]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
btrace: add format argument to supports_btrace
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
109 struct gdbarch *gdbarch);
110
111 static struct target_ops debug_target;
112
113 #include "target-delegates.c"
114
115 static void init_dummy_target (void);
116
117 static void update_current_target (void);
118
119 /* Vector of existing target structures. */
120 typedef struct target_ops *target_ops_p;
121 DEF_VEC_P (target_ops_p);
122 static VEC (target_ops_p) *target_structs;
123
124 /* The initial current target, so that there is always a semi-valid
125 current target. */
126
127 static struct target_ops dummy_target;
128
129 /* Top of target stack. */
130
131 static struct target_ops *target_stack;
132
133 /* The target structure we are currently using to talk to a process
134 or file or whatever "inferior" we have. */
135
136 struct target_ops current_target;
137
138 /* Command list for target. */
139
140 static struct cmd_list_element *targetlist = NULL;
141
142 /* Nonzero if we should trust readonly sections from the
143 executable when reading memory. */
144
145 static int trust_readonly = 0;
146
147 /* Nonzero if we should show true memory content including
148 memory breakpoint inserted by gdb. */
149
150 static int show_memory_breakpoints = 0;
151
152 /* These globals control whether GDB attempts to perform these
153 operations; they are useful for targets that need to prevent
154 inadvertant disruption, such as in non-stop mode. */
155
156 int may_write_registers = 1;
157
158 int may_write_memory = 1;
159
160 int may_insert_breakpoints = 1;
161
162 int may_insert_tracepoints = 1;
163
164 int may_insert_fast_tracepoints = 1;
165
166 int may_stop = 1;
167
168 /* Non-zero if we want to see trace of target level stuff. */
169
170 static unsigned int targetdebug = 0;
171
172 static void
173 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
174 {
175 update_current_target ();
176 }
177
178 static void
179 show_targetdebug (struct ui_file *file, int from_tty,
180 struct cmd_list_element *c, const char *value)
181 {
182 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
183 }
184
185 static void setup_target_debug (void);
186
187 /* The user just typed 'target' without the name of a target. */
188
189 static void
190 target_command (char *arg, int from_tty)
191 {
192 fputs_filtered ("Argument required (target name). Try `help target'\n",
193 gdb_stdout);
194 }
195
196 /* Default target_has_* methods for process_stratum targets. */
197
198 int
199 default_child_has_all_memory (struct target_ops *ops)
200 {
201 /* If no inferior selected, then we can't read memory here. */
202 if (ptid_equal (inferior_ptid, null_ptid))
203 return 0;
204
205 return 1;
206 }
207
208 int
209 default_child_has_memory (struct target_ops *ops)
210 {
211 /* If no inferior selected, then we can't read memory here. */
212 if (ptid_equal (inferior_ptid, null_ptid))
213 return 0;
214
215 return 1;
216 }
217
218 int
219 default_child_has_stack (struct target_ops *ops)
220 {
221 /* If no inferior selected, there's no stack. */
222 if (ptid_equal (inferior_ptid, null_ptid))
223 return 0;
224
225 return 1;
226 }
227
228 int
229 default_child_has_registers (struct target_ops *ops)
230 {
231 /* Can't read registers from no inferior. */
232 if (ptid_equal (inferior_ptid, null_ptid))
233 return 0;
234
235 return 1;
236 }
237
238 int
239 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
240 {
241 /* If there's no thread selected, then we can't make it run through
242 hoops. */
243 if (ptid_equal (the_ptid, null_ptid))
244 return 0;
245
246 return 1;
247 }
248
249
250 int
251 target_has_all_memory_1 (void)
252 {
253 struct target_ops *t;
254
255 for (t = current_target.beneath; t != NULL; t = t->beneath)
256 if (t->to_has_all_memory (t))
257 return 1;
258
259 return 0;
260 }
261
262 int
263 target_has_memory_1 (void)
264 {
265 struct target_ops *t;
266
267 for (t = current_target.beneath; t != NULL; t = t->beneath)
268 if (t->to_has_memory (t))
269 return 1;
270
271 return 0;
272 }
273
274 int
275 target_has_stack_1 (void)
276 {
277 struct target_ops *t;
278
279 for (t = current_target.beneath; t != NULL; t = t->beneath)
280 if (t->to_has_stack (t))
281 return 1;
282
283 return 0;
284 }
285
286 int
287 target_has_registers_1 (void)
288 {
289 struct target_ops *t;
290
291 for (t = current_target.beneath; t != NULL; t = t->beneath)
292 if (t->to_has_registers (t))
293 return 1;
294
295 return 0;
296 }
297
298 int
299 target_has_execution_1 (ptid_t the_ptid)
300 {
301 struct target_ops *t;
302
303 for (t = current_target.beneath; t != NULL; t = t->beneath)
304 if (t->to_has_execution (t, the_ptid))
305 return 1;
306
307 return 0;
308 }
309
310 int
311 target_has_execution_current (void)
312 {
313 return target_has_execution_1 (inferior_ptid);
314 }
315
316 /* Complete initialization of T. This ensures that various fields in
317 T are set, if needed by the target implementation. */
318
319 void
320 complete_target_initialization (struct target_ops *t)
321 {
322 /* Provide default values for all "must have" methods. */
323
324 if (t->to_has_all_memory == NULL)
325 t->to_has_all_memory = return_zero;
326
327 if (t->to_has_memory == NULL)
328 t->to_has_memory = return_zero;
329
330 if (t->to_has_stack == NULL)
331 t->to_has_stack = return_zero;
332
333 if (t->to_has_registers == NULL)
334 t->to_has_registers = return_zero;
335
336 if (t->to_has_execution == NULL)
337 t->to_has_execution = return_zero_has_execution;
338
339 /* These methods can be called on an unpushed target and so require
340 a default implementation if the target might plausibly be the
341 default run target. */
342 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
343 && t->to_supports_non_stop != NULL));
344
345 install_delegators (t);
346 }
347
348 /* This is used to implement the various target commands. */
349
350 static void
351 open_target (char *args, int from_tty, struct cmd_list_element *command)
352 {
353 struct target_ops *ops = get_cmd_context (command);
354
355 if (targetdebug)
356 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
357 ops->to_shortname);
358
359 ops->to_open (args, from_tty);
360
361 if (targetdebug)
362 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
363 ops->to_shortname, args, from_tty);
364 }
365
366 /* Add possible target architecture T to the list and add a new
367 command 'target T->to_shortname'. Set COMPLETER as the command's
368 completer if not NULL. */
369
370 void
371 add_target_with_completer (struct target_ops *t,
372 completer_ftype *completer)
373 {
374 struct cmd_list_element *c;
375
376 complete_target_initialization (t);
377
378 VEC_safe_push (target_ops_p, target_structs, t);
379
380 if (targetlist == NULL)
381 add_prefix_cmd ("target", class_run, target_command, _("\
382 Connect to a target machine or process.\n\
383 The first argument is the type or protocol of the target machine.\n\
384 Remaining arguments are interpreted by the target protocol. For more\n\
385 information on the arguments for a particular protocol, type\n\
386 `help target ' followed by the protocol name."),
387 &targetlist, "target ", 0, &cmdlist);
388 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
389 set_cmd_sfunc (c, open_target);
390 set_cmd_context (c, t);
391 if (completer != NULL)
392 set_cmd_completer (c, completer);
393 }
394
395 /* Add a possible target architecture to the list. */
396
397 void
398 add_target (struct target_ops *t)
399 {
400 add_target_with_completer (t, NULL);
401 }
402
403 /* See target.h. */
404
405 void
406 add_deprecated_target_alias (struct target_ops *t, char *alias)
407 {
408 struct cmd_list_element *c;
409 char *alt;
410
411 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
412 see PR cli/15104. */
413 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
414 set_cmd_sfunc (c, open_target);
415 set_cmd_context (c, t);
416 alt = xstrprintf ("target %s", t->to_shortname);
417 deprecate_cmd (c, alt);
418 }
419
420 /* Stub functions */
421
422 void
423 target_kill (void)
424 {
425 current_target.to_kill (&current_target);
426 }
427
428 void
429 target_load (const char *arg, int from_tty)
430 {
431 target_dcache_invalidate ();
432 (*current_target.to_load) (&current_target, arg, from_tty);
433 }
434
435 /* Possible terminal states. */
436
437 enum terminal_state
438 {
439 /* The inferior's terminal settings are in effect. */
440 terminal_is_inferior = 0,
441
442 /* Some of our terminal settings are in effect, enough to get
443 proper output. */
444 terminal_is_ours_for_output = 1,
445
446 /* Our terminal settings are in effect, for output and input. */
447 terminal_is_ours = 2
448 };
449
450 static enum terminal_state terminal_state;
451
452 /* See target.h. */
453
454 void
455 target_terminal_init (void)
456 {
457 (*current_target.to_terminal_init) (&current_target);
458
459 terminal_state = terminal_is_ours;
460 }
461
462 /* See target.h. */
463
464 int
465 target_terminal_is_inferior (void)
466 {
467 return (terminal_state == terminal_is_inferior);
468 }
469
470 /* See target.h. */
471
472 void
473 target_terminal_inferior (void)
474 {
475 /* A background resume (``run&'') should leave GDB in control of the
476 terminal. Use target_can_async_p, not target_is_async_p, since at
477 this point the target is not async yet. However, if sync_execution
478 is not set, we know it will become async prior to resume. */
479 if (target_can_async_p () && !sync_execution)
480 return;
481
482 if (terminal_state == terminal_is_inferior)
483 return;
484
485 /* If GDB is resuming the inferior in the foreground, install
486 inferior's terminal modes. */
487 (*current_target.to_terminal_inferior) (&current_target);
488 terminal_state = terminal_is_inferior;
489 }
490
491 /* See target.h. */
492
493 void
494 target_terminal_ours (void)
495 {
496 if (terminal_state == terminal_is_ours)
497 return;
498
499 (*current_target.to_terminal_ours) (&current_target);
500 terminal_state = terminal_is_ours;
501 }
502
503 /* See target.h. */
504
505 void
506 target_terminal_ours_for_output (void)
507 {
508 if (terminal_state != terminal_is_inferior)
509 return;
510 (*current_target.to_terminal_ours_for_output) (&current_target);
511 terminal_state = terminal_is_ours_for_output;
512 }
513
514 /* See target.h. */
515
516 int
517 target_supports_terminal_ours (void)
518 {
519 struct target_ops *t;
520
521 for (t = current_target.beneath; t != NULL; t = t->beneath)
522 {
523 if (t->to_terminal_ours != delegate_terminal_ours
524 && t->to_terminal_ours != tdefault_terminal_ours)
525 return 1;
526 }
527
528 return 0;
529 }
530
531 /* Restore the terminal to its previous state (helper for
532 make_cleanup_restore_target_terminal). */
533
534 static void
535 cleanup_restore_target_terminal (void *arg)
536 {
537 enum terminal_state *previous_state = arg;
538
539 switch (*previous_state)
540 {
541 case terminal_is_ours:
542 target_terminal_ours ();
543 break;
544 case terminal_is_ours_for_output:
545 target_terminal_ours_for_output ();
546 break;
547 case terminal_is_inferior:
548 target_terminal_inferior ();
549 break;
550 }
551 }
552
553 /* See target.h. */
554
555 struct cleanup *
556 make_cleanup_restore_target_terminal (void)
557 {
558 enum terminal_state *ts = xmalloc (sizeof (*ts));
559
560 *ts = terminal_state;
561
562 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
563 }
564
565 static void
566 tcomplain (void)
567 {
568 error (_("You can't do that when your target is `%s'"),
569 current_target.to_shortname);
570 }
571
572 void
573 noprocess (void)
574 {
575 error (_("You can't do that without a process to debug."));
576 }
577
578 static void
579 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
580 {
581 printf_unfiltered (_("No saved terminal information.\n"));
582 }
583
584 /* A default implementation for the to_get_ada_task_ptid target method.
585
586 This function builds the PTID by using both LWP and TID as part of
587 the PTID lwp and tid elements. The pid used is the pid of the
588 inferior_ptid. */
589
590 static ptid_t
591 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
592 {
593 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
594 }
595
596 static enum exec_direction_kind
597 default_execution_direction (struct target_ops *self)
598 {
599 if (!target_can_execute_reverse)
600 return EXEC_FORWARD;
601 else if (!target_can_async_p ())
602 return EXEC_FORWARD;
603 else
604 gdb_assert_not_reached ("\
605 to_execution_direction must be implemented for reverse async");
606 }
607
608 /* Go through the target stack from top to bottom, copying over zero
609 entries in current_target, then filling in still empty entries. In
610 effect, we are doing class inheritance through the pushed target
611 vectors.
612
613 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
614 is currently implemented, is that it discards any knowledge of
615 which target an inherited method originally belonged to.
