]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
enable target async by default; separate MI and target notions of async
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "dcache.h"
35 #include <signal.h>
36 #include "regcache.h"
37 #include "gdb_assert.h"
38 #include "gdbcore.h"
39 #include "exceptions.h"
40 #include "target-descriptions.h"
41 #include "gdbthread.h"
42 #include "solib.h"
43 #include "exec.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "gdb/fileio.h"
47 #include "agent.h"
48 #include "auxv.h"
49
50 static void target_info (char *, int);
51
52 static void default_terminal_info (struct target_ops *, const char *, int);
53
54 static int default_watchpoint_addr_within_range (struct target_ops *,
55 CORE_ADDR, CORE_ADDR, int);
56
57 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 CORE_ADDR, int);
59
60 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
61
62 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 long lwp, long tid);
64
65 static int default_follow_fork (struct target_ops *self, int follow_child,
66 int detach_fork);
67
68 static void default_mourn_inferior (struct target_ops *self);
69
70 static int default_search_memory (struct target_ops *ops,
71 CORE_ADDR start_addr,
72 ULONGEST search_space_len,
73 const gdb_byte *pattern,
74 ULONGEST pattern_len,
75 CORE_ADDR *found_addrp);
76
77 static int default_verify_memory (struct target_ops *self,
78 const gdb_byte *data,
79 CORE_ADDR memaddr, ULONGEST size);
80
81 static void tcomplain (void) ATTRIBUTE_NORETURN;
82
83 static int return_zero (struct target_ops *);
84
85 static int return_zero_has_execution (struct target_ops *, ptid_t);
86
87 static void target_command (char *, int);
88
89 static struct target_ops *find_default_run_target (char *);
90
91 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
92 ptid_t ptid);
93
94 static int dummy_find_memory_regions (struct target_ops *self,
95 find_memory_region_ftype ignore1,
96 void *ignore2);
97
98 static char *dummy_make_corefile_notes (struct target_ops *self,
99 bfd *ignore1, int *ignore2);
100
101 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
102
103 static enum exec_direction_kind default_execution_direction
104 (struct target_ops *self);
105
106 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
107 struct gdbarch *gdbarch);
108
109 #include "target-delegates.c"
110
111 static void init_dummy_target (void);
112
113 static struct target_ops debug_target;
114
115 static void debug_to_open (char *, int);
116
117 static void debug_to_prepare_to_store (struct target_ops *self,
118 struct regcache *);
119
120 static void debug_to_files_info (struct target_ops *);
121
122 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
123 struct bp_target_info *);
124
125 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
129 int, int, int);
130
131 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
132 struct gdbarch *,
133 struct bp_target_info *);
134
135 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
136 struct gdbarch *,
137 struct bp_target_info *);
138
139 static int debug_to_insert_watchpoint (struct target_ops *self,
140 CORE_ADDR, int, int,
141 struct expression *);
142
143 static int debug_to_remove_watchpoint (struct target_ops *self,
144 CORE_ADDR, int, int,
145 struct expression *);
146
147 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
148
149 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
150 CORE_ADDR, CORE_ADDR, int);
151
152 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
153 CORE_ADDR, int);
154
155 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
156 CORE_ADDR, int, int,
157 struct expression *);
158
159 static void debug_to_terminal_init (struct target_ops *self);
160
161 static void debug_to_terminal_inferior (struct target_ops *self);
162
163 static void debug_to_terminal_ours_for_output (struct target_ops *self);
164
165 static void debug_to_terminal_save_ours (struct target_ops *self);
166
167 static void debug_to_terminal_ours (struct target_ops *self);
168
169 static void debug_to_load (struct target_ops *self, char *, int);
170
171 static int debug_to_can_run (struct target_ops *self);
172
173 static void debug_to_stop (struct target_ops *self, ptid_t);
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_allocsize;
181 #define DEFAULT_ALLOCSIZE 10
182
183 /* The initial current target, so that there is always a semi-valid
184 current target. */
185
186 static struct target_ops dummy_target;
187
188 /* Top of target stack. */
189
190 static struct target_ops *target_stack;
191
192 /* The target structure we are currently using to talk to a process
193 or file or whatever "inferior" we have. */
194
195 struct target_ops current_target;
196
197 /* Command list for target. */
198
199 static struct cmd_list_element *targetlist = NULL;
200
201 /* Nonzero if we should trust readonly sections from the
202 executable when reading memory. */
203
204 static int trust_readonly = 0;
205
206 /* Nonzero if we should show true memory content including
207 memory breakpoint inserted by gdb. */
208
209 static int show_memory_breakpoints = 0;
210
211 /* These globals control whether GDB attempts to perform these
212 operations; they are useful for targets that need to prevent
213 inadvertant disruption, such as in non-stop mode. */
214
215 int may_write_registers = 1;
216
217 int may_write_memory = 1;
218
219 int may_insert_breakpoints = 1;
220
221 int may_insert_tracepoints = 1;
222
223 int may_insert_fast_tracepoints = 1;
224
225 int may_stop = 1;
226
227 /* Non-zero if we want to see trace of target level stuff. */
228
229 static unsigned int targetdebug = 0;
230 static void
231 show_targetdebug (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
235 }
236
237 static void setup_target_debug (void);
238
239 /* The user just typed 'target' without the name of a target. */
240
241 static void
242 target_command (char *arg, int from_tty)
243 {
244 fputs_filtered ("Argument required (target name). Try `help target'\n",
245 gdb_stdout);
246 }
247
248 /* Default target_has_* methods for process_stratum targets. */
249
250 int
251 default_child_has_all_memory (struct target_ops *ops)
252 {
253 /* If no inferior selected, then we can't read memory here. */
254 if (ptid_equal (inferior_ptid, null_ptid))
255 return 0;
256
257 return 1;
258 }
259
260 int
261 default_child_has_memory (struct target_ops *ops)
262 {
263 /* If no inferior selected, then we can't read memory here. */
264 if (ptid_equal (inferior_ptid, null_ptid))
265 return 0;
266
267 return 1;
268 }
269
270 int
271 default_child_has_stack (struct target_ops *ops)
272 {
273 /* If no inferior selected, there's no stack. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_registers (struct target_ops *ops)
282 {
283 /* Can't read registers from no inferior. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
292 {
293 /* If there's no thread selected, then we can't make it run through
294 hoops. */
295 if (ptid_equal (the_ptid, null_ptid))
296 return 0;
297
298 return 1;
299 }
300
301
302 int
303 target_has_all_memory_1 (void)
304 {
305 struct target_ops *t;
306
307 for (t = current_target.beneath; t != NULL; t = t->beneath)
308 if (t->to_has_all_memory (t))
309 return 1;
310
311 return 0;
312 }
313
314 int
315 target_has_memory_1 (void)
316 {
317 struct target_ops *t;
318
319 for (t = current_target.beneath; t != NULL; t = t->beneath)
320 if (t->to_has_memory (t))
321 return 1;
322
323 return 0;
324 }
325
326 int
327 target_has_stack_1 (void)
328 {
329 struct target_ops *t;
330
331 for (t = current_target.beneath; t != NULL; t = t->beneath)
332 if (t->to_has_stack (t))
333 return 1;
334
335 return 0;
336 }
337
338 int
339 target_has_registers_1 (void)
340 {
341 struct target_ops *t;
342
343 for (t = current_target.beneath; t != NULL; t = t->beneath)
344 if (t->to_has_registers (t))
345 return 1;
346
347 return 0;
348 }
349
350 int
351 target_has_execution_1 (ptid_t the_ptid)
352 {
353 struct target_ops *t;
354
355 for (t = current_target.beneath; t != NULL; t = t->beneath)
356 if (t->to_has_execution (t, the_ptid))
357 return 1;
358
359 return 0;
360 }
361
362 int
363 target_has_execution_current (void)
364 {
365 return target_has_execution_1 (inferior_ptid);
366 }
367
368 /* Complete initialization of T. This ensures that various fields in
369 T are set, if needed by the target implementation. */
370
371 void
372 complete_target_initialization (struct target_ops *t)
373 {
374 /* Provide default values for all "must have" methods. */
375
376 if (t->to_has_all_memory == NULL)
377 t->to_has_all_memory = return_zero;
378
379 if (t->to_has_memory == NULL)
380 t->to_has_memory = return_zero;
381
382 if (t->to_has_stack == NULL)
383 t->to_has_stack = return_zero;
384
385 if (t->to_has_registers == NULL)
386 t->to_has_registers = return_zero;
387
388 if (t->to_has_execution == NULL)
389 t->to_has_execution = return_zero_has_execution;
390
391 /* These methods can be called on an unpushed target and so require
392 a default implementation if the target might plausibly be the
393 default run target. */
394 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
395 && t->to_supports_non_stop != NULL));
396
397 install_delegators (t);
398 }
399
400 /* Add possible target architecture T to the list and add a new
401 command 'target T->to_shortname'. Set COMPLETER as the command's
402 completer if not NULL. */
403
404 void
405 add_target_with_completer (struct target_ops *t,
406 completer_ftype *completer)
407 {
408 struct cmd_list_element *c;
409
410 complete_target_initialization (t);
411
412 if (!target_structs)
413 {
414 target_struct_allocsize = DEFAULT_ALLOCSIZE;
415 target_structs = (struct target_ops **) xmalloc
416 (target_struct_allocsize * sizeof (*target_structs));
417 }
418 if (target_struct_size >= target_struct_allocsize)
419 {
420 target_struct_allocsize *= 2;
421 target_structs = (struct target_ops **)
422 xrealloc ((char *) target_structs,
423 target_struct_allocsize * sizeof (*target_structs));
424 }
425 target_structs[target_struct_size++] = t;
426
427 if (targetlist == NULL)
428 add_prefix_cmd ("target", class_run, target_command, _("\
429 Connect to a target machine or process.\n\
430 The first argument is the type or protocol of the target machine.\n\
431 Remaining arguments are interpreted by the target protocol. For more\n\
432 information on the arguments for a particular protocol, type\n\
433 `help target ' followed by the protocol name."),
434 &targetlist, "target ", 0, &cmdlist);
435 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
436 &targetlist);
437 if (completer != NULL)
438 set_cmd_completer (c, completer);
439 }
440
441 /* Add a possible target architecture to the list. */
442
443 void
444 add_target (struct target_ops *t)
445 {
446 add_target_with_completer (t, NULL);
447 }
448
449 /* See target.h. */
450
451 void
452 add_deprecated_target_alias (struct target_ops *t, char *alias)
453 {
454 struct cmd_list_element *c;
455 char *alt;
456
457 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
458 see PR cli/15104. */
459 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
460 alt = xstrprintf ("target %s", t->to_shortname);
461 deprecate_cmd (c, alt);
462 }
463
464 /* Stub functions */
465
466 void
467 target_kill (void)
468 {
469 if (targetdebug)
470 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
471
472 current_target.to_kill (&current_target);
473 }
474
475 void
476 target_load (char *arg, int from_tty)
477 {
478 target_dcache_invalidate ();
479 (*current_target.to_load) (&current_target, arg, from_tty);
480 }
481
482 void
483 target_terminal_inferior (void)
484 {
485 /* A background resume (``run&'') should leave GDB in control of the
486 terminal. Use target_can_async_p, not target_is_async_p, since at
487 this point the target is not async yet. However, if sync_execution
488 is not set, we know it will become async prior to resume. */
489 if (target_can_async_p () && !sync_execution)
490 return;
491
492 /* If GDB is resuming the inferior in the foreground, install
493 inferior's terminal modes. */
494 (*current_target.to_terminal_inferior) (&current_target);
495 }
496
497 static void
498 tcomplain (void)
499 {
500 error (_("You can't do that when your target is `%s'"),
501 current_target.to_shortname);
502 }
503
504 void
505 noprocess (void)
506 {
507 error (_("You can't do that without a process to debug."));
508 }
509
510 static void
511 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
512 {
513 printf_unfiltered (_("No saved terminal information.\n"));
514 }
515
516 /* A default implementation for the to_get_ada_task_ptid target method.
517
518 This function builds the PTID by using both LWP and TID as part of
519 the PTID lwp and tid elements. The pid used is the pid of the
520 inferior_ptid. */
521
522 static ptid_t
523 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
524 {
525 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
526 }
527
528 static enum exec_direction_kind
529 default_execution_direction (struct target_ops *self)
530 {
531 if (!target_can_execute_reverse)
532 return EXEC_FORWARD;
533 else if (!target_can_async_p ())
534 return EXEC_FORWARD;
535 else
536 gdb_assert_not_reached ("\
537 to_execution_direction must be implemented for reverse async");
538 }
539
540 /* Go through the target stack from top to bottom, copying over zero
541 entries in current_target, then filling in still empty entries. In
542 effect, we are doing class inheritance through the pushed target
543 vectors.
544
545 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
546 is currently implemented, is that it discards any knowledge of
547 which target an inherited method originally belonged to.
548 Consequently, new new target methods should instead explicitly and
549 locally search the target stack for the target that can handle the
550 request. */
551
552 static void
553 update_current_target (void)
554 {
555 struct target_ops *t;
556
557 /* First, reset current's contents. */
558 memset (&current_target, 0, sizeof (current_target));
559
560 /* Install the delegators. */
561 install_delegators (&current_target);
562
563 current_target.to_stratum = target_stack->to_stratum;
564
565 #define INHERIT(FIELD, TARGET) \
566 if (!current_target.FIELD) \
567 current_target.FIELD = (TARGET)->FIELD
568
569 /* Do not add any new INHERITs here. Instead, use the delegation
570 mechanism provided by make-target-delegates. */
571 for (t = target_stack; t; t = t->beneath)
572 {
573 INHERIT (to_shortname, t);
574 INHERIT (to_longname, t);
575 INHERIT (to_attach_no_wait, t);
576 INHERIT (to_have_steppable_watchpoint, t);
577 INHERIT (to_have_continuable_watchpoint, t);
578 INHERIT (to_has_thread_control, t);
579 }
580 #undef INHERIT
581
582 /* Finally, position the target-stack beneath the squashed
583 "current_target". That way code looking for a non-inherited
584 target method can quickly and simply find it. */
585 current_target.beneath = target_stack;
586
587 if (targetdebug)
588 setup_target_debug ();
589 }
590
591 /* Push a new target type into the stack of the existing target accessors,
592 possibly superseding some of the existing accessors.
