]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
* target.c (target_async_permitted, target_async_permitted_1)
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include <errno.h>
26 #include "gdb_string.h"
27 #include "target.h"
28 #include "gdbcmd.h"
29 #include "symtab.h"
30 #include "inferior.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "gdb_wait.h"
35 #include "dcache.h"
36 #include <signal.h>
37 #include "regcache.h"
38 #include "gdb_assert.h"
39 #include "gdbcore.h"
40 #include "exceptions.h"
41 #include "target-descriptions.h"
42 #include "gdbthread.h"
43 #include "solib.h"
44
45 static void target_info (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_watchpoint_addr_within_range (struct target_ops *,
52 CORE_ADDR, CORE_ADDR, int);
53
54 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
55
56 static int nosymbol (char *, CORE_ADDR *);
57
58 static void tcomplain (void) ATTR_NORETURN;
59
60 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
61
62 static int return_zero (void);
63
64 static int return_one (void);
65
66 static int return_minus_one (void);
67
68 void target_ignore (void);
69
70 static void target_command (char *, int);
71
72 static struct target_ops *find_default_run_target (char *);
73
74 static void nosupport_runtime (void);
75
76 static LONGEST default_xfer_partial (struct target_ops *ops,
77 enum target_object object,
78 const char *annex, gdb_byte *readbuf,
79 const gdb_byte *writebuf,
80 ULONGEST offset, LONGEST len);
81
82 static LONGEST current_xfer_partial (struct target_ops *ops,
83 enum target_object object,
84 const char *annex, gdb_byte *readbuf,
85 const gdb_byte *writebuf,
86 ULONGEST offset, LONGEST len);
87
88 static LONGEST target_xfer_partial (struct target_ops *ops,
89 enum target_object object,
90 const char *annex,
91 void *readbuf, const void *writebuf,
92 ULONGEST offset, LONGEST len);
93
94 static void init_dummy_target (void);
95
96 static struct target_ops debug_target;
97
98 static void debug_to_open (char *, int);
99
100 static void debug_to_close (int);
101
102 static void debug_to_attach (char *, int);
103
104 static void debug_to_detach (char *, int);
105
106 static void debug_to_resume (ptid_t, int, enum target_signal);
107
108 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
109
110 static void debug_to_fetch_registers (struct regcache *, int);
111
112 static void debug_to_store_registers (struct regcache *, int);
113
114 static void debug_to_prepare_to_store (struct regcache *);
115
116 static void debug_to_files_info (struct target_ops *);
117
118 static int debug_to_insert_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct bp_target_info *);
121
122 static int debug_to_can_use_hw_breakpoint (int, int, int);
123
124 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
125
126 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
127
128 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
129
130 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
131
132 static int debug_to_stopped_by_watchpoint (void);
133
134 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
135
136 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
137 CORE_ADDR, CORE_ADDR, int);
138
139 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
140
141 static void debug_to_terminal_init (void);
142
143 static void debug_to_terminal_inferior (void);
144
145 static void debug_to_terminal_ours_for_output (void);
146
147 static void debug_to_terminal_save_ours (void);
148
149 static void debug_to_terminal_ours (void);
150
151 static void debug_to_terminal_info (char *, int);
152
153 static void debug_to_kill (void);
154
155 static void debug_to_load (char *, int);
156
157 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
158
159 static void debug_to_mourn_inferior (void);
160
161 static int debug_to_can_run (void);
162
163 static void debug_to_notice_signals (ptid_t);
164
165 static int debug_to_thread_alive (ptid_t);
166
167 static void debug_to_stop (ptid_t);
168
169 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
170 wierd and mysterious ways. Putting the variable here lets those
171 wierd and mysterious ways keep building while they are being
172 converted to the inferior inheritance structure. */
173 struct target_ops deprecated_child_ops;
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_index;
181 unsigned target_struct_allocsize;
182 #define DEFAULT_ALLOCSIZE 10
183
184 /* The initial current target, so that there is always a semi-valid
185 current target. */
186
187 static struct target_ops dummy_target;
188
189 /* Top of target stack. */
190
191 static struct target_ops *target_stack;
192
193 /* The target structure we are currently using to talk to a process
194 or file or whatever "inferior" we have. */
195
196 struct target_ops current_target;
197
198 /* Command list for target. */
199
200 static struct cmd_list_element *targetlist = NULL;
201
202 /* Nonzero if we are debugging an attached outside process
203 rather than an inferior. */
204
205 int attach_flag;
206
207 /* Nonzero if we should trust readonly sections from the
208 executable when reading memory. */
209
210 static int trust_readonly = 0;
211
212 /* Nonzero if we should show true memory content including
213 memory breakpoint inserted by gdb. */
214
215 static int show_memory_breakpoints = 0;
216
217 /* Non-zero if we want to see trace of target level stuff. */
218
219 static int targetdebug = 0;
220 static void
221 show_targetdebug (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223 {
224 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
225 }
226
227 static void setup_target_debug (void);
228
229 DCACHE *target_dcache;
230
231 /* The user just typed 'target' without the name of a target. */
232
233 static void
234 target_command (char *arg, int from_tty)
235 {
236 fputs_filtered ("Argument required (target name). Try `help target'\n",
237 gdb_stdout);
238 }
239
240 /* Add a possible target architecture to the list. */
241
242 void
243 add_target (struct target_ops *t)
244 {
245 /* Provide default values for all "must have" methods. */
246 if (t->to_xfer_partial == NULL)
247 t->to_xfer_partial = default_xfer_partial;
248
249 if (!target_structs)
250 {
251 target_struct_allocsize = DEFAULT_ALLOCSIZE;
252 target_structs = (struct target_ops **) xmalloc
253 (target_struct_allocsize * sizeof (*target_structs));
254 }
255 if (target_struct_size >= target_struct_allocsize)
256 {
257 target_struct_allocsize *= 2;
258 target_structs = (struct target_ops **)
259 xrealloc ((char *) target_structs,
260 target_struct_allocsize * sizeof (*target_structs));
261 }
262 target_structs[target_struct_size++] = t;
263
264 if (targetlist == NULL)
265 add_prefix_cmd ("target", class_run, target_command, _("\
266 Connect to a target machine or process.\n\
267 The first argument is the type or protocol of the target machine.\n\
268 Remaining arguments are interpreted by the target protocol. For more\n\
269 information on the arguments for a particular protocol, type\n\
270 `help target ' followed by the protocol name."),
271 &targetlist, "target ", 0, &cmdlist);
272 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
273 }
274
275 /* Stub functions */
276
277 void
278 target_ignore (void)
279 {
280 }
281
282 void
283 target_load (char *arg, int from_tty)
284 {
285 dcache_invalidate (target_dcache);
286 (*current_target.to_load) (arg, from_tty);
287 }
288
289 static int
290 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
291 struct target_ops *t)
292 {
293 errno = EIO; /* Can't read/write this location */
294 return 0; /* No bytes handled */
295 }
296
297 static void
298 tcomplain (void)
299 {
300 error (_("You can't do that when your target is `%s'"),
301 current_target.to_shortname);
302 }
303
304 void
305 noprocess (void)
306 {
307 error (_("You can't do that without a process to debug."));
308 }
309
310 static int
311 nosymbol (char *name, CORE_ADDR *addrp)
312 {
313 return 1; /* Symbol does not exist in target env */
314 }
315
316 static void
317 nosupport_runtime (void)
318 {
319 if (ptid_equal (inferior_ptid, null_ptid))
320 noprocess ();
321 else
322 error (_("No run-time support for this"));
323 }
324
325
326 static void
327 default_terminal_info (char *args, int from_tty)
328 {
329 printf_unfiltered (_("No saved terminal information.\n"));
330 }
331
332 /* This is the default target_create_inferior and target_attach function.
333 If the current target is executing, it asks whether to kill it off.
334 If this function returns without calling error(), it has killed off
335 the target, and the operation should be attempted. */
336
337 static void
338 kill_or_be_killed (int from_tty)
339 {
340 if (target_has_execution)
341 {
342 printf_unfiltered (_("You are already running a program:\n"));
343 target_files_info ();
344 if (query ("Kill it? "))
345 {
346 target_kill ();
347 if (target_has_execution)
348 error (_("Killing the program did not help."));
349 return;
350 }
351 else
352 {
353 error (_("Program not killed."));
354 }
355 }
356 tcomplain ();
357 }
358
359 /* Go through the target stack from top to bottom, copying over zero
360 entries in current_target, then filling in still empty entries. In
361 effect, we are doing class inheritance through the pushed target
362 vectors.
363
364 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
365 is currently implemented, is that it discards any knowledge of
366 which target an inherited method originally belonged to.
