]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
Add new infrun.h header.
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "dcache.h"
35 #include <signal.h>
36 #include "regcache.h"
37 #include "gdb_assert.h"
38 #include "gdbcore.h"
39 #include "exceptions.h"
40 #include "target-descriptions.h"
41 #include "gdbthread.h"
42 #include "solib.h"
43 #include "exec.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "gdb/fileio.h"
47 #include "agent.h"
48 #include "auxv.h"
49
50 static void target_info (char *, int);
51
52 static void default_terminal_info (struct target_ops *, const char *, int);
53
54 static int default_watchpoint_addr_within_range (struct target_ops *,
55 CORE_ADDR, CORE_ADDR, int);
56
57 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
58 CORE_ADDR, int);
59
60 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
61
62 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
63 long lwp, long tid);
64
65 static int default_follow_fork (struct target_ops *self, int follow_child,
66 int detach_fork);
67
68 static void default_mourn_inferior (struct target_ops *self);
69
70 static int default_search_memory (struct target_ops *ops,
71 CORE_ADDR start_addr,
72 ULONGEST search_space_len,
73 const gdb_byte *pattern,
74 ULONGEST pattern_len,
75 CORE_ADDR *found_addrp);
76
77 static int default_verify_memory (struct target_ops *self,
78 const gdb_byte *data,
79 CORE_ADDR memaddr, ULONGEST size);
80
81 static void tcomplain (void) ATTRIBUTE_NORETURN;
82
83 static int return_zero (struct target_ops *);
84
85 static int return_zero_has_execution (struct target_ops *, ptid_t);
86
87 static void target_command (char *, int);
88
89 static struct target_ops *find_default_run_target (char *);
90
91 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
92 ptid_t ptid);
93
94 static int dummy_find_memory_regions (struct target_ops *self,
95 find_memory_region_ftype ignore1,
96 void *ignore2);
97
98 static char *dummy_make_corefile_notes (struct target_ops *self,
99 bfd *ignore1, int *ignore2);
100
101 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
102
103 static enum exec_direction_kind default_execution_direction
104 (struct target_ops *self);
105
106 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
107 struct gdbarch *gdbarch);
108
109 #include "target-delegates.c"
110
111 static void init_dummy_target (void);
112
113 static struct target_ops debug_target;
114
115 static void debug_to_open (char *, int);
116
117 static void debug_to_prepare_to_store (struct target_ops *self,
118 struct regcache *);
119
120 static void debug_to_files_info (struct target_ops *);
121
122 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
123 struct bp_target_info *);
124
125 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
126 struct bp_target_info *);
127
128 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
129 int, int, int);
130
131 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
132 struct gdbarch *,
133 struct bp_target_info *);
134
135 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
136 struct gdbarch *,
137 struct bp_target_info *);
138
139 static int debug_to_insert_watchpoint (struct target_ops *self,
140 CORE_ADDR, int, int,
141 struct expression *);
142
143 static int debug_to_remove_watchpoint (struct target_ops *self,
144 CORE_ADDR, int, int,
145 struct expression *);
146
147 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
148
149 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
150 CORE_ADDR, CORE_ADDR, int);
151
152 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
153 CORE_ADDR, int);
154
155 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
156 CORE_ADDR, int, int,
157 struct expression *);
158
159 static void debug_to_terminal_init (struct target_ops *self);
160
161 static void debug_to_terminal_inferior (struct target_ops *self);
162
163 static void debug_to_terminal_ours_for_output (struct target_ops *self);
164
165 static void debug_to_terminal_save_ours (struct target_ops *self);
166
167 static void debug_to_terminal_ours (struct target_ops *self);
168
169 static void debug_to_load (struct target_ops *self, char *, int);
170
171 static int debug_to_can_run (struct target_ops *self);
172
173 static void debug_to_stop (struct target_ops *self, ptid_t);
174
175 /* Pointer to array of target architecture structures; the size of the
176 array; the current index into the array; the allocated size of the
177 array. */
178 struct target_ops **target_structs;
179 unsigned target_struct_size;
180 unsigned target_struct_allocsize;
181 #define DEFAULT_ALLOCSIZE 10
182
183 /* The initial current target, so that there is always a semi-valid
