]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
Various cleanups in target read/write code
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 void
470 target_terminal_inferior (void)
471 {
472 /* A background resume (``run&'') should leave GDB in control of the
473 terminal. Use target_can_async_p, not target_is_async_p, since at
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
477 return;
478
479 if (terminal_state == terminal_is_inferior)
480 return;
481
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
484 (*current_target.to_terminal_inferior) (&current_target);
485 terminal_state = terminal_is_inferior;
486 }
487
488 /* See target.h. */
489
490 void
491 target_terminal_ours (void)
492 {
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498 }
499
500 /* See target.h. */
501
502 void
503 target_terminal_ours_for_output (void)
504 {
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
509 }
510
511 /* See target.h. */
512
513 int
514 target_supports_terminal_ours (void)
515 {
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526 }
527
528 /* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531 static void
532 cleanup_restore_target_terminal (void *arg)
533 {
534 enum terminal_state *previous_state = arg;
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548 }
549
550 /* See target.h. */
551
552 struct cleanup *
553 make_cleanup_restore_target_terminal (void)
554 {
555 enum terminal_state *ts = xmalloc (sizeof (*ts));
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560 }
561
562 static void
563 tcomplain (void)
564 {
565 error (_("You can't do that when your target is `%s'"),
566 current_target.to_shortname);
567 }
568
569 void
570 noprocess (void)
571 {
572 error (_("You can't do that without a process to debug."));
573 }
574
575 static void
576 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
577 {
578 printf_unfiltered (_("No saved terminal information.\n"));
579 }
580
581 /* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
587 static ptid_t
588 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
589 {
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591 }
592
593 static enum exec_direction_kind
594 default_execution_direction (struct target_ops *self)
595 {
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602 to_execution_direction must be implemented for reverse async");
603 }
604
605 /* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
616
617 static void
618 update_current_target (void)
619 {
620 struct target_ops *t;
621
622 /* First, reset current's contents. */
623 memset (&current_target, 0, sizeof (current_target));
624
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
628 current_target.to_stratum = target_stack->to_stratum;
629
630 #define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
640 INHERIT (to_attach_no_wait, t);
641 INHERIT (to_have_steppable_watchpoint, t);
642 INHERIT (to_have_continuable_watchpoint, t);
643 INHERIT (to_has_thread_control, t);
644 }
645 #undef INHERIT
646
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
651
652 if (targetdebug)
653 setup_target_debug ();
654 }
655
656 /* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
663 void
664 push_target (struct target_ops *t)
665 {
666 struct target_ops **cur;
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
677 }
678
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
681 {
682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
683 break;
684 }
685
686 /* If there's already targets at this stratum, remove them. */
687 /* FIXME: cagney/2003-10-15: I think this should be popping all
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
694
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
697 target_close (tmp);
698 }
699
700 /* We have removed all targets in our stratum, now add the new one. */
701 t->beneath = (*cur);
702 (*cur) = t;
703
704 update_current_target ();
705 }
706
707 /* Remove a target_ops vector from the stack, wherever it may be.
708 Return how many times it was removed (0 or 1). */
709
710 int
711 unpush_target (struct target_ops *t)
712 {
713 struct target_ops **cur;
714 struct target_ops *tmp;
715
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
718 _("Attempt to unpush the dummy target"));
719
720 /* Look for the specified target. Note that we assume that a target
721 can only occur once in the target stack. */
722
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
728
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
731 if ((*cur) == NULL)
732 return 0;
733
734 /* Unchain the target. */
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
738
739 update_current_target ();
740
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
744 target_close (t);
745
746 return 1;
747 }
748
749 void
750 pop_all_targets_above (enum strata above_stratum)
751 {
752 while ((int) (current_target.to_stratum) > (int) above_stratum)
753 {
754 if (!unpush_target (target_stack))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target_stack->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 break;
762 }
763 }
764 }
765
766 void
767 pop_all_targets (void)
768 {
769 pop_all_targets_above (dummy_stratum);
770 }
771
772 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
773
774 int
775 target_is_pushed (struct target_ops *t)
776 {
777 struct target_ops *cur;
778
779 /* Check magic number. If wrong, it probably means someone changed
780 the struct definition, but not all the places that initialize one. */
781 if (t->to_magic != OPS_MAGIC)
782 {
783 fprintf_unfiltered (gdb_stderr,
784 "Magic number of %s target struct wrong\n",
785 t->to_shortname);
786 internal_error (__FILE__, __LINE__,
787 _("failed internal consistency check"));
788 }
789
790 for (cur = target_stack; cur != NULL; cur = cur->beneath)
791 if (cur == t)
792 return 1;
793
794 return 0;
795 }
796
797 /* Default implementation of to_get_thread_local_address. */
798
799 static void
800 generic_tls_error (void)
801 {
802 throw_error (TLS_GENERIC_ERROR,
803 _("Cannot find thread-local variables on this target"));
804 }
805
806 /* Using the objfile specified in OBJFILE, find the address for the
807 current thread's thread-local storage with offset OFFSET. */
808 CORE_ADDR
809 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
810 {
811 volatile CORE_ADDR addr = 0;
812 struct target_ops *target = &current_target;
813
814 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
815 {
816 ptid_t ptid = inferior_ptid;
817
818 TRY
819 {
820 CORE_ADDR lm_addr;
821
822 /* Fetch the load module address for this objfile. */
823 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
824 objfile);
825
826 addr = target->to_get_thread_local_address (target, ptid,
827 lm_addr, offset);
828 }
829 /* If an error occurred, print TLS related messages here. Otherwise,
830 throw the error to some higher catcher. */
831 CATCH (ex, RETURN_MASK_ALL)
832 {
833 int objfile_is_library = (objfile->flags & OBJF_SHARED);
834
835 switch (ex.error)
836 {
837 case TLS_NO_LIBRARY_SUPPORT_ERROR:
838 error (_("Cannot find thread-local variables "
839 "in this thread library."));
840 break;
841 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
842 if (objfile_is_library)
843 error (_("Cannot find shared library `%s' in dynamic"
844 " linker's load module list"), objfile_name (objfile));
845 else
846 error (_("Cannot find executable file `%s' in dynamic"
847 " linker's load module list"), objfile_name (objfile));
848 break;
849 case TLS_NOT_ALLOCATED_YET_ERROR:
850 if (objfile_is_library)
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the shared library `%s'\n"
854 "for %s"),
855 objfile_name (objfile), target_pid_to_str (ptid));
856 else
857 error (_("The inferior has not yet allocated storage for"
858 " thread-local variables in\n"
859 "the executable `%s'\n"
860 "for %s"),
861 objfile_name (objfile), target_pid_to_str (ptid));
862 break;
863 case TLS_GENERIC_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find thread-local storage for %s, "
866 "shared library %s:\n%s"),
867 target_pid_to_str (ptid),
868 objfile_name (objfile), ex.message);
869 else
870 error (_("Cannot find thread-local storage for %s, "
871 "executable file %s:\n%s"),
872 target_pid_to_str (ptid),
873 objfile_name (objfile), ex.message);
874 break;
875 default:
876 throw_exception (ex);
877 break;
878 }
879 }
880 END_CATCH
881 }
882 /* It wouldn't be wrong here to try a gdbarch method, too; finding
883 TLS is an ABI-specific thing. But we don't do that yet. */
884 else
885 error (_("Cannot find thread-local variables on this target"));
886
887 return addr;
888 }
889
890 const char *
891 target_xfer_status_to_string (enum target_xfer_status status)
892 {
893 #define CASE(X) case X: return #X
894 switch (status)
895 {
896 CASE(TARGET_XFER_E_IO);
897 CASE(TARGET_XFER_UNAVAILABLE);
898 default:
899 return "<unknown>";
900 }
901 #undef CASE
902 };
903
904
905 #undef MIN
906 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
907
908 /* target_read_string -- read a null terminated string, up to LEN bytes,
909 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
910 Set *STRING to a pointer to malloc'd memory containing the data; the caller
911 is responsible for freeing it. Return the number of bytes successfully
912 read. */
913
914 int
915 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
916 {
917 int tlen, offset, i;
918 gdb_byte buf[4];
919 int errcode = 0;
920 char *buffer;
921 int buffer_allocated;
922 char *bufptr;
923 unsigned int nbytes_read = 0;
924
925 gdb_assert (string);
926
927 /* Small for testing. */
928 buffer_allocated = 4;
929 buffer = xmalloc (buffer_allocated);
930 bufptr = buffer;
931
932 while (len > 0)
933 {
934 tlen = MIN (len, 4 - (memaddr & 3));
935 offset = memaddr & 3;
936
937 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
938 if (errcode != 0)
939 {
940 /* The transfer request might have crossed the boundary to an
941 unallocated region of memory. Retry the transfer, requesting
942 a single byte. */
943 tlen = 1;
944 offset = 0;
945 errcode = target_read_memory (memaddr, buf, 1);
946 if (errcode != 0)
947 goto done;
948 }
949
950 if (bufptr - buffer + tlen > buffer_allocated)
951 {
952 unsigned int bytes;
953
954 bytes = bufptr - buffer;
955 buffer_allocated *= 2;
956 buffer = xrealloc (buffer, buffer_allocated);
957 bufptr = buffer + bytes;
958 }
959
960 for (i = 0; i < tlen; i++)
961 {
962 *bufptr++ = buf[i + offset];
963 if (buf[i + offset] == '\000')
964 {
965 nbytes_read += i + 1;
966 goto done;
967 }
968 }
969
970 memaddr += tlen;
971 len -= tlen;
972 nbytes_read += tlen;
973 }
974 done:
975 *string = buffer;
976 if (errnop != NULL)
977 *errnop = errcode;
978 return nbytes_read;
979 }
980
981 struct target_section_table *
982 target_get_section_table (struct target_ops *target)
983 {
984 return (*target->to_get_section_table) (target);
985 }
986
987 /* Find a section containing ADDR. */
988
989 struct target_section *
990 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
991 {
992 struct target_section_table *table = target_get_section_table (target);
993 struct target_section *secp;
994
995 if (table == NULL)
996 return NULL;
997
998 for (secp = table->sections; secp < table->sections_end; secp++)
999 {
1000 if (addr >= secp->addr && addr < secp->endaddr)
1001 return secp;
1002 }
1003 return NULL;
1004 }
1005
1006
1007 /* Helper for the memory xfer routines. Checks the attributes of the
1008 memory region of MEMADDR against the read or write being attempted.
1009 If the access is permitted returns true, otherwise returns false.
1010 REGION_P is an optional output parameter. If not-NULL, it is
1011 filled with a pointer to the memory region of MEMADDR. REG_LEN
1012 returns LEN trimmed to the end of the region. This is how much the
1013 caller can continue requesting, if the access is permitted. A
1014 single xfer request must not straddle memory region boundaries. */
1015
1016 static int
1017 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1018 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1019 struct mem_region **region_p)
1020 {
1021 struct mem_region *region;
1022
1023 region = lookup_mem_region (memaddr);
1024
1025 if (region_p != NULL)
1026 *region_p = region;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return 0;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return 0;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return 0;
1048 }
1049
1050 /* region->hi == 0 means there's no upper bound. */
1051 if (memaddr + len < region->hi || region->hi == 0)
1052 *reg_len = len;
1053 else
1054 *reg_len = region->hi - memaddr;
1055
1056 return 1;
1057 }
1058
1059 /* Read memory from more than one valid target. A core file, for
1060 instance, could have some of memory but delegate other bits to
1061 the target below it. So, we must manually try all targets. */
1062
1063 static enum target_xfer_status
1064 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1065 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1066 ULONGEST *xfered_len)
1067 {
1068 enum target_xfer_status res;
1069
1070 do
1071 {
1072 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1073 readbuf, writebuf, memaddr, len,
1074 xfered_len);
1075 if (res == TARGET_XFER_OK)
1076 break;
1077
1078 /* Stop if the target reports that the memory is not available. */
1079 if (res == TARGET_XFER_UNAVAILABLE)
1080 break;
1081
1082 /* We want to continue past core files to executables, but not
1083 past a running target's memory. */
1084 if (ops->to_has_all_memory (ops))
1085 break;
1086
1087 ops = ops->beneath;
1088 }
1089 while (ops != NULL);
1090
1091 /* The cache works at the raw memory level. Make sure the cache
1092 gets updated with raw contents no matter what kind of memory
1093 object was originally being written. Note we do write-through
1094 first, so that if it fails, we don't write to the cache contents
1095 that never made it to the target. */
1096 if (writebuf != NULL
1097 && !ptid_equal (inferior_ptid, null_ptid)
1098 && target_dcache_init_p ()
1099 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1100 {
1101 DCACHE *dcache = target_dcache_get ();
1102
1103 /* Note that writing to an area of memory which wasn't present
1104 in the cache doesn't cause it to be loaded in. */
1105 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1106 }
1107
1108 return res;
1109 }
1110
1111 /* Perform a partial memory transfer.