616 Consequently, new new target methods should instead explicitly and
617 locally search the target stack for the target that can handle the
618 request. */
619
620 static void
621 update_current_target (void)
622 {
623 struct target_ops *t;
624
625 /* First, reset current's contents. */
626 memset (&current_target, 0, sizeof (current_target));
627
628 /* Install the delegators. */
629 install_delegators (&current_target);
630
631 current_target.to_stratum = target_stack->to_stratum;
632
633 #define INHERIT(FIELD, TARGET) \
634 if (!current_target.FIELD) \
635 current_target.FIELD = (TARGET)->FIELD
636
637 /* Do not add any new INHERITs here. Instead, use the delegation
638 mechanism provided by make-target-delegates. */
639 for (t = target_stack; t; t = t->beneath)
640 {
641 INHERIT (to_shortname, t);
642 INHERIT (to_longname, t);
643 INHERIT (to_attach_no_wait, t);
644 INHERIT (to_have_steppable_watchpoint, t);
645 INHERIT (to_have_continuable_watchpoint, t);
646 INHERIT (to_has_thread_control, t);
647 }
648 #undef INHERIT
649
650 /* Finally, position the target-stack beneath the squashed
651 "current_target". That way code looking for a non-inherited
652 target method can quickly and simply find it. */
653 current_target.beneath = target_stack;
654
655 if (targetdebug)
656 setup_target_debug ();
657 }
658
659 /* Push a new target type into the stack of the existing target accessors,
660 possibly superseding some of the existing accessors.
661
662 Rather than allow an empty stack, we always have the dummy target at
663 the bottom stratum, so we can call the function vectors without
664 checking them. */
665
666 void
667 push_target (struct target_ops *t)
668 {
669 struct target_ops **cur;
670
671 /* Check magic number. If wrong, it probably means someone changed
672 the struct definition, but not all the places that initialize one. */
673 if (t->to_magic != OPS_MAGIC)
674 {
675 fprintf_unfiltered (gdb_stderr,
676 "Magic number of %s target struct wrong\n",
677 t->to_shortname);
678 internal_error (__FILE__, __LINE__,
679 _("failed internal consistency check"));
680 }
681
682 /* Find the proper stratum to install this target in. */
683 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
684 {
685 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
686 break;
687 }
688
689 /* If there's already targets at this stratum, remove them. */
690 /* FIXME: cagney/2003-10-15: I think this should be popping all
691 targets to CUR, and not just those at this stratum level. */
692 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
693 {
694 /* There's already something at this stratum level. Close it,
695 and un-hook it from the stack. */
696 struct target_ops *tmp = (*cur);
697
698 (*cur) = (*cur)->beneath;
699 tmp->beneath = NULL;
700 target_close (tmp);
701 }
702
703 /* We have removed all targets in our stratum, now add the new one. */
704 t->beneath = (*cur);
705 (*cur) = t;
706
707 update_current_target ();
708 }
709
710 /* Remove a target_ops vector from the stack, wherever it may be.
711 Return how many times it was removed (0 or 1). */
712
713 int
714 unpush_target (struct target_ops *t)
715 {
716 struct target_ops **cur;
717 struct target_ops *tmp;
718
719 if (t->to_stratum == dummy_stratum)
720 internal_error (__FILE__, __LINE__,
721 _("Attempt to unpush the dummy target"));
722
723 /* Look for the specified target. Note that we assume that a target
724 can only occur once in the target stack. */
725
726 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
727 {
728 if ((*cur) == t)
729 break;
730 }
731
732 /* If we don't find target_ops, quit. Only open targets should be
733 closed. */
734 if ((*cur) == NULL)
735 return 0;
736
737 /* Unchain the target. */
738 tmp = (*cur);
739 (*cur) = (*cur)->beneath;
740 tmp->beneath = NULL;
741
742 update_current_target ();
743
744 /* Finally close the target. Note we do this after unchaining, so
745 any target method calls from within the target_close
746 implementation don't end up in T anymore. */
747 target_close (t);
748
749 return 1;
750 }
751
752 void
753 pop_all_targets_above (enum strata above_stratum)
754 {
755 while ((int) (current_target.to_stratum) > (int) above_stratum)
756 {
757 if (!unpush_target (target_stack))
758 {
759 fprintf_unfiltered (gdb_stderr,
760 "pop_all_targets couldn't find target %s\n",
761 target_stack->to_shortname);
762 internal_error (__FILE__, __LINE__,
763 _("failed internal consistency check"));
764 break;
765 }
766 }
767 }
768
769 void
770 pop_all_targets (void)
771 {
772 pop_all_targets_above (dummy_stratum);
773 }
774
775 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
776
777 int
778 target_is_pushed (struct target_ops *t)
779 {
780 struct target_ops *cur;
781
782 /* Check magic number. If wrong, it probably means someone changed
783 the struct definition, but not all the places that initialize one. */
784 if (t->to_magic != OPS_MAGIC)
785 {
786 fprintf_unfiltered (gdb_stderr,
787 "Magic number of %s target struct wrong\n",
788 t->to_shortname);
789 internal_error (__FILE__, __LINE__,
790 _("failed internal consistency check"));
791 }
792
793 for (cur = target_stack; cur != NULL; cur = cur->beneath)
794 if (cur == t)
795 return 1;
796
797 return 0;
798 }
799
800 /* Default implementation of to_get_thread_local_address. */
801
802 static void
803 generic_tls_error (void)
804 {
805 throw_error (TLS_GENERIC_ERROR,
806 _("Cannot find thread-local variables on this target"));
807 }
808
809 /* Using the objfile specified in OBJFILE, find the address for the
810 current thread's thread-local storage with offset OFFSET. */
811 CORE_ADDR
812 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
813 {
814 volatile CORE_ADDR addr = 0;
815 struct target_ops *target = &current_target;
816
817 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
818 {
819 ptid_t ptid = inferior_ptid;
820 volatile struct gdb_exception ex;
821
822 TRY_CATCH (ex, RETURN_MASK_ALL)
823 {
824 CORE_ADDR lm_addr;
825
826 /* Fetch the load module address for this objfile. */
827 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
828 objfile);
829
830 addr = target->to_get_thread_local_address (target, ptid,
831 lm_addr, offset);
832 }
833 /* If an error occurred, print TLS related messages here. Otherwise,
834 throw the error to some higher catcher. */
835 if (ex.reason < 0)
836 {
837 int objfile_is_library = (objfile->flags & OBJF_SHARED);
838
839 switch (ex.error)
840 {
841 case TLS_NO_LIBRARY_SUPPORT_ERROR:
842 error (_("Cannot find thread-local variables "
843 "in this thread library."));
844 break;
845 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
846 if (objfile_is_library)
847 error (_("Cannot find shared library `%s' in dynamic"
848 " linker's load module list"), objfile_name (objfile));
849 else
850 error (_("Cannot find executable file `%s' in dynamic"
851 " linker's load module list"), objfile_name (objfile));
852 break;
853 case TLS_NOT_ALLOCATED_YET_ERROR:
854 if (objfile_is_library)
855 error (_("The inferior has not yet allocated storage for"
856 " thread-local variables in\n"
857 "the shared library `%s'\n"
858 "for %s"),
859 objfile_name (objfile), target_pid_to_str (ptid));
860 else
861 error (_("The inferior has not yet allocated storage for"
862 " thread-local variables in\n"
863 "the executable `%s'\n"
864 "for %s"),
865 objfile_name (objfile), target_pid_to_str (ptid));
866 break;
867 case TLS_GENERIC_ERROR:
868 if (objfile_is_library)
869 error (_("Cannot find thread-local storage for %s, "
870 "shared library %s:\n%s"),
871 target_pid_to_str (ptid),
872 objfile_name (objfile), ex.message);
873 else
874 error (_("Cannot find thread-local storage for %s, "
875 "executable file %s:\n%s"),
876 target_pid_to_str (ptid),
877 objfile_name (objfile), ex.message);
878 break;
879 default:
880 throw_exception (ex);
881 break;
882 }
883 }
884 }
885 /* It wouldn't be wrong here to try a gdbarch method, too; finding
886 TLS is an ABI-specific thing. But we don't do that yet. */
887 else
888 error (_("Cannot find thread-local variables on this target"));
889
890 return addr;
891 }
892
893 const char *
894 target_xfer_status_to_string (enum target_xfer_status status)
895 {
896 #define CASE(X) case X: return #X
897 switch (status)
898 {
899 CASE(TARGET_XFER_E_IO);
900 CASE(TARGET_XFER_UNAVAILABLE);
901 default:
902 return "<unknown>";
903 }
904 #undef CASE
905 };
906
907
908 #undef MIN
909 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
910
911 /* target_read_string -- read a null terminated string, up to LEN bytes,
912 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
913 Set *STRING to a pointer to malloc'd memory containing the data; the caller
914 is responsible for freeing it. Return the number of bytes successfully
915 read. */
916
917 int
918 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
919 {
920 int tlen, offset, i;
921 gdb_byte buf[4];
922 int errcode = 0;
923 char *buffer;
924 int buffer_allocated;
925 char *bufptr;
926 unsigned int nbytes_read = 0;
927
928 gdb_assert (string);
929
930 /* Small for testing. */
931 buffer_allocated = 4;
932 buffer = xmalloc (buffer_allocated);
933 bufptr = buffer;
934
935 while (len > 0)
936 {
937 tlen = MIN (len, 4 - (memaddr & 3));
938 offset = memaddr & 3;
939
940 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
941 if (errcode != 0)
942 {
943 /* The transfer request might have crossed the boundary to an
944 unallocated region of memory. Retry the transfer, requesting
945 a single byte. */
946 tlen = 1;
947 offset = 0;
948 errcode = target_read_memory (memaddr, buf, 1);
949 if (errcode != 0)
950 goto done;
951 }
952
953 if (bufptr - buffer + tlen > buffer_allocated)
954 {
955 unsigned int bytes;
956
957 bytes = bufptr - buffer;
958 buffer_allocated *= 2;
959 buffer = xrealloc (buffer, buffer_allocated);
960 bufptr = buffer + bytes;
961 }
962
963 for (i = 0; i < tlen; i++)
964 {
965 *bufptr++ = buf[i + offset];
966 if (buf[i + offset] == '\000')
967 {
968 nbytes_read += i + 1;
969 goto done;
970 }
971 }
972
973 memaddr += tlen;
974 len -= tlen;
975 nbytes_read += tlen;
976 }
977 done:
978 *string = buffer;
979 if (errnop != NULL)
980 *errnop = errcode;
981 return nbytes_read;
982 }
983
984 struct target_section_table *
985 target_get_section_table (struct target_ops *target)
986 {
987 return (*target->to_get_section_table) (target);
988 }
989
990 /* Find a section containing ADDR. */
991
992 struct target_section *
993 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
994 {
995 struct target_section_table *table = target_get_section_table (target);
996 struct target_section *secp;
997
998 if (table == NULL)
999 return NULL;
1000
1001 for (secp = table->sections; secp < table->sections_end; secp++)
1002 {
1003 if (addr >= secp->addr && addr < secp->endaddr)
1004 return secp;
1005 }
1006 return NULL;
1007 }
1008
1009
1010 /* Helper for the memory xfer routines. Checks the attributes of the
1011 memory region of MEMADDR against the read or write being attempted.
1012 If the access is permitted returns true, otherwise returns false.
1013 REGION_P is an optional output parameter. If not-NULL, it is
1014 filled with a pointer to the memory region of MEMADDR. REG_LEN
1015 returns LEN trimmed to the end of the region. This is how much the
1016 caller can continue requesting, if the access is permitted. A
1017 single xfer request must not straddle memory region boundaries. */
1018
1019 static int
1020 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1021 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1022 struct mem_region **region_p)
1023 {
1024 struct mem_region *region;
1025
1026 region = lookup_mem_region (memaddr);
1027
1028 if (region_p != NULL)
1029 *region_p = region;
1030
1031 switch (region->attrib.mode)
1032 {
1033 case MEM_RO:
1034 if (writebuf != NULL)
1035 return 0;
1036 break;
1037
1038 case MEM_WO:
1039 if (readbuf != NULL)
1040 return 0;
1041 break;
1042
1043 case MEM_FLASH:
1044 /* We only support writing to flash during "load" for now. */
1045 if (writebuf != NULL)
1046 error (_("Writing to flash memory forbidden in this context"));
1047 break;
1048
1049 case MEM_NONE:
1050 return 0;
1051 }
1052
1053 /* region->hi == 0 means there's no upper bound. */
1054 if (memaddr + len < region->hi || region->hi == 0)
1055 *reg_len = len;
1056 else
1057 *reg_len = region->hi - memaddr;
1058
1059 return 1;
1060 }
1061
1062 /* Read memory from more than one valid target. A core file, for
1063 instance, could have some of memory but delegate other bits to
1064 the target below it. So, we must manually try all targets. */
1065
1066 static enum target_xfer_status
1067 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1068 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1069 ULONGEST *xfered_len)
1070 {
1071 enum target_xfer_status res;
1072
1073 do
1074 {
1075 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1076 readbuf, writebuf, memaddr, len,
1077 xfered_len);
1078 if (res == TARGET_XFER_OK)
1079 break;
1080
1081 /* Stop if the target reports that the memory is not available. */
1082 if (res == TARGET_XFER_UNAVAILABLE)
1083 break;
1084
1085 /* We want to continue past core files to executables, but not
1086 past a running target's memory. */
1087 if (ops->to_has_all_memory (ops))
1088 break;
1089
1090 ops = ops->beneath;
1091 }
1092 while (ops != NULL);
1093
1094 /* The cache works at the raw memory level. Make sure the cache
1095 gets updated with raw contents no matter what kind of memory
1096 object was originally being written. Note we do write-through
1097 first, so that if it fails, we don't write to the cache contents
1098 that never made it to the target. */
1099 if (writebuf != NULL
1100 && !ptid_equal (inferior_ptid, null_ptid)
1101 && target_dcache_init_p ()
1102 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1103 {
1104 DCACHE *dcache = target_dcache_get ();
1105
1106 /* Note that writing to an area of memory which wasn't present
1107 in the cache doesn't cause it to be loaded in. */
1108 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1109 }
1110
1111 return res;
1112 }
1113
1114 /* Perform a partial memory transfer.
