]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
2004-10-05 Andrew Cagney <cagney@gnu.org>
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include <errno.h>
27 #include "gdb_string.h"
28 #include "target.h"
29 #include "gdbcmd.h"
30 #include "symtab.h"
31 #include "inferior.h"
32 #include "bfd.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_wait.h"
36 #include "dcache.h"
37 #include <signal.h>
38 #include "regcache.h"
39 #include "gdb_assert.h"
40 #include "gdbcore.h"
41
42 static void target_info (char *, int);
43
44 static void maybe_kill_then_attach (char *, int);
45
46 static void kill_or_be_killed (int);
47
48 static void default_terminal_info (char *, int);
49
50 static int default_region_size_ok_for_hw_watchpoint (int);
51
52 static int nosymbol (char *, CORE_ADDR *);
53
54 static void tcomplain (void);
55
56 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
57
58 static int return_zero (void);
59
60 static int return_one (void);
61
62 static int return_minus_one (void);
63
64 void target_ignore (void);
65
66 static void target_command (char *, int);
67
68 static struct target_ops *find_default_run_target (char *);
69
70 static void nosupport_runtime (void);
71
72 static LONGEST default_xfer_partial (struct target_ops *ops,
73 enum target_object object,
74 const char *annex, void *readbuf,
75 const void *writebuf,
76 ULONGEST offset, LONGEST len);
77
78 /* Transfer LEN bytes between target address MEMADDR and GDB address
79 MYADDR. Returns 0 for success, errno code for failure (which
80 includes partial transfers -- if you want a more useful response to
81 partial transfers, try either target_read_memory_partial or
82 target_write_memory_partial). */
83
84 static int target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
85 int write);
86
87 static void init_dummy_target (void);
88
89 static void debug_to_open (char *, int);
90
91 static void debug_to_close (int);
92
93 static void debug_to_attach (char *, int);
94
95 static void debug_to_detach (char *, int);
96
97 static void debug_to_disconnect (char *, int);
98
99 static void debug_to_resume (ptid_t, int, enum target_signal);
100
101 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
102
103 static void debug_to_fetch_registers (int);
104
105 static void debug_to_store_registers (int);
106
107 static void debug_to_prepare_to_store (void);
108
109 static int debug_to_xfer_memory (CORE_ADDR, char *, int, int,
110 struct mem_attrib *, struct target_ops *);
111
112 static void debug_to_files_info (struct target_ops *);
113
114 static int debug_to_insert_breakpoint (CORE_ADDR, char *);
115
116 static int debug_to_remove_breakpoint (CORE_ADDR, char *);
117
118 static int debug_to_can_use_hw_breakpoint (int, int, int);
119
120 static int debug_to_insert_hw_breakpoint (CORE_ADDR, char *);
121
122 static int debug_to_remove_hw_breakpoint (CORE_ADDR, char *);
123
124 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
125
126 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
127
128 static int debug_to_stopped_by_watchpoint (void);
129
130 static CORE_ADDR debug_to_stopped_data_address (void);
131
132 static int debug_to_region_size_ok_for_hw_watchpoint (int);
133
134 static void debug_to_terminal_init (void);
135
136 static void debug_to_terminal_inferior (void);
137
138 static void debug_to_terminal_ours_for_output (void);
139
140 static void debug_to_terminal_save_ours (void);
141
142 static void debug_to_terminal_ours (void);
143
144 static void debug_to_terminal_info (char *, int);
145
146 static void debug_to_kill (void);
147
148 static void debug_to_load (char *, int);
149
150 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
151
152 static void debug_to_mourn_inferior (void);
153
154 static int debug_to_can_run (void);
155
156 static void debug_to_notice_signals (ptid_t);
157
158 static int debug_to_thread_alive (ptid_t);
159
160 static void debug_to_stop (void);
161
162 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
163 wierd and mysterious ways. Putting the variable here lets those
164 wierd and mysterious ways keep building while they are being
165 converted to the inferior inheritance structure. */
166 struct target_ops deprecated_child_ops;
167
168 /* Pointer to array of target architecture structures; the size of the
169 array; the current index into the array; the allocated size of the
170 array. */
171 struct target_ops **target_structs;
172 unsigned target_struct_size;
173 unsigned target_struct_index;
174 unsigned target_struct_allocsize;
175 #define DEFAULT_ALLOCSIZE 10
176
177 /* The initial current target, so that there is always a semi-valid
178 current target. */
179
180 static struct target_ops dummy_target;
181
182 /* Top of target stack. */
183
184 static struct target_ops *target_stack;
185
186 /* The target structure we are currently using to talk to a process
187 or file or whatever "inferior" we have. */
188
189 struct target_ops current_target;
190
191 /* Command list for target. */
192
193 static struct cmd_list_element *targetlist = NULL;
194
195 /* Nonzero if we are debugging an attached outside process
196 rather than an inferior. */
197
198 int attach_flag;
199
200 /* Non-zero if we want to see trace of target level stuff. */
201
202 static int targetdebug = 0;
203
204 static void setup_target_debug (void);
205
206 DCACHE *target_dcache;
207
208 /* The user just typed 'target' without the name of a target. */
209
210 static void
211 target_command (char *arg, int from_tty)
212 {
213 fputs_filtered ("Argument required (target name). Try `help target'\n",
214 gdb_stdout);
215 }
216
217 /* Add a possible target architecture to the list. */
218
219 void
220 add_target (struct target_ops *t)
221 {
222 /* Provide default values for all "must have" methods. */
223 if (t->to_xfer_partial == NULL)
224 t->to_xfer_partial = default_xfer_partial;
225
226 if (!target_structs)
227 {
228 target_struct_allocsize = DEFAULT_ALLOCSIZE;
229 target_structs = (struct target_ops **) xmalloc
230 (target_struct_allocsize * sizeof (*target_structs));
231 }
232 if (target_struct_size >= target_struct_allocsize)
233 {
234 target_struct_allocsize *= 2;
235 target_structs = (struct target_ops **)
236 xrealloc ((char *) target_structs,
237 target_struct_allocsize * sizeof (*target_structs));
238 }
239 target_structs[target_struct_size++] = t;
240
241 if (targetlist == NULL)
242 add_prefix_cmd ("target", class_run, target_command,
243 "Connect to a target machine or process.\n\
244 The first argument is the type or protocol of the target machine.\n\
245 Remaining arguments are interpreted by the target protocol. For more\n\
246 information on the arguments for a particular protocol, type\n\
247 `help target ' followed by the protocol name.",
248 &targetlist, "target ", 0, &cmdlist);
249 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
250 }
251
252 /* Stub functions */
253
254 void
255 target_ignore (void)
256 {
257 }
258
259 void
260 target_load (char *arg, int from_tty)
261 {
262 dcache_invalidate (target_dcache);
263 (*current_target.to_load) (arg, from_tty);
264 }
265
266 static int
267 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
268 struct target_ops *t)
269 {
270 errno = EIO; /* Can't read/write this location */
271 return 0; /* No bytes handled */
272 }
273
274 static void
275 tcomplain (void)
276 {
277 error ("You can't do that when your target is `%s'",
278 current_target.to_shortname);
279 }
280
281 void
282 noprocess (void)
283 {
284 error ("You can't do that without a process to debug.");
285 }
286
287 static int
288 nosymbol (char *name, CORE_ADDR *addrp)
289 {
290 return 1; /* Symbol does not exist in target env */
291 }
292
293 static void
294 nosupport_runtime (void)
295 {
296 if (ptid_equal (inferior_ptid, null_ptid))
297 noprocess ();
298 else
299 error ("No run-time support for this");
300 }
301
302
303 static void
304 default_terminal_info (char *args, int from_tty)
305 {
306 printf_unfiltered ("No saved terminal information.\n");
307 }
308
309 /* This is the default target_create_inferior and target_attach function.
310 If the current target is executing, it asks whether to kill it off.
311 If this function returns without calling error(), it has killed off
312 the target, and the operation should be attempted. */
313
314 static void
315 kill_or_be_killed (int from_tty)
316 {
317 if (target_has_execution)
318 {
319 printf_unfiltered ("You are already running a program:\n");
320 target_files_info ();
321 if (query ("Kill it? "))
322 {
323 target_kill ();
324 if (target_has_execution)
325 error ("Killing the program did not help.");
326 return;
327 }
328 else
329 {
330 error ("Program not killed.");
331 }
332 }
333 tcomplain ();
334 }
335
336 static void
337 maybe_kill_then_attach (char *args, int from_tty)
338 {
339 kill_or_be_killed (from_tty);
340 target_attach (args, from_tty);
341 }
342
343 static void
344 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
345 int from_tty)
346 {
347 kill_or_be_killed (0);
348 target_create_inferior (exec, args, env, from_tty);
349 }
350
351 /* Go through the target stack from top to bottom, copying over zero
352 entries in current_target, then filling in still empty entries. In
353 effect, we are doing class inheritance through the pushed target
354 vectors.
355
356 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
357 is currently implemented, is that it discards any knowledge of
358 which target an inherited method originally belonged to.
