]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
convert to_call_history_from
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47
48 static void target_info (char *, int);
49
50 static void default_terminal_info (struct target_ops *, const char *, int);
51
52 static int default_watchpoint_addr_within_range (struct target_ops *,
53 CORE_ADDR, CORE_ADDR, int);
54
55 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
56 CORE_ADDR, int);
57
58 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
59
60 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
61 long lwp, long tid);
62
63 static int default_follow_fork (struct target_ops *self, int follow_child,
64 int detach_fork);
65
66 static void default_mourn_inferior (struct target_ops *self);
67
68 static void tcomplain (void) ATTRIBUTE_NORETURN;
69
70 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
71
72 static int return_zero (void);
73
74 void target_ignore (void);
75
76 static void target_command (char *, int);
77
78 static struct target_ops *find_default_run_target (char *);
79
80 static target_xfer_partial_ftype default_xfer_partial;
81
82 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
83 ptid_t ptid);
84
85 static int dummy_find_memory_regions (struct target_ops *self,
86 find_memory_region_ftype ignore1,
87 void *ignore2);
88
89 static char *dummy_make_corefile_notes (struct target_ops *self,
90 bfd *ignore1, int *ignore2);
91
92 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
93
94 static int find_default_can_async_p (struct target_ops *ignore);
95
96 static int find_default_is_async_p (struct target_ops *ignore);
97
98 static enum exec_direction_kind default_execution_direction
99 (struct target_ops *self);
100
101 #include "target-delegates.c"
102
103 static void init_dummy_target (void);
104
105 static struct target_ops debug_target;
106
107 static void debug_to_open (char *, int);
108
109 static void debug_to_prepare_to_store (struct target_ops *self,
110 struct regcache *);
111
112 static void debug_to_files_info (struct target_ops *);
113
114 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
115 struct bp_target_info *);
116
117 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
121 int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
124 struct gdbarch *,
125 struct bp_target_info *);
126
127 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
128 struct gdbarch *,
129 struct bp_target_info *);
130
131 static int debug_to_insert_watchpoint (struct target_ops *self,
132 CORE_ADDR, int, int,
133 struct expression *);
134
135 static int debug_to_remove_watchpoint (struct target_ops *self,
136 CORE_ADDR, int, int,
137 struct expression *);
138
139 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
140
141 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
142 CORE_ADDR, CORE_ADDR, int);
143
144 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
145 CORE_ADDR, int);
146
147 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
148 CORE_ADDR, int, int,
149 struct expression *);
150
151 static void debug_to_terminal_init (struct target_ops *self);
152
153 static void debug_to_terminal_inferior (struct target_ops *self);
154
155 static void debug_to_terminal_ours_for_output (struct target_ops *self);
156
157 static void debug_to_terminal_save_ours (struct target_ops *self);
158
159 static void debug_to_terminal_ours (struct target_ops *self);
160
161 static void debug_to_load (struct target_ops *self, char *, int);
162
163 static int debug_to_can_run (struct target_ops *self);
164
165 static void debug_to_stop (struct target_ops *self, ptid_t);
166
167 /* Pointer to array of target architecture structures; the size of the
168 array; the current index into the array; the allocated size of the
169 array. */
170 struct target_ops **target_structs;
171 unsigned target_struct_size;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we should trust readonly sections from the
194 executable when reading memory. */
195
196 static int trust_readonly = 0;
197
198 /* Nonzero if we should show true memory content including
199 memory breakpoint inserted by gdb. */
200
201 static int show_memory_breakpoints = 0;
202
203 /* These globals control whether GDB attempts to perform these
204 operations; they are useful for targets that need to prevent
205 inadvertant disruption, such as in non-stop mode. */
206
207 int may_write_registers = 1;
208
209 int may_write_memory = 1;
210
211 int may_insert_breakpoints = 1;
212
213 int may_insert_tracepoints = 1;
214
215 int may_insert_fast_tracepoints = 1;
216
217 int may_stop = 1;
218
219 /* Non-zero if we want to see trace of target level stuff. */
220
221 static unsigned int targetdebug = 0;
222 static void
223 show_targetdebug (struct ui_file *file, int from_tty,
224 struct cmd_list_element *c, const char *value)
225 {
226 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
227 }
228
229 static void setup_target_debug (void);
230
231 /* The user just typed 'target' without the name of a target. */
232
233 static void
234 target_command (char *arg, int from_tty)
235 {
236 fputs_filtered ("Argument required (target name). Try `help target'\n",
237 gdb_stdout);
238 }
239
240 /* Default target_has_* methods for process_stratum targets. */
241
242 int
243 default_child_has_all_memory (struct target_ops *ops)
244 {
245 /* If no inferior selected, then we can't read memory here. */
246 if (ptid_equal (inferior_ptid, null_ptid))
247 return 0;
248
249 return 1;
250 }
251
252 int
253 default_child_has_memory (struct target_ops *ops)
254 {
255 /* If no inferior selected, then we can't read memory here. */
256 if (ptid_equal (inferior_ptid, null_ptid))
257 return 0;
258
259 return 1;
260 }
261
262 int
263 default_child_has_stack (struct target_ops *ops)
264 {
265 /* If no inferior selected, there's no stack. */
266 if (ptid_equal (inferior_ptid, null_ptid))
267 return 0;
268
269 return 1;
270 }
271
272 int
273 default_child_has_registers (struct target_ops *ops)
274 {
275 /* Can't read registers from no inferior. */
276 if (ptid_equal (inferior_ptid, null_ptid))
277 return 0;
278
279 return 1;
280 }
281
282 int
283 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
284 {
285 /* If there's no thread selected, then we can't make it run through
286 hoops. */
287 if (ptid_equal (the_ptid, null_ptid))
288 return 0;
289
290 return 1;
291 }
292
293
294 int
295 target_has_all_memory_1 (void)
296 {
297 struct target_ops *t;
298
299 for (t = current_target.beneath; t != NULL; t = t->beneath)
300 if (t->to_has_all_memory (t))
301 return 1;
302
303 return 0;
304 }
305
306 int
307 target_has_memory_1 (void)
308 {
309 struct target_ops *t;
310
311 for (t = current_target.beneath; t != NULL; t = t->beneath)
312 if (t->to_has_memory (t))
313 return 1;
314
315 return 0;
316 }
317
318 int
319 target_has_stack_1 (void)
320 {
321 struct target_ops *t;
322
323 for (t = current_target.beneath; t != NULL; t = t->beneath)
324 if (t->to_has_stack (t))
325 return 1;
326
327 return 0;
328 }
329
330 int
331 target_has_registers_1 (void)
332 {
333 struct target_ops *t;
334
335 for (t = current_target.beneath; t != NULL; t = t->beneath)
336 if (t->to_has_registers (t))
337 return 1;
338
339 return 0;
340 }
341
342 int
343 target_has_execution_1 (ptid_t the_ptid)
344 {
345 struct target_ops *t;
346
347 for (t = current_target.beneath; t != NULL; t = t->beneath)
348 if (t->to_has_execution (t, the_ptid))
349 return 1;
350
351 return 0;
352 }
353
354 int
355 target_has_execution_current (void)
356 {
357 return target_has_execution_1 (inferior_ptid);
358 }
359
360 /* Complete initialization of T. This ensures that various fields in
361 T are set, if needed by the target implementation. */
362
363 void
364 complete_target_initialization (struct target_ops *t)
365 {
366 /* Provide default values for all "must have" methods. */
367 if (t->to_xfer_partial == NULL)
368 t->to_xfer_partial = default_xfer_partial;
369
370 if (t->to_has_all_memory == NULL)
371 t->to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
372
373 if (t->to_has_memory == NULL)
374 t->to_has_memory = (int (*) (struct target_ops *)) return_zero;
375
376 if (t->to_has_stack == NULL)
377 t->to_has_stack = (int (*) (struct target_ops *)) return_zero;
378
379 if (t->to_has_registers == NULL)
380 t->to_has_registers = (int (*) (struct target_ops *)) return_zero;
381
382 if (t->to_has_execution == NULL)
383 t->to_has_execution = (int (*) (struct target_ops *, ptid_t)) return_zero;
384
385 install_delegators (t);
386 }
387
388 /* Add possible target architecture T to the list and add a new
389 command 'target T->to_shortname'. Set COMPLETER as the command's
390 completer if not NULL. */
391
392 void
393 add_target_with_completer (struct target_ops *t,
394 completer_ftype *completer)
395 {
396 struct cmd_list_element *c;
397
398 complete_target_initialization (t);
399
400 if (!target_structs)
401 {
402 target_struct_allocsize = DEFAULT_ALLOCSIZE;
403 target_structs = (struct target_ops **) xmalloc
404 (target_struct_allocsize * sizeof (*target_structs));
405 }
406 if (target_struct_size >= target_struct_allocsize)
407 {
408 target_struct_allocsize *= 2;
409 target_structs = (struct target_ops **)
410 xrealloc ((char *) target_structs,
411 target_struct_allocsize * sizeof (*target_structs));
412 }
413 target_structs[target_struct_size++] = t;
414
415 if (targetlist == NULL)
416 add_prefix_cmd ("target", class_run, target_command, _("\
417 Connect to a target machine or process.\n\
418 The first argument is the type or protocol of the target machine.\n\
419 Remaining arguments are interpreted by the target protocol. For more\n\
420 information on the arguments for a particular protocol, type\n\
421 `help target ' followed by the protocol name."),
422 &targetlist, "target ", 0, &cmdlist);
423 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
424 &targetlist);
425 if (completer != NULL)
426 set_cmd_completer (c, completer);
427 }
428
429 /* Add a possible target architecture to the list. */
430
431 void
432 add_target (struct target_ops *t)
433 {
434 add_target_with_completer (t, NULL);
435 }
436
437 /* See target.h. */
438
439 void
440 add_deprecated_target_alias (struct target_ops *t, char *alias)
441 {
442 struct cmd_list_element *c;
443 char *alt;
444
445 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
446 see PR cli/15104. */
447 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
448 alt = xstrprintf ("target %s", t->to_shortname);
449 deprecate_cmd (c, alt);
450 }
451
452 /* Stub functions */
453
454 void
455 target_ignore (void)
456 {
457 }
458
459 void
460 target_kill (void)
461 {
462 if (targetdebug)
463 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
464
465 current_target.to_kill (&current_target);
466 }
467
468 void
469 target_load (char *arg, int from_tty)
470 {
471 target_dcache_invalidate ();
472 (*current_target.to_load) (&current_target, arg, from_tty);
473 }
474
475 void
476 target_create_inferior (char *exec_file, char *args,
477 char **env, int from_tty)
478 {
479 struct target_ops *t;
480
481 for (t = current_target.beneath; t != NULL; t = t->beneath)
482 {
483 if (t->to_create_inferior != NULL)
484 {
485 t->to_create_inferior (t, exec_file, args, env, from_tty);
486 if (targetdebug)
487 fprintf_unfiltered (gdb_stdlog,
488 "target_create_inferior (%s, %s, xxx, %d)\n",
489 exec_file, args, from_tty);
490 return;
491 }
492 }
493
494 internal_error (__FILE__, __LINE__,
495 _("could not find a target to create inferior"));
496 }
497
498 void
499 target_terminal_inferior (void)
500 {
501 /* A background resume (``run&'') should leave GDB in control of the
502 terminal. Use target_can_async_p, not target_is_async_p, since at
503 this point the target is not async yet. However, if sync_execution
504 is not set, we know it will become async prior to resume. */
505 if (target_can_async_p () && !sync_execution)
506 return;
507
508 /* If GDB is resuming the inferior in the foreground, install
509 inferior's terminal modes. */
510 (*current_target.to_terminal_inferior) (&current_target);
511 }
512
513 static int
514 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
515 struct target_ops *t)
516 {
517 errno = EIO; /* Can't read/write this location. */
518 return 0; /* No bytes handled. */
519 }
520
521 static void
522 tcomplain (void)
523 {
524 error (_("You can't do that when your target is `%s'"),
525 current_target.to_shortname);
526 }
527
528 void
529 noprocess (void)
530 {
531 error (_("You can't do that without a process to debug."));
532 }
533
534 static void
535 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
536 {
537 printf_unfiltered (_("No saved terminal information.\n"));
538 }
539
540 /* A default implementation for the to_get_ada_task_ptid target method.
541
542 This function builds the PTID by using both LWP and TID as part of
543 the PTID lwp and tid elements. The pid used is the pid of the
544 inferior_ptid. */
545
546 static ptid_t
547 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
548 {
549 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
550 }
551
552 static enum exec_direction_kind
553 default_execution_direction (struct target_ops *self)
554 {
555 if (!target_can_execute_reverse)
556 return EXEC_FORWARD;
557 else if (!target_can_async_p ())
558 return EXEC_FORWARD;
559 else
560 gdb_assert_not_reached ("\
561 to_execution_direction must be implemented for reverse async");
562 }
563
564 /* Go through the target stack from top to bottom, copying over zero
565 entries in current_target, then filling in still empty entries. In
566 effect, we are doing class inheritance through the pushed target
567 vectors.
568
569 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
570 is currently implemented, is that it discards any knowledge of
571 which target an inherited method originally belonged to.
572 Consequently, new new target methods should instead explicitly and
573 locally search the target stack for the target that can handle the
574 request. */
575
576 static void
577 update_current_target (void)
578 {
579 struct target_ops *t;
580
581 /* First, reset current's contents. */
582 memset (&current_target, 0, sizeof (current_target));
583
584 /* Install the delegators. */
585 install_delegators (&current_target);
586
587 #define INHERIT(FIELD, TARGET) \
588 if (!current_target.FIELD) \
589 current_target.FIELD = (TARGET)->FIELD
590
591 for (t = target_stack; t; t = t->beneath)
592 {
593 INHERIT (to_shortname, t);
594 INHERIT (to_longname, t);
595 INHERIT (to_doc, t);
596 /* Do not inherit to_open. */
597 /* Do not inherit to_close. */
598 /* Do not inherit to_attach. */
599 /* Do not inherit to_post_attach. */
600 INHERIT (to_attach_no_wait, t);
601 /* Do not inherit to_detach. */
602 /* Do not inherit to_disconnect. */
603 /* Do not inherit to_resume. */
604 /* Do not inherit to_wait. */
605 /* Do not inherit to_fetch_registers. */
606 /* Do not inherit to_store_registers. */
607 /* Do not inherit to_prepare_to_store. */
608 INHERIT (deprecated_xfer_memory, t);
609 /* Do not inherit to_files_info. */
610 /* Do not inherit to_insert_breakpoint. */
611 /* Do not inherit to_remove_breakpoint. */
612 /* Do not inherit to_can_use_hw_breakpoint. */
613 /* Do not inherit to_insert_hw_breakpoint. */
614 /* Do not inherit to_remove_hw_breakpoint. */
615 /* Do not inherit to_ranged_break_num_registers. */
616 /* Do not inherit to_insert_watchpoint. */
617 /* Do not inherit to_remove_watchpoint. */
618 /* Do not inherit to_insert_mask_watchpoint. */
619 /* Do not inherit to_remove_mask_watchpoint. */
620 /* Do not inherit to_stopped_data_address. */
621 INHERIT (to_have_steppable_watchpoint, t);
622 INHERIT (to_have_continuable_watchpoint, t);
623 /* Do not inherit to_stopped_by_watchpoint. */
624 /* Do not inherit to_watchpoint_addr_within_range. */
625 /* Do not inherit to_region_ok_for_hw_watchpoint. */
626 /* Do not inherit to_can_accel_watchpoint_condition. */
627 /* Do not inherit to_masked_watch_num_registers. */
628 /* Do not inherit to_terminal_init. */
629 /* Do not inherit to_terminal_inferior. */
630 /* Do not inherit to_terminal_ours_for_output. */
631 /* Do not inherit to_terminal_ours. */
632 /* Do not inherit to_terminal_save_ours. */
633 /* Do not inherit to_terminal_info. */
634 /* Do not inherit to_kill. */
635 /* Do not inherit to_load. */
636 /* Do no inherit to_create_inferior. */
637 /* Do not inherit to_post_startup_inferior. */
638 /* Do not inherit to_insert_fork_catchpoint. */
639 /* Do not inherit to_remove_fork_catchpoint. */
640 /* Do not inherit to_insert_vfork_catchpoint. */
641 /* Do not inherit to_remove_vfork_catchpoint. */
642 /* Do not inherit to_follow_fork. */
643 /* Do not inherit to_insert_exec_catchpoint. */
644 /* Do not inherit to_remove_exec_catchpoint. */
645 /* Do not inherit to_set_syscall_catchpoint. */
646 /* Do not inherit to_has_exited. */
647 /* Do not inherit to_mourn_inferior. */
648 INHERIT (to_can_run, t);
649 /* Do not inherit to_pass_signals. */
650 /* Do not inherit to_program_signals. */
651 /* Do not inherit to_thread_alive. */
652 /* Do not inherit to_find_new_threads. */
653 /* Do not inherit to_pid_to_str. */
654 /* Do not inherit to_extra_thread_info. */
655 /* Do not inherit to_thread_name. */
656 /* Do not inherit to_stop. */
657 /* Do not inherit to_xfer_partial. */
658 /* Do not inherit to_rcmd. */
659 /* Do not inherit to_pid_to_exec_file. */
660 /* Do not inherit to_log_command. */
661 INHERIT (to_stratum, t);
662 /* Do not inherit to_has_all_memory. */
663 /* Do not inherit to_has_memory. */
664 /* Do not inherit to_has_stack. */
665 /* Do not inherit to_has_registers. */
666 /* Do not inherit to_has_execution. */
667 INHERIT (to_has_thread_control, t);
668 /* Do not inherit to_can_async_p. */
669 /* Do not inherit to_is_async_p. */
670 /* Do not inherit to_async. */
671 /* Do not inherit to_find_memory_regions. */
672 /* Do not inherit to_make_corefile_notes. */
673 /* Do not inherit to_get_bookmark. */
674 /* Do not inherit to_goto_bookmark. */
675 /* Do not inherit to_get_thread_local_address. */
676 /* Do not inherit to_can_execute_reverse. */
677 /* Do not inherit to_execution_direction. */
678 /* Do not inherit to_thread_architecture. */
679 /* Do not inherit to_read_description. */
680 /* Do not inherit to_get_ada_task_ptid. */
681 /* Do not inherit to_search_memory. */
682 /* Do not inherit to_supports_multi_process. */
683 /* Do not inherit to_supports_enable_disable_tracepoint. */
684 /* Do not inherit to_supports_string_tracing. */
685 /* Do not inherit to_trace_init. */
686 /* Do not inherit to_download_tracepoint. */
687 /* Do not inherit to_can_download_tracepoint. */
688 /* Do not inherit to_download_trace_state_variable. */
689 /* Do not inherit to_enable_tracepoint. */
690 /* Do not inherit to_disable_tracepoint. */
691 /* Do not inherit to_trace_set_readonly_regions. */
692 /* Do not inherit to_trace_start. */
693 /* Do not inherit to_get_trace_status. */
694 /* Do not inherit to_get_tracepoint_status. */
695 /* Do not inherit to_trace_stop. */
696 /* Do not inherit to_trace_find. */
697 /* Do not inherit to_get_trace_state_variable_value. */
698 /* Do not inherit to_save_trace_data. */
699 /* Do not inherit to_upload_tracepoints. */
700 /* Do not inherit to_upload_trace_state_variables. */
701 /* Do not inherit to_get_raw_trace_data. */
702 /* Do not inherit to_get_min_fast_tracepoint_insn_len. */
703 /* Do not inherit to_set_disconnected_tracing. */
704 /* Do not inherit to_set_circular_trace_buffer. */
705 /* Do not inherit to_set_trace_buffer_size. */
706 /* Do not inherit to_set_trace_notes. */
707 /* Do not inherit to_get_tib_address. */
708 /* Do not inherit to_set_permissions. */
709 /* Do not inherit to_static_tracepoint_marker_at. */
710 /* Do not inherit to_static_tracepoint_markers_by_strid. */
711 /* Do not inherit to_traceframe_info. */
712 /* Do not inherit to_use_agent. */
713 /* Do not inherit to_can_use_agent. */
714 /* Do not inherit to_augmented_libraries_svr4_read. */
715 INHERIT (to_magic, t);
716 /* Do not inherit
717 to_supports_evaluation_of_breakpoint_conditions. */
718 /* Do not inherit to_can_run_breakpoint_commands. */
719 /* Do not inherit to_memory_map. */
720 /* Do not inherit to_flash_erase. */
721 /* Do not inherit to_flash_done. */
722 }
723 #undef INHERIT
724
725 /* Clean up a target struct so it no longer has any zero pointers in
726 it. Some entries are defaulted to a method that print an error,
727 others are hard-wired to a standard recursive default. */
728
729 #define de_fault(field, value) \
730 if (!current_target.field) \
731 current_target.field = value
732
733 de_fault (to_open,
734 (void (*) (char *, int))
735 tcomplain);
736 de_fault (to_close,
737 (void (*) (struct target_ops *))
738 target_ignore);
739 de_fault (deprecated_xfer_memory,
740 (int (*) (CORE_ADDR, gdb_byte *, int, int,
741 struct mem_attrib *, struct target_ops *))
742 nomemory);
743 de_fault (to_can_run,
744 (int (*) (struct target_ops *))
745 return_zero);
746 current_target.to_read_description = NULL;
747
748 #undef de_fault
749
750 /* Finally, position the target-stack beneath the squashed
751 "current_target". That way code looking for a non-inherited
752 target method can quickly and simply find it. */
753 current_target.beneath = target_stack;
754
755 if (targetdebug)
756 setup_target_debug ();
757 }
758
759 /* Push a new target type into the stack of the existing target accessors,
760 possibly superseding some of the existing accessors.