367 Consequently, new new target methods should instead explicitly and
368 locally search the target stack for the target that can handle the
369 request. */
370
371 static void
372 update_current_target (void)
373 {
374 struct target_ops *t;
375
376 /* First, reset current's contents. */
377 memset (&current_target, 0, sizeof (current_target));
378
379 #define INHERIT(FIELD, TARGET) \
380 if (!current_target.FIELD) \
381 current_target.FIELD = (TARGET)->FIELD
382
383 for (t = target_stack; t; t = t->beneath)
384 {
385 INHERIT (to_shortname, t);
386 INHERIT (to_longname, t);
387 INHERIT (to_doc, t);
388 INHERIT (to_open, t);
389 INHERIT (to_close, t);
390 INHERIT (to_attach, t);
391 INHERIT (to_post_attach, t);
392 INHERIT (to_attach_no_wait, t);
393 INHERIT (to_detach, t);
394 /* Do not inherit to_disconnect. */
395 INHERIT (to_resume, t);
396 INHERIT (to_wait, t);
397 INHERIT (to_fetch_registers, t);
398 INHERIT (to_store_registers, t);
399 INHERIT (to_prepare_to_store, t);
400 INHERIT (deprecated_xfer_memory, t);
401 INHERIT (to_files_info, t);
402 INHERIT (to_insert_breakpoint, t);
403 INHERIT (to_remove_breakpoint, t);
404 INHERIT (to_can_use_hw_breakpoint, t);
405 INHERIT (to_insert_hw_breakpoint, t);
406 INHERIT (to_remove_hw_breakpoint, t);
407 INHERIT (to_insert_watchpoint, t);
408 INHERIT (to_remove_watchpoint, t);
409 INHERIT (to_stopped_data_address, t);
410 INHERIT (to_have_steppable_watchpoint, t);
411 INHERIT (to_have_continuable_watchpoint, t);
412 INHERIT (to_stopped_by_watchpoint, t);
413 INHERIT (to_watchpoint_addr_within_range, t);
414 INHERIT (to_region_ok_for_hw_watchpoint, t);
415 INHERIT (to_terminal_init, t);
416 INHERIT (to_terminal_inferior, t);
417 INHERIT (to_terminal_ours_for_output, t);
418 INHERIT (to_terminal_ours, t);
419 INHERIT (to_terminal_save_ours, t);
420 INHERIT (to_terminal_info, t);
421 INHERIT (to_kill, t);
422 INHERIT (to_load, t);
423 INHERIT (to_lookup_symbol, t);
424 INHERIT (to_create_inferior, t);
425 INHERIT (to_post_startup_inferior, t);
426 INHERIT (to_acknowledge_created_inferior, t);
427 INHERIT (to_insert_fork_catchpoint, t);
428 INHERIT (to_remove_fork_catchpoint, t);
429 INHERIT (to_insert_vfork_catchpoint, t);
430 INHERIT (to_remove_vfork_catchpoint, t);
431 /* Do not inherit to_follow_fork. */
432 INHERIT (to_insert_exec_catchpoint, t);
433 INHERIT (to_remove_exec_catchpoint, t);
434 INHERIT (to_has_exited, t);
435 INHERIT (to_mourn_inferior, t);
436 INHERIT (to_can_run, t);
437 INHERIT (to_notice_signals, t);
438 INHERIT (to_thread_alive, t);
439 INHERIT (to_find_new_threads, t);
440 INHERIT (to_pid_to_str, t);
441 INHERIT (to_extra_thread_info, t);
442 INHERIT (to_stop, t);
443 /* Do not inherit to_xfer_partial. */
444 INHERIT (to_rcmd, t);
445 INHERIT (to_pid_to_exec_file, t);
446 INHERIT (to_log_command, t);
447 INHERIT (to_stratum, t);
448 INHERIT (to_has_all_memory, t);
449 INHERIT (to_has_memory, t);
450 INHERIT (to_has_stack, t);
451 INHERIT (to_has_registers, t);
452 INHERIT (to_has_execution, t);
453 INHERIT (to_has_thread_control, t);
454 INHERIT (to_sections, t);
455 INHERIT (to_sections_end, t);
456 INHERIT (to_can_async_p, t);
457 INHERIT (to_is_async_p, t);
458 INHERIT (to_async, t);
459 INHERIT (to_async_mask, t);
460 INHERIT (to_find_memory_regions, t);
461 INHERIT (to_make_corefile_notes, t);
462 INHERIT (to_get_thread_local_address, t);
463 /* Do not inherit to_read_description. */
464 /* Do not inherit to_search_memory. */
465 INHERIT (to_magic, t);
466 /* Do not inherit to_memory_map. */
467 /* Do not inherit to_flash_erase. */
468 /* Do not inherit to_flash_done. */
469 }
470 #undef INHERIT
471
472 /* Clean up a target struct so it no longer has any zero pointers in
473 it. Some entries are defaulted to a method that print an error,
474 others are hard-wired to a standard recursive default. */
475
476 #define de_fault(field, value) \
477 if (!current_target.field) \
478 current_target.field = value
479
480 de_fault (to_open,
481 (void (*) (char *, int))
482 tcomplain);
483 de_fault (to_close,
484 (void (*) (int))
485 target_ignore);
486 de_fault (to_post_attach,
487 (void (*) (int))
488 target_ignore);
489 de_fault (to_detach,
490 (void (*) (char *, int))
491 target_ignore);
492 de_fault (to_resume,
493 (void (*) (ptid_t, int, enum target_signal))
494 noprocess);
495 de_fault (to_wait,
496 (ptid_t (*) (ptid_t, struct target_waitstatus *))
497 noprocess);
498 de_fault (to_fetch_registers,
499 (void (*) (struct regcache *, int))
500 target_ignore);
501 de_fault (to_store_registers,
502 (void (*) (struct regcache *, int))
503 noprocess);
504 de_fault (to_prepare_to_store,
505 (void (*) (struct regcache *))
506 noprocess);
507 de_fault (deprecated_xfer_memory,
508 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
509 nomemory);
510 de_fault (to_files_info,
511 (void (*) (struct target_ops *))
512 target_ignore);
513 de_fault (to_insert_breakpoint,
514 memory_insert_breakpoint);
515 de_fault (to_remove_breakpoint,
516 memory_remove_breakpoint);
517 de_fault (to_can_use_hw_breakpoint,
518 (int (*) (int, int, int))
519 return_zero);
520 de_fault (to_insert_hw_breakpoint,
521 (int (*) (struct bp_target_info *))
522 return_minus_one);
523 de_fault (to_remove_hw_breakpoint,
524 (int (*) (struct bp_target_info *))
525 return_minus_one);
526 de_fault (to_insert_watchpoint,
527 (int (*) (CORE_ADDR, int, int))
528 return_minus_one);
529 de_fault (to_remove_watchpoint,
530 (int (*) (CORE_ADDR, int, int))
531 return_minus_one);
532 de_fault (to_stopped_by_watchpoint,
533 (int (*) (void))
534 return_zero);
535 de_fault (to_stopped_data_address,
536 (int (*) (struct target_ops *, CORE_ADDR *))
537 return_zero);
538 de_fault (to_watchpoint_addr_within_range,
539 default_watchpoint_addr_within_range);
540 de_fault (to_region_ok_for_hw_watchpoint,
541 default_region_ok_for_hw_watchpoint);
542 de_fault (to_terminal_init,
543 (void (*) (void))
544 target_ignore);
545 de_fault (to_terminal_inferior,
546 (void (*) (void))
547 target_ignore);
548 de_fault (to_terminal_ours_for_output,
549 (void (*) (void))
550 target_ignore);
551 de_fault (to_terminal_ours,
552 (void (*) (void))
553 target_ignore);
554 de_fault (to_terminal_save_ours,
555 (void (*) (void))
556 target_ignore);
557 de_fault (to_terminal_info,
558 default_terminal_info);
559 de_fault (to_kill,
560 (void (*) (void))
561 noprocess);
562 de_fault (to_load,
563 (void (*) (char *, int))
564 tcomplain);
565 de_fault (to_lookup_symbol,
566 (int (*) (char *, CORE_ADDR *))
567 nosymbol);
568 de_fault (to_post_startup_inferior,
569 (void (*) (ptid_t))
570 target_ignore);
571 de_fault (to_acknowledge_created_inferior,
572 (void (*) (int))
573 target_ignore);
574 de_fault (to_insert_fork_catchpoint,
575 (void (*) (int))
576 tcomplain);
577 de_fault (to_remove_fork_catchpoint,
578 (int (*) (int))
579 tcomplain);
580 de_fault (to_insert_vfork_catchpoint,
581 (void (*) (int))
582 tcomplain);
583 de_fault (to_remove_vfork_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_insert_exec_catchpoint,
587 (void (*) (int))
588 tcomplain);
589 de_fault (to_remove_exec_catchpoint,
590 (int (*) (int))
591 tcomplain);
592 de_fault (to_has_exited,
593 (int (*) (int, int, int *))
594 return_zero);
595 de_fault (to_mourn_inferior,
596 (void (*) (void))
597 noprocess);
598 de_fault (to_can_run,
599 return_zero);
600 de_fault (to_notice_signals,
601 (void (*) (ptid_t))
602 target_ignore);
603 de_fault (to_thread_alive,
604 (int (*) (ptid_t))
605 return_zero);
606 de_fault (to_find_new_threads,
607 (void (*) (void))
608 target_ignore);
609 de_fault (to_extra_thread_info,
610 (char *(*) (struct thread_info *))
611 return_zero);
612 de_fault (to_stop,
613 (void (*) (ptid_t))
614 target_ignore);
615 current_target.to_xfer_partial = current_xfer_partial;
616 de_fault (to_rcmd,
617 (void (*) (char *, struct ui_file *))
618 tcomplain);
619 de_fault (to_pid_to_exec_file,
620 (char *(*) (int))
621 return_zero);
622 de_fault (to_async,
623 (void (*) (void (*) (enum inferior_event_type, void*), void*))
624 tcomplain);
625 de_fault (to_async_mask,
626 (int (*) (int))
627 return_one);
628 current_target.to_read_description = NULL;
629 #undef de_fault
630
631 /* Finally, position the target-stack beneath the squashed
632 "current_target". That way code looking for a non-inherited
633 target method can quickly and simply find it. */
634 current_target.beneath = target_stack;
635
636 if (targetdebug)
637 setup_target_debug ();
638 }
639
640 /* Mark OPS as a running target. This reverses the effect
641 of target_mark_exited. */
642
643 void
644 target_mark_running (struct target_ops *ops)
645 {
646 struct target_ops *t;
647
648 for (t = target_stack; t != NULL; t = t->beneath)
649 if (t == ops)
650 break;
651 if (t == NULL)
652 internal_error (__FILE__, __LINE__,
653 "Attempted to mark unpushed target \"%s\" as running",
654 ops->to_shortname);
655
656 ops->to_has_execution = 1;
657 ops->to_has_all_memory = 1;
658 ops->to_has_memory = 1;
659 ops->to_has_stack = 1;
660 ops->to_has_registers = 1;
661
662 update_current_target ();
663 }
664
665 /* Mark OPS as a non-running target. This reverses the effect
666 of target_mark_running. */
667
668 void
669 target_mark_exited (struct target_ops *ops)
670 {
671 struct target_ops *t;
672
673 for (t = target_stack; t != NULL; t = t->beneath)
674 if (t == ops)
675 break;
676 if (t == NULL)
677 internal_error (__FILE__, __LINE__,
678 "Attempted to mark unpushed target \"%s\" as running",
679 ops->to_shortname);
680
681 ops->to_has_execution = 0;
682 ops->to_has_all_memory = 0;
683 ops->to_has_memory = 0;
684 ops->to_has_stack = 0;
685 ops->to_has_registers = 0;
686
687 update_current_target ();
688 }
689
690 /* Push a new target type into the stack of the existing target accessors,
691 possibly superseding some of the existing accessors.
692
693 Result is zero if the pushed target ended up on top of the stack,
694 nonzero if at least one target is on top of it.
695
696 Rather than allow an empty stack, we always have the dummy target at
697 the bottom stratum, so we can call the function vectors without
698 checking them. */
699
700 int
701 push_target (struct target_ops *t)
702 {
703 struct target_ops **cur;
704
705 /* Check magic number. If wrong, it probably means someone changed
706 the struct definition, but not all the places that initialize one. */
707 if (t->to_magic != OPS_MAGIC)
708 {
709 fprintf_unfiltered (gdb_stderr,
710 "Magic number of %s target struct wrong\n",
711 t->to_shortname);
712 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
713 }
714
715 /* Find the proper stratum to install this target in. */
716 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
717 {
718 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
719 break;
720 }
721
722 /* If there's already targets at this stratum, remove them. */
723 /* FIXME: cagney/2003-10-15: I think this should be popping all
724 targets to CUR, and not just those at this stratum level. */
725 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
726 {
727 /* There's already something at this stratum level. Close it,
728 and un-hook it from the stack. */
729 struct target_ops *tmp = (*cur);
730 (*cur) = (*cur)->beneath;
731 tmp->beneath = NULL;
732 target_close (tmp, 0);
733 }
734
735 /* We have removed all targets in our stratum, now add the new one. */
736 t->beneath = (*cur);
737 (*cur) = t;
738
739 update_current_target ();
740
741 /* Not on top? */
742 return (t != target_stack);
743 }
744
745 /* Remove a target_ops vector from the stack, wherever it may be.
