648 mechanism provided by make-target-delegates. */
649 for (t = target_stack; t; t = t->beneath)
650 {
651 INHERIT (to_shortname, t);
652 INHERIT (to_longname, t);
653 INHERIT (to_attach_no_wait, t);
654 INHERIT (to_have_steppable_watchpoint, t);
655 INHERIT (to_have_continuable_watchpoint, t);
656 INHERIT (to_has_thread_control, t);
657 }
658 #undef INHERIT
659
660 /* Finally, position the target-stack beneath the squashed
661 "current_target". That way code looking for a non-inherited
662 target method can quickly and simply find it. */
663 current_target.beneath = target_stack;
664
665 if (targetdebug)
666 setup_target_debug ();
667 }
668
669 /* Push a new target type into the stack of the existing target accessors,
670 possibly superseding some of the existing accessors.
671
672 Rather than allow an empty stack, we always have the dummy target at
673 the bottom stratum, so we can call the function vectors without
674 checking them. */
675
676 void
677 push_target (struct target_ops *t)
678 {
679 struct target_ops **cur;
680
681 /* Check magic number. If wrong, it probably means someone changed
682 the struct definition, but not all the places that initialize one. */
683 if (t->to_magic != OPS_MAGIC)
684 {
685 fprintf_unfiltered (gdb_stderr,
686 "Magic number of %s target struct wrong\n",
687 t->to_shortname);
688 internal_error (__FILE__, __LINE__,
689 _("failed internal consistency check"));
690 }
691
692 /* Find the proper stratum to install this target in. */
693 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
694 {
695 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
696 break;
697 }
698
699 /* If there's already targets at this stratum, remove them. */
700 /* FIXME: cagney/2003-10-15: I think this should be popping all
701 targets to CUR, and not just those at this stratum level. */
702 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
703 {
704 /* There's already something at this stratum level. Close it,
705 and un-hook it from the stack. */
706 struct target_ops *tmp = (*cur);
707
708 (*cur) = (*cur)->beneath;
709 tmp->beneath = NULL;
710 target_close (tmp);
711 }
712
713 /* We have removed all targets in our stratum, now add the new one. */
714 t->beneath = (*cur);
715 (*cur) = t;
716
717 update_current_target ();
718 }
719
720 /* Remove a target_ops vector from the stack, wherever it may be.
721 Return how many times it was removed (0 or 1). */
722
723 int
724 unpush_target (struct target_ops *t)
725 {
726 struct target_ops **cur;
727 struct target_ops *tmp;
728
729 if (t->to_stratum == dummy_stratum)
730 internal_error (__FILE__, __LINE__,
731 _("Attempt to unpush the dummy target"));
732
733 /* Look for the specified target. Note that we assume that a target
734 can only occur once in the target stack. */
735
736 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
737 {
738 if ((*cur) == t)
739 break;
740 }
741
742 /* If we don't find target_ops, quit. Only open targets should be
743 closed. */
744 if ((*cur) == NULL)
745 return 0;
746
747 /* Unchain the target. */
748 tmp = (*cur);
749 (*cur) = (*cur)->beneath;
750 tmp->beneath = NULL;
751
752 update_current_target ();
753
754 /* Finally close the target. Note we do this after unchaining, so
755 any target method calls from within the target_close
756 implementation don't end up in T anymore. */
757 target_close (t);
758
759 return 1;
760 }
761
762 /* Unpush TARGET and assert that it worked. */
763
764 static void
765 unpush_target_and_assert (struct target_ops *target)
766 {
767 if (!unpush_target (target))
768 {
769 fprintf_unfiltered (gdb_stderr,
770 "pop_all_targets couldn't find target %s\n",
771 target->to_shortname);
772 internal_error (__FILE__, __LINE__,
773 _("failed internal consistency check"));
774 }
775 }
776
777 void
778 pop_all_targets_above (enum strata above_stratum)
779 {
780 while ((int) (current_target.to_stratum) > (int) above_stratum)
781 unpush_target_and_assert (target_stack);
782 }
783
784 /* See target.h. */
785
786 void
787 pop_all_targets_at_and_above (enum strata stratum)
788 {
789 while ((int) (current_target.to_stratum) >= (int) stratum)
790 unpush_target_and_assert (target_stack);
791 }
792
793 void
794 pop_all_targets (void)
795 {
796 pop_all_targets_above (dummy_stratum);
797 }
798
799 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
800
801 int
802 target_is_pushed (struct target_ops *t)
803 {
804 struct target_ops *cur;
805
806 /* Check magic number. If wrong, it probably means someone changed
807 the struct definition, but not all the places that initialize one. */
808 if (t->to_magic != OPS_MAGIC)
809 {
810 fprintf_unfiltered (gdb_stderr,
811 "Magic number of %s target struct wrong\n",
812 t->to_shortname);
813 internal_error (__FILE__, __LINE__,
814 _("failed internal consistency check"));
815 }
816
817 for (cur = target_stack; cur != NULL; cur = cur->beneath)
818 if (cur == t)
819 return 1;
820
821 return 0;
822 }
823
824 /* Default implementation of to_get_thread_local_address. */
825
826 static void
827 generic_tls_error (void)
828 {
829 throw_error (TLS_GENERIC_ERROR,
830 _("Cannot find thread-local variables on this target"));
831 }
832
833 /* Using the objfile specified in OBJFILE, find the address for the
834 current thread's thread-local storage with offset OFFSET. */
835 CORE_ADDR
836 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
837 {
838 volatile CORE_ADDR addr = 0;
839 struct target_ops *target = &current_target;
840
841 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
842 {
843 ptid_t ptid = inferior_ptid;
844
845 TRY
846 {
847 CORE_ADDR lm_addr;
848
849 /* Fetch the load module address for this objfile. */
850 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
851 objfile);
852
853 addr = target->to_get_thread_local_address (target, ptid,
854 lm_addr, offset);
855 }
856 /* If an error occurred, print TLS related messages here. Otherwise,
857 throw the error to some higher catcher. */
858 CATCH (ex, RETURN_MASK_ALL)
859 {
860 int objfile_is_library = (objfile->flags & OBJF_SHARED);
861
862 switch (ex.error)
863 {
864 case TLS_NO_LIBRARY_SUPPORT_ERROR:
865 error (_("Cannot find thread-local variables "
866 "in this thread library."));
867 break;
868 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
869 if (objfile_is_library)
870 error (_("Cannot find shared library `%s' in dynamic"
871 " linker's load module list"), objfile_name (objfile));
872 else
873 error (_("Cannot find executable file `%s' in dynamic"
874 " linker's load module list"), objfile_name (objfile));
875 break;
876 case TLS_NOT_ALLOCATED_YET_ERROR:
877 if (objfile_is_library)
878 error (_("The inferior has not yet allocated storage for"
879 " thread-local variables in\n"
880 "the shared library `%s'\n"
881 "for %s"),
882 objfile_name (objfile), target_pid_to_str (ptid));
883 else
884 error (_("The inferior has not yet allocated storage for"
885 " thread-local variables in\n"
886 "the executable `%s'\n"
887 "for %s"),
888 objfile_name (objfile), target_pid_to_str (ptid));
889 break;
890 case TLS_GENERIC_ERROR:
891 if (objfile_is_library)
892 error (_("Cannot find thread-local storage for %s, "
893 "shared library %s:\n%s"),
894 target_pid_to_str (ptid),
895 objfile_name (objfile), ex.message);
896 else
897 error (_("Cannot find thread-local storage for %s, "
898 "executable file %s:\n%s"),
899 target_pid_to_str (ptid),
900 objfile_name (objfile), ex.message);
901 break;
902 default:
903 throw_exception (ex);
904 break;
905 }
906 }
907 END_CATCH
908 }
909 /* It wouldn't be wrong here to try a gdbarch method, too; finding
910 TLS is an ABI-specific thing. But we don't do that yet. */
911 else
912 error (_("Cannot find thread-local variables on this target"));
913
914 return addr;
915 }
916
917 const char *
918 target_xfer_status_to_string (enum target_xfer_status status)
919 {
920 #define CASE(X) case X: return #X
921 switch (status)
922 {
923 CASE(TARGET_XFER_E_IO);
924 CASE(TARGET_XFER_UNAVAILABLE);
925 default:
926 return "<unknown>";
927 }
928 #undef CASE
929 };
930
931
932 #undef MIN
933 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
934
935 /* target_read_string -- read a null terminated string, up to LEN bytes,
936 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
937 Set *STRING to a pointer to malloc'd memory containing the data; the caller
938 is responsible for freeing it. Return the number of bytes successfully
939 read. */
940
941 int
942 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
943 {
944 int tlen, offset, i;
945 gdb_byte buf[4];
946 int errcode = 0;
947 char *buffer;
948 int buffer_allocated;
949 char *bufptr;
950 unsigned int nbytes_read = 0;
951
952 gdb_assert (string);
953
954 /* Small for testing. */
955 buffer_allocated = 4;
956 buffer = (char *) xmalloc (buffer_allocated);
957 bufptr = buffer;
958
959 while (len > 0)
960 {
961 tlen = MIN (len, 4 - (memaddr & 3));
962 offset = memaddr & 3;
963
964 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
965 if (errcode != 0)
966 {
967 /* The transfer request might have crossed the boundary to an
968 unallocated region of memory. Retry the transfer, requesting
969 a single byte. */
970 tlen = 1;
971 offset = 0;
972 errcode = target_read_memory (memaddr, buf, 1);
973 if (errcode != 0)
974 goto done;
975 }
976
977 if (bufptr - buffer + tlen > buffer_allocated)
978 {
979 unsigned int bytes;
980
981 bytes = bufptr - buffer;
982 buffer_allocated *= 2;
983 buffer = (char *) xrealloc (buffer, buffer_allocated);
984 bufptr = buffer + bytes;
985 }
986
987 for (i = 0; i < tlen; i++)
988 {
989 *bufptr++ = buf[i + offset];
990 if (buf[i + offset] == '\000')
991 {
992 nbytes_read += i + 1;
993 goto done;
994 }
995 }
996
997 memaddr += tlen;
998 len -= tlen;
999 nbytes_read += tlen;
1000 }
1001 done:
1002 *string = buffer;
1003 if (errnop != NULL)
1004 *errnop = errcode;
1005 return nbytes_read;
1006 }
1007
1008 struct target_section_table *
1009 target_get_section_table (struct target_ops *target)
1010 {
1011 return (*target->to_get_section_table) (target);
1012 }
1013
1014 /* Find a section containing ADDR. */
1015
1016 struct target_section *
1017 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1018 {
1019 struct target_section_table *table = target_get_section_table (target);
1020 struct target_section *secp;
1021
1022 if (table == NULL)
1023 return NULL;
1024
1025 for (secp = table->sections; secp < table->sections_end; secp++)
1026 {
1027 if (addr >= secp->addr && addr < secp->endaddr)
1028 return secp;
1029 }
1030 return NULL;
1031 }
1032
1033
1034 /* Helper for the memory xfer routines. Checks the attributes of the
1035 memory region of MEMADDR against the read or write being attempted.
1036 If the access is permitted returns true, otherwise returns false.
1037 REGION_P is an optional output parameter. If not-NULL, it is
1038 filled with a pointer to the memory region of MEMADDR. REG_LEN
1039 returns LEN trimmed to the end of the region. This is how much the
1040 caller can continue requesting, if the access is permitted. A
1041 single xfer request must not straddle memory region boundaries. */
1042
1043 static int
1044 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1045 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1046 struct mem_region **region_p)
1047 {
1048 struct mem_region *region;
1049
1050 region = lookup_mem_region (memaddr);
1051
1052 if (region_p != NULL)
1053 *region_p = region;
1054
1055 switch (region->attrib.mode)
1056 {
1057 case MEM_RO:
1058 if (writebuf != NULL)
1059 return 0;
1060 break;
1061
1062 case MEM_WO:
1063 if (readbuf != NULL)
1064 return 0;
1065 break;
1066
1067 case MEM_FLASH:
1068 /* We only support writing to flash during "load" for now. */
1069 if (writebuf != NULL)
1070 error (_("Writing to flash memory forbidden in this context"));
1071 break;
1072
1073 case MEM_NONE:
1074 return 0;
1075 }
1076
1077 /* region->hi == 0 means there's no upper bound. */
1078 if (memaddr + len < region->hi || region->hi == 0)
1079 *reg_len = len;
1080 else
1081 *reg_len = region->hi - memaddr;
1082
1083 return 1;
1084 }
1085
1086 /* Read memory from more than one valid target. A core file, for
1087 instance, could have some of memory but delegate other bits to
1088 the target below it. So, we must manually try all targets. */
1089
1090 enum target_xfer_status
1091 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1092 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1093 ULONGEST *xfered_len)
1094 {
1095 enum target_xfer_status res;
1096
1097 do
1098 {
1099 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1100 readbuf, writebuf, memaddr, len,
1101 xfered_len);
1102 if (res == TARGET_XFER_OK)
1103 break;
1104
1105 /* Stop if the target reports that the memory is not available. */
1106 if (res == TARGET_XFER_UNAVAILABLE)
1107 break;
1108
1109 /* We want to continue past core files to executables, but not
1110 past a running target's memory. */
1111 if (ops->to_has_all_memory (ops))
1112 break;
1113
1114 ops = ops->beneath;
1115 }
1116 while (ops != NULL);
1117
1118 /* The cache works at the raw memory level. Make sure the cache
1119 gets updated with raw contents no matter what kind of memory
1120 object was originally being written. Note we do write-through
1121 first, so that if it fails, we don't write to the cache contents
1122 that never made it to the target. */
1123 if (writebuf != NULL
1124 && !ptid_equal (inferior_ptid, null_ptid)
1125 && target_dcache_init_p ()
1126 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1127 {
1128 DCACHE *dcache = target_dcache_get ();
1129
1130 /* Note that writing to an area of memory which wasn't present
1131 in the cache doesn't cause it to be loaded in. */
1132 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1133 }
1134
1135 return res;
1136 }
1137
1138 /* Perform a partial memory transfer.