1112 For docs see target.h, to_xfer_partial. */
1113
1114 static enum target_xfer_status
1115 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1116 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1117 ULONGEST len, ULONGEST *xfered_len)
1118 {
1119 enum target_xfer_status res;
1120 ULONGEST reg_len;
1121 struct mem_region *region;
1122 struct inferior *inf;
1123
1124 /* For accesses to unmapped overlay sections, read directly from
1125 files. Must do this first, as MEMADDR may need adjustment. */
1126 if (readbuf != NULL && overlay_debugging)
1127 {
1128 struct obj_section *section = find_pc_overlay (memaddr);
1129
1130 if (pc_in_unmapped_range (memaddr, section))
1131 {
1132 struct target_section_table *table
1133 = target_get_section_table (ops);
1134 const char *section_name = section->the_bfd_section->name;
1135
1136 memaddr = overlay_mapped_address (memaddr, section);
1137 return section_table_xfer_memory_partial (readbuf, writebuf,
1138 memaddr, len, xfered_len,
1139 table->sections,
1140 table->sections_end,
1141 section_name);
1142 }
1143 }
1144
1145 /* Try the executable files, if "trust-readonly-sections" is set. */
1146 if (readbuf != NULL && trust_readonly)
1147 {
1148 struct target_section *secp;
1149 struct target_section_table *table;
1150
1151 secp = target_section_by_addr (ops, memaddr);
1152 if (secp != NULL
1153 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1154 secp->the_bfd_section)
1155 & SEC_READONLY))
1156 {
1157 table = target_get_section_table (ops);
1158 return section_table_xfer_memory_partial (readbuf, writebuf,
1159 memaddr, len, xfered_len,
1160 table->sections,
1161 table->sections_end,
1162 NULL);
1163 }
1164 }
1165
1166 /* Try GDB's internal data cache. */
1167
1168 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1169 &region))
1170 return TARGET_XFER_E_IO;
1171
1172 if (!ptid_equal (inferior_ptid, null_ptid))
1173 inf = find_inferior_ptid (inferior_ptid);
1174 else
1175 inf = NULL;
1176
1177 if (inf != NULL
1178 && readbuf != NULL
1179 /* The dcache reads whole cache lines; that doesn't play well
1180 with reading from a trace buffer, because reading outside of
1181 the collected memory range fails. */
1182 && get_traceframe_number () == -1
1183 && (region->attrib.cache
1184 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1185 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1186 {
1187 DCACHE *dcache = target_dcache_get_or_init ();
1188
1189 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1190 reg_len, xfered_len);
1191 }
1192
1193 /* If none of those methods found the memory we wanted, fall back
1194 to a target partial transfer. Normally a single call to
1195 to_xfer_partial is enough; if it doesn't recognize an object
1196 it will call the to_xfer_partial of the next target down.
1197 But for memory this won't do. Memory is the only target
1198 object which can be read from more than one valid target.
1199 A core file, for instance, could have some of memory but
1200 delegate other bits to the target below it. So, we must
1201 manually try all targets. */
1202
1203 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1204 xfered_len);
1205
1206 /* If we still haven't got anything, return the last error. We
1207 give up. */
1208 return res;
1209 }
1210
1211 /* Perform a partial memory transfer. For docs see target.h,
1212 to_xfer_partial. */
1213
1214 static enum target_xfer_status
1215 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1216 gdb_byte *readbuf, const gdb_byte *writebuf,
1217 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1218 {
1219 enum target_xfer_status res;
1220
1221 /* Zero length requests are ok and require no work. */
1222 if (len == 0)
1223 return TARGET_XFER_EOF;
1224
1225 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1226 breakpoint insns, thus hiding out from higher layers whether
1227 there are software breakpoints inserted in the code stream. */
1228 if (readbuf != NULL)
1229 {
1230 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1231 xfered_len);
1232
1233 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1234 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1235 }
1236 else
1237 {
1238 void *buf;
1239 struct cleanup *old_chain;
1240
1241 /* A large write request is likely to be partially satisfied
1242 by memory_xfer_partial_1. We will continually malloc
1243 and free a copy of the entire write request for breakpoint
1244 shadow handling even though we only end up writing a small
1245 subset of it. Cap writes to 4KB to mitigate this. */
1246 len = min (4096, len);
1247
1248 buf = xmalloc (len);
1249 old_chain = make_cleanup (xfree, buf);
1250 memcpy (buf, writebuf, len);
1251
1252 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1253 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1254 xfered_len);
1255
1256 do_cleanups (old_chain);
1257 }
1258
1259 return res;
1260 }
1261
1262 static void
1263 restore_show_memory_breakpoints (void *arg)
1264 {
1265 show_memory_breakpoints = (uintptr_t) arg;
1266 }
1267
1268 struct cleanup *
1269 make_show_memory_breakpoints_cleanup (int show)
1270 {
1271 int current = show_memory_breakpoints;
1272
1273 show_memory_breakpoints = show;
1274 return make_cleanup (restore_show_memory_breakpoints,
1275 (void *) (uintptr_t) current);
1276 }
1277
1278 /* For docs see target.h, to_xfer_partial. */
1279
1280 enum target_xfer_status
1281 target_xfer_partial (struct target_ops *ops,
1282 enum target_object object, const char *annex,
1283 gdb_byte *readbuf, const gdb_byte *writebuf,
1284 ULONGEST offset, ULONGEST len,
1285 ULONGEST *xfered_len)
1286 {
1287 enum target_xfer_status retval;
1288
1289 gdb_assert (ops->to_xfer_partial != NULL);
1290
1291 /* Transfer is done when LEN is zero. */
1292 if (len == 0)
1293 return TARGET_XFER_EOF;
1294
1295 if (writebuf && !may_write_memory)
1296 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1297 core_addr_to_string_nz (offset), plongest (len));
1298
1299 *xfered_len = 0;
1300
1301 /* If this is a memory transfer, let the memory-specific code
1302 have a look at it instead. Memory transfers are more
1303 complicated. */
1304 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1305 || object == TARGET_OBJECT_CODE_MEMORY)
1306 retval = memory_xfer_partial (ops, object, readbuf,
1307 writebuf, offset, len, xfered_len);
1308 else if (object == TARGET_OBJECT_RAW_MEMORY)
1309 {
1310 /* Skip/avoid accessing the target if the memory region
1311 attributes block the access. Check this here instead of in
1312 raw_memory_xfer_partial as otherwise we'd end up checking
1313 this twice in the case of the memory_xfer_partial path is
1314 taken; once before checking the dcache, and another in the
1315 tail call to raw_memory_xfer_partial. */
1316 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1317 NULL))
1318 return TARGET_XFER_E_IO;
1319
1320 /* Request the normal memory object from other layers. */
1321 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1322 xfered_len);
1323 }
1324 else
1325 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1326 writebuf, offset, len, xfered_len);
1327
1328 if (targetdebug)
1329 {
1330 const unsigned char *myaddr = NULL;
1331
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s:target_xfer_partial "
1334 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1335 ops->to_shortname,
1336 (int) object,
1337 (annex ? annex : "(null)"),
1338 host_address_to_string (readbuf),
1339 host_address_to_string (writebuf),
1340 core_addr_to_string_nz (offset),
1341 pulongest (len), retval,
1342 pulongest (*xfered_len));
1343
1344 if (readbuf)
1345 myaddr = readbuf;
1346 if (writebuf)
1347 myaddr = writebuf;
1348 if (retval == TARGET_XFER_OK && myaddr != NULL)
1349 {
1350 int i;
1351
1352 fputs_unfiltered (", bytes =", gdb_stdlog);
1353 for (i = 0; i < *xfered_len; i++)
1354 {
1355 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1356 {
1357 if (targetdebug < 2 && i > 0)
1358 {
1359 fprintf_unfiltered (gdb_stdlog, " ...");
1360 break;
1361 }
1362 fprintf_unfiltered (gdb_stdlog, "\n");
1363 }
1364
1365 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1366 }
1367 }
1368
1369 fputc_unfiltered ('\n', gdb_stdlog);
1370 }
1371
1372 /* Check implementations of to_xfer_partial update *XFERED_LEN
1373 properly. Do assertion after printing debug messages, so that we
1374 can find more clues on assertion failure from debugging messages. */
1375 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1376 gdb_assert (*xfered_len > 0);
1377
1378 return retval;
1379 }
1380
1381 /* Read LEN bytes of target memory at address MEMADDR, placing the
1382 results in GDB's memory at MYADDR. Returns either 0 for success or
1383 TARGET_XFER_E_IO if any error occurs.
1384
1385 If an error occurs, no guarantee is made about the contents of the data at
1386 MYADDR. In particular, the caller should not depend upon partial reads
1387 filling the buffer with good data. There is no way for the caller to know
1388 how much good data might have been transfered anyway. Callers that can
1389 deal with partial reads should call target_read (which will retry until
1390 it makes no progress, and then return how much was transferred). */
1391
1392 int
1393 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1394 {
1395 /* Dispatch to the topmost target, not the flattened current_target.