184 current target. */
185
186 static struct target_ops dummy_target;
187
188 /* Top of target stack. */
189
190 static struct target_ops *target_stack;
191
192 /* The target structure we are currently using to talk to a process
193 or file or whatever "inferior" we have. */
194
195 struct target_ops current_target;
196
197 /* Command list for target. */
198
199 static struct cmd_list_element *targetlist = NULL;
200
201 /* Nonzero if we should trust readonly sections from the
202 executable when reading memory. */
203
204 static int trust_readonly = 0;
205
206 /* Nonzero if we should show true memory content including
207 memory breakpoint inserted by gdb. */
208
209 static int show_memory_breakpoints = 0;
210
211 /* These globals control whether GDB attempts to perform these
212 operations; they are useful for targets that need to prevent
213 inadvertant disruption, such as in non-stop mode. */
214
215 int may_write_registers = 1;
216
217 int may_write_memory = 1;
218
219 int may_insert_breakpoints = 1;
220
221 int may_insert_tracepoints = 1;
222
223 int may_insert_fast_tracepoints = 1;
224
225 int may_stop = 1;
226
227 /* Non-zero if we want to see trace of target level stuff. */
228
229 static unsigned int targetdebug = 0;
230 static void
231 show_targetdebug (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
235 }
236
237 static void setup_target_debug (void);
238
239 /* The user just typed 'target' without the name of a target. */
240
241 static void
242 target_command (char *arg, int from_tty)
243 {
244 fputs_filtered ("Argument required (target name). Try `help target'\n",
245 gdb_stdout);
246 }
247
248 /* Default target_has_* methods for process_stratum targets. */
249
250 int
251 default_child_has_all_memory (struct target_ops *ops)
252 {
253 /* If no inferior selected, then we can't read memory here. */
254 if (ptid_equal (inferior_ptid, null_ptid))
255 return 0;
256
257 return 1;
258 }
259
260 int
261 default_child_has_memory (struct target_ops *ops)
262 {
263 /* If no inferior selected, then we can't read memory here. */
264 if (ptid_equal (inferior_ptid, null_ptid))
265 return 0;
266
267 return 1;
268 }
269
270 int
271 default_child_has_stack (struct target_ops *ops)
272 {
273 /* If no inferior selected, there's no stack. */
274 if (ptid_equal (inferior_ptid, null_ptid))
275 return 0;
276
277 return 1;
278 }
279
280 int
281 default_child_has_registers (struct target_ops *ops)
282 {
283 /* Can't read registers from no inferior. */
284 if (ptid_equal (inferior_ptid, null_ptid))
285 return 0;
286
287 return 1;
288 }
289
290 int
291 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
292 {
293 /* If there's no thread selected, then we can't make it run through
294 hoops. */
295 if (ptid_equal (the_ptid, null_ptid))
296 return 0;
297
298 return 1;
299 }
300
301
302 int
303 target_has_all_memory_1 (void)
304 {
305 struct target_ops *t;
306
307 for (t = current_target.beneath; t != NULL; t = t->beneath)
308 if (t->to_has_all_memory (t))
309 return 1;
310
311 return 0;
312 }
313
314 int
315 target_has_memory_1 (void)
316 {
317 struct target_ops *t;
318
319 for (t = current_target.beneath; t != NULL; t = t->beneath)
320 if (t->to_has_memory (t))
321 return 1;
322
323 return 0;
324 }
325
326 int
327 target_has_stack_1 (void)
328 {
329 struct target_ops *t;
330
331 for (t = current_target.beneath; t != NULL; t = t->beneath)
332 if (t->to_has_stack (t))
333 return 1;
334
335 return 0;
336 }
337
338 int
339 target_has_registers_1 (void)
340 {
341 struct target_ops *t;
342
343 for (t = current_target.beneath; t != NULL; t = t->beneath)
344 if (t->to_has_registers (t))
345 return 1;
346
347 return 0;
348 }
349
350 int
351 target_has_execution_1 (ptid_t the_ptid)
352 {
353 struct target_ops *t;
354
355 for (t = current_target.beneath; t != NULL; t = t->beneath)
356 if (t->to_has_execution (t, the_ptid))
357 return 1;
358
359 return 0;
360 }
361
362 int
363 target_has_execution_current (void)
364 {
365 return target_has_execution_1 (inferior_ptid);
366 }
367
368 /* Complete initialization of T. This ensures that various fields in
369 T are set, if needed by the target implementation. */
370
371 void
372 complete_target_initialization (struct target_ops *t)
373 {
374 /* Provide default values for all "must have" methods. */
375
376 if (t->to_has_all_memory == NULL)
377 t->to_has_all_memory = return_zero;
378
379 if (t->to_has_memory == NULL)
380 t->to_has_memory = return_zero;
381
382 if (t->to_has_stack == NULL)
383 t->to_has_stack = return_zero;
384
385 if (t->to_has_registers == NULL)
386 t->to_has_registers = return_zero;
387
388 if (t->to_has_execution == NULL)