1115 For docs see target.h, to_xfer_partial. */
1116
1117 static enum target_xfer_status
1118 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1119 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1120 ULONGEST len, ULONGEST *xfered_len)
1121 {
1122 enum target_xfer_status res;
1123 ULONGEST reg_len;
1124 struct mem_region *region;
1125 struct inferior *inf;
1126
1127 /* For accesses to unmapped overlay sections, read directly from
1128 files. Must do this first, as MEMADDR may need adjustment. */
1129 if (readbuf != NULL && overlay_debugging)
1130 {
1131 struct obj_section *section = find_pc_overlay (memaddr);
1132
1133 if (pc_in_unmapped_range (memaddr, section))
1134 {
1135 struct target_section_table *table
1136 = target_get_section_table (ops);
1137 const char *section_name = section->the_bfd_section->name;
1138
1139 memaddr = overlay_mapped_address (memaddr, section);
1140 return section_table_xfer_memory_partial (readbuf, writebuf,
1141 memaddr, len, xfered_len,
1142 table->sections,
1143 table->sections_end,
1144 section_name);
1145 }
1146 }
1147
1148 /* Try the executable files, if "trust-readonly-sections" is set. */
1149 if (readbuf != NULL && trust_readonly)
1150 {
1151 struct target_section *secp;
1152 struct target_section_table *table;
1153
1154 secp = target_section_by_addr (ops, memaddr);
1155 if (secp != NULL
1156 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1157 secp->the_bfd_section)
1158 & SEC_READONLY))
1159 {
1160 table = target_get_section_table (ops);
1161 return section_table_xfer_memory_partial (readbuf, writebuf,
1162 memaddr, len, xfered_len,
1163 table->sections,
1164 table->sections_end,
1165 NULL);
1166 }
1167 }
1168
1169 /* Try GDB's internal data cache. */
1170
1171 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1172 &region))
1173 return TARGET_XFER_E_IO;
1174
1175 if (!ptid_equal (inferior_ptid, null_ptid))
1176 inf = find_inferior_ptid (inferior_ptid);
1177 else
1178 inf = NULL;
1179
1180 if (inf != NULL
1181 && readbuf != NULL
1182 /* The dcache reads whole cache lines; that doesn't play well
1183 with reading from a trace buffer, because reading outside of
1184 the collected memory range fails. */
1185 && get_traceframe_number () == -1
1186 && (region->attrib.cache
1187 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1188 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1189 {
1190 DCACHE *dcache = target_dcache_get_or_init ();
1191
1192 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1193 reg_len, xfered_len);
1194 }
1195
1196 /* If none of those methods found the memory we wanted, fall back
1197 to a target partial transfer. Normally a single call to
1198 to_xfer_partial is enough; if it doesn't recognize an object
1199 it will call the to_xfer_partial of the next target down.
1200 But for memory this won't do. Memory is the only target
1201 object which can be read from more than one valid target.
1202 A core file, for instance, could have some of memory but
1203 delegate other bits to the target below it. So, we must
1204 manually try all targets. */
1205
1206 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1207 xfered_len);
1208
1209 /* If we still haven't got anything, return the last error. We
1210 give up. */
1211 return res;
1212 }
1213
1214 /* Perform a partial memory transfer. For docs see target.h,
1215 to_xfer_partial. */
1216
1217 static enum target_xfer_status
1218 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1219 gdb_byte *readbuf, const gdb_byte *writebuf,
1220 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1221 {
1222 enum target_xfer_status res;
1223
1224 /* Zero length requests are ok and require no work. */
1225 if (len == 0)
1226 return TARGET_XFER_EOF;
1227
1228 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1229 breakpoint insns, thus hiding out from higher layers whether
1230 there are software breakpoints inserted in the code stream. */
1231 if (readbuf != NULL)
1232 {
1233 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1234 xfered_len);
1235
1236 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1237 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1238 }
1239 else
1240 {
1241 void *buf;
1242 struct cleanup *old_chain;
1243
1244 /* A large write request is likely to be partially satisfied
1245 by memory_xfer_partial_1. We will continually malloc
1246 and free a copy of the entire write request for breakpoint
1247 shadow handling even though we only end up writing a small
1248 subset of it. Cap writes to 4KB to mitigate this. */
1249 len = min (4096, len);
1250
1251 buf = xmalloc (len);
1252 old_chain = make_cleanup (xfree, buf);
1253 memcpy (buf, writebuf, len);
1254
1255 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1256 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1257 xfered_len);
1258
1259 do_cleanups (old_chain);
1260 }
1261
1262 return res;
1263 }
1264
1265 static void
1266 restore_show_memory_breakpoints (void *arg)
1267 {
1268 show_memory_breakpoints = (uintptr_t) arg;
1269 }
1270
1271 struct cleanup *
1272 make_show_memory_breakpoints_cleanup (int show)
1273 {
1274 int current = show_memory_breakpoints;
1275
1276 show_memory_breakpoints = show;
1277 return make_cleanup (restore_show_memory_breakpoints,
1278 (void *) (uintptr_t) current);
1279 }
1280
1281 /* For docs see target.h, to_xfer_partial. */
1282
1283 enum target_xfer_status
1284 target_xfer_partial (struct target_ops *ops,
1285 enum target_object object, const char *annex,
1286 gdb_byte *readbuf, const gdb_byte *writebuf,
1287 ULONGEST offset, ULONGEST len,
1288 ULONGEST *xfered_len)
1289 {
1290 enum target_xfer_status retval;
1291
1292 gdb_assert (ops->to_xfer_partial != NULL);
1293
1294 /* Transfer is done when LEN is zero. */
1295 if (len == 0)
1296 return TARGET_XFER_EOF;
1297
1298 if (writebuf && !may_write_memory)
1299 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1300 core_addr_to_string_nz (offset), plongest (len));
1301
1302 *xfered_len = 0;
1303
1304 /* If this is a memory transfer, let the memory-specific code
1305 have a look at it instead. Memory transfers are more
1306 complicated. */
1307 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1308 || object == TARGET_OBJECT_CODE_MEMORY)
1309 retval = memory_xfer_partial (ops, object, readbuf,
1310 writebuf, offset, len, xfered_len);
1311 else if (object == TARGET_OBJECT_RAW_MEMORY)
1312 {
1313 /* Skip/avoid accessing the target if the memory region
1314 attributes block the access. Check this here instead of in
1315 raw_memory_xfer_partial as otherwise we'd end up checking
1316 this twice in the case of the memory_xfer_partial path is
1317 taken; once before checking the dcache, and another in the
1318 tail call to raw_memory_xfer_partial. */
1319 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1320 NULL))
1321 return TARGET_XFER_E_IO;
1322
1323 /* Request the normal memory object from other layers. */
1324 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1325 xfered_len);
1326 }
1327 else
1328 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1329 writebuf, offset, len, xfered_len);
1330
1331 if (targetdebug)
1332 {
1333 const unsigned char *myaddr = NULL;
1334
1335 fprintf_unfiltered (gdb_stdlog,
1336 "%s:target_xfer_partial "
1337 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1338 ops->to_shortname,
1339 (int) object,
1340 (annex ? annex : "(null)"),
1341 host_address_to_string (readbuf),
1342 host_address_to_string (writebuf),
1343 core_addr_to_string_nz (offset),
1344 pulongest (len), retval,
1345 pulongest (*xfered_len));
1346
1347 if (readbuf)
1348 myaddr = readbuf;
1349 if (writebuf)
1350 myaddr = writebuf;
1351 if (retval == TARGET_XFER_OK && myaddr != NULL)
1352 {
1353 int i;
1354
1355 fputs_unfiltered (", bytes =", gdb_stdlog);
1356 for (i = 0; i < *xfered_len; i++)
1357 {
1358 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1359 {
1360 if (targetdebug < 2 && i > 0)
1361 {
1362 fprintf_unfiltered (gdb_stdlog, " ...");
1363 break;
1364 }
1365 fprintf_unfiltered (gdb_stdlog, "\n");
1366 }
1367
1368 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1369 }
1370 }
1371
1372 fputc_unfiltered ('\n', gdb_stdlog);
1373 }
1374
1375 /* Check implementations of to_xfer_partial update *XFERED_LEN
1376 properly. Do assertion after printing debug messages, so that we
1377 can find more clues on assertion failure from debugging messages. */
1378 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1379 gdb_assert (*xfered_len > 0);
1380
1381 return retval;
1382 }
1383
1384 /* Read LEN bytes of target memory at address MEMADDR, placing the
1385 results in GDB's memory at MYADDR. Returns either 0 for success or
1386 TARGET_XFER_E_IO if any error occurs.
1387
1388 If an error occurs, no guarantee is made about the contents of the data at
1389 MYADDR. In particular, the caller should not depend upon partial reads
1390 filling the buffer with good data. There is no way for the caller to know
1391 how much good data might have been transfered anyway. Callers that can
1392 deal with partial reads should call target_read (which will retry until
1393 it makes no progress, and then return how much was transferred). */
1394
1395 int
1396 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1397 {
1398 /* Dispatch to the topmost target, not the flattened current_target.
1399 Memory accesses check target->to_has_(all_)memory, and the
1400 flattened target doesn't inherit those. */
1401 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1402 myaddr, memaddr, len) == len)
1403 return 0;
1404 else
1405 return TARGET_XFER_E_IO;
1406 }
1407
1408 /* See target/target.h. */
1409
1410 int
1411 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1412 {
1413 gdb_byte buf[4];
1414 int r;
1415
1416 r = target_read_memory (memaddr, buf, sizeof buf);
1417 if (r != 0)
1418 return r;
1419 *result = extract_unsigned_integer (buf, sizeof buf,
1420 gdbarch_byte_order (target_gdbarch ()));
1421 return 0;
1422 }
1423
1424 /* Like target_read_memory, but specify explicitly that this is a read
1425 from the target's raw memory. That is, this read bypasses the
1426 dcache, breakpoint shadowing, etc. */
1427
1428 int
1429 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1430 {
1431 /* See comment in target_read_memory about why the request starts at
1432 current_target.beneath. */
1433 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1434 myaddr, memaddr, len) == len)
1435 return 0;
1436 else
1437 return TARGET_XFER_E_IO;
1438 }
1439
1440 /* Like target_read_memory, but specify explicitly that this is a read from
1441 the target's stack. This may trigger different cache behavior. */
1442
1443 int
1444 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1445 {
1446 /* See comment in target_read_memory about why the request starts at
1447 current_target.beneath. */
1448 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1449 myaddr, memaddr, len) == len)
1450 return 0;
1451 else
1452 return TARGET_XFER_E_IO;
1453 }
1454
1455 /* Like target_read_memory, but specify explicitly that this is a read from
1456 the target's code. This may trigger different cache behavior. */
1457
1458 int
1459 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1460 {
1461 /* See comment in target_read_memory about why the request starts at
1462 current_target.beneath. */
1463 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1464 myaddr, memaddr, len) == len)
1465 return 0;
1466 else
1467 return TARGET_XFER_E_IO;
1468 }
1469
1470 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1471 Returns either 0 for success or TARGET_XFER_E_IO if any
1472 error occurs. If an error occurs, no guarantee is made about how
1473 much data got written. Callers that can deal with partial writes
1474 should call target_write. */
1475
1476 int
1477 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1478 {
1479 /* See comment in target_read_memory about why the request starts at
1480 current_target.beneath. */
1481 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1482 myaddr, memaddr, len) == len)
1483 return 0;
1484 else
1485 return TARGET_XFER_E_IO;
1486 }
1487
1488 /* Write LEN bytes from MYADDR to target raw memory at address
1489 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1490 if any error occurs. If an error occurs, no guarantee is made
1491 about how much data got written. Callers that can deal with
1492 partial writes should call target_write. */
1493
1494 int
1495 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1496 {
1497 /* See comment in target_read_memory about why the request starts at
1498 current_target.beneath. */
1499 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1500 myaddr, memaddr, len) == len)
1501 return 0;
1502 else
1503 return TARGET_XFER_E_IO;
1504 }
1505
1506 /* Fetch the target's memory map. */
1507
1508 VEC(mem_region_s) *
1509 target_memory_map (void)
1510 {
1511 VEC(mem_region_s) *result;
1512 struct mem_region *last_one, *this_one;
1513 int ix;
1514 struct target_ops *t;
1515
1516 result = current_target.to_memory_map (&current_target);
1517 if (result == NULL)
1518 return NULL;
1519
1520 qsort (VEC_address (mem_region_s, result),
1521 VEC_length (mem_region_s, result),
1522 sizeof (struct mem_region), mem_region_cmp);
1523
1524 /* Check that regions do not overlap. Simultaneously assign
1525 a numbering for the "mem" commands to use to refer to
1526 each region. */
1527 last_one = NULL;
1528 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1529 {
1530 this_one->number = ix;
1531
1532 if (last_one && last_one->hi > this_one->lo)
1533 {
1534 warning (_("Overlapping regions in memory map: ignoring"));
1535 VEC_free (mem_region_s, result);
1536 return NULL;
1537 }
1538 last_one = this_one;
1539 }
1540
1541 return result;
1542 }
1543
1544 void
1545 target_flash_erase (ULONGEST address, LONGEST length)
1546 {
1547 current_target.to_flash_erase (&current_target, address, length);
1548 }
1549
1550 void
1551 target_flash_done (void)
1552 {
1553 current_target.to_flash_done (&current_target);
1554 }
1555
1556 static void
1557 show_trust_readonly (struct ui_file *file, int from_tty,
1558 struct cmd_list_element *c, const char *value)
1559 {
1560 fprintf_filtered (file,
1561 _("Mode for reading from readonly sections is %s.\n"),
1562 value);
1563 }
1564
1565 /* Target vector read/write partial wrapper functions. */
1566
1567 static enum target_xfer_status
1568 target_read_partial (struct target_ops *ops,
1569 enum target_object object,
1570 const char *annex, gdb_byte *buf,
1571 ULONGEST offset, ULONGEST len,
1572 ULONGEST *xfered_len)
1573 {
1574 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1575 xfered_len);
1576 }
1577
1578 static enum target_xfer_status
1579 target_write_partial (struct target_ops *ops,
1580 enum target_object object,
1581 const char *annex, const gdb_byte *buf,
1582 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1583 {
1584 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1585 xfered_len);
1586 }
1587
1588 /* Wrappers to perform the full transfer. */
1589
1590 /* For docs on target_read see target.h. */
1591
1592 LONGEST
1593 target_read (struct target_ops *ops,
1594 enum target_object object,
1595 const char *annex, gdb_byte *buf,
1596 ULONGEST offset, LONGEST len)
1597 {
1598 LONGEST xfered = 0;
1599
1600 while (xfered < len)
1601 {
1602 ULONGEST xfered_len;
1603 enum target_xfer_status status;
1604
1605 status = target_read_partial (ops, object, annex,
1606 (gdb_byte *) buf + xfered,
1607 offset + xfered, len - xfered,
1608 &xfered_len);
1609
1610 /* Call an observer, notifying them of the xfer progress? */
1611 if (status == TARGET_XFER_EOF)
1612 return xfered;
1613 else if (status == TARGET_XFER_OK)
1614 {
1615 xfered += xfered_len;
1616 QUIT;
1617 }
1618 else
1619 return -1;
1620
1621 }
1622 return len;
1623 }
1624
1625 /* Assuming that the entire [begin, end) range of memory cannot be
1626 read, try to read whatever subrange is possible to read.