359 Consequently, new new target methods should instead explicitly and
360 locally search the target stack for the target that can handle the
361 request. */
362
363 static void
364 update_current_target (void)
365 {
366 struct target_ops *t;
367
368 /* First, reset curren'ts contents. */
369 memset (&current_target, 0, sizeof (current_target));
370
371 #define INHERIT(FIELD, TARGET) \
372 if (!current_target.FIELD) \
373 current_target.FIELD = (TARGET)->FIELD
374
375 for (t = target_stack; t; t = t->beneath)
376 {
377 INHERIT (to_shortname, t);
378 INHERIT (to_longname, t);
379 INHERIT (to_doc, t);
380 INHERIT (to_open, t);
381 INHERIT (to_close, t);
382 INHERIT (to_attach, t);
383 INHERIT (to_post_attach, t);
384 INHERIT (to_detach, t);
385 INHERIT (to_disconnect, t);
386 INHERIT (to_resume, t);
387 INHERIT (to_wait, t);
388 INHERIT (to_fetch_registers, t);
389 INHERIT (to_store_registers, t);
390 INHERIT (to_prepare_to_store, t);
391 INHERIT (to_xfer_memory, t);
392 INHERIT (to_files_info, t);
393 INHERIT (to_insert_breakpoint, t);
394 INHERIT (to_remove_breakpoint, t);
395 INHERIT (to_can_use_hw_breakpoint, t);
396 INHERIT (to_insert_hw_breakpoint, t);
397 INHERIT (to_remove_hw_breakpoint, t);
398 INHERIT (to_insert_watchpoint, t);
399 INHERIT (to_remove_watchpoint, t);
400 INHERIT (to_stopped_data_address, t);
401 INHERIT (to_stopped_by_watchpoint, t);
402 INHERIT (to_have_continuable_watchpoint, t);
403 INHERIT (to_region_size_ok_for_hw_watchpoint, t);
404 INHERIT (to_terminal_init, t);
405 INHERIT (to_terminal_inferior, t);
406 INHERIT (to_terminal_ours_for_output, t);
407 INHERIT (to_terminal_ours, t);
408 INHERIT (to_terminal_save_ours, t);
409 INHERIT (to_terminal_info, t);
410 INHERIT (to_kill, t);
411 INHERIT (to_load, t);
412 INHERIT (to_lookup_symbol, t);
413 INHERIT (to_create_inferior, t);
414 INHERIT (to_post_startup_inferior, t);
415 INHERIT (to_acknowledge_created_inferior, t);
416 INHERIT (to_insert_fork_catchpoint, t);
417 INHERIT (to_remove_fork_catchpoint, t);
418 INHERIT (to_insert_vfork_catchpoint, t);
419 INHERIT (to_remove_vfork_catchpoint, t);
420 INHERIT (to_follow_fork, t);
421 INHERIT (to_insert_exec_catchpoint, t);
422 INHERIT (to_remove_exec_catchpoint, t);
423 INHERIT (to_reported_exec_events_per_exec_call, t);
424 INHERIT (to_has_exited, t);
425 INHERIT (to_mourn_inferior, t);
426 INHERIT (to_can_run, t);
427 INHERIT (to_notice_signals, t);
428 INHERIT (to_thread_alive, t);
429 INHERIT (to_find_new_threads, t);
430 INHERIT (to_pid_to_str, t);
431 INHERIT (to_extra_thread_info, t);
432 INHERIT (to_stop, t);
433 /* Do not inherit to_xfer_partial. */
434 INHERIT (to_rcmd, t);
435 INHERIT (to_enable_exception_callback, t);
436 INHERIT (to_get_current_exception_event, t);
437 INHERIT (to_pid_to_exec_file, t);
438 INHERIT (to_stratum, t);
439 INHERIT (to_has_all_memory, t);
440 INHERIT (to_has_memory, t);
441 INHERIT (to_has_stack, t);
442 INHERIT (to_has_registers, t);
443 INHERIT (to_has_execution, t);
444 INHERIT (to_has_thread_control, t);
445 INHERIT (to_sections, t);
446 INHERIT (to_sections_end, t);
447 INHERIT (to_can_async_p, t);
448 INHERIT (to_is_async_p, t);
449 INHERIT (to_async, t);
450 INHERIT (to_async_mask_value, t);
451 INHERIT (to_find_memory_regions, t);
452 INHERIT (to_make_corefile_notes, t);
453 INHERIT (to_get_thread_local_address, t);
454 INHERIT (to_magic, t);
455 }
456 #undef INHERIT
457
458 /* Clean up a target struct so it no longer has any zero pointers in
459 it. Some entries are defaulted to a method that print an error,
460 others are hard-wired to a standard recursive default. */
461
462 #define de_fault(field, value) \
463 if (!current_target.field) \
464 current_target.field = value
465
466 de_fault (to_open,
467 (void (*) (char *, int))
468 tcomplain);
469 de_fault (to_close,
470 (void (*) (int))
471 target_ignore);
472 de_fault (to_attach,
473 maybe_kill_then_attach);
474 de_fault (to_post_attach,
475 (void (*) (int))
476 target_ignore);
477 de_fault (to_detach,
478 (void (*) (char *, int))
479 target_ignore);
480 de_fault (to_disconnect,
481 (void (*) (char *, int))
482 tcomplain);
483 de_fault (to_resume,
484 (void (*) (ptid_t, int, enum target_signal))
485 noprocess);
486 de_fault (to_wait,
487 (ptid_t (*) (ptid_t, struct target_waitstatus *))
488 noprocess);
489 de_fault (to_fetch_registers,
490 (void (*) (int))
491 target_ignore);
492 de_fault (to_store_registers,
493 (void (*) (int))
494 noprocess);
495 de_fault (to_prepare_to_store,
496 (void (*) (void))
497 noprocess);
498 de_fault (to_xfer_memory,
499 (int (*) (CORE_ADDR, char *, int, int, struct mem_attrib *, struct target_ops *))
500 nomemory);
501 de_fault (to_files_info,
502 (void (*) (struct target_ops *))
503 target_ignore);
504 de_fault (to_insert_breakpoint,
505 memory_insert_breakpoint);
506 de_fault (to_remove_breakpoint,
507 memory_remove_breakpoint);
508 de_fault (to_can_use_hw_breakpoint,
509 (int (*) (int, int, int))
510 return_zero);
511 de_fault (to_insert_hw_breakpoint,
512 (int (*) (CORE_ADDR, char *))
513 return_minus_one);
514 de_fault (to_remove_hw_breakpoint,
515 (int (*) (CORE_ADDR, char *))
516 return_minus_one);
517 de_fault (to_insert_watchpoint,
518 (int (*) (CORE_ADDR, int, int))
519 return_minus_one);
520 de_fault (to_remove_watchpoint,
521 (int (*) (CORE_ADDR, int, int))
522 return_minus_one);
523 de_fault (to_stopped_by_watchpoint,
524 (int (*) (void))
525 return_zero);
526 de_fault (to_stopped_data_address,
527 (CORE_ADDR (*) (void))
528 return_zero);
529 de_fault (to_region_size_ok_for_hw_watchpoint,
530 default_region_size_ok_for_hw_watchpoint);
531 de_fault (to_terminal_init,
532 (void (*) (void))
533 target_ignore);
534 de_fault (to_terminal_inferior,
535 (void (*) (void))
536 target_ignore);
537 de_fault (to_terminal_ours_for_output,
538 (void (*) (void))
539 target_ignore);
540 de_fault (to_terminal_ours,
541 (void (*) (void))
542 target_ignore);
543 de_fault (to_terminal_save_ours,
544 (void (*) (void))
545 target_ignore);
546 de_fault (to_terminal_info,
547 default_terminal_info);
548 de_fault (to_kill,
549 (void (*) (void))
550 noprocess);
551 de_fault (to_load,
552 (void (*) (char *, int))
553 tcomplain);
554 de_fault (to_lookup_symbol,
555 (int (*) (char *, CORE_ADDR *))
556 nosymbol);
557 de_fault (to_create_inferior,
558 maybe_kill_then_create_inferior);
559 de_fault (to_post_startup_inferior,
560 (void (*) (ptid_t))
561 target_ignore);
562 de_fault (to_acknowledge_created_inferior,
563 (void (*) (int))
564 target_ignore);
565 de_fault (to_insert_fork_catchpoint,
566 (int (*) (int))
567 tcomplain);
568 de_fault (to_remove_fork_catchpoint,
569 (int (*) (int))
570 tcomplain);
571 de_fault (to_insert_vfork_catchpoint,
572 (int (*) (int))
573 tcomplain);
574 de_fault (to_remove_vfork_catchpoint,
575 (int (*) (int))
576 tcomplain);
577 de_fault (to_follow_fork,
578 (int (*) (int))
579 target_ignore);
580 de_fault (to_insert_exec_catchpoint,
581 (int (*) (int))
582 tcomplain);
583 de_fault (to_remove_exec_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_reported_exec_events_per_exec_call,
587 (int (*) (void))
588 return_one);
589 de_fault (to_has_exited,
590 (int (*) (int, int, int *))
591 return_zero);
592 de_fault (to_mourn_inferior,
593 (void (*) (void))
594 noprocess);
595 de_fault (to_can_run,
596 return_zero);
597 de_fault (to_notice_signals,
598 (void (*) (ptid_t))
599 target_ignore);
600 de_fault (to_thread_alive,
601 (int (*) (ptid_t))
602 return_zero);
603 de_fault (to_find_new_threads,
604 (void (*) (void))
605 target_ignore);
606 de_fault (to_extra_thread_info,
607 (char *(*) (struct thread_info *))
608 return_zero);
609 de_fault (to_stop,
610 (void (*) (void))
611 target_ignore);
612 current_target.to_xfer_partial = default_xfer_partial;
613 de_fault (to_rcmd,
614 (void (*) (char *, struct ui_file *))
615 tcomplain);
616 de_fault (to_enable_exception_callback,
617 (struct symtab_and_line * (*) (enum exception_event_kind, int))
618 nosupport_runtime);
619 de_fault (to_get_current_exception_event,
620 (struct exception_event_record * (*) (void))
621 nosupport_runtime);
622 de_fault (to_pid_to_exec_file,
623 (char *(*) (int))
624 return_zero);
625 de_fault (to_can_async_p,
626 (int (*) (void))
627 return_zero);
628 de_fault (to_is_async_p,
629 (int (*) (void))
630 return_zero);
631 de_fault (to_async,
632 (void (*) (void (*) (enum inferior_event_type, void*), void*))
633 tcomplain);
634 #undef de_fault
635
636 /* Finally, position the target-stack beneath the squashed
637 "current_target". That way code looking for a non-inherited
638 target method can quickly and simply find it. */
639 current_target.beneath = target_stack;
640 }
641
642 /* Push a new target type into the stack of the existing target accessors,
643 possibly superseding some of the existing accessors.