1396 Memory accesses check target->to_has_(all_)memory, and the
1397 flattened target doesn't inherit those. */
1398 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1399 myaddr, memaddr, len) == len)
1400 return 0;
1401 else
1402 return TARGET_XFER_E_IO;
1403 }
1404
1405 /* See target/target.h. */
1406
1407 int
1408 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1409 {
1410 gdb_byte buf[4];
1411 int r;
1412
1413 r = target_read_memory (memaddr, buf, sizeof buf);
1414 if (r != 0)
1415 return r;
1416 *result = extract_unsigned_integer (buf, sizeof buf,
1417 gdbarch_byte_order (target_gdbarch ()));
1418 return 0;
1419 }
1420
1421 /* Like target_read_memory, but specify explicitly that this is a read
1422 from the target's raw memory. That is, this read bypasses the
1423 dcache, breakpoint shadowing, etc. */
1424
1425 int
1426 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1427 {
1428 /* See comment in target_read_memory about why the request starts at
1429 current_target.beneath. */
1430 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1431 myaddr, memaddr, len) == len)
1432 return 0;
1433 else
1434 return TARGET_XFER_E_IO;
1435 }
1436
1437 /* Like target_read_memory, but specify explicitly that this is a read from
1438 the target's stack. This may trigger different cache behavior. */
1439
1440 int
1441 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1442 {
1443 /* See comment in target_read_memory about why the request starts at
1444 current_target.beneath. */
1445 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1446 myaddr, memaddr, len) == len)
1447 return 0;
1448 else
1449 return TARGET_XFER_E_IO;
1450 }
1451
1452 /* Like target_read_memory, but specify explicitly that this is a read from
1453 the target's code. This may trigger different cache behavior. */
1454
1455 int
1456 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1457 {
1458 /* See comment in target_read_memory about why the request starts at
1459 current_target.beneath. */
1460 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1461 myaddr, memaddr, len) == len)
1462 return 0;
1463 else
1464 return TARGET_XFER_E_IO;
1465 }
1466
1467 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1468 Returns either 0 for success or TARGET_XFER_E_IO if any
1469 error occurs. If an error occurs, no guarantee is made about how
1470 much data got written. Callers that can deal with partial writes
1471 should call target_write. */
1472
1473 int
1474 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1475 {
1476 /* See comment in target_read_memory about why the request starts at
1477 current_target.beneath. */
1478 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1479 myaddr, memaddr, len) == len)
1480 return 0;
1481 else
1482 return TARGET_XFER_E_IO;
1483 }
1484
1485 /* Write LEN bytes from MYADDR to target raw memory at address
1486 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1487 if any error occurs. If an error occurs, no guarantee is made
1488 about how much data got written. Callers that can deal with
1489 partial writes should call target_write. */
1490
1491 int
1492 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1493 {
1494 /* See comment in target_read_memory about why the request starts at
1495 current_target.beneath. */
1496 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1497 myaddr, memaddr, len) == len)
1498 return 0;
1499 else
1500 return TARGET_XFER_E_IO;
1501 }
1502
1503 /* Fetch the target's memory map. */
1504
1505 VEC(mem_region_s) *
1506 target_memory_map (void)
1507 {
1508 VEC(mem_region_s) *result;
1509 struct mem_region *last_one, *this_one;
1510 int ix;
1511 struct target_ops *t;
1512
1513 result = current_target.to_memory_map (&current_target);
1514 if (result == NULL)
1515 return NULL;
1516
1517 qsort (VEC_address (mem_region_s, result),
1518 VEC_length (mem_region_s, result),
1519 sizeof (struct mem_region), mem_region_cmp);
1520
1521 /* Check that regions do not overlap. Simultaneously assign
1522 a numbering for the "mem" commands to use to refer to
1523 each region. */
1524 last_one = NULL;
1525 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1526 {
1527 this_one->number = ix;
1528
1529 if (last_one && last_one->hi > this_one->lo)
1530 {
1531 warning (_("Overlapping regions in memory map: ignoring"));
1532 VEC_free (mem_region_s, result);
1533 return NULL;
1534 }
1535 last_one = this_one;
1536 }
1537
1538 return result;
1539 }
1540
1541 void
1542 target_flash_erase (ULONGEST address, LONGEST length)
1543 {
1544 current_target.to_flash_erase (&current_target, address, length);
1545 }
1546
1547 void
1548 target_flash_done (void)
1549 {
1550 current_target.to_flash_done (&current_target);
1551 }
1552
1553 static void
1554 show_trust_readonly (struct ui_file *file, int from_tty,
1555 struct cmd_list_element *c, const char *value)
1556 {
1557 fprintf_filtered (file,
1558 _("Mode for reading from readonly sections is %s.\n"),
1559 value);
1560 }
1561
1562 /* Target vector read/write partial wrapper functions. */
1563
1564 static enum target_xfer_status
1565 target_read_partial (struct target_ops *ops,
1566 enum target_object object,
1567 const char *annex, gdb_byte *buf,
1568 ULONGEST offset, ULONGEST len,
1569 ULONGEST *xfered_len)
1570 {
1571 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1572 xfered_len);
1573 }
1574
1575 static enum target_xfer_status
1576 target_write_partial (struct target_ops *ops,
1577 enum target_object object,
1578 const char *annex, const gdb_byte *buf,
1579 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1580 {
1581 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1582 xfered_len);
1583 }
1584
1585 /* Wrappers to perform the full transfer. */
1586
1587 /* For docs on target_read see target.h. */
1588
1589 LONGEST
1590 target_read (struct target_ops *ops,
1591 enum target_object object,
1592 const char *annex, gdb_byte *buf,
1593 ULONGEST offset, LONGEST len)
1594 {
1595 LONGEST xfered_total = 0;
1596
1597 while (xfered_total < len)
1598 {
1599 ULONGEST xfered_partial;
1600 enum target_xfer_status status;
1601
1602 status = target_read_partial (ops, object, annex,
1603 buf + xfered_total,
1604 offset + xfered_total, len - xfered_total,
1605 &xfered_partial);
1606
1607 /* Call an observer, notifying them of the xfer progress? */
1608 if (status == TARGET_XFER_EOF)
1609 return xfered_total;
1610 else if (status == TARGET_XFER_OK)
1611 {
1612 xfered_total += xfered_partial;
1613 QUIT;
1614 }
1615 else
1616 return TARGET_XFER_E_IO;
1617
1618 }
1619 return len;
1620 }
1621
1622 /* Assuming that the entire [begin, end) range of memory cannot be
1623 read, try to read whatever subrange is possible to read.
1624
1625 The function returns, in RESULT, either zero or one memory block.
1626 If there's a readable subrange at the beginning, it is completely
1627 read and returned. Any further readable subrange will not be read.
1628 Otherwise, if there's a readable subrange at the end, it will be
1629 completely read and returned. Any readable subranges before it
1630 (obviously, not starting at the beginning), will be ignored. In
1631 other cases -- either no readable subrange, or readable subrange(s)
1632 that is neither at the beginning, or end, nothing is returned.
1633
1634 The purpose of this function is to handle a read across a boundary
1635 of accessible memory in a case when memory map is not available.
1636 The above restrictions are fine for this case, but will give
1637 incorrect results if the memory is 'patchy'. However, supporting
1638 'patchy' memory would require trying to read every single byte,
1639 and it seems unacceptable solution. Explicit memory map is
1640 recommended for this case -- and target_read_memory_robust will
1641 take care of reading multiple ranges then. */
1642
1643 static void
1644 read_whatever_is_readable (struct target_ops *ops,
1645 const ULONGEST begin, const ULONGEST end,
1646 VEC(memory_read_result_s) **result)
1647 {
1648 gdb_byte *buf = xmalloc (end - begin);
1649 ULONGEST current_begin = begin;
1650 ULONGEST current_end = end;
1651 int forward;
1652 memory_read_result_s r;
1653 ULONGEST xfered_len;
1654
1655 /* If we previously failed to read 1 byte, nothing can be done here. */
1656 if (end - begin <= 1)
1657 {
1658 xfree (buf);
1659 return;
1660 }
1661
1662 /* Check that either first or the last byte is readable, and give up
1663 if not. This heuristic is meant to permit reading accessible memory
1664 at the boundary of accessible region. */
1665 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1666 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1667 {
1668 forward = 1;
1669 ++current_begin;
1670 }
1671 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1672 buf + (end - begin) - 1, end - 1, 1,
1673 &xfered_len) == TARGET_XFER_OK)
1674 {
1675 forward = 0;
1676 --current_end;
1677 }
1678 else
1679 {
1680 xfree (buf);
1681 return;
1682 }
1683
1684 /* Loop invariant is that the [current_begin, current_end) was previously
1685 found to be not readable as a whole.
1686
1687 Note loop condition -- if the range has 1 byte, we can't divide the range
1688 so there's no point trying further. */
1689 while (current_end - current_begin > 1)
1690 {
1691 ULONGEST first_half_begin, first_half_end;
1692 ULONGEST second_half_begin, second_half_end;
1693 LONGEST xfer;
1694 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1695
1696 if (forward)
1697 {
1698 first_half_begin = current_begin;
1699 first_half_end = middle;
1700 second_half_begin = middle;
1701 second_half_end = current_end;
1702 }
1703 else
1704 {
1705 first_half_begin = middle;
1706 first_half_end = current_end;
1707 second_half_begin = current_begin;
1708 second_half_end = middle;
1709 }
1710
1711 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1712 buf + (first_half_begin - begin),
1713 first_half_begin,
1714 first_half_end - first_half_begin);
1715
1716 if (xfer == first_half_end - first_half_begin)
1717 {
1718 /* This half reads up fine. So, the error must be in the
1719 other half. */
1720 current_begin = second_half_begin;
1721 current_end = second_half_end;
1722 }
1723 else
1724 {
1725 /* This half is not readable. Because we've tried one byte, we
1726 know some part of this half if actually readable. Go to the next
1727 iteration to divide again and try to read.
1728
1729 We don't handle the other half, because this function only tries
1730 to read a single readable subrange. */
1731 current_begin = first_half_begin;
1732 current_end = first_half_end;
1733 }
1734 }
1735
1736 if (forward)
1737 {
1738 /* The [begin, current_begin) range has been read. */
1739 r.begin = begin;
1740 r.end = current_begin;
1741 r.data = buf;
1742 }
1743 else
1744 {
1745 /* The [current_end, end) range has been read. */
1746 LONGEST region_len = end - current_end;
1747
1748 r.data = xmalloc (region_len);
1749 memcpy (r.data, buf + current_end - begin, region_len);
1750 r.begin = current_end;
1751 r.end = end;
1752 xfree (buf);
1753 }
1754 VEC_safe_push(memory_read_result_s, (*result), &r);
1755 }
1756
1757 void
1758 free_memory_read_result_vector (void *x)
1759 {
1760 VEC(memory_read_result_s) *v = x;
1761 memory_read_result_s *current;
1762 int ix;
1763
1764 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1765 {
1766 xfree (current->data);
1767 }
1768 VEC_free (memory_read_result_s, v);
1769 }
1770
1771 VEC(memory_read_result_s) *
1772 read_memory_robust (struct target_ops *ops,
1773 const ULONGEST offset, const LONGEST len)
1774 {
1775 VEC(memory_read_result_s) *result = 0;
1776
1777 LONGEST xfered_total = 0;
1778 while (xfered_total < len)
1779 {
1780 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1781 LONGEST region_len;
1782
1783 /* If there is no explicit region, a fake one should be created. */
1784 gdb_assert (region);
1785
1786 if (region->hi == 0)
1787 region_len = len - xfered_total;
1788 else
1789 region_len = region->hi - offset;
1790
1791 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1792 {
1793 /* Cannot read this region. Note that we can end up here only
1794 if the region is explicitly marked inaccessible, or
1795 'inaccessible-by-default' is in effect. */
1796 xfered_total += region_len;
1797 }
1798 else
1799 {
1800 LONGEST to_read = min (len - xfered_total, region_len);
1801 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1802
1803 LONGEST xfered_partial =
1804 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1805 (gdb_byte *) buffer,
1806 offset + xfered_total, to_read);
1807 /* Call an observer, notifying them of the xfer progress? */
1808 if (xfered_partial <= 0)
1809 {
1810 /* Got an error reading full chunk. See if maybe we can read
1811 some subrange. */
1812 xfree (buffer);
1813 read_whatever_is_readable (ops, offset + xfered_total,
1814 offset + xfered_total + to_read, &result);
1815 xfered_total += to_read;
1816 }
1817 else
1818 {
1819 struct memory_read_result r;
1820 r.data = buffer;
1821 r.begin = offset + xfered_total;
1822 r.end = r.begin + xfered_partial;