1139 For docs see target.h, to_xfer_partial. */
1140
1141 static enum target_xfer_status
1142 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1143 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1144 ULONGEST len, ULONGEST *xfered_len)
1145 {
1146 enum target_xfer_status res;
1147 ULONGEST reg_len;
1148 struct mem_region *region;
1149 struct inferior *inf;
1150
1151 /* For accesses to unmapped overlay sections, read directly from
1152 files. Must do this first, as MEMADDR may need adjustment. */
1153 if (readbuf != NULL && overlay_debugging)
1154 {
1155 struct obj_section *section = find_pc_overlay (memaddr);
1156
1157 if (pc_in_unmapped_range (memaddr, section))
1158 {
1159 struct target_section_table *table
1160 = target_get_section_table (ops);
1161 const char *section_name = section->the_bfd_section->name;
1162
1163 memaddr = overlay_mapped_address (memaddr, section);
1164 return section_table_xfer_memory_partial (readbuf, writebuf,
1165 memaddr, len, xfered_len,
1166 table->sections,
1167 table->sections_end,
1168 section_name);
1169 }
1170 }
1171
1172 /* Try the executable files, if "trust-readonly-sections" is set. */
1173 if (readbuf != NULL && trust_readonly)
1174 {
1175 struct target_section *secp;
1176 struct target_section_table *table;
1177
1178 secp = target_section_by_addr (ops, memaddr);
1179 if (secp != NULL
1180 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1181 secp->the_bfd_section)
1182 & SEC_READONLY))
1183 {
1184 table = target_get_section_table (ops);
1185 return section_table_xfer_memory_partial (readbuf, writebuf,
1186 memaddr, len, xfered_len,
1187 table->sections,
1188 table->sections_end,
1189 NULL);
1190 }
1191 }
1192
1193 /* Try GDB's internal data cache. */
1194
1195 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1196 &region))
1197 return TARGET_XFER_E_IO;
1198
1199 if (!ptid_equal (inferior_ptid, null_ptid))
1200 inf = find_inferior_ptid (inferior_ptid);
1201 else
1202 inf = NULL;
1203
1204 if (inf != NULL
1205 && readbuf != NULL
1206 /* The dcache reads whole cache lines; that doesn't play well
1207 with reading from a trace buffer, because reading outside of
1208 the collected memory range fails. */
1209 && get_traceframe_number () == -1
1210 && (region->attrib.cache
1211 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1212 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1213 {
1214 DCACHE *dcache = target_dcache_get_or_init ();
1215
1216 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1217 reg_len, xfered_len);
1218 }
1219
1220 /* If none of those methods found the memory we wanted, fall back
1221 to a target partial transfer. Normally a single call to
1222 to_xfer_partial is enough; if it doesn't recognize an object
1223 it will call the to_xfer_partial of the next target down.
1224 But for memory this won't do. Memory is the only target
1225 object which can be read from more than one valid target.
1226 A core file, for instance, could have some of memory but
1227 delegate other bits to the target below it. So, we must
1228 manually try all targets. */
1229
1230 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1231 xfered_len);
1232
1233 /* If we still haven't got anything, return the last error. We
1234 give up. */
1235 return res;
1236 }
1237
1238 /* Perform a partial memory transfer. For docs see target.h,
1239 to_xfer_partial. */
1240
1241 static enum target_xfer_status
1242 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1243 gdb_byte *readbuf, const gdb_byte *writebuf,
1244 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1245 {
1246 enum target_xfer_status res;
1247
1248 /* Zero length requests are ok and require no work. */
1249 if (len == 0)
1250 return TARGET_XFER_EOF;
1251
1252 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1253 breakpoint insns, thus hiding out from higher layers whether
1254 there are software breakpoints inserted in the code stream. */
1255 if (readbuf != NULL)
1256 {
1257 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1258 xfered_len);
1259
1260 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1261 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1262 }
1263 else
1264 {
1265 gdb_byte *buf;
1266 struct cleanup *old_chain;
1267
1268 /* A large write request is likely to be partially satisfied
1269 by memory_xfer_partial_1. We will continually malloc
1270 and free a copy of the entire write request for breakpoint
1271 shadow handling even though we only end up writing a small
1272 subset of it. Cap writes to 4KB to mitigate this. */
1273 len = min (4096, len);
1274
1275 buf = (gdb_byte *) xmalloc (len);
1276 old_chain = make_cleanup (xfree, buf);
1277 memcpy (buf, writebuf, len);
1278
1279 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1280 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1281 xfered_len);
1282
1283 do_cleanups (old_chain);
1284 }
1285
1286 return res;
1287 }
1288
1289 static void
1290 restore_show_memory_breakpoints (void *arg)
1291 {
1292 show_memory_breakpoints = (uintptr_t) arg;
1293 }
1294
1295 struct cleanup *
1296 make_show_memory_breakpoints_cleanup (int show)
1297 {
1298 int current = show_memory_breakpoints;
1299
1300 show_memory_breakpoints = show;
1301 return make_cleanup (restore_show_memory_breakpoints,
1302 (void *) (uintptr_t) current);
1303 }
1304
1305 /* For docs see target.h, to_xfer_partial. */
1306
1307 enum target_xfer_status
1308 target_xfer_partial (struct target_ops *ops,
1309 enum target_object object, const char *annex,
1310 gdb_byte *readbuf, const gdb_byte *writebuf,
1311 ULONGEST offset, ULONGEST len,
1312 ULONGEST *xfered_len)
1313 {
1314 enum target_xfer_status retval;
1315
1316 gdb_assert (ops->to_xfer_partial != NULL);
1317
1318 /* Transfer is done when LEN is zero. */
1319 if (len == 0)
1320 return TARGET_XFER_EOF;
1321
1322 if (writebuf && !may_write_memory)
1323 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1324 core_addr_to_string_nz (offset), plongest (len));
1325
1326 *xfered_len = 0;
1327
1328 /* If this is a memory transfer, let the memory-specific code
1329 have a look at it instead. Memory transfers are more
1330 complicated. */
1331 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1332 || object == TARGET_OBJECT_CODE_MEMORY)
1333 retval = memory_xfer_partial (ops, object, readbuf,
1334 writebuf, offset, len, xfered_len);
1335 else if (object == TARGET_OBJECT_RAW_MEMORY)
1336 {
1337 /* Skip/avoid accessing the target if the memory region
1338 attributes block the access. Check this here instead of in
1339 raw_memory_xfer_partial as otherwise we'd end up checking
1340 this twice in the case of the memory_xfer_partial path is
1341 taken; once before checking the dcache, and another in the
1342 tail call to raw_memory_xfer_partial. */
1343 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1344 NULL))
1345 return TARGET_XFER_E_IO;
1346
1347 /* Request the normal memory object from other layers. */
1348 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1349 xfered_len);
1350 }
1351 else
1352 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1353 writebuf, offset, len, xfered_len);
1354
1355 if (targetdebug)
1356 {
1357 const unsigned char *myaddr = NULL;
1358
1359 fprintf_unfiltered (gdb_stdlog,
1360 "%s:target_xfer_partial "
1361 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1362 ops->to_shortname,
1363 (int) object,
1364 (annex ? annex : "(null)"),
1365 host_address_to_string (readbuf),
1366 host_address_to_string (writebuf),
1367 core_addr_to_string_nz (offset),
1368 pulongest (len), retval,
1369 pulongest (*xfered_len));
1370
1371 if (readbuf)
1372 myaddr = readbuf;
1373 if (writebuf)
1374 myaddr = writebuf;
1375 if (retval == TARGET_XFER_OK && myaddr != NULL)
1376 {
1377 int i;
1378
1379 fputs_unfiltered (", bytes =", gdb_stdlog);
1380 for (i = 0; i < *xfered_len; i++)
1381 {
1382 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1383 {
1384 if (targetdebug < 2 && i > 0)
1385 {
1386 fprintf_unfiltered (gdb_stdlog, " ...");
1387 break;
1388 }
1389 fprintf_unfiltered (gdb_stdlog, "\n");
1390 }
1391
1392 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1393 }
1394 }
1395
1396 fputc_unfiltered ('\n', gdb_stdlog);
1397 }
1398
1399 /* Check implementations of to_xfer_partial update *XFERED_LEN
1400 properly. Do assertion after printing debug messages, so that we
1401 can find more clues on assertion failure from debugging messages. */
1402 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1403 gdb_assert (*xfered_len > 0);
1404
1405 return retval;
1406 }
1407
1408 /* Read LEN bytes of target memory at address MEMADDR, placing the
1409 results in GDB's memory at MYADDR. Returns either 0 for success or
1410 -1 if any error occurs.
1411
1412 If an error occurs, no guarantee is made about the contents of the data at
1413 MYADDR. In particular, the caller should not depend upon partial reads
1414 filling the buffer with good data. There is no way for the caller to know
1415 how much good data might have been transfered anyway. Callers that can
1416 deal with partial reads should call target_read (which will retry until
1417 it makes no progress, and then return how much was transferred). */
1418
1419 int
1420 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1421 {
1422 /* Dispatch to the topmost target, not the flattened current_target.
1423 Memory accesses check target->to_has_(all_)memory, and the
1424 flattened target doesn't inherit those. */
1425 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1426 myaddr, memaddr, len) == len)
1427 return 0;
1428 else
1429 return -1;
1430 }
1431
1432 /* See target/target.h. */
1433
1434 int
1435 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1436 {
1437 gdb_byte buf[4];
1438 int r;
1439
1440 r = target_read_memory (memaddr, buf, sizeof buf);
1441 if (r != 0)
1442 return r;
1443 *result = extract_unsigned_integer (buf, sizeof buf,
1444 gdbarch_byte_order (target_gdbarch ()));
1445 return 0;
1446 }
1447
1448 /* Like target_read_memory, but specify explicitly that this is a read
1449 from the target's raw memory. That is, this read bypasses the
1450 dcache, breakpoint shadowing, etc. */
1451
1452 int
1453 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1454 {
1455 /* See comment in target_read_memory about why the request starts at
1456 current_target.beneath. */
1457 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1458 myaddr, memaddr, len) == len)
1459 return 0;
1460 else
1461 return -1;
1462 }
1463
1464 /* Like target_read_memory, but specify explicitly that this is a read from
1465 the target's stack. This may trigger different cache behavior. */
1466
1467 int
1468 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1469 {
1470 /* See comment in target_read_memory about why the request starts at
1471 current_target.beneath. */
1472 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1473 myaddr, memaddr, len) == len)
1474 return 0;
1475 else
1476 return -1;
1477 }
1478
1479 /* Like target_read_memory, but specify explicitly that this is a read from
1480 the target's code. This may trigger different cache behavior. */
1481
1482 int
1483 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1484 {
1485 /* See comment in target_read_memory about why the request starts at
1486 current_target.beneath. */
1487 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1488 myaddr, memaddr, len) == len)
1489 return 0;
1490 else
1491 return -1;
1492 }
1493
1494 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1495 Returns either 0 for success or -1 if any error occurs. If an
1496 error occurs, no guarantee is made about how much data got written.