746 Return how many times it was removed (0 or 1). */
747
748 int
749 unpush_target (struct target_ops *t)
750 {
751 struct target_ops **cur;
752 struct target_ops *tmp;
753
754 /* Look for the specified target. Note that we assume that a target
755 can only occur once in the target stack. */
756
757 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
758 {
759 if ((*cur) == t)
760 break;
761 }
762
763 if ((*cur) == NULL)
764 return 0; /* Didn't find target_ops, quit now */
765
766 /* NOTE: cagney/2003-12-06: In '94 the close call was made
767 unconditional by moving it to before the above check that the
768 target was in the target stack (something about "Change the way
769 pushing and popping of targets work to support target overlays
770 and inheritance"). This doesn't make much sense - only open
771 targets should be closed. */
772 target_close (t, 0);
773
774 /* Unchain the target */
775 tmp = (*cur);
776 (*cur) = (*cur)->beneath;
777 tmp->beneath = NULL;
778
779 update_current_target ();
780
781 return 1;
782 }
783
784 void
785 pop_target (void)
786 {
787 target_close (&current_target, 0); /* Let it clean up */
788 if (unpush_target (target_stack) == 1)
789 return;
790
791 fprintf_unfiltered (gdb_stderr,
792 "pop_target couldn't find target %s\n",
793 current_target.to_shortname);
794 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
795 }
796
797 void
798 pop_all_targets_above (enum strata above_stratum, int quitting)
799 {
800 while ((int) (current_target.to_stratum) > (int) above_stratum)
801 {
802 target_close (&current_target, quitting);
803 if (!unpush_target (target_stack))
804 {
805 fprintf_unfiltered (gdb_stderr,
806 "pop_all_targets couldn't find target %s\n",
807 current_target.to_shortname);
808 internal_error (__FILE__, __LINE__,
809 _("failed internal consistency check"));
810 break;
811 }
812 }
813 }
814
815 void
816 pop_all_targets (int quitting)
817 {
818 pop_all_targets_above (dummy_stratum, quitting);
819 }
820
821 /* Using the objfile specified in OBJFILE, find the address for the
822 current thread's thread-local storage with offset OFFSET. */
823 CORE_ADDR
824 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
825 {
826 volatile CORE_ADDR addr = 0;
827
828 if (target_get_thread_local_address_p ()
829 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
830 {
831 ptid_t ptid = inferior_ptid;
832 volatile struct gdb_exception ex;
833
834 TRY_CATCH (ex, RETURN_MASK_ALL)
835 {
836 CORE_ADDR lm_addr;
837
838 /* Fetch the load module address for this objfile. */
839 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
840 objfile);
841 /* If it's 0, throw the appropriate exception. */
842 if (lm_addr == 0)
843 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
844 _("TLS load module not found"));
845
846 addr = target_get_thread_local_address (ptid, lm_addr, offset);
847 }
848 /* If an error occurred, print TLS related messages here. Otherwise,
849 throw the error to some higher catcher. */
850 if (ex.reason < 0)
851 {
852 int objfile_is_library = (objfile->flags & OBJF_SHARED);
853
854 switch (ex.error)
855 {
856 case TLS_NO_LIBRARY_SUPPORT_ERROR:
857 error (_("Cannot find thread-local variables in this thread library."));
858 break;
859 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
860 if (objfile_is_library)
861 error (_("Cannot find shared library `%s' in dynamic"
862 " linker's load module list"), objfile->name);
863 else
864 error (_("Cannot find executable file `%s' in dynamic"
865 " linker's load module list"), objfile->name);
866 break;
867 case TLS_NOT_ALLOCATED_YET_ERROR:
868 if (objfile_is_library)
869 error (_("The inferior has not yet allocated storage for"
870 " thread-local variables in\n"
871 "the shared library `%s'\n"
872 "for %s"),
873 objfile->name, target_pid_to_str (ptid));
874 else
875 error (_("The inferior has not yet allocated storage for"
876 " thread-local variables in\n"
877 "the executable `%s'\n"
878 "for %s"),
879 objfile->name, target_pid_to_str (ptid));
880 break;
881 case TLS_GENERIC_ERROR:
882 if (objfile_is_library)
883 error (_("Cannot find thread-local storage for %s, "
884 "shared library %s:\n%s"),
885 target_pid_to_str (ptid),
886 objfile->name, ex.message);
887 else
888 error (_("Cannot find thread-local storage for %s, "
889 "executable file %s:\n%s"),
890 target_pid_to_str (ptid),
891 objfile->name, ex.message);
892 break;
893 default:
894 throw_exception (ex);
895 break;
896 }
897 }
898 }
899 /* It wouldn't be wrong here to try a gdbarch method, too; finding
900 TLS is an ABI-specific thing. But we don't do that yet. */
901 else
902 error (_("Cannot find thread-local variables on this target"));
903
904 return addr;
905 }
906
907 #undef MIN
908 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
909
910 /* target_read_string -- read a null terminated string, up to LEN bytes,
911 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
912 Set *STRING to a pointer to malloc'd memory containing the data; the caller
913 is responsible for freeing it. Return the number of bytes successfully
914 read. */
915
916 int
917 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
918 {
919 int tlen, origlen, offset, i;
920 gdb_byte buf[4];
921 int errcode = 0;
922 char *buffer;
923 int buffer_allocated;
924 char *bufptr;
925 unsigned int nbytes_read = 0;
926
927 gdb_assert (string);
928
929 /* Small for testing. */
930 buffer_allocated = 4;
931 buffer = xmalloc (buffer_allocated);
932 bufptr = buffer;
933
934 origlen = len;
935
936 while (len > 0)
937 {
938 tlen = MIN (len, 4 - (memaddr & 3));
939 offset = memaddr & 3;
940
941 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
942 if (errcode != 0)
943 {
944 /* The transfer request might have crossed the boundary to an
945 unallocated region of memory. Retry the transfer, requesting
946 a single byte. */
947 tlen = 1;
948 offset = 0;
949 errcode = target_read_memory (memaddr, buf, 1);
950 if (errcode != 0)
951 goto done;
952 }
953
954 if (bufptr - buffer + tlen > buffer_allocated)
955 {
956 unsigned int bytes;
957 bytes = bufptr - buffer;
958 buffer_allocated *= 2;
959 buffer = xrealloc (buffer, buffer_allocated);
960 bufptr = buffer + bytes;
961 }
962
963 for (i = 0; i < tlen; i++)
964 {
965 *bufptr++ = buf[i + offset];
966 if (buf[i + offset] == '\000')
967 {
968 nbytes_read += i + 1;
969 goto done;
970 }
971 }
972
973 memaddr += tlen;
974 len -= tlen;
975 nbytes_read += tlen;
976 }
977 done:
978 *string = buffer;
979 if (errnop != NULL)
980 *errnop = errcode;
981 return nbytes_read;
982 }
983
984 /* Find a section containing ADDR. */
985 struct section_table *
986 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
987 {
988 struct section_table *secp;
989 for (secp = target->to_sections;
990 secp < target->to_sections_end;
991 secp++)
992 {
993 if (addr >= secp->addr && addr < secp->endaddr)
994 return secp;
995 }
996 return NULL;
997 }
998
999 /* Perform a partial memory transfer. The arguments and return
1000 value are just as for target_xfer_partial. */
1001
1002 static LONGEST
1003 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
1004 ULONGEST memaddr, LONGEST len)
1005 {
1006 LONGEST res;
1007 int reg_len;
1008 struct mem_region *region;
1009
1010 /* Zero length requests are ok and require no work. */
1011 if (len == 0)
1012 return 0;
1013
1014 /* Try the executable file, if "trust-readonly-sections" is set. */
1015 if (readbuf != NULL && trust_readonly)
1016 {
1017 struct section_table *secp;
1018
1019 secp = target_section_by_addr (ops, memaddr);
1020 if (secp != NULL
1021 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1022 & SEC_READONLY))
1023 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1024 }
1025
1026 /* Likewise for accesses to unmapped overlay sections. */
1027 if (readbuf != NULL && overlay_debugging)
1028 {
1029 asection *section = find_pc_overlay (memaddr);
1030 if (pc_in_unmapped_range (memaddr, section))
1031 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1032 }
1033
1034 /* Try GDB's internal data cache. */
1035 region = lookup_mem_region (memaddr);
1036 /* region->hi == 0 means there's no upper bound. */
1037 if (memaddr + len < region->hi || region->hi == 0)
1038 reg_len = len;
1039 else
1040 reg_len = region->hi - memaddr;
1041
1042 switch (region->attrib.mode)
1043 {
1044 case MEM_RO:
1045 if (writebuf != NULL)
1046 return -1;
1047 break;
1048
1049 case MEM_WO:
1050 if (readbuf != NULL)
1051 return -1;
1052 break;
1053
1054 case MEM_FLASH:
1055 /* We only support writing to flash during "load" for now. */
1056 if (writebuf != NULL)
1057 error (_("Writing to flash memory forbidden in this context"));
1058 break;
1059
1060 case MEM_NONE:
1061 return -1;
1062 }
1063
1064 if (region->attrib.cache)
1065 {
1066 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1067 memory request will start back at current_target. */
1068 if (readbuf != NULL)
1069 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1070 reg_len, 0);
1071 else
1072 /* FIXME drow/2006-08-09: If we're going to preserve const
1073 correctness dcache_xfer_memory should take readbuf and
1074 writebuf. */
1075 res = dcache_xfer_memory (target_dcache, memaddr,
1076 (void *) writebuf,
1077 reg_len, 1);
1078 if (res <= 0)
1079 return -1;
1080 else
1081 {
1082 if (readbuf && !show_memory_breakpoints)
1083 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1084 return res;
1085 }
1086 }
1087
1088 /* If none of those methods found the memory we wanted, fall back
1089 to a target partial transfer. Normally a single call to
1090 to_xfer_partial is enough; if it doesn't recognize an object
1091 it will call the to_xfer_partial of the next target down.
1092 But for memory this won't do. Memory is the only target
1093 object which can be read from more than one valid target.
1094 A core file, for instance, could have some of memory but
1095 delegate other bits to the target below it. So, we must
1096 manually try all targets. */
1097
1098 do
1099 {
1100 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1101 readbuf, writebuf, memaddr, reg_len);
1102 if (res > 0)
1103 break;
1104
1105 /* We want to continue past core files to executables, but not
1106 past a running target's memory. */
1107 if (ops->to_has_all_memory)
1108 break;
1109
1110 ops = ops->beneath;
1111 }
1112 while (ops != NULL);
1113
1114 if (readbuf && !show_memory_breakpoints)
1115 breakpoint_restore_shadows (readbuf, memaddr, reg_len);
1116
1117 /* If we still haven't got anything, return the last error. We
1118 give up. */
1119 return res;
1120 }
1121
1122 static void
1123 restore_show_memory_breakpoints (void *arg)
1124 {
1125 show_memory_breakpoints = (uintptr_t) arg;
1126 }
1127
1128 struct cleanup *
1129 make_show_memory_breakpoints_cleanup (int show)
1130 {
1131 int current = show_memory_breakpoints;
1132 show_memory_breakpoints = show;
1133
1134 return make_cleanup (restore_show_memory_breakpoints,
1135 (void *) (uintptr_t) current);
1136 }
1137
1138 static LONGEST
1139 target_xfer_partial (struct target_ops *ops,
1140 enum target_object object, const char *annex,
1141 void *readbuf, const void *writebuf,
1142 ULONGEST offset, LONGEST len)
1143 {
1144 LONGEST retval;
1145
1146 gdb_assert (ops->to_xfer_partial != NULL);
1147
1148 /* If this is a memory transfer, let the memory-specific code
1149 have a look at it instead. Memory transfers are more
1150 complicated. */
1151 if (object == TARGET_OBJECT_MEMORY)
1152 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1153 else
1154 {
1155 enum target_object raw_object = object;
1156
1157 /* If this is a raw memory transfer, request the normal
1158 memory object from other layers. */
1159 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1160 raw_object = TARGET_OBJECT_MEMORY;
1161
1162 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1163 writebuf, offset, len);
1164 }
1165
1166 if (targetdebug)
1167 {
1168 const unsigned char *myaddr = NULL;
1169
1170 fprintf_unfiltered (gdb_stdlog,
1171 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1172 ops->to_shortname,
1173 (int) object,
1174 (annex ? annex : "(null)"),
1175 (long) readbuf, (long) writebuf,
1176 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1177
1178 if (readbuf)
1179 myaddr = readbuf;
1180 if (writebuf)
1181 myaddr = writebuf;
1182 if (retval > 0 && myaddr != NULL)
1183 {
1184 int i;
1185
1186 fputs_unfiltered (", bytes =", gdb_stdlog);
1187 for (i = 0; i < retval; i++)
1188 {
1189 if ((((long) &(myaddr[i])) & 0xf) == 0)
1190 {
1191 if (targetdebug < 2 && i > 0)
1192 {
1193 fprintf_unfiltered (gdb_stdlog, " ...");
1194 break;
1195 }
1196 fprintf_unfiltered (gdb_stdlog, "\n");
1197 }
1198
1199 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1200 }
1201 }
1202
1203 fputc_unfiltered ('\n', gdb_stdlog);
1204 }
1205 return retval;
1206 }
1207
1208 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1209 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1210 if any error occurs.