389 t->to_has_execution = return_zero_has_execution;
390
391 /* These methods can be called on an unpushed target and so require
392 a default implementation if the target might plausibly be the
393 default run target. */
394 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
395 && t->to_supports_non_stop != NULL));
396
397 install_delegators (t);
398 }
399
400 /* Add possible target architecture T to the list and add a new
401 command 'target T->to_shortname'. Set COMPLETER as the command's
402 completer if not NULL. */
403
404 void
405 add_target_with_completer (struct target_ops *t,
406 completer_ftype *completer)
407 {
408 struct cmd_list_element *c;
409
410 complete_target_initialization (t);
411
412 if (!target_structs)
413 {
414 target_struct_allocsize = DEFAULT_ALLOCSIZE;
415 target_structs = (struct target_ops **) xmalloc
416 (target_struct_allocsize * sizeof (*target_structs));
417 }
418 if (target_struct_size >= target_struct_allocsize)
419 {
420 target_struct_allocsize *= 2;
421 target_structs = (struct target_ops **)
422 xrealloc ((char *) target_structs,
423 target_struct_allocsize * sizeof (*target_structs));
424 }
425 target_structs[target_struct_size++] = t;
426
427 if (targetlist == NULL)
428 add_prefix_cmd ("target", class_run, target_command, _("\
429 Connect to a target machine or process.\n\
430 The first argument is the type or protocol of the target machine.\n\
431 Remaining arguments are interpreted by the target protocol. For more\n\
432 information on the arguments for a particular protocol, type\n\
433 `help target ' followed by the protocol name."),
434 &targetlist, "target ", 0, &cmdlist);
435 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
436 &targetlist);
437 if (completer != NULL)
438 set_cmd_completer (c, completer);
439 }
440
441 /* Add a possible target architecture to the list. */
442
443 void
444 add_target (struct target_ops *t)
445 {
446 add_target_with_completer (t, NULL);
447 }
448
449 /* See target.h. */
450
451 void
452 add_deprecated_target_alias (struct target_ops *t, char *alias)
453 {
454 struct cmd_list_element *c;
455 char *alt;
456
457 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
458 see PR cli/15104. */
459 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
460 alt = xstrprintf ("target %s", t->to_shortname);
461 deprecate_cmd (c, alt);
462 }
463
464 /* Stub functions */
465
466 void
467 target_kill (void)
468 {
469 if (targetdebug)
470 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
471
472 current_target.to_kill (&current_target);
473 }
474
475 void
476 target_load (char *arg, int from_tty)
477 {
478 target_dcache_invalidate ();
479 (*current_target.to_load) (&current_target, arg, from_tty);
480 }
481
482 void
483 target_terminal_inferior (void)
484 {
485 /* A background resume (``run&'') should leave GDB in control of the
486 terminal. Use target_can_async_p, not target_is_async_p, since at
487 this point the target is not async yet. However, if sync_execution
488 is not set, we know it will become async prior to resume. */
489 if (target_can_async_p () && !sync_execution)
490 return;
491
492 /* If GDB is resuming the inferior in the foreground, install
493 inferior's terminal modes. */
494 (*current_target.to_terminal_inferior) (&current_target);
495 }
496
497 static void
498 tcomplain (void)
499 {
500 error (_("You can't do that when your target is `%s'"),
501 current_target.to_shortname);
502 }
503
504 void
505 noprocess (void)
506 {
507 error (_("You can't do that without a process to debug."));
508 }
509
510 static void
511 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
512 {
513 printf_unfiltered (_("No saved terminal information.\n"));
514 }
515
516 /* A default implementation for the to_get_ada_task_ptid target method.
517
518 This function builds the PTID by using both LWP and TID as part of
519 the PTID lwp and tid elements. The pid used is the pid of the
520 inferior_ptid. */
521
522 static ptid_t
523 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
524 {
525 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
526 }
527
528 static enum exec_direction_kind
529 default_execution_direction (struct target_ops *self)
530 {
531 if (!target_can_execute_reverse)
532 return EXEC_FORWARD;
533 else if (!target_can_async_p ())
534 return EXEC_FORWARD;
535 else
536 gdb_assert_not_reached ("\
537 to_execution_direction must be implemented for reverse async");
538 }
539
540 /* Go through the target stack from top to bottom, copying over zero
541 entries in current_target, then filling in still empty entries. In
542 effect, we are doing class inheritance through the pushed target
543 vectors.