1823 VEC_safe_push (memory_read_result_s, result, &r);
1824 xfered_total += xfered_partial;
1825 }
1826 QUIT;
1827 }
1828 }
1829 return result;
1830 }
1831
1832
1833 /* An alternative to target_write with progress callbacks. */
1834
1835 LONGEST
1836 target_write_with_progress (struct target_ops *ops,
1837 enum target_object object,
1838 const char *annex, const gdb_byte *buf,
1839 ULONGEST offset, LONGEST len,
1840 void (*progress) (ULONGEST, void *), void *baton)
1841 {
1842 LONGEST xfered_total = 0;
1843
1844 /* Give the progress callback a chance to set up. */
1845 if (progress)
1846 (*progress) (0, baton);
1847
1848 while (xfered_total < len)
1849 {
1850 ULONGEST xfered_partial;
1851 enum target_xfer_status status;
1852
1853 status = target_write_partial (ops, object, annex,
1854 (gdb_byte *) buf + xfered_total,
1855 offset + xfered_total, len - xfered_total,
1856 &xfered_partial);
1857
1858 if (status != TARGET_XFER_OK)
1859 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1860
1861 if (progress)
1862 (*progress) (xfered_partial, baton);
1863
1864 xfered_total += xfered_partial;
1865 QUIT;
1866 }
1867 return len;
1868 }
1869
1870 /* For docs on target_write see target.h. */
1871
1872 LONGEST
1873 target_write (struct target_ops *ops,
1874 enum target_object object,
1875 const char *annex, const gdb_byte *buf,
1876 ULONGEST offset, LONGEST len)
1877 {
1878 return target_write_with_progress (ops, object, annex, buf, offset, len,
1879 NULL, NULL);
1880 }
1881
1882 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1883 the size of the transferred data. PADDING additional bytes are
1884 available in *BUF_P. This is a helper function for
1885 target_read_alloc; see the declaration of that function for more
1886 information. */
1887
1888 static LONGEST
1889 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1890 const char *annex, gdb_byte **buf_p, int padding)
1891 {
1892 size_t buf_alloc, buf_pos;
1893 gdb_byte *buf;
1894
1895 /* This function does not have a length parameter; it reads the
1896 entire OBJECT). Also, it doesn't support objects fetched partly
1897 from one target and partly from another (in a different stratum,
1898 e.g. a core file and an executable). Both reasons make it
1899 unsuitable for reading memory. */
1900 gdb_assert (object != TARGET_OBJECT_MEMORY);
1901
1902 /* Start by reading up to 4K at a time. The target will throttle
1903 this number down if necessary. */
1904 buf_alloc = 4096;
1905 buf = xmalloc (buf_alloc);
1906 buf_pos = 0;
1907 while (1)
1908 {
1909 ULONGEST xfered_len;
1910 enum target_xfer_status status;
1911
1912 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1913 buf_pos, buf_alloc - buf_pos - padding,
1914 &xfered_len);
1915
1916 if (status == TARGET_XFER_EOF)
1917 {
1918 /* Read all there was. */
1919 if (buf_pos == 0)
1920 xfree (buf);
1921 else
1922 *buf_p = buf;
1923 return buf_pos;
1924 }
1925 else if (status != TARGET_XFER_OK)
1926 {
1927 /* An error occurred. */
1928 xfree (buf);
1929 return TARGET_XFER_E_IO;
1930 }
1931
1932 buf_pos += xfered_len;
1933
1934 /* If the buffer is filling up, expand it. */
1935 if (buf_alloc < buf_pos * 2)
1936 {
1937 buf_alloc *= 2;
1938 buf = xrealloc (buf, buf_alloc);
1939 }
1940
1941 QUIT;
1942 }
1943 }
1944
1945 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1946 the size of the transferred data. See the declaration in "target.h"
1947 function for more information about the return value. */
1948
1949 LONGEST
1950 target_read_alloc (struct target_ops *ops, enum target_object object,
1951 const char *annex, gdb_byte **buf_p)
1952 {
1953 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1954 }
1955
1956 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1957 returned as a string, allocated using xmalloc. If an error occurs
1958 or the transfer is unsupported, NULL is returned. Empty objects
1959 are returned as allocated but empty strings. A warning is issued
1960 if the result contains any embedded NUL bytes. */
1961
1962 char *
1963 target_read_stralloc (struct target_ops *ops, enum target_object object,
1964 const char *annex)
1965 {
1966 gdb_byte *buffer;
1967 char *bufstr;
1968 LONGEST i, transferred;
1969
1970 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1971 bufstr = (char *) buffer;
1972
1973 if (transferred < 0)
1974 return NULL;
1975
1976 if (transferred == 0)
1977 return xstrdup ("");
1978
1979 bufstr[transferred] = 0;
1980
1981 /* Check for embedded NUL bytes; but allow trailing NULs. */
1982 for (i = strlen (bufstr); i < transferred; i++)
1983 if (bufstr[i] != 0)
1984 {
1985 warning (_("target object %d, annex %s, "
1986 "contained unexpected null characters"),
1987 (int) object, annex ? annex : "(none)");
1988 break;
1989 }
1990
1991 return bufstr;
1992 }
1993
1994 /* Memory transfer methods. */
1995
1996 void
1997 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1998 LONGEST len)
1999 {
2000 /* This method is used to read from an alternate, non-current
2001 target. This read must bypass the overlay support (as symbols
2002 don't match this target), and GDB's internal cache (wrong cache
2003 for this target). */
2004 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2005 != len)
2006 memory_error (TARGET_XFER_E_IO, addr);
2007 }
2008
2009 ULONGEST
2010 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2011 int len, enum bfd_endian byte_order)
2012 {
2013 gdb_byte buf[sizeof (ULONGEST)];
2014
2015 gdb_assert (len <= sizeof (buf));
2016 get_target_memory (ops, addr, buf, len);
2017 return extract_unsigned_integer (buf, len, byte_order);
2018 }
2019
2020 /* See target.h. */
2021
2022 int
2023 target_insert_breakpoint (struct gdbarch *gdbarch,
2024 struct bp_target_info *bp_tgt)
2025 {
2026 if (!may_insert_breakpoints)
2027 {
2028 warning (_("May not insert breakpoints"));
2029 return 1;
2030 }
2031
2032 return current_target.to_insert_breakpoint (&current_target,
2033 gdbarch, bp_tgt);
2034 }
2035
2036 /* See target.h. */
2037
2038 int
2039 target_remove_breakpoint (struct gdbarch *gdbarch,
2040 struct bp_target_info *bp_tgt)
2041 {
2042 /* This is kind of a weird case to handle, but the permission might
2043 have been changed after breakpoints were inserted - in which case
2044 we should just take the user literally and assume that any
2045 breakpoints should be left in place. */
2046 if (!may_insert_breakpoints)
2047 {
2048 warning (_("May not remove breakpoints"));
2049 return 1;
2050 }
2051
2052 return current_target.to_remove_breakpoint (&current_target,
2053 gdbarch, bp_tgt);
2054 }
2055
2056 static void
2057 target_info (char *args, int from_tty)
2058 {
2059 struct target_ops *t;
2060 int has_all_mem = 0;
2061
2062 if (symfile_objfile != NULL)
2063 printf_unfiltered (_("Symbols from \"%s\".\n"),
2064 objfile_name (symfile_objfile));
2065
2066 for (t = target_stack; t != NULL; t = t->beneath)
2067 {
2068 if (!(*t->to_has_memory) (t))
2069 continue;
2070
2071 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2072 continue;
2073 if (has_all_mem)
2074 printf_unfiltered (_("\tWhile running this, "
2075 "GDB does not access memory from...\n"));
2076 printf_unfiltered ("%s:\n", t->to_longname);
2077 (t->to_files_info) (t);
2078 has_all_mem = (*t->to_has_all_memory) (t);
2079 }
2080 }
2081
2082 /* This function is called before any new inferior is created, e.g.
2083 by running a program, attaching, or connecting to a target.
2084 It cleans up any state from previous invocations which might
2085 change between runs. This is a subset of what target_preopen
2086 resets (things which might change between targets). */
2087
2088 void
2089 target_pre_inferior (int from_tty)
2090 {
2091 /* Clear out solib state. Otherwise the solib state of the previous
2092 inferior might have survived and is entirely wrong for the new
2093 target. This has been observed on GNU/Linux using glibc 2.3. How
2094 to reproduce:
2095
2096 bash$ ./foo&
2097 [1] 4711
2098 bash$ ./foo&
2099 [1] 4712
2100 bash$ gdb ./foo
2101 [...]
2102 (gdb) attach 4711
2103 (gdb) detach
2104 (gdb) attach 4712
2105 Cannot access memory at address 0xdeadbeef
2106 */
2107
2108 /* In some OSs, the shared library list is the same/global/shared
2109 across inferiors. If code is shared between processes, so are
2110 memory regions and features. */
2111 if (!gdbarch_has_global_solist (target_gdbarch ()))
2112 {
2113 no_shared_libraries (NULL, from_tty);
2114
2115 invalidate_target_mem_regions ();
2116
2117 target_clear_description ();
2118 }
2119
2120 agent_capability_invalidate ();
2121 }
2122
2123 /* Callback for iterate_over_inferiors. Gets rid of the given
2124 inferior. */
2125
2126 static int
2127 dispose_inferior (struct inferior *inf, void *args)
2128 {
2129 struct thread_info *thread;
2130
2131 thread = any_thread_of_process (inf->pid);
2132 if (thread)
2133 {
2134 switch_to_thread (thread->ptid);
2135
2136 /* Core inferiors actually should be detached, not killed. */
2137 if (target_has_execution)
2138 target_kill ();
2139 else
2140 target_detach (NULL, 0);
2141 }
2142
2143 return 0;
2144 }
2145
2146 /* This is to be called by the open routine before it does
2147 anything. */
2148
2149 void
2150 target_preopen (int from_tty)
2151 {
2152 dont_repeat ();
2153
2154 if (have_inferiors ())
2155 {
2156 if (!from_tty
2157 || !have_live_inferiors ()
2158 || query (_("A program is being debugged already. Kill it? ")))
2159 iterate_over_inferiors (dispose_inferior, NULL);
2160 else
2161 error (_("Program not killed."));
2162 }
2163
2164 /* Calling target_kill may remove the target from the stack. But if
2165 it doesn't (which seems like a win for UDI), remove it now. */
2166 /* Leave the exec target, though. The user may be switching from a
2167 live process to a core of the same program. */
2168 pop_all_targets_above (file_stratum);
2169
2170 target_pre_inferior (from_tty);
2171 }
2172
2173 /* Detach a target after doing deferred register stores. */
2174
2175 void
2176 target_detach (const char *args, int from_tty)
2177 {
2178 struct target_ops* t;
2179
2180 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2181 /* Don't remove global breakpoints here. They're removed on
2182 disconnection from the target. */
2183 ;
2184 else
2185 /* If we're in breakpoints-always-inserted mode, have to remove
2186 them before detaching. */
2187 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2188
2189 prepare_for_detach ();
2190
2191 current_target.to_detach (&current_target, args, from_tty);
2192 }
2193
2194 void
2195 target_disconnect (const char *args, int from_tty)
2196 {
2197 /* If we're in breakpoints-always-inserted mode or if breakpoints
2198 are global across processes, we have to remove them before
2199 disconnecting. */
2200 remove_breakpoints ();
2201
2202 current_target.to_disconnect (&current_target, args, from_tty);
2203 }
2204
2205 ptid_t
2206 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2207 {
2208 return (current_target.to_wait) (&current_target, ptid, status, options);
2209 }
2210
2211 char *
2212 target_pid_to_str (ptid_t ptid)
2213 {
2214 return (*current_target.to_pid_to_str) (&current_target, ptid);
2215 }
2216
2217 char *
2218 target_thread_name (struct thread_info *info)
2219 {
2220 return current_target.to_thread_name (&current_target, info);
2221 }
2222
2223 void
2224 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2225 {
2226 struct target_ops *t;
2227
2228 target_dcache_invalidate ();
2229
2230 current_target.to_resume (&current_target, ptid, step, signal);
2231
2232 registers_changed_ptid (ptid);
2233 /* We only set the internal executing state here. The user/frontend
2234 running state is set at a higher level. */
2235 set_executing (ptid, 1);
2236 clear_inline_frame_state (ptid);
2237 }
2238
2239 void
2240 target_pass_signals (int numsigs, unsigned char *pass_signals)
2241 {
2242 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2243 }
2244
2245 void
2246 target_program_signals (int numsigs, unsigned char *program_signals)
2247 {
2248 (*current_target.to_program_signals) (&current_target,
2249 numsigs, program_signals);
2250 }
2251
2252 static int
2253 default_follow_fork (struct target_ops *self, int follow_child,
2254 int detach_fork)
2255 {
2256 /* Some target returned a fork event, but did not know how to follow it. */
2257 internal_error (__FILE__, __LINE__,
2258 _("could not find a target to follow fork"));
2259 }
2260
2261 /* Look through the list of possible targets for a target that can
2262 follow forks. */
2263
2264 int
2265 target_follow_fork (int follow_child, int detach_fork)
2266 {
2267 return current_target.to_follow_fork (&current_target,
2268 follow_child, detach_fork);
2269 }
2270
2271 static void
2272 default_mourn_inferior (struct target_ops *self)
2273 {
2274 internal_error (__FILE__, __LINE__,
2275 _("could not find a target to follow mourn inferior"));
2276 }
2277
2278 void
2279 target_mourn_inferior (void)
2280 {
2281 current_target.to_mourn_inferior (&current_target);
2282
2283 /* We no longer need to keep handles on any of the object files.