761
762 Rather than allow an empty stack, we always have the dummy target at
763 the bottom stratum, so we can call the function vectors without
764 checking them. */
765
766 void
767 push_target (struct target_ops *t)
768 {
769 struct target_ops **cur;
770
771 /* Check magic number. If wrong, it probably means someone changed
772 the struct definition, but not all the places that initialize one. */
773 if (t->to_magic != OPS_MAGIC)
774 {
775 fprintf_unfiltered (gdb_stderr,
776 "Magic number of %s target struct wrong\n",
777 t->to_shortname);
778 internal_error (__FILE__, __LINE__,
779 _("failed internal consistency check"));
780 }
781
782 /* Find the proper stratum to install this target in. */
783 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
784 {
785 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
786 break;
787 }
788
789 /* If there's already targets at this stratum, remove them. */
790 /* FIXME: cagney/2003-10-15: I think this should be popping all
791 targets to CUR, and not just those at this stratum level. */
792 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
793 {
794 /* There's already something at this stratum level. Close it,
795 and un-hook it from the stack. */
796 struct target_ops *tmp = (*cur);
797
798 (*cur) = (*cur)->beneath;
799 tmp->beneath = NULL;
800 target_close (tmp);
801 }
802
803 /* We have removed all targets in our stratum, now add the new one. */
804 t->beneath = (*cur);
805 (*cur) = t;
806
807 update_current_target ();
808 }
809
810 /* Remove a target_ops vector from the stack, wherever it may be.
811 Return how many times it was removed (0 or 1). */
812
813 int
814 unpush_target (struct target_ops *t)
815 {
816 struct target_ops **cur;
817 struct target_ops *tmp;
818
819 if (t->to_stratum == dummy_stratum)
820 internal_error (__FILE__, __LINE__,
821 _("Attempt to unpush the dummy target"));
822
823 /* Look for the specified target. Note that we assume that a target
824 can only occur once in the target stack. */
825
826 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
827 {
828 if ((*cur) == t)
829 break;
830 }
831
832 /* If we don't find target_ops, quit. Only open targets should be
833 closed. */
834 if ((*cur) == NULL)
835 return 0;
836
837 /* Unchain the target. */
838 tmp = (*cur);
839 (*cur) = (*cur)->beneath;
840 tmp->beneath = NULL;
841
842 update_current_target ();
843
844 /* Finally close the target. Note we do this after unchaining, so
845 any target method calls from within the target_close
846 implementation don't end up in T anymore. */
847 target_close (t);
848
849 return 1;
850 }
851
852 void
853 pop_all_targets_above (enum strata above_stratum)
854 {
855 while ((int) (current_target.to_stratum) > (int) above_stratum)
856 {
857 if (!unpush_target (target_stack))
858 {
859 fprintf_unfiltered (gdb_stderr,
860 "pop_all_targets couldn't find target %s\n",
861 target_stack->to_shortname);
862 internal_error (__FILE__, __LINE__,
863 _("failed internal consistency check"));
864 break;
865 }
866 }
867 }
868
869 void
870 pop_all_targets (void)
871 {
872 pop_all_targets_above (dummy_stratum);
873 }
874
875 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
876
877 int
878 target_is_pushed (struct target_ops *t)
879 {
880 struct target_ops **cur;
881
882 /* Check magic number. If wrong, it probably means someone changed
883 the struct definition, but not all the places that initialize one. */
884 if (t->to_magic != OPS_MAGIC)
885 {
886 fprintf_unfiltered (gdb_stderr,
887 "Magic number of %s target struct wrong\n",
888 t->to_shortname);
889 internal_error (__FILE__, __LINE__,
890 _("failed internal consistency check"));
891 }
892
893 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
894 if (*cur == t)
895 return 1;
896
897 return 0;
898 }
899
900 /* Using the objfile specified in OBJFILE, find the address for the
901 current thread's thread-local storage with offset OFFSET. */
902 CORE_ADDR
903 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
904 {
905 volatile CORE_ADDR addr = 0;
906 struct target_ops *target;
907
908 for (target = current_target.beneath;
909 target != NULL;
910 target = target->beneath)
911 {
912 if (target->to_get_thread_local_address != NULL)
913 break;
914 }
915
916 if (target != NULL
917 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
918 {
919 ptid_t ptid = inferior_ptid;
920 volatile struct gdb_exception ex;
921
922 TRY_CATCH (ex, RETURN_MASK_ALL)
923 {
924 CORE_ADDR lm_addr;
925
926 /* Fetch the load module address for this objfile. */
927 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
928 objfile);
929 /* If it's 0, throw the appropriate exception. */
930 if (lm_addr == 0)
931 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
932 _("TLS load module not found"));
933
934 addr = target->to_get_thread_local_address (target, ptid,
935 lm_addr, offset);
936 }
937 /* If an error occurred, print TLS related messages here. Otherwise,
938 throw the error to some higher catcher. */
939 if (ex.reason < 0)
940 {
941 int objfile_is_library = (objfile->flags & OBJF_SHARED);
942
943 switch (ex.error)
944 {
945 case TLS_NO_LIBRARY_SUPPORT_ERROR:
946 error (_("Cannot find thread-local variables "
947 "in this thread library."));
948 break;
949 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
950 if (objfile_is_library)
951 error (_("Cannot find shared library `%s' in dynamic"
952 " linker's load module list"), objfile_name (objfile));
953 else
954 error (_("Cannot find executable file `%s' in dynamic"
955 " linker's load module list"), objfile_name (objfile));
956 break;
957 case TLS_NOT_ALLOCATED_YET_ERROR:
958 if (objfile_is_library)
959 error (_("The inferior has not yet allocated storage for"
960 " thread-local variables in\n"
961 "the shared library `%s'\n"
962 "for %s"),
963 objfile_name (objfile), target_pid_to_str (ptid));
964 else
965 error (_("The inferior has not yet allocated storage for"
966 " thread-local variables in\n"
967 "the executable `%s'\n"
968 "for %s"),
969 objfile_name (objfile), target_pid_to_str (ptid));
970 break;
971 case TLS_GENERIC_ERROR:
972 if (objfile_is_library)
973 error (_("Cannot find thread-local storage for %s, "
974 "shared library %s:\n%s"),
975 target_pid_to_str (ptid),
976 objfile_name (objfile), ex.message);
977 else
978 error (_("Cannot find thread-local storage for %s, "
979 "executable file %s:\n%s"),
980 target_pid_to_str (ptid),
981 objfile_name (objfile), ex.message);
982 break;
983 default:
984 throw_exception (ex);
985 break;
986 }
987 }
988 }
989 /* It wouldn't be wrong here to try a gdbarch method, too; finding
990 TLS is an ABI-specific thing. But we don't do that yet. */
991 else
992 error (_("Cannot find thread-local variables on this target"));
993
994 return addr;
995 }
996
997 const char *
998 target_xfer_status_to_string (enum target_xfer_status err)
999 {
1000 #define CASE(X) case X: return #X
1001 switch (err)
1002 {
1003 CASE(TARGET_XFER_E_IO);
1004 CASE(TARGET_XFER_E_UNAVAILABLE);
1005 default:
1006 return "<unknown>";
1007 }
1008 #undef CASE
1009 };
1010
1011
1012 #undef MIN
1013 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
1014
1015 /* target_read_string -- read a null terminated string, up to LEN bytes,
1016 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
1017 Set *STRING to a pointer to malloc'd memory containing the data; the caller
1018 is responsible for freeing it. Return the number of bytes successfully
1019 read. */
1020
1021 int
1022 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
1023 {
1024 int tlen, offset, i;
1025 gdb_byte buf[4];
1026 int errcode = 0;
1027 char *buffer;
1028 int buffer_allocated;
1029 char *bufptr;
1030 unsigned int nbytes_read = 0;
1031
1032 gdb_assert (string);
1033
1034 /* Small for testing. */
1035 buffer_allocated = 4;
1036 buffer = xmalloc (buffer_allocated);
1037 bufptr = buffer;
1038
1039 while (len > 0)
1040 {
1041 tlen = MIN (len, 4 - (memaddr & 3));
1042 offset = memaddr & 3;
1043
1044 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
1045 if (errcode != 0)
1046 {
1047 /* The transfer request might have crossed the boundary to an
1048 unallocated region of memory. Retry the transfer, requesting
1049 a single byte. */
1050 tlen = 1;
1051 offset = 0;
1052 errcode = target_read_memory (memaddr, buf, 1);
1053 if (errcode != 0)
1054 goto done;
1055 }
1056
1057 if (bufptr - buffer + tlen > buffer_allocated)
1058 {
1059 unsigned int bytes;
1060
1061 bytes = bufptr - buffer;
1062 buffer_allocated *= 2;
1063 buffer = xrealloc (buffer, buffer_allocated);
1064 bufptr = buffer + bytes;
1065 }
1066
1067 for (i = 0; i < tlen; i++)
1068 {
1069 *bufptr++ = buf[i + offset];
1070 if (buf[i + offset] == '\000')
1071 {
1072 nbytes_read += i + 1;
1073 goto done;
1074 }
1075 }
1076
1077 memaddr += tlen;
1078 len -= tlen;
1079 nbytes_read += tlen;
1080 }
1081 done:
1082 *string = buffer;
1083 if (errnop != NULL)
1084 *errnop = errcode;
1085 return nbytes_read;
1086 }
1087
1088 struct target_section_table *
1089 target_get_section_table (struct target_ops *target)
1090 {
1091 if (targetdebug)
1092 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
1093
1094 return (*target->to_get_section_table) (target);
1095 }
1096
1097 /* Find a section containing ADDR. */
1098
1099 struct target_section *
1100 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1101 {
1102 struct target_section_table *table = target_get_section_table (target);
1103 struct target_section *secp;
1104
1105 if (table == NULL)
1106 return NULL;
1107
1108 for (secp = table->sections; secp < table->sections_end; secp++)
1109 {
1110 if (addr >= secp->addr && addr < secp->endaddr)
1111 return secp;
1112 }
1113 return NULL;
1114 }
1115
1116 /* Read memory from the live target, even if currently inspecting a
1117 traceframe. The return is the same as that of target_read. */
1118
1119 static enum target_xfer_status
1120 target_read_live_memory (enum target_object object,
1121 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
1122 ULONGEST *xfered_len)
1123 {
1124 enum target_xfer_status ret;
1125 struct cleanup *cleanup;
1126
1127 /* Switch momentarily out of tfind mode so to access live memory.
1128 Note that this must not clear global state, such as the frame
1129 cache, which must still remain valid for the previous traceframe.
1130 We may be _building_ the frame cache at this point. */
1131 cleanup = make_cleanup_restore_traceframe_number ();
1132 set_traceframe_number (-1);
1133
1134 ret = target_xfer_partial (current_target.beneath, object, NULL,
1135 myaddr, NULL, memaddr, len, xfered_len);
1136
1137 do_cleanups (cleanup);
1138 return ret;
1139 }
1140
1141 /* Using the set of read-only target sections of OPS, read live
1142 read-only memory. Note that the actual reads start from the
1143 top-most target again.
1144
1145 For interface/parameters/return description see target.h,
1146 to_xfer_partial. */
1147
1148 static enum target_xfer_status
1149 memory_xfer_live_readonly_partial (struct target_ops *ops,
1150 enum target_object object,
1151 gdb_byte *readbuf, ULONGEST memaddr,
1152 ULONGEST len, ULONGEST *xfered_len)
1153 {
1154 struct target_section *secp;
1155 struct target_section_table *table;
1156
1157 secp = target_section_by_addr (ops, memaddr);
1158 if (secp != NULL
1159 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1160 secp->the_bfd_section)
1161 & SEC_READONLY))
1162 {
1163 struct target_section *p;
1164 ULONGEST memend = memaddr + len;
1165
1166 table = target_get_section_table (ops);
1167
1168 for (p = table->sections; p < table->sections_end; p++)
1169 {
1170 if (memaddr >= p->addr)
1171 {
1172 if (memend <= p->endaddr)
1173 {
1174 /* Entire transfer is within this section. */
1175 return target_read_live_memory (object, memaddr,
1176 readbuf, len, xfered_len);
1177 }
1178 else if (memaddr >= p->endaddr)
1179 {
1180 /* This section ends before the transfer starts. */
1181 continue;
1182 }
1183 else
1184 {
1185 /* This section overlaps the transfer. Just do half. */
1186 len = p->endaddr - memaddr;
1187 return target_read_live_memory (object, memaddr,
1188 readbuf, len, xfered_len);
1189 }
1190 }
1191 }
1192 }
1193
1194 return TARGET_XFER_EOF;
1195 }
1196
1197 /* Read memory from more than one valid target. A core file, for
1198 instance, could have some of memory but delegate other bits to
1199 the target below it. So, we must manually try all targets. */
1200
1201 static enum target_xfer_status
1202 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1203 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1204 ULONGEST *xfered_len)
1205 {
1206 enum target_xfer_status res;
1207
1208 do
1209 {
1210 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1211 readbuf, writebuf, memaddr, len,
1212 xfered_len);
1213 if (res == TARGET_XFER_OK)
1214 break;
1215
1216 /* Stop if the target reports that the memory is not available. */
1217 if (res == TARGET_XFER_E_UNAVAILABLE)
1218 break;
1219
1220 /* We want to continue past core files to executables, but not
1221 past a running target's memory. */
1222 if (ops->to_has_all_memory (ops))
1223 break;
1224
1225 ops = ops->beneath;
1226 }
1227 while (ops != NULL);
1228
1229 return res;
1230 }
1231
1232 /* Perform a partial memory transfer.