544
545 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
546 is currently implemented, is that it discards any knowledge of
547 which target an inherited method originally belonged to.
548 Consequently, new new target methods should instead explicitly and
549 locally search the target stack for the target that can handle the
550 request. */
551
552 static void
553 update_current_target (void)
554 {
555 struct target_ops *t;
556
557 /* First, reset current's contents. */
558 memset (&current_target, 0, sizeof (current_target));
559
560 /* Install the delegators. */
561 install_delegators (&current_target);
562
563 current_target.to_stratum = target_stack->to_stratum;
564
565 #define INHERIT(FIELD, TARGET) \
566 if (!current_target.FIELD) \
567 current_target.FIELD = (TARGET)->FIELD
568
569 /* Do not add any new INHERITs here. Instead, use the delegation
570 mechanism provided by make-target-delegates. */
571 for (t = target_stack; t; t = t->beneath)
572 {
573 INHERIT (to_shortname, t);
574 INHERIT (to_longname, t);
575 INHERIT (to_attach_no_wait, t);
576 INHERIT (to_have_steppable_watchpoint, t);
577 INHERIT (to_have_continuable_watchpoint, t);
578 INHERIT (to_has_thread_control, t);
579 }
580 #undef INHERIT
581
582 /* Finally, position the target-stack beneath the squashed
583 "current_target". That way code looking for a non-inherited
584 target method can quickly and simply find it. */
585 current_target.beneath = target_stack;
586
587 if (targetdebug)
588 setup_target_debug ();
589 }
590
591 /* Push a new target type into the stack of the existing target accessors,
592 possibly superseding some of the existing accessors.
593
594 Rather than allow an empty stack, we always have the dummy target at
595 the bottom stratum, so we can call the function vectors without
596 checking them. */
597
598 void
599 push_target (struct target_ops *t)
600 {
601 struct target_ops **cur;
602
603 /* Check magic number. If wrong, it probably means someone changed
604 the struct definition, but not all the places that initialize one. */
605 if (t->to_magic != OPS_MAGIC)
606 {
607 fprintf_unfiltered (gdb_stderr,
608 "Magic number of %s target struct wrong\n",
609 t->to_shortname);
610 internal_error (__FILE__, __LINE__,
611 _("failed internal consistency check"));
612 }
613
614 /* Find the proper stratum to install this target in. */
615 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
616 {
617 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
618 break;
619 }
620
621 /* If there's already targets at this stratum, remove them. */
622 /* FIXME: cagney/2003-10-15: I think this should be popping all
623 targets to CUR, and not just those at this stratum level. */
624 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
625 {
626 /* There's already something at this stratum level. Close it,
627 and un-hook it from the stack. */
628 struct target_ops *tmp = (*cur);
629
630 (*cur) = (*cur)->beneath;
631 tmp->beneath = NULL;
632 target_close (tmp);
633 }
634
635 /* We have removed all targets in our stratum, now add the new one. */
636 t->beneath = (*cur);
637 (*cur) = t;
638
639 update_current_target ();
640 }
641
642 /* Remove a target_ops vector from the stack, wherever it may be.