2284 Make sure to release them to avoid unnecessarily locking any
2285 of them while we're not actually debugging. */
2286 bfd_cache_close_all ();
2287 }
2288
2289 /* Look for a target which can describe architectural features, starting
2290 from TARGET. If we find one, return its description. */
2291
2292 const struct target_desc *
2293 target_read_description (struct target_ops *target)
2294 {
2295 return target->to_read_description (target);
2296 }
2297
2298 /* This implements a basic search of memory, reading target memory and
2299 performing the search here (as opposed to performing the search in on the
2300 target side with, for example, gdbserver). */
2301
2302 int
2303 simple_search_memory (struct target_ops *ops,
2304 CORE_ADDR start_addr, ULONGEST search_space_len,
2305 const gdb_byte *pattern, ULONGEST pattern_len,
2306 CORE_ADDR *found_addrp)
2307 {
2308 /* NOTE: also defined in find.c testcase. */
2309 #define SEARCH_CHUNK_SIZE 16000
2310 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2311 /* Buffer to hold memory contents for searching. */
2312 gdb_byte *search_buf;
2313 unsigned search_buf_size;
2314 struct cleanup *old_cleanups;
2315
2316 search_buf_size = chunk_size + pattern_len - 1;
2317
2318 /* No point in trying to allocate a buffer larger than the search space. */
2319 if (search_space_len < search_buf_size)
2320 search_buf_size = search_space_len;
2321
2322 search_buf = malloc (search_buf_size);
2323 if (search_buf == NULL)
2324 error (_("Unable to allocate memory to perform the search."));
2325 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2326
2327 /* Prime the search buffer. */
2328
2329 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2330 search_buf, start_addr, search_buf_size) != search_buf_size)
2331 {
2332 warning (_("Unable to access %s bytes of target "
2333 "memory at %s, halting search."),
2334 pulongest (search_buf_size), hex_string (start_addr));
2335 do_cleanups (old_cleanups);
2336 return -1;
2337 }
2338
2339 /* Perform the search.
2340
2341 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2342 When we've scanned N bytes we copy the trailing bytes to the start and
2343 read in another N bytes. */
2344
2345 while (search_space_len >= pattern_len)
2346 {
2347 gdb_byte *found_ptr;
2348 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2349
2350 found_ptr = memmem (search_buf, nr_search_bytes,
2351 pattern, pattern_len);
2352
2353 if (found_ptr != NULL)
2354 {
2355 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2356
2357 *found_addrp = found_addr;
2358 do_cleanups (old_cleanups);
2359 return 1;
2360 }
2361
2362 /* Not found in this chunk, skip to next chunk. */
2363
2364 /* Don't let search_space_len wrap here, it's unsigned. */
2365 if (search_space_len >= chunk_size)
2366 search_space_len -= chunk_size;
2367 else
2368 search_space_len = 0;
2369
2370 if (search_space_len >= pattern_len)
2371 {
2372 unsigned keep_len = search_buf_size - chunk_size;
2373 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2374 int nr_to_read;
2375
2376 /* Copy the trailing part of the previous iteration to the front
2377 of the buffer for the next iteration. */
2378 gdb_assert (keep_len == pattern_len - 1);
2379 memcpy (search_buf, search_buf + chunk_size, keep_len);
2380
2381 nr_to_read = min (search_space_len - keep_len, chunk_size);
2382
2383 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2384 search_buf + keep_len, read_addr,
2385 nr_to_read) != nr_to_read)
2386 {
2387 warning (_("Unable to access %s bytes of target "
2388 "memory at %s, halting search."),
2389 plongest (nr_to_read),
2390 hex_string (read_addr));
2391 do_cleanups (old_cleanups);
2392 return -1;
2393 }
2394
2395 start_addr += chunk_size;
2396 }
2397 }
2398
2399 /* Not found. */
2400
2401 do_cleanups (old_cleanups);
2402 return 0;
2403 }
2404
2405 /* Default implementation of memory-searching. */
2406
2407 static int
2408 default_search_memory (struct target_ops *self,
2409 CORE_ADDR start_addr, ULONGEST search_space_len,
2410 const gdb_byte *pattern, ULONGEST pattern_len,
2411 CORE_ADDR *found_addrp)
2412 {
2413 /* Start over from the top of the target stack. */
2414 return simple_search_memory (current_target.beneath,
2415 start_addr, search_space_len,
2416 pattern, pattern_len, found_addrp);
2417 }
2418
2419 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2420 sequence of bytes in PATTERN with length PATTERN_LEN.
2421
2422 The result is 1 if found, 0 if not found, and -1 if there was an error
2423 requiring halting of the search (e.g. memory read error).
2424 If the pattern is found the address is recorded in FOUND_ADDRP. */
2425
2426 int
2427 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2428 const gdb_byte *pattern, ULONGEST pattern_len,
2429 CORE_ADDR *found_addrp)
2430 {
2431 return current_target.to_search_memory (&current_target, start_addr,
2432 search_space_len,
2433 pattern, pattern_len, found_addrp);
2434 }
2435
2436 /* Look through the currently pushed targets. If none of them will
2437 be able to restart the currently running process, issue an error
2438 message. */
2439
2440 void
2441 target_require_runnable (void)
2442 {
2443 struct target_ops *t;
2444
2445 for (t = target_stack; t != NULL; t = t->beneath)
2446 {
2447 /* If this target knows how to create a new program, then
2448 assume we will still be able to after killing the current
2449 one. Either killing and mourning will not pop T, or else
2450 find_default_run_target will find it again. */
2451 if (t->to_create_inferior != NULL)
2452 return;
2453
2454 /* Do not worry about targets at certain strata that can not
2455 create inferiors. Assume they will be pushed again if
2456 necessary, and continue to the process_stratum. */
2457 if (t->to_stratum == thread_stratum
2458 || t->to_stratum == record_stratum
2459 || t->to_stratum == arch_stratum)
2460 continue;
2461
2462 error (_("The \"%s\" target does not support \"run\". "
2463 "Try \"help target\" or \"continue\"."),
2464 t->to_shortname);
2465 }
2466
2467 /* This function is only called if the target is running. In that
2468 case there should have been a process_stratum target and it
2469 should either know how to create inferiors, or not... */
2470 internal_error (__FILE__, __LINE__, _("No targets found"));
2471 }
2472
2473 /* Whether GDB is allowed to fall back to the default run target for
2474 "run", "attach", etc. when no target is connected yet. */
2475 static int auto_connect_native_target = 1;
2476
2477 static void
2478 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2479 struct cmd_list_element *c, const char *value)
2480 {
2481 fprintf_filtered (file,
2482 _("Whether GDB may automatically connect to the "
2483 "native target is %s.\n"),
2484 value);
2485 }
2486
2487 /* Look through the list of possible targets for a target that can
2488 execute a run or attach command without any other data. This is
2489 used to locate the default process stratum.
2490
2491 If DO_MESG is not NULL, the result is always valid (error() is
2492 called for errors); else, return NULL on error. */
2493
2494 static struct target_ops *
2495 find_default_run_target (char *do_mesg)
2496 {
2497 struct target_ops *runable = NULL;
2498
2499 if (auto_connect_native_target)
2500 {
2501 struct target_ops *t;
2502 int count = 0;
2503 int i;
2504
2505 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2506 {
2507 if (t->to_can_run != delegate_can_run && target_can_run (t))
2508 {
2509 runable = t;
2510 ++count;
2511 }
2512 }
2513
2514 if (count != 1)
2515 runable = NULL;
2516 }
2517
2518 if (runable == NULL)
2519 {
2520 if (do_mesg)
2521 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2522 else
2523 return NULL;
2524 }
2525
2526 return runable;
2527 }
2528
2529 /* See target.h. */
2530
2531 struct target_ops *
2532 find_attach_target (void)
2533 {
2534 struct target_ops *t;
2535
2536 /* If a target on the current stack can attach, use it. */
2537 for (t = current_target.beneath; t != NULL; t = t->beneath)
2538 {
2539 if (t->to_attach != NULL)
2540 break;
2541 }
2542
2543 /* Otherwise, use the default run target for attaching. */
2544 if (t == NULL)
2545 t = find_default_run_target ("attach");
2546
2547 return t;
2548 }
2549
2550 /* See target.h. */
2551
2552 struct target_ops *
2553 find_run_target (void)
2554 {
2555 struct target_ops *t;
2556
2557 /* If a target on the current stack can attach, use it. */
2558 for (t = current_target.beneath; t != NULL; t = t->beneath)
2559 {
2560 if (t->to_create_inferior != NULL)
2561 break;
2562 }
2563
2564 /* Otherwise, use the default run target. */
2565 if (t == NULL)
2566 t = find_default_run_target ("run");
2567
2568 return t;
2569 }
2570
2571 /* Implement the "info proc" command. */
2572
2573 int
2574 target_info_proc (const char *args, enum info_proc_what what)
2575 {
2576 struct target_ops *t;
2577
2578 /* If we're already connected to something that can get us OS
2579 related data, use it. Otherwise, try using the native
2580 target. */
2581 if (current_target.to_stratum >= process_stratum)
2582 t = current_target.beneath;
2583 else
2584 t = find_default_run_target (NULL);
2585
2586 for (; t != NULL; t = t->beneath)
2587 {
2588 if (t->to_info_proc != NULL)
2589 {
2590 t->to_info_proc (t, args, what);
2591
2592 if (targetdebug)
2593 fprintf_unfiltered (gdb_stdlog,
2594 "target_info_proc (\"%s\", %d)\n", args, what);
2595
2596 return 1;
2597 }
2598 }
2599
2600 return 0;
2601 }
2602
2603 static int
2604 find_default_supports_disable_randomization (struct target_ops *self)
2605 {
2606 struct target_ops *t;
2607
2608 t = find_default_run_target (NULL);
2609 if (t && t->to_supports_disable_randomization)
2610 return (t->to_supports_disable_randomization) (t);
2611 return 0;
2612 }
2613
2614 int
2615 target_supports_disable_randomization (void)
2616 {
2617 struct target_ops *t;
2618
2619 for (t = &current_target; t != NULL; t = t->beneath)
2620 if (t->to_supports_disable_randomization)
2621 return t->to_supports_disable_randomization (t);
2622
2623 return 0;
2624 }
2625
2626 char *
2627 target_get_osdata (const char *type)
2628 {
2629 struct target_ops *t;
2630
2631 /* If we're already connected to something that can get us OS
2632 related data, use it. Otherwise, try using the native
2633 target. */
2634 if (current_target.to_stratum >= process_stratum)
2635 t = current_target.beneath;
2636 else
2637 t = find_default_run_target ("get OS data");
2638
2639 if (!t)
2640 return NULL;
2641
2642 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2643 }
2644
2645 static struct address_space *
2646 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2647 {
2648 struct inferior *inf;
2649
2650 /* Fall-back to the "main" address space of the inferior. */
2651 inf = find_inferior_ptid (ptid);
2652
2653 if (inf == NULL || inf->aspace == NULL)
2654 internal_error (__FILE__, __LINE__,
2655 _("Can't determine the current "
2656 "address space of thread %s\n"),
2657 target_pid_to_str (ptid));
2658
2659 return inf->aspace;
2660 }
2661