593
594 Rather than allow an empty stack, we always have the dummy target at
595 the bottom stratum, so we can call the function vectors without
596 checking them. */
597
598 void
599 push_target (struct target_ops *t)
600 {
601 struct target_ops **cur;
602
603 /* Check magic number. If wrong, it probably means someone changed
604 the struct definition, but not all the places that initialize one. */
605 if (t->to_magic != OPS_MAGIC)
606 {
607 fprintf_unfiltered (gdb_stderr,
608 "Magic number of %s target struct wrong\n",
609 t->to_shortname);
610 internal_error (__FILE__, __LINE__,
611 _("failed internal consistency check"));
612 }
613
614 /* Find the proper stratum to install this target in. */
615 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
616 {
617 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
618 break;
619 }
620
621 /* If there's already targets at this stratum, remove them. */
622 /* FIXME: cagney/2003-10-15: I think this should be popping all
623 targets to CUR, and not just those at this stratum level. */
624 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
625 {
626 /* There's already something at this stratum level. Close it,
627 and un-hook it from the stack. */
628 struct target_ops *tmp = (*cur);
629
630 (*cur) = (*cur)->beneath;
631 tmp->beneath = NULL;
632 target_close (tmp);
633 }
634
635 /* We have removed all targets in our stratum, now add the new one. */
636 t->beneath = (*cur);
637 (*cur) = t;
638
639 update_current_target ();
640 }
641
642 /* Remove a target_ops vector from the stack, wherever it may be.
643 Return how many times it was removed (0 or 1). */
644
645 int
646 unpush_target (struct target_ops *t)
647 {
648 struct target_ops **cur;
649 struct target_ops *tmp;
650
651 if (t->to_stratum == dummy_stratum)
652 internal_error (__FILE__, __LINE__,
653 _("Attempt to unpush the dummy target"));
654
655 /* Look for the specified target. Note that we assume that a target
656 can only occur once in the target stack. */
657
658 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
659 {
660 if ((*cur) == t)
661 break;
662 }
663
664 /* If we don't find target_ops, quit. Only open targets should be
665 closed. */
666 if ((*cur) == NULL)
667 return 0;
668
669 /* Unchain the target. */
670 tmp = (*cur);
671 (*cur) = (*cur)->beneath;
672 tmp->beneath = NULL;
673
674 update_current_target ();
675
676 /* Finally close the target. Note we do this after unchaining, so
677 any target method calls from within the target_close
678 implementation don't end up in T anymore. */
679 target_close (t);
680
681 return 1;
682 }
683
684 void
685 pop_all_targets_above (enum strata above_stratum)
686 {
687 while ((int) (current_target.to_stratum) > (int) above_stratum)
688 {
689 if (!unpush_target (target_stack))
690 {
691 fprintf_unfiltered (gdb_stderr,
692 "pop_all_targets couldn't find target %s\n",
693 target_stack->to_shortname);
694 internal_error (__FILE__, __LINE__,
695 _("failed internal consistency check"));
696 break;
697 }
698 }
699 }
700
701 void
702 pop_all_targets (void)
703 {
704 pop_all_targets_above (dummy_stratum);
705 }
706
707 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
708
709 int
710 target_is_pushed (struct target_ops *t)
711 {
712 struct target_ops **cur;
713
714 /* Check magic number. If wrong, it probably means someone changed
715 the struct definition, but not all the places that initialize one. */
716 if (t->to_magic != OPS_MAGIC)
717 {
718 fprintf_unfiltered (gdb_stderr,
719 "Magic number of %s target struct wrong\n",
720 t->to_shortname);
721 internal_error (__FILE__, __LINE__,
722 _("failed internal consistency check"));
723 }
724
725 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
726 if (*cur == t)
727 return 1;
728
729 return 0;
730 }
731
732 /* Using the objfile specified in OBJFILE, find the address for the
733 current thread's thread-local storage with offset OFFSET. */
734 CORE_ADDR
735 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
736 {
737 volatile CORE_ADDR addr = 0;
738 struct target_ops *target;
739
740 for (target = current_target.beneath;
741 target != NULL;
742 target = target->beneath)
743 {
744 if (target->to_get_thread_local_address != NULL)
745 break;
746 }
747
748 if (target != NULL
749 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
750 {
751 ptid_t ptid = inferior_ptid;
752 volatile struct gdb_exception ex;
753
754 TRY_CATCH (ex, RETURN_MASK_ALL)
755 {
756 CORE_ADDR lm_addr;
757
758 /* Fetch the load module address for this objfile. */
759 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
760 objfile);
761
762 addr = target->to_get_thread_local_address (target, ptid,
763 lm_addr, offset);
764 }
765 /* If an error occurred, print TLS related messages here. Otherwise,
766 throw the error to some higher catcher. */
767 if (ex.reason < 0)
768 {
769 int objfile_is_library = (objfile->flags & OBJF_SHARED);
770
771 switch (ex.error)
772 {
773 case TLS_NO_LIBRARY_SUPPORT_ERROR:
774 error (_("Cannot find thread-local variables "
775 "in this thread library."));
776 break;
777 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
778 if (objfile_is_library)
779 error (_("Cannot find shared library `%s' in dynamic"
780 " linker's load module list"), objfile_name (objfile));
781 else
782 error (_("Cannot find executable file `%s' in dynamic"
783 " linker's load module list"), objfile_name (objfile));
784 break;
785 case TLS_NOT_ALLOCATED_YET_ERROR:
786 if (objfile_is_library)
787 error (_("The inferior has not yet allocated storage for"
788 " thread-local variables in\n"
789 "the shared library `%s'\n"
790 "for %s"),
791 objfile_name (objfile), target_pid_to_str (ptid));
792 else
793 error (_("The inferior has not yet allocated storage for"
794 " thread-local variables in\n"
795 "the executable `%s'\n"
796 "for %s"),
797 objfile_name (objfile), target_pid_to_str (ptid));
798 break;
799 case TLS_GENERIC_ERROR:
800 if (objfile_is_library)
801 error (_("Cannot find thread-local storage for %s, "
802 "shared library %s:\n%s"),
803 target_pid_to_str (ptid),
804 objfile_name (objfile), ex.message);
805 else
806 error (_("Cannot find thread-local storage for %s, "
807 "executable file %s:\n%s"),
808 target_pid_to_str (ptid),
809 objfile_name (objfile), ex.message);
810 break;
811 default:
812 throw_exception (ex);
813 break;
814 }
815 }
816 }
817 /* It wouldn't be wrong here to try a gdbarch method, too; finding
818 TLS is an ABI-specific thing. But we don't do that yet. */
819 else
820 error (_("Cannot find thread-local variables on this target"));
821
822 return addr;
823 }
824
825 const char *
826 target_xfer_status_to_string (enum target_xfer_status status)
827 {
828 #define CASE(X) case X: return #X
829 switch (status)
830 {
831 CASE(TARGET_XFER_E_IO);
832 CASE(TARGET_XFER_UNAVAILABLE);
833 default:
834 return "<unknown>";
835 }
836 #undef CASE
837 };
838
839
840 #undef MIN
841 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
842
843 /* target_read_string -- read a null terminated string, up to LEN bytes,
844 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
845 Set *STRING to a pointer to malloc'd memory containing the data; the caller
846 is responsible for freeing it. Return the number of bytes successfully
847 read. */
848
849 int
850 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
851 {
852 int tlen, offset, i;
853 gdb_byte buf[4];
854 int errcode = 0;
855 char *buffer;
856 int buffer_allocated;
857 char *bufptr;
858 unsigned int nbytes_read = 0;
859
860 gdb_assert (string);
861
862 /* Small for testing. */
863 buffer_allocated = 4;
864 buffer = xmalloc (buffer_allocated);
865 bufptr = buffer;
866
867 while (len > 0)
868 {
869 tlen = MIN (len, 4 - (memaddr & 3));
870 offset = memaddr & 3;
871
872 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
873 if (errcode != 0)
874 {
875 /* The transfer request might have crossed the boundary to an
876 unallocated region of memory. Retry the transfer, requesting
877 a single byte. */
878 tlen = 1;
879 offset = 0;
880 errcode = target_read_memory (memaddr, buf, 1);
881 if (errcode != 0)
882 goto done;
883 }
884
885 if (bufptr - buffer + tlen > buffer_allocated)
886 {
887 unsigned int bytes;
888
889 bytes = bufptr - buffer;
890 buffer_allocated *= 2;
891 buffer = xrealloc (buffer, buffer_allocated);
892 bufptr = buffer + bytes;
893 }
894
895 for (i = 0; i < tlen; i++)
896 {
897 *bufptr++ = buf[i + offset];
898 if (buf[i + offset] == '\000')
899 {
900 nbytes_read += i + 1;
901 goto done;
902 }
903 }
904
905 memaddr += tlen;
906 len -= tlen;
907 nbytes_read += tlen;
908 }
909 done:
910 *string = buffer;
911 if (errnop != NULL)
912 *errnop = errcode;
913 return nbytes_read;
914 }
915
916 struct target_section_table *
917 target_get_section_table (struct target_ops *target)
918 {
919 if (targetdebug)
920 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
921
922 return (*target->to_get_section_table) (target);
923 }
924
925 /* Find a section containing ADDR. */
926
927 struct target_section *
928 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
929 {
930 struct target_section_table *table = target_get_section_table (target);
931 struct target_section *secp;
932
933 if (table == NULL)
934 return NULL;
935
936 for (secp = table->sections; secp < table->sections_end; secp++)
937 {
938 if (addr >= secp->addr && addr < secp->endaddr)
939 return secp;
940 }
941 return NULL;
942 }
943
944 /* Read memory from more than one valid target. A core file, for
945 instance, could have some of memory but delegate other bits to
946 the target below it. So, we must manually try all targets. */
947
948 static enum target_xfer_status
949 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
950 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
951 ULONGEST *xfered_len)
952 {
953 enum target_xfer_status res;
954
955 do
956 {
957 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
958 readbuf, writebuf, memaddr, len,
959 xfered_len);
960 if (res == TARGET_XFER_OK)
961 break;
962
963 /* Stop if the target reports that the memory is not available. */
964 if (res == TARGET_XFER_UNAVAILABLE)
965 break;
966
967 /* We want to continue past core files to executables, but not
968 past a running target's memory. */
969 if (ops->to_has_all_memory (ops))
970 break;
971
972 ops = ops->beneath;
973 }
974 while (ops != NULL);
975
976 /* The cache works at the raw memory level. Make sure the cache
977 gets updated with raw contents no matter what kind of memory
978 object was originally being written. Note we do write-through
979 first, so that if it fails, we don't write to the cache contents
980 that never made it to the target. */
981 if (writebuf != NULL
982 && !ptid_equal (inferior_ptid, null_ptid)
983 && target_dcache_init_p ()
984 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
985 {
986 DCACHE *dcache = target_dcache_get ();
987
988 /* Note that writing to an area of memory which wasn't present
989 in the cache doesn't cause it to be loaded in. */
990 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
991 }
992
993 return res;
994 }
995
996 /* Perform a partial memory transfer.
997 For docs see target.h, to_xfer_partial. */
998
999 static enum target_xfer_status
1000 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1001 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1002 ULONGEST len, ULONGEST *xfered_len)
1003 {
1004 enum target_xfer_status res;
1005 int reg_len;
1006 struct mem_region *region;
1007 struct inferior *inf;
1008
1009 /* For accesses to unmapped overlay sections, read directly from
1010 files. Must do this first, as MEMADDR may need adjustment. */
1011 if (readbuf != NULL && overlay_debugging)
1012 {
1013 struct obj_section *section = find_pc_overlay (memaddr);
1014
1015 if (pc_in_unmapped_range (memaddr, section))
1016 {
1017 struct target_section_table *table
1018 = target_get_section_table (ops);
1019 const char *section_name = section->the_bfd_section->name;
1020
1021 memaddr = overlay_mapped_address (memaddr, section);
1022 return section_table_xfer_memory_partial (readbuf, writebuf,
1023 memaddr, len, xfered_len,
1024 table->sections,
1025 table->sections_end,
1026 section_name);
1027 }
1028 }
1029
1030 /* Try the executable files, if "trust-readonly-sections" is set. */
1031 if (readbuf != NULL && trust_readonly)
1032 {
1033 struct target_section *secp;
1034 struct target_section_table *table;
1035
1036 secp = target_section_by_addr (ops, memaddr);
1037 if (secp != NULL
1038 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1039 secp->the_bfd_section)
1040 & SEC_READONLY))
1041 {
1042 table = target_get_section_table (ops);
1043 return section_table_xfer_memory_partial (readbuf, writebuf,
1044 memaddr, len, xfered_len,
1045 table->sections,
1046 table->sections_end,
1047 NULL);
1048 }
1049 }
1050
1051 /* Try GDB's internal data cache. */
1052 region = lookup_mem_region (memaddr);
1053 /* region->hi == 0 means there's no upper bound. */
1054 if (memaddr + len < region->hi || region->hi == 0)
1055 reg_len = len;
1056 else
1057 reg_len = region->hi - memaddr;
1058
1059 switch (region->attrib.mode)
1060 {
1061 case MEM_RO:
1062 if (writebuf != NULL)
1063 return TARGET_XFER_E_IO;
1064 break;
1065
1066 case MEM_WO:
1067 if (readbuf != NULL)
1068 return TARGET_XFER_E_IO;
1069 break;
1070
1071 case MEM_FLASH:
1072 /* We only support writing to flash during "load" for now. */
1073 if (writebuf != NULL)
1074 error (_("Writing to flash memory forbidden in this context"));
1075 break;
1076
1077 case MEM_NONE:
1078 return TARGET_XFER_E_IO;
1079 }
1080
1081 if (!ptid_equal (inferior_ptid, null_ptid))
1082 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1083 else
1084 inf = NULL;
1085
1086 if (inf != NULL
1087 && readbuf != NULL
1088 /* The dcache reads whole cache lines; that doesn't play well
1089 with reading from a trace buffer, because reading outside of
1090 the collected memory range fails. */
1091 && get_traceframe_number () == -1
1092 && (region->attrib.cache
1093 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1094 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1095 {
1096 DCACHE *dcache = target_dcache_get_or_init ();
1097
1098 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1099 reg_len, xfered_len);
1100 }
1101
1102 /* If none of those methods found the memory we wanted, fall back
1103 to a target partial transfer. Normally a single call to
1104 to_xfer_partial is enough; if it doesn't recognize an object
1105 it will call the to_xfer_partial of the next target down.
1106 But for memory this won't do. Memory is the only target
1107 object which can be read from more than one valid target.