644
645 Result is zero if the pushed target ended up on top of the stack,
646 nonzero if at least one target is on top of it.
647
648 Rather than allow an empty stack, we always have the dummy target at
649 the bottom stratum, so we can call the function vectors without
650 checking them. */
651
652 int
653 push_target (struct target_ops *t)
654 {
655 struct target_ops **cur;
656
657 /* Check magic number. If wrong, it probably means someone changed
658 the struct definition, but not all the places that initialize one. */
659 if (t->to_magic != OPS_MAGIC)
660 {
661 fprintf_unfiltered (gdb_stderr,
662 "Magic number of %s target struct wrong\n",
663 t->to_shortname);
664 internal_error (__FILE__, __LINE__, "failed internal consistency check");
665 }
666
667 /* Find the proper stratum to install this target in. */
668 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
669 {
670 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
671 break;
672 }
673
674 /* If there's already targets at this stratum, remove them. */
675 /* FIXME: cagney/2003-10-15: I think this should be poping all
676 targets to CUR, and not just those at this stratum level. */
677 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
678 {
679 /* There's already something at this stratum level. Close it,
680 and un-hook it from the stack. */
681 struct target_ops *tmp = (*cur);
682 (*cur) = (*cur)->beneath;
683 tmp->beneath = NULL;
684 target_close (tmp, 0);
685 }
686
687 /* We have removed all targets in our stratum, now add the new one. */
688 t->beneath = (*cur);
689 (*cur) = t;
690
691 update_current_target ();
692
693 if (targetdebug)
694 setup_target_debug ();
695
696 /* Not on top? */
697 return (t != target_stack);
698 }
699
700 /* Remove a target_ops vector from the stack, wherever it may be.
701 Return how many times it was removed (0 or 1). */
702
703 int
704 unpush_target (struct target_ops *t)
705 {
706 struct target_ops **cur;
707 struct target_ops *tmp;
708
709 /* Look for the specified target. Note that we assume that a target
710 can only occur once in the target stack. */
711
712 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
713 {
714 if ((*cur) == t)
715 break;
716 }
717
718 if ((*cur) == NULL)
719 return 0; /* Didn't find target_ops, quit now */
720
721 /* NOTE: cagney/2003-12-06: In '94 the close call was made
722 unconditional by moving it to before the above check that the
723 target was in the target stack (something about "Change the way
724 pushing and popping of targets work to support target overlays
725 and inheritance"). This doesn't make much sense - only open
726 targets should be closed. */
727 target_close (t, 0);
728
729 /* Unchain the target */
730 tmp = (*cur);
731 (*cur) = (*cur)->beneath;
732 tmp->beneath = NULL;
733
734 update_current_target ();
735
736 return 1;
737 }
738
739 void
740 pop_target (void)
741 {
742 target_close (&current_target, 0); /* Let it clean up */
743 if (unpush_target (target_stack) == 1)
744 return;
745
746 fprintf_unfiltered (gdb_stderr,
747 "pop_target couldn't find target %s\n",
748 current_target.to_shortname);
749 internal_error (__FILE__, __LINE__, "failed internal consistency check");
750 }
751
752 #undef MIN
753 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
754
755 /* target_read_string -- read a null terminated string, up to LEN bytes,
756 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
757 Set *STRING to a pointer to malloc'd memory containing the data; the caller
758 is responsible for freeing it. Return the number of bytes successfully
759 read. */
760
761 int
762 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
763 {
764 int tlen, origlen, offset, i;
765 char buf[4];
766 int errcode = 0;
767 char *buffer;
768 int buffer_allocated;
769 char *bufptr;
770 unsigned int nbytes_read = 0;
771
772 /* Small for testing. */
773 buffer_allocated = 4;
774 buffer = xmalloc (buffer_allocated);
775 bufptr = buffer;
776
777 origlen = len;
778
779 while (len > 0)
780 {
781 tlen = MIN (len, 4 - (memaddr & 3));
782 offset = memaddr & 3;
783
784 errcode = target_read_memory (memaddr & ~3, buf, 4);
785 if (errcode != 0)
786 {
787 /* The transfer request might have crossed the boundary to an
788 unallocated region of memory. Retry the transfer, requesting
789 a single byte. */
790 tlen = 1;
791 offset = 0;
792 errcode = target_read_memory (memaddr, buf, 1);
793 if (errcode != 0)
794 goto done;
795 }
796
797 if (bufptr - buffer + tlen > buffer_allocated)
798 {
799 unsigned int bytes;
800 bytes = bufptr - buffer;
801 buffer_allocated *= 2;
802 buffer = xrealloc (buffer, buffer_allocated);
803 bufptr = buffer + bytes;
804 }
805
806 for (i = 0; i < tlen; i++)
807 {
808 *bufptr++ = buf[i + offset];
809 if (buf[i + offset] == '\000')
810 {
811 nbytes_read += i + 1;
812 goto done;
813 }
814 }
815
816 memaddr += tlen;
817 len -= tlen;
818 nbytes_read += tlen;
819 }
820 done:
821 if (errnop != NULL)
822 *errnop = errcode;
823 if (string != NULL)
824 *string = buffer;
825 return nbytes_read;
826 }
827
828 /* Find a section containing ADDR. */
829 struct section_table *
830 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
831 {
832 struct section_table *secp;
833 for (secp = target->to_sections;
834 secp < target->to_sections_end;
835 secp++)
836 {
837 if (addr >= secp->addr && addr < secp->endaddr)
838 return secp;
839 }
840 return NULL;
841 }
842
843 /* Return non-zero when the target vector has supplied an xfer_partial
844 method and it, rather than xfer_memory, should be used. */
845 static int
846 target_xfer_partial_p (void)
847 {
848 return (target_stack != NULL
849 && target_stack->to_xfer_partial != default_xfer_partial);
850 }
851
852 static LONGEST
853 target_xfer_partial (struct target_ops *ops,
854 enum target_object object, const char *annex,
855 void *readbuf, const void *writebuf,
856 ULONGEST offset, LONGEST len)
857 {
858 LONGEST retval;
859
860 gdb_assert (ops->to_xfer_partial != NULL);
861 retval = ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
862 offset, len);
863 if (targetdebug)
864 {
865 const unsigned char *myaddr = NULL;
866
867 fprintf_unfiltered (gdb_stdlog,
868 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
869 ops->to_shortname,
870 (int) object,
871 (annex ? annex : "(null)"),
872 (long) readbuf, (long) writebuf,
873 paddr_nz (offset), paddr_d (len), paddr_d (retval));
874
875 if (readbuf)
876 myaddr = readbuf;
877 if (writebuf)
878 myaddr = writebuf;
879 if (retval > 0 && myaddr != NULL)
880 {
881 int i;
882
883 fputs_unfiltered (", bytes =", gdb_stdlog);
884 for (i = 0; i < retval; i++)
885 {
886 if ((((long) &(myaddr[i])) & 0xf) == 0)
887 {
888 if (targetdebug < 2 && i > 0)
889 {
890 fprintf_unfiltered (gdb_stdlog, " ...");
891 break;
892 }
893 fprintf_unfiltered (gdb_stdlog, "\n");
894 }
895
896 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
897 }
898 }
899
900 fputc_unfiltered ('\n', gdb_stdlog);
901 }
902 return retval;
903 }
904
905 /* Attempt a transfer all LEN bytes starting at OFFSET between the
906 inferior's KIND:ANNEX space and GDB's READBUF/WRITEBUF buffer. If
907 the transfer succeeds, return zero, otherwize the host ERRNO is
908 returned.