1497 Callers that can deal with partial writes should call
1498 target_write. */
1499
1500 int
1501 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1502 {
1503 /* See comment in target_read_memory about why the request starts at
1504 current_target.beneath. */
1505 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1506 myaddr, memaddr, len) == len)
1507 return 0;
1508 else
1509 return -1;
1510 }
1511
1512 /* Write LEN bytes from MYADDR to target raw memory at address
1513 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1514 If an error occurs, no guarantee is made about how much data got
1515 written. Callers that can deal with partial writes should call
1516 target_write. */
1517
1518 int
1519 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1520 {
1521 /* See comment in target_read_memory about why the request starts at
1522 current_target.beneath. */
1523 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1524 myaddr, memaddr, len) == len)
1525 return 0;
1526 else
1527 return -1;
1528 }
1529
1530 /* Fetch the target's memory map. */
1531
1532 VEC(mem_region_s) *
1533 target_memory_map (void)
1534 {
1535 VEC(mem_region_s) *result;
1536 struct mem_region *last_one, *this_one;
1537 int ix;
1538 result = current_target.to_memory_map (&current_target);
1539 if (result == NULL)
1540 return NULL;
1541
1542 qsort (VEC_address (mem_region_s, result),
1543 VEC_length (mem_region_s, result),
1544 sizeof (struct mem_region), mem_region_cmp);
1545
1546 /* Check that regions do not overlap. Simultaneously assign
1547 a numbering for the "mem" commands to use to refer to
1548 each region. */
1549 last_one = NULL;
1550 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1551 {
1552 this_one->number = ix;
1553
1554 if (last_one && last_one->hi > this_one->lo)
1555 {
1556 warning (_("Overlapping regions in memory map: ignoring"));
1557 VEC_free (mem_region_s, result);
1558 return NULL;
1559 }
1560 last_one = this_one;
1561 }
1562
1563 return result;
1564 }
1565
1566 void
1567 target_flash_erase (ULONGEST address, LONGEST length)
1568 {
1569 current_target.to_flash_erase (&current_target, address, length);
1570 }
1571
1572 void
1573 target_flash_done (void)
1574 {
1575 current_target.to_flash_done (&current_target);
1576 }
1577
1578 static void
1579 show_trust_readonly (struct ui_file *file, int from_tty,
1580 struct cmd_list_element *c, const char *value)
1581 {
1582 fprintf_filtered (file,
1583 _("Mode for reading from readonly sections is %s.\n"),
1584 value);
1585 }
1586
1587 /* Target vector read/write partial wrapper functions. */
1588
1589 static enum target_xfer_status
1590 target_read_partial (struct target_ops *ops,
1591 enum target_object object,
1592 const char *annex, gdb_byte *buf,
1593 ULONGEST offset, ULONGEST len,
1594 ULONGEST *xfered_len)
1595 {
1596 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1597 xfered_len);
1598 }
1599
1600 static enum target_xfer_status
1601 target_write_partial (struct target_ops *ops,
1602 enum target_object object,
1603 const char *annex, const gdb_byte *buf,
1604 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1605 {
1606 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1607 xfered_len);
1608 }
1609
1610 /* Wrappers to perform the full transfer. */
1611
1612 /* For docs on target_read see target.h. */
1613
1614 LONGEST
1615 target_read (struct target_ops *ops,
1616 enum target_object object,
1617 const char *annex, gdb_byte *buf,
1618 ULONGEST offset, LONGEST len)
1619 {
1620 LONGEST xfered_total = 0;
1621 int unit_size = 1;
1622
1623 /* If we are reading from a memory object, find the length of an addressable
1624 unit for that architecture. */
1625 if (object == TARGET_OBJECT_MEMORY
1626 || object == TARGET_OBJECT_STACK_MEMORY
1627 || object == TARGET_OBJECT_CODE_MEMORY
1628 || object == TARGET_OBJECT_RAW_MEMORY)
1629 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1630
1631 while (xfered_total < len)
1632 {
1633 ULONGEST xfered_partial;
1634 enum target_xfer_status status;
1635
1636 status = target_read_partial (ops, object, annex,
1637 buf + xfered_total * unit_size,
1638 offset + xfered_total, len - xfered_total,
1639 &xfered_partial);
1640
1641 /* Call an observer, notifying them of the xfer progress? */
1642 if (status == TARGET_XFER_EOF)
1643 return xfered_total;
1644 else if (status == TARGET_XFER_OK)
1645 {
1646 xfered_total += xfered_partial;
1647 QUIT;
1648 }
1649 else
1650 return TARGET_XFER_E_IO;
1651
1652 }
1653 return len;
1654 }
1655
1656 /* Assuming that the entire [begin, end) range of memory cannot be
1657 read, try to read whatever subrange is possible to read.
1658
1659 The function returns, in RESULT, either zero or one memory block.
1660 If there's a readable subrange at the beginning, it is completely
1661 read and returned. Any further readable subrange will not be read.
1662 Otherwise, if there's a readable subrange at the end, it will be
1663 completely read and returned. Any readable subranges before it
1664 (obviously, not starting at the beginning), will be ignored. In
1665 other cases -- either no readable subrange, or readable subrange(s)
1666 that is neither at the beginning, or end, nothing is returned.
1667
1668 The purpose of this function is to handle a read across a boundary
1669 of accessible memory in a case when memory map is not available.
1670 The above restrictions are fine for this case, but will give
1671 incorrect results if the memory is 'patchy'. However, supporting
1672 'patchy' memory would require trying to read every single byte,
1673 and it seems unacceptable solution. Explicit memory map is
1674 recommended for this case -- and target_read_memory_robust will
1675 take care of reading multiple ranges then. */
1676
1677 static void
1678 read_whatever_is_readable (struct target_ops *ops,
1679 const ULONGEST begin, const ULONGEST end,
1680 int unit_size,
1681 VEC(memory_read_result_s) **result)
1682 {
1683 gdb_byte *buf = (gdb_byte *) xmalloc (end - begin);
1684 ULONGEST current_begin = begin;
1685 ULONGEST current_end = end;
1686 int forward;
1687 memory_read_result_s r;
1688 ULONGEST xfered_len;
1689
1690 /* If we previously failed to read 1 byte, nothing can be done here. */
1691 if (end - begin <= 1)
1692 {
1693 xfree (buf);
1694 return;
1695 }
1696
1697 /* Check that either first or the last byte is readable, and give up
1698 if not. This heuristic is meant to permit reading accessible memory
1699 at the boundary of accessible region. */
1700 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1701 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1702 {
1703 forward = 1;
1704 ++current_begin;
1705 }
1706 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1707 buf + (end - begin) - 1, end - 1, 1,
1708 &xfered_len) == TARGET_XFER_OK)
1709 {
1710 forward = 0;
1711 --current_end;
1712 }
1713 else
1714 {
1715 xfree (buf);
1716 return;
1717 }
1718
1719 /* Loop invariant is that the [current_begin, current_end) was previously
1720 found to be not readable as a whole.
1721
1722 Note loop condition -- if the range has 1 byte, we can't divide the range
1723 so there's no point trying further. */
1724 while (current_end - current_begin > 1)
1725 {
1726 ULONGEST first_half_begin, first_half_end;
1727 ULONGEST second_half_begin, second_half_end;
1728 LONGEST xfer;
1729 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1730
1731 if (forward)
1732 {
1733 first_half_begin = current_begin;
1734 first_half_end = middle;
1735 second_half_begin = middle;
1736 second_half_end = current_end;
1737 }
1738 else
1739 {
1740 first_half_begin = middle;
1741 first_half_end = current_end;
1742 second_half_begin = current_begin;
1743 second_half_end = middle;
1744 }
1745
1746 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1747 buf + (first_half_begin - begin) * unit_size,
1748 first_half_begin,
1749 first_half_end - first_half_begin);
1750
1751 if (xfer == first_half_end - first_half_begin)
1752 {
1753 /* This half reads up fine. So, the error must be in the
1754 other half. */
1755 current_begin = second_half_begin;
1756 current_end = second_half_end;
1757 }
1758 else
1759 {
1760 /* This half is not readable. Because we've tried one byte, we
1761 know some part of this half if actually readable. Go to the next
1762 iteration to divide again and try to read.
1763
1764 We don't handle the other half, because this function only tries
1765 to read a single readable subrange. */
1766 current_begin = first_half_begin;
1767 current_end = first_half_end;
1768 }
1769 }
1770
1771 if (forward)
1772 {
1773 /* The [begin, current_begin) range has been read. */
1774 r.begin = begin;
1775 r.end = current_begin;
1776 r.data = buf;
1777 }
1778 else
1779 {
1780 /* The [current_end, end) range has been read. */
1781 LONGEST region_len = end - current_end;
1782
1783 r.data = (gdb_byte *) xmalloc (region_len * unit_size);
1784 memcpy (r.data, buf + (current_end - begin) * unit_size,
1785 region_len * unit_size);
1786 r.begin = current_end;
1787 r.end = end;
1788 xfree (buf);
1789 }
1790 VEC_safe_push(memory_read_result_s, (*result), &r);
1791 }
1792
1793 void
1794 free_memory_read_result_vector (void *x)
1795 {
1796 VEC(memory_read_result_s) *v = (VEC(memory_read_result_s) *) x;
1797 memory_read_result_s *current;
1798 int ix;
1799
1800 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1801 {
1802 xfree (current->data);
1803 }
1804 VEC_free (memory_read_result_s, v);
1805 }
1806
1807 VEC(memory_read_result_s) *
1808 read_memory_robust (struct target_ops *ops,
1809 const ULONGEST offset, const LONGEST len)
1810 {
1811 VEC(memory_read_result_s) *result = 0;
1812 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1813
1814 LONGEST xfered_total = 0;
1815 while (xfered_total < len)
1816 {
1817 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1818 LONGEST region_len;
1819
1820 /* If there is no explicit region, a fake one should be created. */
1821 gdb_assert (region);
1822
1823 if (region->hi == 0)
1824 region_len = len - xfered_total;
1825 else
1826 region_len = region->hi - offset;
1827
1828 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1829 {
1830 /* Cannot read this region. Note that we can end up here only
1831 if the region is explicitly marked inaccessible, or
1832 'inaccessible-by-default' is in effect. */
1833 xfered_total += region_len;
1834 }
1835 else
1836 {
1837 LONGEST to_read = min (len - xfered_total, region_len);
1838 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1839
1840 LONGEST xfered_partial =
1841 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1842 (gdb_byte *) buffer,
1843 offset + xfered_total, to_read);
1844 /* Call an observer, notifying them of the xfer progress? */
1845 if (xfered_partial <= 0)
1846 {
1847 /* Got an error reading full chunk. See if maybe we can read
1848 some subrange. */
1849 xfree (buffer);
1850 read_whatever_is_readable (ops, offset + xfered_total,
1851 offset + xfered_total + to_read,
1852 unit_size, &result);
1853 xfered_total += to_read;
1854 }
1855 else
1856 {
1857 struct memory_read_result r;
1858 r.data = buffer;
1859 r.begin = offset + xfered_total;
1860 r.end = r.begin + xfered_partial;
1861 VEC_safe_push (memory_read_result_s, result, &r);
1862 xfered_total += xfered_partial;
1863 }
1864 QUIT;
1865 }
1866 }
1867 return result;
1868 }
1869
1870
1871 /* An alternative to target_write with progress callbacks. */
1872
1873 LONGEST
1874 target_write_with_progress (struct target_ops *ops,
1875 enum target_object object,
1876 const char *annex, const gdb_byte *buf,
1877 ULONGEST offset, LONGEST len,
1878 void (*progress) (ULONGEST, void *), void *baton)
1879 {
1880 LONGEST xfered_total = 0;
1881 int unit_size = 1;
1882
1883 /* If we are writing to a memory object, find the length of an addressable
1884 unit for that architecture. */
1885 if (object == TARGET_OBJECT_MEMORY
1886 || object == TARGET_OBJECT_STACK_MEMORY
1887 || object == TARGET_OBJECT_CODE_MEMORY
1888 || object == TARGET_OBJECT_RAW_MEMORY)
1889 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1890
1891 /* Give the progress callback a chance to set up. */
1892 if (progress)
1893 (*progress) (0, baton);
1894
1895 while (xfered_total < len)
1896 {
1897 ULONGEST xfered_partial;
1898 enum target_xfer_status status;
1899
1900 status = target_write_partial (ops, object, annex,
1901 buf + xfered_total * unit_size,
1902 offset + xfered_total, len - xfered_total,
1903 &xfered_partial);
1904
1905 if (status != TARGET_XFER_OK)
1906 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1907
1908 if (progress)
1909 (*progress) (xfered_partial, baton);
1910