1211
1212 If an error occurs, no guarantee is made about the contents of the data at
1213 MYADDR. In particular, the caller should not depend upon partial reads
1214 filling the buffer with good data. There is no way for the caller to know
1215 how much good data might have been transfered anyway. Callers that can
1216 deal with partial reads should call target_read (which will retry until
1217 it makes no progress, and then return how much was transferred). */
1218
1219 int
1220 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1221 {
1222 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1223 myaddr, memaddr, len) == len)
1224 return 0;
1225 else
1226 return EIO;
1227 }
1228
1229 int
1230 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1231 {
1232 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1233 myaddr, memaddr, len) == len)
1234 return 0;
1235 else
1236 return EIO;
1237 }
1238
1239 /* Fetch the target's memory map. */
1240
1241 VEC(mem_region_s) *
1242 target_memory_map (void)
1243 {
1244 VEC(mem_region_s) *result;
1245 struct mem_region *last_one, *this_one;
1246 int ix;
1247 struct target_ops *t;
1248
1249 if (targetdebug)
1250 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1251
1252 for (t = current_target.beneath; t != NULL; t = t->beneath)
1253 if (t->to_memory_map != NULL)
1254 break;
1255
1256 if (t == NULL)
1257 return NULL;
1258
1259 result = t->to_memory_map (t);
1260 if (result == NULL)
1261 return NULL;
1262
1263 qsort (VEC_address (mem_region_s, result),
1264 VEC_length (mem_region_s, result),
1265 sizeof (struct mem_region), mem_region_cmp);
1266
1267 /* Check that regions do not overlap. Simultaneously assign
1268 a numbering for the "mem" commands to use to refer to
1269 each region. */
1270 last_one = NULL;
1271 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1272 {
1273 this_one->number = ix;
1274
1275 if (last_one && last_one->hi > this_one->lo)
1276 {
1277 warning (_("Overlapping regions in memory map: ignoring"));
1278 VEC_free (mem_region_s, result);
1279 return NULL;
1280 }
1281 last_one = this_one;
1282 }
1283
1284 return result;
1285 }
1286
1287 void
1288 target_flash_erase (ULONGEST address, LONGEST length)
1289 {
1290 struct target_ops *t;
1291
1292 for (t = current_target.beneath; t != NULL; t = t->beneath)
1293 if (t->to_flash_erase != NULL)
1294 {
1295 if (targetdebug)
1296 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1297 paddr (address), phex (length, 0));
1298 t->to_flash_erase (t, address, length);
1299 return;
1300 }
1301
1302 tcomplain ();
1303 }
1304
1305 void
1306 target_flash_done (void)
1307 {
1308 struct target_ops *t;
1309
1310 for (t = current_target.beneath; t != NULL; t = t->beneath)
1311 if (t->to_flash_done != NULL)
1312 {
1313 if (targetdebug)
1314 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1315 t->to_flash_done (t);
1316 return;
1317 }
1318
1319 tcomplain ();
1320 }
1321
1322 #ifndef target_stopped_data_address_p
1323 int
1324 target_stopped_data_address_p (struct target_ops *target)
1325 {
1326 if (target->to_stopped_data_address
1327 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1328 return 0;
1329 if (target->to_stopped_data_address == debug_to_stopped_data_address
1330 && (debug_target.to_stopped_data_address
1331 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1332 return 0;
1333 return 1;
1334 }
1335 #endif
1336
1337 static void
1338 show_trust_readonly (struct ui_file *file, int from_tty,
1339 struct cmd_list_element *c, const char *value)
1340 {
1341 fprintf_filtered (file, _("\
1342 Mode for reading from readonly sections is %s.\n"),
1343 value);
1344 }
1345
1346 /* More generic transfers. */
1347
1348 static LONGEST
1349 default_xfer_partial (struct target_ops *ops, enum target_object object,
1350 const char *annex, gdb_byte *readbuf,
1351 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1352 {
1353 if (object == TARGET_OBJECT_MEMORY
1354 && ops->deprecated_xfer_memory != NULL)
1355 /* If available, fall back to the target's
1356 "deprecated_xfer_memory" method. */
1357 {
1358 int xfered = -1;
1359 errno = 0;
1360 if (writebuf != NULL)
1361 {
1362 void *buffer = xmalloc (len);
1363 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1364 memcpy (buffer, writebuf, len);
1365 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1366 1/*write*/, NULL, ops);
1367 do_cleanups (cleanup);
1368 }
1369 if (readbuf != NULL)
1370 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1371 0/*read*/, NULL, ops);
1372 if (xfered > 0)
1373 return xfered;
1374 else if (xfered == 0 && errno == 0)
1375 /* "deprecated_xfer_memory" uses 0, cross checked against
1376 ERRNO as one indication of an error. */
1377 return 0;
1378 else
1379 return -1;
1380 }
1381 else if (ops->beneath != NULL)
1382 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1383 readbuf, writebuf, offset, len);
1384 else
1385 return -1;
1386 }
1387
1388 /* The xfer_partial handler for the topmost target. Unlike the default,
1389 it does not need to handle memory specially; it just passes all
1390 requests down the stack. */
1391
1392 static LONGEST
1393 current_xfer_partial (struct target_ops *ops, enum target_object object,
1394 const char *annex, gdb_byte *readbuf,
1395 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1396 {
1397 if (ops->beneath != NULL)
1398 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1399 readbuf, writebuf, offset, len);
1400 else
1401 return -1;
1402 }
1403
1404 /* Target vector read/write partial wrapper functions.
1405
1406 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1407 (inbuf, outbuf)", instead of separate read/write methods, make life
1408 easier. */
1409
1410 static LONGEST
1411 target_read_partial (struct target_ops *ops,
1412 enum target_object object,
1413 const char *annex, gdb_byte *buf,
1414 ULONGEST offset, LONGEST len)
1415 {
1416 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1417 }
1418
1419 static LONGEST
1420 target_write_partial (struct target_ops *ops,
1421 enum target_object object,
1422 const char *annex, const gdb_byte *buf,
1423 ULONGEST offset, LONGEST len)
1424 {
1425 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1426 }
1427
1428 /* Wrappers to perform the full transfer. */
1429 LONGEST
1430 target_read (struct target_ops *ops,
1431 enum target_object object,
1432 const char *annex, gdb_byte *buf,
1433 ULONGEST offset, LONGEST len)
1434 {
1435 LONGEST xfered = 0;
1436 while (xfered < len)
1437 {
1438 LONGEST xfer = target_read_partial (ops, object, annex,
1439 (gdb_byte *) buf + xfered,
1440 offset + xfered, len - xfered);
1441 /* Call an observer, notifying them of the xfer progress? */
1442 if (xfer == 0)
1443 return xfered;
1444 if (xfer < 0)
1445 return -1;
1446 xfered += xfer;
1447 QUIT;
1448 }
1449 return len;
1450 }
1451
1452 LONGEST
1453 target_read_until_error (struct target_ops *ops,
1454 enum target_object object,
1455 const char *annex, gdb_byte *buf,
1456 ULONGEST offset, LONGEST len)
1457 {
1458 LONGEST xfered = 0;
1459 while (xfered < len)
1460 {
1461 LONGEST xfer = target_read_partial (ops, object, annex,
1462 (gdb_byte *) buf + xfered,
1463 offset + xfered, len - xfered);
1464 /* Call an observer, notifying them of the xfer progress? */
1465 if (xfer == 0)
1466 return xfered;
1467 if (xfer < 0)
1468 {
1469 /* We've got an error. Try to read in smaller blocks. */
1470 ULONGEST start = offset + xfered;
1471 ULONGEST remaining = len - xfered;
1472 ULONGEST half;
1473
1474 /* If an attempt was made to read a random memory address,
1475 it's likely that the very first byte is not accessible.