643 Return how many times it was removed (0 or 1). */
644
645 int
646 unpush_target (struct target_ops *t)
647 {
648 struct target_ops **cur;
649 struct target_ops *tmp;
650
651 if (t->to_stratum == dummy_stratum)
652 internal_error (__FILE__, __LINE__,
653 _("Attempt to unpush the dummy target"));
654
655 /* Look for the specified target. Note that we assume that a target
656 can only occur once in the target stack. */
657
658 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
659 {
660 if ((*cur) == t)
661 break;
662 }
663
664 /* If we don't find target_ops, quit. Only open targets should be
665 closed. */
666 if ((*cur) == NULL)
667 return 0;
668
669 /* Unchain the target. */
670 tmp = (*cur);
671 (*cur) = (*cur)->beneath;
672 tmp->beneath = NULL;
673
674 update_current_target ();
675
676 /* Finally close the target. Note we do this after unchaining, so
677 any target method calls from within the target_close
678 implementation don't end up in T anymore. */
679 target_close (t);
680
681 return 1;
682 }
683
684 void
685 pop_all_targets_above (enum strata above_stratum)
686 {
687 while ((int) (current_target.to_stratum) > (int) above_stratum)
688 {
689 if (!unpush_target (target_stack))
690 {
691 fprintf_unfiltered (gdb_stderr,
692 "pop_all_targets couldn't find target %s\n",
693 target_stack->to_shortname);
694 internal_error (__FILE__, __LINE__,
695 _("failed internal consistency check"));
696 break;
697 }
698 }
699 }
700
701 void
702 pop_all_targets (void)
703 {
704 pop_all_targets_above (dummy_stratum);
705 }
706
707 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
708
709 int
710 target_is_pushed (struct target_ops *t)
711 {
712 struct target_ops **cur;
713
714 /* Check magic number. If wrong, it probably means someone changed
715 the struct definition, but not all the places that initialize one. */
716 if (t->to_magic != OPS_MAGIC)
717 {
718 fprintf_unfiltered (gdb_stderr,
719 "Magic number of %s target struct wrong\n",
720 t->to_shortname);
721 internal_error (__FILE__, __LINE__,
722 _("failed internal consistency check"));
723 }
724
725 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
726 if (*cur == t)
727 return 1;
728
729 return 0;
730 }
731
732 /* Using the objfile specified in OBJFILE, find the address for the
733 current thread's thread-local storage with offset OFFSET. */
734 CORE_ADDR
735 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
736 {
737 volatile CORE_ADDR addr = 0;
738 struct target_ops *target;
739
740 for (target = current_target.beneath;
741 target != NULL;
742 target = target->beneath)
743 {
744 if (target->to_get_thread_local_address != NULL)
745 break;
746 }
747
748 if (target != NULL
749 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
750 {
751 ptid_t ptid = inferior_ptid;
752 volatile struct gdb_exception ex;
753
754 TRY_CATCH (ex, RETURN_MASK_ALL)
755 {
756 CORE_ADDR lm_addr;
757
758 /* Fetch the load module address for this objfile. */
759 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
760 objfile);
761
762 addr = target->to_get_thread_local_address (target, ptid,
763 lm_addr, offset);
764 }
765 /* If an error occurred, print TLS related messages here. Otherwise,
766 throw the error to some higher catcher. */
767 if (ex.reason < 0)
768 {
769 int objfile_is_library = (objfile->flags & OBJF_SHARED);
770
771 switch (ex.error)
772 {
773 case TLS_NO_LIBRARY_SUPPORT_ERROR:
774 error (_("Cannot find thread-local variables "
775 "in this thread library."));
776 break;
777 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
778 if (objfile_is_library)
779 error (_("Cannot find shared library `%s' in dynamic"
780 " linker's load module list"), objfile_name (objfile));
781 else
782 error (_("Cannot find executable file `%s' in dynamic"
783 " linker's load module list"), objfile_name (objfile));
784 break;
785 case TLS_NOT_ALLOCATED_YET_ERROR:
786 if (objfile_is_library)
787 error (_("The inferior has not yet allocated storage for"
788 " thread-local variables in\n"
789 "the shared library `%s'\n"
790 "for %s"),
791 objfile_name (objfile), target_pid_to_str (ptid));
792 else
793 error (_("The inferior has not yet allocated storage for"
794 " thread-local variables in\n"
795 "the executable `%s'\n"
796 "for %s"),
797 objfile_name (objfile), target_pid_to_str (ptid));
798 break;
799 case TLS_GENERIC_ERROR:
800 if (objfile_is_library)
801 error (_("Cannot find thread-local storage for %s, "
802 "shared library %s:\n%s"),
803 target_pid_to_str (ptid),
804 objfile_name (objfile), ex.message);
805 else
806 error (_("Cannot find thread-local storage for %s, "
807 "executable file %s:\n%s"),
808 target_pid_to_str (ptid),
809 objfile_name (objfile), ex.message);
810 break;
811 default:
812 throw_exception (ex);
813 break;
814 }
815 }
816 }