909
910 The inferior is formed from several layers. In the case of
911 corefiles, inf-corefile is layered above inf-exec and a request for
912 text (corefiles do not include text pages) will be first sent to
913 the core-stratum, fail, and then sent to the object-file where it
914 will succeed.
915
916 NOTE: cagney/2004-09-30:
917
918 The old code tried to use four separate mechanisms for mapping an
919 object:offset:len tuple onto an inferior and its address space: the
920 target stack; the inferior's TO_SECTIONS; solib's SO_LIST;
921 overlays.
922
923 This is stupid.
924
925 The code below is instead using a single mechanism (currently
926 strata). If that mechanism proves insufficient then re-factor it
927 implementing another singluar mechanism (for instance, a generic
928 object:annex onto inferior:object:annex say). */
929
930 static LONGEST
931 xfer_using_stratum (enum target_object object, const char *annex,
932 ULONGEST offset, LONGEST len, void *readbuf,
933 const void *writebuf)
934 {
935 LONGEST xfered;
936 struct target_ops *target;
937
938 /* Always successful. */
939 if (len == 0)
940 return 0;
941 /* Never successful. */
942 if (target_stack == NULL)
943 return EIO;
944
945 target = target_stack;
946 while (1)
947 {
948 xfered = target_xfer_partial (target, object, annex,
949 readbuf, writebuf, offset, len);
950 if (xfered > 0)
951 {
952 /* The partial xfer succeeded, update the counts, check that
953 the xfer hasn't finished and if it hasn't set things up
954 for the next round. */
955 len -= xfered;
956 if (len <= 0)
957 return 0;
958 offset += xfered;
959 if (readbuf != NULL)
960 readbuf = (bfd_byte *) readbuf + xfered;
961 if (writebuf != NULL)
962 writebuf = (bfd_byte *) writebuf + xfered;
963 target = target_stack;
964 }
965 else if (xfered < 0)
966 {
967 /* Something totally screwed up, abandon the attempt to
968 xfer. */
969 if (errno)
970 return errno;
971 else
972 return EIO;
973 }
974 else
975 {
976 /* This "stratum" didn't work, try the next one down. */
977 target = target->beneath;
978 if (target == NULL)
979 return EIO;
980 }
981 }
982 }
983
984 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
985 GDB's memory at MYADDR. Returns either 0 for success or an errno value
986 if any error occurs.
987
988 If an error occurs, no guarantee is made about the contents of the data at
989 MYADDR. In particular, the caller should not depend upon partial reads
990 filling the buffer with good data. There is no way for the caller to know
991 how much good data might have been transfered anyway. Callers that can
992 deal with partial reads should call target_read_memory_partial. */
993
994 int
995 target_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
996 {
997 if (target_xfer_partial_p ())
998 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
999 memaddr, len, myaddr, NULL);
1000 else
1001 return target_xfer_memory (memaddr, myaddr, len, 0);
1002 }
1003
1004 int
1005 target_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1006 {
1007 if (target_xfer_partial_p ())
1008 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
1009 memaddr, len, NULL, myaddr);
1010 else
1011 return target_xfer_memory (memaddr, myaddr, len, 1);
1012 }
1013
1014 static int trust_readonly = 0;
1015
1016 /* Move memory to or from the targets. The top target gets priority;
1017 if it cannot handle it, it is offered to the next one down, etc.
1018
1019 Result is -1 on error, or the number of bytes transfered. */
1020
1021 int
1022 do_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1023 struct mem_attrib *attrib)
1024 {
1025 int res;
1026 int done = 0;
1027 struct target_ops *t;
1028
1029 /* Zero length requests are ok and require no work. */
1030 if (len == 0)
1031 return 0;
1032
1033 /* to_xfer_memory is not guaranteed to set errno, even when it returns
1034 0. */
1035 errno = 0;
1036
1037 if (!write && trust_readonly)
1038 {
1039 struct section_table *secp;
1040 /* User-settable option, "trust-readonly-sections". If true,
1041 then memory from any SEC_READONLY bfd section may be read
1042 directly from the bfd file. */
1043 secp = target_section_by_addr (&current_target, memaddr);
1044 if (secp != NULL
1045 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1046 & SEC_READONLY))
1047 return xfer_memory (memaddr, myaddr, len, 0, attrib, &current_target);
1048 }
1049
1050 /* The quick case is that the top target can handle the transfer. */
1051 res = current_target.to_xfer_memory
1052 (memaddr, myaddr, len, write, attrib, &current_target);
1053
1054 /* If res <= 0 then we call it again in the loop. Ah well. */
1055 if (res <= 0)
1056 {
1057 for (t = target_stack; t != NULL; t = t->beneath)
1058 {
1059 if (!t->to_has_memory)
1060 continue;
1061
1062 res = t->to_xfer_memory (memaddr, myaddr, len, write, attrib, t);
1063 if (res > 0)
1064 break; /* Handled all or part of xfer */
1065 if (t->to_has_all_memory)
1066 break;
1067 }
1068
1069 if (res <= 0)
1070 return -1;
1071 }
1072
1073 return res;
1074 }
1075
1076
1077 /* Perform a memory transfer. Iterate until the entire region has
1078 been transfered.
1079
1080 Result is 0 or errno value. */
1081
1082 static int
1083 target_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write)
1084 {
1085 int res;
1086 int reg_len;
1087 struct mem_region *region;
1088
1089 /* Zero length requests are ok and require no work. */
1090 if (len == 0)
1091 {
1092 return 0;
1093 }
1094
1095 while (len > 0)
1096 {
1097 region = lookup_mem_region(memaddr);
1098 if (memaddr + len < region->hi)
1099 reg_len = len;
1100 else
1101 reg_len = region->hi - memaddr;
1102
1103 switch (region->attrib.mode)
1104 {
1105 case MEM_RO:
1106 if (write)
1107 return EIO;
1108 break;
1109
1110 case MEM_WO:
1111 if (!write)
1112 return EIO;
1113 break;
1114 }
1115
1116 while (reg_len > 0)
1117 {
1118 if (region->attrib.cache)
1119 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1120 reg_len, write);
1121 else
1122 res = do_xfer_memory (memaddr, myaddr, reg_len, write,
1123 &region->attrib);
1124
1125 if (res <= 0)
1126 {
1127 /* If this address is for nonexistent memory, read zeros
1128 if reading, or do nothing if writing. Return
1129 error. */
1130 if (!write)
1131 memset (myaddr, 0, len);
1132 if (errno == 0)
1133 return EIO;
1134 else
1135 return errno;
1136 }
1137
1138 memaddr += res;
1139 myaddr += res;
1140 len -= res;
1141 reg_len -= res;
1142 }
1143 }
1144
1145 return 0; /* We managed to cover it all somehow. */
1146 }
1147
1148
1149 /* Perform a partial memory transfer.
1150
1151 Result is -1 on error, or the number of bytes transfered. */
1152
1153 static int
1154 target_xfer_memory_partial (CORE_ADDR memaddr, char *myaddr, int len,
1155 int write_p, int *err)
1156 {
1157 int res;
1158 int reg_len;
1159 struct mem_region *region;
1160
1161 /* Zero length requests are ok and require no work. */
1162 if (len == 0)
1163 {
1164 *err = 0;
1165 return 0;
1166 }
1167
1168 region = lookup_mem_region(memaddr);
1169 if (memaddr + len < region->hi)
1170 reg_len = len;
1171 else
1172 reg_len = region->hi - memaddr;
1173
1174 switch (region->attrib.mode)
1175 {
1176 case MEM_RO:
1177 if (write_p)
1178 {
1179 *err = EIO;
1180 return -1;
1181 }
1182 break;
1183
1184 case MEM_WO:
1185 if (write_p)
1186 {
1187 *err = EIO;
1188 return -1;
1189 }
1190 break;
1191 }
1192
1193 if (region->attrib.cache)
1194 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1195 reg_len, write_p);
1196 else
1197 res = do_xfer_memory (memaddr, myaddr, reg_len, write_p,
1198 &region->attrib);
1199
1200 if (res <= 0)
1201 {
1202 if (errno != 0)
1203 *err = errno;
1204 else
1205 *err = EIO;
1206
1207 return -1;
1208 }
1209
1210 *err = 0;
1211 return res;
1212 }
1213
1214 int
1215 target_read_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1216 {
1217 if (target_xfer_partial_p ())
1218 return target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY, NULL,
1219 buf, NULL, memaddr, len);
1220 else
1221 return target_xfer_memory_partial (memaddr, buf, len, 0, err);
1222 }
1223
1224 int
1225 target_write_memory_partial (CORE_ADDR memaddr, char *buf, int len, int *err)
1226 {
1227 if (target_xfer_partial_p ())
1228 return target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY, NULL,
1229 NULL, buf, memaddr, len);
1230 else
1231 return target_xfer_memory_partial (memaddr, buf, len, 1, err);
1232 }
1233
1234 /* More generic transfers. */
1235
1236 static LONGEST
1237 default_xfer_partial (struct target_ops *ops, enum target_object object,
1238 const char *annex, void *readbuf,
1239 const void *writebuf, ULONGEST offset, LONGEST len)
1240 {
1241 if (object == TARGET_OBJECT_MEMORY
1242 && ops->to_xfer_memory != NULL)
1243 /* If available, fall back to the target's "to_xfer_memory"
1244 method. */
1245 {
1246 int xfered = -1;
1247 errno = 0;
1248 if (writebuf != NULL)
1249 {
1250 void *buffer = xmalloc (len);
1251 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1252 memcpy (buffer, writebuf, len);
1253 xfered = ops->to_xfer_memory (offset, buffer, len, 1/*write*/, NULL,
1254 ops);
1255 do_cleanups (cleanup);
1256 }
1257 if (readbuf != NULL)
1258 xfered = ops->to_xfer_memory (offset, readbuf, len, 0/*read*/, NULL,
1259 ops);
1260 if (xfered > 0)
1261 return xfered;
1262 else if (xfered == 0 && errno == 0)
1263 /* "to_xfer_memory" uses 0, cross checked against ERRNO as one
1264 indication of an error. */
1265 return 0;
1266 else
1267 return -1;
1268 }
1269 else if (ops->beneath != NULL)
1270 return target_xfer_partial (ops->beneath, object, annex,
1271 readbuf, writebuf, offset, len);
1272 else
1273 return -1;
1274 }
1275
1276 /* Target vector read/write partial wrapper functions.