1476 Try reading the first byte, to avoid doing log N tries
1477 below. */
1478 xfer = target_read_partial (ops, object, annex,
1479 (gdb_byte *) buf + xfered, start, 1);
1480 if (xfer <= 0)
1481 return xfered;
1482 start += 1;
1483 remaining -= 1;
1484 half = remaining/2;
1485
1486 while (half > 0)
1487 {
1488 xfer = target_read_partial (ops, object, annex,
1489 (gdb_byte *) buf + xfered,
1490 start, half);
1491 if (xfer == 0)
1492 return xfered;
1493 if (xfer < 0)
1494 {
1495 remaining = half;
1496 }
1497 else
1498 {
1499 /* We have successfully read the first half. So, the
1500 error must be in the second half. Adjust start and
1501 remaining to point at the second half. */
1502 xfered += xfer;
1503 start += xfer;
1504 remaining -= xfer;
1505 }
1506 half = remaining/2;
1507 }
1508
1509 return xfered;
1510 }
1511 xfered += xfer;
1512 QUIT;
1513 }
1514 return len;
1515 }
1516
1517
1518 /* An alternative to target_write with progress callbacks. */
1519
1520 LONGEST
1521 target_write_with_progress (struct target_ops *ops,
1522 enum target_object object,
1523 const char *annex, const gdb_byte *buf,
1524 ULONGEST offset, LONGEST len,
1525 void (*progress) (ULONGEST, void *), void *baton)
1526 {
1527 LONGEST xfered = 0;
1528
1529 /* Give the progress callback a chance to set up. */
1530 if (progress)
1531 (*progress) (0, baton);
1532
1533 while (xfered < len)
1534 {
1535 LONGEST xfer = target_write_partial (ops, object, annex,
1536 (gdb_byte *) buf + xfered,
1537 offset + xfered, len - xfered);
1538
1539 if (xfer == 0)
1540 return xfered;
1541 if (xfer < 0)
1542 return -1;
1543
1544 if (progress)
1545 (*progress) (xfer, baton);
1546
1547 xfered += xfer;
1548 QUIT;
1549 }
1550 return len;
1551 }
1552
1553 LONGEST
1554 target_write (struct target_ops *ops,
1555 enum target_object object,
1556 const char *annex, const gdb_byte *buf,
1557 ULONGEST offset, LONGEST len)
1558 {
1559 return target_write_with_progress (ops, object, annex, buf, offset, len,
1560 NULL, NULL);
1561 }
1562
1563 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1564 the size of the transferred data. PADDING additional bytes are
1565 available in *BUF_P. This is a helper function for
1566 target_read_alloc; see the declaration of that function for more
1567 information. */
1568
1569 static LONGEST
1570 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1571 const char *annex, gdb_byte **buf_p, int padding)
1572 {
1573 size_t buf_alloc, buf_pos;
1574 gdb_byte *buf;
1575 LONGEST n;
1576
1577 /* This function does not have a length parameter; it reads the
1578 entire OBJECT). Also, it doesn't support objects fetched partly
1579 from one target and partly from another (in a different stratum,
1580 e.g. a core file and an executable). Both reasons make it
1581 unsuitable for reading memory. */
1582 gdb_assert (object != TARGET_OBJECT_MEMORY);
1583
1584 /* Start by reading up to 4K at a time. The target will throttle
1585 this number down if necessary. */
1586 buf_alloc = 4096;
1587 buf = xmalloc (buf_alloc);
1588 buf_pos = 0;
1589 while (1)
1590 {
1591 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1592 buf_pos, buf_alloc - buf_pos - padding);
1593 if (n < 0)
1594 {
1595 /* An error occurred. */
1596 xfree (buf);
1597 return -1;
1598 }
1599 else if (n == 0)
1600 {
1601 /* Read all there was. */
1602 if (buf_pos == 0)
1603 xfree (buf);
1604 else
1605 *buf_p = buf;
1606 return buf_pos;
1607 }
1608
1609 buf_pos += n;
1610
1611 /* If the buffer is filling up, expand it. */
1612 if (buf_alloc < buf_pos * 2)
1613 {
1614 buf_alloc *= 2;
1615 buf = xrealloc (buf, buf_alloc);
1616 }
1617
1618 QUIT;
1619 }
1620 }
1621
1622 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1623 the size of the transferred data. See the declaration in "target.h"
1624 function for more information about the return value. */
1625
1626 LONGEST
1627 target_read_alloc (struct target_ops *ops, enum target_object object,
1628 const char *annex, gdb_byte **buf_p)
1629 {
1630 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1631 }
1632
1633 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1634 returned as a string, allocated using xmalloc. If an error occurs
1635 or the transfer is unsupported, NULL is returned. Empty objects
1636 are returned as allocated but empty strings. A warning is issued
1637 if the result contains any embedded NUL bytes. */
1638
1639 char *
1640 target_read_stralloc (struct target_ops *ops, enum target_object object,
1641 const char *annex)
1642 {
1643 gdb_byte *buffer;
1644 LONGEST transferred;
1645
1646 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1647
1648 if (transferred < 0)
1649 return NULL;
1650
1651 if (transferred == 0)
1652 return xstrdup ("");
1653
1654 buffer[transferred] = 0;
1655 if (strlen (buffer) < transferred)
1656 warning (_("target object %d, annex %s, "
1657 "contained unexpected null characters"),
1658 (int) object, annex ? annex : "(none)");
1659
1660 return (char *) buffer;
1661 }
1662
1663 /* Memory transfer methods. */
1664
1665 void
1666 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1667 LONGEST len)
1668 {
1669 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1670 != len)
1671 memory_error (EIO, addr);
1672 }
1673
1674 ULONGEST
1675 get_target_memory_unsigned (struct target_ops *ops,
1676 CORE_ADDR addr, int len)
1677 {
1678 gdb_byte buf[sizeof (ULONGEST)];
1679
1680 gdb_assert (len <= sizeof (buf));
1681 get_target_memory (ops, addr, buf, len);
1682 return extract_unsigned_integer (buf, len);
1683 }
1684
1685 static void
1686 target_info (char *args, int from_tty)
1687 {
1688 struct target_ops *t;
1689 int has_all_mem = 0;
1690
1691 if (symfile_objfile != NULL)
1692 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1693
1694 for (t = target_stack; t != NULL; t = t->beneath)
1695 {
1696 if (!t->to_has_memory)
1697 continue;
1698
1699 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1700 continue;
1701 if (has_all_mem)
1702 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1703 printf_unfiltered ("%s:\n", t->to_longname);
1704 (t->to_files_info) (t);
1705 has_all_mem = t->to_has_all_memory;
1706 }
1707 }
1708
1709 /* This function is called before any new inferior is created, e.g.
1710 by running a program, attaching, or connecting to a target.
1711 It cleans up any state from previous invocations which might
1712 change between runs. This is a subset of what target_preopen
1713 resets (things which might change between targets). */
1714
1715 void
1716 target_pre_inferior (int from_tty)
1717 {
1718 /* Clear out solib state. Otherwise the solib state of the previous
1719 inferior might have survived and is entirely wrong for the new
1720 target. This has been observed on GNU/Linux using glibc 2.3. How
1721 to reproduce:
1722
1723 bash$ ./foo&
1724 [1] 4711
1725 bash$ ./foo&
1726 [1] 4712
1727 bash$ gdb ./foo
1728 [...]
1729 (gdb) attach 4711
1730 (gdb) detach
1731 (gdb) attach 4712
1732 Cannot access memory at address 0xdeadbeef
1733 */
1734 no_shared_libraries (NULL, from_tty);
1735
1736 invalidate_target_mem_regions ();
1737
1738 target_clear_description ();
1739 }
1740
1741 /* This is to be called by the open routine before it does
1742 anything. */
1743
1744 void
1745 target_preopen (int from_tty)
1746 {
1747 dont_repeat ();
1748
1749 if (target_has_execution)
1750 {
1751 if (!from_tty
1752 || query (_("A program is being debugged already. Kill it? ")))
1753 target_kill ();
1754 else
1755 error (_("Program not killed."));
1756 }
1757
1758 /* Calling target_kill may remove the target from the stack. But if
1759 it doesn't (which seems like a win for UDI), remove it now. */
1760 /* Leave the exec target, though. The user may be switching from a
1761 live process to a core of the same program. */
1762 pop_all_targets_above (file_stratum, 0);
1763
1764 target_pre_inferior (from_tty);
1765 }
1766
1767 /* Detach a target after doing deferred register stores. */
1768
1769 void
1770 target_detach (char *args, int from_tty)
1771 {
1772 /* If we're in breakpoints-always-inserted mode, have to
1773 remove them before detaching. */
1774 remove_breakpoints ();
1775
1776 (current_target.to_detach) (args, from_tty);
1777 }
1778
1779 void
1780 target_disconnect (char *args, int from_tty)
1781 {
1782 struct target_ops *t;
1783
1784 /* If we're in breakpoints-always-inserted mode, have to
1785 remove them before disconnecting. */
1786 remove_breakpoints ();
1787
1788 for (t = current_target.beneath; t != NULL; t = t->beneath)
1789 if (t->to_disconnect != NULL)
1790 {
1791 if (targetdebug)
1792 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1793 args, from_tty);
1794 t->to_disconnect (t, args, from_tty);
1795 return;
1796 }
1797
1798 tcomplain ();
1799 }
1800
1801 void
1802 target_resume (ptid_t ptid, int step, enum target_signal signal)
1803 {
1804 dcache_invalidate (target_dcache);
1805 (*current_target.to_resume) (ptid, step, signal);
1806 set_executing (ptid, 1);
1807 set_running (ptid, 1);
1808 }
1809 /* Look through the list of possible targets for a target that can
1810 follow forks. */
1811
1812 int
1813 target_follow_fork (int follow_child)
1814 {
1815 struct target_ops *t;
1816
1817 for (t = current_target.beneath; t != NULL; t = t->beneath)
1818 {
1819 if (t->to_follow_fork != NULL)
1820 {
1821 int retval = t->to_follow_fork (t, follow_child);
1822 if (targetdebug)
1823 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1824 follow_child, retval);
1825 return retval;
1826 }
1827 }
1828
1829 /* Some target returned a fork event, but did not know how to follow it. */
1830 internal_error (__FILE__, __LINE__,
1831 "could not find a target to follow fork");
1832 }
1833
1834 /* Look for a target which can describe architectural features, starting
1835 from TARGET. If we find one, return its description. */
1836
1837 const struct target_desc *
1838 target_read_description (struct target_ops *target)
1839 {
1840 struct target_ops *t;
1841
1842 for (t = target; t != NULL; t = t->beneath)
1843 if (t->to_read_description != NULL)
1844 {
1845 const struct target_desc *tdesc;
1846
1847 tdesc = t->to_read_description (t);
1848 if (tdesc)
1849 return tdesc;
1850 }
1851
1852 return NULL;
1853 }
1854
1855 /* The default implementation of to_search_memory.
1856 This implements a basic search of memory, reading target memory and
1857 performing the search here (as opposed to performing the search in on the
1858 target side with, for example, gdbserver). */
1859
1860 int
1861 simple_search_memory (struct target_ops *ops,
1862 CORE_ADDR start_addr, ULONGEST search_space_len,
1863 const gdb_byte *pattern, ULONGEST pattern_len,
1864 CORE_ADDR *found_addrp)
1865 {
1866 /* NOTE: also defined in find.c testcase. */
1867 #define SEARCH_CHUNK_SIZE 16000
1868 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
1869 /* Buffer to hold memory contents for searching. */
1870 gdb_byte *search_buf;
1871 unsigned search_buf_size;
1872 struct cleanup *old_cleanups;
1873
1874 search_buf_size = chunk_size + pattern_len - 1;
1875
1876 /* No point in trying to allocate a buffer larger than the search space. */
1877 if (search_space_len < search_buf_size)
1878 search_buf_size = search_space_len;
1879
1880 search_buf = malloc (search_buf_size);
1881 if (search_buf == NULL)
1882 error (_("Unable to allocate memory to perform the search."));
1883 old_cleanups = make_cleanup (free_current_contents, &search_buf);
1884
1885 /* Prime the search buffer. */
1886
1887 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1888 search_buf, start_addr, search_buf_size) != search_buf_size)
1889 {
1890 warning (_("Unable to access target memory at %s, halting search."),
1891 hex_string (start_addr));
1892 do_cleanups (old_cleanups);
1893 return -1;
1894 }
1895
1896 /* Perform the search.
1897
1898 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
1899 When we've scanned N bytes we copy the trailing bytes to the start and
1900 read in another N bytes. */
1901
1902 while (search_space_len >= pattern_len)
1903 {
1904 gdb_byte *found_ptr;
1905 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
1906
1907 found_ptr = memmem (search_buf, nr_search_bytes,
1908 pattern, pattern_len);
1909
1910 if (found_ptr != NULL)
1911 {
1912 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
1913 *found_addrp = found_addr;
1914 do_cleanups (old_cleanups);
1915 return 1;
1916 }
1917
1918 /* Not found in this chunk, skip to next chunk. */
1919
1920 /* Don't let search_space_len wrap here, it's unsigned. */
1921 if (search_space_len >= chunk_size)
1922 search_space_len -= chunk_size;
1923 else
1924 search_space_len = 0;
1925
1926 if (search_space_len >= pattern_len)
1927 {
1928 unsigned keep_len = search_buf_size - chunk_size;
1929 CORE_ADDR read_addr = start_addr + keep_len;
1930 int nr_to_read;
1931
1932 /* Copy the trailing part of the previous iteration to the front
1933 of the buffer for the next iteration. */
1934 gdb_assert (keep_len == pattern_len - 1);
1935 memcpy (search_buf, search_buf + chunk_size, keep_len);
1936
1937 nr_to_read = min (search_space_len - keep_len, chunk_size);
1938
1939 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1940 search_buf + keep_len, read_addr,
1941 nr_to_read) != nr_to_read)
1942 {
1943 warning (_("Unable to access target memory at %s, halting search."),
1944 hex_string (read_addr));
1945 do_cleanups (old_cleanups);
1946 return -1;
1947 }
1948
1949 start_addr += chunk_size;
1950 }
1951 }
1952
1953 /* Not found. */
1954
1955 do_cleanups (old_cleanups);
1956 return 0;
1957 }
1958
1959 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
1960 sequence of bytes in PATTERN with length PATTERN_LEN.