1108 A core file, for instance, could have some of memory but
1109 delegate other bits to the target below it. So, we must
1110 manually try all targets. */
1111
1112 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1113 xfered_len);
1114
1115 /* If we still haven't got anything, return the last error. We
1116 give up. */
1117 return res;
1118 }
1119
1120 /* Perform a partial memory transfer. For docs see target.h,
1121 to_xfer_partial. */
1122
1123 static enum target_xfer_status
1124 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1125 gdb_byte *readbuf, const gdb_byte *writebuf,
1126 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1127 {
1128 enum target_xfer_status res;
1129
1130 /* Zero length requests are ok and require no work. */
1131 if (len == 0)
1132 return TARGET_XFER_EOF;
1133
1134 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1135 breakpoint insns, thus hiding out from higher layers whether
1136 there are software breakpoints inserted in the code stream. */
1137 if (readbuf != NULL)
1138 {
1139 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1140 xfered_len);
1141
1142 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1143 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1144 }
1145 else
1146 {
1147 void *buf;
1148 struct cleanup *old_chain;
1149
1150 /* A large write request is likely to be partially satisfied
1151 by memory_xfer_partial_1. We will continually malloc
1152 and free a copy of the entire write request for breakpoint
1153 shadow handling even though we only end up writing a small
1154 subset of it. Cap writes to 4KB to mitigate this. */
1155 len = min (4096, len);
1156
1157 buf = xmalloc (len);
1158 old_chain = make_cleanup (xfree, buf);
1159 memcpy (buf, writebuf, len);
1160
1161 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1162 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1163 xfered_len);
1164
1165 do_cleanups (old_chain);
1166 }
1167
1168 return res;
1169 }
1170
1171 static void
1172 restore_show_memory_breakpoints (void *arg)
1173 {
1174 show_memory_breakpoints = (uintptr_t) arg;
1175 }
1176
1177 struct cleanup *
1178 make_show_memory_breakpoints_cleanup (int show)
1179 {
1180 int current = show_memory_breakpoints;
1181
1182 show_memory_breakpoints = show;
1183 return make_cleanup (restore_show_memory_breakpoints,
1184 (void *) (uintptr_t) current);
1185 }
1186
1187 /* For docs see target.h, to_xfer_partial. */
1188
1189 enum target_xfer_status
1190 target_xfer_partial (struct target_ops *ops,
1191 enum target_object object, const char *annex,
1192 gdb_byte *readbuf, const gdb_byte *writebuf,
1193 ULONGEST offset, ULONGEST len,
1194 ULONGEST *xfered_len)
1195 {
1196 enum target_xfer_status retval;
1197
1198 gdb_assert (ops->to_xfer_partial != NULL);
1199
1200 /* Transfer is done when LEN is zero. */
1201 if (len == 0)
1202 return TARGET_XFER_EOF;
1203
1204 if (writebuf && !may_write_memory)
1205 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1206 core_addr_to_string_nz (offset), plongest (len));
1207
1208 *xfered_len = 0;
1209
1210 /* If this is a memory transfer, let the memory-specific code
1211 have a look at it instead. Memory transfers are more
1212 complicated. */
1213 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1214 || object == TARGET_OBJECT_CODE_MEMORY)
1215 retval = memory_xfer_partial (ops, object, readbuf,
1216 writebuf, offset, len, xfered_len);
1217 else if (object == TARGET_OBJECT_RAW_MEMORY)
1218 {
1219 /* Request the normal memory object from other layers. */
1220 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1221 xfered_len);
1222 }
1223 else
1224 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1225 writebuf, offset, len, xfered_len);
1226
1227 if (targetdebug)
1228 {
1229 const unsigned char *myaddr = NULL;
1230
1231 fprintf_unfiltered (gdb_stdlog,
1232 "%s:target_xfer_partial "
1233 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1234 ops->to_shortname,
1235 (int) object,
1236 (annex ? annex : "(null)"),
1237 host_address_to_string (readbuf),
1238 host_address_to_string (writebuf),
1239 core_addr_to_string_nz (offset),
1240 pulongest (len), retval,
1241 pulongest (*xfered_len));
1242
1243 if (readbuf)
1244 myaddr = readbuf;
1245 if (writebuf)
1246 myaddr = writebuf;
1247 if (retval == TARGET_XFER_OK && myaddr != NULL)
1248 {
1249 int i;
1250
1251 fputs_unfiltered (", bytes =", gdb_stdlog);
1252 for (i = 0; i < *xfered_len; i++)
1253 {
1254 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1255 {
1256 if (targetdebug < 2 && i > 0)
1257 {
1258 fprintf_unfiltered (gdb_stdlog, " ...");
1259 break;
1260 }
1261 fprintf_unfiltered (gdb_stdlog, "\n");
1262 }
1263
1264 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1265 }
1266 }
1267
1268 fputc_unfiltered ('\n', gdb_stdlog);
1269 }
1270
1271 /* Check implementations of to_xfer_partial update *XFERED_LEN
1272 properly. Do assertion after printing debug messages, so that we
1273 can find more clues on assertion failure from debugging messages. */
1274 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1275 gdb_assert (*xfered_len > 0);
1276
1277 return retval;
1278 }
1279
1280 /* Read LEN bytes of target memory at address MEMADDR, placing the
1281 results in GDB's memory at MYADDR. Returns either 0 for success or
1282 TARGET_XFER_E_IO if any error occurs.
1283
1284 If an error occurs, no guarantee is made about the contents of the data at
1285 MYADDR. In particular, the caller should not depend upon partial reads
1286 filling the buffer with good data. There is no way for the caller to know
1287 how much good data might have been transfered anyway. Callers that can
1288 deal with partial reads should call target_read (which will retry until
1289 it makes no progress, and then return how much was transferred). */
1290
1291 int
1292 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1293 {
1294 /* Dispatch to the topmost target, not the flattened current_target.
1295 Memory accesses check target->to_has_(all_)memory, and the
1296 flattened target doesn't inherit those. */
1297 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1298 myaddr, memaddr, len) == len)
1299 return 0;
1300 else
1301 return TARGET_XFER_E_IO;
1302 }
1303
1304 /* Like target_read_memory, but specify explicitly that this is a read
1305 from the target's raw memory. That is, this read bypasses the
1306 dcache, breakpoint shadowing, etc. */
1307
1308 int
1309 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1310 {
1311 /* See comment in target_read_memory about why the request starts at
1312 current_target.beneath. */
1313 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1314 myaddr, memaddr, len) == len)
1315 return 0;
1316 else
1317 return TARGET_XFER_E_IO;
1318 }
1319
1320 /* Like target_read_memory, but specify explicitly that this is a read from
1321 the target's stack. This may trigger different cache behavior. */
1322
1323 int
1324 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1325 {
1326 /* See comment in target_read_memory about why the request starts at
1327 current_target.beneath. */
1328 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1329 myaddr, memaddr, len) == len)
1330 return 0;
1331 else
1332 return TARGET_XFER_E_IO;
1333 }
1334
1335 /* Like target_read_memory, but specify explicitly that this is a read from
1336 the target's code. This may trigger different cache behavior. */
1337
1338 int
1339 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1340 {
1341 /* See comment in target_read_memory about why the request starts at
1342 current_target.beneath. */
1343 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1344 myaddr, memaddr, len) == len)
1345 return 0;
1346 else
1347 return TARGET_XFER_E_IO;
1348 }
1349
1350 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1351 Returns either 0 for success or TARGET_XFER_E_IO if any
1352 error occurs. If an error occurs, no guarantee is made about how
1353 much data got written. Callers that can deal with partial writes
1354 should call target_write. */
1355
1356 int
1357 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1358 {
1359 /* See comment in target_read_memory about why the request starts at
1360 current_target.beneath. */
1361 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1362 myaddr, memaddr, len) == len)
1363 return 0;
1364 else
1365 return TARGET_XFER_E_IO;
1366 }
1367
1368 /* Write LEN bytes from MYADDR to target raw memory at address
1369 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1370 if any error occurs. If an error occurs, no guarantee is made
1371 about how much data got written. Callers that can deal with
1372 partial writes should call target_write. */
1373
1374 int
1375 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1376 {
1377 /* See comment in target_read_memory about why the request starts at
1378 current_target.beneath. */
1379 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1380 myaddr, memaddr, len) == len)
1381 return 0;
1382 else
1383 return TARGET_XFER_E_IO;
1384 }
1385
1386 /* Fetch the target's memory map. */
1387
1388 VEC(mem_region_s) *
1389 target_memory_map (void)
1390 {
1391 VEC(mem_region_s) *result;
1392 struct mem_region *last_one, *this_one;
1393 int ix;
1394 struct target_ops *t;
1395
1396 if (targetdebug)
1397 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1398
1399 result = current_target.to_memory_map (&current_target);
1400 if (result == NULL)
1401 return NULL;
1402
1403 qsort (VEC_address (mem_region_s, result),
1404 VEC_length (mem_region_s, result),
1405 sizeof (struct mem_region), mem_region_cmp);
1406
1407 /* Check that regions do not overlap. Simultaneously assign
1408 a numbering for the "mem" commands to use to refer to
1409 each region. */
1410 last_one = NULL;
1411 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1412 {
1413 this_one->number = ix;
1414
1415 if (last_one && last_one->hi > this_one->lo)
1416 {
1417 warning (_("Overlapping regions in memory map: ignoring"));
1418 VEC_free (mem_region_s, result);
1419 return NULL;
1420 }
1421 last_one = this_one;
1422 }
1423
1424 return result;
1425 }
1426
1427 void
1428 target_flash_erase (ULONGEST address, LONGEST length)
1429 {
1430 if (targetdebug)
1431 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1432 hex_string (address), phex (length, 0));
1433 current_target.to_flash_erase (&current_target, address, length);
1434 }
1435
1436 void
1437 target_flash_done (void)
1438 {
1439 if (targetdebug)
1440 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1441 current_target.to_flash_done (&current_target);
1442 }
1443
1444 static void
1445 show_trust_readonly (struct ui_file *file, int from_tty,
1446 struct cmd_list_element *c, const char *value)
1447 {
1448 fprintf_filtered (file,
1449 _("Mode for reading from readonly sections is %s.\n"),
1450 value);
1451 }
1452
1453 /* Target vector read/write partial wrapper functions. */
1454
1455 static enum target_xfer_status
1456 target_read_partial (struct target_ops *ops,
1457 enum target_object object,
1458 const char *annex, gdb_byte *buf,
1459 ULONGEST offset, ULONGEST len,
1460 ULONGEST *xfered_len)
1461 {
1462 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1463 xfered_len);
1464 }
1465
1466 static enum target_xfer_status
1467 target_write_partial (struct target_ops *ops,
1468 enum target_object object,
1469 const char *annex, const gdb_byte *buf,
1470 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1471 {
1472 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1473 xfered_len);
1474 }
1475
1476 /* Wrappers to perform the full transfer. */
1477
1478 /* For docs on target_read see target.h. */
1479
1480 LONGEST
1481 target_read (struct target_ops *ops,
1482 enum target_object object,
1483 const char *annex, gdb_byte *buf,
1484 ULONGEST offset, LONGEST len)
1485 {
1486 LONGEST xfered = 0;
1487
1488 while (xfered < len)
1489 {
1490 ULONGEST xfered_len;
1491 enum target_xfer_status status;
1492
1493 status = target_read_partial (ops, object, annex,
1494 (gdb_byte *) buf + xfered,
1495 offset + xfered, len - xfered,
1496 &xfered_len);
1497
1498 /* Call an observer, notifying them of the xfer progress? */
1499 if (status == TARGET_XFER_EOF)
1500 return xfered;
1501 else if (status == TARGET_XFER_OK)
1502 {
1503 xfered += xfered_len;
1504 QUIT;
1505 }
1506 else
1507 return -1;
1508
1509 }
1510 return len;
1511 }
1512
1513 /* Assuming that the entire [begin, end) range of memory cannot be
1514 read, try to read whatever subrange is possible to read.
1515
1516 The function returns, in RESULT, either zero or one memory block.
1517 If there's a readable subrange at the beginning, it is completely
1518 read and returned. Any further readable subrange will not be read.
1519 Otherwise, if there's a readable subrange at the end, it will be
1520 completely read and returned. Any readable subranges before it
1521 (obviously, not starting at the beginning), will be ignored. In
1522 other cases -- either no readable subrange, or readable subrange(s)
1523 that is neither at the beginning, or end, nothing is returned.
1524
1525 The purpose of this function is to handle a read across a boundary
1526 of accessible memory in a case when memory map is not available.
1527 The above restrictions are fine for this case, but will give
1528 incorrect results if the memory is 'patchy'. However, supporting
1529 'patchy' memory would require trying to read every single byte,
1530 and it seems unacceptable solution. Explicit memory map is
1531 recommended for this case -- and target_read_memory_robust will
1532 take care of reading multiple ranges then. */
1533
1534 static void
1535 read_whatever_is_readable (struct target_ops *ops,
1536 ULONGEST begin, ULONGEST end,
1537 VEC(memory_read_result_s) **result)
1538 {
1539 gdb_byte *buf = xmalloc (end - begin);
1540 ULONGEST current_begin = begin;
1541 ULONGEST current_end = end;
1542 int forward;
1543 memory_read_result_s r;
1544 ULONGEST xfered_len;
1545
1546 /* If we previously failed to read 1 byte, nothing can be done here. */
1547 if (end - begin <= 1)
1548 {
1549 xfree (buf);
1550 return;
1551 }
1552
1553 /* Check that either first or the last byte is readable, and give up
1554 if not. This heuristic is meant to permit reading accessible memory
1555 at the boundary of accessible region. */
1556 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1557 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1558 {
1559 forward = 1;
1560 ++current_begin;
1561 }
1562 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1563 buf + (end-begin) - 1, end - 1, 1,
1564 &xfered_len) == TARGET_XFER_OK)
1565 {
1566 forward = 0;
1567 --current_end;
1568 }
1569 else
1570 {
1571 xfree (buf);
1572 return;
1573 }
1574
1575 /* Loop invariant is that the [current_begin, current_end) was previously
1576 found to be not readable as a whole.
1577
1578 Note loop condition -- if the range has 1 byte, we can't divide the range
1579 so there's no point trying further. */
1580 while (current_end - current_begin > 1)
1581 {
1582 ULONGEST first_half_begin, first_half_end;
1583 ULONGEST second_half_begin, second_half_end;
1584 LONGEST xfer;
1585 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1586
1587 if (forward)
1588 {
1589 first_half_begin = current_begin;
1590 first_half_end = middle;
1591 second_half_begin = middle;
1592 second_half_end = current_end;
1593 }
1594 else
1595 {
1596 first_half_begin = middle;
1597 first_half_end = current_end;
1598 second_half_begin = current_begin;
1599 second_half_end = middle;
1600 }
1601
1602 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1603 buf + (first_half_begin - begin),
1604 first_half_begin,
1605 first_half_end - first_half_begin);
1606
1607 if (xfer == first_half_end - first_half_begin)
1608 {
1609 /* This half reads up fine. So, the error must be in the
1610 other half. */
1611 current_begin = second_half_begin;
1612 current_end = second_half_end;
1613 }
1614 else
1615 {
1616 /* This half is not readable. Because we've tried one byte, we
1617 know some part of this half if actually redable. Go to the next
1618 iteration to divide again and try to read.