1233 For docs see target.h, to_xfer_partial. */
1234
1235 static enum target_xfer_status
1236 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1237 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1238 ULONGEST len, ULONGEST *xfered_len)
1239 {
1240 enum target_xfer_status res;
1241 int reg_len;
1242 struct mem_region *region;
1243 struct inferior *inf;
1244
1245 /* For accesses to unmapped overlay sections, read directly from
1246 files. Must do this first, as MEMADDR may need adjustment. */
1247 if (readbuf != NULL && overlay_debugging)
1248 {
1249 struct obj_section *section = find_pc_overlay (memaddr);
1250
1251 if (pc_in_unmapped_range (memaddr, section))
1252 {
1253 struct target_section_table *table
1254 = target_get_section_table (ops);
1255 const char *section_name = section->the_bfd_section->name;
1256
1257 memaddr = overlay_mapped_address (memaddr, section);
1258 return section_table_xfer_memory_partial (readbuf, writebuf,
1259 memaddr, len, xfered_len,
1260 table->sections,
1261 table->sections_end,
1262 section_name);
1263 }
1264 }
1265
1266 /* Try the executable files, if "trust-readonly-sections" is set. */
1267 if (readbuf != NULL && trust_readonly)
1268 {
1269 struct target_section *secp;
1270 struct target_section_table *table;
1271
1272 secp = target_section_by_addr (ops, memaddr);
1273 if (secp != NULL
1274 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1275 secp->the_bfd_section)
1276 & SEC_READONLY))
1277 {
1278 table = target_get_section_table (ops);
1279 return section_table_xfer_memory_partial (readbuf, writebuf,
1280 memaddr, len, xfered_len,
1281 table->sections,
1282 table->sections_end,
1283 NULL);
1284 }
1285 }
1286
1287 /* If reading unavailable memory in the context of traceframes, and
1288 this address falls within a read-only section, fallback to
1289 reading from live memory. */
1290 if (readbuf != NULL && get_traceframe_number () != -1)
1291 {
1292 VEC(mem_range_s) *available;
1293
1294 /* If we fail to get the set of available memory, then the
1295 target does not support querying traceframe info, and so we
1296 attempt reading from the traceframe anyway (assuming the
1297 target implements the old QTro packet then). */
1298 if (traceframe_available_memory (&available, memaddr, len))
1299 {
1300 struct cleanup *old_chain;
1301
1302 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1303
1304 if (VEC_empty (mem_range_s, available)
1305 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1306 {
1307 /* Don't read into the traceframe's available
1308 memory. */
1309 if (!VEC_empty (mem_range_s, available))
1310 {
1311 LONGEST oldlen = len;
1312
1313 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1314 gdb_assert (len <= oldlen);
1315 }
1316
1317 do_cleanups (old_chain);
1318
1319 /* This goes through the topmost target again. */
1320 res = memory_xfer_live_readonly_partial (ops, object,
1321 readbuf, memaddr,
1322 len, xfered_len);
1323 if (res == TARGET_XFER_OK)
1324 return TARGET_XFER_OK;
1325 else
1326 {
1327 /* No use trying further, we know some memory starting
1328 at MEMADDR isn't available. */
1329 *xfered_len = len;
1330 return TARGET_XFER_E_UNAVAILABLE;
1331 }
1332 }
1333
1334 /* Don't try to read more than how much is available, in
1335 case the target implements the deprecated QTro packet to
1336 cater for older GDBs (the target's knowledge of read-only
1337 sections may be outdated by now). */
1338 len = VEC_index (mem_range_s, available, 0)->length;
1339
1340 do_cleanups (old_chain);
1341 }
1342 }
1343
1344 /* Try GDB's internal data cache. */
1345 region = lookup_mem_region (memaddr);
1346 /* region->hi == 0 means there's no upper bound. */
1347 if (memaddr + len < region->hi || region->hi == 0)
1348 reg_len = len;
1349 else
1350 reg_len = region->hi - memaddr;
1351
1352 switch (region->attrib.mode)
1353 {
1354 case MEM_RO:
1355 if (writebuf != NULL)
1356 return TARGET_XFER_E_IO;
1357 break;
1358
1359 case MEM_WO:
1360 if (readbuf != NULL)
1361 return TARGET_XFER_E_IO;
1362 break;
1363
1364 case MEM_FLASH:
1365 /* We only support writing to flash during "load" for now. */
1366 if (writebuf != NULL)
1367 error (_("Writing to flash memory forbidden in this context"));
1368 break;
1369
1370 case MEM_NONE:
1371 return TARGET_XFER_E_IO;
1372 }
1373
1374 if (!ptid_equal (inferior_ptid, null_ptid))
1375 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1376 else
1377 inf = NULL;
1378
1379 if (inf != NULL
1380 /* The dcache reads whole cache lines; that doesn't play well
1381 with reading from a trace buffer, because reading outside of
1382 the collected memory range fails. */
1383 && get_traceframe_number () == -1
1384 && (region->attrib.cache
1385 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1386 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1387 {
1388 DCACHE *dcache = target_dcache_get_or_init ();
1389 int l;
1390
1391 if (readbuf != NULL)
1392 l = dcache_xfer_memory (ops, dcache, memaddr, readbuf, reg_len, 0);
1393 else
1394 /* FIXME drow/2006-08-09: If we're going to preserve const
1395 correctness dcache_xfer_memory should take readbuf and
1396 writebuf. */
1397 l = dcache_xfer_memory (ops, dcache, memaddr, (void *) writebuf,
1398 reg_len, 1);
1399 if (l <= 0)
1400 return TARGET_XFER_E_IO;
1401 else
1402 {
1403 *xfered_len = (ULONGEST) l;
1404 return TARGET_XFER_OK;
1405 }
1406 }
1407
1408 /* If none of those methods found the memory we wanted, fall back
1409 to a target partial transfer. Normally a single call to
1410 to_xfer_partial is enough; if it doesn't recognize an object
1411 it will call the to_xfer_partial of the next target down.
1412 But for memory this won't do. Memory is the only target
1413 object which can be read from more than one valid target.
1414 A core file, for instance, could have some of memory but
1415 delegate other bits to the target below it. So, we must
1416 manually try all targets. */
1417
1418 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1419 xfered_len);
1420
1421 /* Make sure the cache gets updated no matter what - if we are writing
1422 to the stack. Even if this write is not tagged as such, we still need
1423 to update the cache. */
1424
1425 if (res == TARGET_XFER_OK
1426 && inf != NULL
1427 && writebuf != NULL
1428 && target_dcache_init_p ()
1429 && !region->attrib.cache
1430 && ((stack_cache_enabled_p () && object != TARGET_OBJECT_STACK_MEMORY)
1431 || (code_cache_enabled_p () && object != TARGET_OBJECT_CODE_MEMORY)))
1432 {
1433 DCACHE *dcache = target_dcache_get ();
1434
1435 dcache_update (dcache, memaddr, (void *) writebuf, reg_len);
1436 }
1437
1438 /* If we still haven't got anything, return the last error. We
1439 give up. */
1440 return res;
1441 }
1442
1443 /* Perform a partial memory transfer. For docs see target.h,
1444 to_xfer_partial. */
1445
1446 static enum target_xfer_status
1447 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1448 gdb_byte *readbuf, const gdb_byte *writebuf,
1449 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1450 {
1451 enum target_xfer_status res;
1452
1453 /* Zero length requests are ok and require no work. */
1454 if (len == 0)
1455 return TARGET_XFER_EOF;
1456
1457 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1458 breakpoint insns, thus hiding out from higher layers whether
1459 there are software breakpoints inserted in the code stream. */
1460 if (readbuf != NULL)
1461 {
1462 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1463 xfered_len);
1464
1465 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1466 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, res);
1467 }
1468 else
1469 {
1470 void *buf;
1471 struct cleanup *old_chain;
1472
1473 /* A large write request is likely to be partially satisfied
1474 by memory_xfer_partial_1. We will continually malloc
1475 and free a copy of the entire write request for breakpoint
1476 shadow handling even though we only end up writing a small
1477 subset of it. Cap writes to 4KB to mitigate this. */
1478 len = min (4096, len);
1479
1480 buf = xmalloc (len);
1481 old_chain = make_cleanup (xfree, buf);
1482 memcpy (buf, writebuf, len);
1483
1484 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1485 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1486 xfered_len);
1487
1488 do_cleanups (old_chain);
1489 }
1490
1491 return res;
1492 }
1493
1494 static void
1495 restore_show_memory_breakpoints (void *arg)
1496 {
1497 show_memory_breakpoints = (uintptr_t) arg;
1498 }
1499
1500 struct cleanup *
1501 make_show_memory_breakpoints_cleanup (int show)
1502 {
1503 int current = show_memory_breakpoints;
1504
1505 show_memory_breakpoints = show;
1506 return make_cleanup (restore_show_memory_breakpoints,
1507 (void *) (uintptr_t) current);
1508 }
1509
1510 /* For docs see target.h, to_xfer_partial. */
1511
1512 enum target_xfer_status
1513 target_xfer_partial (struct target_ops *ops,
1514 enum target_object object, const char *annex,
1515 gdb_byte *readbuf, const gdb_byte *writebuf,
1516 ULONGEST offset, ULONGEST len,
1517 ULONGEST *xfered_len)
1518 {
1519 enum target_xfer_status retval;
1520
1521 gdb_assert (ops->to_xfer_partial != NULL);
1522
1523 /* Transfer is done when LEN is zero. */
1524 if (len == 0)
1525 return TARGET_XFER_EOF;
1526
1527 if (writebuf && !may_write_memory)
1528 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1529 core_addr_to_string_nz (offset), plongest (len));
1530
1531 *xfered_len = 0;
1532
1533 /* If this is a memory transfer, let the memory-specific code
1534 have a look at it instead. Memory transfers are more
1535 complicated. */
1536 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1537 || object == TARGET_OBJECT_CODE_MEMORY)
1538 retval = memory_xfer_partial (ops, object, readbuf,
1539 writebuf, offset, len, xfered_len);
1540 else if (object == TARGET_OBJECT_RAW_MEMORY)
1541 {
1542 /* Request the normal memory object from other layers. */
1543 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1544 xfered_len);
1545 }
1546 else
1547 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1548 writebuf, offset, len, xfered_len);
1549
1550 if (targetdebug)
1551 {
1552 const unsigned char *myaddr = NULL;
1553
1554 fprintf_unfiltered (gdb_stdlog,
1555 "%s:target_xfer_partial "
1556 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1557 ops->to_shortname,
1558 (int) object,
1559 (annex ? annex : "(null)"),
1560 host_address_to_string (readbuf),
1561 host_address_to_string (writebuf),
1562 core_addr_to_string_nz (offset),
1563 pulongest (len), retval,
1564 pulongest (*xfered_len));
1565
1566 if (readbuf)
1567 myaddr = readbuf;
1568 if (writebuf)
1569 myaddr = writebuf;
1570 if (retval == TARGET_XFER_OK && myaddr != NULL)
1571 {
1572 int i;
1573
1574 fputs_unfiltered (", bytes =", gdb_stdlog);
1575 for (i = 0; i < *xfered_len; i++)
1576 {
1577 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1578 {
1579 if (targetdebug < 2 && i > 0)
1580 {
1581 fprintf_unfiltered (gdb_stdlog, " ...");
1582 break;
1583 }
1584 fprintf_unfiltered (gdb_stdlog, "\n");
1585 }
1586
1587 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1588 }
1589 }
1590
1591 fputc_unfiltered ('\n', gdb_stdlog);
1592 }
1593
1594 /* Check implementations of to_xfer_partial update *XFERED_LEN
1595 properly. Do assertion after printing debug messages, so that we
1596 can find more clues on assertion failure from debugging messages. */
1597 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_E_UNAVAILABLE)
1598 gdb_assert (*xfered_len > 0);
1599
1600 return retval;
1601 }
1602
1603 /* Read LEN bytes of target memory at address MEMADDR, placing the
1604 results in GDB's memory at MYADDR. Returns either 0 for success or
1605 TARGET_XFER_E_IO if any error occurs.
1606
1607 If an error occurs, no guarantee is made about the contents of the data at
1608 MYADDR. In particular, the caller should not depend upon partial reads
1609 filling the buffer with good data. There is no way for the caller to know
1610 how much good data might have been transfered anyway. Callers that can
1611 deal with partial reads should call target_read (which will retry until
1612 it makes no progress, and then return how much was transferred). */
1613
1614 int
1615 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1616 {
1617 /* Dispatch to the topmost target, not the flattened current_target.
1618 Memory accesses check target->to_has_(all_)memory, and the
1619 flattened target doesn't inherit those. */
1620 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1621 myaddr, memaddr, len) == len)
1622 return 0;
1623 else
1624 return TARGET_XFER_E_IO;
1625 }
1626
1627 /* Like target_read_memory, but specify explicitly that this is a read
1628 from the target's raw memory. That is, this read bypasses the
1629 dcache, breakpoint shadowing, etc. */
1630
1631 int
1632 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1633 {
1634 /* See comment in target_read_memory about why the request starts at
1635 current_target.beneath. */
1636 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1637 myaddr, memaddr, len) == len)
1638 return 0;
1639 else
1640 return TARGET_XFER_E_IO;
1641 }
1642
1643 /* Like target_read_memory, but specify explicitly that this is a read from
1644 the target's stack. This may trigger different cache behavior. */
1645
1646 int
1647 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1648 {
1649 /* See comment in target_read_memory about why the request starts at
1650 current_target.beneath. */
1651 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1652 myaddr, memaddr, len) == len)
1653 return 0;
1654 else
1655 return TARGET_XFER_E_IO;
1656 }
1657
1658 /* Like target_read_memory, but specify explicitly that this is a read from
1659 the target's code. This may trigger different cache behavior. */
1660
1661 int
1662 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1663 {
1664 /* See comment in target_read_memory about why the request starts at
1665 current_target.beneath. */
1666 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1667 myaddr, memaddr, len) == len)
1668 return 0;
1669 else
1670 return TARGET_XFER_E_IO;
1671 }
1672
1673 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1674 Returns either 0 for success or TARGET_XFER_E_IO if any
1675 error occurs. If an error occurs, no guarantee is made about how
1676 much data got written. Callers that can deal with partial writes
1677 should call target_write. */
1678
1679 int
1680 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1681 {
1682 /* See comment in target_read_memory about why the request starts at
1683 current_target.beneath. */
1684 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1685 myaddr, memaddr, len) == len)
1686 return 0;
1687 else
1688 return TARGET_XFER_E_IO;
1689 }
1690
1691 /* Write LEN bytes from MYADDR to target raw memory at address
1692 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1693 if any error occurs. If an error occurs, no guarantee is made
1694 about how much data got written. Callers that can deal with
1695 partial writes should call target_write. */
1696
1697 int
1698 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1699 {
1700 /* See comment in target_read_memory about why the request starts at
1701 current_target.beneath. */
1702 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1703 myaddr, memaddr, len) == len)
1704 return 0;
1705 else
1706 return TARGET_XFER_E_IO;
1707 }
1708
1709 /* Fetch the target's memory map. */
1710
1711 VEC(mem_region_s) *
1712 target_memory_map (void)
1713 {
1714 VEC(mem_region_s) *result;
1715 struct mem_region *last_one, *this_one;
1716 int ix;
1717 struct target_ops *t;
1718
1719 if (targetdebug)
1720 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1721
1722 for (t = current_target.beneath; t != NULL; t = t->beneath)
1723 if (t->to_memory_map != NULL)
1724 break;
1725
1726 if (t == NULL)
1727 return NULL;
1728
1729 result = t->to_memory_map (t);
1730 if (result == NULL)
1731 return NULL;
1732
1733 qsort (VEC_address (mem_region_s, result),
1734 VEC_length (mem_region_s, result),
1735 sizeof (struct mem_region), mem_region_cmp);
1736
1737 /* Check that regions do not overlap. Simultaneously assign
1738 a numbering for the "mem" commands to use to refer to
1739 each region. */
1740 last_one = NULL;
1741 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1742 {
1743 this_one->number = ix;
1744
1745 if (last_one && last_one->hi > this_one->lo)
1746 {
1747 warning (_("Overlapping regions in memory map: ignoring"));
1748 VEC_free (mem_region_s, result);
1749 return NULL;
1750 }
1751 last_one = this_one;
1752 }
1753
1754 return result;
1755 }
1756
1757 void
1758 target_flash_erase (ULONGEST address, LONGEST length)
1759 {
1760 if (targetdebug)
1761 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1762 hex_string (address), phex (length, 0));
1763 current_target.to_flash_erase (&current_target, address, length);
1764 }
1765
1766 void
1767 target_flash_done (void)
1768 {
1769 if (targetdebug)
1770 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1771 current_target.to_flash_done (&current_target);
1772 }
1773
1774 static void
1775 show_trust_readonly (struct ui_file *file, int from_tty,
1776 struct cmd_list_element *c, const char *value)
1777 {
1778 fprintf_filtered (file,
1779 _("Mode for reading from readonly sections is %s.\n"),
1780 value);
1781 }
1782
1783 /* More generic transfers. */
1784
1785 static enum target_xfer_status
1786 default_xfer_partial (struct target_ops *ops, enum target_object object,
1787 const char *annex, gdb_byte *readbuf,
1788 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
1789 ULONGEST *xfered_len)
1790 {
1791 if (object == TARGET_OBJECT_MEMORY
1792 && ops->deprecated_xfer_memory != NULL)
1793 /* If available, fall back to the target's
1794 "deprecated_xfer_memory" method. */
1795 {
1796 int xfered = -1;
1797
1798 errno = 0;
1799 if (writebuf != NULL)
1800 {
1801 void *buffer = xmalloc (len);
1802 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1803
1804 memcpy (buffer, writebuf, len);
1805 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1806 1/*write*/, NULL, ops);
1807 do_cleanups (cleanup);
1808 }
1809 if (readbuf != NULL)
1810 xfered = ops->deprecated_xfer_memory (offset, readbuf, len,
1811 0/*read*/, NULL, ops);
1812 if (xfered > 0)
1813 {
1814 *xfered_len = (ULONGEST) xfered;
1815 return TARGET_XFER_E_IO;
1816 }
1817 else if (xfered == 0 && errno == 0)
1818 /* "deprecated_xfer_memory" uses 0, cross checked against
1819 ERRNO as one indication of an error. */
1820 return TARGET_XFER_EOF;
1821 else
1822 return TARGET_XFER_E_IO;
1823 }
1824 else
1825 {
1826 gdb_assert (ops->beneath != NULL);
1827 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1828 readbuf, writebuf, offset, len,
1829 xfered_len);
1830 }
1831 }
1832
1833 /* Target vector read/write partial wrapper functions. */
1834
1835 static enum target_xfer_status
1836 target_read_partial (struct target_ops *ops,
1837 enum target_object object,
1838 const char *annex, gdb_byte *buf,
1839 ULONGEST offset, ULONGEST len,
1840 ULONGEST *xfered_len)
1841 {
1842 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1843 xfered_len);
1844 }
1845
1846 static enum target_xfer_status
1847 target_write_partial (struct target_ops *ops,
1848 enum target_object object,
1849 const char *annex, const gdb_byte *buf,
1850 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1851 {
1852 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1853 xfered_len);
1854 }
1855
1856 /* Wrappers to perform the full transfer. */
1857
1858 /* For docs on target_read see target.h. */
1859
1860 LONGEST
1861 target_read (struct target_ops *ops,
1862 enum target_object object,
1863 const char *annex, gdb_byte *buf,
1864 ULONGEST offset, LONGEST len)
1865 {
1866 LONGEST xfered = 0;
1867
1868 while (xfered < len)
1869 {
1870 ULONGEST xfered_len;
1871 enum target_xfer_status status;
1872
1873 status = target_read_partial (ops, object, annex,
1874 (gdb_byte *) buf + xfered,
1875 offset + xfered, len - xfered,
1876 &xfered_len);
1877
1878 /* Call an observer, notifying them of the xfer progress? */
1879 if (status == TARGET_XFER_EOF)
1880 return xfered;
1881 else if (status == TARGET_XFER_OK)
1882 {
1883 xfered += xfered_len;
1884 QUIT;
1885 }
1886 else
1887 return -1;
1888
1889 }
1890 return len;
1891 }
1892
1893 /* Assuming that the entire [begin, end) range of memory cannot be
1894 read, try to read whatever subrange is possible to read.