1627
1628 The function returns, in RESULT, either zero or one memory block.
1629 If there's a readable subrange at the beginning, it is completely
1630 read and returned. Any further readable subrange will not be read.
1631 Otherwise, if there's a readable subrange at the end, it will be
1632 completely read and returned. Any readable subranges before it
1633 (obviously, not starting at the beginning), will be ignored. In
1634 other cases -- either no readable subrange, or readable subrange(s)
1635 that is neither at the beginning, or end, nothing is returned.
1636
1637 The purpose of this function is to handle a read across a boundary
1638 of accessible memory in a case when memory map is not available.
1639 The above restrictions are fine for this case, but will give
1640 incorrect results if the memory is 'patchy'. However, supporting
1641 'patchy' memory would require trying to read every single byte,
1642 and it seems unacceptable solution. Explicit memory map is
1643 recommended for this case -- and target_read_memory_robust will
1644 take care of reading multiple ranges then. */
1645
1646 static void
1647 read_whatever_is_readable (struct target_ops *ops,
1648 ULONGEST begin, ULONGEST end,
1649 VEC(memory_read_result_s) **result)
1650 {
1651 gdb_byte *buf = xmalloc (end - begin);
1652 ULONGEST current_begin = begin;
1653 ULONGEST current_end = end;
1654 int forward;
1655 memory_read_result_s r;
1656 ULONGEST xfered_len;
1657
1658 /* If we previously failed to read 1 byte, nothing can be done here. */
1659 if (end - begin <= 1)
1660 {
1661 xfree (buf);
1662 return;
1663 }
1664
1665 /* Check that either first or the last byte is readable, and give up
1666 if not. This heuristic is meant to permit reading accessible memory
1667 at the boundary of accessible region. */
1668 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1669 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1670 {
1671 forward = 1;
1672 ++current_begin;
1673 }
1674 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1675 buf + (end-begin) - 1, end - 1, 1,
1676 &xfered_len) == TARGET_XFER_OK)
1677 {
1678 forward = 0;
1679 --current_end;
1680 }
1681 else
1682 {
1683 xfree (buf);
1684 return;
1685 }
1686
1687 /* Loop invariant is that the [current_begin, current_end) was previously
1688 found to be not readable as a whole.
1689
1690 Note loop condition -- if the range has 1 byte, we can't divide the range
1691 so there's no point trying further. */
1692 while (current_end - current_begin > 1)
1693 {
1694 ULONGEST first_half_begin, first_half_end;
1695 ULONGEST second_half_begin, second_half_end;
1696 LONGEST xfer;
1697 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1698
1699 if (forward)
1700 {
1701 first_half_begin = current_begin;
1702 first_half_end = middle;
1703 second_half_begin = middle;
1704 second_half_end = current_end;
1705 }
1706 else
1707 {
1708 first_half_begin = middle;
1709 first_half_end = current_end;
1710 second_half_begin = current_begin;
1711 second_half_end = middle;
1712 }
1713
1714 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1715 buf + (first_half_begin - begin),
1716 first_half_begin,
1717 first_half_end - first_half_begin);
1718
1719 if (xfer == first_half_end - first_half_begin)
1720 {
1721 /* This half reads up fine. So, the error must be in the
1722 other half. */
1723 current_begin = second_half_begin;
1724 current_end = second_half_end;
1725 }
1726 else
1727 {
1728 /* This half is not readable. Because we've tried one byte, we
1729 know some part of this half if actually redable. Go to the next
1730 iteration to divide again and try to read.
1731
1732 We don't handle the other half, because this function only tries
1733 to read a single readable subrange. */
1734 current_begin = first_half_begin;
1735 current_end = first_half_end;
1736 }
1737 }
1738
1739 if (forward)
1740 {
1741 /* The [begin, current_begin) range has been read. */
1742 r.begin = begin;
1743 r.end = current_begin;
1744 r.data = buf;
1745 }
1746 else
1747 {
1748 /* The [current_end, end) range has been read. */
1749 LONGEST rlen = end - current_end;
1750
1751 r.data = xmalloc (rlen);
1752 memcpy (r.data, buf + current_end - begin, rlen);
1753 r.begin = current_end;
1754 r.end = end;
1755 xfree (buf);
1756 }
1757 VEC_safe_push(memory_read_result_s, (*result), &r);
1758 }
1759
1760 void
1761 free_memory_read_result_vector (void *x)
1762 {
1763 VEC(memory_read_result_s) *v = x;
1764 memory_read_result_s *current;
1765 int ix;
1766
1767 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1768 {
1769 xfree (current->data);
1770 }
1771 VEC_free (memory_read_result_s, v);
1772 }
1773
1774 VEC(memory_read_result_s) *
1775 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1776 {
1777 VEC(memory_read_result_s) *result = 0;
1778
1779 LONGEST xfered = 0;
1780 while (xfered < len)
1781 {
1782 struct mem_region *region = lookup_mem_region (offset + xfered);
1783 LONGEST rlen;
1784
1785 /* If there is no explicit region, a fake one should be created. */
1786 gdb_assert (region);
1787
1788 if (region->hi == 0)
1789 rlen = len - xfered;
1790 else
1791 rlen = region->hi - offset;
1792
1793 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1794 {
1795 /* Cannot read this region. Note that we can end up here only
1796 if the region is explicitly marked inaccessible, or
1797 'inaccessible-by-default' is in effect. */
1798 xfered += rlen;
1799 }
1800 else
1801 {
1802 LONGEST to_read = min (len - xfered, rlen);
1803 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1804
1805 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1806 (gdb_byte *) buffer,
1807 offset + xfered, to_read);
1808 /* Call an observer, notifying them of the xfer progress? */
1809 if (xfer <= 0)
1810 {
1811 /* Got an error reading full chunk. See if maybe we can read
1812 some subrange. */
1813 xfree (buffer);
1814 read_whatever_is_readable (ops, offset + xfered,
1815 offset + xfered + to_read, &result);
1816 xfered += to_read;
1817 }
1818 else
1819 {
1820 struct memory_read_result r;
1821 r.data = buffer;
1822 r.begin = offset + xfered;
1823 r.end = r.begin + xfer;
1824 VEC_safe_push (memory_read_result_s, result, &r);
1825 xfered += xfer;
1826 }
1827 QUIT;
1828 }
1829 }
1830 return result;
1831 }
1832
1833
1834 /* An alternative to target_write with progress callbacks. */
1835
1836 LONGEST
1837 target_write_with_progress (struct target_ops *ops,
1838 enum target_object object,
1839 const char *annex, const gdb_byte *buf,
1840 ULONGEST offset, LONGEST len,
1841 void (*progress) (ULONGEST, void *), void *baton)
1842 {
1843 LONGEST xfered = 0;
1844
1845 /* Give the progress callback a chance to set up. */
1846 if (progress)
1847 (*progress) (0, baton);
1848
1849 while (xfered < len)
1850 {
1851 ULONGEST xfered_len;
1852 enum target_xfer_status status;
1853
1854 status = target_write_partial (ops, object, annex,
1855 (gdb_byte *) buf + xfered,
1856 offset + xfered, len - xfered,
1857 &xfered_len);
1858
1859 if (status != TARGET_XFER_OK)
1860 return status == TARGET_XFER_EOF ? xfered : -1;
1861
1862 if (progress)
1863 (*progress) (xfered_len, baton);
1864
1865 xfered += xfered_len;
1866 QUIT;
1867 }
1868 return len;
1869 }
1870
1871 /* For docs on target_write see target.h. */
1872
1873 LONGEST
1874 target_write (struct target_ops *ops,
1875 enum target_object object,
1876 const char *annex, const gdb_byte *buf,
1877 ULONGEST offset, LONGEST len)
1878 {
1879 return target_write_with_progress (ops, object, annex, buf, offset, len,
1880 NULL, NULL);
1881 }
1882
1883 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1884 the size of the transferred data. PADDING additional bytes are
1885 available in *BUF_P. This is a helper function for
1886 target_read_alloc; see the declaration of that function for more
1887 information. */
1888
1889 static LONGEST
1890 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1891 const char *annex, gdb_byte **buf_p, int padding)
1892 {
1893 size_t buf_alloc, buf_pos;
1894 gdb_byte *buf;
1895
1896 /* This function does not have a length parameter; it reads the
1897 entire OBJECT). Also, it doesn't support objects fetched partly
1898 from one target and partly from another (in a different stratum,
1899 e.g. a core file and an executable). Both reasons make it
1900 unsuitable for reading memory. */
1901 gdb_assert (object != TARGET_OBJECT_MEMORY);
1902
1903 /* Start by reading up to 4K at a time. The target will throttle
1904 this number down if necessary. */
1905 buf_alloc = 4096;
1906 buf = xmalloc (buf_alloc);
1907 buf_pos = 0;
1908 while (1)
1909 {
1910 ULONGEST xfered_len;
1911 enum target_xfer_status status;
1912
1913 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1914 buf_pos, buf_alloc - buf_pos - padding,
1915 &xfered_len);
1916
1917 if (status == TARGET_XFER_EOF)
1918 {
1919 /* Read all there was. */
1920 if (buf_pos == 0)
1921 xfree (buf);
1922 else
1923 *buf_p = buf;
1924 return buf_pos;
1925 }
1926 else if (status != TARGET_XFER_OK)
1927 {
1928 /* An error occurred. */
1929 xfree (buf);
1930 return TARGET_XFER_E_IO;
1931 }
1932
1933 buf_pos += xfered_len;
1934
1935 /* If the buffer is filling up, expand it. */
1936 if (buf_alloc < buf_pos * 2)
1937 {
1938 buf_alloc *= 2;
1939 buf = xrealloc (buf, buf_alloc);
1940 }
1941
1942 QUIT;
1943 }
1944 }
1945
1946 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1947 the size of the transferred data. See the declaration in "target.h"
1948 function for more information about the return value. */
1949
1950 LONGEST
1951 target_read_alloc (struct target_ops *ops, enum target_object object,
1952 const char *annex, gdb_byte **buf_p)
1953 {
1954 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1955 }
1956
1957 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1958 returned as a string, allocated using xmalloc. If an error occurs
1959 or the transfer is unsupported, NULL is returned. Empty objects
1960 are returned as allocated but empty strings. A warning is issued
1961 if the result contains any embedded NUL bytes. */
1962
1963 char *
1964 target_read_stralloc (struct target_ops *ops, enum target_object object,
1965 const char *annex)
1966 {
1967 gdb_byte *buffer;
1968 char *bufstr;
1969 LONGEST i, transferred;
1970
1971 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1972 bufstr = (char *) buffer;
1973
1974 if (transferred < 0)
1975 return NULL;
1976
1977 if (transferred == 0)
1978 return xstrdup ("");
1979
1980 bufstr[transferred] = 0;
1981
1982 /* Check for embedded NUL bytes; but allow trailing NULs. */
1983 for (i = strlen (bufstr); i < transferred; i++)
1984 if (bufstr[i] != 0)
1985 {
1986 warning (_("target object %d, annex %s, "
1987 "contained unexpected null characters"),
1988 (int) object, annex ? annex : "(none)");
1989 break;
1990 }
1991
1992 return bufstr;
1993 }
1994
1995 /* Memory transfer methods. */
1996
1997 void
1998 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1999 LONGEST len)
2000 {
2001 /* This method is used to read from an alternate, non-current
2002 target. This read must bypass the overlay support (as symbols
2003 don't match this target), and GDB's internal cache (wrong cache
2004 for this target). */
2005 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2006 != len)
2007 memory_error (TARGET_XFER_E_IO, addr);
2008 }
2009
2010 ULONGEST
2011 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2012 int len, enum bfd_endian byte_order)
2013 {
2014 gdb_byte buf[sizeof (ULONGEST)];
2015
2016 gdb_assert (len <= sizeof (buf));
2017 get_target_memory (ops, addr, buf, len);
2018 return extract_unsigned_integer (buf, len, byte_order);
2019 }
2020
2021 /* See target.h. */
2022
2023 int
2024 target_insert_breakpoint (struct gdbarch *gdbarch,
2025 struct bp_target_info *bp_tgt)
2026 {
2027 if (!may_insert_breakpoints)
2028 {
2029 warning (_("May not insert breakpoints"));
2030 return 1;
2031 }
2032
2033 return current_target.to_insert_breakpoint (&current_target,
2034 gdbarch, bp_tgt);
2035 }
2036
2037 /* See target.h. */
2038
2039 int
2040 target_remove_breakpoint (struct gdbarch *gdbarch,
2041 struct bp_target_info *bp_tgt)
2042 {
2043 /* This is kind of a weird case to handle, but the permission might
2044 have been changed after breakpoints were inserted - in which case
2045 we should just take the user literally and assume that any
2046 breakpoints should be left in place. */
2047 if (!may_insert_breakpoints)
2048 {
2049 warning (_("May not remove breakpoints"));
2050 return 1;
2051 }
2052
2053 return current_target.to_remove_breakpoint (&current_target,
2054 gdbarch, bp_tgt);
2055 }
2056
2057 static void
2058 target_info (char *args, int from_tty)
2059 {
2060 struct target_ops *t;
2061 int has_all_mem = 0;
2062
2063 if (symfile_objfile != NULL)
2064 printf_unfiltered (_("Symbols from \"%s\".\n"),
2065 objfile_name (symfile_objfile));
2066
2067 for (t = target_stack; t != NULL; t = t->beneath)
2068 {
2069 if (!(*t->to_has_memory) (t))
2070 continue;
2071
2072 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2073 continue;
2074 if (has_all_mem)
2075 printf_unfiltered (_("\tWhile running this, "
2076 "GDB does not access memory from...\n"));
2077 printf_unfiltered ("%s:\n", t->to_longname);
2078 (t->to_files_info) (t);
2079 has_all_mem = (*t->to_has_all_memory) (t);
2080 }
2081 }
2082
2083 /* This function is called before any new inferior is created, e.g.