1277
1278 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1279 (inbuf, outbuf)", instead of separate read/write methods, make life
1280 easier. */
1281
1282 LONGEST
1283 target_read_partial (struct target_ops *ops,
1284 enum target_object object,
1285 const char *annex, void *buf,
1286 ULONGEST offset, LONGEST len)
1287 {
1288 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1289 }
1290
1291 LONGEST
1292 target_write_partial (struct target_ops *ops,
1293 enum target_object object,
1294 const char *annex, const void *buf,
1295 ULONGEST offset, LONGEST len)
1296 {
1297 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1298 }
1299
1300 /* Wrappers to perform the full transfer. */
1301 LONGEST
1302 target_read (struct target_ops *ops,
1303 enum target_object object,
1304 const char *annex, void *buf,
1305 ULONGEST offset, LONGEST len)
1306 {
1307 LONGEST xfered = 0;
1308 while (xfered < len)
1309 {
1310 LONGEST xfer = target_read_partial (ops, object, annex,
1311 (bfd_byte *) buf + xfered,
1312 offset + xfered, len - xfered);
1313 /* Call an observer, notifying them of the xfer progress? */
1314 if (xfer <= 0)
1315 /* Call memory_error? */
1316 return -1;
1317 xfered += xfer;
1318 QUIT;
1319 }
1320 return len;
1321 }
1322
1323 LONGEST
1324 target_write (struct target_ops *ops,
1325 enum target_object object,
1326 const char *annex, const void *buf,
1327 ULONGEST offset, LONGEST len)
1328 {
1329 LONGEST xfered = 0;
1330 while (xfered < len)
1331 {
1332 LONGEST xfer = target_write_partial (ops, object, annex,
1333 (bfd_byte *) buf + xfered,
1334 offset + xfered, len - xfered);
1335 /* Call an observer, notifying them of the xfer progress? */
1336 if (xfer <= 0)
1337 /* Call memory_error? */
1338 return -1;
1339 xfered += xfer;
1340 QUIT;
1341 }
1342 return len;
1343 }
1344
1345 /* Memory transfer methods. */
1346
1347 void
1348 get_target_memory (struct target_ops *ops, CORE_ADDR addr, void *buf,
1349 LONGEST len)
1350 {
1351 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1352 != len)
1353 memory_error (EIO, addr);
1354 }
1355
1356 ULONGEST
1357 get_target_memory_unsigned (struct target_ops *ops,
1358 CORE_ADDR addr, int len)
1359 {
1360 char buf[sizeof (ULONGEST)];
1361
1362 gdb_assert (len <= sizeof (buf));
1363 get_target_memory (ops, addr, buf, len);
1364 return extract_unsigned_integer (buf, len);
1365 }
1366
1367 static void
1368 target_info (char *args, int from_tty)
1369 {
1370 struct target_ops *t;
1371 int has_all_mem = 0;
1372
1373 if (symfile_objfile != NULL)
1374 printf_unfiltered ("Symbols from \"%s\".\n", symfile_objfile->name);
1375
1376 for (t = target_stack; t != NULL; t = t->beneath)
1377 {
1378 if (!t->to_has_memory)
1379 continue;
1380
1381 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1382 continue;
1383 if (has_all_mem)
1384 printf_unfiltered ("\tWhile running this, GDB does not access memory from...\n");
1385 printf_unfiltered ("%s:\n", t->to_longname);
1386 (t->to_files_info) (t);
1387 has_all_mem = t->to_has_all_memory;
1388 }
1389 }
1390
1391 /* This is to be called by the open routine before it does
1392 anything. */
1393
1394 void
1395 target_preopen (int from_tty)
1396 {
1397 dont_repeat ();
1398
1399 if (target_has_execution)
1400 {
1401 if (!from_tty
1402 || query ("A program is being debugged already. Kill it? "))
1403 target_kill ();
1404 else
1405 error ("Program not killed.");
1406 }
1407
1408 /* Calling target_kill may remove the target from the stack. But if
1409 it doesn't (which seems like a win for UDI), remove it now. */
1410
1411 if (target_has_execution)
1412 pop_target ();
1413 }
1414
1415 /* Detach a target after doing deferred register stores. */
1416
1417 void
1418 target_detach (char *args, int from_tty)
1419 {
1420 (current_target.to_detach) (args, from_tty);
1421 }
1422
1423 void
1424 target_disconnect (char *args, int from_tty)
1425 {
1426 (current_target.to_disconnect) (args, from_tty);
1427 }
1428
1429 void
1430 target_link (char *modname, CORE_ADDR *t_reloc)
1431 {
1432 if (DEPRECATED_STREQ (current_target.to_shortname, "rombug"))
1433 {
1434 (current_target.to_lookup_symbol) (modname, t_reloc);
1435 if (*t_reloc == 0)
1436 error ("Unable to link to %s and get relocation in rombug", modname);
1437 }
1438 else
1439 *t_reloc = (CORE_ADDR) -1;
1440 }
1441
1442 int
1443 target_async_mask (int mask)
1444 {
1445 int saved_async_masked_status = target_async_mask_value;
1446 target_async_mask_value = mask;
1447 return saved_async_masked_status;
1448 }
1449
1450 /* Look through the list of possible targets for a target that can
1451 execute a run or attach command without any other data. This is
1452 used to locate the default process stratum.
1453
1454 Result is always valid (error() is called for errors). */
1455
1456 static struct target_ops *
1457 find_default_run_target (char *do_mesg)
1458 {
1459 struct target_ops **t;
1460 struct target_ops *runable = NULL;
1461 int count;
1462
1463 count = 0;
1464
1465 for (t = target_structs; t < target_structs + target_struct_size;
1466 ++t)
1467 {
1468 if ((*t)->to_can_run && target_can_run (*t))
1469 {
1470 runable = *t;
1471 ++count;
1472 }
1473 }
1474
1475 if (count != 1)
1476 error ("Don't know how to %s. Try \"help target\".", do_mesg);
1477
1478 return runable;
1479 }
1480
1481 void
1482 find_default_attach (char *args, int from_tty)
1483 {
1484 struct target_ops *t;
1485
1486 t = find_default_run_target ("attach");
1487 (t->to_attach) (args, from_tty);
1488 return;
1489 }
1490
1491 void
1492 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1493 int from_tty)
1494 {
1495 struct target_ops *t;
1496
1497 t = find_default_run_target ("run");
1498 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1499 return;
1500 }
1501
1502 static int
1503 default_region_size_ok_for_hw_watchpoint (int byte_count)
1504 {
1505 return (byte_count <= TYPE_LENGTH (builtin_type_void_data_ptr));
1506 }
1507
1508 static int
1509 return_zero (void)
1510 {
1511 return 0;
1512 }
1513
1514 static int
1515 return_one (void)
1516 {
1517 return 1;
1518 }
1519
1520 static int
1521 return_minus_one (void)
1522 {
1523 return -1;
1524 }
1525
1526 /*
1527 * Resize the to_sections pointer. Also make sure that anyone that
1528 * was holding on to an old value of it gets updated.
1529 * Returns the old size.
1530 */
1531
1532 int
1533 target_resize_to_sections (struct target_ops *target, int num_added)
1534 {
1535 struct target_ops **t;
1536 struct section_table *old_value;
1537 int old_count;
1538
1539 old_value = target->to_sections;
1540
1541 if (target->to_sections)
1542 {
1543 old_count = target->to_sections_end - target->to_sections;
1544 target->to_sections = (struct section_table *)
1545 xrealloc ((char *) target->to_sections,
1546 (sizeof (struct section_table)) * (num_added + old_count));
1547 }
1548 else
1549 {
1550 old_count = 0;
1551 target->to_sections = (struct section_table *)
1552 xmalloc ((sizeof (struct section_table)) * num_added);
1553 }
1554 target->to_sections_end = target->to_sections + (num_added + old_count);
1555
1556 /* Check to see if anyone else was pointing to this structure.