1961
1962 The result is 1 if found, 0 if not found, and -1 if there was an error
1963 requiring halting of the search (e.g. memory read error).
1964 If the pattern is found the address is recorded in FOUND_ADDRP. */
1965
1966 int
1967 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
1968 const gdb_byte *pattern, ULONGEST pattern_len,
1969 CORE_ADDR *found_addrp)
1970 {
1971 struct target_ops *t;
1972 int found;
1973
1974 /* We don't use INHERIT to set current_target.to_search_memory,
1975 so we have to scan the target stack and handle targetdebug
1976 ourselves. */
1977
1978 if (targetdebug)
1979 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
1980 hex_string (start_addr));
1981
1982 for (t = current_target.beneath; t != NULL; t = t->beneath)
1983 if (t->to_search_memory != NULL)
1984 break;
1985
1986 if (t != NULL)
1987 {
1988 found = t->to_search_memory (t, start_addr, search_space_len,
1989 pattern, pattern_len, found_addrp);
1990 }
1991 else
1992 {
1993 /* If a special version of to_search_memory isn't available, use the
1994 simple version. */
1995 found = simple_search_memory (&current_target,
1996 start_addr, search_space_len,
1997 pattern, pattern_len, found_addrp);
1998 }
1999
2000 if (targetdebug)
2001 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2002
2003 return found;
2004 }
2005
2006 /* Look through the currently pushed targets. If none of them will
2007 be able to restart the currently running process, issue an error
2008 message. */
2009
2010 void
2011 target_require_runnable (void)
2012 {
2013 struct target_ops *t;
2014
2015 for (t = target_stack; t != NULL; t = t->beneath)
2016 {
2017 /* If this target knows how to create a new program, then
2018 assume we will still be able to after killing the current
2019 one. Either killing and mourning will not pop T, or else
2020 find_default_run_target will find it again. */
2021 if (t->to_create_inferior != NULL)
2022 return;
2023
2024 /* Do not worry about thread_stratum targets that can not
2025 create inferiors. Assume they will be pushed again if
2026 necessary, and continue to the process_stratum. */
2027 if (t->to_stratum == thread_stratum)
2028 continue;
2029
2030 error (_("\
2031 The \"%s\" target does not support \"run\". Try \"help target\" or \"continue\"."),
2032 t->to_shortname);
2033 }
2034
2035 /* This function is only called if the target is running. In that
2036 case there should have been a process_stratum target and it
2037 should either know how to create inferiors, or not... */
2038 internal_error (__FILE__, __LINE__, "No targets found");
2039 }
2040
2041 /* Look through the list of possible targets for a target that can
2042 execute a run or attach command without any other data. This is
2043 used to locate the default process stratum.
2044
2045 If DO_MESG is not NULL, the result is always valid (error() is
2046 called for errors); else, return NULL on error. */
2047
2048 static struct target_ops *
2049 find_default_run_target (char *do_mesg)
2050 {
2051 struct target_ops **t;
2052 struct target_ops *runable = NULL;
2053 int count;
2054
2055 count = 0;
2056
2057 for (t = target_structs; t < target_structs + target_struct_size;
2058 ++t)
2059 {
2060 if ((*t)->to_can_run && target_can_run (*t))
2061 {
2062 runable = *t;
2063 ++count;
2064 }
2065 }
2066
2067 if (count != 1)
2068 {
2069 if (do_mesg)
2070 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2071 else
2072 return NULL;
2073 }
2074
2075 return runable;
2076 }
2077
2078 void
2079 find_default_attach (char *args, int from_tty)
2080 {
2081 struct target_ops *t;
2082
2083 t = find_default_run_target ("attach");
2084 (t->to_attach) (args, from_tty);
2085 return;
2086 }
2087
2088 void
2089 find_default_create_inferior (char *exec_file, char *allargs, char **env,
2090 int from_tty)
2091 {
2092 struct target_ops *t;
2093
2094 t = find_default_run_target ("run");
2095 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
2096 return;
2097 }
2098
2099 int
2100 find_default_can_async_p (void)
2101 {
2102 struct target_ops *t;
2103
2104 /* This may be called before the target is pushed on the stack;
2105 look for the default process stratum. If there's none, gdb isn't
2106 configured with a native debugger, and target remote isn't
2107 connected yet. */
2108 t = find_default_run_target (NULL);
2109 if (t && t->to_can_async_p)
2110 return (t->to_can_async_p) ();
2111 return 0;
2112 }
2113
2114 int
2115 find_default_is_async_p (void)
2116 {
2117 struct target_ops *t;
2118
2119 /* This may be called before the target is pushed on the stack;
2120 look for the default process stratum. If there's none, gdb isn't
2121 configured with a native debugger, and target remote isn't
2122 connected yet. */
2123 t = find_default_run_target (NULL);
2124 if (t && t->to_is_async_p)
2125 return (t->to_is_async_p) ();
2126 return 0;
2127 }
2128
2129 static int
2130 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2131 {
2132 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
2133 }
2134
2135 static int
2136 default_watchpoint_addr_within_range (struct target_ops *target,
2137 CORE_ADDR addr,
2138 CORE_ADDR start, int length)
2139 {
2140 return addr >= start && addr < start + length;
2141 }
2142
2143 static int
2144 return_zero (void)
2145 {
2146 return 0;
2147 }
2148
2149 static int
2150 return_one (void)
2151 {
2152 return 1;
2153 }
2154
2155 static int
2156 return_minus_one (void)
2157 {
2158 return -1;
2159 }
2160
2161 /*
2162 * Resize the to_sections pointer. Also make sure that anyone that
2163 * was holding on to an old value of it gets updated.
2164 * Returns the old size.
2165 */
2166
2167 int
2168 target_resize_to_sections (struct target_ops *target, int num_added)
2169 {
2170 struct target_ops **t;
2171 struct section_table *old_value;
2172 int old_count;
2173
2174 old_value = target->to_sections;
2175
2176 if (target->to_sections)
2177 {
2178 old_count = target->to_sections_end - target->to_sections;
2179 target->to_sections = (struct section_table *)
2180 xrealloc ((char *) target->to_sections,
2181 (sizeof (struct section_table)) * (num_added + old_count));
2182 }
2183 else
2184 {
2185 old_count = 0;
2186 target->to_sections = (struct section_table *)
2187 xmalloc ((sizeof (struct section_table)) * num_added);
2188 }
2189 target->to_sections_end = target->to_sections + (num_added + old_count);
2190
2191 /* Check to see if anyone else was pointing to this structure.
2192 If old_value was null, then no one was. */
2193
2194 if (old_value)
2195 {
2196 for (t = target_structs; t < target_structs + target_struct_size;
2197 ++t)
2198 {
2199 if ((*t)->to_sections == old_value)
2200 {
2201 (*t)->to_sections = target->to_sections;
2202 (*t)->to_sections_end = target->to_sections_end;
2203 }
2204 }
2205 /* There is a flattened view of the target stack in current_target,
2206 so its to_sections pointer might also need updating. */
2207 if (current_target.to_sections == old_value)
2208 {
2209 current_target.to_sections = target->to_sections;
2210 current_target.to_sections_end = target->to_sections_end;
2211 }
2212 }
2213
2214 return old_count;
2215
2216 }
2217
2218 /* Remove all target sections taken from ABFD.
2219
2220 Scan the current target stack for targets whose section tables
2221 refer to sections from BFD, and remove those sections. We use this
2222 when we notice that the inferior has unloaded a shared object, for
2223 example. */
2224 void
2225 remove_target_sections (bfd *abfd)
2226 {
2227 struct target_ops **t;
2228
2229 for (t = target_structs; t < target_structs + target_struct_size; t++)
2230 {
2231 struct section_table *src, *dest;
2232
2233 dest = (*t)->to_sections;
2234 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
2235 if (src->bfd != abfd)
2236 {
2237 /* Keep this section. */
2238 if (dest < src) *dest = *src;
2239 dest++;
2240 }
2241
2242 /* If we've dropped any sections, resize the section table. */
2243 if (dest < src)
2244 target_resize_to_sections (*t, dest - src);
2245 }
2246 }
2247
2248
2249
2250
2251 /* Find a single runnable target in the stack and return it. If for
2252 some reason there is more than one, return NULL. */
2253
2254 struct target_ops *
2255 find_run_target (void)
2256 {
2257 struct target_ops **t;
2258 struct target_ops *runable = NULL;
2259 int count;
2260
2261 count = 0;
2262
2263 for (t = target_structs; t < target_structs + target_struct_size; ++t)
2264 {
2265 if ((*t)->to_can_run && target_can_run (*t))
2266 {
2267 runable = *t;
2268 ++count;
2269 }
2270 }
2271
2272 return (count == 1 ? runable : NULL);
2273 }
2274
2275 /* Find a single core_stratum target in the list of targets and return it.
2276 If for some reason there is more than one, return NULL. */
2277
2278 struct target_ops *
2279 find_core_target (void)
2280 {
2281 struct target_ops **t;
2282 struct target_ops *runable = NULL;
2283 int count;
2284
2285 count = 0;
2286
2287 for (t = target_structs; t < target_structs + target_struct_size;
2288 ++t)
2289 {
2290 if ((*t)->to_stratum == core_stratum)
2291 {
2292 runable = *t;
2293 ++count;
2294 }
2295 }
2296
2297 return (count == 1 ? runable : NULL);
2298 }
2299
2300 /*
2301 * Find the next target down the stack from the specified target.
2302 */
2303
2304 struct target_ops *
2305 find_target_beneath (struct target_ops *t)
2306 {
2307 return t->beneath;
2308 }
2309
2310 \f
2311 /* The inferior process has died. Long live the inferior! */
2312
2313 void
2314 generic_mourn_inferior (void)
2315 {
2316 extern int show_breakpoint_hit_counts;
2317
2318 inferior_ptid = null_ptid;
2319 attach_flag = 0;
2320 breakpoint_init_inferior (inf_exited);
2321 registers_changed ();
2322
2323 reopen_exec_file ();
2324 reinit_frame_cache ();
2325
2326 /* It is confusing to the user for ignore counts to stick around
2327 from previous runs of the inferior. So clear them. */
2328 /* However, it is more confusing for the ignore counts to disappear when
2329 using hit counts. So don't clear them if we're counting hits. */
2330 if (!show_breakpoint_hit_counts)
2331 breakpoint_clear_ignore_counts ();
2332
2333 if (deprecated_detach_hook)
2334 deprecated_detach_hook ();
2335 }
2336 \f
2337 /* Helper function for child_wait and the derivatives of child_wait.