1911 xfered_total += xfered_partial;
1912 QUIT;
1913 }
1914 return len;
1915 }
1916
1917 /* For docs on target_write see target.h. */
1918
1919 LONGEST
1920 target_write (struct target_ops *ops,
1921 enum target_object object,
1922 const char *annex, const gdb_byte *buf,
1923 ULONGEST offset, LONGEST len)
1924 {
1925 return target_write_with_progress (ops, object, annex, buf, offset, len,
1926 NULL, NULL);
1927 }
1928
1929 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1930 the size of the transferred data. PADDING additional bytes are
1931 available in *BUF_P. This is a helper function for
1932 target_read_alloc; see the declaration of that function for more
1933 information. */
1934
1935 static LONGEST
1936 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1937 const char *annex, gdb_byte **buf_p, int padding)
1938 {
1939 size_t buf_alloc, buf_pos;
1940 gdb_byte *buf;
1941
1942 /* This function does not have a length parameter; it reads the
1943 entire OBJECT). Also, it doesn't support objects fetched partly
1944 from one target and partly from another (in a different stratum,
1945 e.g. a core file and an executable). Both reasons make it
1946 unsuitable for reading memory. */
1947 gdb_assert (object != TARGET_OBJECT_MEMORY);
1948
1949 /* Start by reading up to 4K at a time. The target will throttle
1950 this number down if necessary. */
1951 buf_alloc = 4096;
1952 buf = (gdb_byte *) xmalloc (buf_alloc);
1953 buf_pos = 0;
1954 while (1)
1955 {
1956 ULONGEST xfered_len;
1957 enum target_xfer_status status;
1958
1959 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1960 buf_pos, buf_alloc - buf_pos - padding,
1961 &xfered_len);
1962
1963 if (status == TARGET_XFER_EOF)
1964 {
1965 /* Read all there was. */
1966 if (buf_pos == 0)
1967 xfree (buf);
1968 else
1969 *buf_p = buf;
1970 return buf_pos;
1971 }
1972 else if (status != TARGET_XFER_OK)
1973 {
1974 /* An error occurred. */
1975 xfree (buf);
1976 return TARGET_XFER_E_IO;
1977 }
1978
1979 buf_pos += xfered_len;
1980
1981 /* If the buffer is filling up, expand it. */
1982 if (buf_alloc < buf_pos * 2)
1983 {
1984 buf_alloc *= 2;
1985 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
1986 }
1987
1988 QUIT;
1989 }
1990 }
1991
1992 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1993 the size of the transferred data. See the declaration in "target.h"
1994 function for more information about the return value. */
1995
1996 LONGEST
1997 target_read_alloc (struct target_ops *ops, enum target_object object,
1998 const char *annex, gdb_byte **buf_p)
1999 {
2000 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2001 }
2002
2003 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2004 returned as a string, allocated using xmalloc. If an error occurs
2005 or the transfer is unsupported, NULL is returned. Empty objects
2006 are returned as allocated but empty strings. A warning is issued
2007 if the result contains any embedded NUL bytes. */
2008
2009 char *
2010 target_read_stralloc (struct target_ops *ops, enum target_object object,
2011 const char *annex)
2012 {
2013 gdb_byte *buffer;
2014 char *bufstr;
2015 LONGEST i, transferred;
2016
2017 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2018 bufstr = (char *) buffer;
2019
2020 if (transferred < 0)
2021 return NULL;
2022
2023 if (transferred == 0)
2024 return xstrdup ("");
2025
2026 bufstr[transferred] = 0;
2027
2028 /* Check for embedded NUL bytes; but allow trailing NULs. */
2029 for (i = strlen (bufstr); i < transferred; i++)
2030 if (bufstr[i] != 0)
2031 {
2032 warning (_("target object %d, annex %s, "
2033 "contained unexpected null characters"),
2034 (int) object, annex ? annex : "(none)");
2035 break;
2036 }
2037
2038 return bufstr;
2039 }
2040
2041 /* Memory transfer methods. */
2042
2043 void
2044 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2045 LONGEST len)
2046 {
2047 /* This method is used to read from an alternate, non-current
2048 target. This read must bypass the overlay support (as symbols
2049 don't match this target), and GDB's internal cache (wrong cache
2050 for this target). */
2051 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2052 != len)
2053 memory_error (TARGET_XFER_E_IO, addr);
2054 }
2055
2056 ULONGEST
2057 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2058 int len, enum bfd_endian byte_order)
2059 {
2060 gdb_byte buf[sizeof (ULONGEST)];
2061
2062 gdb_assert (len <= sizeof (buf));
2063 get_target_memory (ops, addr, buf, len);
2064 return extract_unsigned_integer (buf, len, byte_order);
2065 }
2066
2067 /* See target.h. */
2068
2069 int
2070 target_insert_breakpoint (struct gdbarch *gdbarch,
2071 struct bp_target_info *bp_tgt)
2072 {
2073 if (!may_insert_breakpoints)
2074 {
2075 warning (_("May not insert breakpoints"));
2076 return 1;
2077 }
2078
2079 return current_target.to_insert_breakpoint (&current_target,
2080 gdbarch, bp_tgt);
2081 }
2082
2083 /* See target.h. */
2084
2085 int
2086 target_remove_breakpoint (struct gdbarch *gdbarch,
2087 struct bp_target_info *bp_tgt)
2088 {
2089 /* This is kind of a weird case to handle, but the permission might
2090 have been changed after breakpoints were inserted - in which case
2091 we should just take the user literally and assume that any
2092 breakpoints should be left in place. */
2093 if (!may_insert_breakpoints)
2094 {
2095 warning (_("May not remove breakpoints"));
2096 return 1;
2097 }
2098
2099 return current_target.to_remove_breakpoint (&current_target,
2100 gdbarch, bp_tgt);
2101 }
2102
2103 static void
2104 target_info (char *args, int from_tty)
2105 {
2106 struct target_ops *t;
2107 int has_all_mem = 0;
2108
2109 if (symfile_objfile != NULL)
2110 printf_unfiltered (_("Symbols from \"%s\".\n"),
2111 objfile_name (symfile_objfile));
2112
2113 for (t = target_stack; t != NULL; t = t->beneath)
2114 {
2115 if (!(*t->to_has_memory) (t))
2116 continue;
2117
2118 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2119 continue;
2120 if (has_all_mem)
2121 printf_unfiltered (_("\tWhile running this, "
2122 "GDB does not access memory from...\n"));
2123 printf_unfiltered ("%s:\n", t->to_longname);
2124 (t->to_files_info) (t);
2125 has_all_mem = (*t->to_has_all_memory) (t);
2126 }
2127 }
2128
2129 /* This function is called before any new inferior is created, e.g.
2130 by running a program, attaching, or connecting to a target.
2131 It cleans up any state from previous invocations which might
2132 change between runs. This is a subset of what target_preopen
2133 resets (things which might change between targets). */
2134
2135 void
2136 target_pre_inferior (int from_tty)
2137 {
2138 /* Clear out solib state. Otherwise the solib state of the previous
2139 inferior might have survived and is entirely wrong for the new
2140 target. This has been observed on GNU/Linux using glibc 2.3. How
2141 to reproduce:
2142
2143 bash$ ./foo&
2144 [1] 4711
2145 bash$ ./foo&
2146 [1] 4712
2147 bash$ gdb ./foo
2148 [...]
2149 (gdb) attach 4711
2150 (gdb) detach
2151 (gdb) attach 4712
2152 Cannot access memory at address 0xdeadbeef
2153 */
2154
2155 /* In some OSs, the shared library list is the same/global/shared
2156 across inferiors. If code is shared between processes, so are
2157 memory regions and features. */
2158 if (!gdbarch_has_global_solist (target_gdbarch ()))
2159 {
2160 no_shared_libraries (NULL, from_tty);
2161
2162 invalidate_target_mem_regions ();
2163
2164 target_clear_description ();
2165 }
2166
2167 /* attach_flag may be set if the previous process associated with
2168 the inferior was attached to. */
2169 current_inferior ()->attach_flag = 0;
2170
2171 current_inferior ()->highest_thread_num = 0;
2172
2173 agent_capability_invalidate ();
2174 }
2175
2176 /* Callback for iterate_over_inferiors. Gets rid of the given
2177 inferior. */
2178
2179 static int
2180 dispose_inferior (struct inferior *inf, void *args)
2181 {
2182 struct thread_info *thread;
2183
2184 thread = any_thread_of_process (inf->pid);
2185 if (thread)
2186 {
2187 switch_to_thread (thread->ptid);
2188
2189 /* Core inferiors actually should be detached, not killed. */
2190 if (target_has_execution)
2191 target_kill ();
2192 else
2193 target_detach (NULL, 0);
2194 }
2195
2196 return 0;
2197 }
2198
2199 /* This is to be called by the open routine before it does
2200 anything. */
2201
2202 void
2203 target_preopen (int from_tty)
2204 {
2205 dont_repeat ();
2206
2207 if (have_inferiors ())
2208 {
2209 if (!from_tty
2210 || !have_live_inferiors ()
2211 || query (_("A program is being debugged already. Kill it? ")))
2212 iterate_over_inferiors (dispose_inferior, NULL);
2213 else
2214 error (_("Program not killed."));
2215 }
2216
2217 /* Calling target_kill may remove the target from the stack. But if
2218 it doesn't (which seems like a win for UDI), remove it now. */
2219 /* Leave the exec target, though. The user may be switching from a
2220 live process to a core of the same program. */
2221 pop_all_targets_above (file_stratum);
2222
2223 target_pre_inferior (from_tty);
2224 }
2225
2226 /* Detach a target after doing deferred register stores. */
2227
2228 void
2229 target_detach (const char *args, int from_tty)
2230 {
2231 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2232 /* Don't remove global breakpoints here. They're removed on
2233 disconnection from the target. */
2234 ;
2235 else
2236 /* If we're in breakpoints-always-inserted mode, have to remove
2237 them before detaching. */
2238 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2239
2240 prepare_for_detach ();
2241
2242 current_target.to_detach (&current_target, args, from_tty);
2243 }
2244
2245 void
2246 target_disconnect (const char *args, int from_tty)
2247 {
2248 /* If we're in breakpoints-always-inserted mode or if breakpoints
2249 are global across processes, we have to remove them before
2250 disconnecting. */
2251 remove_breakpoints ();
2252
2253 current_target.to_disconnect (&current_target, args, from_tty);
2254 }
2255
2256 ptid_t
2257 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2258 {
2259 return (current_target.to_wait) (&current_target, ptid, status, options);
2260 }
2261
2262 /* See target.h. */
2263
2264 ptid_t
2265 default_target_wait (struct target_ops *ops,
2266 ptid_t ptid, struct target_waitstatus *status,
2267 int options)
2268 {
2269 status->kind = TARGET_WAITKIND_IGNORE;
2270 return minus_one_ptid;
2271 }
2272
2273 char *
2274 target_pid_to_str (ptid_t ptid)
2275 {
2276 return (*current_target.to_pid_to_str) (&current_target, ptid);
2277 }
2278
2279 const char *
2280 target_thread_name (struct thread_info *info)
2281 {
2282 return current_target.to_thread_name (&current_target, info);
2283 }
2284
2285 void
2286 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2287 {
2288 target_dcache_invalidate ();
2289
2290 current_target.to_resume (&current_target, ptid, step, signal);
2291
2292 registers_changed_ptid (ptid);
2293 /* We only set the internal executing state here. The user/frontend
2294 running state is set at a higher level. */
2295 set_executing (ptid, 1);
2296 clear_inline_frame_state (ptid);
2297 }
2298
2299 void
2300 target_pass_signals (int numsigs, unsigned char *pass_signals)
2301 {
2302 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2303 }
2304
2305 void
2306 target_program_signals (int numsigs, unsigned char *program_signals)
2307 {
2308 (*current_target.to_program_signals) (&current_target,
2309 numsigs, program_signals);
2310 }
2311
2312 static int
2313 default_follow_fork (struct target_ops *self, int follow_child,
2314 int detach_fork)
2315 {
2316 /* Some target returned a fork event, but did not know how to follow it. */
2317 internal_error (__FILE__, __LINE__,
2318 _("could not find a target to follow fork"));
2319 }
2320
2321 /* Look through the list of possible targets for a target that can
2322 follow forks. */
2323
2324 int
2325 target_follow_fork (int follow_child, int detach_fork)
2326 {
2327 return current_target.to_follow_fork (&current_target,
2328 follow_child, detach_fork);
2329 }
2330
2331 /* Target wrapper for follow exec hook. */
2332
2333 void
2334 target_follow_exec (struct inferior *inf, char *execd_pathname)
2335 {
2336 current_target.to_follow_exec (&current_target, inf, execd_pathname);
2337 }
2338
2339 static void
2340 default_mourn_inferior (struct target_ops *self)
2341 {
2342 internal_error (__FILE__, __LINE__,
2343 _("could not find a target to follow mourn inferior"));
2344 }
2345
2346 void
2347 target_mourn_inferior (void)
2348 {
2349 current_target.to_mourn_inferior (&current_target);
2350
2351 /* We no longer need to keep handles on any of the object files.