817 /* It wouldn't be wrong here to try a gdbarch method, too; finding
818 TLS is an ABI-specific thing. But we don't do that yet. */
819 else
820 error (_("Cannot find thread-local variables on this target"));
821
822 return addr;
823 }
824
825 const char *
826 target_xfer_status_to_string (enum target_xfer_status status)
827 {
828 #define CASE(X) case X: return #X
829 switch (status)
830 {
831 CASE(TARGET_XFER_E_IO);
832 CASE(TARGET_XFER_UNAVAILABLE);
833 default:
834 return "<unknown>";
835 }
836 #undef CASE
837 };
838
839
840 #undef MIN
841 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
842
843 /* target_read_string -- read a null terminated string, up to LEN bytes,
844 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
845 Set *STRING to a pointer to malloc'd memory containing the data; the caller
846 is responsible for freeing it. Return the number of bytes successfully
847 read. */
848
849 int
850 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
851 {
852 int tlen, offset, i;
853 gdb_byte buf[4];
854 int errcode = 0;
855 char *buffer;
856 int buffer_allocated;
857 char *bufptr;
858 unsigned int nbytes_read = 0;
859
860 gdb_assert (string);
861
862 /* Small for testing. */
863 buffer_allocated = 4;
864 buffer = xmalloc (buffer_allocated);
865 bufptr = buffer;
866
867 while (len > 0)
868 {
869 tlen = MIN (len, 4 - (memaddr & 3));
870 offset = memaddr & 3;
871
872 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
873 if (errcode != 0)
874 {
875 /* The transfer request might have crossed the boundary to an
876 unallocated region of memory. Retry the transfer, requesting
877 a single byte. */
878 tlen = 1;
879 offset = 0;
880 errcode = target_read_memory (memaddr, buf, 1);
881 if (errcode != 0)
882 goto done;
883 }
884
885 if (bufptr - buffer + tlen > buffer_allocated)
886 {
887 unsigned int bytes;
888
889 bytes = bufptr - buffer;
890 buffer_allocated *= 2;
891 buffer = xrealloc (buffer, buffer_allocated);
892 bufptr = buffer + bytes;
893 }
894
895 for (i = 0; i < tlen; i++)
896 {
897 *bufptr++ = buf[i + offset];
898 if (buf[i + offset] == '\000')
899 {
900 nbytes_read += i + 1;
901 goto done;
902 }
903 }
904
905 memaddr += tlen;
906 len -= tlen;
907 nbytes_read += tlen;
908 }
909 done:
910 *string = buffer;
911 if (errnop != NULL)
912 *errnop = errcode;
913 return nbytes_read;
914 }
915
916 struct target_section_table *
917 target_get_section_table (struct target_ops *target)
918 {
919 if (targetdebug)
920 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
921
922 return (*target->to_get_section_table) (target);
923 }
924
925 /* Find a section containing ADDR. */
926
927 struct target_section *
928 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
929 {
930 struct target_section_table *table = target_get_section_table (target);
931 struct target_section *secp;
932
933 if (table == NULL)
934 return NULL;
935
936 for (secp = table->sections; secp < table->sections_end; secp++)
937 {
938 if (addr >= secp->addr && addr < secp->endaddr)
939 return secp;
940 }
941 return NULL;
942 }
943
944 /* Read memory from more than one valid target. A core file, for
945 instance, could have some of memory but delegate other bits to
946 the target below it. So, we must manually try all targets. */
947
948 static enum target_xfer_status
949 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
950 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
951 ULONGEST *xfered_len)
952 {
953 enum target_xfer_status res;
954
955 do
956 {
957 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
958 readbuf, writebuf, memaddr, len,
959 xfered_len);
960 if (res == TARGET_XFER_OK)
961 break;
962
963 /* Stop if the target reports that the memory is not available. */
964 if (res == TARGET_XFER_UNAVAILABLE)
965 break;
966
967 /* We want to continue past core files to executables, but not
968 past a running target's memory. */
969 if (ops->to_has_all_memory (ops))
970 break;
971
972 ops = ops->beneath;
973 }
974 while (ops != NULL);
975
976 /* The cache works at the raw memory level. Make sure the cache
977 gets updated with raw contents no matter what kind of memory
978 object was originally being written. Note we do write-through
979 first, so that if it fails, we don't write to the cache contents
980 that never made it to the target. */
981 if (writebuf != NULL
982 && !ptid_equal (inferior_ptid, null_ptid)
983 && target_dcache_init_p ()
984 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
985 {
986 DCACHE *dcache = target_dcache_get ();
987
988 /* Note that writing to an area of memory which wasn't present
989 in the cache doesn't cause it to be loaded in. */
990 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
991 }
992
993 return res;
994 }
995
996 /* Perform a partial memory transfer.