2338 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
2339 translation of that in OURSTATUS. */
2340 void
2341 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
2342 {
2343 if (WIFEXITED (hoststatus))
2344 {
2345 ourstatus->kind = TARGET_WAITKIND_EXITED;
2346 ourstatus->value.integer = WEXITSTATUS (hoststatus);
2347 }
2348 else if (!WIFSTOPPED (hoststatus))
2349 {
2350 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2351 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
2352 }
2353 else
2354 {
2355 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2356 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
2357 }
2358 }
2359 \f
2360 /* Returns zero to leave the inferior alone, one to interrupt it. */
2361 int (*target_activity_function) (void);
2362 int target_activity_fd;
2363 \f
2364 /* Convert a normal process ID to a string. Returns the string in a
2365 static buffer. */
2366
2367 char *
2368 normal_pid_to_str (ptid_t ptid)
2369 {
2370 static char buf[32];
2371
2372 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2373 return buf;
2374 }
2375
2376 /* Error-catcher for target_find_memory_regions */
2377 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2378 {
2379 error (_("No target."));
2380 return 0;
2381 }
2382
2383 /* Error-catcher for target_make_corefile_notes */
2384 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2385 {
2386 error (_("No target."));
2387 return NULL;
2388 }
2389
2390 /* Set up the handful of non-empty slots needed by the dummy target
2391 vector. */
2392
2393 static void
2394 init_dummy_target (void)
2395 {
2396 dummy_target.to_shortname = "None";
2397 dummy_target.to_longname = "None";
2398 dummy_target.to_doc = "";
2399 dummy_target.to_attach = find_default_attach;
2400 dummy_target.to_create_inferior = find_default_create_inferior;
2401 dummy_target.to_can_async_p = find_default_can_async_p;
2402 dummy_target.to_is_async_p = find_default_is_async_p;
2403 dummy_target.to_pid_to_str = normal_pid_to_str;
2404 dummy_target.to_stratum = dummy_stratum;
2405 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2406 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2407 dummy_target.to_xfer_partial = default_xfer_partial;
2408 dummy_target.to_magic = OPS_MAGIC;
2409 }
2410 \f
2411 static void
2412 debug_to_open (char *args, int from_tty)
2413 {
2414 debug_target.to_open (args, from_tty);
2415
2416 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2417 }
2418
2419 static void
2420 debug_to_close (int quitting)
2421 {
2422 target_close (&debug_target, quitting);
2423 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2424 }
2425
2426 void
2427 target_close (struct target_ops *targ, int quitting)
2428 {
2429 if (targ->to_xclose != NULL)
2430 targ->to_xclose (targ, quitting);
2431 else if (targ->to_close != NULL)
2432 targ->to_close (quitting);
2433 }
2434
2435 static void
2436 debug_to_attach (char *args, int from_tty)
2437 {
2438 debug_target.to_attach (args, from_tty);
2439
2440 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2441 }
2442
2443
2444 static void
2445 debug_to_post_attach (int pid)
2446 {
2447 debug_target.to_post_attach (pid);
2448
2449 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2450 }
2451
2452 static void
2453 debug_to_detach (char *args, int from_tty)
2454 {
2455 debug_target.to_detach (args, from_tty);
2456
2457 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2458 }
2459
2460 static void
2461 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2462 {
2463 debug_target.to_resume (ptid, step, siggnal);
2464
2465 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2466 step ? "step" : "continue",
2467 target_signal_to_name (siggnal));
2468 }
2469
2470 static ptid_t
2471 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2472 {
2473 ptid_t retval;
2474
2475 retval = debug_target.to_wait (ptid, status);
2476
2477 fprintf_unfiltered (gdb_stdlog,
2478 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2479 PIDGET (retval));
2480 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2481 switch (status->kind)
2482 {
2483 case TARGET_WAITKIND_EXITED:
2484 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2485 status->value.integer);
2486 break;
2487 case TARGET_WAITKIND_STOPPED:
2488 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2489 target_signal_to_name (status->value.sig));
2490 break;
2491 case TARGET_WAITKIND_SIGNALLED:
2492 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2493 target_signal_to_name (status->value.sig));
2494 break;
2495 case TARGET_WAITKIND_LOADED:
2496 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2497 break;
2498 case TARGET_WAITKIND_FORKED:
2499 fprintf_unfiltered (gdb_stdlog, "forked\n");
2500 break;
2501 case TARGET_WAITKIND_VFORKED:
2502 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2503 break;
2504 case TARGET_WAITKIND_EXECD:
2505 fprintf_unfiltered (gdb_stdlog, "execd\n");
2506 break;
2507 case TARGET_WAITKIND_SPURIOUS:
2508 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2509 break;
2510 default:
2511 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2512 break;
2513 }
2514
2515 return retval;
2516 }
2517
2518 static void
2519 debug_print_register (const char * func,
2520 struct regcache *regcache, int regno)
2521 {
2522 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2523 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2524 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
2525 + gdbarch_num_pseudo_regs (gdbarch)
2526 && gdbarch_register_name (gdbarch, regno) != NULL
2527 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
2528 fprintf_unfiltered (gdb_stdlog, "(%s)",
2529 gdbarch_register_name (gdbarch, regno));
2530 else
2531 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2532 if (regno >= 0)
2533 {
2534 int i, size = register_size (gdbarch, regno);
2535 unsigned char buf[MAX_REGISTER_SIZE];
2536 regcache_cooked_read (regcache, regno, buf);
2537 fprintf_unfiltered (gdb_stdlog, " = ");
2538 for (i = 0; i < size; i++)
2539 {
2540 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2541 }
2542 if (size <= sizeof (LONGEST))
2543 {
2544 ULONGEST val = extract_unsigned_integer (buf, size);
2545 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2546 paddr_nz (val), paddr_d (val));
2547 }
2548 }
2549 fprintf_unfiltered (gdb_stdlog, "\n");
2550 }
2551
2552 static void
2553 debug_to_fetch_registers (struct regcache *regcache, int regno)
2554 {
2555 debug_target.to_fetch_registers (regcache, regno);
2556 debug_print_register ("target_fetch_registers", regcache, regno);
2557 }
2558
2559 static void
2560 debug_to_store_registers (struct regcache *regcache, int regno)
2561 {
2562 debug_target.to_store_registers (regcache, regno);
2563 debug_print_register ("target_store_registers", regcache, regno);
2564 fprintf_unfiltered (gdb_stdlog, "\n");
2565 }
2566
2567 static void
2568 debug_to_prepare_to_store (struct regcache *regcache)
2569 {
2570 debug_target.to_prepare_to_store (regcache);
2571
2572 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2573 }
2574
2575 static int
2576 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2577 int write, struct mem_attrib *attrib,
2578 struct target_ops *target)
2579 {
2580 int retval;
2581
2582 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2583 attrib, target);
2584
2585 fprintf_unfiltered (gdb_stdlog,
2586 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2587 (unsigned int) memaddr, /* possable truncate long long */
2588 len, write ? "write" : "read", retval);
2589
2590 if (retval > 0)
2591 {
2592 int i;
2593
2594 fputs_unfiltered (", bytes =", gdb_stdlog);
2595 for (i = 0; i < retval; i++)
2596 {
2597 if ((((long) &(myaddr[i])) & 0xf) == 0)
2598 {
2599 if (targetdebug < 2 && i > 0)
2600 {
2601 fprintf_unfiltered (gdb_stdlog, " ...");
2602 break;
2603 }
2604 fprintf_unfiltered (gdb_stdlog, "\n");
2605 }
2606
2607 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2608 }
2609 }
2610
2611 fputc_unfiltered ('\n', gdb_stdlog);
2612
2613 return retval;
2614 }
2615
2616 static void
2617 debug_to_files_info (struct target_ops *target)
2618 {
2619 debug_target.to_files_info (target);
2620
2621 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2622 }
2623
2624 static int
2625 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2626 {
2627 int retval;
2628
2629 retval = debug_target.to_insert_breakpoint (bp_tgt);
2630
2631 fprintf_unfiltered (gdb_stdlog,
2632 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2633 (unsigned long) bp_tgt->placed_address,
2634 (unsigned long) retval);
2635 return retval;
2636 }
2637
2638 static int
2639 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2640 {
2641 int retval;
2642
2643 retval = debug_target.to_remove_breakpoint (bp_tgt);
2644
2645 fprintf_unfiltered (gdb_stdlog,
2646 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2647 (unsigned long) bp_tgt->placed_address,
2648 (unsigned long) retval);
2649 return retval;
2650 }
2651
2652 static int
2653 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2654 {
2655 int retval;
2656
2657 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2658
2659 fprintf_unfiltered (gdb_stdlog,
2660 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2661 (unsigned long) type,
2662 (unsigned long) cnt,
2663 (unsigned long) from_tty,
2664 (unsigned long) retval);
2665 return retval;
2666 }
2667
2668 static int
2669 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2670 {
2671 CORE_ADDR retval;
2672
2673 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2674
2675 fprintf_unfiltered (gdb_stdlog,
2676 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2677 (unsigned long) addr,
2678 (unsigned long) len,
2679 (unsigned long) retval);
2680 return retval;
2681 }
2682
2683 static int
2684 debug_to_stopped_by_watchpoint (void)
2685 {
2686 int retval;
2687
2688 retval = debug_target.to_stopped_by_watchpoint ();
2689
2690 fprintf_unfiltered (gdb_stdlog,
2691 "STOPPED_BY_WATCHPOINT () = %ld\n",
2692 (unsigned long) retval);
2693 return retval;
2694 }
2695
2696 static int
2697 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2698 {
2699 int retval;
2700
2701 retval = debug_target.to_stopped_data_address (target, addr);
2702
2703 fprintf_unfiltered (gdb_stdlog,
2704 "target_stopped_data_address ([0x%lx]) = %ld\n",
2705 (unsigned long)*addr,
2706 (unsigned long)retval);
2707 return retval;
2708 }
2709
2710 static int
2711 debug_to_watchpoint_addr_within_range (struct target_ops *target,
2712 CORE_ADDR addr,
2713 CORE_ADDR start, int length)
2714 {
2715 int retval;
2716
2717 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
2718 start, length);
2719
2720 fprintf_filtered (gdb_stdlog,
2721 "target_watchpoint_addr_within_range (0x%lx, 0x%lx, %d) = %d\n",
2722 (unsigned long) addr, (unsigned long) start, length,
2723 retval);
2724 return retval;
2725 }
2726
2727 static int
2728 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2729 {
2730 int retval;
2731
2732 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2733
2734 fprintf_unfiltered (gdb_stdlog,
2735 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2736 (unsigned long) bp_tgt->placed_address,
2737 (unsigned long) retval);
2738 return retval;
2739 }
2740
2741 static int
2742 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2743 {
2744 int retval;
2745
2746 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2747
2748 fprintf_unfiltered (gdb_stdlog,
2749 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2750 (unsigned long) bp_tgt->placed_address,
2751 (unsigned long) retval);
2752 return retval;
2753 }
2754
2755 static int
2756 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2757 {
2758 int retval;
2759
2760 retval = debug_target.to_insert_watchpoint (addr, len, type);
2761
2762 fprintf_unfiltered (gdb_stdlog,
2763 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2764 (unsigned long) addr, len, type, (unsigned long) retval);
2765 return retval;
2766 }
2767
2768 static int
2769 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2770 {
2771 int retval;
2772
2773 retval = debug_target.to_remove_watchpoint (addr, len, type);
2774
2775 fprintf_unfiltered (gdb_stdlog,
2776 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2777 (unsigned long) addr, len, type, (unsigned long) retval);
2778 return retval;
2779 }
2780
2781 static void
2782 debug_to_terminal_init (void)
2783 {
2784 debug_target.to_terminal_init ();
2785
2786 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2787 }
2788
2789 static void
2790 debug_to_terminal_inferior (void)
2791 {
2792 debug_target.to_terminal_inferior ();