2352 Make sure to release them to avoid unnecessarily locking any
2353 of them while we're not actually debugging. */
2354 bfd_cache_close_all ();
2355 }
2356
2357 /* Look for a target which can describe architectural features, starting
2358 from TARGET. If we find one, return its description. */
2359
2360 const struct target_desc *
2361 target_read_description (struct target_ops *target)
2362 {
2363 return target->to_read_description (target);
2364 }
2365
2366 /* This implements a basic search of memory, reading target memory and
2367 performing the search here (as opposed to performing the search in on the
2368 target side with, for example, gdbserver). */
2369
2370 int
2371 simple_search_memory (struct target_ops *ops,
2372 CORE_ADDR start_addr, ULONGEST search_space_len,
2373 const gdb_byte *pattern, ULONGEST pattern_len,
2374 CORE_ADDR *found_addrp)
2375 {
2376 /* NOTE: also defined in find.c testcase. */
2377 #define SEARCH_CHUNK_SIZE 16000
2378 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2379 /* Buffer to hold memory contents for searching. */
2380 gdb_byte *search_buf;
2381 unsigned search_buf_size;
2382 struct cleanup *old_cleanups;
2383
2384 search_buf_size = chunk_size + pattern_len - 1;
2385
2386 /* No point in trying to allocate a buffer larger than the search space. */
2387 if (search_space_len < search_buf_size)
2388 search_buf_size = search_space_len;
2389
2390 search_buf = (gdb_byte *) malloc (search_buf_size);
2391 if (search_buf == NULL)
2392 error (_("Unable to allocate memory to perform the search."));
2393 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2394
2395 /* Prime the search buffer. */
2396
2397 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2398 search_buf, start_addr, search_buf_size) != search_buf_size)
2399 {
2400 warning (_("Unable to access %s bytes of target "
2401 "memory at %s, halting search."),
2402 pulongest (search_buf_size), hex_string (start_addr));
2403 do_cleanups (old_cleanups);
2404 return -1;
2405 }
2406
2407 /* Perform the search.
2408
2409 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2410 When we've scanned N bytes we copy the trailing bytes to the start and
2411 read in another N bytes. */
2412
2413 while (search_space_len >= pattern_len)
2414 {
2415 gdb_byte *found_ptr;
2416 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2417
2418 found_ptr = (gdb_byte *) memmem (search_buf, nr_search_bytes,
2419 pattern, pattern_len);
2420
2421 if (found_ptr != NULL)
2422 {
2423 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2424
2425 *found_addrp = found_addr;
2426 do_cleanups (old_cleanups);
2427 return 1;
2428 }
2429
2430 /* Not found in this chunk, skip to next chunk. */
2431
2432 /* Don't let search_space_len wrap here, it's unsigned. */
2433 if (search_space_len >= chunk_size)
2434 search_space_len -= chunk_size;
2435 else
2436 search_space_len = 0;
2437
2438 if (search_space_len >= pattern_len)
2439 {
2440 unsigned keep_len = search_buf_size - chunk_size;
2441 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2442 int nr_to_read;
2443
2444 /* Copy the trailing part of the previous iteration to the front
2445 of the buffer for the next iteration. */
2446 gdb_assert (keep_len == pattern_len - 1);
2447 memcpy (search_buf, search_buf + chunk_size, keep_len);
2448
2449 nr_to_read = min (search_space_len - keep_len, chunk_size);
2450
2451 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2452 search_buf + keep_len, read_addr,
2453 nr_to_read) != nr_to_read)
2454 {
2455 warning (_("Unable to access %s bytes of target "
2456 "memory at %s, halting search."),
2457 plongest (nr_to_read),
2458 hex_string (read_addr));
2459 do_cleanups (old_cleanups);
2460 return -1;
2461 }
2462
2463 start_addr += chunk_size;
2464 }
2465 }
2466
2467 /* Not found. */
2468
2469 do_cleanups (old_cleanups);
2470 return 0;
2471 }
2472
2473 /* Default implementation of memory-searching. */
2474
2475 static int
2476 default_search_memory (struct target_ops *self,
2477 CORE_ADDR start_addr, ULONGEST search_space_len,
2478 const gdb_byte *pattern, ULONGEST pattern_len,
2479 CORE_ADDR *found_addrp)
2480 {
2481 /* Start over from the top of the target stack. */
2482 return simple_search_memory (current_target.beneath,
2483 start_addr, search_space_len,
2484 pattern, pattern_len, found_addrp);
2485 }
2486
2487 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2488 sequence of bytes in PATTERN with length PATTERN_LEN.
2489
2490 The result is 1 if found, 0 if not found, and -1 if there was an error
2491 requiring halting of the search (e.g. memory read error).
2492 If the pattern is found the address is recorded in FOUND_ADDRP. */
2493
2494 int
2495 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2496 const gdb_byte *pattern, ULONGEST pattern_len,
2497 CORE_ADDR *found_addrp)
2498 {
2499 return current_target.to_search_memory (&current_target, start_addr,
2500 search_space_len,
2501 pattern, pattern_len, found_addrp);
2502 }
2503
2504 /* Look through the currently pushed targets. If none of them will
2505 be able to restart the currently running process, issue an error
2506 message. */
2507
2508 void
2509 target_require_runnable (void)
2510 {
2511 struct target_ops *t;
2512
2513 for (t = target_stack; t != NULL; t = t->beneath)
2514 {
2515 /* If this target knows how to create a new program, then
2516 assume we will still be able to after killing the current
2517 one. Either killing and mourning will not pop T, or else
2518 find_default_run_target will find it again. */
2519 if (t->to_create_inferior != NULL)
2520 return;
2521
2522 /* Do not worry about targets at certain strata that can not
2523 create inferiors. Assume they will be pushed again if
2524 necessary, and continue to the process_stratum. */
2525 if (t->to_stratum == thread_stratum
2526 || t->to_stratum == record_stratum
2527 || t->to_stratum == arch_stratum)
2528 continue;
2529
2530 error (_("The \"%s\" target does not support \"run\". "
2531 "Try \"help target\" or \"continue\"."),
2532 t->to_shortname);
2533 }
2534
2535 /* This function is only called if the target is running. In that
2536 case there should have been a process_stratum target and it
2537 should either know how to create inferiors, or not... */
2538 internal_error (__FILE__, __LINE__, _("No targets found"));
2539 }
2540
2541 /* Whether GDB is allowed to fall back to the default run target for
2542 "run", "attach", etc. when no target is connected yet. */
2543 static int auto_connect_native_target = 1;
2544
2545 static void
2546 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2547 struct cmd_list_element *c, const char *value)
2548 {
2549 fprintf_filtered (file,
2550 _("Whether GDB may automatically connect to the "
2551 "native target is %s.\n"),
2552 value);
2553 }
2554
2555 /* Look through the list of possible targets for a target that can
2556 execute a run or attach command without any other data. This is
2557 used to locate the default process stratum.
2558
2559 If DO_MESG is not NULL, the result is always valid (error() is
2560 called for errors); else, return NULL on error. */
2561
2562 static struct target_ops *
2563 find_default_run_target (char *do_mesg)
2564 {
2565 struct target_ops *runable = NULL;
2566
2567 if (auto_connect_native_target)
2568 {
2569 struct target_ops *t;
2570 int count = 0;
2571 int i;
2572
2573 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2574 {
2575 if (t->to_can_run != delegate_can_run && target_can_run (t))
2576 {
2577 runable = t;
2578 ++count;
2579 }
2580 }
2581
2582 if (count != 1)
2583 runable = NULL;
2584 }
2585
2586 if (runable == NULL)
2587 {
2588 if (do_mesg)
2589 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2590 else
2591 return NULL;
2592 }
2593
2594 return runable;
2595 }
2596
2597 /* See target.h. */
2598
2599 struct target_ops *
2600 find_attach_target (void)
2601 {
2602 struct target_ops *t;
2603
2604 /* If a target on the current stack can attach, use it. */
2605 for (t = current_target.beneath; t != NULL; t = t->beneath)
2606 {
2607 if (t->to_attach != NULL)
2608 break;
2609 }
2610
2611 /* Otherwise, use the default run target for attaching. */
2612 if (t == NULL)
2613 t = find_default_run_target ("attach");
2614
2615 return t;
2616 }
2617
2618 /* See target.h. */
2619
2620 struct target_ops *
2621 find_run_target (void)
2622 {
2623 struct target_ops *t;
2624
2625 /* If a target on the current stack can attach, use it. */
2626 for (t = current_target.beneath; t != NULL; t = t->beneath)
2627 {
2628 if (t->to_create_inferior != NULL)
2629 break;
2630 }
2631
2632 /* Otherwise, use the default run target. */
2633 if (t == NULL)
2634 t = find_default_run_target ("run");
2635
2636 return t;
2637 }
2638
2639 /* Implement the "info proc" command. */
2640
2641 int
2642 target_info_proc (const char *args, enum info_proc_what what)
2643 {
2644 struct target_ops *t;
2645
2646 /* If we're already connected to something that can get us OS
2647 related data, use it. Otherwise, try using the native
2648 target. */
2649 if (current_target.to_stratum >= process_stratum)
2650 t = current_target.beneath;
2651 else
2652 t = find_default_run_target (NULL);
2653
2654 for (; t != NULL; t = t->beneath)
2655 {
2656 if (t->to_info_proc != NULL)
2657 {
2658 t->to_info_proc (t, args, what);
2659
2660 if (targetdebug)
2661 fprintf_unfiltered (gdb_stdlog,
2662 "target_info_proc (\"%s\", %d)\n", args, what);
2663
2664 return 1;
2665 }
2666 }
2667
2668 return 0;
2669 }
2670
2671 static int
2672 find_default_supports_disable_randomization (struct target_ops *self)
2673 {
2674 struct target_ops *t;
2675
2676 t = find_default_run_target (NULL);
2677 if (t && t->to_supports_disable_randomization)
2678 return (t->to_supports_disable_randomization) (t);
2679 return 0;
2680 }
2681
2682 int
2683 target_supports_disable_randomization (void)
2684 {
2685 struct target_ops *t;
2686
2687 for (t = &current_target; t != NULL; t = t->beneath)
2688 if (t->to_supports_disable_randomization)
2689 return t->to_supports_disable_randomization (t);
2690
2691 return 0;
2692 }
2693
2694 char *
2695 target_get_osdata (const char *type)
2696 {
2697 struct target_ops *t;
2698
2699 /* If we're already connected to something that can get us OS
2700 related data, use it. Otherwise, try using the native
2701 target. */
2702 if (current_target.to_stratum >= process_stratum)
2703 t = current_target.beneath;
2704 else
2705 t = find_default_run_target ("get OS data");
2706
2707 if (!t)
2708 return NULL;
2709
2710 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2711 }
2712
2713 static struct address_space *
2714 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2715 {
2716 struct inferior *inf;
2717
2718 /* Fall-back to the "main" address space of the inferior. */
2719 inf = find_inferior_ptid (ptid);
2720
2721 if (inf == NULL || inf->aspace == NULL)
2722 internal_error (__FILE__, __LINE__,
2723 _("Can't determine the current "
2724 "address space of thread %s\n"),
2725 target_pid_to_str (ptid));
2726
2727 return inf->aspace;
2728 }
2729
2730 /* Determine the current address space of thread PTID. */
2731
2732 struct address_space *
2733 target_thread_address_space (ptid_t ptid)
2734 {
2735 struct address_space *aspace;
2736
2737 aspace = current_target.to_thread_address_space (&current_target, ptid);
2738 gdb_assert (aspace != NULL);
2739
2740 return aspace;
2741 }
2742
2743