1619
1620 We don't handle the other half, because this function only tries
1621 to read a single readable subrange. */
1622 current_begin = first_half_begin;
1623 current_end = first_half_end;
1624 }
1625 }
1626
1627 if (forward)
1628 {
1629 /* The [begin, current_begin) range has been read. */
1630 r.begin = begin;
1631 r.end = current_begin;
1632 r.data = buf;
1633 }
1634 else
1635 {
1636 /* The [current_end, end) range has been read. */
1637 LONGEST rlen = end - current_end;
1638
1639 r.data = xmalloc (rlen);
1640 memcpy (r.data, buf + current_end - begin, rlen);
1641 r.begin = current_end;
1642 r.end = end;
1643 xfree (buf);
1644 }
1645 VEC_safe_push(memory_read_result_s, (*result), &r);
1646 }
1647
1648 void
1649 free_memory_read_result_vector (void *x)
1650 {
1651 VEC(memory_read_result_s) *v = x;
1652 memory_read_result_s *current;
1653 int ix;
1654
1655 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1656 {
1657 xfree (current->data);
1658 }
1659 VEC_free (memory_read_result_s, v);
1660 }
1661
1662 VEC(memory_read_result_s) *
1663 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1664 {
1665 VEC(memory_read_result_s) *result = 0;
1666
1667 LONGEST xfered = 0;
1668 while (xfered < len)
1669 {
1670 struct mem_region *region = lookup_mem_region (offset + xfered);
1671 LONGEST rlen;
1672
1673 /* If there is no explicit region, a fake one should be created. */
1674 gdb_assert (region);
1675
1676 if (region->hi == 0)
1677 rlen = len - xfered;
1678 else
1679 rlen = region->hi - offset;
1680
1681 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1682 {
1683 /* Cannot read this region. Note that we can end up here only
1684 if the region is explicitly marked inaccessible, or
1685 'inaccessible-by-default' is in effect. */
1686 xfered += rlen;
1687 }
1688 else
1689 {
1690 LONGEST to_read = min (len - xfered, rlen);
1691 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1692
1693 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1694 (gdb_byte *) buffer,
1695 offset + xfered, to_read);
1696 /* Call an observer, notifying them of the xfer progress? */
1697 if (xfer <= 0)
1698 {
1699 /* Got an error reading full chunk. See if maybe we can read
1700 some subrange. */
1701 xfree (buffer);
1702 read_whatever_is_readable (ops, offset + xfered,
1703 offset + xfered + to_read, &result);
1704 xfered += to_read;
1705 }
1706 else
1707 {
1708 struct memory_read_result r;
1709 r.data = buffer;
1710 r.begin = offset + xfered;
1711 r.end = r.begin + xfer;
1712 VEC_safe_push (memory_read_result_s, result, &r);
1713 xfered += xfer;
1714 }
1715 QUIT;
1716 }
1717 }
1718 return result;
1719 }
1720
1721
1722 /* An alternative to target_write with progress callbacks. */
1723
1724 LONGEST
1725 target_write_with_progress (struct target_ops *ops,
1726 enum target_object object,
1727 const char *annex, const gdb_byte *buf,
1728 ULONGEST offset, LONGEST len,
1729 void (*progress) (ULONGEST, void *), void *baton)
1730 {
1731 LONGEST xfered = 0;
1732
1733 /* Give the progress callback a chance to set up. */
1734 if (progress)
1735 (*progress) (0, baton);
1736
1737 while (xfered < len)
1738 {
1739 ULONGEST xfered_len;
1740 enum target_xfer_status status;
1741
1742 status = target_write_partial (ops, object, annex,
1743 (gdb_byte *) buf + xfered,
1744 offset + xfered, len - xfered,
1745 &xfered_len);
1746
1747 if (status != TARGET_XFER_OK)
1748 return status == TARGET_XFER_EOF ? xfered : -1;
1749
1750 if (progress)
1751 (*progress) (xfered_len, baton);
1752
1753 xfered += xfered_len;
1754 QUIT;
1755 }
1756 return len;
1757 }
1758
1759 /* For docs on target_write see target.h. */
1760
1761 LONGEST
1762 target_write (struct target_ops *ops,
1763 enum target_object object,
1764 const char *annex, const gdb_byte *buf,
1765 ULONGEST offset, LONGEST len)
1766 {
1767 return target_write_with_progress (ops, object, annex, buf, offset, len,
1768 NULL, NULL);
1769 }
1770
1771 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1772 the size of the transferred data. PADDING additional bytes are
1773 available in *BUF_P. This is a helper function for
1774 target_read_alloc; see the declaration of that function for more
1775 information. */
1776
1777 static LONGEST
1778 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1779 const char *annex, gdb_byte **buf_p, int padding)
1780 {
1781 size_t buf_alloc, buf_pos;
1782 gdb_byte *buf;
1783
1784 /* This function does not have a length parameter; it reads the
1785 entire OBJECT). Also, it doesn't support objects fetched partly
1786 from one target and partly from another (in a different stratum,
1787 e.g. a core file and an executable). Both reasons make it
1788 unsuitable for reading memory. */
1789 gdb_assert (object != TARGET_OBJECT_MEMORY);
1790
1791 /* Start by reading up to 4K at a time. The target will throttle
1792 this number down if necessary. */
1793 buf_alloc = 4096;
1794 buf = xmalloc (buf_alloc);
1795 buf_pos = 0;
1796 while (1)
1797 {
1798 ULONGEST xfered_len;
1799 enum target_xfer_status status;
1800
1801 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1802 buf_pos, buf_alloc - buf_pos - padding,
1803 &xfered_len);
1804
1805 if (status == TARGET_XFER_EOF)
1806 {
1807 /* Read all there was. */
1808 if (buf_pos == 0)
1809 xfree (buf);
1810 else
1811 *buf_p = buf;
1812 return buf_pos;
1813 }
1814 else if (status != TARGET_XFER_OK)
1815 {
1816 /* An error occurred. */
1817 xfree (buf);
1818 return TARGET_XFER_E_IO;
1819 }
1820
1821 buf_pos += xfered_len;
1822
1823 /* If the buffer is filling up, expand it. */
1824 if (buf_alloc < buf_pos * 2)
1825 {
1826 buf_alloc *= 2;
1827 buf = xrealloc (buf, buf_alloc);
1828 }
1829
1830 QUIT;
1831 }
1832 }
1833
1834 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1835 the size of the transferred data. See the declaration in "target.h"
1836 function for more information about the return value. */
1837
1838 LONGEST
1839 target_read_alloc (struct target_ops *ops, enum target_object object,
1840 const char *annex, gdb_byte **buf_p)
1841 {
1842 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1843 }
1844
1845 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1846 returned as a string, allocated using xmalloc. If an error occurs
1847 or the transfer is unsupported, NULL is returned. Empty objects
1848 are returned as allocated but empty strings. A warning is issued
1849 if the result contains any embedded NUL bytes. */
1850
1851 char *
1852 target_read_stralloc (struct target_ops *ops, enum target_object object,
1853 const char *annex)
1854 {
1855 gdb_byte *buffer;
1856 char *bufstr;
1857 LONGEST i, transferred;
1858
1859 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1860 bufstr = (char *) buffer;
1861
1862 if (transferred < 0)
1863 return NULL;
1864
1865 if (transferred == 0)
1866 return xstrdup ("");
1867
1868 bufstr[transferred] = 0;
1869
1870 /* Check for embedded NUL bytes; but allow trailing NULs. */
1871 for (i = strlen (bufstr); i < transferred; i++)
1872 if (bufstr[i] != 0)
1873 {
1874 warning (_("target object %d, annex %s, "
1875 "contained unexpected null characters"),
1876 (int) object, annex ? annex : "(none)");
1877 break;
1878 }
1879
1880 return bufstr;
1881 }
1882
1883 /* Memory transfer methods. */
1884
1885 void
1886 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1887 LONGEST len)
1888 {
1889 /* This method is used to read from an alternate, non-current
1890 target. This read must bypass the overlay support (as symbols
1891 don't match this target), and GDB's internal cache (wrong cache
1892 for this target). */
1893 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1894 != len)
1895 memory_error (TARGET_XFER_E_IO, addr);
1896 }
1897
1898 ULONGEST
1899 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1900 int len, enum bfd_endian byte_order)
1901 {
1902 gdb_byte buf[sizeof (ULONGEST)];
1903
1904 gdb_assert (len <= sizeof (buf));
1905 get_target_memory (ops, addr, buf, len);
1906 return extract_unsigned_integer (buf, len, byte_order);
1907 }
1908
1909 /* See target.h. */
1910
1911 int
1912 target_insert_breakpoint (struct gdbarch *gdbarch,
1913 struct bp_target_info *bp_tgt)
1914 {
1915 if (!may_insert_breakpoints)
1916 {
1917 warning (_("May not insert breakpoints"));
1918 return 1;
1919 }
1920
1921 return current_target.to_insert_breakpoint (&current_target,
1922 gdbarch, bp_tgt);
1923 }
1924
1925 /* See target.h. */
1926
1927 int
1928 target_remove_breakpoint (struct gdbarch *gdbarch,
1929 struct bp_target_info *bp_tgt)
1930 {
1931 /* This is kind of a weird case to handle, but the permission might
1932 have been changed after breakpoints were inserted - in which case
1933 we should just take the user literally and assume that any
1934 breakpoints should be left in place. */
1935 if (!may_insert_breakpoints)
1936 {
1937 warning (_("May not remove breakpoints"));
1938 return 1;
1939 }
1940
1941 return current_target.to_remove_breakpoint (&current_target,
1942 gdbarch, bp_tgt);
1943 }
1944
1945 static void
1946 target_info (char *args, int from_tty)
1947 {
1948 struct target_ops *t;
1949 int has_all_mem = 0;
1950
1951 if (symfile_objfile != NULL)
1952 printf_unfiltered (_("Symbols from \"%s\".\n"),
1953 objfile_name (symfile_objfile));
1954
1955 for (t = target_stack; t != NULL; t = t->beneath)
1956 {
1957 if (!(*t->to_has_memory) (t))
1958 continue;
1959
1960 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1961 continue;
1962 if (has_all_mem)
1963 printf_unfiltered (_("\tWhile running this, "
1964 "GDB does not access memory from...\n"));
1965 printf_unfiltered ("%s:\n", t->to_longname);
1966 (t->to_files_info) (t);
1967 has_all_mem = (*t->to_has_all_memory) (t);
1968 }
1969 }
1970
1971 /* This function is called before any new inferior is created, e.g.
1972 by running a program, attaching, or connecting to a target.
1973 It cleans up any state from previous invocations which might
1974 change between runs. This is a subset of what target_preopen
1975 resets (things which might change between targets). */
1976
1977 void
1978 target_pre_inferior (int from_tty)
1979 {
1980 /* Clear out solib state. Otherwise the solib state of the previous
1981 inferior might have survived and is entirely wrong for the new
1982 target. This has been observed on GNU/Linux using glibc 2.3. How
1983 to reproduce:
1984
1985 bash$ ./foo&
1986 [1] 4711
1987 bash$ ./foo&
1988 [1] 4712
1989 bash$ gdb ./foo
1990 [...]
1991 (gdb) attach 4711
1992 (gdb) detach
1993 (gdb) attach 4712
1994 Cannot access memory at address 0xdeadbeef
1995 */
1996
1997 /* In some OSs, the shared library list is the same/global/shared
1998 across inferiors. If code is shared between processes, so are
1999 memory regions and features. */
2000 if (!gdbarch_has_global_solist (target_gdbarch ()))
2001 {
2002 no_shared_libraries (NULL, from_tty);
2003
2004 invalidate_target_mem_regions ();
2005
2006 target_clear_description ();
2007 }
2008
2009 agent_capability_invalidate ();
2010 }
2011
2012 /* Callback for iterate_over_inferiors. Gets rid of the given
2013 inferior. */
2014
2015 static int
2016 dispose_inferior (struct inferior *inf, void *args)
2017 {
2018 struct thread_info *thread;
2019
2020 thread = any_thread_of_process (inf->pid);
2021 if (thread)
2022 {
2023 switch_to_thread (thread->ptid);
2024
2025 /* Core inferiors actually should be detached, not killed. */
2026 if (target_has_execution)
2027 target_kill ();
2028 else
2029 target_detach (NULL, 0);
2030 }
2031
2032 return 0;
2033 }
2034
2035 /* This is to be called by the open routine before it does
2036 anything. */
2037
2038 void
2039 target_preopen (int from_tty)
2040 {
2041 dont_repeat ();
2042
2043 if (have_inferiors ())
2044 {
2045 if (!from_tty
2046 || !have_live_inferiors ()
2047 || query (_("A program is being debugged already. Kill it? ")))
2048 iterate_over_inferiors (dispose_inferior, NULL);
2049 else
2050 error (_("Program not killed."));
2051 }
2052
2053 /* Calling target_kill may remove the target from the stack. But if
2054 it doesn't (which seems like a win for UDI), remove it now. */
2055 /* Leave the exec target, though. The user may be switching from a
2056 live process to a core of the same program. */
2057 pop_all_targets_above (file_stratum);
2058
2059 target_pre_inferior (from_tty);
2060 }
2061
2062 /* Detach a target after doing deferred register stores. */
2063
2064 void
2065 target_detach (const char *args, int from_tty)
2066 {
2067 struct target_ops* t;
2068
2069 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2070 /* Don't remove global breakpoints here. They're removed on
2071 disconnection from the target. */
2072 ;
2073 else
2074 /* If we're in breakpoints-always-inserted mode, have to remove
2075 them before detaching. */
2076 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2077
2078 prepare_for_detach ();
2079
2080 current_target.to_detach (&current_target, args, from_tty);
2081 if (targetdebug)
2082 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2083 args, from_tty);
2084 }
2085
2086 void
2087 target_disconnect (char *args, int from_tty)
2088 {
2089 /* If we're in breakpoints-always-inserted mode or if breakpoints
2090 are global across processes, we have to remove them before
2091 disconnecting. */
2092 remove_breakpoints ();
2093
2094 if (targetdebug)
2095 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2096 args, from_tty);
2097 current_target.to_disconnect (&current_target, args, from_tty);
2098 }
2099
2100 ptid_t
2101 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2102 {
2103 struct target_ops *t;
2104 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2105 status, options);
2106
2107 if (targetdebug)
2108 {
2109 char *status_string;
2110 char *options_string;
2111
2112 status_string = target_waitstatus_to_string (status);
2113 options_string = target_options_to_string (options);
2114 fprintf_unfiltered (gdb_stdlog,
2115 "target_wait (%d, status, options={%s})"
2116 " = %d, %s\n",
2117 ptid_get_pid (ptid), options_string,
2118 ptid_get_pid (retval), status_string);
2119 xfree (status_string);
2120 xfree (options_string);
2121 }
2122
2123 return retval;
2124 }
2125
2126 char *
2127 target_pid_to_str (ptid_t ptid)
2128 {
2129 return (*current_target.to_pid_to_str) (&current_target, ptid);
2130 }
2131
2132 char *
2133 target_thread_name (struct thread_info *info)
2134 {
2135 return current_target.to_thread_name (&current_target, info);
2136 }
2137
2138 void
2139 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2140 {
2141 struct target_ops *t;
2142
2143 target_dcache_invalidate ();
2144
2145 current_target.to_resume (&current_target, ptid, step, signal);
2146 if (targetdebug)
2147 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2148 ptid_get_pid (ptid),
2149 step ? "step" : "continue",
2150 gdb_signal_to_name (signal));
2151
2152 registers_changed_ptid (ptid);
2153 /* We only set the internal executing state here. The user/frontend
2154 running state is set at a higher level. */
2155 set_executing (ptid, 1);
2156 clear_inline_frame_state (ptid);
2157 }
2158
2159 void
2160 target_pass_signals (int numsigs, unsigned char *pass_signals)
2161 {
2162 if (targetdebug)
2163 {
2164 int i;
2165
2166 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2167 numsigs);
2168
2169 for (i = 0; i < numsigs; i++)
2170 if (pass_signals[i])
2171 fprintf_unfiltered (gdb_stdlog, " %s",
2172 gdb_signal_to_name (i));
2173
2174 fprintf_unfiltered (gdb_stdlog, " })\n");
2175 }
2176
2177 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2178 }
2179
2180 void
2181 target_program_signals (int numsigs, unsigned char *program_signals)
2182 {
2183 if (targetdebug)
2184 {
2185 int i;
2186
2187 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2188 numsigs);
2189
2190 for (i = 0; i < numsigs; i++)
2191 if (program_signals[i])
2192 fprintf_unfiltered (gdb_stdlog, " %s",
2193 gdb_signal_to_name (i));
2194
2195 fprintf_unfiltered (gdb_stdlog, " })\n");
2196 }
2197
2198 (*current_target.to_program_signals) (&current_target,
2199 numsigs, program_signals);
2200 }
2201
2202 static int
2203 default_follow_fork (struct target_ops *self, int follow_child,
2204 int detach_fork)
2205 {
2206 /* Some target returned a fork event, but did not know how to follow it. */
2207 internal_error (__FILE__, __LINE__,
2208 _("could not find a target to follow fork"));
2209 }
2210
2211 /* Look through the list of possible targets for a target that can
2212 follow forks. */
2213
2214 int
2215 target_follow_fork (int follow_child, int detach_fork)
2216 {
2217 int retval = current_target.to_follow_fork (&current_target,
2218 follow_child, detach_fork);
2219
2220 if (targetdebug)
2221 fprintf_unfiltered (gdb_stdlog,
2222 "target_follow_fork (%d, %d) = %d\n",
2223 follow_child, detach_fork, retval);
2224 return retval;
2225 }
2226
2227 static void
2228 default_mourn_inferior (struct target_ops *self)
2229 {
2230 internal_error (__FILE__, __LINE__,
2231 _("could not find a target to follow mourn inferior"));
2232 }
2233
2234 void
2235 target_mourn_inferior (void)
2236 {
2237 current_target.to_mourn_inferior (&current_target);
2238 if (targetdebug)
2239 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2240
2241 /* We no longer need to keep handles on any of the object files.