997 For docs see target.h, to_xfer_partial. */
998
999 static enum target_xfer_status
1000 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1001 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1002 ULONGEST len, ULONGEST *xfered_len)
1003 {
1004 enum target_xfer_status res;
1005 int reg_len;
1006 struct mem_region *region;
1007 struct inferior *inf;
1008
1009 /* For accesses to unmapped overlay sections, read directly from
1010 files. Must do this first, as MEMADDR may need adjustment. */
1011 if (readbuf != NULL && overlay_debugging)
1012 {
1013 struct obj_section *section = find_pc_overlay (memaddr);
1014
1015 if (pc_in_unmapped_range (memaddr, section))
1016 {
1017 struct target_section_table *table
1018 = target_get_section_table (ops);
1019 const char *section_name = section->the_bfd_section->name;
1020
1021 memaddr = overlay_mapped_address (memaddr, section);
1022 return section_table_xfer_memory_partial (readbuf, writebuf,
1023 memaddr, len, xfered_len,
1024 table->sections,
1025 table->sections_end,
1026 section_name);
1027 }
1028 }
1029
1030 /* Try the executable files, if "trust-readonly-sections" is set. */
1031 if (readbuf != NULL && trust_readonly)
1032 {
1033 struct target_section *secp;
1034 struct target_section_table *table;
1035
1036 secp = target_section_by_addr (ops, memaddr);
1037 if (secp != NULL
1038 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1039 secp->the_bfd_section)
1040 & SEC_READONLY))
1041 {
1042 table = target_get_section_table (ops);
1043 return section_table_xfer_memory_partial (readbuf, writebuf,
1044 memaddr, len, xfered_len,
1045 table->sections,
1046 table->sections_end,
1047 NULL);
1048 }
1049 }
1050
1051 /* Try GDB's internal data cache. */
1052 region = lookup_mem_region (memaddr);
1053 /* region->hi == 0 means there's no upper bound. */
1054 if (memaddr + len < region->hi || region->hi == 0)
1055 reg_len = len;
1056 else
1057 reg_len = region->hi - memaddr;
1058
1059 switch (region->attrib.mode)
1060 {
1061 case MEM_RO:
1062 if (writebuf != NULL)
1063 return TARGET_XFER_E_IO;
1064 break;
1065
1066 case MEM_WO:
1067 if (readbuf != NULL)
1068 return TARGET_XFER_E_IO;
1069 break;
1070
1071 case MEM_FLASH:
1072 /* We only support writing to flash during "load" for now. */
1073 if (writebuf != NULL)
1074 error (_("Writing to flash memory forbidden in this context"));
1075 break;
1076
1077 case MEM_NONE:
1078 return TARGET_XFER_E_IO;
1079 }
1080
1081 if (!ptid_equal (inferior_ptid, null_ptid))
1082 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1083 else
1084 inf = NULL;
1085
1086 if (inf != NULL
1087 && readbuf != NULL
1088 /* The dcache reads whole cache lines; that doesn't play well
1089 with reading from a trace buffer, because reading outside of
1090 the collected memory range fails. */
1091 && get_traceframe_number () == -1
1092 && (region->attrib.cache
1093 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1094 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1095 {
1096 DCACHE *dcache = target_dcache_get_or_init ();
1097
1098 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1099 reg_len, xfered_len);
1100 }
1101
1102 /* If none of those methods found the memory we wanted, fall back
1103 to a target partial transfer. Normally a single call to
1104 to_xfer_partial is enough; if it doesn't recognize an object
1105 it will call the to_xfer_partial of the next target down.
1106 But for memory this won't do. Memory is the only target
1107 object which can be read from more than one valid target.