2084 by running a program, attaching, or connecting to a target.
2085 It cleans up any state from previous invocations which might
2086 change between runs. This is a subset of what target_preopen
2087 resets (things which might change between targets). */
2088
2089 void
2090 target_pre_inferior (int from_tty)
2091 {
2092 /* Clear out solib state. Otherwise the solib state of the previous
2093 inferior might have survived and is entirely wrong for the new
2094 target. This has been observed on GNU/Linux using glibc 2.3. How
2095 to reproduce:
2096
2097 bash$ ./foo&
2098 [1] 4711
2099 bash$ ./foo&
2100 [1] 4712
2101 bash$ gdb ./foo
2102 [...]
2103 (gdb) attach 4711
2104 (gdb) detach
2105 (gdb) attach 4712
2106 Cannot access memory at address 0xdeadbeef
2107 */
2108
2109 /* In some OSs, the shared library list is the same/global/shared
2110 across inferiors. If code is shared between processes, so are
2111 memory regions and features. */
2112 if (!gdbarch_has_global_solist (target_gdbarch ()))
2113 {
2114 no_shared_libraries (NULL, from_tty);
2115
2116 invalidate_target_mem_regions ();
2117
2118 target_clear_description ();
2119 }
2120
2121 agent_capability_invalidate ();
2122 }
2123
2124 /* Callback for iterate_over_inferiors. Gets rid of the given
2125 inferior. */
2126
2127 static int
2128 dispose_inferior (struct inferior *inf, void *args)
2129 {
2130 struct thread_info *thread;
2131
2132 thread = any_thread_of_process (inf->pid);
2133 if (thread)
2134 {
2135 switch_to_thread (thread->ptid);
2136
2137 /* Core inferiors actually should be detached, not killed. */
2138 if (target_has_execution)
2139 target_kill ();
2140 else
2141 target_detach (NULL, 0);
2142 }
2143
2144 return 0;
2145 }
2146
2147 /* This is to be called by the open routine before it does
2148 anything. */
2149
2150 void
2151 target_preopen (int from_tty)
2152 {
2153 dont_repeat ();
2154
2155 if (have_inferiors ())
2156 {
2157 if (!from_tty
2158 || !have_live_inferiors ()
2159 || query (_("A program is being debugged already. Kill it? ")))
2160 iterate_over_inferiors (dispose_inferior, NULL);
2161 else
2162 error (_("Program not killed."));
2163 }
2164
2165 /* Calling target_kill may remove the target from the stack. But if
2166 it doesn't (which seems like a win for UDI), remove it now. */
2167 /* Leave the exec target, though. The user may be switching from a
2168 live process to a core of the same program. */
2169 pop_all_targets_above (file_stratum);
2170
2171 target_pre_inferior (from_tty);
2172 }
2173
2174 /* Detach a target after doing deferred register stores. */
2175
2176 void
2177 target_detach (const char *args, int from_tty)
2178 {
2179 struct target_ops* t;
2180
2181 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2182 /* Don't remove global breakpoints here. They're removed on
2183 disconnection from the target. */
2184 ;
2185 else
2186 /* If we're in breakpoints-always-inserted mode, have to remove
2187 them before detaching. */
2188 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2189
2190 prepare_for_detach ();
2191
2192 current_target.to_detach (&current_target, args, from_tty);
2193 }
2194
2195 void
2196 target_disconnect (const char *args, int from_tty)
2197 {
2198 /* If we're in breakpoints-always-inserted mode or if breakpoints
2199 are global across processes, we have to remove them before
2200 disconnecting. */
2201 remove_breakpoints ();
2202
2203 current_target.to_disconnect (&current_target, args, from_tty);
2204 }
2205
2206 ptid_t
2207 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2208 {
2209 return (current_target.to_wait) (&current_target, ptid, status, options);
2210 }
2211
2212 char *
2213 target_pid_to_str (ptid_t ptid)
2214 {
2215 return (*current_target.to_pid_to_str) (&current_target, ptid);
2216 }
2217
2218 char *
2219 target_thread_name (struct thread_info *info)
2220 {
2221 return current_target.to_thread_name (&current_target, info);
2222 }
2223
2224 void
2225 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2226 {
2227 struct target_ops *t;
2228
2229 target_dcache_invalidate ();
2230
2231 current_target.to_resume (&current_target, ptid, step, signal);
2232
2233 registers_changed_ptid (ptid);
2234 /* We only set the internal executing state here. The user/frontend
2235 running state is set at a higher level. */
2236 set_executing (ptid, 1);
2237 clear_inline_frame_state (ptid);
2238 }
2239
2240 void
2241 target_pass_signals (int numsigs, unsigned char *pass_signals)
2242 {
2243 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2244 }
2245
2246 void
2247 target_program_signals (int numsigs, unsigned char *program_signals)
2248 {
2249 (*current_target.to_program_signals) (&current_target,
2250 numsigs, program_signals);
2251 }
2252
2253 static int
2254 default_follow_fork (struct target_ops *self, int follow_child,
2255 int detach_fork)
2256 {
2257 /* Some target returned a fork event, but did not know how to follow it. */
2258 internal_error (__FILE__, __LINE__,
2259 _("could not find a target to follow fork"));
2260 }
2261
2262 /* Look through the list of possible targets for a target that can
2263 follow forks. */
2264
2265 int
2266 target_follow_fork (int follow_child, int detach_fork)
2267 {
2268 return current_target.to_follow_fork (&current_target,
2269 follow_child, detach_fork);
2270 }
2271
2272 static void
2273 default_mourn_inferior (struct target_ops *self)
2274 {
2275 internal_error (__FILE__, __LINE__,
2276 _("could not find a target to follow mourn inferior"));
2277 }
2278
2279 void
2280 target_mourn_inferior (void)
2281 {
2282 current_target.to_mourn_inferior (&current_target);
2283
2284 /* We no longer need to keep handles on any of the object files.
2285 Make sure to release them to avoid unnecessarily locking any
2286 of them while we're not actually debugging. */
2287 bfd_cache_close_all ();
2288 }
2289
2290 /* Look for a target which can describe architectural features, starting
2291 from TARGET. If we find one, return its description. */
2292
2293 const struct target_desc *
2294 target_read_description (struct target_ops *target)
2295 {
2296 return target->to_read_description (target);
2297 }
2298
2299 /* This implements a basic search of memory, reading target memory and
2300 performing the search here (as opposed to performing the search in on the
2301 target side with, for example, gdbserver). */
2302
2303 int
2304 simple_search_memory (struct target_ops *ops,
2305 CORE_ADDR start_addr, ULONGEST search_space_len,
2306 const gdb_byte *pattern, ULONGEST pattern_len,
2307 CORE_ADDR *found_addrp)
2308 {
2309 /* NOTE: also defined in find.c testcase. */
2310 #define SEARCH_CHUNK_SIZE 16000
2311 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2312 /* Buffer to hold memory contents for searching. */
2313 gdb_byte *search_buf;
2314 unsigned search_buf_size;
2315 struct cleanup *old_cleanups;
2316
2317 search_buf_size = chunk_size + pattern_len - 1;
2318
2319 /* No point in trying to allocate a buffer larger than the search space. */
2320 if (search_space_len < search_buf_size)
2321 search_buf_size = search_space_len;
2322
2323 search_buf = malloc (search_buf_size);
2324 if (search_buf == NULL)
2325 error (_("Unable to allocate memory to perform the search."));
2326 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2327
2328 /* Prime the search buffer. */
2329
2330 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2331 search_buf, start_addr, search_buf_size) != search_buf_size)
2332 {
2333 warning (_("Unable to access %s bytes of target "
2334 "memory at %s, halting search."),
2335 pulongest (search_buf_size), hex_string (start_addr));
2336 do_cleanups (old_cleanups);
2337 return -1;
2338 }
2339
2340 /* Perform the search.
2341
2342 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2343 When we've scanned N bytes we copy the trailing bytes to the start and
2344 read in another N bytes. */
2345
2346 while (search_space_len >= pattern_len)
2347 {
2348 gdb_byte *found_ptr;
2349 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2350
2351 found_ptr = memmem (search_buf, nr_search_bytes,
2352 pattern, pattern_len);
2353
2354 if (found_ptr != NULL)
2355 {
2356 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2357
2358 *found_addrp = found_addr;
2359 do_cleanups (old_cleanups);
2360 return 1;
2361 }
2362
2363 /* Not found in this chunk, skip to next chunk. */
2364
2365 /* Don't let search_space_len wrap here, it's unsigned. */
2366 if (search_space_len >= chunk_size)
2367 search_space_len -= chunk_size;
2368 else
2369 search_space_len = 0;
2370
2371 if (search_space_len >= pattern_len)
2372 {
2373 unsigned keep_len = search_buf_size - chunk_size;
2374 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2375 int nr_to_read;
2376
2377 /* Copy the trailing part of the previous iteration to the front
2378 of the buffer for the next iteration. */
2379 gdb_assert (keep_len == pattern_len - 1);
2380 memcpy (search_buf, search_buf + chunk_size, keep_len);
2381
2382 nr_to_read = min (search_space_len - keep_len, chunk_size);
2383
2384 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2385 search_buf + keep_len, read_addr,
2386 nr_to_read) != nr_to_read)
2387 {
2388 warning (_("Unable to access %s bytes of target "
2389 "memory at %s, halting search."),
2390 plongest (nr_to_read),
2391 hex_string (read_addr));
2392 do_cleanups (old_cleanups);
2393 return -1;
2394 }
2395
2396 start_addr += chunk_size;
2397 }
2398 }
2399
2400 /* Not found. */
2401
2402 do_cleanups (old_cleanups);
2403 return 0;
2404 }
2405
2406 /* Default implementation of memory-searching. */
2407
2408 static int
2409 default_search_memory (struct target_ops *self,
2410 CORE_ADDR start_addr, ULONGEST search_space_len,
2411 const gdb_byte *pattern, ULONGEST pattern_len,
2412 CORE_ADDR *found_addrp)
2413 {
2414 /* Start over from the top of the target stack. */
2415 return simple_search_memory (current_target.beneath,
2416 start_addr, search_space_len,
2417 pattern, pattern_len, found_addrp);
2418 }
2419
2420 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2421 sequence of bytes in PATTERN with length PATTERN_LEN.
2422
2423 The result is 1 if found, 0 if not found, and -1 if there was an error
2424 requiring halting of the search (e.g. memory read error).