1557 If old_value was null, then no one was. */
1558
1559 if (old_value)
1560 {
1561 for (t = target_structs; t < target_structs + target_struct_size;
1562 ++t)
1563 {
1564 if ((*t)->to_sections == old_value)
1565 {
1566 (*t)->to_sections = target->to_sections;
1567 (*t)->to_sections_end = target->to_sections_end;
1568 }
1569 }
1570 /* There is a flattened view of the target stack in current_target,
1571 so its to_sections pointer might also need updating. */
1572 if (current_target.to_sections == old_value)
1573 {
1574 current_target.to_sections = target->to_sections;
1575 current_target.to_sections_end = target->to_sections_end;
1576 }
1577 }
1578
1579 return old_count;
1580
1581 }
1582
1583 /* Remove all target sections taken from ABFD.
1584
1585 Scan the current target stack for targets whose section tables
1586 refer to sections from BFD, and remove those sections. We use this
1587 when we notice that the inferior has unloaded a shared object, for
1588 example. */
1589 void
1590 remove_target_sections (bfd *abfd)
1591 {
1592 struct target_ops **t;
1593
1594 for (t = target_structs; t < target_structs + target_struct_size; t++)
1595 {
1596 struct section_table *src, *dest;
1597
1598 dest = (*t)->to_sections;
1599 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1600 if (src->bfd != abfd)
1601 {
1602 /* Keep this section. */
1603 if (dest < src) *dest = *src;
1604 dest++;
1605 }
1606
1607 /* If we've dropped any sections, resize the section table. */
1608 if (dest < src)
1609 target_resize_to_sections (*t, dest - src);
1610 }
1611 }
1612
1613
1614
1615
1616 /* Find a single runnable target in the stack and return it. If for
1617 some reason there is more than one, return NULL. */
1618
1619 struct target_ops *
1620 find_run_target (void)
1621 {
1622 struct target_ops **t;
1623 struct target_ops *runable = NULL;
1624 int count;
1625
1626 count = 0;
1627
1628 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1629 {
1630 if ((*t)->to_can_run && target_can_run (*t))
1631 {
1632 runable = *t;
1633 ++count;
1634 }
1635 }
1636
1637 return (count == 1 ? runable : NULL);
1638 }
1639
1640 /* Find a single core_stratum target in the list of targets and return it.
1641 If for some reason there is more than one, return NULL. */
1642
1643 struct target_ops *
1644 find_core_target (void)
1645 {
1646 struct target_ops **t;
1647 struct target_ops *runable = NULL;
1648 int count;
1649
1650 count = 0;
1651
1652 for (t = target_structs; t < target_structs + target_struct_size;
1653 ++t)
1654 {
1655 if ((*t)->to_stratum == core_stratum)
1656 {
1657 runable = *t;
1658 ++count;
1659 }
1660 }
1661
1662 return (count == 1 ? runable : NULL);
1663 }
1664
1665 /*
1666 * Find the next target down the stack from the specified target.
1667 */
1668
1669 struct target_ops *
1670 find_target_beneath (struct target_ops *t)
1671 {
1672 return t->beneath;
1673 }
1674
1675 \f
1676 /* The inferior process has died. Long live the inferior! */
1677
1678 void
1679 generic_mourn_inferior (void)
1680 {
1681 extern int show_breakpoint_hit_counts;
1682
1683 inferior_ptid = null_ptid;
1684 attach_flag = 0;
1685 breakpoint_init_inferior (inf_exited);
1686 registers_changed ();
1687
1688 reopen_exec_file ();
1689 reinit_frame_cache ();
1690
1691 /* It is confusing to the user for ignore counts to stick around
1692 from previous runs of the inferior. So clear them. */
1693 /* However, it is more confusing for the ignore counts to disappear when
1694 using hit counts. So don't clear them if we're counting hits. */
1695 if (!show_breakpoint_hit_counts)
1696 breakpoint_clear_ignore_counts ();
1697
1698 if (deprecated_detach_hook)
1699 deprecated_detach_hook ();
1700 }
1701 \f
1702 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1703 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1704 translation of that in OURSTATUS. */
1705 void
1706 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1707 {
1708 #ifdef CHILD_SPECIAL_WAITSTATUS
1709 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1710 if it wants to deal with hoststatus. */
1711 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1712 return;
1713 #endif
1714
1715 if (WIFEXITED (hoststatus))
1716 {
1717 ourstatus->kind = TARGET_WAITKIND_EXITED;
1718 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1719 }
1720 else if (!WIFSTOPPED (hoststatus))
1721 {
1722 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1723 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1724 }
1725 else
1726 {
1727 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1728 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1729 }
1730 }
1731 \f
1732 /* Returns zero to leave the inferior alone, one to interrupt it. */
1733 int (*target_activity_function) (void);
1734 int target_activity_fd;
1735 \f
1736 /* Convert a normal process ID to a string. Returns the string in a static
1737 buffer. */
1738
1739 char *
1740 normal_pid_to_str (ptid_t ptid)
1741 {
1742 static char buf[30];
1743
1744 sprintf (buf, "process %d", PIDGET (ptid));
1745 return buf;
1746 }
1747
1748 /* Error-catcher for target_find_memory_regions */
1749 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1750 {
1751 error ("No target.");
1752 return 0;
1753 }
1754
1755 /* Error-catcher for target_make_corefile_notes */
1756 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1757 {
1758 error ("No target.");
1759 return NULL;
1760 }
1761
1762 /* Set up the handful of non-empty slots needed by the dummy target
1763 vector. */
1764
1765 static void
1766 init_dummy_target (void)
1767 {
1768 dummy_target.to_shortname = "None";
1769 dummy_target.to_longname = "None";
1770 dummy_target.to_doc = "";
1771 dummy_target.to_attach = find_default_attach;
1772 dummy_target.to_create_inferior = find_default_create_inferior;
1773 dummy_target.to_pid_to_str = normal_pid_to_str;
1774 dummy_target.to_stratum = dummy_stratum;
1775 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1776 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1777 dummy_target.to_xfer_partial = default_xfer_partial;
1778 dummy_target.to_magic = OPS_MAGIC;
1779 }
1780 \f
1781
1782 static struct target_ops debug_target;
1783
1784 static void
1785 debug_to_open (char *args, int from_tty)
1786 {
1787 debug_target.to_open (args, from_tty);
1788
1789 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1790 }
1791
1792 static void
1793 debug_to_close (int quitting)
1794 {
1795 target_close (&debug_target, quitting);
1796 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1797 }
1798
1799 void
1800 target_close (struct target_ops *targ, int quitting)
1801 {
1802 if (targ->to_xclose != NULL)
1803 targ->to_xclose (targ, quitting);
1804 else if (targ->to_close != NULL)
1805 targ->to_close (quitting);
1806 }
1807
1808 static void
1809 debug_to_attach (char *args, int from_tty)
1810 {
1811 debug_target.to_attach (args, from_tty);
1812
1813 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1814 }
1815
1816
1817 static void
1818 debug_to_post_attach (int pid)
1819 {
1820 debug_target.to_post_attach (pid);
1821
1822 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
1823 }
1824
1825 static void
1826 debug_to_detach (char *args, int from_tty)
1827 {
1828 debug_target.to_detach (args, from_tty);
1829
1830 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
1831 }
1832
1833 static void
1834 debug_to_disconnect (char *args, int from_tty)
1835 {
1836 debug_target.to_disconnect (args, from_tty);
1837
1838 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1839 args, from_tty);
1840 }
1841
1842 static void
1843 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
1844 {
1845 debug_target.to_resume (ptid, step, siggnal);
1846
1847 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
1848 step ? "step" : "continue",
1849 target_signal_to_name (siggnal));
1850 }
1851
1852 static ptid_t
1853 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
1854 {
1855 ptid_t retval;
1856
1857 retval = debug_target.to_wait (ptid, status);
1858
1859 fprintf_unfiltered (gdb_stdlog,
1860 "target_wait (%d, status) = %d, ", PIDGET (ptid),
1861 PIDGET (retval));
1862 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
1863 switch (status->kind)
1864 {
1865 case TARGET_WAITKIND_EXITED:
1866 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
1867 status->value.integer);
1868 break;
1869 case TARGET_WAITKIND_STOPPED:
1870 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
1871 target_signal_to_name (status->value.sig));
1872 break;
1873 case TARGET_WAITKIND_SIGNALLED:
1874 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
1875 target_signal_to_name (status->value.sig));
1876 break;
1877 case TARGET_WAITKIND_LOADED:
1878 fprintf_unfiltered (gdb_stdlog, "loaded\n");
1879 break;
1880 case TARGET_WAITKIND_FORKED:
1881 fprintf_unfiltered (gdb_stdlog, "forked\n");
1882 break;
1883 case TARGET_WAITKIND_VFORKED:
1884 fprintf_unfiltered (gdb_stdlog, "vforked\n");
1885 break;
1886 case TARGET_WAITKIND_EXECD:
1887 fprintf_unfiltered (gdb_stdlog, "execd\n");
1888 break;
1889 case TARGET_WAITKIND_SPURIOUS:
1890 fprintf_unfiltered (gdb_stdlog, "spurious\n");
1891 break;
1892 default:
1893 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
1894 break;
1895 }
1896
1897 return retval;
1898 }
1899
1900 static void
1901 debug_print_register (const char * func, int regno)
1902 {
1903 fprintf_unfiltered (gdb_stdlog, "%s ", func);