2242 Make sure to release them to avoid unnecessarily locking any
2243 of them while we're not actually debugging. */
2244 bfd_cache_close_all ();
2245 }
2246
2247 /* Look for a target which can describe architectural features, starting
2248 from TARGET. If we find one, return its description. */
2249
2250 const struct target_desc *
2251 target_read_description (struct target_ops *target)
2252 {
2253 return target->to_read_description (target);
2254 }
2255
2256 /* This implements a basic search of memory, reading target memory and
2257 performing the search here (as opposed to performing the search in on the
2258 target side with, for example, gdbserver). */
2259
2260 int
2261 simple_search_memory (struct target_ops *ops,
2262 CORE_ADDR start_addr, ULONGEST search_space_len,
2263 const gdb_byte *pattern, ULONGEST pattern_len,
2264 CORE_ADDR *found_addrp)
2265 {
2266 /* NOTE: also defined in find.c testcase. */
2267 #define SEARCH_CHUNK_SIZE 16000
2268 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2269 /* Buffer to hold memory contents for searching. */
2270 gdb_byte *search_buf;
2271 unsigned search_buf_size;
2272 struct cleanup *old_cleanups;
2273
2274 search_buf_size = chunk_size + pattern_len - 1;
2275
2276 /* No point in trying to allocate a buffer larger than the search space. */
2277 if (search_space_len < search_buf_size)
2278 search_buf_size = search_space_len;
2279
2280 search_buf = malloc (search_buf_size);
2281 if (search_buf == NULL)
2282 error (_("Unable to allocate memory to perform the search."));
2283 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2284
2285 /* Prime the search buffer. */
2286
2287 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2288 search_buf, start_addr, search_buf_size) != search_buf_size)
2289 {
2290 warning (_("Unable to access %s bytes of target "
2291 "memory at %s, halting search."),
2292 pulongest (search_buf_size), hex_string (start_addr));
2293 do_cleanups (old_cleanups);
2294 return -1;
2295 }
2296
2297 /* Perform the search.
2298
2299 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2300 When we've scanned N bytes we copy the trailing bytes to the start and
2301 read in another N bytes. */
2302
2303 while (search_space_len >= pattern_len)
2304 {
2305 gdb_byte *found_ptr;
2306 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2307
2308 found_ptr = memmem (search_buf, nr_search_bytes,
2309 pattern, pattern_len);
2310
2311 if (found_ptr != NULL)
2312 {
2313 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2314
2315 *found_addrp = found_addr;
2316 do_cleanups (old_cleanups);
2317 return 1;
2318 }
2319
2320 /* Not found in this chunk, skip to next chunk. */
2321
2322 /* Don't let search_space_len wrap here, it's unsigned. */
2323 if (search_space_len >= chunk_size)
2324 search_space_len -= chunk_size;
2325 else
2326 search_space_len = 0;
2327
2328 if (search_space_len >= pattern_len)
2329 {
2330 unsigned keep_len = search_buf_size - chunk_size;
2331 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2332 int nr_to_read;
2333
2334 /* Copy the trailing part of the previous iteration to the front
2335 of the buffer for the next iteration. */
2336 gdb_assert (keep_len == pattern_len - 1);
2337 memcpy (search_buf, search_buf + chunk_size, keep_len);
2338
2339 nr_to_read = min (search_space_len - keep_len, chunk_size);
2340
2341 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2342 search_buf + keep_len, read_addr,
2343 nr_to_read) != nr_to_read)
2344 {
2345 warning (_("Unable to access %s bytes of target "
2346 "memory at %s, halting search."),
2347 plongest (nr_to_read),
2348 hex_string (read_addr));
2349 do_cleanups (old_cleanups);
2350 return -1;
2351 }
2352
2353 start_addr += chunk_size;
2354 }
2355 }
2356
2357 /* Not found. */
2358
2359 do_cleanups (old_cleanups);
2360 return 0;
2361 }
2362
2363 /* Default implementation of memory-searching. */
2364
2365 static int
2366 default_search_memory (struct target_ops *self,
2367 CORE_ADDR start_addr, ULONGEST search_space_len,
2368 const gdb_byte *pattern, ULONGEST pattern_len,
2369 CORE_ADDR *found_addrp)
2370 {
2371 /* Start over from the top of the target stack. */
2372 return simple_search_memory (current_target.beneath,
2373 start_addr, search_space_len,
2374 pattern, pattern_len, found_addrp);
2375 }
2376
2377 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2378 sequence of bytes in PATTERN with length PATTERN_LEN.
2379
2380 The result is 1 if found, 0 if not found, and -1 if there was an error
2381 requiring halting of the search (e.g. memory read error).
2382 If the pattern is found the address is recorded in FOUND_ADDRP. */
2383
2384 int
2385 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2386 const gdb_byte *pattern, ULONGEST pattern_len,
2387 CORE_ADDR *found_addrp)
2388 {
2389 int found;
2390
2391 if (targetdebug)
2392 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2393 hex_string (start_addr));
2394
2395 found = current_target.to_search_memory (&current_target, start_addr,
2396 search_space_len,
2397 pattern, pattern_len, found_addrp);
2398
2399 if (targetdebug)
2400 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2401
2402 return found;
2403 }
2404
2405 /* Look through the currently pushed targets. If none of them will
2406 be able to restart the currently running process, issue an error
2407 message. */
2408
2409 void
2410 target_require_runnable (void)
2411 {
2412 struct target_ops *t;
2413
2414 for (t = target_stack; t != NULL; t = t->beneath)
2415 {
2416 /* If this target knows how to create a new program, then
2417 assume we will still be able to after killing the current
2418 one. Either killing and mourning will not pop T, or else
2419 find_default_run_target will find it again. */
2420 if (t->to_create_inferior != NULL)
2421 return;
2422
2423 /* Do not worry about thread_stratum targets that can not
2424 create inferiors. Assume they will be pushed again if
2425 necessary, and continue to the process_stratum. */
2426 if (t->to_stratum == thread_stratum
2427 || t->to_stratum == arch_stratum)
2428 continue;
2429
2430 error (_("The \"%s\" target does not support \"run\". "
2431 "Try \"help target\" or \"continue\"."),
2432 t->to_shortname);
2433 }
2434
2435 /* This function is only called if the target is running. In that
2436 case there should have been a process_stratum target and it
2437 should either know how to create inferiors, or not... */
2438 internal_error (__FILE__, __LINE__, _("No targets found"));
2439 }
2440
2441 /* Whether GDB is allowed to fall back to the default run target for
2442 "run", "attach", etc. when no target is connected yet. */
2443 static int auto_connect_native_target = 1;
2444
2445 static void
2446 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2447 struct cmd_list_element *c, const char *value)
2448 {
2449 fprintf_filtered (file,
2450 _("Whether GDB may automatically connect to the "
2451 "native target is %s.\n"),
2452 value);
2453 }
2454
2455 /* Look through the list of possible targets for a target that can
2456 execute a run or attach command without any other data. This is
2457 used to locate the default process stratum.
2458
2459 If DO_MESG is not NULL, the result is always valid (error() is
2460 called for errors); else, return NULL on error. */
2461
2462 static struct target_ops *
2463 find_default_run_target (char *do_mesg)
2464 {
2465 struct target_ops *runable = NULL;
2466
2467 if (auto_connect_native_target)
2468 {
2469 struct target_ops **t;
2470 int count = 0;
2471
2472 for (t = target_structs; t < target_structs + target_struct_size;
2473 ++t)
2474 {
2475 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2476 {
2477 runable = *t;
2478 ++count;
2479 }
2480 }
2481
2482 if (count != 1)
2483 runable = NULL;
2484 }
2485
2486 if (runable == NULL)
2487 {
2488 if (do_mesg)
2489 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2490 else
2491 return NULL;
2492 }
2493
2494 return runable;
2495 }
2496
2497 /* See target.h. */
2498
2499 struct target_ops *
2500 find_attach_target (void)
2501 {
2502 struct target_ops *t;
2503
2504 /* If a target on the current stack can attach, use it. */
2505 for (t = current_target.beneath; t != NULL; t = t->beneath)
2506 {
2507 if (t->to_attach != NULL)
2508 break;
2509 }
2510
2511 /* Otherwise, use the default run target for attaching. */
2512 if (t == NULL)
2513 t = find_default_run_target ("attach");
2514
2515 return t;
2516 }
2517
2518 /* See target.h. */
2519
2520 struct target_ops *
2521 find_run_target (void)
2522 {
2523 struct target_ops *t;
2524
2525 /* If a target on the current stack can attach, use it. */
2526 for (t = current_target.beneath; t != NULL; t = t->beneath)
2527 {
2528 if (t->to_create_inferior != NULL)
2529 break;
2530 }
2531
2532 /* Otherwise, use the default run target. */
2533 if (t == NULL)
2534 t = find_default_run_target ("run");
2535
2536 return t;
2537 }
2538
2539 /* Implement the "info proc" command. */
2540
2541 int
2542 target_info_proc (char *args, enum info_proc_what what)
2543 {
2544 struct target_ops *t;
2545
2546 /* If we're already connected to something that can get us OS
2547 related data, use it. Otherwise, try using the native
2548 target. */
2549 if (current_target.to_stratum >= process_stratum)
2550 t = current_target.beneath;
2551 else
2552 t = find_default_run_target (NULL);
2553
2554 for (; t != NULL; t = t->beneath)
2555 {
2556 if (t->to_info_proc != NULL)
2557 {
2558 t->to_info_proc (t, args, what);
2559
2560 if (targetdebug)
2561 fprintf_unfiltered (gdb_stdlog,
2562 "target_info_proc (\"%s\", %d)\n", args, what);
2563
2564 return 1;
2565 }
2566 }
2567
2568 return 0;
2569 }
2570
2571 static int
2572 find_default_supports_disable_randomization (struct target_ops *self)
2573 {
2574 struct target_ops *t;
2575
2576 t = find_default_run_target (NULL);
2577 if (t && t->to_supports_disable_randomization)
2578 return (t->to_supports_disable_randomization) (t);
2579 return 0;
2580 }
2581
2582 int
2583 target_supports_disable_randomization (void)
2584 {
2585 struct target_ops *t;
2586
2587 for (t = &current_target; t != NULL; t = t->beneath)
2588 if (t->to_supports_disable_randomization)
2589 return t->to_supports_disable_randomization (t);
2590
2591 return 0;
2592 }
2593
2594 char *
2595 target_get_osdata (const char *type)
2596 {
2597 struct target_ops *t;
2598
2599 /* If we're already connected to something that can get us OS
2600 related data, use it. Otherwise, try using the native
2601 target. */
2602 if (current_target.to_stratum >= process_stratum)
2603 t = current_target.beneath;
2604 else
2605 t = find_default_run_target ("get OS data");
2606
2607 if (!t)
2608 return NULL;
2609
2610 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2611 }
2612
2613 /* Determine the current address space of thread PTID. */
2614
2615 struct address_space *
2616 target_thread_address_space (ptid_t ptid)
2617 {
2618 struct address_space *aspace;
2619 struct inferior *inf;
2620 struct target_ops *t;
2621
2622 for (t = current_target.beneath; t != NULL; t = t->beneath)
2623 {
2624 if (t->to_thread_address_space != NULL)
2625 {
2626 aspace = t->to_thread_address_space (t, ptid);
2627 gdb_assert (aspace);
2628
2629 if (targetdebug)
2630 fprintf_unfiltered (gdb_stdlog,
2631 "target_thread_address_space (%s) = %d\n",
2632 target_pid_to_str (ptid),
2633 address_space_num (aspace));
2634 return aspace;
2635 }
2636 }
2637
2638 /* Fall-back to the "main" address space of the inferior. */
2639 inf = find_inferior_pid (ptid_get_pid (ptid));
2640
2641 if (inf == NULL || inf->aspace == NULL)
2642 internal_error (__FILE__, __LINE__,
2643 _("Can't determine the current "
2644 "address space of thread %s\n"),
2645 target_pid_to_str (ptid));
2646
2647 return inf->aspace;
2648 }
2649
2650
2651 /* Target file operations. */
2652
2653 static struct target_ops *
2654 default_fileio_target (void)
2655 {
2656 /* If we're already connected to something that can perform
2657 file I/O, use it. Otherwise, try using the native target. */
2658 if (current_target.to_stratum >= process_stratum)
2659 return current_target.beneath;
2660 else
2661 return find_default_run_target ("file I/O");
2662 }
2663
2664 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2665 target file descriptor, or -1 if an error occurs (and set
2666 *TARGET_ERRNO). */
2667 int
2668 target_fileio_open (const char *filename, int flags, int mode,
2669 int *target_errno)
2670 {
2671 struct target_ops *t;
2672
2673 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2674 {
2675 if (t->to_fileio_open != NULL)
2676 {
2677 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2678
2679 if (targetdebug)
2680 fprintf_unfiltered (gdb_stdlog,
2681 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2682 filename, flags, mode,
2683 fd, fd != -1 ? 0 : *target_errno);
2684 return fd;
2685 }
2686 }
2687
2688 *target_errno = FILEIO_ENOSYS;
2689 return -1;
2690 }
2691
2692 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2693 Return the number of bytes written, or -1 if an error occurs
2694 (and set *TARGET_ERRNO). */
2695 int
2696 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2697 ULONGEST offset, int *target_errno)
2698 {
2699 struct target_ops *t;
2700
2701 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2702 {
2703 if (t->to_fileio_pwrite != NULL)
2704 {
2705 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2706 target_errno);
2707
2708 if (targetdebug)
2709 fprintf_unfiltered (gdb_stdlog,
2710 "target_fileio_pwrite (%d,...,%d,%s) "
2711 "= %d (%d)\n",
2712 fd, len, pulongest (offset),
2713 ret, ret != -1 ? 0 : *target_errno);
2714 return ret;
2715 }
2716 }
2717
2718 *target_errno = FILEIO_ENOSYS;
2719 return -1;
2720 }
2721
2722 /* Read up to LEN bytes FD on the target into READ_BUF.