2744 /* Target file operations. */
2745
2746 static struct target_ops *
2747 default_fileio_target (void)
2748 {
2749 /* If we're already connected to something that can perform
2750 file I/O, use it. Otherwise, try using the native target. */
2751 if (current_target.to_stratum >= process_stratum)
2752 return current_target.beneath;
2753 else
2754 return find_default_run_target ("file I/O");
2755 }
2756
2757 /* File handle for target file operations. */
2758
2759 typedef struct
2760 {
2761 /* The target on which this file is open. */
2762 struct target_ops *t;
2763
2764 /* The file descriptor on the target. */
2765 int fd;
2766 } fileio_fh_t;
2767
2768 DEF_VEC_O (fileio_fh_t);
2769
2770 /* Vector of currently open file handles. The value returned by
2771 target_fileio_open and passed as the FD argument to other
2772 target_fileio_* functions is an index into this vector. This
2773 vector's entries are never freed; instead, files are marked as
2774 closed, and the handle becomes available for reuse. */
2775 static VEC (fileio_fh_t) *fileio_fhandles;
2776
2777 /* Macro to check whether a fileio_fh_t represents a closed file. */
2778 #define is_closed_fileio_fh(fd) ((fd) < 0)
2779
2780 /* Index into fileio_fhandles of the lowest handle that might be
2781 closed. This permits handle reuse without searching the whole
2782 list each time a new file is opened. */
2783 static int lowest_closed_fd;
2784
2785 /* Acquire a target fileio file descriptor. */
2786
2787 static int
2788 acquire_fileio_fd (struct target_ops *t, int fd)
2789 {
2790 fileio_fh_t *fh;
2791
2792 gdb_assert (!is_closed_fileio_fh (fd));
2793
2794 /* Search for closed handles to reuse. */
2795 for (;
2796 VEC_iterate (fileio_fh_t, fileio_fhandles,
2797 lowest_closed_fd, fh);
2798 lowest_closed_fd++)
2799 if (is_closed_fileio_fh (fh->fd))
2800 break;
2801
2802 /* Push a new handle if no closed handles were found. */
2803 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2804 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2805
2806 /* Fill in the handle. */
2807 fh->t = t;
2808 fh->fd = fd;
2809
2810 /* Return its index, and start the next lookup at
2811 the next index. */
2812 return lowest_closed_fd++;
2813 }
2814
2815 /* Release a target fileio file descriptor. */
2816
2817 static void
2818 release_fileio_fd (int fd, fileio_fh_t *fh)
2819 {
2820 fh->fd = -1;
2821 lowest_closed_fd = min (lowest_closed_fd, fd);
2822 }
2823
2824 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2825
2826 #define fileio_fd_to_fh(fd) \
2827 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2828
2829 /* Helper for target_fileio_open and
2830 target_fileio_open_warn_if_slow. */
2831
2832 static int
2833 target_fileio_open_1 (struct inferior *inf, const char *filename,
2834 int flags, int mode, int warn_if_slow,
2835 int *target_errno)
2836 {
2837 struct target_ops *t;
2838
2839 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2840 {
2841 if (t->to_fileio_open != NULL)
2842 {
2843 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2844 warn_if_slow, target_errno);
2845
2846 if (fd < 0)
2847 fd = -1;
2848 else
2849 fd = acquire_fileio_fd (t, fd);
2850
2851 if (targetdebug)
2852 fprintf_unfiltered (gdb_stdlog,
2853 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2854 " = %d (%d)\n",
2855 inf == NULL ? 0 : inf->num,
2856 filename, flags, mode,
2857 warn_if_slow, fd,
2858 fd != -1 ? 0 : *target_errno);
2859 return fd;
2860 }
2861 }
2862
2863 *target_errno = FILEIO_ENOSYS;
2864 return -1;
2865 }
2866
2867 /* See target.h. */
2868
2869 int
2870 target_fileio_open (struct inferior *inf, const char *filename,
2871 int flags, int mode, int *target_errno)
2872 {
2873 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2874 target_errno);
2875 }
2876
2877 /* See target.h. */
2878
2879 int
2880 target_fileio_open_warn_if_slow (struct inferior *inf,
2881 const char *filename,
2882 int flags, int mode, int *target_errno)
2883 {
2884 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2885 target_errno);
2886 }
2887
2888 /* See target.h. */
2889
2890 int
2891 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2892 ULONGEST offset, int *target_errno)
2893 {
2894 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2895 int ret = -1;
2896
2897 if (is_closed_fileio_fh (fh->fd))
2898 *target_errno = EBADF;
2899 else
2900 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2901 len, offset, target_errno);
2902
2903 if (targetdebug)
2904 fprintf_unfiltered (gdb_stdlog,
2905 "target_fileio_pwrite (%d,...,%d,%s) "
2906 "= %d (%d)\n",
2907 fd, len, pulongest (offset),
2908 ret, ret != -1 ? 0 : *target_errno);
2909 return ret;
2910 }
2911
2912 /* See target.h. */
2913
2914 int
2915 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2916 ULONGEST offset, int *target_errno)
2917 {
2918 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2919 int ret = -1;
2920
2921 if (is_closed_fileio_fh (fh->fd))
2922 *target_errno = EBADF;
2923 else
2924 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2925 len, offset, target_errno);
2926
2927 if (targetdebug)
2928 fprintf_unfiltered (gdb_stdlog,
2929 "target_fileio_pread (%d,...,%d,%s) "
2930 "= %d (%d)\n",
2931 fd, len, pulongest (offset),
2932 ret, ret != -1 ? 0 : *target_errno);
2933 return ret;
2934 }
2935
2936 /* See target.h. */
2937
2938 int
2939 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2940 {
2941 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2942 int ret = -1;
2943
2944 if (is_closed_fileio_fh (fh->fd))
2945 *target_errno = EBADF;
2946 else
2947 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2948
2949 if (targetdebug)
2950 fprintf_unfiltered (gdb_stdlog,
2951 "target_fileio_fstat (%d) = %d (%d)\n",
2952 fd, ret, ret != -1 ? 0 : *target_errno);
2953 return ret;
2954 }
2955
2956 /* See target.h. */
2957
2958 int
2959 target_fileio_close (int fd, int *target_errno)
2960 {
2961 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2962 int ret = -1;
2963
2964 if (is_closed_fileio_fh (fh->fd))
2965 *target_errno = EBADF;
2966 else
2967 {
2968 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2969 release_fileio_fd (fd, fh);
2970 }
2971
2972 if (targetdebug)
2973 fprintf_unfiltered (gdb_stdlog,
2974 "target_fileio_close (%d) = %d (%d)\n",
2975 fd, ret, ret != -1 ? 0 : *target_errno);
2976 return ret;
2977 }
2978
2979 /* See target.h. */
2980
2981 int
2982 target_fileio_unlink (struct inferior *inf, const char *filename,
2983 int *target_errno)
2984 {
2985 struct target_ops *t;
2986
2987 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2988 {
2989 if (t->to_fileio_unlink != NULL)
2990 {
2991 int ret = t->to_fileio_unlink (t, inf, filename,
2992 target_errno);
2993
2994 if (targetdebug)
2995 fprintf_unfiltered (gdb_stdlog,
2996 "target_fileio_unlink (%d,%s)"
2997 " = %d (%d)\n",
2998 inf == NULL ? 0 : inf->num, filename,
2999 ret, ret != -1 ? 0 : *target_errno);
3000 return ret;
3001 }
3002 }
3003
3004 *target_errno = FILEIO_ENOSYS;
3005 return -1;
3006 }
3007
3008 /* See target.h. */
3009
3010 char *
3011 target_fileio_readlink (struct inferior *inf, const char *filename,
3012 int *target_errno)
3013 {
3014 struct target_ops *t;
3015
3016 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3017 {
3018 if (t->to_fileio_readlink != NULL)
3019 {
3020 char *ret = t->to_fileio_readlink (t, inf, filename,
3021 target_errno);
3022
3023 if (targetdebug)
3024 fprintf_unfiltered (gdb_stdlog,
3025 "target_fileio_readlink (%d,%s)"
3026 " = %s (%d)\n",
3027 inf == NULL ? 0 : inf->num,
3028 filename, ret? ret : "(nil)",
3029 ret? 0 : *target_errno);
3030 return ret;
3031 }
3032 }
3033
3034 *target_errno = FILEIO_ENOSYS;
3035 return NULL;
3036 }
3037
3038 static void
3039 target_fileio_close_cleanup (void *opaque)
3040 {
3041 int fd = *(int *) opaque;
3042 int target_errno;
3043
3044 target_fileio_close (fd, &target_errno);
3045 }
3046
3047 /* Read target file FILENAME, in the filesystem as seen by INF. If
3048 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3049 remote targets, the remote stub). Store the result in *BUF_P and
3050 return the size of the transferred data. PADDING additional bytes
3051 are available in *BUF_P. This is a helper function for
3052 target_fileio_read_alloc; see the declaration of that function for
3053 more information. */
3054
3055 static LONGEST
3056 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3057 gdb_byte **buf_p, int padding)
3058 {
3059 struct cleanup *close_cleanup;
3060 size_t buf_alloc, buf_pos;
3061 gdb_byte *buf;
3062 LONGEST n;
3063 int fd;
3064 int target_errno;
3065
3066 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
3067 &target_errno);
3068 if (fd == -1)
3069 return -1;
3070
3071 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3072
3073 /* Start by reading up to 4K at a time. The target will throttle
3074 this number down if necessary. */
3075 buf_alloc = 4096;
3076 buf = (gdb_byte *) xmalloc (buf_alloc);
3077 buf_pos = 0;
3078 while (1)
3079 {
3080 n = target_fileio_pread (fd, &buf[buf_pos],
3081 buf_alloc - buf_pos - padding, buf_pos,
3082 &target_errno);
3083 if (n < 0)
3084 {
3085 /* An error occurred. */
3086 do_cleanups (close_cleanup);
3087 xfree (buf);
3088 return -1;
3089 }
3090 else if (n == 0)
3091 {
3092 /* Read all there was. */
3093 do_cleanups (close_cleanup);
3094 if (buf_pos == 0)
3095 xfree (buf);
3096 else
3097 *buf_p = buf;
3098 return buf_pos;
3099 }
3100
3101 buf_pos += n;
3102
3103 /* If the buffer is filling up, expand it. */
3104 if (buf_alloc < buf_pos * 2)
3105 {
3106 buf_alloc *= 2;
3107 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3108 }
3109
3110 QUIT;
3111 }
3112 }
3113
3114 /* See target.h. */
3115
3116 LONGEST
3117 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3118 gdb_byte **buf_p)
3119 {
3120 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3121 }
3122
3123 /* See target.h. */
3124
3125 char *
3126 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3127 {
3128 gdb_byte *buffer;
3129 char *bufstr;
3130 LONGEST i, transferred;
3131
3132 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3133 bufstr = (char *) buffer;
3134
3135 if (transferred < 0)
3136 return NULL;
3137
3138 if (transferred == 0)
3139 return xstrdup ("");
3140
3141 bufstr[transferred] = 0;
3142
3143 /* Check for embedded NUL bytes; but allow trailing NULs. */
3144 for (i = strlen (bufstr); i < transferred; i++)
3145 if (bufstr[i] != 0)
3146 {
3147 warning (_("target file %s "
3148 "contained unexpected null characters"),
3149 filename);
3150 break;
3151 }
3152
3153 return bufstr;
3154 }
3155
3156
3157 static int
3158 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3159 CORE_ADDR addr, int len)
3160 {
3161 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3162 }
3163
3164 static int
3165 default_watchpoint_addr_within_range (struct target_ops *target,
3166 CORE_ADDR addr,
3167 CORE_ADDR start, int length)
3168 {
3169 return addr >= start && addr < start + length;
3170 }
3171
3172 static struct gdbarch *
3173 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3174 {
3175 return target_gdbarch ();
3176 }
3177
3178 static int
3179 return_zero (struct target_ops *ignore)
3180 {
3181 return 0;
3182 }
3183
3184 static int
3185 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3186 {
3187 return 0;
3188 }
3189
3190 /*
3191 * Find the next target down the stack from the specified target.