2425 If the pattern is found the address is recorded in FOUND_ADDRP. */
2426
2427 int
2428 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2429 const gdb_byte *pattern, ULONGEST pattern_len,
2430 CORE_ADDR *found_addrp)
2431 {
2432 return current_target.to_search_memory (&current_target, start_addr,
2433 search_space_len,
2434 pattern, pattern_len, found_addrp);
2435 }
2436
2437 /* Look through the currently pushed targets. If none of them will
2438 be able to restart the currently running process, issue an error
2439 message. */
2440
2441 void
2442 target_require_runnable (void)
2443 {
2444 struct target_ops *t;
2445
2446 for (t = target_stack; t != NULL; t = t->beneath)
2447 {
2448 /* If this target knows how to create a new program, then
2449 assume we will still be able to after killing the current
2450 one. Either killing and mourning will not pop T, or else
2451 find_default_run_target will find it again. */
2452 if (t->to_create_inferior != NULL)
2453 return;
2454
2455 /* Do not worry about targets at certain strata that can not
2456 create inferiors. Assume they will be pushed again if
2457 necessary, and continue to the process_stratum. */
2458 if (t->to_stratum == thread_stratum
2459 || t->to_stratum == record_stratum
2460 || t->to_stratum == arch_stratum)
2461 continue;
2462
2463 error (_("The \"%s\" target does not support \"run\". "
2464 "Try \"help target\" or \"continue\"."),
2465 t->to_shortname);
2466 }
2467
2468 /* This function is only called if the target is running. In that
2469 case there should have been a process_stratum target and it
2470 should either know how to create inferiors, or not... */
2471 internal_error (__FILE__, __LINE__, _("No targets found"));
2472 }
2473
2474 /* Whether GDB is allowed to fall back to the default run target for
2475 "run", "attach", etc. when no target is connected yet. */
2476 static int auto_connect_native_target = 1;
2477
2478 static void
2479 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2480 struct cmd_list_element *c, const char *value)
2481 {
2482 fprintf_filtered (file,
2483 _("Whether GDB may automatically connect to the "
2484 "native target is %s.\n"),
2485 value);
2486 }
2487
2488 /* Look through the list of possible targets for a target that can
2489 execute a run or attach command without any other data. This is
2490 used to locate the default process stratum.
2491
2492 If DO_MESG is not NULL, the result is always valid (error() is
2493 called for errors); else, return NULL on error. */
2494
2495 static struct target_ops *
2496 find_default_run_target (char *do_mesg)
2497 {
2498 struct target_ops *runable = NULL;
2499
2500 if (auto_connect_native_target)
2501 {
2502 struct target_ops *t;
2503 int count = 0;
2504 int i;
2505
2506 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2507 {
2508 if (t->to_can_run != delegate_can_run && target_can_run (t))
2509 {
2510 runable = t;
2511 ++count;
2512 }
2513 }
2514
2515 if (count != 1)
2516 runable = NULL;
2517 }
2518
2519 if (runable == NULL)
2520 {
2521 if (do_mesg)
2522 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2523 else
2524 return NULL;
2525 }
2526
2527 return runable;
2528 }
2529
2530 /* See target.h. */
2531
2532 struct target_ops *
2533 find_attach_target (void)
2534 {
2535 struct target_ops *t;
2536
2537 /* If a target on the current stack can attach, use it. */
2538 for (t = current_target.beneath; t != NULL; t = t->beneath)
2539 {
2540 if (t->to_attach != NULL)
2541 break;
2542 }
2543
2544 /* Otherwise, use the default run target for attaching. */
2545 if (t == NULL)
2546 t = find_default_run_target ("attach");
2547
2548 return t;
2549 }
2550
2551 /* See target.h. */
2552
2553 struct target_ops *
2554 find_run_target (void)
2555 {
2556 struct target_ops *t;
2557
2558 /* If a target on the current stack can attach, use it. */
2559 for (t = current_target.beneath; t != NULL; t = t->beneath)
2560 {
2561 if (t->to_create_inferior != NULL)
2562 break;
2563 }
2564
2565 /* Otherwise, use the default run target. */
2566 if (t == NULL)
2567 t = find_default_run_target ("run");
2568
2569 return t;
2570 }
2571
2572 /* Implement the "info proc" command. */
2573
2574 int
2575 target_info_proc (const char *args, enum info_proc_what what)
2576 {
2577 struct target_ops *t;
2578
2579 /* If we're already connected to something that can get us OS
2580 related data, use it. Otherwise, try using the native
2581 target. */
2582 if (current_target.to_stratum >= process_stratum)
2583 t = current_target.beneath;
2584 else
2585 t = find_default_run_target (NULL);
2586
2587 for (; t != NULL; t = t->beneath)
2588 {
2589 if (t->to_info_proc != NULL)
2590 {
2591 t->to_info_proc (t, args, what);
2592
2593 if (targetdebug)
2594 fprintf_unfiltered (gdb_stdlog,
2595 "target_info_proc (\"%s\", %d)\n", args, what);
2596
2597 return 1;
2598 }
2599 }
2600
2601 return 0;
2602 }
2603
2604 static int
2605 find_default_supports_disable_randomization (struct target_ops *self)
2606 {
2607 struct target_ops *t;
2608
2609 t = find_default_run_target (NULL);
2610 if (t && t->to_supports_disable_randomization)
2611 return (t->to_supports_disable_randomization) (t);
2612 return 0;
2613 }
2614
2615 int
2616 target_supports_disable_randomization (void)
2617 {
2618 struct target_ops *t;
2619
2620 for (t = &current_target; t != NULL; t = t->beneath)
2621 if (t->to_supports_disable_randomization)
2622 return t->to_supports_disable_randomization (t);
2623
2624 return 0;
2625 }
2626
2627 char *
2628 target_get_osdata (const char *type)
2629 {
2630 struct target_ops *t;
2631
2632 /* If we're already connected to something that can get us OS
2633 related data, use it. Otherwise, try using the native
2634 target. */
2635 if (current_target.to_stratum >= process_stratum)
2636 t = current_target.beneath;
2637 else
2638 t = find_default_run_target ("get OS data");
2639
2640 if (!t)
2641 return NULL;
2642
2643 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2644 }
2645
2646 static struct address_space *
2647 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2648 {
2649 struct inferior *inf;
2650
2651 /* Fall-back to the "main" address space of the inferior. */
2652 inf = find_inferior_ptid (ptid);
2653
2654 if (inf == NULL || inf->aspace == NULL)
2655 internal_error (__FILE__, __LINE__,
2656 _("Can't determine the current "
2657 "address space of thread %s\n"),
2658 target_pid_to_str (ptid));
2659
2660 return inf->aspace;
2661 }
2662
2663 /* Determine the current address space of thread PTID. */
2664
2665 struct address_space *
2666 target_thread_address_space (ptid_t ptid)
2667 {
2668 struct address_space *aspace;
2669
2670 aspace = current_target.to_thread_address_space (&current_target, ptid);
2671 gdb_assert (aspace != NULL);
2672
2673 return aspace;
2674 }
2675
2676
2677 /* Target file operations. */
2678
2679 static struct target_ops *
2680 default_fileio_target (void)
2681 {
2682 /* If we're already connected to something that can perform
2683 file I/O, use it. Otherwise, try using the native target. */
2684 if (current_target.to_stratum >= process_stratum)
2685 return current_target.beneath;
2686 else
2687 return find_default_run_target ("file I/O");
2688 }
2689
2690 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2691 target file descriptor, or -1 if an error occurs (and set
2692 *TARGET_ERRNO). */
2693 int
2694 target_fileio_open (const char *filename, int flags, int mode,
2695 int *target_errno)
2696 {
2697 struct target_ops *t;
2698
2699 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2700 {
2701 if (t->to_fileio_open != NULL)
2702 {
2703 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2704
2705 if (targetdebug)
2706 fprintf_unfiltered (gdb_stdlog,
2707 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2708 filename, flags, mode,
2709 fd, fd != -1 ? 0 : *target_errno);
2710 return fd;
2711 }
2712 }
2713
2714 *target_errno = FILEIO_ENOSYS;
2715 return -1;
2716 }
2717
2718 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2719 Return the number of bytes written, or -1 if an error occurs
2720 (and set *TARGET_ERRNO). */
2721 int
2722 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2723 ULONGEST offset, int *target_errno)
2724 {
2725 struct target_ops *t;
2726
2727 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2728 {
2729 if (t->to_fileio_pwrite != NULL)
2730 {
2731 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2732 target_errno);
2733
2734 if (targetdebug)
2735 fprintf_unfiltered (gdb_stdlog,
2736 "target_fileio_pwrite (%d,...,%d,%s) "
2737 "= %d (%d)\n",
2738 fd, len, pulongest (offset),
2739 ret, ret != -1 ? 0 : *target_errno);
2740 return ret;
2741 }
2742 }
2743
2744 *target_errno = FILEIO_ENOSYS;
2745 return -1;
2746 }
2747
2748 /* Read up to LEN bytes FD on the target into READ_BUF.
2749 Return the number of bytes read, or -1 if an error occurs
2750 (and set *TARGET_ERRNO). */
2751 int
2752 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2753 ULONGEST offset, int *target_errno)
2754 {
2755 struct target_ops *t;
2756
2757 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2758 {
2759 if (t->to_fileio_pread != NULL)
2760 {
2761 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2762 target_errno);
2763
2764 if (targetdebug)
2765 fprintf_unfiltered (gdb_stdlog,
2766 "target_fileio_pread (%d,...,%d,%s) "
2767 "= %d (%d)\n",
2768 fd, len, pulongest (offset),
2769 ret, ret != -1 ? 0 : *target_errno);
2770 return ret;
2771 }
2772 }
2773
2774 *target_errno = FILEIO_ENOSYS;
2775 return -1;
2776 }
2777
2778 /* Close FD on the target. Return 0, or -1 if an error occurs
2779 (and set *TARGET_ERRNO). */
2780 int
2781 target_fileio_close (int fd, int *target_errno)
2782 {
2783 struct target_ops *t;
2784
2785 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2786 {
2787 if (t->to_fileio_close != NULL)
2788 {
2789 int ret = t->to_fileio_close (t, fd, target_errno);
2790
2791 if (targetdebug)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "target_fileio_close (%d) = %d (%d)\n",
2794 fd, ret, ret != -1 ? 0 : *target_errno);
2795 return ret;
2796 }
2797 }
2798
2799 *target_errno = FILEIO_ENOSYS;
2800 return -1;
2801 }
2802
2803 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2804 occurs (and set *TARGET_ERRNO). */
2805 int
2806 target_fileio_unlink (const char *filename, int *target_errno)
2807 {
2808 struct target_ops *t;
2809
2810 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2811 {
2812 if (t->to_fileio_unlink != NULL)
2813 {
2814 int ret = t->to_fileio_unlink (t, filename, target_errno);
2815
2816 if (targetdebug)
2817 fprintf_unfiltered (gdb_stdlog,
2818 "target_fileio_unlink (%s) = %d (%d)\n",
2819 filename, ret, ret != -1 ? 0 : *target_errno);
2820 return ret;
2821 }
2822 }
2823
2824 *target_errno = FILEIO_ENOSYS;
2825 return -1;
2826 }
2827
2828 /* Read value of symbolic link FILENAME on the target. Return a
2829 null-terminated string allocated via xmalloc, or NULL if an error
2830 occurs (and set *TARGET_ERRNO). */
2831 char *
2832 target_fileio_readlink (const char *filename, int *target_errno)
2833 {
2834 struct target_ops *t;
2835
2836 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2837 {
2838 if (t->to_fileio_readlink != NULL)
2839 {
2840 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2841
2842 if (targetdebug)
2843 fprintf_unfiltered (gdb_stdlog,
2844 "target_fileio_readlink (%s) = %s (%d)\n",
2845 filename, ret? ret : "(nil)",
2846 ret? 0 : *target_errno);
2847 return ret;
2848 }
2849 }
2850
2851 *target_errno = FILEIO_ENOSYS;
2852 return NULL;
2853 }
2854
2855 static void
2856 target_fileio_close_cleanup (void *opaque)
2857 {
2858 int fd = *(int *) opaque;
2859 int target_errno;
2860
2861 target_fileio_close (fd, &target_errno);
2862 }
2863
2864 /* Read target file FILENAME. Store the result in *BUF_P and
2865 return the size of the transferred data. PADDING additional bytes are
2866 available in *BUF_P. This is a helper function for
2867 target_fileio_read_alloc; see the declaration of that function for more
2868 information. */
2869
2870 static LONGEST
2871 target_fileio_read_alloc_1 (const char *filename,
2872 gdb_byte **buf_p, int padding)
2873 {
2874 struct cleanup *close_cleanup;
2875 size_t buf_alloc, buf_pos;
2876 gdb_byte *buf;
2877 LONGEST n;
2878 int fd;
2879 int target_errno;
2880
2881 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2882 if (fd == -1)
2883 return -1;
2884
2885 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2886
2887 /* Start by reading up to 4K at a time. The target will throttle
2888 this number down if necessary. */
2889 buf_alloc = 4096;
2890 buf = xmalloc (buf_alloc);
2891 buf_pos = 0;
2892 while (1)
2893 {
2894 n = target_fileio_pread (fd, &buf[buf_pos],
2895 buf_alloc - buf_pos - padding, buf_pos,
2896 &target_errno);
2897 if (n < 0)
2898 {
2899 /* An error occurred. */
2900 do_cleanups (close_cleanup);
2901 xfree (buf);
2902 return -1;
2903 }
2904 else if (n == 0)
2905 {
2906 /* Read all there was. */
2907 do_cleanups (close_cleanup);
2908 if (buf_pos == 0)
2909 xfree (buf);
2910 else
2911 *buf_p = buf;
2912 return buf_pos;
2913 }
2914
2915 buf_pos += n;
2916
2917 /* If the buffer is filling up, expand it. */
2918 if (buf_alloc < buf_pos * 2)
2919 {
2920 buf_alloc *= 2;
2921 buf = xrealloc (buf, buf_alloc);
2922 }
2923
2924 QUIT;
2925 }
2926 }
2927
2928 /* Read target file FILENAME. Store the result in *BUF_P and return
2929 the size of the transferred data. See the declaration in "target.h"
2930 function for more information about the return value. */
2931
2932 LONGEST
2933 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2934 {
2935 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2936 }
2937
2938 /* Read target file FILENAME. The result is NUL-terminated and
2939 returned as a string, allocated using xmalloc. If an error occurs
2940 or the transfer is unsupported, NULL is returned. Empty objects
2941 are returned as allocated but empty strings. A warning is issued
2942 if the result contains any embedded NUL bytes. */
2943
2944 char *
2945 target_fileio_read_stralloc (const char *filename)
2946 {
2947 gdb_byte *buffer;
2948 char *bufstr;
2949 LONGEST i, transferred;
2950
2951 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2952 bufstr = (char *) buffer;
2953
2954 if (transferred < 0)
2955 return NULL;
2956
2957 if (transferred == 0)
2958 return xstrdup ("");
2959
2960 bufstr[transferred] = 0;
2961
2962 /* Check for embedded NUL bytes; but allow trailing NULs. */
2963 for (i = strlen (bufstr); i < transferred; i++)
2964 if (bufstr[i] != 0)
2965 {
2966 warning (_("target file %s "
2967 "contained unexpected null characters"),
2968 filename);
2969 break;
2970 }
2971
2972 return bufstr;
2973 }
2974
2975
2976 static int
2977 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2978 CORE_ADDR addr, int len)
2979 {
2980 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2981 }
2982
2983 static int
2984 default_watchpoint_addr_within_range (struct target_ops *target,
2985 CORE_ADDR addr,
2986 CORE_ADDR start, int length)
2987 {
2988 return addr >= start && addr < start + length;
2989 }
2990
2991 static struct gdbarch *
2992 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2993 {
2994 return target_gdbarch ();
2995 }
2996
2997 static int
2998 return_zero (struct target_ops *ignore)
2999 {
3000 return 0;
3001 }
3002
3003 static int
3004 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3005 {
3006 return 0;
3007 }
3008
3009 /*
3010 * Find the next target down the stack from the specified target.