1895
1896 The function returns, in RESULT, either zero or one memory block.
1897 If there's a readable subrange at the beginning, it is completely
1898 read and returned. Any further readable subrange will not be read.
1899 Otherwise, if there's a readable subrange at the end, it will be
1900 completely read and returned. Any readable subranges before it
1901 (obviously, not starting at the beginning), will be ignored. In
1902 other cases -- either no readable subrange, or readable subrange(s)
1903 that is neither at the beginning, or end, nothing is returned.
1904
1905 The purpose of this function is to handle a read across a boundary
1906 of accessible memory in a case when memory map is not available.
1907 The above restrictions are fine for this case, but will give
1908 incorrect results if the memory is 'patchy'. However, supporting
1909 'patchy' memory would require trying to read every single byte,
1910 and it seems unacceptable solution. Explicit memory map is
1911 recommended for this case -- and target_read_memory_robust will
1912 take care of reading multiple ranges then. */
1913
1914 static void
1915 read_whatever_is_readable (struct target_ops *ops,
1916 ULONGEST begin, ULONGEST end,
1917 VEC(memory_read_result_s) **result)
1918 {
1919 gdb_byte *buf = xmalloc (end - begin);
1920 ULONGEST current_begin = begin;
1921 ULONGEST current_end = end;
1922 int forward;
1923 memory_read_result_s r;
1924 ULONGEST xfered_len;
1925
1926 /* If we previously failed to read 1 byte, nothing can be done here. */
1927 if (end - begin <= 1)
1928 {
1929 xfree (buf);
1930 return;
1931 }
1932
1933 /* Check that either first or the last byte is readable, and give up
1934 if not. This heuristic is meant to permit reading accessible memory
1935 at the boundary of accessible region. */
1936 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1937 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1938 {
1939 forward = 1;
1940 ++current_begin;
1941 }
1942 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1943 buf + (end-begin) - 1, end - 1, 1,
1944 &xfered_len) == TARGET_XFER_OK)
1945 {
1946 forward = 0;
1947 --current_end;
1948 }
1949 else
1950 {
1951 xfree (buf);
1952 return;
1953 }
1954
1955 /* Loop invariant is that the [current_begin, current_end) was previously
1956 found to be not readable as a whole.
1957
1958 Note loop condition -- if the range has 1 byte, we can't divide the range
1959 so there's no point trying further. */
1960 while (current_end - current_begin > 1)
1961 {
1962 ULONGEST first_half_begin, first_half_end;
1963 ULONGEST second_half_begin, second_half_end;
1964 LONGEST xfer;
1965 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1966
1967 if (forward)
1968 {
1969 first_half_begin = current_begin;
1970 first_half_end = middle;
1971 second_half_begin = middle;
1972 second_half_end = current_end;
1973 }
1974 else
1975 {
1976 first_half_begin = middle;
1977 first_half_end = current_end;
1978 second_half_begin = current_begin;
1979 second_half_end = middle;
1980 }
1981
1982 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1983 buf + (first_half_begin - begin),
1984 first_half_begin,
1985 first_half_end - first_half_begin);
1986
1987 if (xfer == first_half_end - first_half_begin)
1988 {
1989 /* This half reads up fine. So, the error must be in the
1990 other half. */
1991 current_begin = second_half_begin;
1992 current_end = second_half_end;
1993 }
1994 else
1995 {
1996 /* This half is not readable. Because we've tried one byte, we
1997 know some part of this half if actually redable. Go to the next
1998 iteration to divide again and try to read.
1999
2000 We don't handle the other half, because this function only tries
2001 to read a single readable subrange. */
2002 current_begin = first_half_begin;
2003 current_end = first_half_end;
2004 }
2005 }
2006
2007 if (forward)
2008 {
2009 /* The [begin, current_begin) range has been read. */
2010 r.begin = begin;
2011 r.end = current_begin;
2012 r.data = buf;
2013 }
2014 else
2015 {
2016 /* The [current_end, end) range has been read. */
2017 LONGEST rlen = end - current_end;
2018
2019 r.data = xmalloc (rlen);
2020 memcpy (r.data, buf + current_end - begin, rlen);
2021 r.begin = current_end;
2022 r.end = end;
2023 xfree (buf);
2024 }
2025 VEC_safe_push(memory_read_result_s, (*result), &r);
2026 }
2027
2028 void
2029 free_memory_read_result_vector (void *x)
2030 {
2031 VEC(memory_read_result_s) *v = x;
2032 memory_read_result_s *current;
2033 int ix;
2034
2035 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
2036 {
2037 xfree (current->data);
2038 }
2039 VEC_free (memory_read_result_s, v);
2040 }
2041
2042 VEC(memory_read_result_s) *
2043 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
2044 {
2045 VEC(memory_read_result_s) *result = 0;
2046
2047 LONGEST xfered = 0;
2048 while (xfered < len)
2049 {
2050 struct mem_region *region = lookup_mem_region (offset + xfered);
2051 LONGEST rlen;
2052
2053 /* If there is no explicit region, a fake one should be created. */
2054 gdb_assert (region);
2055
2056 if (region->hi == 0)
2057 rlen = len - xfered;
2058 else
2059 rlen = region->hi - offset;
2060
2061 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2062 {
2063 /* Cannot read this region. Note that we can end up here only
2064 if the region is explicitly marked inaccessible, or
2065 'inaccessible-by-default' is in effect. */
2066 xfered += rlen;
2067 }
2068 else
2069 {
2070 LONGEST to_read = min (len - xfered, rlen);
2071 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
2072
2073 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2074 (gdb_byte *) buffer,
2075 offset + xfered, to_read);
2076 /* Call an observer, notifying them of the xfer progress? */
2077 if (xfer <= 0)
2078 {
2079 /* Got an error reading full chunk. See if maybe we can read
2080 some subrange. */
2081 xfree (buffer);
2082 read_whatever_is_readable (ops, offset + xfered,
2083 offset + xfered + to_read, &result);
2084 xfered += to_read;
2085 }
2086 else
2087 {
2088 struct memory_read_result r;
2089 r.data = buffer;
2090 r.begin = offset + xfered;
2091 r.end = r.begin + xfer;
2092 VEC_safe_push (memory_read_result_s, result, &r);
2093 xfered += xfer;
2094 }
2095 QUIT;
2096 }
2097 }
2098 return result;
2099 }
2100
2101
2102 /* An alternative to target_write with progress callbacks. */
2103
2104 LONGEST
2105 target_write_with_progress (struct target_ops *ops,
2106 enum target_object object,
2107 const char *annex, const gdb_byte *buf,
2108 ULONGEST offset, LONGEST len,
2109 void (*progress) (ULONGEST, void *), void *baton)
2110 {
2111 LONGEST xfered = 0;
2112
2113 /* Give the progress callback a chance to set up. */
2114 if (progress)
2115 (*progress) (0, baton);
2116
2117 while (xfered < len)
2118 {
2119 ULONGEST xfered_len;
2120 enum target_xfer_status status;
2121
2122 status = target_write_partial (ops, object, annex,
2123 (gdb_byte *) buf + xfered,
2124 offset + xfered, len - xfered,
2125 &xfered_len);
2126
2127 if (status == TARGET_XFER_EOF)
2128 return xfered;
2129 if (TARGET_XFER_STATUS_ERROR_P (status))
2130 return -1;
2131
2132 gdb_assert (status == TARGET_XFER_OK);
2133 if (progress)
2134 (*progress) (xfered_len, baton);
2135
2136 xfered += xfered_len;
2137 QUIT;
2138 }
2139 return len;
2140 }
2141
2142 /* For docs on target_write see target.h. */
2143
2144 LONGEST
2145 target_write (struct target_ops *ops,
2146 enum target_object object,
2147 const char *annex, const gdb_byte *buf,
2148 ULONGEST offset, LONGEST len)
2149 {
2150 return target_write_with_progress (ops, object, annex, buf, offset, len,
2151 NULL, NULL);
2152 }
2153
2154 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2155 the size of the transferred data. PADDING additional bytes are
2156 available in *BUF_P. This is a helper function for
2157 target_read_alloc; see the declaration of that function for more
2158 information. */
2159
2160 static LONGEST
2161 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2162 const char *annex, gdb_byte **buf_p, int padding)
2163 {
2164 size_t buf_alloc, buf_pos;
2165 gdb_byte *buf;
2166
2167 /* This function does not have a length parameter; it reads the
2168 entire OBJECT). Also, it doesn't support objects fetched partly
2169 from one target and partly from another (in a different stratum,
2170 e.g. a core file and an executable). Both reasons make it
2171 unsuitable for reading memory. */
2172 gdb_assert (object != TARGET_OBJECT_MEMORY);
2173
2174 /* Start by reading up to 4K at a time. The target will throttle
2175 this number down if necessary. */
2176 buf_alloc = 4096;
2177 buf = xmalloc (buf_alloc);
2178 buf_pos = 0;
2179 while (1)
2180 {
2181 ULONGEST xfered_len;
2182 enum target_xfer_status status;
2183
2184 status = target_read_partial (ops, object, annex, &buf[buf_pos],
2185 buf_pos, buf_alloc - buf_pos - padding,
2186 &xfered_len);
2187
2188 if (status == TARGET_XFER_EOF)
2189 {
2190 /* Read all there was. */
2191 if (buf_pos == 0)
2192 xfree (buf);
2193 else
2194 *buf_p = buf;
2195 return buf_pos;
2196 }
2197 else if (status != TARGET_XFER_OK)
2198 {
2199 /* An error occurred. */
2200 xfree (buf);
2201 return TARGET_XFER_E_IO;
2202 }
2203
2204 buf_pos += xfered_len;
2205
2206 /* If the buffer is filling up, expand it. */
2207 if (buf_alloc < buf_pos * 2)
2208 {
2209 buf_alloc *= 2;
2210 buf = xrealloc (buf, buf_alloc);
2211 }
2212
2213 QUIT;
2214 }
2215 }
2216
2217 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
2218 the size of the transferred data. See the declaration in "target.h"
2219 function for more information about the return value. */
2220
2221 LONGEST
2222 target_read_alloc (struct target_ops *ops, enum target_object object,
2223 const char *annex, gdb_byte **buf_p)
2224 {
2225 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
2226 }
2227
2228 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
2229 returned as a string, allocated using xmalloc. If an error occurs
2230 or the transfer is unsupported, NULL is returned. Empty objects
2231 are returned as allocated but empty strings. A warning is issued
2232 if the result contains any embedded NUL bytes. */
2233
2234 char *
2235 target_read_stralloc (struct target_ops *ops, enum target_object object,
2236 const char *annex)
2237 {
2238 gdb_byte *buffer;
2239 char *bufstr;
2240 LONGEST i, transferred;
2241
2242 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
2243 bufstr = (char *) buffer;
2244
2245 if (transferred < 0)
2246 return NULL;
2247
2248 if (transferred == 0)
2249 return xstrdup ("");
2250
2251 bufstr[transferred] = 0;
2252
2253 /* Check for embedded NUL bytes; but allow trailing NULs. */
2254 for (i = strlen (bufstr); i < transferred; i++)
2255 if (bufstr[i] != 0)
2256 {
2257 warning (_("target object %d, annex %s, "
2258 "contained unexpected null characters"),
2259 (int) object, annex ? annex : "(none)");
2260 break;
2261 }
2262
2263 return bufstr;
2264 }
2265
2266 /* Memory transfer methods. */
2267
2268 void
2269 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2270 LONGEST len)
2271 {
2272 /* This method is used to read from an alternate, non-current
2273 target. This read must bypass the overlay support (as symbols
2274 don't match this target), and GDB's internal cache (wrong cache
2275 for this target). */
2276 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2277 != len)
2278 memory_error (TARGET_XFER_E_IO, addr);
2279 }
2280
2281 ULONGEST
2282 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2283 int len, enum bfd_endian byte_order)
2284 {
2285 gdb_byte buf[sizeof (ULONGEST)];
2286
2287 gdb_assert (len <= sizeof (buf));
2288 get_target_memory (ops, addr, buf, len);
2289 return extract_unsigned_integer (buf, len, byte_order);
2290 }
2291
2292 /* See target.h. */
2293
2294 int
2295 target_insert_breakpoint (struct gdbarch *gdbarch,
2296 struct bp_target_info *bp_tgt)
2297 {
2298 if (!may_insert_breakpoints)
2299 {
2300 warning (_("May not insert breakpoints"));
2301 return 1;
2302 }
2303
2304 return current_target.to_insert_breakpoint (&current_target,
2305 gdbarch, bp_tgt);
2306 }
2307
2308 /* See target.h. */
2309
2310 int
2311 target_remove_breakpoint (struct gdbarch *gdbarch,
2312 struct bp_target_info *bp_tgt)
2313 {
2314 /* This is kind of a weird case to handle, but the permission might
2315 have been changed after breakpoints were inserted - in which case
2316 we should just take the user literally and assume that any
2317 breakpoints should be left in place. */
2318 if (!may_insert_breakpoints)
2319 {
2320 warning (_("May not remove breakpoints"));
2321 return 1;
2322 }
2323
2324 return current_target.to_remove_breakpoint (&current_target,
2325 gdbarch, bp_tgt);
2326 }
2327
2328 static void
2329 target_info (char *args, int from_tty)
2330 {
2331 struct target_ops *t;
2332 int has_all_mem = 0;
2333
2334 if (symfile_objfile != NULL)
2335 printf_unfiltered (_("Symbols from \"%s\".\n"),
2336 objfile_name (symfile_objfile));
2337
2338 for (t = target_stack; t != NULL; t = t->beneath)
2339 {
2340 if (!(*t->to_has_memory) (t))
2341 continue;
2342
2343 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2344 continue;
2345 if (has_all_mem)
2346 printf_unfiltered (_("\tWhile running this, "
2347 "GDB does not access memory from...\n"));
2348 printf_unfiltered ("%s:\n", t->to_longname);
2349 (t->to_files_info) (t);
2350 has_all_mem = (*t->to_has_all_memory) (t);
2351 }
2352 }
2353
2354 /* This function is called before any new inferior is created, e.g.
2355 by running a program, attaching, or connecting to a target.
2356 It cleans up any state from previous invocations which might
2357 change between runs. This is a subset of what target_preopen
2358 resets (things which might change between targets). */
2359
2360 void
2361 target_pre_inferior (int from_tty)
2362 {
2363 /* Clear out solib state. Otherwise the solib state of the previous
2364 inferior might have survived and is entirely wrong for the new
2365 target. This has been observed on GNU/Linux using glibc 2.3. How
2366 to reproduce:
2367
2368 bash$ ./foo&
2369 [1] 4711
2370 bash$ ./foo&
2371 [1] 4712
2372 bash$ gdb ./foo
2373 [...]