3192 */
3193
3194 struct target_ops *
3195 find_target_beneath (struct target_ops *t)
3196 {
3197 return t->beneath;
3198 }
3199
3200 /* See target.h. */
3201
3202 struct target_ops *
3203 find_target_at (enum strata stratum)
3204 {
3205 struct target_ops *t;
3206
3207 for (t = current_target.beneath; t != NULL; t = t->beneath)
3208 if (t->to_stratum == stratum)
3209 return t;
3210
3211 return NULL;
3212 }
3213
3214 \f
3215 /* The inferior process has died. Long live the inferior! */
3216
3217 void
3218 generic_mourn_inferior (void)
3219 {
3220 ptid_t ptid;
3221
3222 ptid = inferior_ptid;
3223 inferior_ptid = null_ptid;
3224
3225 /* Mark breakpoints uninserted in case something tries to delete a
3226 breakpoint while we delete the inferior's threads (which would
3227 fail, since the inferior is long gone). */
3228 mark_breakpoints_out ();
3229
3230 if (!ptid_equal (ptid, null_ptid))
3231 {
3232 int pid = ptid_get_pid (ptid);
3233 exit_inferior (pid);
3234 }
3235
3236 /* Note this wipes step-resume breakpoints, so needs to be done
3237 after exit_inferior, which ends up referencing the step-resume
3238 breakpoints through clear_thread_inferior_resources. */
3239 breakpoint_init_inferior (inf_exited);
3240
3241 registers_changed ();
3242
3243 reopen_exec_file ();
3244 reinit_frame_cache ();
3245
3246 if (deprecated_detach_hook)
3247 deprecated_detach_hook ();
3248 }
3249 \f
3250 /* Convert a normal process ID to a string. Returns the string in a
3251 static buffer. */
3252
3253 char *
3254 normal_pid_to_str (ptid_t ptid)
3255 {
3256 static char buf[32];
3257
3258 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3259 return buf;
3260 }
3261
3262 static char *
3263 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3264 {
3265 return normal_pid_to_str (ptid);
3266 }
3267
3268 /* Error-catcher for target_find_memory_regions. */
3269 static int
3270 dummy_find_memory_regions (struct target_ops *self,
3271 find_memory_region_ftype ignore1, void *ignore2)
3272 {
3273 error (_("Command not implemented for this target."));
3274 return 0;
3275 }
3276
3277 /* Error-catcher for target_make_corefile_notes. */
3278 static char *
3279 dummy_make_corefile_notes (struct target_ops *self,
3280 bfd *ignore1, int *ignore2)
3281 {
3282 error (_("Command not implemented for this target."));
3283 return NULL;
3284 }
3285
3286 /* Set up the handful of non-empty slots needed by the dummy target
3287 vector. */
3288
3289 static void
3290 init_dummy_target (void)
3291 {
3292 dummy_target.to_shortname = "None";
3293 dummy_target.to_longname = "None";
3294 dummy_target.to_doc = "";
3295 dummy_target.to_supports_disable_randomization
3296 = find_default_supports_disable_randomization;
3297 dummy_target.to_stratum = dummy_stratum;
3298 dummy_target.to_has_all_memory = return_zero;
3299 dummy_target.to_has_memory = return_zero;
3300 dummy_target.to_has_stack = return_zero;
3301 dummy_target.to_has_registers = return_zero;
3302 dummy_target.to_has_execution = return_zero_has_execution;
3303 dummy_target.to_magic = OPS_MAGIC;
3304
3305 install_dummy_methods (&dummy_target);
3306 }
3307 \f
3308
3309 void
3310 target_close (struct target_ops *targ)
3311 {
3312 gdb_assert (!target_is_pushed (targ));
3313
3314 if (targ->to_xclose != NULL)
3315 targ->to_xclose (targ);
3316 else if (targ->to_close != NULL)
3317 targ->to_close (targ);
3318
3319 if (targetdebug)
3320 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3321 }
3322
3323 int
3324 target_thread_alive (ptid_t ptid)
3325 {
3326 return current_target.to_thread_alive (&current_target, ptid);
3327 }
3328
3329 void
3330 target_update_thread_list (void)
3331 {
3332 current_target.to_update_thread_list (&current_target);
3333 }
3334
3335 void
3336 target_stop (ptid_t ptid)
3337 {
3338 if (!may_stop)
3339 {
3340 warning (_("May not interrupt or stop the target, ignoring attempt"));
3341 return;
3342 }
3343
3344 (*current_target.to_stop) (&current_target, ptid);
3345 }
3346
3347 void
3348 target_interrupt (ptid_t ptid)
3349 {
3350 if (!may_stop)
3351 {
3352 warning (_("May not interrupt or stop the target, ignoring attempt"));
3353 return;
3354 }
3355
3356 (*current_target.to_interrupt) (&current_target, ptid);
3357 }
3358
3359 /* See target.h. */
3360
3361 void
3362 target_pass_ctrlc (void)
3363 {
3364 (*current_target.to_pass_ctrlc) (&current_target);
3365 }
3366
3367 /* See target.h. */
3368
3369 void
3370 default_target_pass_ctrlc (struct target_ops *ops)
3371 {
3372 target_interrupt (inferior_ptid);
3373 }
3374
3375 /* See target/target.h. */
3376
3377 void
3378 target_stop_and_wait (ptid_t ptid)
3379 {
3380 struct target_waitstatus status;
3381 int was_non_stop = non_stop;
3382
3383 non_stop = 1;
3384 target_stop (ptid);
3385
3386 memset (&status, 0, sizeof (status));
3387 target_wait (ptid, &status, 0);
3388
3389 non_stop = was_non_stop;
3390 }
3391
3392 /* See target/target.h. */
3393
3394 void
3395 target_continue_no_signal (ptid_t ptid)
3396 {
3397 target_resume (ptid, 0, GDB_SIGNAL_0);
3398 }
3399
3400 /* Concatenate ELEM to LIST, a comma separate list, and return the
3401 result. The LIST incoming argument is released. */
3402
3403 static char *
3404 str_comma_list_concat_elem (char *list, const char *elem)
3405 {
3406 if (list == NULL)
3407 return xstrdup (elem);
3408 else
3409 return reconcat (list, list, ", ", elem, (char *) NULL);
3410 }
3411
3412 /* Helper for target_options_to_string. If OPT is present in
3413 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3414 Returns the new resulting string. OPT is removed from
3415 TARGET_OPTIONS. */
3416
3417 static char *
3418 do_option (int *target_options, char *ret,
3419 int opt, char *opt_str)
3420 {
3421 if ((*target_options & opt) != 0)
3422 {
3423 ret = str_comma_list_concat_elem (ret, opt_str);
3424 *target_options &= ~opt;
3425 }
3426
3427 return ret;
3428 }
3429
3430 char *
3431 target_options_to_string (int target_options)
3432 {
3433 char *ret = NULL;
3434
3435 #define DO_TARG_OPTION(OPT) \
3436 ret = do_option (&target_options, ret, OPT, #OPT)
3437
3438 DO_TARG_OPTION (TARGET_WNOHANG);
3439
3440 if (target_options != 0)
3441 ret = str_comma_list_concat_elem (ret, "unknown???");
3442
3443 if (ret == NULL)
3444 ret = xstrdup ("");
3445 return ret;
3446 }
3447
3448 static void
3449 debug_print_register (const char * func,
3450 struct regcache *regcache, int regno)
3451 {
3452 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3453
3454 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3455 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3456 && gdbarch_register_name (gdbarch, regno) != NULL
3457 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3458 fprintf_unfiltered (gdb_stdlog, "(%s)",
3459 gdbarch_register_name (gdbarch, regno));
3460 else
3461 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3462 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3463 {
3464 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3465 int i, size = register_size (gdbarch, regno);
3466 gdb_byte buf[MAX_REGISTER_SIZE];
3467
3468 regcache_raw_collect (regcache, regno, buf);
3469 fprintf_unfiltered (gdb_stdlog, " = ");
3470 for (i = 0; i < size; i++)
3471 {
3472 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3473 }
3474 if (size <= sizeof (LONGEST))
3475 {
3476 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3477
3478 fprintf_unfiltered (gdb_stdlog, " %s %s",
3479 core_addr_to_string_nz (val), plongest (val));
3480 }
3481 }
3482 fprintf_unfiltered (gdb_stdlog, "\n");
3483 }
3484
3485 void
3486 target_fetch_registers (struct regcache *regcache, int regno)
3487 {
3488 current_target.to_fetch_registers (&current_target, regcache, regno);
3489 if (targetdebug)
3490 debug_print_register ("target_fetch_registers", regcache, regno);
3491 }
3492
3493 void
3494 target_store_registers (struct regcache *regcache, int regno)
3495 {
3496 if (!may_write_registers)
3497 error (_("Writing to registers is not allowed (regno %d)"), regno);
3498
3499 current_target.to_store_registers (&current_target, regcache, regno);
3500 if (targetdebug)
3501 {
3502 debug_print_register ("target_store_registers", regcache, regno);
3503 }
3504 }
3505
3506 int
3507 target_core_of_thread (ptid_t ptid)
3508 {
3509 return current_target.to_core_of_thread (&current_target, ptid);
3510 }
3511
3512 int
3513 simple_verify_memory (struct target_ops *ops,
3514 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3515 {
3516 LONGEST total_xfered = 0;
3517
3518 while (total_xfered < size)
3519 {
3520 ULONGEST xfered_len;
3521 enum target_xfer_status status;
3522 gdb_byte buf[1024];
3523 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3524
3525 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3526 buf, NULL, lma + total_xfered, howmuch,
3527 &xfered_len);
3528 if (status == TARGET_XFER_OK
3529 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3530 {
3531 total_xfered += xfered_len;
3532 QUIT;
3533 }
3534 else
3535 return 0;
3536 }
3537 return 1;
3538 }
3539
3540 /* Default implementation of memory verification. */
3541
3542 static int
3543 default_verify_memory (struct target_ops *self,
3544 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3545 {
3546 /* Start over from the top of the target stack. */
3547 return simple_verify_memory (current_target.beneath,
3548 data, memaddr, size);
3549 }
3550
3551 int
3552 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3553 {
3554 return current_target.to_verify_memory (&current_target,
3555 data, memaddr, size);
3556 }
3557
3558 /* The documentation for this function is in its prototype declaration in
3559 target.h. */
3560
3561 int
3562 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3563 enum target_hw_bp_type rw)
3564 {
3565 return current_target.to_insert_mask_watchpoint (&current_target,
3566 addr, mask, rw);
3567 }
3568
3569 /* The documentation for this function is in its prototype declaration in
3570 target.h. */
3571
3572 int
3573 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3574 enum target_hw_bp_type rw)
3575 {
3576 return current_target.to_remove_mask_watchpoint (&current_target,
3577 addr, mask, rw);
3578 }
3579
3580 /* The documentation for this function is in its prototype declaration
3581 in target.h. */
3582
3583 int
3584 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3585 {
3586 return current_target.to_masked_watch_num_registers (&current_target,
3587 addr, mask);
3588 }
3589
3590 /* The documentation for this function is in its prototype declaration
3591 in target.h. */
3592
3593 int
3594 target_ranged_break_num_registers (void)
3595 {
3596 return current_target.to_ranged_break_num_registers (&current_target);
3597 }
3598
3599 /* See target.h. */
3600
3601 int
3602 target_supports_btrace (enum btrace_format format)
3603 {
3604 return current_target.to_supports_btrace (&current_target, format);
3605 }
3606
3607 /* See target.h. */
3608
3609 struct btrace_target_info *
3610 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3611 {
3612 return current_target.to_enable_btrace (&current_target, ptid, conf);
3613 }
3614
3615 /* See target.h. */
3616
3617 void
3618 target_disable_btrace (struct btrace_target_info *btinfo)
3619 {
3620 current_target.to_disable_btrace (&current_target, btinfo);
3621 }
3622
3623 /* See target.h. */
3624
3625 void
3626 target_teardown_btrace (struct btrace_target_info *btinfo)
3627 {
3628 current_target.to_teardown_btrace (&current_target, btinfo);
3629 }
3630
3631 /* See target.h. */
3632
3633 enum btrace_error
3634 target_read_btrace (struct btrace_data *btrace,
3635 struct btrace_target_info *btinfo,
3636 enum btrace_read_type type)
3637 {
3638 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3639 }
3640
3641 /* See target.h. */
3642
3643 const struct btrace_config *
3644 target_btrace_conf (const struct btrace_target_info *btinfo)
3645 {
3646 return current_target.to_btrace_conf (&current_target, btinfo);
3647 }
3648
3649 /* See target.h. */
3650
3651 void
3652 target_stop_recording (void)
3653 {
3654 current_target.to_stop_recording (&current_target);
3655 }
3656
3657 /* See target.h. */
3658
3659 void
3660 target_save_record (const char *filename)
3661 {
3662 current_target.to_save_record (&current_target, filename);
3663 }
3664
3665 /* See target.h. */
3666
3667 int
3668 target_supports_delete_record (void)
3669 {
3670 struct target_ops *t;
3671
3672 for (t = current_target.beneath; t != NULL; t = t->beneath)
3673 if (t->to_delete_record != delegate_delete_record
3674 && t->to_delete_record != tdefault_delete_record)
3675 return 1;
3676
3677 return 0;
3678 }
3679
3680 /* See target.h. */
3681
3682 void
3683 target_delete_record (void)
3684 {
3685 current_target.to_delete_record (&current_target);
3686 }
3687
3688 /* See target.h. */
3689
3690 int
3691 target_record_is_replaying (ptid_t ptid)
3692 {
3693 return current_target.to_record_is_replaying (&current_target, ptid);
3694 }
3695
3696 /* See target.h. */
3697
3698 int
3699 target_record_will_replay (ptid_t ptid, int dir)
3700 {
3701 return current_target.to_record_will_replay (&current_target, ptid, dir);
3702 }
3703
3704 /* See target.h. */
3705
3706 void
3707 target_record_stop_replaying (void)
3708 {
3709 current_target.to_record_stop_replaying (&current_target);
3710 }
3711
3712 /* See target.h. */
3713
3714 void
3715 target_goto_record_begin (void)
3716 {
3717 current_target.to_goto_record_begin (&current_target);
3718 }
3719
3720 /* See target.h. */
3721
3722 void
3723 target_goto_record_end (void)
3724 {
3725 current_target.to_goto_record_end (&current_target);