3011 */
3012
3013 struct target_ops *
3014 find_target_beneath (struct target_ops *t)
3015 {
3016 return t->beneath;
3017 }
3018
3019 /* See target.h. */
3020
3021 struct target_ops *
3022 find_target_at (enum strata stratum)
3023 {
3024 struct target_ops *t;
3025
3026 for (t = current_target.beneath; t != NULL; t = t->beneath)
3027 if (t->to_stratum == stratum)
3028 return t;
3029
3030 return NULL;
3031 }
3032
3033 \f
3034 /* The inferior process has died. Long live the inferior! */
3035
3036 void
3037 generic_mourn_inferior (void)
3038 {
3039 ptid_t ptid;
3040
3041 ptid = inferior_ptid;
3042 inferior_ptid = null_ptid;
3043
3044 /* Mark breakpoints uninserted in case something tries to delete a
3045 breakpoint while we delete the inferior's threads (which would
3046 fail, since the inferior is long gone). */
3047 mark_breakpoints_out ();
3048
3049 if (!ptid_equal (ptid, null_ptid))
3050 {
3051 int pid = ptid_get_pid (ptid);
3052 exit_inferior (pid);
3053 }
3054
3055 /* Note this wipes step-resume breakpoints, so needs to be done
3056 after exit_inferior, which ends up referencing the step-resume
3057 breakpoints through clear_thread_inferior_resources. */
3058 breakpoint_init_inferior (inf_exited);
3059
3060 registers_changed ();
3061
3062 reopen_exec_file ();
3063 reinit_frame_cache ();
3064
3065 if (deprecated_detach_hook)
3066 deprecated_detach_hook ();
3067 }
3068 \f
3069 /* Convert a normal process ID to a string. Returns the string in a
3070 static buffer. */
3071
3072 char *
3073 normal_pid_to_str (ptid_t ptid)
3074 {
3075 static char buf[32];
3076
3077 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3078 return buf;
3079 }
3080
3081 static char *
3082 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3083 {
3084 return normal_pid_to_str (ptid);
3085 }
3086
3087 /* Error-catcher for target_find_memory_regions. */
3088 static int
3089 dummy_find_memory_regions (struct target_ops *self,
3090 find_memory_region_ftype ignore1, void *ignore2)
3091 {
3092 error (_("Command not implemented for this target."));
3093 return 0;
3094 }
3095
3096 /* Error-catcher for target_make_corefile_notes. */
3097 static char *
3098 dummy_make_corefile_notes (struct target_ops *self,
3099 bfd *ignore1, int *ignore2)
3100 {
3101 error (_("Command not implemented for this target."));
3102 return NULL;
3103 }
3104
3105 /* Set up the handful of non-empty slots needed by the dummy target
3106 vector. */
3107
3108 static void
3109 init_dummy_target (void)
3110 {
3111 dummy_target.to_shortname = "None";
3112 dummy_target.to_longname = "None";
3113 dummy_target.to_doc = "";
3114 dummy_target.to_supports_disable_randomization
3115 = find_default_supports_disable_randomization;
3116 dummy_target.to_stratum = dummy_stratum;
3117 dummy_target.to_has_all_memory = return_zero;
3118 dummy_target.to_has_memory = return_zero;
3119 dummy_target.to_has_stack = return_zero;
3120 dummy_target.to_has_registers = return_zero;
3121 dummy_target.to_has_execution = return_zero_has_execution;
3122 dummy_target.to_magic = OPS_MAGIC;
3123
3124 install_dummy_methods (&dummy_target);
3125 }
3126 \f
3127
3128 void
3129 target_close (struct target_ops *targ)
3130 {
3131 gdb_assert (!target_is_pushed (targ));
3132
3133 if (targ->to_xclose != NULL)
3134 targ->to_xclose (targ);
3135 else if (targ->to_close != NULL)
3136 targ->to_close (targ);
3137
3138 if (targetdebug)
3139 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3140 }
3141
3142 int
3143 target_thread_alive (ptid_t ptid)
3144 {
3145 return current_target.to_thread_alive (&current_target, ptid);
3146 }
3147
3148 void
3149 target_update_thread_list (void)
3150 {
3151 current_target.to_update_thread_list (&current_target);
3152 }
3153
3154 void
3155 target_stop (ptid_t ptid)
3156 {
3157 if (!may_stop)
3158 {
3159 warning (_("May not interrupt or stop the target, ignoring attempt"));
3160 return;
3161 }
3162
3163 (*current_target.to_stop) (&current_target, ptid);
3164 }
3165
3166 /* See target/target.h. */
3167
3168 void
3169 target_stop_and_wait (ptid_t ptid)
3170 {
3171 struct target_waitstatus status;
3172 int was_non_stop = non_stop;
3173
3174 non_stop = 1;
3175 target_stop (ptid);
3176
3177 memset (&status, 0, sizeof (status));
3178 target_wait (ptid, &status, 0);
3179
3180 non_stop = was_non_stop;
3181 }
3182
3183 /* See target/target.h. */
3184
3185 void
3186 target_continue_no_signal (ptid_t ptid)
3187 {
3188 target_resume (ptid, 0, GDB_SIGNAL_0);
3189 }
3190
3191 /* Concatenate ELEM to LIST, a comma separate list, and return the
3192 result. The LIST incoming argument is released. */
3193
3194 static char *
3195 str_comma_list_concat_elem (char *list, const char *elem)
3196 {
3197 if (list == NULL)
3198 return xstrdup (elem);
3199 else
3200 return reconcat (list, list, ", ", elem, (char *) NULL);
3201 }
3202
3203 /* Helper for target_options_to_string. If OPT is present in
3204 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3205 Returns the new resulting string. OPT is removed from
3206 TARGET_OPTIONS. */
3207
3208 static char *
3209 do_option (int *target_options, char *ret,
3210 int opt, char *opt_str)
3211 {
3212 if ((*target_options & opt) != 0)
3213 {
3214 ret = str_comma_list_concat_elem (ret, opt_str);
3215 *target_options &= ~opt;
3216 }
3217
3218 return ret;
3219 }
3220
3221 char *
3222 target_options_to_string (int target_options)
3223 {
3224 char *ret = NULL;
3225
3226 #define DO_TARG_OPTION(OPT) \
3227 ret = do_option (&target_options, ret, OPT, #OPT)
3228
3229 DO_TARG_OPTION (TARGET_WNOHANG);
3230
3231 if (target_options != 0)
3232 ret = str_comma_list_concat_elem (ret, "unknown???");
3233
3234 if (ret == NULL)
3235 ret = xstrdup ("");
3236 return ret;
3237 }
3238
3239 static void
3240 debug_print_register (const char * func,
3241 struct regcache *regcache, int regno)
3242 {
3243 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3244
3245 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3246 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3247 && gdbarch_register_name (gdbarch, regno) != NULL
3248 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3249 fprintf_unfiltered (gdb_stdlog, "(%s)",
3250 gdbarch_register_name (gdbarch, regno));
3251 else
3252 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3253 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3254 {
3255 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3256 int i, size = register_size (gdbarch, regno);
3257 gdb_byte buf[MAX_REGISTER_SIZE];
3258
3259 regcache_raw_collect (regcache, regno, buf);
3260 fprintf_unfiltered (gdb_stdlog, " = ");
3261 for (i = 0; i < size; i++)
3262 {
3263 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3264 }
3265 if (size <= sizeof (LONGEST))
3266 {
3267 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3268
3269 fprintf_unfiltered (gdb_stdlog, " %s %s",
3270 core_addr_to_string_nz (val), plongest (val));
3271 }
3272 }
3273 fprintf_unfiltered (gdb_stdlog, "\n");
3274 }
3275
3276 void
3277 target_fetch_registers (struct regcache *regcache, int regno)
3278 {
3279 current_target.to_fetch_registers (&current_target, regcache, regno);
3280 if (targetdebug)
3281 debug_print_register ("target_fetch_registers", regcache, regno);
3282 }
3283
3284 void
3285 target_store_registers (struct regcache *regcache, int regno)
3286 {
3287 struct target_ops *t;
3288
3289 if (!may_write_registers)
3290 error (_("Writing to registers is not allowed (regno %d)"), regno);
3291
3292 current_target.to_store_registers (&current_target, regcache, regno);
3293 if (targetdebug)
3294 {
3295 debug_print_register ("target_store_registers", regcache, regno);
3296 }
3297 }
3298
3299 int
3300 target_core_of_thread (ptid_t ptid)
3301 {
3302 return current_target.to_core_of_thread (&current_target, ptid);
3303 }
3304
3305 int
3306 simple_verify_memory (struct target_ops *ops,
3307 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3308 {
3309 LONGEST total_xfered = 0;
3310
3311 while (total_xfered < size)
3312 {
3313 ULONGEST xfered_len;
3314 enum target_xfer_status status;
3315 gdb_byte buf[1024];
3316 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3317
3318 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3319 buf, NULL, lma + total_xfered, howmuch,
3320 &xfered_len);
3321 if (status == TARGET_XFER_OK
3322 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3323 {
3324 total_xfered += xfered_len;
3325 QUIT;
3326 }
3327 else
3328 return 0;
3329 }
3330 return 1;
3331 }
3332
3333 /* Default implementation of memory verification. */
3334
3335 static int
3336 default_verify_memory (struct target_ops *self,
3337 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3338 {
3339 /* Start over from the top of the target stack. */
3340 return simple_verify_memory (current_target.beneath,
3341 data, memaddr, size);
3342 }
3343
3344 int
3345 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3346 {
3347 return current_target.to_verify_memory (&current_target,
3348 data, memaddr, size);
3349 }
3350
3351 /* The documentation for this function is in its prototype declaration in
3352 target.h. */
3353
3354 int
3355 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3356 {
3357 return current_target.to_insert_mask_watchpoint (&current_target,
3358 addr, mask, rw);
3359 }
3360
3361 /* The documentation for this function is in its prototype declaration in
3362 target.h. */
3363
3364 int
3365 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3366 {
3367 return current_target.to_remove_mask_watchpoint (&current_target,
3368 addr, mask, rw);
3369 }
3370
3371 /* The documentation for this function is in its prototype declaration
3372 in target.h. */
3373
3374 int
3375 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3376 {
3377 return current_target.to_masked_watch_num_registers (&current_target,
3378 addr, mask);
3379 }
3380
3381 /* The documentation for this function is in its prototype declaration
3382 in target.h. */
3383
3384 int
3385 target_ranged_break_num_registers (void)
3386 {
3387 return current_target.to_ranged_break_num_registers (&current_target);
3388 }
3389
3390 /* See target.h. */
3391
3392 int
3393 target_supports_btrace (enum btrace_format format)
3394 {
3395 return current_target.to_supports_btrace (&current_target, format);
3396 }
3397
3398 /* See target.h. */
3399
3400 struct btrace_target_info *
3401 target_enable_btrace (ptid_t ptid)
3402 {
3403 return current_target.to_enable_btrace (&current_target, ptid);
3404 }
3405
3406 /* See target.h. */
3407
3408 void
3409 target_disable_btrace (struct btrace_target_info *btinfo)
3410 {
3411 current_target.to_disable_btrace (&current_target, btinfo);
3412 }
3413
3414 /* See target.h. */
3415
3416 void
3417 target_teardown_btrace (struct btrace_target_info *btinfo)
3418 {
3419 current_target.to_teardown_btrace (&current_target, btinfo);
3420 }
3421
3422 /* See target.h. */
3423
3424 enum btrace_error
3425 target_read_btrace (struct btrace_data *btrace,
3426 struct btrace_target_info *btinfo,
3427 enum btrace_read_type type)
3428 {
3429 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3430 }
3431
3432 /* See target.h. */
3433
3434 void
3435 target_stop_recording (void)
3436 {
3437 current_target.to_stop_recording (&current_target);
3438 }
3439
3440 /* See target.h. */
3441
3442 void
3443 target_save_record (const char *filename)
3444 {
3445 current_target.to_save_record (&current_target, filename);
3446 }
3447
3448 /* See target.h. */
3449
3450 int
3451 target_supports_delete_record (void)
3452 {
3453 struct target_ops *t;
3454
3455 for (t = current_target.beneath; t != NULL; t = t->beneath)
3456 if (t->to_delete_record != delegate_delete_record
3457 && t->to_delete_record != tdefault_delete_record)
3458 return 1;
3459
3460 return 0;
3461 }
3462
3463 /* See target.h. */
3464
3465 void
3466 target_delete_record (void)