2374 (gdb) attach 4711
2375 (gdb) detach
2376 (gdb) attach 4712
2377 Cannot access memory at address 0xdeadbeef
2378 */
2379
2380 /* In some OSs, the shared library list is the same/global/shared
2381 across inferiors. If code is shared between processes, so are
2382 memory regions and features. */
2383 if (!gdbarch_has_global_solist (target_gdbarch ()))
2384 {
2385 no_shared_libraries (NULL, from_tty);
2386
2387 invalidate_target_mem_regions ();
2388
2389 target_clear_description ();
2390 }
2391
2392 agent_capability_invalidate ();
2393 }
2394
2395 /* Callback for iterate_over_inferiors. Gets rid of the given
2396 inferior. */
2397
2398 static int
2399 dispose_inferior (struct inferior *inf, void *args)
2400 {
2401 struct thread_info *thread;
2402
2403 thread = any_thread_of_process (inf->pid);
2404 if (thread)
2405 {
2406 switch_to_thread (thread->ptid);
2407
2408 /* Core inferiors actually should be detached, not killed. */
2409 if (target_has_execution)
2410 target_kill ();
2411 else
2412 target_detach (NULL, 0);
2413 }
2414
2415 return 0;
2416 }
2417
2418 /* This is to be called by the open routine before it does
2419 anything. */
2420
2421 void
2422 target_preopen (int from_tty)
2423 {
2424 dont_repeat ();
2425
2426 if (have_inferiors ())
2427 {
2428 if (!from_tty
2429 || !have_live_inferiors ()
2430 || query (_("A program is being debugged already. Kill it? ")))
2431 iterate_over_inferiors (dispose_inferior, NULL);
2432 else
2433 error (_("Program not killed."));
2434 }
2435
2436 /* Calling target_kill may remove the target from the stack. But if
2437 it doesn't (which seems like a win for UDI), remove it now. */
2438 /* Leave the exec target, though. The user may be switching from a
2439 live process to a core of the same program. */
2440 pop_all_targets_above (file_stratum);
2441
2442 target_pre_inferior (from_tty);
2443 }
2444
2445 /* Detach a target after doing deferred register stores. */
2446
2447 void
2448 target_detach (const char *args, int from_tty)
2449 {
2450 struct target_ops* t;
2451
2452 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2453 /* Don't remove global breakpoints here. They're removed on
2454 disconnection from the target. */
2455 ;
2456 else
2457 /* If we're in breakpoints-always-inserted mode, have to remove
2458 them before detaching. */
2459 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2460
2461 prepare_for_detach ();
2462
2463 current_target.to_detach (&current_target, args, from_tty);
2464 if (targetdebug)
2465 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2466 args, from_tty);
2467 }
2468
2469 void
2470 target_disconnect (char *args, int from_tty)
2471 {
2472 struct target_ops *t;
2473
2474 /* If we're in breakpoints-always-inserted mode or if breakpoints
2475 are global across processes, we have to remove them before
2476 disconnecting. */
2477 remove_breakpoints ();
2478
2479 for (t = current_target.beneath; t != NULL; t = t->beneath)
2480 if (t->to_disconnect != NULL)
2481 {
2482 if (targetdebug)
2483 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2484 args, from_tty);
2485 t->to_disconnect (t, args, from_tty);
2486 return;
2487 }
2488
2489 tcomplain ();
2490 }
2491
2492 ptid_t
2493 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2494 {
2495 struct target_ops *t;
2496 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2497 status, options);
2498
2499 if (targetdebug)
2500 {
2501 char *status_string;
2502 char *options_string;
2503
2504 status_string = target_waitstatus_to_string (status);
2505 options_string = target_options_to_string (options);
2506 fprintf_unfiltered (gdb_stdlog,
2507 "target_wait (%d, status, options={%s})"
2508 " = %d, %s\n",
2509 ptid_get_pid (ptid), options_string,
2510 ptid_get_pid (retval), status_string);
2511 xfree (status_string);
2512 xfree (options_string);
2513 }
2514
2515 return retval;
2516 }
2517
2518 char *
2519 target_pid_to_str (ptid_t ptid)
2520 {
2521 return (*current_target.to_pid_to_str) (&current_target, ptid);
2522 }
2523
2524 char *
2525 target_thread_name (struct thread_info *info)
2526 {
2527 return current_target.to_thread_name (&current_target, info);
2528 }
2529
2530 void
2531 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2532 {
2533 struct target_ops *t;
2534
2535 target_dcache_invalidate ();
2536
2537 current_target.to_resume (&current_target, ptid, step, signal);
2538 if (targetdebug)
2539 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2540 ptid_get_pid (ptid),
2541 step ? "step" : "continue",
2542 gdb_signal_to_name (signal));
2543
2544 registers_changed_ptid (ptid);
2545 set_executing (ptid, 1);
2546 set_running (ptid, 1);
2547 clear_inline_frame_state (ptid);
2548 }
2549
2550 void
2551 target_pass_signals (int numsigs, unsigned char *pass_signals)
2552 {
2553 if (targetdebug)
2554 {
2555 int i;
2556
2557 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2558 numsigs);
2559
2560 for (i = 0; i < numsigs; i++)
2561 if (pass_signals[i])
2562 fprintf_unfiltered (gdb_stdlog, " %s",
2563 gdb_signal_to_name (i));
2564
2565 fprintf_unfiltered (gdb_stdlog, " })\n");
2566 }
2567
2568 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2569 }
2570
2571 void
2572 target_program_signals (int numsigs, unsigned char *program_signals)
2573 {
2574 if (targetdebug)
2575 {
2576 int i;
2577
2578 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2579 numsigs);
2580
2581 for (i = 0; i < numsigs; i++)
2582 if (program_signals[i])
2583 fprintf_unfiltered (gdb_stdlog, " %s",
2584 gdb_signal_to_name (i));
2585
2586 fprintf_unfiltered (gdb_stdlog, " })\n");
2587 }
2588
2589 (*current_target.to_program_signals) (&current_target,
2590 numsigs, program_signals);
2591 }
2592
2593 static int
2594 default_follow_fork (struct target_ops *self, int follow_child,
2595 int detach_fork)
2596 {
2597 /* Some target returned a fork event, but did not know how to follow it. */
2598 internal_error (__FILE__, __LINE__,
2599 _("could not find a target to follow fork"));
2600 }
2601
2602 /* Look through the list of possible targets for a target that can
2603 follow forks. */
2604
2605 int
2606 target_follow_fork (int follow_child, int detach_fork)
2607 {
2608 int retval = current_target.to_follow_fork (&current_target,
2609 follow_child, detach_fork);
2610
2611 if (targetdebug)
2612 fprintf_unfiltered (gdb_stdlog,
2613 "target_follow_fork (%d, %d) = %d\n",
2614 follow_child, detach_fork, retval);
2615 return retval;
2616 }
2617
2618 static void
2619 default_mourn_inferior (struct target_ops *self)
2620 {
2621 internal_error (__FILE__, __LINE__,
2622 _("could not find a target to follow mourn inferior"));
2623 }
2624
2625 void
2626 target_mourn_inferior (void)
2627 {
2628 current_target.to_mourn_inferior (&current_target);
2629 if (targetdebug)
2630 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2631
2632 /* We no longer need to keep handles on any of the object files.
2633 Make sure to release them to avoid unnecessarily locking any
2634 of them while we're not actually debugging. */
2635 bfd_cache_close_all ();
2636 }
2637
2638 /* Look for a target which can describe architectural features, starting
2639 from TARGET. If we find one, return its description. */
2640
2641 const struct target_desc *
2642 target_read_description (struct target_ops *target)
2643 {
2644 struct target_ops *t;
2645
2646 for (t = target; t != NULL; t = t->beneath)
2647 if (t->to_read_description != NULL)
2648 {
2649 const struct target_desc *tdesc;
2650
2651 tdesc = t->to_read_description (t);
2652 if (tdesc)
2653 return tdesc;
2654 }
2655
2656 return NULL;
2657 }
2658
2659 /* The default implementation of to_search_memory.
2660 This implements a basic search of memory, reading target memory and
2661 performing the search here (as opposed to performing the search in on the
2662 target side with, for example, gdbserver). */
2663
2664 int
2665 simple_search_memory (struct target_ops *ops,
2666 CORE_ADDR start_addr, ULONGEST search_space_len,
2667 const gdb_byte *pattern, ULONGEST pattern_len,
2668 CORE_ADDR *found_addrp)
2669 {
2670 /* NOTE: also defined in find.c testcase. */
2671 #define SEARCH_CHUNK_SIZE 16000
2672 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2673 /* Buffer to hold memory contents for searching. */
2674 gdb_byte *search_buf;
2675 unsigned search_buf_size;
2676 struct cleanup *old_cleanups;
2677
2678 search_buf_size = chunk_size + pattern_len - 1;
2679
2680 /* No point in trying to allocate a buffer larger than the search space. */
2681 if (search_space_len < search_buf_size)
2682 search_buf_size = search_space_len;
2683
2684 search_buf = malloc (search_buf_size);
2685 if (search_buf == NULL)
2686 error (_("Unable to allocate memory to perform the search."));
2687 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2688
2689 /* Prime the search buffer. */
2690
2691 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2692 search_buf, start_addr, search_buf_size) != search_buf_size)
2693 {
2694 warning (_("Unable to access %s bytes of target "
2695 "memory at %s, halting search."),
2696 pulongest (search_buf_size), hex_string (start_addr));
2697 do_cleanups (old_cleanups);
2698 return -1;
2699 }
2700
2701 /* Perform the search.
2702
2703 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2704 When we've scanned N bytes we copy the trailing bytes to the start and
2705 read in another N bytes. */
2706
2707 while (search_space_len >= pattern_len)
2708 {
2709 gdb_byte *found_ptr;
2710 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2711
2712 found_ptr = memmem (search_buf, nr_search_bytes,
2713 pattern, pattern_len);
2714
2715 if (found_ptr != NULL)
2716 {
2717 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2718
2719 *found_addrp = found_addr;
2720 do_cleanups (old_cleanups);
2721 return 1;
2722 }
2723
2724 /* Not found in this chunk, skip to next chunk. */
2725
2726 /* Don't let search_space_len wrap here, it's unsigned. */
2727 if (search_space_len >= chunk_size)
2728 search_space_len -= chunk_size;
2729 else
2730 search_space_len = 0;
2731
2732 if (search_space_len >= pattern_len)
2733 {
2734 unsigned keep_len = search_buf_size - chunk_size;
2735 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2736 int nr_to_read;
2737
2738 /* Copy the trailing part of the previous iteration to the front
2739 of the buffer for the next iteration. */
2740 gdb_assert (keep_len == pattern_len - 1);
2741 memcpy (search_buf, search_buf + chunk_size, keep_len);
2742
2743 nr_to_read = min (search_space_len - keep_len, chunk_size);
2744
2745 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2746 search_buf + keep_len, read_addr,
2747 nr_to_read) != nr_to_read)
2748 {
2749 warning (_("Unable to access %s bytes of target "
2750 "memory at %s, halting search."),
2751 plongest (nr_to_read),
2752 hex_string (read_addr));
2753 do_cleanups (old_cleanups);
2754 return -1;
2755 }
2756
2757 start_addr += chunk_size;
2758 }
2759 }
2760
2761 /* Not found. */
2762
2763 do_cleanups (old_cleanups);
2764 return 0;
2765 }
2766
2767 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2768 sequence of bytes in PATTERN with length PATTERN_LEN.
2769
2770 The result is 1 if found, 0 if not found, and -1 if there was an error
2771 requiring halting of the search (e.g. memory read error).
2772 If the pattern is found the address is recorded in FOUND_ADDRP. */
2773
2774 int
2775 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2776 const gdb_byte *pattern, ULONGEST pattern_len,
2777 CORE_ADDR *found_addrp)
2778 {
2779 struct target_ops *t;
2780 int found;
2781
2782 /* We don't use INHERIT to set current_target.to_search_memory,
2783 so we have to scan the target stack and handle targetdebug
2784 ourselves. */
2785
2786 if (targetdebug)
2787 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2788 hex_string (start_addr));
2789
2790 for (t = current_target.beneath; t != NULL; t = t->beneath)
2791 if (t->to_search_memory != NULL)
2792 break;
2793
2794 if (t != NULL)
2795 {
2796 found = t->to_search_memory (t, start_addr, search_space_len,
2797 pattern, pattern_len, found_addrp);
2798 }
2799 else
2800 {
2801 /* If a special version of to_search_memory isn't available, use the
2802 simple version. */
2803 found = simple_search_memory (current_target.beneath,
2804 start_addr, search_space_len,
2805 pattern, pattern_len, found_addrp);
2806 }
2807
2808 if (targetdebug)
2809 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2810
2811 return found;
2812 }
2813
2814 /* Look through the currently pushed targets. If none of them will
2815 be able to restart the currently running process, issue an error
2816 message. */
2817
2818 void
2819 target_require_runnable (void)
2820 {
2821 struct target_ops *t;
2822
2823 for (t = target_stack; t != NULL; t = t->beneath)
2824 {
2825 /* If this target knows how to create a new program, then
2826 assume we will still be able to after killing the current
2827 one. Either killing and mourning will not pop T, or else
2828 find_default_run_target will find it again. */
2829 if (t->to_create_inferior != NULL)
2830 return;
2831
2832 /* Do not worry about thread_stratum targets that can not
2833 create inferiors. Assume they will be pushed again if
2834 necessary, and continue to the process_stratum. */
2835 if (t->to_stratum == thread_stratum
2836 || t->to_stratum == arch_stratum)
2837 continue;
2838
2839 error (_("The \"%s\" target does not support \"run\". "
2840 "Try \"help target\" or \"continue\"."),
2841 t->to_shortname);
2842 }
2843
2844 /* This function is only called if the target is running. In that
2845 case there should have been a process_stratum target and it
2846 should either know how to create inferiors, or not... */
2847 internal_error (__FILE__, __LINE__, _("No targets found"));
2848 }
2849
2850 /* Look through the list of possible targets for a target that can
2851 execute a run or attach command without any other data. This is
2852 used to locate the default process stratum.