2723 Return the number of bytes read, or -1 if an error occurs
2724 (and set *TARGET_ERRNO). */
2725 int
2726 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2727 ULONGEST offset, int *target_errno)
2728 {
2729 struct target_ops *t;
2730
2731 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2732 {
2733 if (t->to_fileio_pread != NULL)
2734 {
2735 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2736 target_errno);
2737
2738 if (targetdebug)
2739 fprintf_unfiltered (gdb_stdlog,
2740 "target_fileio_pread (%d,...,%d,%s) "
2741 "= %d (%d)\n",
2742 fd, len, pulongest (offset),
2743 ret, ret != -1 ? 0 : *target_errno);
2744 return ret;
2745 }
2746 }
2747
2748 *target_errno = FILEIO_ENOSYS;
2749 return -1;
2750 }
2751
2752 /* Close FD on the target. Return 0, or -1 if an error occurs
2753 (and set *TARGET_ERRNO). */
2754 int
2755 target_fileio_close (int fd, int *target_errno)
2756 {
2757 struct target_ops *t;
2758
2759 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2760 {
2761 if (t->to_fileio_close != NULL)
2762 {
2763 int ret = t->to_fileio_close (t, fd, target_errno);
2764
2765 if (targetdebug)
2766 fprintf_unfiltered (gdb_stdlog,
2767 "target_fileio_close (%d) = %d (%d)\n",
2768 fd, ret, ret != -1 ? 0 : *target_errno);
2769 return ret;
2770 }
2771 }
2772
2773 *target_errno = FILEIO_ENOSYS;
2774 return -1;
2775 }
2776
2777 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2778 occurs (and set *TARGET_ERRNO). */
2779 int
2780 target_fileio_unlink (const char *filename, int *target_errno)
2781 {
2782 struct target_ops *t;
2783
2784 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2785 {
2786 if (t->to_fileio_unlink != NULL)
2787 {
2788 int ret = t->to_fileio_unlink (t, filename, target_errno);
2789
2790 if (targetdebug)
2791 fprintf_unfiltered (gdb_stdlog,
2792 "target_fileio_unlink (%s) = %d (%d)\n",
2793 filename, ret, ret != -1 ? 0 : *target_errno);
2794 return ret;
2795 }
2796 }
2797
2798 *target_errno = FILEIO_ENOSYS;
2799 return -1;
2800 }
2801
2802 /* Read value of symbolic link FILENAME on the target. Return a
2803 null-terminated string allocated via xmalloc, or NULL if an error
2804 occurs (and set *TARGET_ERRNO). */
2805 char *
2806 target_fileio_readlink (const char *filename, int *target_errno)
2807 {
2808 struct target_ops *t;
2809
2810 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2811 {
2812 if (t->to_fileio_readlink != NULL)
2813 {
2814 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2815
2816 if (targetdebug)
2817 fprintf_unfiltered (gdb_stdlog,
2818 "target_fileio_readlink (%s) = %s (%d)\n",
2819 filename, ret? ret : "(nil)",
2820 ret? 0 : *target_errno);
2821 return ret;
2822 }
2823 }
2824
2825 *target_errno = FILEIO_ENOSYS;
2826 return NULL;
2827 }
2828
2829 static void
2830 target_fileio_close_cleanup (void *opaque)
2831 {
2832 int fd = *(int *) opaque;
2833 int target_errno;
2834
2835 target_fileio_close (fd, &target_errno);
2836 }
2837
2838 /* Read target file FILENAME. Store the result in *BUF_P and
2839 return the size of the transferred data. PADDING additional bytes are
2840 available in *BUF_P. This is a helper function for
2841 target_fileio_read_alloc; see the declaration of that function for more
2842 information. */
2843
2844 static LONGEST
2845 target_fileio_read_alloc_1 (const char *filename,
2846 gdb_byte **buf_p, int padding)
2847 {
2848 struct cleanup *close_cleanup;
2849 size_t buf_alloc, buf_pos;
2850 gdb_byte *buf;
2851 LONGEST n;
2852 int fd;
2853 int target_errno;
2854
2855 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2856 if (fd == -1)
2857 return -1;
2858
2859 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2860
2861 /* Start by reading up to 4K at a time. The target will throttle
2862 this number down if necessary. */
2863 buf_alloc = 4096;
2864 buf = xmalloc (buf_alloc);
2865 buf_pos = 0;
2866 while (1)
2867 {
2868 n = target_fileio_pread (fd, &buf[buf_pos],
2869 buf_alloc - buf_pos - padding, buf_pos,
2870 &target_errno);
2871 if (n < 0)
2872 {
2873 /* An error occurred. */
2874 do_cleanups (close_cleanup);
2875 xfree (buf);
2876 return -1;
2877 }
2878 else if (n == 0)
2879 {
2880 /* Read all there was. */
2881 do_cleanups (close_cleanup);
2882 if (buf_pos == 0)
2883 xfree (buf);
2884 else
2885 *buf_p = buf;
2886 return buf_pos;
2887 }
2888
2889 buf_pos += n;
2890
2891 /* If the buffer is filling up, expand it. */
2892 if (buf_alloc < buf_pos * 2)
2893 {
2894 buf_alloc *= 2;
2895 buf = xrealloc (buf, buf_alloc);
2896 }
2897
2898 QUIT;
2899 }
2900 }
2901
2902 /* Read target file FILENAME. Store the result in *BUF_P and return
2903 the size of the transferred data. See the declaration in "target.h"
2904 function for more information about the return value. */
2905
2906 LONGEST
2907 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2908 {
2909 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2910 }
2911
2912 /* Read target file FILENAME. The result is NUL-terminated and
2913 returned as a string, allocated using xmalloc. If an error occurs
2914 or the transfer is unsupported, NULL is returned. Empty objects
2915 are returned as allocated but empty strings. A warning is issued
2916 if the result contains any embedded NUL bytes. */
2917
2918 char *
2919 target_fileio_read_stralloc (const char *filename)
2920 {
2921 gdb_byte *buffer;
2922 char *bufstr;
2923 LONGEST i, transferred;
2924
2925 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2926 bufstr = (char *) buffer;
2927
2928 if (transferred < 0)
2929 return NULL;
2930
2931 if (transferred == 0)
2932 return xstrdup ("");
2933
2934 bufstr[transferred] = 0;
2935
2936 /* Check for embedded NUL bytes; but allow trailing NULs. */
2937 for (i = strlen (bufstr); i < transferred; i++)
2938 if (bufstr[i] != 0)
2939 {
2940 warning (_("target file %s "
2941 "contained unexpected null characters"),
2942 filename);
2943 break;
2944 }
2945
2946 return bufstr;
2947 }
2948
2949
2950 static int
2951 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2952 CORE_ADDR addr, int len)
2953 {
2954 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2955 }
2956
2957 static int
2958 default_watchpoint_addr_within_range (struct target_ops *target,
2959 CORE_ADDR addr,
2960 CORE_ADDR start, int length)
2961 {
2962 return addr >= start && addr < start + length;
2963 }
2964
2965 static struct gdbarch *
2966 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2967 {
2968 return target_gdbarch ();
2969 }
2970
2971 static int
2972 return_zero (struct target_ops *ignore)
2973 {
2974 return 0;
2975 }
2976
2977 static int
2978 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2979 {
2980 return 0;
2981 }
2982
2983 /*
2984 * Find the next target down the stack from the specified target.
2985 */
2986
2987 struct target_ops *
2988 find_target_beneath (struct target_ops *t)
2989 {
2990 return t->beneath;
2991 }
2992
2993 /* See target.h. */
2994
2995 struct target_ops *
2996 find_target_at (enum strata stratum)
2997 {
2998 struct target_ops *t;
2999
3000 for (t = current_target.beneath; t != NULL; t = t->beneath)
3001 if (t->to_stratum == stratum)
3002 return t;
3003
3004 return NULL;
3005 }
3006
3007 \f
3008 /* The inferior process has died. Long live the inferior! */
3009
3010 void
3011 generic_mourn_inferior (void)
3012 {
3013 ptid_t ptid;
3014
3015 ptid = inferior_ptid;
3016 inferior_ptid = null_ptid;
3017
3018 /* Mark breakpoints uninserted in case something tries to delete a
3019 breakpoint while we delete the inferior's threads (which would
3020 fail, since the inferior is long gone). */
3021 mark_breakpoints_out ();
3022
3023 if (!ptid_equal (ptid, null_ptid))
3024 {
3025 int pid = ptid_get_pid (ptid);
3026 exit_inferior (pid);
3027 }
3028
3029 /* Note this wipes step-resume breakpoints, so needs to be done
3030 after exit_inferior, which ends up referencing the step-resume
3031 breakpoints through clear_thread_inferior_resources. */
3032 breakpoint_init_inferior (inf_exited);
3033
3034 registers_changed ();
3035
3036 reopen_exec_file ();
3037 reinit_frame_cache ();
3038
3039 if (deprecated_detach_hook)
3040 deprecated_detach_hook ();
3041 }
3042 \f
3043 /* Convert a normal process ID to a string. Returns the string in a
3044 static buffer. */
3045
3046 char *
3047 normal_pid_to_str (ptid_t ptid)
3048 {
3049 static char buf[32];
3050
3051 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3052 return buf;
3053 }
3054
3055 static char *
3056 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3057 {
3058 return normal_pid_to_str (ptid);
3059 }
3060
3061 /* Error-catcher for target_find_memory_regions. */
3062 static int
3063 dummy_find_memory_regions (struct target_ops *self,
3064 find_memory_region_ftype ignore1, void *ignore2)
3065 {
3066 error (_("Command not implemented for this target."));
3067 return 0;
3068 }
3069
3070 /* Error-catcher for target_make_corefile_notes. */
3071 static char *
3072 dummy_make_corefile_notes (struct target_ops *self,
3073 bfd *ignore1, int *ignore2)
3074 {
3075 error (_("Command not implemented for this target."));
3076 return NULL;
3077 }
3078
3079 /* Set up the handful of non-empty slots needed by the dummy target
3080 vector. */
3081
3082 static void
3083 init_dummy_target (void)
3084 {
3085 dummy_target.to_shortname = "None";
3086 dummy_target.to_longname = "None";
3087 dummy_target.to_doc = "";
3088 dummy_target.to_supports_disable_randomization
3089 = find_default_supports_disable_randomization;
3090 dummy_target.to_stratum = dummy_stratum;
3091 dummy_target.to_has_all_memory = return_zero;
3092 dummy_target.to_has_memory = return_zero;
3093 dummy_target.to_has_stack = return_zero;
3094 dummy_target.to_has_registers = return_zero;
3095 dummy_target.to_has_execution = return_zero_has_execution;
3096 dummy_target.to_magic = OPS_MAGIC;
3097
3098 install_dummy_methods (&dummy_target);
3099 }
3100 \f
3101 static void
3102 debug_to_open (char *args, int from_tty)
3103 {
3104 debug_target.to_open (args, from_tty);
3105
3106 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3107 }
3108
3109 void
3110 target_close (struct target_ops *targ)
3111 {
3112 gdb_assert (!target_is_pushed (targ));
3113
3114 if (targ->to_xclose != NULL)
3115 targ->to_xclose (targ);
3116 else if (targ->to_close != NULL)
3117 targ->to_close (targ);
3118
3119 if (targetdebug)
3120 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3121 }
3122
3123 int
3124 target_thread_alive (ptid_t ptid)
3125 {
3126 int retval;
3127
3128 retval = current_target.to_thread_alive (&current_target, ptid);
3129 if (targetdebug)
3130 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3131 ptid_get_pid (ptid), retval);
3132
3133 return retval;
3134 }
3135
3136 void
3137 target_find_new_threads (void)
3138 {
3139 current_target.to_find_new_threads (&current_target);
3140 if (targetdebug)
3141 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3142 }
3143
3144 void
3145 target_stop (ptid_t ptid)
3146 {
3147 if (!may_stop)
3148 {
3149 warning (_("May not interrupt or stop the target, ignoring attempt"));
3150 return;
3151 }
3152
3153 (*current_target.to_stop) (&current_target, ptid);
3154 }
3155
3156 static void
3157 debug_to_post_attach (struct target_ops *self, int pid)
3158 {
3159 debug_target.to_post_attach (&debug_target, pid);
3160
3161 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3162 }
3163
3164 /* Concatenate ELEM to LIST, a comma separate list, and return the
3165 result. The LIST incoming argument is released. */
3166
3167 static char *
3168 str_comma_list_concat_elem (char *list, const char *elem)
3169 {
3170 if (list == NULL)
3171 return xstrdup (elem);
3172 else
3173 return reconcat (list, list, ", ", elem, (char *) NULL);
3174 }
3175
3176 /* Helper for target_options_to_string. If OPT is present in
3177 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3178 Returns the new resulting string. OPT is removed from
3179 TARGET_OPTIONS. */
3180
3181 static char *
3182 do_option (int *target_options, char *ret,
3183 int opt, char *opt_str)
3184 {
3185 if ((*target_options & opt) != 0)
3186 {
3187 ret = str_comma_list_concat_elem (ret, opt_str);
3188 *target_options &= ~opt;
3189 }
3190
3191 return ret;
3192 }
3193
3194 char *
3195 target_options_to_string (int target_options)
3196 {
3197 char *ret = NULL;
3198
3199 #define DO_TARG_OPTION(OPT) \
3200 ret = do_option (&target_options, ret, OPT, #OPT)
3201
3202 DO_TARG_OPTION (TARGET_WNOHANG);
3203
3204 if (target_options != 0)
3205 ret = str_comma_list_concat_elem (ret, "unknown???");
3206
3207 if (ret == NULL)
3208 ret = xstrdup ("");
3209 return ret;
3210 }
3211
3212 static void
3213 debug_print_register (const char * func,
3214 struct regcache *regcache, int regno)
3215 {
3216 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3217
3218 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3219 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3220 && gdbarch_register_name (gdbarch, regno) != NULL
3221 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3222 fprintf_unfiltered (gdb_stdlog, "(%s)",
3223 gdbarch_register_name (gdbarch, regno));
3224 else
3225 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3226 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3227 {
3228 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3229 int i, size = register_size (gdbarch, regno);
3230 gdb_byte buf[MAX_REGISTER_SIZE];
3231
3232 regcache_raw_collect (regcache, regno, buf);
3233 fprintf_unfiltered (gdb_stdlog, " = ");
3234 for (i = 0; i < size; i++)
3235 {
3236 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3237 }
3238 if (size <= sizeof (LONGEST))
3239 {
3240 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3241
3242 fprintf_unfiltered (gdb_stdlog, " %s %s",
3243 core_addr_to_string_nz (val), plongest (val));
3244 }
3245 }
3246 fprintf_unfiltered (gdb_stdlog, "\n");
3247 }
3248
3249 void
3250 target_fetch_registers (struct regcache *regcache, int regno)
3251 {
3252 current_target.to_fetch_registers (&current_target, regcache, regno);
3253 if (targetdebug)
3254 debug_print_register ("target_fetch_registers", regcache, regno);
3255 }
3256
3257 void
3258 target_store_registers (struct regcache *regcache, int regno)
3259 {
3260 struct target_ops *t;
3261
3262 if (!may_write_registers)
3263 error (_("Writing to registers is not allowed (regno %d)"), regno);
3264
3265 current_target.to_store_registers (&current_target, regcache, regno);
3266 if (targetdebug)
3267 {
3268 debug_print_register ("target_store_registers", regcache, regno);
3269 }
3270 }
3271
3272 int
3273 target_core_of_thread (ptid_t ptid)
3274 {
3275 int retval = current_target.to_core_of_thread (&current_target, ptid);
3276
3277 if (targetdebug)
3278 fprintf_unfiltered (gdb_stdlog,
3279 "target_core_of_thread (%d) = %d\n",
3280 ptid_get_pid (ptid), retval);