3467 {
3468 current_target.to_delete_record (&current_target);
3469 }
3470
3471 /* See target.h. */
3472
3473 int
3474 target_record_is_replaying (void)
3475 {
3476 return current_target.to_record_is_replaying (&current_target);
3477 }
3478
3479 /* See target.h. */
3480
3481 void
3482 target_goto_record_begin (void)
3483 {
3484 current_target.to_goto_record_begin (&current_target);
3485 }
3486
3487 /* See target.h. */
3488
3489 void
3490 target_goto_record_end (void)
3491 {
3492 current_target.to_goto_record_end (&current_target);
3493 }
3494
3495 /* See target.h. */
3496
3497 void
3498 target_goto_record (ULONGEST insn)
3499 {
3500 current_target.to_goto_record (&current_target, insn);
3501 }
3502
3503 /* See target.h. */
3504
3505 void
3506 target_insn_history (int size, int flags)
3507 {
3508 current_target.to_insn_history (&current_target, size, flags);
3509 }
3510
3511 /* See target.h. */
3512
3513 void
3514 target_insn_history_from (ULONGEST from, int size, int flags)
3515 {
3516 current_target.to_insn_history_from (&current_target, from, size, flags);
3517 }
3518
3519 /* See target.h. */
3520
3521 void
3522 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3523 {
3524 current_target.to_insn_history_range (&current_target, begin, end, flags);
3525 }
3526
3527 /* See target.h. */
3528
3529 void
3530 target_call_history (int size, int flags)
3531 {
3532 current_target.to_call_history (&current_target, size, flags);
3533 }
3534
3535 /* See target.h. */
3536
3537 void
3538 target_call_history_from (ULONGEST begin, int size, int flags)
3539 {
3540 current_target.to_call_history_from (&current_target, begin, size, flags);
3541 }
3542
3543 /* See target.h. */
3544
3545 void
3546 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3547 {
3548 current_target.to_call_history_range (&current_target, begin, end, flags);
3549 }
3550
3551 /* See target.h. */
3552
3553 const struct frame_unwind *
3554 target_get_unwinder (void)
3555 {
3556 return current_target.to_get_unwinder (&current_target);
3557 }
3558
3559 /* See target.h. */
3560
3561 const struct frame_unwind *
3562 target_get_tailcall_unwinder (void)
3563 {
3564 return current_target.to_get_tailcall_unwinder (&current_target);
3565 }
3566
3567 /* Default implementation of to_decr_pc_after_break. */
3568
3569 static CORE_ADDR
3570 default_target_decr_pc_after_break (struct target_ops *ops,
3571 struct gdbarch *gdbarch)
3572 {
3573 return gdbarch_decr_pc_after_break (gdbarch);
3574 }
3575
3576 /* See target.h. */
3577
3578 CORE_ADDR
3579 target_decr_pc_after_break (struct gdbarch *gdbarch)
3580 {
3581 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3582 }
3583
3584 /* See target.h. */
3585
3586 void
3587 target_prepare_to_generate_core (void)
3588 {
3589 current_target.to_prepare_to_generate_core (&current_target);
3590 }
3591
3592 /* See target.h. */
3593
3594 void
3595 target_done_generating_core (void)
3596 {
3597 current_target.to_done_generating_core (&current_target);
3598 }
3599
3600 static void
3601 setup_target_debug (void)
3602 {
3603 memcpy (&debug_target, &current_target, sizeof debug_target);
3604
3605 init_debug_target (&current_target);
3606 }
3607 \f
3608
3609 static char targ_desc[] =
3610 "Names of targets and files being debugged.\nShows the entire \
3611 stack of targets currently in use (including the exec-file,\n\
3612 core-file, and process, if any), as well as the symbol file name.";
3613
3614 static void
3615 default_rcmd (struct target_ops *self, const char *command,
3616 struct ui_file *output)
3617 {
3618 error (_("\"monitor\" command not supported by this target."));
3619 }
3620
3621 static void
3622 do_monitor_command (char *cmd,
3623 int from_tty)
3624 {
3625 target_rcmd (cmd, gdb_stdtarg);
3626 }
3627
3628 /* Print the name of each layers of our target stack. */
3629
3630 static void
3631 maintenance_print_target_stack (char *cmd, int from_tty)
3632 {
3633 struct target_ops *t;
3634
3635 printf_filtered (_("The current target stack is:\n"));
3636
3637 for (t = target_stack; t != NULL; t = t->beneath)
3638 {
3639 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3640 }
3641 }
3642
3643 /* Controls if targets can report that they can/are async. This is
3644 just for maintainers to use when debugging gdb. */
3645 int target_async_permitted = 1;
3646
3647 /* The set command writes to this variable. If the inferior is
3648 executing, target_async_permitted is *not* updated. */
3649 static int target_async_permitted_1 = 1;
3650
3651 static void
3652 maint_set_target_async_command (char *args, int from_tty,
3653 struct cmd_list_element *c)
3654 {
3655 if (have_live_inferiors ())
3656 {
3657 target_async_permitted_1 = target_async_permitted;
3658 error (_("Cannot change this setting while the inferior is running."));
3659 }
3660
3661 target_async_permitted = target_async_permitted_1;
3662 }
3663
3664 static void
3665 maint_show_target_async_command (struct ui_file *file, int from_tty,
3666 struct cmd_list_element *c,
3667 const char *value)
3668 {
3669 fprintf_filtered (file,
3670 _("Controlling the inferior in "
3671 "asynchronous mode is %s.\n"), value);
3672 }
3673
3674 /* Temporary copies of permission settings. */
3675
3676 static int may_write_registers_1 = 1;
3677 static int may_write_memory_1 = 1;
3678 static int may_insert_breakpoints_1 = 1;
3679 static int may_insert_tracepoints_1 = 1;
3680 static int may_insert_fast_tracepoints_1 = 1;
3681 static int may_stop_1 = 1;
3682
3683 /* Make the user-set values match the real values again. */
3684
3685 void
3686 update_target_permissions (void)
3687 {
3688 may_write_registers_1 = may_write_registers;
3689 may_write_memory_1 = may_write_memory;
3690 may_insert_breakpoints_1 = may_insert_breakpoints;
3691 may_insert_tracepoints_1 = may_insert_tracepoints;
3692 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3693 may_stop_1 = may_stop;
3694 }
3695
3696 /* The one function handles (most of) the permission flags in the same
3697 way. */
3698
3699 static void
3700 set_target_permissions (char *args, int from_tty,
3701 struct cmd_list_element *c)
3702 {
3703 if (target_has_execution)
3704 {
3705 update_target_permissions ();
3706 error (_("Cannot change this setting while the inferior is running."));
3707 }
3708
3709 /* Make the real values match the user-changed values. */
3710 may_write_registers = may_write_registers_1;
3711 may_insert_breakpoints = may_insert_breakpoints_1;
3712 may_insert_tracepoints = may_insert_tracepoints_1;
3713 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3714 may_stop = may_stop_1;
3715 update_observer_mode ();
3716 }
3717
3718 /* Set memory write permission independently of observer mode. */
3719
3720 static void
3721 set_write_memory_permission (char *args, int from_tty,
3722 struct cmd_list_element *c)
3723 {
3724 /* Make the real values match the user-changed values. */
3725 may_write_memory = may_write_memory_1;
3726 update_observer_mode ();
3727 }
3728
3729
3730 void
3731 initialize_targets (void)
3732 {
3733 init_dummy_target ();
3734 push_target (&dummy_target);
3735
3736 add_info ("target", target_info, targ_desc);
3737 add_info ("files", target_info, targ_desc);
3738
3739 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3740 Set target debugging."), _("\
3741 Show target debugging."), _("\
3742 When non-zero, target debugging is enabled. Higher numbers are more\n\
3743 verbose."),
3744 set_targetdebug,
3745 show_targetdebug,
3746 &setdebuglist, &showdebuglist);
3747
3748 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3749 &trust_readonly, _("\
3750 Set mode for reading from readonly sections."), _("\
3751 Show mode for reading from readonly sections."), _("\
3752 When this mode is on, memory reads from readonly sections (such as .text)\n\
3753 will be read from the object file instead of from the target. This will\n\
3754 result in significant performance improvement for remote targets."),
3755 NULL,
3756 show_trust_readonly,
3757 &setlist, &showlist);
3758
3759 add_com ("monitor", class_obscure, do_monitor_command,
3760 _("Send a command to the remote monitor (remote targets only)."));
3761
3762 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3763 _("Print the name of each layer of the internal target stack."),
3764 &maintenanceprintlist);
3765
3766 add_setshow_boolean_cmd ("target-async", no_class,
3767 &target_async_permitted_1, _("\
3768 Set whether gdb controls the inferior in asynchronous mode."), _("\
3769 Show whether gdb controls the inferior in asynchronous mode."), _("\
3770 Tells gdb whether to control the inferior in asynchronous mode."),
3771 maint_set_target_async_command,
3772 maint_show_target_async_command,
3773 &maintenance_set_cmdlist,
3774 &maintenance_show_cmdlist);
3775
3776 add_setshow_boolean_cmd ("may-write-registers", class_support,
3777 &may_write_registers_1, _("\
3778 Set permission to write into registers."), _("\
3779 Show permission to write into registers."), _("\
3780 When this permission is on, GDB may write into the target's registers.\n\
3781 Otherwise, any sort of write attempt will result in an error."),
3782 set_target_permissions, NULL,
3783 &setlist, &showlist);
3784
3785 add_setshow_boolean_cmd ("may-write-memory", class_support,
3786 &may_write_memory_1, _("\
3787 Set permission to write into target memory."), _("\
3788 Show permission to write into target memory."), _("\
3789 When this permission is on, GDB may write into the target's memory.\n\
3790 Otherwise, any sort of write attempt will result in an error."),
3791 set_write_memory_permission, NULL,
3792 &setlist, &showlist);
3793
3794 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3795 &may_insert_breakpoints_1, _("\
3796 Set permission to insert breakpoints in the target."), _("\
3797 Show permission to insert breakpoints in the target."), _("\
3798 When this permission is on, GDB may insert breakpoints in the program.\n\
3799 Otherwise, any sort of insertion attempt will result in an error."),
3800 set_target_permissions, NULL,
3801 &setlist, &showlist);
3802
3803 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3804 &may_insert_tracepoints_1, _("\
3805 Set permission to insert tracepoints in the target."), _("\
3806 Show permission to insert tracepoints in the target."), _("\
3807 When this permission is on, GDB may insert tracepoints in the program.\n\
3808 Otherwise, any sort of insertion attempt will result in an error."),
3809 set_target_permissions, NULL,
3810 &setlist, &showlist);
3811
3812 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3813 &may_insert_fast_tracepoints_1, _("\
3814 Set permission to insert fast tracepoints in the target."), _("\
3815 Show permission to insert fast tracepoints in the target."), _("\
3816 When this permission is on, GDB may insert fast tracepoints.\n\
3817 Otherwise, any sort of insertion attempt will result in an error."),
3818 set_target_permissions, NULL,
3819 &setlist, &showlist);
3820
3821 add_setshow_boolean_cmd ("may-interrupt", class_support,
3822 &may_stop_1, _("\
3823 Set permission to interrupt or signal the target."), _("\
3824 Show permission to interrupt or signal the target."), _("\
3825 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3826 Otherwise, any attempt to interrupt or stop will be ignored."),
3827 set_target_permissions, NULL,
3828 &setlist, &showlist);
3829
3830 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3831 &auto_connect_native_target, _("\
3832 Set whether GDB may automatically connect to the native target."), _("\
3833 Show whether GDB may automatically connect to the native target."), _("\
3834 When on, and GDB is not connected to a target yet, GDB\n\
3835 attempts \"run\" and other commands with the native target."),
3836 NULL, show_auto_connect_native_target,
3837 &setlist, &showlist);
3838 }