2853
2854 If DO_MESG is not NULL, the result is always valid (error() is
2855 called for errors); else, return NULL on error. */
2856
2857 static struct target_ops *
2858 find_default_run_target (char *do_mesg)
2859 {
2860 struct target_ops **t;
2861 struct target_ops *runable = NULL;
2862 int count;
2863
2864 count = 0;
2865
2866 for (t = target_structs; t < target_structs + target_struct_size;
2867 ++t)
2868 {
2869 if ((*t)->to_can_run && target_can_run (*t))
2870 {
2871 runable = *t;
2872 ++count;
2873 }
2874 }
2875
2876 if (count != 1)
2877 {
2878 if (do_mesg)
2879 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2880 else
2881 return NULL;
2882 }
2883
2884 return runable;
2885 }
2886
2887 void
2888 find_default_attach (struct target_ops *ops, char *args, int from_tty)
2889 {
2890 struct target_ops *t;
2891
2892 t = find_default_run_target ("attach");
2893 (t->to_attach) (t, args, from_tty);
2894 return;
2895 }
2896
2897 void
2898 find_default_create_inferior (struct target_ops *ops,
2899 char *exec_file, char *allargs, char **env,
2900 int from_tty)
2901 {
2902 struct target_ops *t;
2903
2904 t = find_default_run_target ("run");
2905 (t->to_create_inferior) (t, exec_file, allargs, env, from_tty);
2906 return;
2907 }
2908
2909 static int
2910 find_default_can_async_p (struct target_ops *ignore)
2911 {
2912 struct target_ops *t;
2913
2914 /* This may be called before the target is pushed on the stack;
2915 look for the default process stratum. If there's none, gdb isn't
2916 configured with a native debugger, and target remote isn't
2917 connected yet. */
2918 t = find_default_run_target (NULL);
2919 if (t && t->to_can_async_p != delegate_can_async_p)
2920 return (t->to_can_async_p) (t);
2921 return 0;
2922 }
2923
2924 static int
2925 find_default_is_async_p (struct target_ops *ignore)
2926 {
2927 struct target_ops *t;
2928
2929 /* This may be called before the target is pushed on the stack;
2930 look for the default process stratum. If there's none, gdb isn't
2931 configured with a native debugger, and target remote isn't
2932 connected yet. */
2933 t = find_default_run_target (NULL);
2934 if (t && t->to_is_async_p != delegate_is_async_p)
2935 return (t->to_is_async_p) (t);
2936 return 0;
2937 }
2938
2939 static int
2940 find_default_supports_non_stop (struct target_ops *self)
2941 {
2942 struct target_ops *t;
2943
2944 t = find_default_run_target (NULL);
2945 if (t && t->to_supports_non_stop)
2946 return (t->to_supports_non_stop) (t);
2947 return 0;
2948 }
2949
2950 int
2951 target_supports_non_stop (void)
2952 {
2953 struct target_ops *t;
2954
2955 for (t = &current_target; t != NULL; t = t->beneath)
2956 if (t->to_supports_non_stop)
2957 return t->to_supports_non_stop (t);
2958
2959 return 0;
2960 }
2961
2962 /* Implement the "info proc" command. */
2963
2964 int
2965 target_info_proc (char *args, enum info_proc_what what)
2966 {
2967 struct target_ops *t;
2968
2969 /* If we're already connected to something that can get us OS
2970 related data, use it. Otherwise, try using the native
2971 target. */
2972 if (current_target.to_stratum >= process_stratum)
2973 t = current_target.beneath;
2974 else
2975 t = find_default_run_target (NULL);
2976
2977 for (; t != NULL; t = t->beneath)
2978 {
2979 if (t->to_info_proc != NULL)
2980 {
2981 t->to_info_proc (t, args, what);
2982
2983 if (targetdebug)
2984 fprintf_unfiltered (gdb_stdlog,
2985 "target_info_proc (\"%s\", %d)\n", args, what);
2986
2987 return 1;
2988 }
2989 }
2990
2991 return 0;
2992 }
2993
2994 static int
2995 find_default_supports_disable_randomization (struct target_ops *self)
2996 {
2997 struct target_ops *t;
2998
2999 t = find_default_run_target (NULL);
3000 if (t && t->to_supports_disable_randomization)
3001 return (t->to_supports_disable_randomization) (t);
3002 return 0;
3003 }
3004
3005 int
3006 target_supports_disable_randomization (void)
3007 {
3008 struct target_ops *t;
3009
3010 for (t = &current_target; t != NULL; t = t->beneath)
3011 if (t->to_supports_disable_randomization)
3012 return t->to_supports_disable_randomization (t);
3013
3014 return 0;
3015 }
3016
3017 char *
3018 target_get_osdata (const char *type)
3019 {
3020 struct target_ops *t;
3021
3022 /* If we're already connected to something that can get us OS
3023 related data, use it. Otherwise, try using the native
3024 target. */
3025 if (current_target.to_stratum >= process_stratum)
3026 t = current_target.beneath;
3027 else
3028 t = find_default_run_target ("get OS data");
3029
3030 if (!t)
3031 return NULL;
3032
3033 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3034 }
3035
3036 /* Determine the current address space of thread PTID. */
3037
3038 struct address_space *
3039 target_thread_address_space (ptid_t ptid)
3040 {
3041 struct address_space *aspace;
3042 struct inferior *inf;
3043 struct target_ops *t;
3044
3045 for (t = current_target.beneath; t != NULL; t = t->beneath)
3046 {
3047 if (t->to_thread_address_space != NULL)
3048 {
3049 aspace = t->to_thread_address_space (t, ptid);
3050 gdb_assert (aspace);
3051
3052 if (targetdebug)
3053 fprintf_unfiltered (gdb_stdlog,
3054 "target_thread_address_space (%s) = %d\n",
3055 target_pid_to_str (ptid),
3056 address_space_num (aspace));
3057 return aspace;
3058 }
3059 }
3060
3061 /* Fall-back to the "main" address space of the inferior. */
3062 inf = find_inferior_pid (ptid_get_pid (ptid));
3063
3064 if (inf == NULL || inf->aspace == NULL)
3065 internal_error (__FILE__, __LINE__,
3066 _("Can't determine the current "
3067 "address space of thread %s\n"),
3068 target_pid_to_str (ptid));
3069
3070 return inf->aspace;
3071 }
3072
3073
3074 /* Target file operations. */
3075
3076 static struct target_ops *
3077 default_fileio_target (void)
3078 {
3079 /* If we're already connected to something that can perform
3080 file I/O, use it. Otherwise, try using the native target. */
3081 if (current_target.to_stratum >= process_stratum)
3082 return current_target.beneath;
3083 else
3084 return find_default_run_target ("file I/O");
3085 }
3086
3087 /* Open FILENAME on the target, using FLAGS and MODE. Return a
3088 target file descriptor, or -1 if an error occurs (and set
3089 *TARGET_ERRNO). */
3090 int
3091 target_fileio_open (const char *filename, int flags, int mode,
3092 int *target_errno)
3093 {
3094 struct target_ops *t;
3095
3096 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3097 {
3098 if (t->to_fileio_open != NULL)
3099 {
3100 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
3101
3102 if (targetdebug)
3103 fprintf_unfiltered (gdb_stdlog,
3104 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
3105 filename, flags, mode,
3106 fd, fd != -1 ? 0 : *target_errno);
3107 return fd;
3108 }
3109 }
3110
3111 *target_errno = FILEIO_ENOSYS;
3112 return -1;
3113 }
3114
3115 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
3116 Return the number of bytes written, or -1 if an error occurs
3117 (and set *TARGET_ERRNO). */
3118 int
3119 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3120 ULONGEST offset, int *target_errno)
3121 {
3122 struct target_ops *t;
3123
3124 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3125 {
3126 if (t->to_fileio_pwrite != NULL)
3127 {
3128 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
3129 target_errno);
3130
3131 if (targetdebug)
3132 fprintf_unfiltered (gdb_stdlog,
3133 "target_fileio_pwrite (%d,...,%d,%s) "
3134 "= %d (%d)\n",
3135 fd, len, pulongest (offset),
3136 ret, ret != -1 ? 0 : *target_errno);
3137 return ret;
3138 }
3139 }
3140
3141 *target_errno = FILEIO_ENOSYS;
3142 return -1;
3143 }
3144
3145 /* Read up to LEN bytes FD on the target into READ_BUF.
3146 Return the number of bytes read, or -1 if an error occurs
3147 (and set *TARGET_ERRNO). */
3148 int
3149 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3150 ULONGEST offset, int *target_errno)
3151 {
3152 struct target_ops *t;
3153
3154 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3155 {
3156 if (t->to_fileio_pread != NULL)
3157 {
3158 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
3159 target_errno);
3160
3161 if (targetdebug)
3162 fprintf_unfiltered (gdb_stdlog,
3163 "target_fileio_pread (%d,...,%d,%s) "
3164 "= %d (%d)\n",
3165 fd, len, pulongest (offset),
3166 ret, ret != -1 ? 0 : *target_errno);
3167 return ret;
3168 }
3169 }
3170
3171 *target_errno = FILEIO_ENOSYS;
3172 return -1;
3173 }
3174
3175 /* Close FD on the target. Return 0, or -1 if an error occurs
3176 (and set *TARGET_ERRNO). */
3177 int
3178 target_fileio_close (int fd, int *target_errno)
3179 {
3180 struct target_ops *t;
3181
3182 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3183 {
3184 if (t->to_fileio_close != NULL)
3185 {
3186 int ret = t->to_fileio_close (t, fd, target_errno);
3187
3188 if (targetdebug)
3189 fprintf_unfiltered (gdb_stdlog,
3190 "target_fileio_close (%d) = %d (%d)\n",
3191 fd, ret, ret != -1 ? 0 : *target_errno);
3192 return ret;
3193 }
3194 }
3195
3196 *target_errno = FILEIO_ENOSYS;
3197 return -1;
3198 }
3199
3200 /* Unlink FILENAME on the target. Return 0, or -1 if an error
3201 occurs (and set *TARGET_ERRNO). */
3202 int
3203 target_fileio_unlink (const char *filename, int *target_errno)
3204 {
3205 struct target_ops *t;
3206
3207 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3208 {
3209 if (t->to_fileio_unlink != NULL)
3210 {
3211 int ret = t->to_fileio_unlink (t, filename, target_errno);
3212
3213 if (targetdebug)
3214 fprintf_unfiltered (gdb_stdlog,
3215 "target_fileio_unlink (%s) = %d (%d)\n",
3216 filename, ret, ret != -1 ? 0 : *target_errno);
3217 return ret;
3218 }
3219 }
3220
3221 *target_errno = FILEIO_ENOSYS;
3222 return -1;
3223 }
3224
3225 /* Read value of symbolic link FILENAME on the target. Return a
3226 null-terminated string allocated via xmalloc, or NULL if an error
3227 occurs (and set *TARGET_ERRNO). */
3228 char *
3229 target_fileio_readlink (const char *filename, int *target_errno)
3230 {
3231 struct target_ops *t;
3232
3233 for (t = default_fileio_target (); t != NULL; t = t->beneath)
3234 {
3235 if (t->to_fileio_readlink != NULL)
3236 {
3237 char *ret = t->to_fileio_readlink (t, filename, target_errno);
3238
3239 if (targetdebug)
3240 fprintf_unfiltered (gdb_stdlog,
3241 "target_fileio_readlink (%s) = %s (%d)\n",
3242 filename, ret? ret : "(nil)",
3243 ret? 0 : *target_errno);
3244 return ret;
3245 }
3246 }
3247
3248 *target_errno = FILEIO_ENOSYS;
3249 return NULL;
3250 }
3251
3252 static void
3253 target_fileio_close_cleanup (void *opaque)
3254 {
3255 int fd = *(int *) opaque;
3256 int target_errno;
3257
3258 target_fileio_close (fd, &target_errno);
3259 }
3260
3261 /* Read target file FILENAME. Store the result in *BUF_P and
3262 return the size of the transferred data. PADDING additional bytes are
3263 available in *BUF_P. This is a helper function for
3264 target_fileio_read_alloc; see the declaration of that function for more
3265 information. */
3266
3267 static LONGEST
3268 target_fileio_read_alloc_1 (const char *filename,
3269 gdb_byte **buf_p, int padding)
3270 {
3271 struct cleanup *close_cleanup;
3272 size_t buf_alloc, buf_pos;
3273 gdb_byte *buf;
3274 LONGEST n;
3275 int fd;
3276 int target_errno;
3277
3278 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
3279 if (fd == -1)
3280 return -1;
3281
3282 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3283
3284 /* Start by reading up to 4K at a time. The target will throttle
3285 this number down if necessary. */
3286 buf_alloc = 4096;
3287 buf = xmalloc (buf_alloc);
3288 buf_pos = 0;
3289 while (1)
3290 {
3291 n = target_fileio_pread (fd, &buf[buf_pos],
3292 buf_alloc - buf_pos - padding, buf_pos,
3293 &target_errno);
3294 if (n < 0)
3295 {
3296 /* An error occurred. */
3297 do_cleanups (close_cleanup);
3298 xfree (buf);
3299 return -1;
3300 }
3301 else if (n == 0)
3302 {
3303 /* Read all there was. */
3304 do_cleanups (close_cleanup);
3305 if (buf_pos == 0)
3306 xfree (buf);
3307 else
3308 *buf_p = buf;
3309 return buf_pos;
3310 }
3311
3312 buf_pos += n;
3313
3314 /* If the buffer is filling up, expand it. */
3315 if (buf_alloc < buf_pos * 2)
3316 {
3317 buf_alloc *= 2;
3318 buf = xrealloc (buf, buf_alloc);
3319 }
3320
3321 QUIT;
3322 }
3323 }
3324
3325 /* Read target file FILENAME. Store the result in *BUF_P and return
3326 the size of the transferred data. See the declaration in "target.h"
3327 function for more information about the return value. */
3328
3329 LONGEST
3330 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3331 {
3332 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3333 }
3334
3335 /* Read target file FILENAME. The result is NUL-terminated and
3336 returned as a string, allocated using xmalloc. If an error occurs
3337 or the transfer is unsupported, NULL is returned. Empty objects
3338 are returned as allocated but empty strings. A warning is issued
3339 if the result contains any embedded NUL bytes. */
3340
3341 char *
3342 target_fileio_read_stralloc (const char *filename)
3343 {
3344 gdb_byte *buffer;
3345 char *bufstr;
3346 LONGEST i, transferred;
3347
3348 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3349 bufstr = (char *) buffer;
3350
3351 if (transferred < 0)
3352 return NULL;
3353
3354 if (transferred == 0)
3355 return xstrdup ("");
3356
3357 bufstr[transferred] = 0;
3358
3359 /* Check for embedded NUL bytes; but allow trailing NULs. */
3360 for (i = strlen (bufstr); i < transferred; i++)
3361 if (bufstr[i] != 0)
3362 {
3363 warning (_("target file %s "
3364 "contained unexpected null characters"),
3365 filename);
3366 break;
3367 }
3368
3369 return bufstr;
3370 }
3371
3372
3373 static int
3374 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3375 CORE_ADDR addr, int len)
3376 {
3377 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3378 }
3379
3380 static int
3381 default_watchpoint_addr_within_range (struct target_ops *target,
3382 CORE_ADDR addr,
3383 CORE_ADDR start, int length)
3384 {
3385 return addr >= start && addr < start + length;
3386 }
3387
3388 static struct gdbarch *
3389 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3390 {
3391 return target_gdbarch ();
3392 }
3393
3394 static int
3395 return_zero (void)
3396 {
3397 return 0;
3398 }
3399
3400 /*
3401 * Find the next target down the stack from the specified target.
3402 */
3403
3404 struct target_ops *
3405 find_target_beneath (struct target_ops *t)
3406 {
3407 return t->beneath;
3408 }
3409
3410 /* See target.h. */
3411
3412 struct target_ops *
3413 find_target_at (enum strata stratum)
3414 {
3415 struct target_ops *t;
3416
3417 for (t = current_target.beneath; t != NULL; t = t->beneath)
3418 if (t->to_stratum == stratum)
3419 return t;
3420
3421 return NULL;
3422 }
3423
3424 \f
3425 /* The inferior process has died. Long live the inferior! */
3426
3427 void
3428 generic_mourn_inferior (void)
3429 {
3430 ptid_t ptid;
3431
3432 ptid = inferior_ptid;
3433 inferior_ptid = null_ptid;
3434
3435 /* Mark breakpoints uninserted in case something tries to delete a
3436 breakpoint while we delete the inferior's threads (which would
3437 fail, since the inferior is long gone). */
3438 mark_breakpoints_out ();
3439
3440 if (!ptid_equal (ptid, null_ptid))
3441 {
3442 int pid = ptid_get_pid (ptid);
3443 exit_inferior (pid);
3444 }
3445
3446 /* Note this wipes step-resume breakpoints, so needs to be done
3447 after exit_inferior, which ends up referencing the step-resume
3448 breakpoints through clear_thread_inferior_resources. */
3449 breakpoint_init_inferior (inf_exited);
3450
3451 registers_changed ();
3452
3453 reopen_exec_file ();
3454 reinit_frame_cache ();
3455
3456 if (deprecated_detach_hook)
3457 deprecated_detach_hook ();
3458 }
3459 \f
3460 /* Convert a normal process ID to a string. Returns the string in a
3461 static buffer. */
3462
3463 char *
3464 normal_pid_to_str (ptid_t ptid)
3465 {
3466 static char buf[32];
3467
3468 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3469 return buf;
3470 }
3471
3472 static char *
3473 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3474 {
3475 return normal_pid_to_str (ptid);
3476 }
3477
3478 /* Error-catcher for target_find_memory_regions. */
3479 static int
3480 dummy_find_memory_regions (struct target_ops *self,
3481 find_memory_region_ftype ignore1, void *ignore2)
3482 {
3483 error (_("Command not implemented for this target."));
3484 return 0;
3485 }
3486
3487 /* Error-catcher for target_make_corefile_notes. */
3488 static char *
3489 dummy_make_corefile_notes (struct target_ops *self,
3490 bfd *ignore1, int *ignore2)
3491 {
3492 error (_("Command not implemented for this target."));
3493 return NULL;
3494 }
3495
3496 /* Set up the handful of non-empty slots needed by the dummy target
3497 vector. */
3498
3499 static void
3500 init_dummy_target (void)
3501 {
3502 dummy_target.to_shortname = "None";
3503 dummy_target.to_longname = "None";
3504 dummy_target.to_doc = "";
3505 dummy_target.to_create_inferior = find_default_create_inferior;
3506 dummy_target.to_supports_non_stop = find_default_supports_non_stop;
3507 dummy_target.to_supports_disable_randomization
3508 = find_default_supports_disable_randomization;
3509 dummy_target.to_stratum = dummy_stratum;
3510 dummy_target.to_has_all_memory = (int (*) (struct target_ops *)) return_zero;
3511 dummy_target.to_has_memory = (int (*) (struct target_ops *)) return_zero;
3512 dummy_target.to_has_stack = (int (*) (struct target_ops *)) return_zero;
3513 dummy_target.to_has_registers = (int (*) (struct target_ops *)) return_zero;
3514 dummy_target.to_has_execution
3515 = (int (*) (struct target_ops *, ptid_t)) return_zero;
3516 dummy_target.to_magic = OPS_MAGIC;
3517
3518 install_dummy_methods (&dummy_target);
3519 }
3520 \f
3521 static void
3522 debug_to_open (char *args, int from_tty)
3523 {
3524 debug_target.to_open (args, from_tty);
3525
3526 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3527 }
3528
3529 void
3530 target_close (struct target_ops *targ)
3531 {
3532 gdb_assert (!target_is_pushed (targ));
3533
3534 if (targ->to_xclose != NULL)
3535 targ->to_xclose (targ);
3536 else if (targ->to_close != NULL)
3537 targ->to_close (targ);
3538
3539 if (targetdebug)
3540 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3541 }
3542
3543 void
3544 target_attach (char *args, int from_tty)
3545 {