3281 return retval;
3282 }
3283
3284 int
3285 simple_verify_memory (struct target_ops *ops,
3286 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3287 {
3288 LONGEST total_xfered = 0;
3289
3290 while (total_xfered < size)
3291 {
3292 ULONGEST xfered_len;
3293 enum target_xfer_status status;
3294 gdb_byte buf[1024];
3295 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3296
3297 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3298 buf, NULL, lma + total_xfered, howmuch,
3299 &xfered_len);
3300 if (status == TARGET_XFER_OK
3301 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3302 {
3303 total_xfered += xfered_len;
3304 QUIT;
3305 }
3306 else
3307 return 0;
3308 }
3309 return 1;
3310 }
3311
3312 /* Default implementation of memory verification. */
3313
3314 static int
3315 default_verify_memory (struct target_ops *self,
3316 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3317 {
3318 /* Start over from the top of the target stack. */
3319 return simple_verify_memory (current_target.beneath,
3320 data, memaddr, size);
3321 }
3322
3323 int
3324 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3325 {
3326 int retval = current_target.to_verify_memory (&current_target,
3327 data, memaddr, size);
3328
3329 if (targetdebug)
3330 fprintf_unfiltered (gdb_stdlog,
3331 "target_verify_memory (%s, %s) = %d\n",
3332 paddress (target_gdbarch (), memaddr),
3333 pulongest (size),
3334 retval);
3335 return retval;
3336 }
3337
3338 /* The documentation for this function is in its prototype declaration in
3339 target.h. */
3340
3341 int
3342 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3343 {
3344 int ret;
3345
3346 ret = current_target.to_insert_mask_watchpoint (&current_target,
3347 addr, mask, rw);
3348
3349 if (targetdebug)
3350 fprintf_unfiltered (gdb_stdlog, "\
3351 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3352 core_addr_to_string (addr),
3353 core_addr_to_string (mask), rw, ret);
3354
3355 return ret;
3356 }
3357
3358 /* The documentation for this function is in its prototype declaration in
3359 target.h. */
3360
3361 int
3362 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3363 {
3364 int ret;
3365
3366 ret = current_target.to_remove_mask_watchpoint (&current_target,
3367 addr, mask, rw);
3368
3369 if (targetdebug)
3370 fprintf_unfiltered (gdb_stdlog, "\
3371 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3372 core_addr_to_string (addr),
3373 core_addr_to_string (mask), rw, ret);
3374
3375 return ret;
3376 }
3377
3378 /* The documentation for this function is in its prototype declaration
3379 in target.h. */
3380
3381 int
3382 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3383 {
3384 return current_target.to_masked_watch_num_registers (&current_target,
3385 addr, mask);
3386 }
3387
3388 /* The documentation for this function is in its prototype declaration
3389 in target.h. */
3390
3391 int
3392 target_ranged_break_num_registers (void)
3393 {
3394 return current_target.to_ranged_break_num_registers (&current_target);
3395 }
3396
3397 /* See target.h. */
3398
3399 struct btrace_target_info *
3400 target_enable_btrace (ptid_t ptid)
3401 {
3402 return current_target.to_enable_btrace (&current_target, ptid);
3403 }
3404
3405 /* See target.h. */
3406
3407 void
3408 target_disable_btrace (struct btrace_target_info *btinfo)
3409 {
3410 current_target.to_disable_btrace (&current_target, btinfo);
3411 }
3412
3413 /* See target.h. */
3414
3415 void
3416 target_teardown_btrace (struct btrace_target_info *btinfo)
3417 {
3418 current_target.to_teardown_btrace (&current_target, btinfo);
3419 }
3420
3421 /* See target.h. */
3422
3423 enum btrace_error
3424 target_read_btrace (VEC (btrace_block_s) **btrace,
3425 struct btrace_target_info *btinfo,
3426 enum btrace_read_type type)
3427 {
3428 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3429 }
3430
3431 /* See target.h. */
3432
3433 void
3434 target_stop_recording (void)
3435 {
3436 current_target.to_stop_recording (&current_target);
3437 }
3438
3439 /* See target.h. */
3440
3441 void
3442 target_info_record (void)
3443 {
3444 struct target_ops *t;
3445
3446 for (t = current_target.beneath; t != NULL; t = t->beneath)
3447 if (t->to_info_record != NULL)
3448 {
3449 t->to_info_record (t);
3450 return;
3451 }
3452
3453 tcomplain ();
3454 }
3455
3456 /* See target.h. */
3457
3458 void
3459 target_save_record (const char *filename)
3460 {
3461 current_target.to_save_record (&current_target, filename);
3462 }
3463
3464 /* See target.h. */
3465
3466 int
3467 target_supports_delete_record (void)
3468 {
3469 struct target_ops *t;
3470
3471 for (t = current_target.beneath; t != NULL; t = t->beneath)
3472 if (t->to_delete_record != NULL)
3473 return 1;
3474
3475 return 0;
3476 }
3477
3478 /* See target.h. */
3479
3480 void
3481 target_delete_record (void)
3482 {
3483 current_target.to_delete_record (&current_target);
3484 }
3485
3486 /* See target.h. */
3487
3488 int
3489 target_record_is_replaying (void)
3490 {
3491 return current_target.to_record_is_replaying (&current_target);
3492 }
3493
3494 /* See target.h. */
3495
3496 void
3497 target_goto_record_begin (void)
3498 {
3499 current_target.to_goto_record_begin (&current_target);
3500 }
3501
3502 /* See target.h. */
3503
3504 void
3505 target_goto_record_end (void)
3506 {
3507 current_target.to_goto_record_end (&current_target);
3508 }
3509
3510 /* See target.h. */
3511
3512 void
3513 target_goto_record (ULONGEST insn)
3514 {
3515 current_target.to_goto_record (&current_target, insn);
3516 }
3517
3518 /* See target.h. */
3519
3520 void
3521 target_insn_history (int size, int flags)
3522 {
3523 current_target.to_insn_history (&current_target, size, flags);
3524 }
3525
3526 /* See target.h. */
3527
3528 void
3529 target_insn_history_from (ULONGEST from, int size, int flags)
3530 {
3531 current_target.to_insn_history_from (&current_target, from, size, flags);
3532 }
3533
3534 /* See target.h. */
3535
3536 void
3537 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3538 {
3539 current_target.to_insn_history_range (&current_target, begin, end, flags);
3540 }
3541
3542 /* See target.h. */
3543
3544 void
3545 target_call_history (int size, int flags)
3546 {
3547 current_target.to_call_history (&current_target, size, flags);
3548 }
3549
3550 /* See target.h. */
3551
3552 void
3553 target_call_history_from (ULONGEST begin, int size, int flags)
3554 {
3555 current_target.to_call_history_from (&current_target, begin, size, flags);
3556 }
3557
3558 /* See target.h. */
3559
3560 void
3561 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3562 {
3563 current_target.to_call_history_range (&current_target, begin, end, flags);
3564 }
3565
3566 static void
3567 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3568 {
3569 debug_target.to_prepare_to_store (&debug_target, regcache);
3570
3571 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3572 }
3573
3574 /* See target.h. */
3575
3576 const struct frame_unwind *
3577 target_get_unwinder (void)
3578 {
3579 return current_target.to_get_unwinder (&current_target);
3580 }
3581
3582 /* See target.h. */
3583
3584 const struct frame_unwind *
3585 target_get_tailcall_unwinder (void)
3586 {
3587 return current_target.to_get_tailcall_unwinder (&current_target);
3588 }
3589
3590 /* Default implementation of to_decr_pc_after_break. */
3591
3592 static CORE_ADDR
3593 default_target_decr_pc_after_break (struct target_ops *ops,
3594 struct gdbarch *gdbarch)
3595 {
3596 return gdbarch_decr_pc_after_break (gdbarch);
3597 }
3598
3599 /* See target.h. */
3600
3601 CORE_ADDR
3602 target_decr_pc_after_break (struct gdbarch *gdbarch)
3603 {
3604 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3605 }
3606
3607 static void
3608 debug_to_files_info (struct target_ops *target)
3609 {
3610 debug_target.to_files_info (target);
3611
3612 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3613 }
3614
3615 static int
3616 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3617 struct bp_target_info *bp_tgt)
3618 {
3619 int retval;
3620
3621 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
3622
3623 fprintf_unfiltered (gdb_stdlog,
3624 "target_insert_breakpoint (%s, xxx) = %ld\n",
3625 core_addr_to_string (bp_tgt->placed_address),
3626 (unsigned long) retval);
3627 return retval;
3628 }
3629
3630 static int
3631 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3632 struct bp_target_info *bp_tgt)
3633 {
3634 int retval;
3635
3636 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
3637
3638 fprintf_unfiltered (gdb_stdlog,
3639 "target_remove_breakpoint (%s, xxx) = %ld\n",
3640 core_addr_to_string (bp_tgt->placed_address),
3641 (unsigned long) retval);
3642 return retval;
3643 }
3644
3645 static int
3646 debug_to_can_use_hw_breakpoint (struct target_ops *self,
3647 int type, int cnt, int from_tty)
3648 {
3649 int retval;
3650
3651 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3652 type, cnt, from_tty);
3653
3654 fprintf_unfiltered (gdb_stdlog,
3655 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3656 (unsigned long) type,
3657 (unsigned long) cnt,
3658 (unsigned long) from_tty,
3659 (unsigned long) retval);
3660 return retval;
3661 }
3662
3663 static int
3664 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3665 CORE_ADDR addr, int len)
3666 {
3667 CORE_ADDR retval;
3668
3669 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3670 addr, len);
3671
3672 fprintf_unfiltered (gdb_stdlog,
3673 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3674 core_addr_to_string (addr), (unsigned long) len,
3675 core_addr_to_string (retval));
3676 return retval;
3677 }
3678
3679 static int
3680 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3681 CORE_ADDR addr, int len, int rw,
3682 struct expression *cond)
3683 {
3684 int retval;
3685
3686 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3687 addr, len,
3688 rw, cond);
3689
3690 fprintf_unfiltered (gdb_stdlog,
3691 "target_can_accel_watchpoint_condition "
3692 "(%s, %d, %d, %s) = %ld\n",
3693 core_addr_to_string (addr), len, rw,
3694 host_address_to_string (cond), (unsigned long) retval);
3695 return retval;
3696 }
3697
3698 static int
3699 debug_to_stopped_by_watchpoint (struct target_ops *ops)
3700 {
3701 int retval;
3702
3703 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
3704
3705 fprintf_unfiltered (gdb_stdlog,
3706 "target_stopped_by_watchpoint () = %ld\n",
3707 (unsigned long) retval);
3708 return retval;
3709 }
3710
3711 static int
3712 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3713 {
3714 int retval;
3715
3716 retval = debug_target.to_stopped_data_address (target, addr);
3717
3718 fprintf_unfiltered (gdb_stdlog,
3719 "target_stopped_data_address ([%s]) = %ld\n",
3720 core_addr_to_string (*addr),
3721 (unsigned long)retval);
3722 return retval;
3723 }
3724
3725 static int
3726 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3727 CORE_ADDR addr,
3728 CORE_ADDR start, int length)
3729 {
3730 int retval;
3731
3732 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3733 start, length);
3734
3735 fprintf_filtered (gdb_stdlog,
3736 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3737 core_addr_to_string (addr), core_addr_to_string (start),
3738 length, retval);
3739 return retval;
3740 }
3741
3742 static int
3743 debug_to_insert_hw_breakpoint (struct target_ops *self,
3744 struct gdbarch *gdbarch,
3745 struct bp_target_info *bp_tgt)
3746 {
3747 int retval;
3748
3749 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3750 gdbarch, bp_tgt);
3751
3752 fprintf_unfiltered (gdb_stdlog,
3753 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3754 core_addr_to_string (bp_tgt->placed_address),
3755 (unsigned long) retval);
3756 return retval;
3757 }
3758
3759 static int
3760 debug_to_remove_hw_breakpoint (struct target_ops *self,
3761 struct gdbarch *gdbarch,
3762 struct bp_target_info *bp_tgt)
3763 {
3764 int retval;
3765
3766 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3767 gdbarch, bp_tgt);
3768
3769 fprintf_unfiltered (gdb_stdlog,
3770 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3771 core_addr_to_string (bp_tgt->placed_address),
3772 (unsigned long) retval);
3773 return retval;
3774 }
3775
3776 static int
3777 debug_to_insert_watchpoint (struct target_ops *self,
3778 CORE_ADDR addr, int len, int type,
3779 struct expression *cond)
3780 {
3781 int retval;
3782
3783 retval = debug_target.to_insert_watchpoint (&debug_target,
3784 addr, len, type, cond);
3785
3786 fprintf_unfiltered (gdb_stdlog,
3787 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3788 core_addr_to_string (addr), len, type,
3789 host_address_to_string (cond), (unsigned long) retval);
3790 return retval;
3791 }
3792
3793 static int
3794 debug_to_remove_watchpoint (struct target_ops *self,
3795 CORE_ADDR addr, int len, int type,
3796 struct expression *cond)
3797 {
3798 int retval;
3799
3800 retval = debug_target.to_remove_watchpoint (&debug_target,
3801 addr, len, type, cond);
3802
3803 fprintf_unfiltered (gdb_stdlog,
3804 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3805 core_addr_to_string (addr), len, type,
3806 host_address_to_string (cond), (unsigned long) retval);
3807 return retval;
3808 }
3809
3810 static void
3811 debug_to_terminal_init (struct target_ops *self)
3812 {
3813 debug_target.to_terminal_init (&debug_target);
3814
3815 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3816 }
3817
3818 static void
3819 debug_to_terminal_inferior (struct target_ops *self)
3820 {
3821 debug_target.to_terminal_inferior (&debug_target);
3822
3823 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3824 }
3825
3826 static void
3827 debug_to_terminal_ours_for_output (struct target_ops *self)
3828 {
3829 debug_target.to_terminal_ours_for_output (&debug_target);
3830
3831 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3832 }
3833
3834 static void
3835 debug_to_terminal_ours (struct target_ops *self)
3836 {
3837 debug_target.to_terminal_ours (&debug_target);
3838
3839 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3840 }
3841
3842 static void
3843 debug_to_terminal_save_ours (struct target_ops *self)
3844 {
3845 debug_target.to_terminal_save_ours (&debug_target);
3846
3847 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3848 }
3849
3850 static void
3851 debug_to_terminal_info (struct target_ops *self,
3852 const char *arg, int from_tty)
3853 {
3854 debug_target.to_terminal_info (&debug_target, arg, from_tty);
3855
3856 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3857 from_tty);
3858 }
3859
3860 static void
3861 debug_to_load (struct target_ops *self, char *args, int from_tty)
3862 {
3863 debug_target.to_load (&debug_target, args, from_tty);
3864
3865 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3866 }
3867
3868 static void