2662 /* Determine the current address space of thread PTID. */
2663
2664 struct address_space *
2665 target_thread_address_space (ptid_t ptid)
2666 {
2667 struct address_space *aspace;
2668
2669 aspace = current_target.to_thread_address_space (&current_target, ptid);
2670 gdb_assert (aspace != NULL);
2671
2672 return aspace;
2673 }
2674
2675
2676 /* Target file operations. */
2677
2678 static struct target_ops *
2679 default_fileio_target (void)
2680 {
2681 /* If we're already connected to something that can perform
2682 file I/O, use it. Otherwise, try using the native target. */
2683 if (current_target.to_stratum >= process_stratum)
2684 return current_target.beneath;
2685 else
2686 return find_default_run_target ("file I/O");
2687 }
2688
2689 /* File handle for target file operations. */
2690
2691 typedef struct
2692 {
2693 /* The target on which this file is open. */
2694 struct target_ops *t;
2695
2696 /* The file descriptor on the target. */
2697 int fd;
2698 } fileio_fh_t;
2699
2700 DEF_VEC_O (fileio_fh_t);
2701
2702 /* Vector of currently open file handles. The value returned by
2703 target_fileio_open and passed as the FD argument to other
2704 target_fileio_* functions is an index into this vector. This
2705 vector's entries are never freed; instead, files are marked as
2706 closed, and the handle becomes available for reuse. */
2707 static VEC (fileio_fh_t) *fileio_fhandles;
2708
2709 /* Macro to check whether a fileio_fh_t represents a closed file. */
2710 #define is_closed_fileio_fh(fd) ((fd) < 0)
2711
2712 /* Index into fileio_fhandles of the lowest handle that might be
2713 closed. This permits handle reuse without searching the whole
2714 list each time a new file is opened. */
2715 static int lowest_closed_fd;
2716
2717 /* Acquire a target fileio file descriptor. */
2718
2719 static int
2720 acquire_fileio_fd (struct target_ops *t, int fd)
2721 {
2722 fileio_fh_t *fh, buf;
2723
2724 gdb_assert (!is_closed_fileio_fh (fd));
2725
2726 /* Search for closed handles to reuse. */
2727 for (;
2728 VEC_iterate (fileio_fh_t, fileio_fhandles,
2729 lowest_closed_fd, fh);
2730 lowest_closed_fd++)
2731 if (is_closed_fileio_fh (fh->fd))
2732 break;
2733
2734 /* Push a new handle if no closed handles were found. */
2735 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2736 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2737
2738 /* Fill in the handle. */
2739 fh->t = t;
2740 fh->fd = fd;
2741
2742 /* Return its index, and start the next lookup at
2743 the next index. */
2744 return lowest_closed_fd++;
2745 }
2746
2747 /* Release a target fileio file descriptor. */
2748
2749 static void
2750 release_fileio_fd (int fd, fileio_fh_t *fh)
2751 {
2752 fh->fd = -1;
2753 lowest_closed_fd = min (lowest_closed_fd, fd);
2754 }
2755
2756 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2757
2758 #define fileio_fd_to_fh(fd) \
2759 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2760
2761 /* See target.h. */
2762
2763 int
2764 target_fileio_open (struct inferior *inf, const char *filename,
2765 int flags, int mode, int *target_errno)
2766 {
2767 struct target_ops *t;
2768
2769 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2770 {
2771 if (t->to_fileio_open != NULL)
2772 {
2773 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2774 target_errno);
2775
2776 if (fd < 0)
2777 fd = -1;
2778 else
2779 fd = acquire_fileio_fd (t, fd);
2780
2781 if (targetdebug)
2782 fprintf_unfiltered (gdb_stdlog,
2783 "target_fileio_open (%d,%s,0x%x,0%o)"
2784 " = %d (%d)\n",
2785 inf == NULL ? 0 : inf->num,
2786 filename, flags, mode,
2787 fd, fd != -1 ? 0 : *target_errno);
2788 return fd;
2789 }
2790 }
2791
2792 *target_errno = FILEIO_ENOSYS;
2793 return -1;
2794 }
2795
2796 /* See target.h. */
2797
2798 int
2799 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2800 ULONGEST offset, int *target_errno)
2801 {
2802 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2803 int ret = -1;
2804
2805 if (is_closed_fileio_fh (fh->fd))
2806 *target_errno = EBADF;
2807 else
2808 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2809 len, offset, target_errno);
2810
2811 if (targetdebug)
2812 fprintf_unfiltered (gdb_stdlog,
2813 "target_fileio_pwrite (%d,...,%d,%s) "
2814 "= %d (%d)\n",
2815 fd, len, pulongest (offset),
2816 ret, ret != -1 ? 0 : *target_errno);
2817 return ret;
2818 }
2819
2820 /* See target.h. */
2821
2822 int
2823 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2824 ULONGEST offset, int *target_errno)
2825 {
2826 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2827 int ret = -1;
2828
2829 if (is_closed_fileio_fh (fh->fd))
2830 *target_errno = EBADF;
2831 else
2832 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2833 len, offset, target_errno);
2834
2835 if (targetdebug)
2836 fprintf_unfiltered (gdb_stdlog,
2837 "target_fileio_pread (%d,...,%d,%s) "
2838 "= %d (%d)\n",
2839 fd, len, pulongest (offset),
2840 ret, ret != -1 ? 0 : *target_errno);
2841 return ret;
2842 }
2843
2844 /* See target.h. */
2845
2846 int
2847 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2848 {
2849 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2850 int ret = -1;
2851
2852 if (is_closed_fileio_fh (fh->fd))
2853 *target_errno = EBADF;
2854 else
2855 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2856
2857 if (targetdebug)
2858 fprintf_unfiltered (gdb_stdlog,
2859 "target_fileio_fstat (%d) = %d (%d)\n",
2860 fd, ret, ret != -1 ? 0 : *target_errno);
2861 return ret;
2862 }
2863
2864 /* See target.h. */
2865
2866 int
2867 target_fileio_close (int fd, int *target_errno)
2868 {
2869 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2870 int ret = -1;
2871
2872 if (is_closed_fileio_fh (fh->fd))
2873 *target_errno = EBADF;
2874 else
2875 {
2876 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2877 release_fileio_fd (fd, fh);
2878 }
2879
2880 if (targetdebug)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "target_fileio_close (%d) = %d (%d)\n",
2883 fd, ret, ret != -1 ? 0 : *target_errno);
2884 return ret;
2885 }
2886
2887 /* See target.h. */
2888
2889 int
2890 target_fileio_unlink (struct inferior *inf, const char *filename,
2891 int *target_errno)
2892 {
2893 struct target_ops *t;
2894
2895 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2896 {
2897 if (t->to_fileio_unlink != NULL)
2898 {
2899 int ret = t->to_fileio_unlink (t, inf, filename,
2900 target_errno);
2901
2902 if (targetdebug)
2903 fprintf_unfiltered (gdb_stdlog,
2904 "target_fileio_unlink (%d,%s)"
2905 " = %d (%d)\n",
2906 inf == NULL ? 0 : inf->num, filename,
2907 ret, ret != -1 ? 0 : *target_errno);
2908 return ret;
2909 }
2910 }
2911
2912 *target_errno = FILEIO_ENOSYS;
2913 return -1;
2914 }
2915
2916 /* See target.h. */
2917
2918 char *
2919 target_fileio_readlink (struct inferior *inf, const char *filename,
2920 int *target_errno)
2921 {
2922 struct target_ops *t;
2923
2924 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2925 {
2926 if (t->to_fileio_readlink != NULL)
2927 {
2928 char *ret = t->to_fileio_readlink (t, inf, filename,
2929 target_errno);
2930
2931 if (targetdebug)
2932 fprintf_unfiltered (gdb_stdlog,
2933 "target_fileio_readlink (%d,%s)"
2934 " = %s (%d)\n",
2935 inf == NULL ? 0 : inf->num,
2936 filename, ret? ret : "(nil)",
2937 ret? 0 : *target_errno);
2938 return ret;
2939 }
2940 }
2941
2942 *target_errno = FILEIO_ENOSYS;
2943 return NULL;
2944 }
2945
2946 static void
2947 target_fileio_close_cleanup (void *opaque)
2948 {
2949 int fd = *(int *) opaque;
2950 int target_errno;
2951
2952 target_fileio_close (fd, &target_errno);
2953 }
2954
2955 /* Read target file FILENAME, in the filesystem as seen by INF. If
2956 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2957 remote targets, the remote stub). Store the result in *BUF_P and
2958 return the size of the transferred data. PADDING additional bytes
2959 are available in *BUF_P. This is a helper function for
2960 target_fileio_read_alloc; see the declaration of that function for
2961 more information. */
2962
2963 static LONGEST
2964 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2965 gdb_byte **buf_p, int padding)
2966 {
2967 struct cleanup *close_cleanup;
2968 size_t buf_alloc, buf_pos;
2969 gdb_byte *buf;
2970 LONGEST n;
2971 int fd;
2972 int target_errno;
2973
2974 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700,
2975 &target_errno);
2976 if (fd == -1)
2977 return -1;
2978
2979 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2980
2981 /* Start by reading up to 4K at a time. The target will throttle
2982 this number down if necessary. */
2983 buf_alloc = 4096;
2984 buf = xmalloc (buf_alloc);
2985 buf_pos = 0;
2986 while (1)
2987 {
2988 n = target_fileio_pread (fd, &buf[buf_pos],
2989 buf_alloc - buf_pos - padding, buf_pos,
2990 &target_errno);
2991 if (n < 0)
2992 {
2993 /* An error occurred. */
2994 do_cleanups (close_cleanup);
2995 xfree (buf);
2996 return -1;
2997 }
2998 else if (n == 0)
2999 {
3000 /* Read all there was. */
3001 do_cleanups (close_cleanup);
3002 if (buf_pos == 0)
3003 xfree (buf);
3004 else
3005 *buf_p = buf;
3006 return buf_pos;
3007 }
3008
3009 buf_pos += n;
3010
3011 /* If the buffer is filling up, expand it. */
3012 if (buf_alloc < buf_pos * 2)
3013 {
3014 buf_alloc *= 2;
3015 buf = xrealloc (buf, buf_alloc);
3016 }
3017
3018 QUIT;
3019 }
3020 }
3021
3022 /* See target.h. */
3023
3024 LONGEST
3025 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3026 gdb_byte **buf_p)
3027 {
3028 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3029 }
3030
3031 /* See target.h. */
3032
3033 char *
3034 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3035 {
3036 gdb_byte *buffer;
3037 char *bufstr;
3038 LONGEST i, transferred;
3039
3040 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3041 bufstr = (char *) buffer;
3042
3043 if (transferred < 0)
3044 return NULL;
3045
3046 if (transferred == 0)
3047 return xstrdup ("");
3048
3049 bufstr[transferred] = 0;
3050
3051 /* Check for embedded NUL bytes; but allow trailing NULs. */
3052 for (i = strlen (bufstr); i < transferred; i++)
3053 if (bufstr[i] != 0)
3054 {
3055 warning (_("target file %s "
3056 "contained unexpected null characters"),
3057 filename);
3058 break;
3059 }
3060
3061 return bufstr;
3062 }
3063
3064
3065 static int
3066 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3067 CORE_ADDR addr, int len)
3068 {
3069 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3070 }
3071
3072 static int
3073 default_watchpoint_addr_within_range (struct target_ops *target,
3074 CORE_ADDR addr,
3075 CORE_ADDR start, int length)
3076 {
3077 return addr >= start && addr < start + length;
3078 }
3079
3080 static struct gdbarch *
3081 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3082 {
3083 return target_gdbarch ();
3084 }
3085
3086 static int
3087 return_zero (struct target_ops *ignore)
3088 {
3089 return 0;
3090 }
3091
3092 static int
3093 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3094 {
3095 return 0;
3096 }
3097
3098 /*
3099 * Find the next target down the stack from the specified target.