3546 current_target.to_attach (&current_target, args, from_tty);
3547 if (targetdebug)
3548 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n",
3549 args, from_tty);
3550 }
3551
3552 int
3553 target_thread_alive (ptid_t ptid)
3554 {
3555 struct target_ops *t;
3556
3557 for (t = current_target.beneath; t != NULL; t = t->beneath)
3558 {
3559 if (t->to_thread_alive != NULL)
3560 {
3561 int retval;
3562
3563 retval = t->to_thread_alive (t, ptid);
3564 if (targetdebug)
3565 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3566 ptid_get_pid (ptid), retval);
3567
3568 return retval;
3569 }
3570 }
3571
3572 return 0;
3573 }
3574
3575 void
3576 target_find_new_threads (void)
3577 {
3578 current_target.to_find_new_threads (&current_target);
3579 if (targetdebug)
3580 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3581 }
3582
3583 void
3584 target_stop (ptid_t ptid)
3585 {
3586 if (!may_stop)
3587 {
3588 warning (_("May not interrupt or stop the target, ignoring attempt"));
3589 return;
3590 }
3591
3592 (*current_target.to_stop) (&current_target, ptid);
3593 }
3594
3595 static void
3596 debug_to_post_attach (struct target_ops *self, int pid)
3597 {
3598 debug_target.to_post_attach (&debug_target, pid);
3599
3600 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3601 }
3602
3603 /* Concatenate ELEM to LIST, a comma separate list, and return the
3604 result. The LIST incoming argument is released. */
3605
3606 static char *
3607 str_comma_list_concat_elem (char *list, const char *elem)
3608 {
3609 if (list == NULL)
3610 return xstrdup (elem);
3611 else
3612 return reconcat (list, list, ", ", elem, (char *) NULL);
3613 }
3614
3615 /* Helper for target_options_to_string. If OPT is present in
3616 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3617 Returns the new resulting string. OPT is removed from
3618 TARGET_OPTIONS. */
3619
3620 static char *
3621 do_option (int *target_options, char *ret,
3622 int opt, char *opt_str)
3623 {
3624 if ((*target_options & opt) != 0)
3625 {
3626 ret = str_comma_list_concat_elem (ret, opt_str);
3627 *target_options &= ~opt;
3628 }
3629
3630 return ret;
3631 }
3632
3633 char *
3634 target_options_to_string (int target_options)
3635 {
3636 char *ret = NULL;
3637
3638 #define DO_TARG_OPTION(OPT) \
3639 ret = do_option (&target_options, ret, OPT, #OPT)
3640
3641 DO_TARG_OPTION (TARGET_WNOHANG);
3642
3643 if (target_options != 0)
3644 ret = str_comma_list_concat_elem (ret, "unknown???");
3645
3646 if (ret == NULL)
3647 ret = xstrdup ("");
3648 return ret;
3649 }
3650
3651 static void
3652 debug_print_register (const char * func,
3653 struct regcache *regcache, int regno)
3654 {
3655 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3656
3657 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3658 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3659 && gdbarch_register_name (gdbarch, regno) != NULL
3660 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3661 fprintf_unfiltered (gdb_stdlog, "(%s)",
3662 gdbarch_register_name (gdbarch, regno));
3663 else
3664 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3665 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3666 {
3667 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3668 int i, size = register_size (gdbarch, regno);
3669 gdb_byte buf[MAX_REGISTER_SIZE];
3670
3671 regcache_raw_collect (regcache, regno, buf);
3672 fprintf_unfiltered (gdb_stdlog, " = ");
3673 for (i = 0; i < size; i++)
3674 {
3675 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3676 }
3677 if (size <= sizeof (LONGEST))
3678 {
3679 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3680
3681 fprintf_unfiltered (gdb_stdlog, " %s %s",
3682 core_addr_to_string_nz (val), plongest (val));
3683 }
3684 }
3685 fprintf_unfiltered (gdb_stdlog, "\n");
3686 }
3687
3688 void
3689 target_fetch_registers (struct regcache *regcache, int regno)
3690 {
3691 current_target.to_fetch_registers (&current_target, regcache, regno);
3692 if (targetdebug)
3693 debug_print_register ("target_fetch_registers", regcache, regno);
3694 }
3695
3696 void
3697 target_store_registers (struct regcache *regcache, int regno)
3698 {
3699 struct target_ops *t;
3700
3701 if (!may_write_registers)
3702 error (_("Writing to registers is not allowed (regno %d)"), regno);
3703
3704 current_target.to_store_registers (&current_target, regcache, regno);
3705 if (targetdebug)
3706 {
3707 debug_print_register ("target_store_registers", regcache, regno);
3708 }
3709 }
3710
3711 int
3712 target_core_of_thread (ptid_t ptid)
3713 {
3714 int retval = current_target.to_core_of_thread (&current_target, ptid);
3715
3716 if (targetdebug)
3717 fprintf_unfiltered (gdb_stdlog,
3718 "target_core_of_thread (%d) = %d\n",
3719 ptid_get_pid (ptid), retval);
3720 return retval;
3721 }
3722
3723 int
3724 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3725 {
3726 int retval = current_target.to_verify_memory (&current_target,
3727 data, memaddr, size);
3728
3729 if (targetdebug)
3730 fprintf_unfiltered (gdb_stdlog,
3731 "target_verify_memory (%s, %s) = %d\n",
3732 paddress (target_gdbarch (), memaddr),
3733 pulongest (size),
3734 retval);
3735 return retval;
3736 }
3737
3738 /* The documentation for this function is in its prototype declaration in
3739 target.h. */
3740
3741 int
3742 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3743 {
3744 int ret;
3745
3746 ret = current_target.to_insert_mask_watchpoint (&current_target,
3747 addr, mask, rw);
3748
3749 if (targetdebug)
3750 fprintf_unfiltered (gdb_stdlog, "\
3751 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3752 core_addr_to_string (addr),
3753 core_addr_to_string (mask), rw, ret);
3754
3755 return ret;
3756 }
3757
3758 /* The documentation for this function is in its prototype declaration in
3759 target.h. */
3760
3761 int
3762 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3763 {
3764 int ret;
3765
3766 ret = current_target.to_remove_mask_watchpoint (&current_target,
3767 addr, mask, rw);
3768
3769 if (targetdebug)
3770 fprintf_unfiltered (gdb_stdlog, "\
3771 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3772 core_addr_to_string (addr),
3773 core_addr_to_string (mask), rw, ret);
3774
3775 return ret;
3776 }
3777
3778 /* The documentation for this function is in its prototype declaration
3779 in target.h. */
3780
3781 int
3782 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3783 {
3784 return current_target.to_masked_watch_num_registers (&current_target,
3785 addr, mask);
3786 }
3787
3788 /* The documentation for this function is in its prototype declaration
3789 in target.h. */
3790
3791 int
3792 target_ranged_break_num_registers (void)
3793 {
3794 return current_target.to_ranged_break_num_registers (&current_target);
3795 }
3796
3797 /* See target.h. */
3798
3799 struct btrace_target_info *
3800 target_enable_btrace (ptid_t ptid)
3801 {
3802 struct target_ops *t;
3803
3804 for (t = current_target.beneath; t != NULL; t = t->beneath)
3805 if (t->to_enable_btrace != NULL)
3806 return t->to_enable_btrace (t, ptid);
3807
3808 tcomplain ();
3809 return NULL;
3810 }
3811
3812 /* See target.h. */
3813
3814 void
3815 target_disable_btrace (struct btrace_target_info *btinfo)
3816 {
3817 struct target_ops *t;
3818
3819 for (t = current_target.beneath; t != NULL; t = t->beneath)
3820 if (t->to_disable_btrace != NULL)
3821 {
3822 t->to_disable_btrace (t, btinfo);
3823 return;
3824 }
3825
3826 tcomplain ();
3827 }
3828
3829 /* See target.h. */
3830
3831 void
3832 target_teardown_btrace (struct btrace_target_info *btinfo)
3833 {
3834 struct target_ops *t;
3835
3836 for (t = current_target.beneath; t != NULL; t = t->beneath)
3837 if (t->to_teardown_btrace != NULL)
3838 {
3839 t->to_teardown_btrace (t, btinfo);
3840 return;
3841 }
3842
3843 tcomplain ();
3844 }
3845
3846 /* See target.h. */
3847
3848 enum btrace_error
3849 target_read_btrace (VEC (btrace_block_s) **btrace,
3850 struct btrace_target_info *btinfo,
3851 enum btrace_read_type type)
3852 {
3853 struct target_ops *t;
3854
3855 for (t = current_target.beneath; t != NULL; t = t->beneath)
3856 if (t->to_read_btrace != NULL)
3857 return t->to_read_btrace (t, btrace, btinfo, type);
3858
3859 tcomplain ();
3860 return BTRACE_ERR_NOT_SUPPORTED;
3861 }
3862
3863 /* See target.h. */
3864
3865 void
3866 target_stop_recording (void)
3867 {
3868 struct target_ops *t;
3869
3870 for (t = current_target.beneath; t != NULL; t = t->beneath)
3871 if (t->to_stop_recording != NULL)
3872 {
3873 t->to_stop_recording (t);
3874 return;
3875 }
3876
3877 /* This is optional. */
3878 }
3879
3880 /* See target.h. */
3881
3882 void
3883 target_info_record (void)
3884 {
3885 struct target_ops *t;
3886
3887 for (t = current_target.beneath; t != NULL; t = t->beneath)
3888 if (t->to_info_record != NULL)
3889 {
3890 t->to_info_record (t);
3891 return;
3892 }
3893
3894 tcomplain ();
3895 }
3896
3897 /* See target.h. */
3898
3899 void
3900 target_save_record (const char *filename)
3901 {
3902 struct target_ops *t;
3903
3904 for (t = current_target.beneath; t != NULL; t = t->beneath)
3905 if (t->to_save_record != NULL)
3906 {
3907 t->to_save_record (t, filename);
3908 return;
3909 }
3910
3911 tcomplain ();
3912 }
3913
3914 /* See target.h. */
3915
3916 int
3917 target_supports_delete_record (void)
3918 {
3919 struct target_ops *t;
3920
3921 for (t = current_target.beneath; t != NULL; t = t->beneath)
3922 if (t->to_delete_record != NULL)
3923 return 1;
3924
3925 return 0;
3926 }
3927
3928 /* See target.h. */
3929
3930 void
3931 target_delete_record (void)
3932 {
3933 struct target_ops *t;
3934
3935 for (t = current_target.beneath; t != NULL; t = t->beneath)
3936 if (t->to_delete_record != NULL)
3937 {
3938 t->to_delete_record (t);
3939 return;
3940 }
3941
3942 tcomplain ();
3943 }
3944
3945 /* See target.h. */
3946
3947 int
3948 target_record_is_replaying (void)
3949 {
3950 struct target_ops *t;
3951
3952 for (t = current_target.beneath; t != NULL; t = t->beneath)
3953 if (t->to_record_is_replaying != NULL)
3954 return t->to_record_is_replaying (t);
3955
3956 return 0;
3957 }
3958
3959 /* See target.h. */
3960
3961 void
3962 target_goto_record_begin (void)
3963 {
3964 struct target_ops *t;
3965
3966 for (t = current_target.beneath; t != NULL; t = t->beneath)
3967 if (t->to_goto_record_begin != NULL)
3968 {
3969 t->to_goto_record_begin (t);
3970 return;
3971 }
3972
3973 tcomplain ();
3974 }
3975
3976 /* See target.h. */
3977
3978 void
3979 target_goto_record_end (void)
3980 {
3981 struct target_ops *t;
3982
3983 for (t = current_target.beneath; t != NULL; t = t->beneath)
3984 if (t->to_goto_record_end != NULL)
3985 {
3986 t->to_goto_record_end (t);
3987 return;
3988 }
3989
3990 tcomplain ();
3991 }
3992
3993 /* See target.h. */
3994
3995 void
3996 target_goto_record (ULONGEST insn)
3997 {
3998 struct target_ops *t;
3999
4000 for (t = current_target.beneath; t != NULL; t = t->beneath)
4001 if (t->to_goto_record != NULL)
4002 {
4003 t->to_goto_record (t, insn);
4004 return;
4005 }
4006
4007 tcomplain ();
4008 }
4009
4010 /* See target.h. */
4011
4012 void
4013 target_insn_history (int size, int flags)
4014 {
4015 struct target_ops *t;
4016
4017 for (t = current_target.beneath; t != NULL; t = t->beneath)
4018 if (t->to_insn_history != NULL)
4019 {
4020 t->to_insn_history (t, size, flags);
4021 return;
4022 }
4023
4024 tcomplain ();
4025 }
4026
4027 /* See target.h. */
4028
4029 void
4030 target_insn_history_from (ULONGEST from, int size, int flags)
4031 {
4032 struct target_ops *t;
4033
4034 for (t = current_target.beneath; t != NULL; t = t->beneath)
4035 if (t->to_insn_history_from != NULL)
4036 {
4037 t->to_insn_history_from (t, from, size, flags);
4038 return;
4039 }
4040
4041 tcomplain ();
4042 }
4043
4044 /* See target.h. */
4045
4046 void
4047 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
4048 {
4049 struct target_ops *t;
4050
4051 for (t = current_target.beneath; t != NULL; t = t->beneath)
4052 if (t->to_insn_history_range != NULL)
4053 {
4054 t->to_insn_history_range (t, begin, end, flags);
4055 return;
4056 }
4057
4058 tcomplain ();
4059 }
4060
4061 /* See target.h. */
4062
4063 void
4064 target_call_history (int size, int flags)
4065 {
4066 struct target_ops *t;
4067
4068 for (t = current_target.beneath; t != NULL; t = t->beneath)
4069 if (t->to_call_history != NULL)
4070 {
4071 t->to_call_history (t, size, flags);
4072 return;
4073 }
4074
4075 tcomplain ();
4076 }
4077
4078 /* See target.h. */
4079
4080 void
4081 target_call_history_from (ULONGEST begin, int size, int flags)
4082 {
4083 current_target.to_call_history_from (&current_target, begin, size, flags);
4084 }
4085
4086 /* See target.h. */
4087
4088 void
4089 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
4090 {
4091 current_target.to_call_history_range (&current_target, begin, end, flags);
4092 }
4093
4094 static void
4095 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
4096 {
4097 debug_target.to_prepare_to_store (&debug_target, regcache);
4098
4099 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
4100 }
4101
4102 /* See target.h. */
4103
4104 const struct frame_unwind *
4105 target_get_unwinder (void)
4106 {
4107 struct target_ops *t;
4108
4109 for (t = current_target.beneath; t != NULL; t = t->beneath)
4110 if (t->to_get_unwinder != NULL)
4111 return t->to_get_unwinder;
4112
4113 return NULL;
4114 }
4115
4116 /* See target.h. */
4117
4118 const struct frame_unwind *
4119 target_get_tailcall_unwinder (void)
4120 {
4121 struct target_ops *t;
4122
4123 for (t = current_target.beneath; t != NULL; t = t->beneath)
4124 if (t->to_get_tailcall_unwinder != NULL)
4125 return t->to_get_tailcall_unwinder;
4126
4127 return NULL;
4128 }
4129
4130 /* See target.h. */
4131
4132 CORE_ADDR
4133 forward_target_decr_pc_after_break (struct target_ops *ops,
4134 struct gdbarch *gdbarch)
4135 {
4136 for (; ops != NULL; ops = ops->beneath)
4137 if (ops->to_decr_pc_after_break != NULL)
4138 return ops->to_decr_pc_after_break (ops, gdbarch);
4139
4140 return gdbarch_decr_pc_after_break (gdbarch);
4141 }
4142
4143 /* See target.h. */
4144
4145 CORE_ADDR
4146 target_decr_pc_after_break (struct gdbarch *gdbarch)
4147 {
4148 return forward_target_decr_pc_after_break (current_target.beneath, gdbarch);
4149 }
4150
4151 static int
4152 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
4153 int write, struct mem_attrib *attrib,
4154 struct target_ops *target)
4155 {
4156 int retval;
4157
4158 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
4159 attrib, target);
4160
4161 fprintf_unfiltered (gdb_stdlog,
4162 "target_xfer_memory (%s, xxx, %d, %s, xxx) = %d",
4163 paddress (target_gdbarch (), memaddr), len,
4164 write ? "write" : "read", retval);
4165
4166 if (retval > 0)
4167 {
4168 int i;
4169
4170 fputs_unfiltered (", bytes =", gdb_stdlog);
4171 for (i = 0; i < retval; i++)
4172 {
4173 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
4174 {
4175 if (targetdebug < 2 && i > 0)
4176 {
4177 fprintf_unfiltered (gdb_stdlog, " ...");
4178 break;
4179 }
4180 fprintf_unfiltered (gdb_stdlog, "\n");
4181 }
4182
4183 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
4184 }
4185 }
4186
4187 fputc_unfiltered ('\n', gdb_stdlog);
4188
4189 return retval;
4190 }
4191
4192 static void
4193 debug_to_files_info (struct target_ops *target)
4194 {
4195 debug_target.to_files_info (target);
4196
4197 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
4198 }
4199
4200 static int
4201 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4202 struct bp_target_info *bp_tgt)
4203 {
4204 int retval;
4205
4206 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
4207
4208 fprintf_unfiltered (gdb_stdlog,
4209 "target_insert_breakpoint (%s, xxx) = %ld\n",
4210 core_addr_to_string (bp_tgt->placed_address),
4211 (unsigned long) retval);
4212 return retval;
4213 }
4214
4215 static int
4216 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
4217 struct bp_target_info *bp_tgt)
4218 {
4219 int retval;
4220
4221 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
4222
4223 fprintf_unfiltered (gdb_stdlog,
4224 "target_remove_breakpoint (%s, xxx) = %ld\n",
4225 core_addr_to_string (bp_tgt->placed_address),
4226 (unsigned long) retval);
4227 return retval;
4228 }
4229
4230 static int
4231 debug_to_can_use_hw_breakpoint (struct target_ops *self,
4232 int type, int cnt, int from_tty)
4233 {
4234 int retval;
4235
4236 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
4237 type, cnt, from_tty);
4238
4239 fprintf_unfiltered (gdb_stdlog,
4240 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
4241 (unsigned long) type,
4242 (unsigned long) cnt,
4243 (unsigned long) from_tty,
4244 (unsigned long) retval);
4245 return retval;
4246 }
4247
4248 static int
4249 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
4250 CORE_ADDR addr, int len)
4251 {
4252 CORE_ADDR retval;
4253
4254 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
4255 addr, len);
4256
4257 fprintf_unfiltered (gdb_stdlog,
4258 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
4259 core_addr_to_string (addr), (unsigned long) len,
4260 core_addr_to_string (retval));
4261 return retval;
4262 }
4263
4264 static int
4265 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
4266 CORE_ADDR addr, int len, int rw,
4267 struct expression *cond)
4268 {
4269 int retval;
4270
4271 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
4272 addr, len,
4273 rw, cond);
4274
4275 fprintf_unfiltered (gdb_stdlog,
4276 "target_can_accel_watchpoint_condition "
4277 "(%s, %d, %d, %s) = %ld\n",
4278 core_addr_to_string (addr), len, rw,
4279 host_address_to_string (cond), (unsigned long) retval);
4280 return retval;
4281 }
4282
4283 static int
4284 debug_to_stopped_by_watchpoint (struct target_ops *ops)
4285 {
4286 int retval;
4287
4288 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
4289
4290 fprintf_unfiltered (gdb_stdlog,
4291 "target_stopped_by_watchpoint () = %ld\n",
4292 (unsigned long) retval);
4293 return retval;
4294 }
4295
4296 static int
4297 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
4298 {
4299 int retval;
4300
4301 retval = debug_target.to_stopped_data_address (target, addr);
4302
4303 fprintf_unfiltered (gdb_stdlog,
4304 "target_stopped_data_address ([%s]) = %ld\n",
4305 core_addr_to_string (*addr),
4306 (unsigned long)retval);