1904 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
1905 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
1906 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
1907 else
1908 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
1909 if (regno >= 0)
1910 {
1911 int i;
1912 unsigned char buf[MAX_REGISTER_SIZE];
1913 deprecated_read_register_gen (regno, buf);
1914 fprintf_unfiltered (gdb_stdlog, " = ");
1915 for (i = 0; i < register_size (current_gdbarch, regno); i++)
1916 {
1917 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1918 }
1919 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
1920 {
1921 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
1922 paddr_nz (read_register (regno)),
1923 paddr_d (read_register (regno)));
1924 }
1925 }
1926 fprintf_unfiltered (gdb_stdlog, "\n");
1927 }
1928
1929 static void
1930 debug_to_fetch_registers (int regno)
1931 {
1932 debug_target.to_fetch_registers (regno);
1933 debug_print_register ("target_fetch_registers", regno);
1934 }
1935
1936 static void
1937 debug_to_store_registers (int regno)
1938 {
1939 debug_target.to_store_registers (regno);
1940 debug_print_register ("target_store_registers", regno);
1941 fprintf_unfiltered (gdb_stdlog, "\n");
1942 }
1943
1944 static void
1945 debug_to_prepare_to_store (void)
1946 {
1947 debug_target.to_prepare_to_store ();
1948
1949 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
1950 }
1951
1952 static int
1953 debug_to_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1954 struct mem_attrib *attrib,
1955 struct target_ops *target)
1956 {
1957 int retval;
1958
1959 retval = debug_target.to_xfer_memory (memaddr, myaddr, len, write,
1960 attrib, target);
1961
1962 fprintf_unfiltered (gdb_stdlog,
1963 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
1964 (unsigned int) memaddr, /* possable truncate long long */
1965 len, write ? "write" : "read", retval);
1966
1967 if (retval > 0)
1968 {
1969 int i;
1970
1971 fputs_unfiltered (", bytes =", gdb_stdlog);
1972 for (i = 0; i < retval; i++)
1973 {
1974 if ((((long) &(myaddr[i])) & 0xf) == 0)
1975 {
1976 if (targetdebug < 2 && i > 0)
1977 {
1978 fprintf_unfiltered (gdb_stdlog, " ...");
1979 break;
1980 }
1981 fprintf_unfiltered (gdb_stdlog, "\n");
1982 }
1983
1984 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1985 }
1986 }
1987
1988 fputc_unfiltered ('\n', gdb_stdlog);
1989
1990 return retval;
1991 }
1992
1993 static void
1994 debug_to_files_info (struct target_ops *target)
1995 {
1996 debug_target.to_files_info (target);
1997
1998 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
1999 }
2000
2001 static int
2002 debug_to_insert_breakpoint (CORE_ADDR addr, char *save)
2003 {
2004 int retval;
2005
2006 retval = debug_target.to_insert_breakpoint (addr, save);
2007
2008 fprintf_unfiltered (gdb_stdlog,
2009 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2010 (unsigned long) addr,
2011 (unsigned long) retval);
2012 return retval;
2013 }
2014
2015 static int
2016 debug_to_remove_breakpoint (CORE_ADDR addr, char *save)
2017 {
2018 int retval;
2019
2020 retval = debug_target.to_remove_breakpoint (addr, save);
2021
2022 fprintf_unfiltered (gdb_stdlog,
2023 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2024 (unsigned long) addr,
2025 (unsigned long) retval);
2026 return retval;
2027 }
2028
2029 static int
2030 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2031 {
2032 int retval;
2033
2034 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2035
2036 fprintf_unfiltered (gdb_stdlog,
2037 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2038 (unsigned long) type,
2039 (unsigned long) cnt,
2040 (unsigned long) from_tty,
2041 (unsigned long) retval);
2042 return retval;
2043 }
2044
2045 static int
2046 debug_to_region_size_ok_for_hw_watchpoint (int byte_count)
2047 {
2048 CORE_ADDR retval;
2049
2050 retval = debug_target.to_region_size_ok_for_hw_watchpoint (byte_count);
2051
2052 fprintf_unfiltered (gdb_stdlog,
2053 "TARGET_REGION_SIZE_OK_FOR_HW_WATCHPOINT (%ld) = 0x%lx\n",
2054 (unsigned long) byte_count,
2055 (unsigned long) retval);
2056 return retval;
2057 }
2058
2059 static int
2060 debug_to_stopped_by_watchpoint (void)
2061 {
2062 int retval;
2063
2064 retval = debug_target.to_stopped_by_watchpoint ();
2065
2066 fprintf_unfiltered (gdb_stdlog,
2067 "STOPPED_BY_WATCHPOINT () = %ld\n",
2068 (unsigned long) retval);
2069 return retval;
2070 }
2071
2072 static CORE_ADDR
2073 debug_to_stopped_data_address (void)
2074 {
2075 CORE_ADDR retval;
2076
2077 retval = debug_target.to_stopped_data_address ();
2078
2079 fprintf_unfiltered (gdb_stdlog,
2080 "target_stopped_data_address () = 0x%lx\n",
2081 (unsigned long) retval);
2082 return retval;
2083 }
2084
2085 static int
2086 debug_to_insert_hw_breakpoint (CORE_ADDR addr, char *save)
2087 {
2088 int retval;
2089
2090 retval = debug_target.to_insert_hw_breakpoint (addr, save);
2091
2092 fprintf_unfiltered (gdb_stdlog,
2093 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2094 (unsigned long) addr,
2095 (unsigned long) retval);
2096 return retval;
2097 }
2098
2099 static int
2100 debug_to_remove_hw_breakpoint (CORE_ADDR addr, char *save)
2101 {
2102 int retval;
2103
2104 retval = debug_target.to_remove_hw_breakpoint (addr, save);
2105
2106 fprintf_unfiltered (gdb_stdlog,
2107 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2108 (unsigned long) addr,
2109 (unsigned long) retval);
2110 return retval;
2111 }
2112
2113 static int
2114 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2115 {
2116 int retval;
2117
2118 retval = debug_target.to_insert_watchpoint (addr, len, type);
2119
2120 fprintf_unfiltered (gdb_stdlog,
2121 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2122 (unsigned long) addr, len, type, (unsigned long) retval);
2123 return retval;
2124 }
2125
2126 static int
2127 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2128 {
2129 int retval;
2130
2131 retval = debug_target.to_insert_watchpoint (addr, len, type);
2132
2133 fprintf_unfiltered (gdb_stdlog,
2134 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2135 (unsigned long) addr, len, type, (unsigned long) retval);
2136 return retval;
2137 }
2138
2139 static void
2140 debug_to_terminal_init (void)
2141 {
2142 debug_target.to_terminal_init ();
2143
2144 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2145 }
2146
2147 static void
2148 debug_to_terminal_inferior (void)
2149 {
2150 debug_target.to_terminal_inferior ();
2151
2152 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2153 }
2154
2155 static void
2156 debug_to_terminal_ours_for_output (void)
2157 {
2158 debug_target.to_terminal_ours_for_output ();
2159
2160 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2161 }
2162
2163 static void
2164 debug_to_terminal_ours (void)
2165 {
2166 debug_target.to_terminal_ours ();
2167
2168 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2169 }
2170
2171 static void
2172 debug_to_terminal_save_ours (void)
2173 {
2174 debug_target.to_terminal_save_ours ();
2175
2176 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2177 }
2178
2179 static void
2180 debug_to_terminal_info (char *arg, int from_tty)
2181 {
2182 debug_target.to_terminal_info (arg, from_tty);
2183
2184 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2185 from_tty);
2186 }
2187
2188 static void
2189 debug_to_kill (void)
2190 {
2191 debug_target.to_kill ();
2192
2193 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2194 }
2195
2196 static void
2197 debug_to_load (char *args, int from_tty)
2198 {
2199 debug_target.to_load (args, from_tty);
2200
2201 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2202 }
2203
2204 static int
2205 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2206 {
2207 int retval;
2208
2209 retval = debug_target.to_lookup_symbol (name, addrp);
2210
2211 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2212
2213 return retval;
2214 }
2215
2216 static void
2217 debug_to_create_inferior (char *exec_file, char *args, char **env,
2218 int from_tty)
2219 {
2220 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2221
2222 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2223 exec_file, args, from_tty);
2224 }
2225
2226 static void
2227 debug_to_post_startup_inferior (ptid_t ptid)
2228 {
2229 debug_target.to_post_startup_inferior (ptid);
2230
2231 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2232 PIDGET (ptid));
2233 }
2234
2235 static void
2236 debug_to_acknowledge_created_inferior (int pid)
2237 {
2238 debug_target.to_acknowledge_created_inferior (pid);
2239
2240 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2241 pid);
2242 }
2243
2244 static int
2245 debug_to_insert_fork_catchpoint (int pid)
2246 {
2247 int retval;
2248
2249 retval = debug_target.to_insert_fork_catchpoint (pid);
2250
2251 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
2252 pid, retval);
2253
2254 return retval;
2255 }
2256
2257 static int
2258 debug_to_remove_fork_catchpoint (int pid)
2259 {
2260 int retval;
2261
2262 retval = debug_target.to_remove_fork_catchpoint (pid);
2263
2264 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2265 pid, retval);
2266
2267 return retval;
2268 }
2269
2270 static int
2271 debug_to_insert_vfork_catchpoint (int pid)
2272 {
2273 int retval;
2274
2275 retval = debug_target.to_insert_vfork_catchpoint (pid);
2276
2277 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)= %d\n",