3100 */
3101
3102 struct target_ops *
3103 find_target_beneath (struct target_ops *t)
3104 {
3105 return t->beneath;
3106 }
3107
3108 /* See target.h. */
3109
3110 struct target_ops *
3111 find_target_at (enum strata stratum)
3112 {
3113 struct target_ops *t;
3114
3115 for (t = current_target.beneath; t != NULL; t = t->beneath)
3116 if (t->to_stratum == stratum)
3117 return t;
3118
3119 return NULL;
3120 }
3121
3122 \f
3123 /* The inferior process has died. Long live the inferior! */
3124
3125 void
3126 generic_mourn_inferior (void)
3127 {
3128 ptid_t ptid;
3129
3130 ptid = inferior_ptid;
3131 inferior_ptid = null_ptid;
3132
3133 /* Mark breakpoints uninserted in case something tries to delete a
3134 breakpoint while we delete the inferior's threads (which would
3135 fail, since the inferior is long gone). */
3136 mark_breakpoints_out ();
3137
3138 if (!ptid_equal (ptid, null_ptid))
3139 {
3140 int pid = ptid_get_pid (ptid);
3141 exit_inferior (pid);
3142 }
3143
3144 /* Note this wipes step-resume breakpoints, so needs to be done
3145 after exit_inferior, which ends up referencing the step-resume
3146 breakpoints through clear_thread_inferior_resources. */
3147 breakpoint_init_inferior (inf_exited);
3148
3149 registers_changed ();
3150
3151 reopen_exec_file ();
3152 reinit_frame_cache ();
3153
3154 if (deprecated_detach_hook)
3155 deprecated_detach_hook ();
3156 }
3157 \f
3158 /* Convert a normal process ID to a string. Returns the string in a
3159 static buffer. */
3160
3161 char *
3162 normal_pid_to_str (ptid_t ptid)
3163 {
3164 static char buf[32];
3165
3166 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3167 return buf;
3168 }
3169
3170 static char *
3171 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3172 {
3173 return normal_pid_to_str (ptid);
3174 }
3175
3176 /* Error-catcher for target_find_memory_regions. */
3177 static int
3178 dummy_find_memory_regions (struct target_ops *self,
3179 find_memory_region_ftype ignore1, void *ignore2)
3180 {
3181 error (_("Command not implemented for this target."));
3182 return 0;
3183 }
3184
3185 /* Error-catcher for target_make_corefile_notes. */
3186 static char *
3187 dummy_make_corefile_notes (struct target_ops *self,
3188 bfd *ignore1, int *ignore2)
3189 {
3190 error (_("Command not implemented for this target."));
3191 return NULL;
3192 }
3193
3194 /* Set up the handful of non-empty slots needed by the dummy target
3195 vector. */
3196
3197 static void
3198 init_dummy_target (void)
3199 {
3200 dummy_target.to_shortname = "None";
3201 dummy_target.to_longname = "None";
3202 dummy_target.to_doc = "";
3203 dummy_target.to_supports_disable_randomization
3204 = find_default_supports_disable_randomization;
3205 dummy_target.to_stratum = dummy_stratum;
3206 dummy_target.to_has_all_memory = return_zero;
3207 dummy_target.to_has_memory = return_zero;
3208 dummy_target.to_has_stack = return_zero;
3209 dummy_target.to_has_registers = return_zero;
3210 dummy_target.to_has_execution = return_zero_has_execution;
3211 dummy_target.to_magic = OPS_MAGIC;
3212
3213 install_dummy_methods (&dummy_target);
3214 }
3215 \f
3216
3217 void
3218 target_close (struct target_ops *targ)
3219 {
3220 gdb_assert (!target_is_pushed (targ));
3221
3222 if (targ->to_xclose != NULL)
3223 targ->to_xclose (targ);
3224 else if (targ->to_close != NULL)
3225 targ->to_close (targ);
3226
3227 if (targetdebug)
3228 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3229 }
3230
3231 int
3232 target_thread_alive (ptid_t ptid)
3233 {
3234 return current_target.to_thread_alive (&current_target, ptid);
3235 }
3236
3237 void
3238 target_update_thread_list (void)
3239 {
3240 current_target.to_update_thread_list (&current_target);
3241 }
3242
3243 void
3244 target_stop (ptid_t ptid)
3245 {
3246 if (!may_stop)
3247 {
3248 warning (_("May not interrupt or stop the target, ignoring attempt"));
3249 return;
3250 }
3251
3252 (*current_target.to_stop) (&current_target, ptid);
3253 }
3254
3255 /* See target/target.h. */
3256
3257 void
3258 target_stop_and_wait (ptid_t ptid)
3259 {
3260 struct target_waitstatus status;
3261 int was_non_stop = non_stop;
3262
3263 non_stop = 1;
3264 target_stop (ptid);
3265
3266 memset (&status, 0, sizeof (status));
3267 target_wait (ptid, &status, 0);
3268
3269 non_stop = was_non_stop;
3270 }
3271
3272 /* See target/target.h. */
3273
3274 void
3275 target_continue_no_signal (ptid_t ptid)
3276 {
3277 target_resume (ptid, 0, GDB_SIGNAL_0);
3278 }
3279
3280 /* Concatenate ELEM to LIST, a comma separate list, and return the
3281 result. The LIST incoming argument is released. */
3282
3283 static char *
3284 str_comma_list_concat_elem (char *list, const char *elem)
3285 {
3286 if (list == NULL)
3287 return xstrdup (elem);
3288 else
3289 return reconcat (list, list, ", ", elem, (char *) NULL);
3290 }
3291
3292 /* Helper for target_options_to_string. If OPT is present in
3293 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3294 Returns the new resulting string. OPT is removed from
3295 TARGET_OPTIONS. */
3296
3297 static char *
3298 do_option (int *target_options, char *ret,
3299 int opt, char *opt_str)
3300 {
3301 if ((*target_options & opt) != 0)
3302 {
3303 ret = str_comma_list_concat_elem (ret, opt_str);
3304 *target_options &= ~opt;
3305 }
3306
3307 return ret;
3308 }
3309
3310 char *
3311 target_options_to_string (int target_options)
3312 {
3313 char *ret = NULL;
3314
3315 #define DO_TARG_OPTION(OPT) \
3316 ret = do_option (&target_options, ret, OPT, #OPT)
3317
3318 DO_TARG_OPTION (TARGET_WNOHANG);
3319
3320 if (target_options != 0)
3321 ret = str_comma_list_concat_elem (ret, "unknown???");
3322
3323 if (ret == NULL)
3324 ret = xstrdup ("");
3325 return ret;
3326 }
3327
3328 static void
3329 debug_print_register (const char * func,
3330 struct regcache *regcache, int regno)
3331 {
3332 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3333
3334 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3335 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3336 && gdbarch_register_name (gdbarch, regno) != NULL
3337 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3338 fprintf_unfiltered (gdb_stdlog, "(%s)",
3339 gdbarch_register_name (gdbarch, regno));
3340 else
3341 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3342 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3343 {
3344 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3345 int i, size = register_size (gdbarch, regno);
3346 gdb_byte buf[MAX_REGISTER_SIZE];
3347
3348 regcache_raw_collect (regcache, regno, buf);
3349 fprintf_unfiltered (gdb_stdlog, " = ");
3350 for (i = 0; i < size; i++)
3351 {
3352 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3353 }
3354 if (size <= sizeof (LONGEST))
3355 {
3356 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3357
3358 fprintf_unfiltered (gdb_stdlog, " %s %s",
3359 core_addr_to_string_nz (val), plongest (val));
3360 }
3361 }
3362 fprintf_unfiltered (gdb_stdlog, "\n");
3363 }
3364
3365 void
3366 target_fetch_registers (struct regcache *regcache, int regno)
3367 {
3368 current_target.to_fetch_registers (&current_target, regcache, regno);
3369 if (targetdebug)
3370 debug_print_register ("target_fetch_registers", regcache, regno);
3371 }
3372
3373 void
3374 target_store_registers (struct regcache *regcache, int regno)
3375 {
3376 struct target_ops *t;
3377
3378 if (!may_write_registers)
3379 error (_("Writing to registers is not allowed (regno %d)"), regno);
3380
3381 current_target.to_store_registers (&current_target, regcache, regno);
3382 if (targetdebug)
3383 {
3384 debug_print_register ("target_store_registers", regcache, regno);
3385 }
3386 }
3387
3388 int
3389 target_core_of_thread (ptid_t ptid)
3390 {
3391 return current_target.to_core_of_thread (&current_target, ptid);
3392 }
3393
3394 int
3395 simple_verify_memory (struct target_ops *ops,
3396 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3397 {
3398 LONGEST total_xfered = 0;
3399
3400 while (total_xfered < size)
3401 {
3402 ULONGEST xfered_len;
3403 enum target_xfer_status status;
3404 gdb_byte buf[1024];
3405 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3406
3407 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3408 buf, NULL, lma + total_xfered, howmuch,
3409 &xfered_len);
3410 if (status == TARGET_XFER_OK
3411 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3412 {
3413 total_xfered += xfered_len;
3414 QUIT;
3415 }
3416 else
3417 return 0;
3418 }
3419 return 1;
3420 }
3421
3422 /* Default implementation of memory verification. */
3423
3424 static int
3425 default_verify_memory (struct target_ops *self,
3426 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3427 {
3428 /* Start over from the top of the target stack. */
3429 return simple_verify_memory (current_target.beneath,
3430 data, memaddr, size);
3431 }
3432
3433 int
3434 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3435 {
3436 return current_target.to_verify_memory (&current_target,
3437 data, memaddr, size);
3438 }
3439
3440 /* The documentation for this function is in its prototype declaration in
3441 target.h. */
3442
3443 int
3444 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3445 {
3446 return current_target.to_insert_mask_watchpoint (&current_target,
3447 addr, mask, rw);
3448 }
3449
3450 /* The documentation for this function is in its prototype declaration in
3451 target.h. */
3452
3453 int
3454 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3455 {
3456 return current_target.to_remove_mask_watchpoint (&current_target,
3457 addr, mask, rw);
3458 }
3459
3460 /* The documentation for this function is in its prototype declaration
3461 in target.h. */
3462
3463 int
3464 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3465 {
3466 return current_target.to_masked_watch_num_registers (&current_target,
3467 addr, mask);
3468 }
3469
3470 /* The documentation for this function is in its prototype declaration
3471 in target.h. */
3472
3473 int
3474 target_ranged_break_num_registers (void)
3475 {
3476 return current_target.to_ranged_break_num_registers (&current_target);
3477 }
3478
3479 /* See target.h. */
3480
3481 int
3482 target_supports_btrace (enum btrace_format format)
3483 {
3484 return current_target.to_supports_btrace (&current_target, format);
3485 }
3486
3487 /* See target.h. */
3488
3489 struct btrace_target_info *
3490 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3491 {
3492 return current_target.to_enable_btrace (&current_target, ptid, conf);
3493 }
3494
3495 /* See target.h. */
3496
3497 void
3498 target_disable_btrace (struct btrace_target_info *btinfo)
3499 {
3500 current_target.to_disable_btrace (&current_target, btinfo);
3501 }
3502
3503 /* See target.h. */
3504
3505 void
3506 target_teardown_btrace (struct btrace_target_info *btinfo)
3507 {
3508 current_target.to_teardown_btrace (&current_target, btinfo);
3509 }
3510
3511 /* See target.h. */
3512
3513 enum btrace_error
3514 target_read_btrace (struct btrace_data *btrace,
3515 struct btrace_target_info *btinfo,
3516 enum btrace_read_type type)
3517 {
3518 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3519 }
3520
3521 /* See target.h. */
3522
3523 const struct btrace_config *
3524 target_btrace_conf (const struct btrace_target_info *btinfo)
3525 {
3526 return current_target.to_btrace_conf (&current_target, btinfo);
3527 }
3528
3529 /* See target.h. */
3530
3531 void
3532 target_stop_recording (void)
3533 {
3534 current_target.to_stop_recording (&current_target);
3535 }
3536
3537 /* See target.h. */
3538
3539 void
3540 target_save_record (const char *filename)
3541 {
3542 current_target.to_save_record (&current_target, filename);
3543 }
3544
3545 /* See target.h. */
3546
3547 int
3548 target_supports_delete_record (void)