3869 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
3870 {
3871 debug_target.to_post_startup_inferior (&debug_target, ptid);
3872
3873 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3874 ptid_get_pid (ptid));
3875 }
3876
3877 static int
3878 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
3879 {
3880 int retval;
3881
3882 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
3883
3884 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3885 pid, retval);
3886
3887 return retval;
3888 }
3889
3890 static int
3891 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
3892 {
3893 int retval;
3894
3895 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
3896
3897 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3898 pid, retval);
3899
3900 return retval;
3901 }
3902
3903 static int
3904 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
3905 {
3906 int retval;
3907
3908 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
3909
3910 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3911 pid, retval);
3912
3913 return retval;
3914 }
3915
3916 static int
3917 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
3918 {
3919 int retval;
3920
3921 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
3922
3923 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3924 pid, retval);
3925
3926 return retval;
3927 }
3928
3929 static int
3930 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
3931 {
3932 int retval;
3933
3934 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
3935
3936 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3937 pid, retval);
3938
3939 return retval;
3940 }
3941
3942 static int
3943 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
3944 {
3945 int retval;
3946
3947 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
3948
3949 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3950 pid, retval);
3951
3952 return retval;
3953 }
3954
3955 static int
3956 debug_to_has_exited (struct target_ops *self,
3957 int pid, int wait_status, int *exit_status)
3958 {
3959 int has_exited;
3960
3961 has_exited = debug_target.to_has_exited (&debug_target,
3962 pid, wait_status, exit_status);
3963
3964 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3965 pid, wait_status, *exit_status, has_exited);
3966
3967 return has_exited;
3968 }
3969
3970 static int
3971 debug_to_can_run (struct target_ops *self)
3972 {
3973 int retval;
3974
3975 retval = debug_target.to_can_run (&debug_target);
3976
3977 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3978
3979 return retval;
3980 }
3981
3982 static struct gdbarch *
3983 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3984 {
3985 struct gdbarch *retval;
3986
3987 retval = debug_target.to_thread_architecture (ops, ptid);
3988
3989 fprintf_unfiltered (gdb_stdlog,
3990 "target_thread_architecture (%s) = %s [%s]\n",
3991 target_pid_to_str (ptid),
3992 host_address_to_string (retval),
3993 gdbarch_bfd_arch_info (retval)->printable_name);
3994 return retval;
3995 }
3996
3997 static void
3998 debug_to_stop (struct target_ops *self, ptid_t ptid)
3999 {
4000 debug_target.to_stop (&debug_target, ptid);
4001
4002 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4003 target_pid_to_str (ptid));
4004 }
4005
4006 static void
4007 debug_to_rcmd (struct target_ops *self, char *command,
4008 struct ui_file *outbuf)
4009 {
4010 debug_target.to_rcmd (&debug_target, command, outbuf);
4011 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4012 }
4013
4014 static char *
4015 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4016 {
4017 char *exec_file;
4018
4019 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4020
4021 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4022 pid, exec_file);
4023
4024 return exec_file;
4025 }
4026
4027 static void
4028 setup_target_debug (void)
4029 {
4030 memcpy (&debug_target, &current_target, sizeof debug_target);
4031
4032 current_target.to_open = debug_to_open;
4033 current_target.to_post_attach = debug_to_post_attach;
4034 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4035 current_target.to_files_info = debug_to_files_info;
4036 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4037 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4038 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4039 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4040 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4041 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4042 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4043 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4044 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4045 current_target.to_watchpoint_addr_within_range
4046 = debug_to_watchpoint_addr_within_range;
4047 current_target.to_region_ok_for_hw_watchpoint
4048 = debug_to_region_ok_for_hw_watchpoint;
4049 current_target.to_can_accel_watchpoint_condition
4050 = debug_to_can_accel_watchpoint_condition;
4051 current_target.to_terminal_init = debug_to_terminal_init;
4052 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4053 current_target.to_terminal_ours_for_output
4054 = debug_to_terminal_ours_for_output;
4055 current_target.to_terminal_ours = debug_to_terminal_ours;
4056 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4057 current_target.to_terminal_info = debug_to_terminal_info;
4058 current_target.to_load = debug_to_load;
4059 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4060 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4061 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4062 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4063 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4064 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4065 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4066 current_target.to_has_exited = debug_to_has_exited;
4067 current_target.to_can_run = debug_to_can_run;
4068 current_target.to_stop = debug_to_stop;
4069 current_target.to_rcmd = debug_to_rcmd;
4070 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4071 current_target.to_thread_architecture = debug_to_thread_architecture;
4072 }
4073 \f
4074
4075 static char targ_desc[] =
4076 "Names of targets and files being debugged.\nShows the entire \
4077 stack of targets currently in use (including the exec-file,\n\
4078 core-file, and process, if any), as well as the symbol file name.";
4079
4080 static void
4081 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4082 {
4083 error (_("\"monitor\" command not supported by this target."));
4084 }
4085
4086 static void
4087 do_monitor_command (char *cmd,
4088 int from_tty)
4089 {
4090 target_rcmd (cmd, gdb_stdtarg);
4091 }
4092
4093 /* Print the name of each layers of our target stack. */
4094
4095 static void
4096 maintenance_print_target_stack (char *cmd, int from_tty)
4097 {
4098 struct target_ops *t;
4099
4100 printf_filtered (_("The current target stack is:\n"));
4101
4102 for (t = target_stack; t != NULL; t = t->beneath)
4103 {
4104 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4105 }
4106 }
4107
4108 /* Controls if targets can report that they can/are async. This is
4109 just for maintainers to use when debugging gdb. */
4110 int target_async_permitted = 1;
4111
4112 /* The set command writes to this variable. If the inferior is
4113 executing, target_async_permitted is *not* updated. */
4114 static int target_async_permitted_1 = 1;
4115
4116 static void
4117 maint_set_target_async_command (char *args, int from_tty,
4118 struct cmd_list_element *c)
4119 {
4120 if (have_live_inferiors ())
4121 {
4122 target_async_permitted_1 = target_async_permitted;
4123 error (_("Cannot change this setting while the inferior is running."));
4124 }
4125
4126 target_async_permitted = target_async_permitted_1;
4127 }
4128
4129 static void
4130 maint_show_target_async_command (struct ui_file *file, int from_tty,
4131 struct cmd_list_element *c,
4132 const char *value)
4133 {
4134 fprintf_filtered (file,
4135 _("Controlling the inferior in "
4136 "asynchronous mode is %s.\n"), value);
4137 }
4138
4139 /* Temporary copies of permission settings. */
4140
4141 static int may_write_registers_1 = 1;
4142 static int may_write_memory_1 = 1;
4143 static int may_insert_breakpoints_1 = 1;
4144 static int may_insert_tracepoints_1 = 1;
4145 static int may_insert_fast_tracepoints_1 = 1;
4146 static int may_stop_1 = 1;
4147
4148 /* Make the user-set values match the real values again. */
4149
4150 void
4151 update_target_permissions (void)
4152 {
4153 may_write_registers_1 = may_write_registers;
4154 may_write_memory_1 = may_write_memory;
4155 may_insert_breakpoints_1 = may_insert_breakpoints;
4156 may_insert_tracepoints_1 = may_insert_tracepoints;
4157 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4158 may_stop_1 = may_stop;
4159 }
4160
4161 /* The one function handles (most of) the permission flags in the same
4162 way. */
4163
4164 static void
4165 set_target_permissions (char *args, int from_tty,
4166 struct cmd_list_element *c)
4167 {
4168 if (target_has_execution)
4169 {
4170 update_target_permissions ();
4171 error (_("Cannot change this setting while the inferior is running."));
4172 }
4173
4174 /* Make the real values match the user-changed values. */
4175 may_write_registers = may_write_registers_1;
4176 may_insert_breakpoints = may_insert_breakpoints_1;
4177 may_insert_tracepoints = may_insert_tracepoints_1;
4178 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4179 may_stop = may_stop_1;
4180 update_observer_mode ();
4181 }
4182
4183 /* Set memory write permission independently of observer mode. */
4184
4185 static void
4186 set_write_memory_permission (char *args, int from_tty,
4187 struct cmd_list_element *c)
4188 {
4189 /* Make the real values match the user-changed values. */
4190 may_write_memory = may_write_memory_1;
4191 update_observer_mode ();
4192 }
4193
4194
4195 void
4196 initialize_targets (void)
4197 {
4198 init_dummy_target ();
4199 push_target (&dummy_target);
4200
4201 add_info ("target", target_info, targ_desc);
4202 add_info ("files", target_info, targ_desc);
4203
4204 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4205 Set target debugging."), _("\
4206 Show target debugging."), _("\
4207 When non-zero, target debugging is enabled. Higher numbers are more\n\
4208 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4209 command."),
4210 NULL,
4211 show_targetdebug,
4212 &setdebuglist, &showdebuglist);
4213
4214 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4215 &trust_readonly, _("\
4216 Set mode for reading from readonly sections."), _("\
4217 Show mode for reading from readonly sections."), _("\
4218 When this mode is on, memory reads from readonly sections (such as .text)\n\
4219 will be read from the object file instead of from the target. This will\n\
4220 result in significant performance improvement for remote targets."),
4221 NULL,
4222 show_trust_readonly,
4223 &setlist, &showlist);
4224
4225 add_com ("monitor", class_obscure, do_monitor_command,
4226 _("Send a command to the remote monitor (remote targets only)."));
4227
4228 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4229 _("Print the name of each layer of the internal target stack."),
4230 &maintenanceprintlist);
4231
4232 add_setshow_boolean_cmd ("target-async", no_class,
4233 &target_async_permitted_1, _("\
4234 Set whether gdb controls the inferior in asynchronous mode."), _("\
4235 Show whether gdb controls the inferior in asynchronous mode."), _("\
4236 Tells gdb whether to control the inferior in asynchronous mode."),
4237 maint_set_target_async_command,
4238 maint_show_target_async_command,
4239 &maintenance_set_cmdlist,
4240 &maintenance_show_cmdlist);
4241
4242 add_setshow_boolean_cmd ("may-write-registers", class_support,
4243 &may_write_registers_1, _("\
4244 Set permission to write into registers."), _("\
4245 Show permission to write into registers."), _("\
4246 When this permission is on, GDB may write into the target's registers.\n\
4247 Otherwise, any sort of write attempt will result in an error."),
4248 set_target_permissions, NULL,
4249 &setlist, &showlist);
4250
4251 add_setshow_boolean_cmd ("may-write-memory", class_support,
4252 &may_write_memory_1, _("\
4253 Set permission to write into target memory."), _("\
4254 Show permission to write into target memory."), _("\
4255 When this permission is on, GDB may write into the target's memory.\n\
4256 Otherwise, any sort of write attempt will result in an error."),
4257 set_write_memory_permission, NULL,
4258 &setlist, &showlist);
4259
4260 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4261 &may_insert_breakpoints_1, _("\
4262 Set permission to insert breakpoints in the target."), _("\
4263 Show permission to insert breakpoints in the target."), _("\
4264 When this permission is on, GDB may insert breakpoints in the program.\n\
4265 Otherwise, any sort of insertion attempt will result in an error."),
4266 set_target_permissions, NULL,
4267 &setlist, &showlist);
4268
4269 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4270 &may_insert_tracepoints_1, _("\
4271 Set permission to insert tracepoints in the target."), _("\
4272 Show permission to insert tracepoints in the target."), _("\
4273 When this permission is on, GDB may insert tracepoints in the program.\n\
4274 Otherwise, any sort of insertion attempt will result in an error."),
4275 set_target_permissions, NULL,
4276 &setlist, &showlist);
4277
4278 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4279 &may_insert_fast_tracepoints_1, _("\
4280 Set permission to insert fast tracepoints in the target."), _("\
4281 Show permission to insert fast tracepoints in the target."), _("\
4282 When this permission is on, GDB may insert fast tracepoints.\n\
4283 Otherwise, any sort of insertion attempt will result in an error."),
4284 set_target_permissions, NULL,
4285 &setlist, &showlist);
4286
4287 add_setshow_boolean_cmd ("may-interrupt", class_support,
4288 &may_stop_1, _("\
4289 Set permission to interrupt or signal the target."), _("\
4290 Show permission to interrupt or signal the target."), _("\
4291 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4292 Otherwise, any attempt to interrupt or stop will be ignored."),
4293 set_target_permissions, NULL,
4294 &setlist, &showlist);
4295
4296 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4297 &auto_connect_native_target, _("\
4298 Set whether GDB may automatically connect to the native target."), _("\
4299 Show whether GDB may automatically connect to the native target."), _("\
4300 When on, and GDB is not connected to a target yet, GDB\n\
4301 attempts \"run\" and other commands with the native target."),
4302 NULL, show_auto_connect_native_target,
4303 &setlist, &showlist);
4304 }