2793
2794 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2795 }
2796
2797 static void
2798 debug_to_terminal_ours_for_output (void)
2799 {
2800 debug_target.to_terminal_ours_for_output ();
2801
2802 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2803 }
2804
2805 static void
2806 debug_to_terminal_ours (void)
2807 {
2808 debug_target.to_terminal_ours ();
2809
2810 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2811 }
2812
2813 static void
2814 debug_to_terminal_save_ours (void)
2815 {
2816 debug_target.to_terminal_save_ours ();
2817
2818 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2819 }
2820
2821 static void
2822 debug_to_terminal_info (char *arg, int from_tty)
2823 {
2824 debug_target.to_terminal_info (arg, from_tty);
2825
2826 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2827 from_tty);
2828 }
2829
2830 static void
2831 debug_to_kill (void)
2832 {
2833 debug_target.to_kill ();
2834
2835 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2836 }
2837
2838 static void
2839 debug_to_load (char *args, int from_tty)
2840 {
2841 debug_target.to_load (args, from_tty);
2842
2843 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2844 }
2845
2846 static int
2847 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2848 {
2849 int retval;
2850
2851 retval = debug_target.to_lookup_symbol (name, addrp);
2852
2853 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2854
2855 return retval;
2856 }
2857
2858 static void
2859 debug_to_create_inferior (char *exec_file, char *args, char **env,
2860 int from_tty)
2861 {
2862 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2863
2864 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2865 exec_file, args, from_tty);
2866 }
2867
2868 static void
2869 debug_to_post_startup_inferior (ptid_t ptid)
2870 {
2871 debug_target.to_post_startup_inferior (ptid);
2872
2873 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2874 PIDGET (ptid));
2875 }
2876
2877 static void
2878 debug_to_acknowledge_created_inferior (int pid)
2879 {
2880 debug_target.to_acknowledge_created_inferior (pid);
2881
2882 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2883 pid);
2884 }
2885
2886 static void
2887 debug_to_insert_fork_catchpoint (int pid)
2888 {
2889 debug_target.to_insert_fork_catchpoint (pid);
2890
2891 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2892 pid);
2893 }
2894
2895 static int
2896 debug_to_remove_fork_catchpoint (int pid)
2897 {
2898 int retval;
2899
2900 retval = debug_target.to_remove_fork_catchpoint (pid);
2901
2902 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2903 pid, retval);
2904
2905 return retval;
2906 }
2907
2908 static void
2909 debug_to_insert_vfork_catchpoint (int pid)
2910 {
2911 debug_target.to_insert_vfork_catchpoint (pid);
2912
2913 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2914 pid);
2915 }
2916
2917 static int
2918 debug_to_remove_vfork_catchpoint (int pid)
2919 {
2920 int retval;
2921
2922 retval = debug_target.to_remove_vfork_catchpoint (pid);
2923
2924 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2925 pid, retval);
2926
2927 return retval;
2928 }
2929
2930 static void
2931 debug_to_insert_exec_catchpoint (int pid)
2932 {
2933 debug_target.to_insert_exec_catchpoint (pid);
2934
2935 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2936 pid);
2937 }
2938
2939 static int
2940 debug_to_remove_exec_catchpoint (int pid)
2941 {
2942 int retval;
2943
2944 retval = debug_target.to_remove_exec_catchpoint (pid);
2945
2946 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2947 pid, retval);
2948
2949 return retval;
2950 }
2951
2952 static int
2953 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2954 {
2955 int has_exited;
2956
2957 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2958
2959 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2960 pid, wait_status, *exit_status, has_exited);
2961
2962 return has_exited;
2963 }
2964
2965 static void
2966 debug_to_mourn_inferior (void)
2967 {
2968 debug_target.to_mourn_inferior ();
2969
2970 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2971 }
2972
2973 static int
2974 debug_to_can_run (void)
2975 {
2976 int retval;
2977
2978 retval = debug_target.to_can_run ();
2979
2980 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2981
2982 return retval;
2983 }
2984
2985 static void
2986 debug_to_notice_signals (ptid_t ptid)
2987 {
2988 debug_target.to_notice_signals (ptid);
2989
2990 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2991 PIDGET (ptid));
2992 }
2993
2994 static int
2995 debug_to_thread_alive (ptid_t ptid)
2996 {
2997 int retval;
2998
2999 retval = debug_target.to_thread_alive (ptid);
3000
3001 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3002 PIDGET (ptid), retval);
3003
3004 return retval;
3005 }
3006
3007 static void
3008 debug_to_find_new_threads (void)
3009 {
3010 debug_target.to_find_new_threads ();
3011
3012 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
3013 }
3014
3015 static void
3016 debug_to_stop (ptid_t ptid)
3017 {
3018 debug_target.to_stop (ptid);
3019
3020 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
3021 target_pid_to_str (ptid));
3022 }
3023
3024 static void
3025 debug_to_rcmd (char *command,
3026 struct ui_file *outbuf)
3027 {
3028 debug_target.to_rcmd (command, outbuf);
3029 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
3030 }
3031
3032 static char *
3033 debug_to_pid_to_exec_file (int pid)
3034 {
3035 char *exec_file;
3036
3037 exec_file = debug_target.to_pid_to_exec_file (pid);
3038
3039 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
3040 pid, exec_file);
3041
3042 return exec_file;
3043 }
3044
3045 static void
3046 setup_target_debug (void)
3047 {
3048 memcpy (&debug_target, &current_target, sizeof debug_target);
3049
3050 current_target.to_open = debug_to_open;
3051 current_target.to_close = debug_to_close;
3052 current_target.to_attach = debug_to_attach;
3053 current_target.to_post_attach = debug_to_post_attach;
3054 current_target.to_detach = debug_to_detach;
3055 current_target.to_resume = debug_to_resume;
3056 current_target.to_wait = debug_to_wait;
3057 current_target.to_fetch_registers = debug_to_fetch_registers;
3058 current_target.to_store_registers = debug_to_store_registers;
3059 current_target.to_prepare_to_store = debug_to_prepare_to_store;
3060 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
3061 current_target.to_files_info = debug_to_files_info;
3062 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
3063 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
3064 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
3065 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
3066 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
3067 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
3068 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
3069 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
3070 current_target.to_stopped_data_address = debug_to_stopped_data_address;
3071 current_target.to_watchpoint_addr_within_range = debug_to_watchpoint_addr_within_range;
3072 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
3073 current_target.to_terminal_init = debug_to_terminal_init;
3074 current_target.to_terminal_inferior = debug_to_terminal_inferior;
3075 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
3076 current_target.to_terminal_ours = debug_to_terminal_ours;
3077 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
3078 current_target.to_terminal_info = debug_to_terminal_info;
3079 current_target.to_kill = debug_to_kill;
3080 current_target.to_load = debug_to_load;
3081 current_target.to_lookup_symbol = debug_to_lookup_symbol;
3082 current_target.to_create_inferior = debug_to_create_inferior;
3083 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
3084 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
3085 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
3086 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
3087 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
3088 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
3089 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
3090 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
3091 current_target.to_has_exited = debug_to_has_exited;
3092 current_target.to_mourn_inferior = debug_to_mourn_inferior;
3093 current_target.to_can_run = debug_to_can_run;
3094 current_target.to_notice_signals = debug_to_notice_signals;
3095 current_target.to_thread_alive = debug_to_thread_alive;
3096 current_target.to_find_new_threads = debug_to_find_new_threads;
3097 current_target.to_stop = debug_to_stop;
3098 current_target.to_rcmd = debug_to_rcmd;
3099 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
3100 }
3101 \f
3102
3103 static char targ_desc[] =
3104 "Names of targets and files being debugged.\n\
3105 Shows the entire stack of targets currently in use (including the exec-file,\n\
3106 core-file, and process, if any), as well as the symbol file name.";
3107
3108 static void
3109 do_monitor_command (char *cmd,
3110 int from_tty)
3111 {
3112 if ((current_target.to_rcmd
3113 == (void (*) (char *, struct ui_file *)) tcomplain)
3114 || (current_target.to_rcmd == debug_to_rcmd
3115 && (debug_target.to_rcmd
3116 == (void (*) (char *, struct ui_file *)) tcomplain)))
3117 error (_("\"monitor\" command not supported by this target."));
3118 target_rcmd (cmd, gdb_stdtarg);
3119 }
3120
3121 /* Print the name of each layers of our target stack. */
3122
3123 static void
3124 maintenance_print_target_stack (char *cmd, int from_tty)
3125 {
3126 struct target_ops *t;
3127
3128 printf_filtered (_("The current target stack is:\n"));
3129
3130 for (t = target_stack; t != NULL; t = t->beneath)
3131 {
3132 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3133 }
3134 }
3135
3136 /* Controls if async mode is permitted. */
3137 int target_async_permitted = 0;
3138
3139 /* The set command writes to this variable. If the inferior is
3140 executing, linux_nat_async_permitted is *not* updated. */
3141 static int target_async_permitted_1 = 0;
3142
3143 static void
3144 set_maintenance_target_async_permitted (char *args, int from_tty,
3145 struct cmd_list_element *c)
3146 {
3147 if (target_has_execution)
3148 {
3149 target_async_permitted_1 = target_async_permitted;
3150 error (_("Cannot change this setting while the inferior is running."));
3151 }
3152
3153 target_async_permitted = target_async_permitted_1;
3154 }
3155
3156 static void
3157 show_maintenance_target_async_permitted (struct ui_file *file, int from_tty,
3158 struct cmd_list_element *c,
3159 const char *value)
3160 {
3161 fprintf_filtered (file, _("\
3162 Controlling the inferior in asynchronous mode is %s.\n"), value);
3163 }
3164
3165 void
3166 initialize_targets (void)
3167 {
3168 init_dummy_target ();
3169 push_target (&dummy_target);
3170
3171 add_info ("target", target_info, targ_desc);
3172 add_info ("files", target_info, targ_desc);
3173
3174 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3175 Set target debugging."), _("\
3176 Show target debugging."), _("\
3177 When non-zero, target debugging is enabled. Higher numbers are more\n\
3178 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
3179 command."),
3180 NULL,
3181 show_targetdebug,
3182 &setdebuglist, &showdebuglist);
3183
3184 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3185 &trust_readonly, _("\
3186 Set mode for reading from readonly sections."), _("\
3187 Show mode for reading from readonly sections."), _("\
3188 When this mode is on, memory reads from readonly sections (such as .text)\n\
3189 will be read from the object file instead of from the target. This will\n\
3190 result in significant performance improvement for remote targets."),
3191 NULL,
3192 show_trust_readonly,
3193 &setlist, &showlist);
3194
3195 add_com ("monitor", class_obscure, do_monitor_command,
3196 _("Send a command to the remote monitor (remote targets only)."));
3197
3198 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3199 _("Print the name of each layer of the internal target stack."),
3200 &maintenanceprintlist);
3201
3202 add_setshow_boolean_cmd ("target-async", no_class,
3203 &target_async_permitted_1, _("\
3204 Set whether gdb controls the inferior in asynchronous mode."), _("\
3205 Show whether gdb controls the inferior in asynchronous mode."), _("\
3206 Tells gdb whether to control the inferior in asynchronous mode."),
3207 set_maintenance_target_async_permitted,
3208 show_maintenance_target_async_permitted,
3209 &setlist,
3210 &showlist);
3211
3212 target_dcache = dcache_init ();
3213 }