4307 return retval;
4308 }
4309
4310 static int
4311 debug_to_watchpoint_addr_within_range (struct target_ops *target,
4312 CORE_ADDR addr,
4313 CORE_ADDR start, int length)
4314 {
4315 int retval;
4316
4317 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
4318 start, length);
4319
4320 fprintf_filtered (gdb_stdlog,
4321 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
4322 core_addr_to_string (addr), core_addr_to_string (start),
4323 length, retval);
4324 return retval;
4325 }
4326
4327 static int
4328 debug_to_insert_hw_breakpoint (struct target_ops *self,
4329 struct gdbarch *gdbarch,
4330 struct bp_target_info *bp_tgt)
4331 {
4332 int retval;
4333
4334 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
4335 gdbarch, bp_tgt);
4336
4337 fprintf_unfiltered (gdb_stdlog,
4338 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
4339 core_addr_to_string (bp_tgt->placed_address),
4340 (unsigned long) retval);
4341 return retval;
4342 }
4343
4344 static int
4345 debug_to_remove_hw_breakpoint (struct target_ops *self,
4346 struct gdbarch *gdbarch,
4347 struct bp_target_info *bp_tgt)
4348 {
4349 int retval;
4350
4351 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
4352 gdbarch, bp_tgt);
4353
4354 fprintf_unfiltered (gdb_stdlog,
4355 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
4356 core_addr_to_string (bp_tgt->placed_address),
4357 (unsigned long) retval);
4358 return retval;
4359 }
4360
4361 static int
4362 debug_to_insert_watchpoint (struct target_ops *self,
4363 CORE_ADDR addr, int len, int type,
4364 struct expression *cond)
4365 {
4366 int retval;
4367
4368 retval = debug_target.to_insert_watchpoint (&debug_target,
4369 addr, len, type, cond);
4370
4371 fprintf_unfiltered (gdb_stdlog,
4372 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
4373 core_addr_to_string (addr), len, type,
4374 host_address_to_string (cond), (unsigned long) retval);
4375 return retval;
4376 }
4377
4378 static int
4379 debug_to_remove_watchpoint (struct target_ops *self,
4380 CORE_ADDR addr, int len, int type,
4381 struct expression *cond)
4382 {
4383 int retval;
4384
4385 retval = debug_target.to_remove_watchpoint (&debug_target,
4386 addr, len, type, cond);
4387
4388 fprintf_unfiltered (gdb_stdlog,
4389 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
4390 core_addr_to_string (addr), len, type,
4391 host_address_to_string (cond), (unsigned long) retval);
4392 return retval;
4393 }
4394
4395 static void
4396 debug_to_terminal_init (struct target_ops *self)
4397 {
4398 debug_target.to_terminal_init (&debug_target);
4399
4400 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
4401 }
4402
4403 static void
4404 debug_to_terminal_inferior (struct target_ops *self)
4405 {
4406 debug_target.to_terminal_inferior (&debug_target);
4407
4408 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
4409 }
4410
4411 static void
4412 debug_to_terminal_ours_for_output (struct target_ops *self)
4413 {
4414 debug_target.to_terminal_ours_for_output (&debug_target);
4415
4416 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
4417 }
4418
4419 static void
4420 debug_to_terminal_ours (struct target_ops *self)
4421 {
4422 debug_target.to_terminal_ours (&debug_target);
4423
4424 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
4425 }
4426
4427 static void
4428 debug_to_terminal_save_ours (struct target_ops *self)
4429 {
4430 debug_target.to_terminal_save_ours (&debug_target);
4431
4432 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
4433 }
4434
4435 static void
4436 debug_to_terminal_info (struct target_ops *self,
4437 const char *arg, int from_tty)
4438 {
4439 debug_target.to_terminal_info (&debug_target, arg, from_tty);
4440
4441 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
4442 from_tty);
4443 }
4444
4445 static void
4446 debug_to_load (struct target_ops *self, char *args, int from_tty)
4447 {
4448 debug_target.to_load (&debug_target, args, from_tty);
4449
4450 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
4451 }
4452
4453 static void
4454 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
4455 {
4456 debug_target.to_post_startup_inferior (&debug_target, ptid);
4457
4458 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
4459 ptid_get_pid (ptid));
4460 }
4461
4462 static int
4463 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
4464 {
4465 int retval;
4466
4467 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
4468
4469 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
4470 pid, retval);
4471
4472 return retval;
4473 }
4474
4475 static int
4476 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
4477 {
4478 int retval;
4479
4480 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
4481
4482 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
4483 pid, retval);
4484
4485 return retval;
4486 }
4487
4488 static int
4489 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
4490 {
4491 int retval;
4492
4493 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
4494
4495 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
4496 pid, retval);
4497
4498 return retval;
4499 }
4500
4501 static int
4502 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
4503 {
4504 int retval;
4505
4506 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4507
4508 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4509 pid, retval);
4510
4511 return retval;
4512 }
4513
4514 static int
4515 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4516 {
4517 int retval;
4518
4519 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4520
4521 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4522 pid, retval);
4523
4524 return retval;
4525 }
4526
4527 static int
4528 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4529 {
4530 int retval;
4531
4532 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4533
4534 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4535 pid, retval);
4536
4537 return retval;
4538 }
4539
4540 static int
4541 debug_to_has_exited (struct target_ops *self,
4542 int pid, int wait_status, int *exit_status)
4543 {
4544 int has_exited;
4545
4546 has_exited = debug_target.to_has_exited (&debug_target,
4547 pid, wait_status, exit_status);
4548
4549 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4550 pid, wait_status, *exit_status, has_exited);
4551
4552 return has_exited;
4553 }
4554
4555 static int
4556 debug_to_can_run (struct target_ops *self)
4557 {
4558 int retval;
4559
4560 retval = debug_target.to_can_run (&debug_target);
4561
4562 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4563
4564 return retval;
4565 }
4566
4567 static struct gdbarch *
4568 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4569 {
4570 struct gdbarch *retval;
4571
4572 retval = debug_target.to_thread_architecture (ops, ptid);
4573
4574 fprintf_unfiltered (gdb_stdlog,
4575 "target_thread_architecture (%s) = %s [%s]\n",
4576 target_pid_to_str (ptid),
4577 host_address_to_string (retval),
4578 gdbarch_bfd_arch_info (retval)->printable_name);
4579 return retval;
4580 }
4581
4582 static void
4583 debug_to_stop (struct target_ops *self, ptid_t ptid)
4584 {
4585 debug_target.to_stop (&debug_target, ptid);
4586
4587 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4588 target_pid_to_str (ptid));
4589 }
4590
4591 static void
4592 debug_to_rcmd (struct target_ops *self, char *command,
4593 struct ui_file *outbuf)
4594 {
4595 debug_target.to_rcmd (&debug_target, command, outbuf);
4596 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4597 }
4598
4599 static char *
4600 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4601 {
4602 char *exec_file;
4603
4604 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4605
4606 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4607 pid, exec_file);
4608
4609 return exec_file;
4610 }
4611
4612 static void
4613 setup_target_debug (void)
4614 {
4615 memcpy (&debug_target, &current_target, sizeof debug_target);
4616
4617 current_target.to_open = debug_to_open;
4618 current_target.to_post_attach = debug_to_post_attach;
4619 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4620 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
4621 current_target.to_files_info = debug_to_files_info;
4622 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4623 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4624 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4625 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4626 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4627 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4628 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4629 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4630 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4631 current_target.to_watchpoint_addr_within_range
4632 = debug_to_watchpoint_addr_within_range;
4633 current_target.to_region_ok_for_hw_watchpoint
4634 = debug_to_region_ok_for_hw_watchpoint;
4635 current_target.to_can_accel_watchpoint_condition
4636 = debug_to_can_accel_watchpoint_condition;
4637 current_target.to_terminal_init = debug_to_terminal_init;
4638 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4639 current_target.to_terminal_ours_for_output
4640 = debug_to_terminal_ours_for_output;
4641 current_target.to_terminal_ours = debug_to_terminal_ours;
4642 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4643 current_target.to_terminal_info = debug_to_terminal_info;
4644 current_target.to_load = debug_to_load;
4645 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4646 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4647 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4648 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4649 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4650 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4651 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4652 current_target.to_has_exited = debug_to_has_exited;
4653 current_target.to_can_run = debug_to_can_run;
4654 current_target.to_stop = debug_to_stop;
4655 current_target.to_rcmd = debug_to_rcmd;
4656 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4657 current_target.to_thread_architecture = debug_to_thread_architecture;
4658 }
4659 \f
4660
4661 static char targ_desc[] =
4662 "Names of targets and files being debugged.\nShows the entire \
4663 stack of targets currently in use (including the exec-file,\n\
4664 core-file, and process, if any), as well as the symbol file name.";
4665
4666 static void
4667 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4668 {
4669 error (_("\"monitor\" command not supported by this target."));
4670 }
4671
4672 static void
4673 do_monitor_command (char *cmd,
4674 int from_tty)
4675 {
4676 target_rcmd (cmd, gdb_stdtarg);
4677 }
4678
4679 /* Print the name of each layers of our target stack. */
4680
4681 static void
4682 maintenance_print_target_stack (char *cmd, int from_tty)
4683 {
4684 struct target_ops *t;
4685
4686 printf_filtered (_("The current target stack is:\n"));
4687
4688 for (t = target_stack; t != NULL; t = t->beneath)
4689 {
4690 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4691 }
4692 }
4693
4694 /* Controls if async mode is permitted. */
4695 int target_async_permitted = 0;
4696
4697 /* The set command writes to this variable. If the inferior is
4698 executing, target_async_permitted is *not* updated. */
4699 static int target_async_permitted_1 = 0;
4700
4701 static void
4702 set_target_async_command (char *args, int from_tty,
4703 struct cmd_list_element *c)
4704 {
4705 if (have_live_inferiors ())
4706 {
4707 target_async_permitted_1 = target_async_permitted;
4708 error (_("Cannot change this setting while the inferior is running."));
4709 }
4710
4711 target_async_permitted = target_async_permitted_1;
4712 }
4713
4714 static void
4715 show_target_async_command (struct ui_file *file, int from_tty,
4716 struct cmd_list_element *c,
4717 const char *value)
4718 {
4719 fprintf_filtered (file,
4720 _("Controlling the inferior in "
4721 "asynchronous mode is %s.\n"), value);
4722 }
4723
4724 /* Temporary copies of permission settings. */
4725
4726 static int may_write_registers_1 = 1;
4727 static int may_write_memory_1 = 1;
4728 static int may_insert_breakpoints_1 = 1;
4729 static int may_insert_tracepoints_1 = 1;
4730 static int may_insert_fast_tracepoints_1 = 1;
4731 static int may_stop_1 = 1;
4732
4733 /* Make the user-set values match the real values again. */
4734
4735 void
4736 update_target_permissions (void)
4737 {
4738 may_write_registers_1 = may_write_registers;
4739 may_write_memory_1 = may_write_memory;
4740 may_insert_breakpoints_1 = may_insert_breakpoints;
4741 may_insert_tracepoints_1 = may_insert_tracepoints;
4742 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4743 may_stop_1 = may_stop;
4744 }
4745
4746 /* The one function handles (most of) the permission flags in the same
4747 way. */
4748
4749 static void
4750 set_target_permissions (char *args, int from_tty,
4751 struct cmd_list_element *c)
4752 {
4753 if (target_has_execution)
4754 {
4755 update_target_permissions ();
4756 error (_("Cannot change this setting while the inferior is running."));
4757 }
4758
4759 /* Make the real values match the user-changed values. */
4760 may_write_registers = may_write_registers_1;
4761 may_insert_breakpoints = may_insert_breakpoints_1;
4762 may_insert_tracepoints = may_insert_tracepoints_1;
4763 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4764 may_stop = may_stop_1;
4765 update_observer_mode ();
4766 }
4767
4768 /* Set memory write permission independently of observer mode. */
4769
4770 static void
4771 set_write_memory_permission (char *args, int from_tty,
4772 struct cmd_list_element *c)
4773 {
4774 /* Make the real values match the user-changed values. */
4775 may_write_memory = may_write_memory_1;
4776 update_observer_mode ();
4777 }
4778
4779
4780 void
4781 initialize_targets (void)
4782 {
4783 init_dummy_target ();
4784 push_target (&dummy_target);
4785
4786 add_info ("target", target_info, targ_desc);
4787 add_info ("files", target_info, targ_desc);
4788
4789 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4790 Set target debugging."), _("\
4791 Show target debugging."), _("\
4792 When non-zero, target debugging is enabled. Higher numbers are more\n\
4793 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4794 command."),
4795 NULL,
4796 show_targetdebug,
4797 &setdebuglist, &showdebuglist);
4798
4799 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4800 &trust_readonly, _("\
4801 Set mode for reading from readonly sections."), _("\
4802 Show mode for reading from readonly sections."), _("\
4803 When this mode is on, memory reads from readonly sections (such as .text)\n\
4804 will be read from the object file instead of from the target. This will\n\
4805 result in significant performance improvement for remote targets."),
4806 NULL,
4807 show_trust_readonly,
4808 &setlist, &showlist);
4809
4810 add_com ("monitor", class_obscure, do_monitor_command,
4811 _("Send a command to the remote monitor (remote targets only)."));
4812
4813 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4814 _("Print the name of each layer of the internal target stack."),
4815 &maintenanceprintlist);
4816
4817 add_setshow_boolean_cmd ("target-async", no_class,
4818 &target_async_permitted_1, _("\
4819 Set whether gdb controls the inferior in asynchronous mode."), _("\
4820 Show whether gdb controls the inferior in asynchronous mode."), _("\
4821 Tells gdb whether to control the inferior in asynchronous mode."),
4822 set_target_async_command,
4823 show_target_async_command,
4824 &setlist,
4825 &showlist);
4826
4827 add_setshow_boolean_cmd ("may-write-registers", class_support,
4828 &may_write_registers_1, _("\
4829 Set permission to write into registers."), _("\
4830 Show permission to write into registers."), _("\
4831 When this permission is on, GDB may write into the target's registers.\n\
4832 Otherwise, any sort of write attempt will result in an error."),
4833 set_target_permissions, NULL,
4834 &setlist, &showlist);
4835
4836 add_setshow_boolean_cmd ("may-write-memory", class_support,
4837 &may_write_memory_1, _("\
4838 Set permission to write into target memory."), _("\
4839 Show permission to write into target memory."), _("\
4840 When this permission is on, GDB may write into the target's memory.\n\
4841 Otherwise, any sort of write attempt will result in an error."),
4842 set_write_memory_permission, NULL,
4843 &setlist, &showlist);
4844
4845 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4846 &may_insert_breakpoints_1, _("\
4847 Set permission to insert breakpoints in the target."), _("\
4848 Show permission to insert breakpoints in the target."), _("\
4849 When this permission is on, GDB may insert breakpoints in the program.\n\
4850 Otherwise, any sort of insertion attempt will result in an error."),
4851 set_target_permissions, NULL,
4852 &setlist, &showlist);
4853
4854 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4855 &may_insert_tracepoints_1, _("\
4856 Set permission to insert tracepoints in the target."), _("\
4857 Show permission to insert tracepoints in the target."), _("\
4858 When this permission is on, GDB may insert tracepoints in the program.\n\
4859 Otherwise, any sort of insertion attempt will result in an error."),
4860 set_target_permissions, NULL,
4861 &setlist, &showlist);
4862
4863 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4864 &may_insert_fast_tracepoints_1, _("\
4865 Set permission to insert fast tracepoints in the target."), _("\
4866 Show permission to insert fast tracepoints in the target."), _("\
4867 When this permission is on, GDB may insert fast tracepoints.\n\
4868 Otherwise, any sort of insertion attempt will result in an error."),
4869 set_target_permissions, NULL,
4870 &setlist, &showlist);
4871
4872 add_setshow_boolean_cmd ("may-interrupt", class_support,
4873 &may_stop_1, _("\
4874 Set permission to interrupt or signal the target."), _("\
4875 Show permission to interrupt or signal the target."), _("\
4876 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4877 Otherwise, any attempt to interrupt or stop will be ignored."),
4878 set_target_permissions, NULL,
4879 &setlist, &showlist);
4880 }