2278 pid, retval);
2279
2280 return retval;
2281 }
2282
2283 static int
2284 debug_to_remove_vfork_catchpoint (int pid)
2285 {
2286 int retval;
2287
2288 retval = debug_target.to_remove_vfork_catchpoint (pid);
2289
2290 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2291 pid, retval);
2292
2293 return retval;
2294 }
2295
2296 static int
2297 debug_to_follow_fork (int follow_child)
2298 {
2299 int retval = debug_target.to_follow_fork (follow_child);
2300
2301 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
2302 follow_child, retval);
2303
2304 return retval;
2305 }
2306
2307 static int
2308 debug_to_insert_exec_catchpoint (int pid)
2309 {
2310 int retval;
2311
2312 retval = debug_target.to_insert_exec_catchpoint (pid);
2313
2314 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
2315 pid, retval);
2316
2317 return retval;
2318 }
2319
2320 static int
2321 debug_to_remove_exec_catchpoint (int pid)
2322 {
2323 int retval;
2324
2325 retval = debug_target.to_remove_exec_catchpoint (pid);
2326
2327 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2328 pid, retval);
2329
2330 return retval;
2331 }
2332
2333 static int
2334 debug_to_reported_exec_events_per_exec_call (void)
2335 {
2336 int reported_exec_events;
2337
2338 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2339
2340 fprintf_unfiltered (gdb_stdlog,
2341 "target_reported_exec_events_per_exec_call () = %d\n",
2342 reported_exec_events);
2343
2344 return reported_exec_events;
2345 }
2346
2347 static int
2348 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2349 {
2350 int has_exited;
2351
2352 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2353
2354 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2355 pid, wait_status, *exit_status, has_exited);
2356
2357 return has_exited;
2358 }
2359
2360 static void
2361 debug_to_mourn_inferior (void)
2362 {
2363 debug_target.to_mourn_inferior ();
2364
2365 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2366 }
2367
2368 static int
2369 debug_to_can_run (void)
2370 {
2371 int retval;
2372
2373 retval = debug_target.to_can_run ();
2374
2375 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2376
2377 return retval;
2378 }
2379
2380 static void
2381 debug_to_notice_signals (ptid_t ptid)
2382 {
2383 debug_target.to_notice_signals (ptid);
2384
2385 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2386 PIDGET (ptid));
2387 }
2388
2389 static int
2390 debug_to_thread_alive (ptid_t ptid)
2391 {
2392 int retval;
2393
2394 retval = debug_target.to_thread_alive (ptid);
2395
2396 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2397 PIDGET (ptid), retval);
2398
2399 return retval;
2400 }
2401
2402 static void
2403 debug_to_find_new_threads (void)
2404 {
2405 debug_target.to_find_new_threads ();
2406
2407 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2408 }
2409
2410 static void
2411 debug_to_stop (void)
2412 {
2413 debug_target.to_stop ();
2414
2415 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2416 }
2417
2418 static void
2419 debug_to_rcmd (char *command,
2420 struct ui_file *outbuf)
2421 {
2422 debug_target.to_rcmd (command, outbuf);
2423 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2424 }
2425
2426 static struct symtab_and_line *
2427 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2428 {
2429 struct symtab_and_line *result;
2430 result = debug_target.to_enable_exception_callback (kind, enable);
2431 fprintf_unfiltered (gdb_stdlog,
2432 "target get_exception_callback_sal (%d, %d)\n",
2433 kind, enable);
2434 return result;
2435 }
2436
2437 static struct exception_event_record *
2438 debug_to_get_current_exception_event (void)
2439 {
2440 struct exception_event_record *result;
2441 result = debug_target.to_get_current_exception_event ();
2442 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2443 return result;
2444 }
2445
2446 static char *
2447 debug_to_pid_to_exec_file (int pid)
2448 {
2449 char *exec_file;
2450
2451 exec_file = debug_target.to_pid_to_exec_file (pid);
2452
2453 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2454 pid, exec_file);
2455
2456 return exec_file;
2457 }
2458
2459 static void
2460 setup_target_debug (void)
2461 {
2462 memcpy (&debug_target, &current_target, sizeof debug_target);
2463
2464 current_target.to_open = debug_to_open;
2465 current_target.to_close = debug_to_close;
2466 current_target.to_attach = debug_to_attach;
2467 current_target.to_post_attach = debug_to_post_attach;
2468 current_target.to_detach = debug_to_detach;
2469 current_target.to_disconnect = debug_to_disconnect;
2470 current_target.to_resume = debug_to_resume;
2471 current_target.to_wait = debug_to_wait;
2472 current_target.to_fetch_registers = debug_to_fetch_registers;
2473 current_target.to_store_registers = debug_to_store_registers;
2474 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2475 current_target.to_xfer_memory = debug_to_xfer_memory;
2476 current_target.to_files_info = debug_to_files_info;
2477 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2478 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2479 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2480 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2481 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2482 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2483 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2484 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2485 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2486 current_target.to_region_size_ok_for_hw_watchpoint = debug_to_region_size_ok_for_hw_watchpoint;
2487 current_target.to_terminal_init = debug_to_terminal_init;
2488 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2489 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2490 current_target.to_terminal_ours = debug_to_terminal_ours;
2491 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2492 current_target.to_terminal_info = debug_to_terminal_info;
2493 current_target.to_kill = debug_to_kill;
2494 current_target.to_load = debug_to_load;
2495 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2496 current_target.to_create_inferior = debug_to_create_inferior;
2497 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2498 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2499 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2500 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2501 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2502 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2503 current_target.to_follow_fork = debug_to_follow_fork;
2504 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2505 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2506 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2507 current_target.to_has_exited = debug_to_has_exited;
2508 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2509 current_target.to_can_run = debug_to_can_run;
2510 current_target.to_notice_signals = debug_to_notice_signals;
2511 current_target.to_thread_alive = debug_to_thread_alive;
2512 current_target.to_find_new_threads = debug_to_find_new_threads;
2513 current_target.to_stop = debug_to_stop;
2514 current_target.to_rcmd = debug_to_rcmd;
2515 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2516 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2517 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2518
2519 }
2520 \f
2521
2522 static char targ_desc[] =
2523 "Names of targets and files being debugged.\n\
2524 Shows the entire stack of targets currently in use (including the exec-file,\n\
2525 core-file, and process, if any), as well as the symbol file name.";
2526
2527 static void
2528 do_monitor_command (char *cmd,
2529 int from_tty)
2530 {
2531 if ((current_target.to_rcmd
2532 == (void (*) (char *, struct ui_file *)) tcomplain)
2533 || (current_target.to_rcmd == debug_to_rcmd
2534 && (debug_target.to_rcmd
2535 == (void (*) (char *, struct ui_file *)) tcomplain)))
2536 {
2537 error ("\"monitor\" command not supported by this target.\n");
2538 }
2539 target_rcmd (cmd, gdb_stdtarg);
2540 }
2541
2542 void
2543 initialize_targets (void)
2544 {
2545 init_dummy_target ();
2546 push_target (&dummy_target);
2547
2548 add_info ("target", target_info, targ_desc);
2549 add_info ("files", target_info, targ_desc);
2550
2551 deprecated_add_show_from_set
2552 (add_set_cmd ("target", class_maintenance, var_zinteger,
2553 (char *) &targetdebug,
2554 "Set target debugging.\n\
2555 When non-zero, target debugging is enabled. Higher numbers are more\n\
2556 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2557 command.", &setdebuglist),
2558 &showdebuglist);
2559
2560 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2561 &trust_readonly, "\
2562 Set mode for reading from readonly sections.", "\
2563 Show mode for reading from readonly sections.", "\
2564 When this mode is on, memory reads from readonly sections (such as .text)\n\
2565 will be read from the object file instead of from the target. This will\n\
2566 result in significant performance improvement for remote targets.", "\
2567 Mode for reading from readonly sections is %s.",
2568 NULL, NULL,
2569 &setlist, &showlist);
2570
2571 add_com ("monitor", class_obscure, do_monitor_command,
2572 "Send a command to the remote monitor (remote targets only).");
2573
2574 target_dcache = dcache_init ();
2575 }