3726 }
3727
3728 /* See target.h. */
3729
3730 void
3731 target_goto_record (ULONGEST insn)
3732 {
3733 current_target.to_goto_record (&current_target, insn);
3734 }
3735
3736 /* See target.h. */
3737
3738 void
3739 target_insn_history (int size, int flags)
3740 {
3741 current_target.to_insn_history (&current_target, size, flags);
3742 }
3743
3744 /* See target.h. */
3745
3746 void
3747 target_insn_history_from (ULONGEST from, int size, int flags)
3748 {
3749 current_target.to_insn_history_from (&current_target, from, size, flags);
3750 }
3751
3752 /* See target.h. */
3753
3754 void
3755 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3756 {
3757 current_target.to_insn_history_range (&current_target, begin, end, flags);
3758 }
3759
3760 /* See target.h. */
3761
3762 void
3763 target_call_history (int size, int flags)
3764 {
3765 current_target.to_call_history (&current_target, size, flags);
3766 }
3767
3768 /* See target.h. */
3769
3770 void
3771 target_call_history_from (ULONGEST begin, int size, int flags)
3772 {
3773 current_target.to_call_history_from (&current_target, begin, size, flags);
3774 }
3775
3776 /* See target.h. */
3777
3778 void
3779 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3780 {
3781 current_target.to_call_history_range (&current_target, begin, end, flags);
3782 }
3783
3784 /* See target.h. */
3785
3786 const struct frame_unwind *
3787 target_get_unwinder (void)
3788 {
3789 return current_target.to_get_unwinder (&current_target);
3790 }
3791
3792 /* See target.h. */
3793
3794 const struct frame_unwind *
3795 target_get_tailcall_unwinder (void)
3796 {
3797 return current_target.to_get_tailcall_unwinder (&current_target);
3798 }
3799
3800 /* See target.h. */
3801
3802 void
3803 target_prepare_to_generate_core (void)
3804 {
3805 current_target.to_prepare_to_generate_core (&current_target);
3806 }
3807
3808 /* See target.h. */
3809
3810 void
3811 target_done_generating_core (void)
3812 {
3813 current_target.to_done_generating_core (&current_target);
3814 }
3815
3816 static void
3817 setup_target_debug (void)
3818 {
3819 memcpy (&debug_target, &current_target, sizeof debug_target);
3820
3821 init_debug_target (&current_target);
3822 }
3823 \f
3824
3825 static char targ_desc[] =
3826 "Names of targets and files being debugged.\nShows the entire \
3827 stack of targets currently in use (including the exec-file,\n\
3828 core-file, and process, if any), as well as the symbol file name.";
3829
3830 static void
3831 default_rcmd (struct target_ops *self, const char *command,
3832 struct ui_file *output)
3833 {
3834 error (_("\"monitor\" command not supported by this target."));
3835 }
3836
3837 static void
3838 do_monitor_command (char *cmd,
3839 int from_tty)
3840 {
3841 target_rcmd (cmd, gdb_stdtarg);
3842 }
3843
3844 /* Print the name of each layers of our target stack. */
3845
3846 static void
3847 maintenance_print_target_stack (char *cmd, int from_tty)
3848 {
3849 struct target_ops *t;
3850
3851 printf_filtered (_("The current target stack is:\n"));
3852
3853 for (t = target_stack; t != NULL; t = t->beneath)
3854 {
3855 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3856 }
3857 }
3858
3859 /* See target.h. */
3860
3861 void
3862 target_async (int enable)
3863 {
3864 infrun_async (enable);
3865 current_target.to_async (&current_target, enable);
3866 }
3867
3868 /* See target.h. */
3869
3870 void
3871 target_thread_events (int enable)
3872 {
3873 current_target.to_thread_events (&current_target, enable);
3874 }
3875
3876 /* Controls if targets can report that they can/are async. This is
3877 just for maintainers to use when debugging gdb. */
3878 int target_async_permitted = 1;
3879
3880 /* The set command writes to this variable. If the inferior is
3881 executing, target_async_permitted is *not* updated. */
3882 static int target_async_permitted_1 = 1;
3883
3884 static void
3885 maint_set_target_async_command (char *args, int from_tty,
3886 struct cmd_list_element *c)
3887 {
3888 if (have_live_inferiors ())
3889 {
3890 target_async_permitted_1 = target_async_permitted;
3891 error (_("Cannot change this setting while the inferior is running."));
3892 }
3893
3894 target_async_permitted = target_async_permitted_1;
3895 }
3896
3897 static void
3898 maint_show_target_async_command (struct ui_file *file, int from_tty,
3899 struct cmd_list_element *c,
3900 const char *value)
3901 {
3902 fprintf_filtered (file,
3903 _("Controlling the inferior in "
3904 "asynchronous mode is %s.\n"), value);
3905 }
3906
3907 /* Return true if the target operates in non-stop mode even with "set
3908 non-stop off". */
3909
3910 static int
3911 target_always_non_stop_p (void)
3912 {
3913 return current_target.to_always_non_stop_p (&current_target);
3914 }
3915
3916 /* See target.h. */
3917
3918 int
3919 target_is_non_stop_p (void)
3920 {
3921 return (non_stop
3922 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3923 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3924 && target_always_non_stop_p ()));
3925 }
3926
3927 /* Controls if targets can report that they always run in non-stop
3928 mode. This is just for maintainers to use when debugging gdb. */
3929 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3930
3931 /* The set command writes to this variable. If the inferior is
3932 executing, target_non_stop_enabled is *not* updated. */
3933 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3934
3935 /* Implementation of "maint set target-non-stop". */
3936
3937 static void
3938 maint_set_target_non_stop_command (char *args, int from_tty,
3939 struct cmd_list_element *c)
3940 {
3941 if (have_live_inferiors ())
3942 {
3943 target_non_stop_enabled_1 = target_non_stop_enabled;
3944 error (_("Cannot change this setting while the inferior is running."));
3945 }
3946
3947 target_non_stop_enabled = target_non_stop_enabled_1;
3948 }
3949
3950 /* Implementation of "maint show target-non-stop". */
3951
3952 static void
3953 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3954 struct cmd_list_element *c,
3955 const char *value)
3956 {
3957 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3958 fprintf_filtered (file,
3959 _("Whether the target is always in non-stop mode "
3960 "is %s (currently %s).\n"), value,
3961 target_always_non_stop_p () ? "on" : "off");
3962 else
3963 fprintf_filtered (file,
3964 _("Whether the target is always in non-stop mode "
3965 "is %s.\n"), value);
3966 }
3967
3968 /* Temporary copies of permission settings. */
3969
3970 static int may_write_registers_1 = 1;
3971 static int may_write_memory_1 = 1;
3972 static int may_insert_breakpoints_1 = 1;
3973 static int may_insert_tracepoints_1 = 1;
3974 static int may_insert_fast_tracepoints_1 = 1;
3975 static int may_stop_1 = 1;
3976
3977 /* Make the user-set values match the real values again. */
3978
3979 void
3980 update_target_permissions (void)
3981 {
3982 may_write_registers_1 = may_write_registers;
3983 may_write_memory_1 = may_write_memory;
3984 may_insert_breakpoints_1 = may_insert_breakpoints;
3985 may_insert_tracepoints_1 = may_insert_tracepoints;
3986 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3987 may_stop_1 = may_stop;
3988 }
3989
3990 /* The one function handles (most of) the permission flags in the same
3991 way. */
3992
3993 static void
3994 set_target_permissions (char *args, int from_tty,
3995 struct cmd_list_element *c)
3996 {
3997 if (target_has_execution)
3998 {
3999 update_target_permissions ();
4000 error (_("Cannot change this setting while the inferior is running."));
4001 }
4002
4003 /* Make the real values match the user-changed values. */
4004 may_write_registers = may_write_registers_1;
4005 may_insert_breakpoints = may_insert_breakpoints_1;
4006 may_insert_tracepoints = may_insert_tracepoints_1;
4007 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4008 may_stop = may_stop_1;
4009 update_observer_mode ();
4010 }
4011
4012 /* Set memory write permission independently of observer mode. */
4013
4014 static void
4015 set_write_memory_permission (char *args, int from_tty,
4016 struct cmd_list_element *c)
4017 {
4018 /* Make the real values match the user-changed values. */
4019 may_write_memory = may_write_memory_1;
4020 update_observer_mode ();
4021 }
4022
4023
4024 void
4025 initialize_targets (void)
4026 {
4027 init_dummy_target ();
4028 push_target (&dummy_target);
4029
4030 add_info ("target", target_info, targ_desc);
4031 add_info ("files", target_info, targ_desc);
4032
4033 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4034 Set target debugging."), _("\
4035 Show target debugging."), _("\
4036 When non-zero, target debugging is enabled. Higher numbers are more\n\
4037 verbose."),
4038 set_targetdebug,
4039 show_targetdebug,
4040 &setdebuglist, &showdebuglist);
4041
4042 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4043 &trust_readonly, _("\
4044 Set mode for reading from readonly sections."), _("\
4045 Show mode for reading from readonly sections."), _("\
4046 When this mode is on, memory reads from readonly sections (such as .text)\n\
4047 will be read from the object file instead of from the target. This will\n\
4048 result in significant performance improvement for remote targets."),
4049 NULL,
4050 show_trust_readonly,
4051 &setlist, &showlist);
4052
4053 add_com ("monitor", class_obscure, do_monitor_command,
4054 _("Send a command to the remote monitor (remote targets only)."));
4055
4056 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4057 _("Print the name of each layer of the internal target stack."),
4058 &maintenanceprintlist);
4059
4060 add_setshow_boolean_cmd ("target-async", no_class,
4061 &target_async_permitted_1, _("\
4062 Set whether gdb controls the inferior in asynchronous mode."), _("\
4063 Show whether gdb controls the inferior in asynchronous mode."), _("\
4064 Tells gdb whether to control the inferior in asynchronous mode."),
4065 maint_set_target_async_command,
4066 maint_show_target_async_command,
4067 &maintenance_set_cmdlist,
4068 &maintenance_show_cmdlist);
4069
4070 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4071 &target_non_stop_enabled_1, _("\
4072 Set whether gdb always controls the inferior in non-stop mode."), _("\
4073 Show whether gdb always controls the inferior in non-stop mode."), _("\
4074 Tells gdb whether to control the inferior in non-stop mode."),
4075 maint_set_target_non_stop_command,
4076 maint_show_target_non_stop_command,
4077 &maintenance_set_cmdlist,
4078 &maintenance_show_cmdlist);
4079
4080 add_setshow_boolean_cmd ("may-write-registers", class_support,
4081 &may_write_registers_1, _("\
4082 Set permission to write into registers."), _("\
4083 Show permission to write into registers."), _("\
4084 When this permission is on, GDB may write into the target's registers.\n\
4085 Otherwise, any sort of write attempt will result in an error."),
4086 set_target_permissions, NULL,
4087 &setlist, &showlist);
4088
4089 add_setshow_boolean_cmd ("may-write-memory", class_support,
4090 &may_write_memory_1, _("\
4091 Set permission to write into target memory."), _("\
4092 Show permission to write into target memory."), _("\
4093 When this permission is on, GDB may write into the target's memory.\n\
4094 Otherwise, any sort of write attempt will result in an error."),
4095 set_write_memory_permission, NULL,
4096 &setlist, &showlist);
4097
4098 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4099 &may_insert_breakpoints_1, _("\
4100 Set permission to insert breakpoints in the target."), _("\
4101 Show permission to insert breakpoints in the target."), _("\
4102 When this permission is on, GDB may insert breakpoints in the program.\n\
4103 Otherwise, any sort of insertion attempt will result in an error."),
4104 set_target_permissions, NULL,
4105 &setlist, &showlist);
4106
4107 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4108 &may_insert_tracepoints_1, _("\
4109 Set permission to insert tracepoints in the target."), _("\
4110 Show permission to insert tracepoints in the target."), _("\
4111 When this permission is on, GDB may insert tracepoints in the program.\n\
4112 Otherwise, any sort of insertion attempt will result in an error."),
4113 set_target_permissions, NULL,
4114 &setlist, &showlist);
4115
4116 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4117 &may_insert_fast_tracepoints_1, _("\
4118 Set permission to insert fast tracepoints in the target."), _("\
4119 Show permission to insert fast tracepoints in the target."), _("\
4120 When this permission is on, GDB may insert fast tracepoints.\n\
4121 Otherwise, any sort of insertion attempt will result in an error."),
4122 set_target_permissions, NULL,
4123 &setlist, &showlist);
4124
4125 add_setshow_boolean_cmd ("may-interrupt", class_support,
4126 &may_stop_1, _("\
4127 Set permission to interrupt or signal the target."), _("\
4128 Show permission to interrupt or signal the target."), _("\
4129 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4130 Otherwise, any attempt to interrupt or stop will be ignored."),
4131 set_target_permissions, NULL,
4132 &setlist, &showlist);
4133
4134 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4135 &auto_connect_native_target, _("\
4136 Set whether GDB may automatically connect to the native target."), _("\
4137 Show whether GDB may automatically connect to the native target."), _("\
4138 When on, and GDB is not connected to a target yet, GDB\n\
4139 attempts \"run\" and other commands with the native target."),
4140 NULL, show_auto_connect_native_target,
4141 &setlist, &showlist);
4142 }