3549 {
3550 struct target_ops *t;
3551
3552 for (t = current_target.beneath; t != NULL; t = t->beneath)
3553 if (t->to_delete_record != delegate_delete_record
3554 && t->to_delete_record != tdefault_delete_record)
3555 return 1;
3556
3557 return 0;
3558 }
3559
3560 /* See target.h. */
3561
3562 void
3563 target_delete_record (void)
3564 {
3565 current_target.to_delete_record (&current_target);
3566 }
3567
3568 /* See target.h. */
3569
3570 int
3571 target_record_is_replaying (void)
3572 {
3573 return current_target.to_record_is_replaying (&current_target);
3574 }
3575
3576 /* See target.h. */
3577
3578 void
3579 target_goto_record_begin (void)
3580 {
3581 current_target.to_goto_record_begin (&current_target);
3582 }
3583
3584 /* See target.h. */
3585
3586 void
3587 target_goto_record_end (void)
3588 {
3589 current_target.to_goto_record_end (&current_target);
3590 }
3591
3592 /* See target.h. */
3593
3594 void
3595 target_goto_record (ULONGEST insn)
3596 {
3597 current_target.to_goto_record (&current_target, insn);
3598 }
3599
3600 /* See target.h. */
3601
3602 void
3603 target_insn_history (int size, int flags)
3604 {
3605 current_target.to_insn_history (&current_target, size, flags);
3606 }
3607
3608 /* See target.h. */
3609
3610 void
3611 target_insn_history_from (ULONGEST from, int size, int flags)
3612 {
3613 current_target.to_insn_history_from (&current_target, from, size, flags);
3614 }
3615
3616 /* See target.h. */
3617
3618 void
3619 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3620 {
3621 current_target.to_insn_history_range (&current_target, begin, end, flags);
3622 }
3623
3624 /* See target.h. */
3625
3626 void
3627 target_call_history (int size, int flags)
3628 {
3629 current_target.to_call_history (&current_target, size, flags);
3630 }
3631
3632 /* See target.h. */
3633
3634 void
3635 target_call_history_from (ULONGEST begin, int size, int flags)
3636 {
3637 current_target.to_call_history_from (&current_target, begin, size, flags);
3638 }
3639
3640 /* See target.h. */
3641
3642 void
3643 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3644 {
3645 current_target.to_call_history_range (&current_target, begin, end, flags);
3646 }
3647
3648 /* See target.h. */
3649
3650 const struct frame_unwind *
3651 target_get_unwinder (void)
3652 {
3653 return current_target.to_get_unwinder (&current_target);
3654 }
3655
3656 /* See target.h. */
3657
3658 const struct frame_unwind *
3659 target_get_tailcall_unwinder (void)
3660 {
3661 return current_target.to_get_tailcall_unwinder (&current_target);
3662 }
3663
3664 /* See target.h. */
3665
3666 void
3667 target_prepare_to_generate_core (void)
3668 {
3669 current_target.to_prepare_to_generate_core (&current_target);
3670 }
3671
3672 /* See target.h. */
3673
3674 void
3675 target_done_generating_core (void)
3676 {
3677 current_target.to_done_generating_core (&current_target);
3678 }
3679
3680 static void
3681 setup_target_debug (void)
3682 {
3683 memcpy (&debug_target, &current_target, sizeof debug_target);
3684
3685 init_debug_target (&current_target);
3686 }
3687 \f
3688
3689 static char targ_desc[] =
3690 "Names of targets and files being debugged.\nShows the entire \
3691 stack of targets currently in use (including the exec-file,\n\
3692 core-file, and process, if any), as well as the symbol file name.";
3693
3694 static void
3695 default_rcmd (struct target_ops *self, const char *command,
3696 struct ui_file *output)
3697 {
3698 error (_("\"monitor\" command not supported by this target."));
3699 }
3700
3701 static void
3702 do_monitor_command (char *cmd,
3703 int from_tty)
3704 {
3705 target_rcmd (cmd, gdb_stdtarg);
3706 }
3707
3708 /* Print the name of each layers of our target stack. */
3709
3710 static void
3711 maintenance_print_target_stack (char *cmd, int from_tty)
3712 {
3713 struct target_ops *t;
3714
3715 printf_filtered (_("The current target stack is:\n"));
3716
3717 for (t = target_stack; t != NULL; t = t->beneath)
3718 {
3719 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3720 }
3721 }
3722
3723 /* Controls if targets can report that they can/are async. This is
3724 just for maintainers to use when debugging gdb. */
3725 int target_async_permitted = 1;
3726
3727 /* The set command writes to this variable. If the inferior is
3728 executing, target_async_permitted is *not* updated. */
3729 static int target_async_permitted_1 = 1;
3730
3731 static void
3732 maint_set_target_async_command (char *args, int from_tty,
3733 struct cmd_list_element *c)
3734 {
3735 if (have_live_inferiors ())
3736 {
3737 target_async_permitted_1 = target_async_permitted;
3738 error (_("Cannot change this setting while the inferior is running."));
3739 }
3740
3741 target_async_permitted = target_async_permitted_1;
3742 }
3743
3744 static void
3745 maint_show_target_async_command (struct ui_file *file, int from_tty,
3746 struct cmd_list_element *c,
3747 const char *value)
3748 {
3749 fprintf_filtered (file,
3750 _("Controlling the inferior in "
3751 "asynchronous mode is %s.\n"), value);
3752 }
3753
3754 /* Temporary copies of permission settings. */
3755
3756 static int may_write_registers_1 = 1;
3757 static int may_write_memory_1 = 1;
3758 static int may_insert_breakpoints_1 = 1;
3759 static int may_insert_tracepoints_1 = 1;
3760 static int may_insert_fast_tracepoints_1 = 1;
3761 static int may_stop_1 = 1;
3762
3763 /* Make the user-set values match the real values again. */
3764
3765 void
3766 update_target_permissions (void)
3767 {
3768 may_write_registers_1 = may_write_registers;
3769 may_write_memory_1 = may_write_memory;
3770 may_insert_breakpoints_1 = may_insert_breakpoints;
3771 may_insert_tracepoints_1 = may_insert_tracepoints;
3772 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3773 may_stop_1 = may_stop;
3774 }
3775
3776 /* The one function handles (most of) the permission flags in the same
3777 way. */
3778
3779 static void
3780 set_target_permissions (char *args, int from_tty,
3781 struct cmd_list_element *c)
3782 {
3783 if (target_has_execution)
3784 {
3785 update_target_permissions ();
3786 error (_("Cannot change this setting while the inferior is running."));
3787 }
3788
3789 /* Make the real values match the user-changed values. */
3790 may_write_registers = may_write_registers_1;
3791 may_insert_breakpoints = may_insert_breakpoints_1;
3792 may_insert_tracepoints = may_insert_tracepoints_1;
3793 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3794 may_stop = may_stop_1;
3795 update_observer_mode ();
3796 }
3797
3798 /* Set memory write permission independently of observer mode. */
3799
3800 static void
3801 set_write_memory_permission (char *args, int from_tty,
3802 struct cmd_list_element *c)
3803 {
3804 /* Make the real values match the user-changed values. */
3805 may_write_memory = may_write_memory_1;
3806 update_observer_mode ();
3807 }
3808
3809
3810 void
3811 initialize_targets (void)
3812 {
3813 init_dummy_target ();
3814 push_target (&dummy_target);
3815
3816 add_info ("target", target_info, targ_desc);
3817 add_info ("files", target_info, targ_desc);
3818
3819 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3820 Set target debugging."), _("\
3821 Show target debugging."), _("\
3822 When non-zero, target debugging is enabled. Higher numbers are more\n\
3823 verbose."),
3824 set_targetdebug,
3825 show_targetdebug,
3826 &setdebuglist, &showdebuglist);
3827
3828 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3829 &trust_readonly, _("\
3830 Set mode for reading from readonly sections."), _("\
3831 Show mode for reading from readonly sections."), _("\
3832 When this mode is on, memory reads from readonly sections (such as .text)\n\
3833 will be read from the object file instead of from the target. This will\n\
3834 result in significant performance improvement for remote targets."),
3835 NULL,
3836 show_trust_readonly,
3837 &setlist, &showlist);
3838
3839 add_com ("monitor", class_obscure, do_monitor_command,
3840 _("Send a command to the remote monitor (remote targets only)."));
3841
3842 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3843 _("Print the name of each layer of the internal target stack."),
3844 &maintenanceprintlist);
3845
3846 add_setshow_boolean_cmd ("target-async", no_class,
3847 &target_async_permitted_1, _("\
3848 Set whether gdb controls the inferior in asynchronous mode."), _("\
3849 Show whether gdb controls the inferior in asynchronous mode."), _("\
3850 Tells gdb whether to control the inferior in asynchronous mode."),
3851 maint_set_target_async_command,
3852 maint_show_target_async_command,
3853 &maintenance_set_cmdlist,
3854 &maintenance_show_cmdlist);
3855
3856 add_setshow_boolean_cmd ("may-write-registers", class_support,
3857 &may_write_registers_1, _("\
3858 Set permission to write into registers."), _("\
3859 Show permission to write into registers."), _("\
3860 When this permission is on, GDB may write into the target's registers.\n\
3861 Otherwise, any sort of write attempt will result in an error."),
3862 set_target_permissions, NULL,
3863 &setlist, &showlist);
3864
3865 add_setshow_boolean_cmd ("may-write-memory", class_support,
3866 &may_write_memory_1, _("\
3867 Set permission to write into target memory."), _("\
3868 Show permission to write into target memory."), _("\
3869 When this permission is on, GDB may write into the target's memory.\n\
3870 Otherwise, any sort of write attempt will result in an error."),
3871 set_write_memory_permission, NULL,
3872 &setlist, &showlist);
3873
3874 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3875 &may_insert_breakpoints_1, _("\
3876 Set permission to insert breakpoints in the target."), _("\
3877 Show permission to insert breakpoints in the target."), _("\
3878 When this permission is on, GDB may insert breakpoints in the program.\n\
3879 Otherwise, any sort of insertion attempt will result in an error."),
3880 set_target_permissions, NULL,
3881 &setlist, &showlist);
3882
3883 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3884 &may_insert_tracepoints_1, _("\
3885 Set permission to insert tracepoints in the target."), _("\
3886 Show permission to insert tracepoints in the target."), _("\
3887 When this permission is on, GDB may insert tracepoints in the program.\n\
3888 Otherwise, any sort of insertion attempt will result in an error."),
3889 set_target_permissions, NULL,
3890 &setlist, &showlist);
3891
3892 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3893 &may_insert_fast_tracepoints_1, _("\
3894 Set permission to insert fast tracepoints in the target."), _("\
3895 Show permission to insert fast tracepoints in the target."), _("\
3896 When this permission is on, GDB may insert fast tracepoints.\n\
3897 Otherwise, any sort of insertion attempt will result in an error."),
3898 set_target_permissions, NULL,
3899 &setlist, &showlist);
3900
3901 add_setshow_boolean_cmd ("may-interrupt", class_support,
3902 &may_stop_1, _("\
3903 Set permission to interrupt or signal the target."), _("\
3904 Show permission to interrupt or signal the target."), _("\
3905 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3906 Otherwise, any attempt to interrupt or stop will be ignored."),
3907 set_target_permissions, NULL,
3908 &setlist, &showlist);
3909
3910 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3911 &auto_connect_native_target, _("\
3912 Set whether GDB may automatically connect to the native target."), _("\
3913 Show whether GDB may automatically connect to the native target."), _("\
3914 When on, and GDB is not connected to a target yet, GDB\n\
3915 attempts \"run\" and other commands with the native target."),
3916 NULL, show_auto_connect_native_target,
3917 &setlist, &showlist);
3918 }