1108 A core file, for instance, could have some of memory but
1109 delegate other bits to the target below it. So, we must
1110 manually try all targets. */
1111
1112 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1113 xfered_len);
1114
1115 /* If we still haven't got anything, return the last error. We
1116 give up. */
1117 return res;
1118 }
1119
1120 /* Perform a partial memory transfer. For docs see target.h,
1121 to_xfer_partial. */
1122
1123 static enum target_xfer_status
1124 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1125 gdb_byte *readbuf, const gdb_byte *writebuf,
1126 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1127 {
1128 enum target_xfer_status res;
1129
1130 /* Zero length requests are ok and require no work. */
1131 if (len == 0)
1132 return TARGET_XFER_EOF;
1133
1134 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1135 breakpoint insns, thus hiding out from higher layers whether
1136 there are software breakpoints inserted in the code stream. */
1137 if (readbuf != NULL)
1138 {
1139 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1140 xfered_len);
1141
1142 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1143 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1144 }
1145 else
1146 {
1147 void *buf;
1148 struct cleanup *old_chain;
1149
1150 /* A large write request is likely to be partially satisfied
1151 by memory_xfer_partial_1. We will continually malloc
1152 and free a copy of the entire write request for breakpoint
1153 shadow handling even though we only end up writing a small
1154 subset of it. Cap writes to 4KB to mitigate this. */
1155 len = min (4096, len);
1156
1157 buf = xmalloc (len);
1158 old_chain = make_cleanup (xfree, buf);
1159 memcpy (buf, writebuf, len);
1160
1161 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1162 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1163 xfered_len);
1164
1165 do_cleanups (old_chain);
1166 }
1167
1168 return res;
1169 }
1170
1171 static void
1172 restore_show_memory_breakpoints (void *arg)
1173 {
1174 show_memory_breakpoints = (uintptr_t) arg;
1175 }
1176
1177 struct cleanup *
1178 make_show_memory_breakpoints_cleanup (int show)
1179 {
1180 int current = show_memory_breakpoints;
1181
1182 show_memory_breakpoints = show;
1183 return make_cleanup (restore_show_memory_breakpoints,
1184 (void *) (uintptr_t) current);
1185 }
1186
1187 /* For docs see target.h, to_xfer_partial. */
1188
1189 enum target_xfer_status
1190 target_xfer_partial (struct target_ops *ops,
1191 enum target_object object, const char *annex,
1192 gdb_byte *readbuf, const gdb_byte *writebuf,
1193 ULONGEST offset, ULONGEST len,
1194 ULONGEST *xfered_len)
1195 {
1196 enum target_xfer_status retval;
1197
1198 gdb_assert (ops->to_xfer_partial != NULL);
1199
1200 /* Transfer is done when LEN is zero. */
1201 if (len == 0)
1202 return TARGET_XFER_EOF;
1203
1204 if (writebuf && !may_write_memory)
1205 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1206 core_addr_to_string_nz (offset), plongest (len));
1207
1208 *xfered_len = 0;
1209
1210 /* If this is a memory transfer, let the memory-specific code
1211 have a look at it instead. Memory transfers are more
1212 complicated. */
1213 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1214 || object == TARGET_OBJECT_CODE_MEMORY)
1215 retval = memory_xfer_partial (ops, object, readbuf,
1216 writebuf, offset, len, xfered_len);
1217 else if (object == TARGET_OBJECT_RAW_MEMORY)
1218 {
1219 /* Request the normal memory object from other layers. */
1220 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1221 xfered_len);
1222 }
1223 else
1224 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1225 writebuf, offset, len, xfered_len);
1226
1227 if (targetdebug)
1228 {
1229 const unsigned char *myaddr = NULL;
1230
1231 fprintf_unfiltered (gdb_stdlog,
1232 "%s:target_xfer_partial "
1233 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1234 ops->to_shortname,
1235 (int) object,
1236 (annex ? annex : "(null)"),
1237 host_address_to_string (readbuf),
1238 host_address_to_string (writebuf),
1239 core_addr_to_string_nz (offset),
1240 pulongest (len), retval,
1241 pulongest (*xfered_len));
1242
1243 if (readbuf)
1244 myaddr = readbuf;
1245 if (writebuf)
1246 myaddr = writebuf;
1247 if (retval == TARGET_XFER_OK && myaddr != NULL)
1248 {
1249 int i;
1250
1251 fputs_unfiltered (", bytes =", gdb_stdlog);
1252 for (i = 0; i < *xfered_len; i++)
1253 {
1254 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1255 {
1256 if (targetdebug < 2 && i > 0)
1257 {
1258 fprintf_unfiltered (gdb_stdlog, " ...");
1259 break;
1260 }
1261 fprintf_unfiltered (gdb_stdlog, "\n");
1262 }
1263
1264 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1265 }
1266 }
1267
1268 fputc_unfiltered ('\n', gdb_stdlog);
1269 }
1270
1271 /* Check implementations of to_xfer_partial update *XFERED_LEN
1272 properly. Do assertion after printing debug messages, so that we
1273 can find more clues on assertion failure from debugging messages. */
1274 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1275 gdb_assert (*xfered_len > 0);
1276
1277 return retval;
1278 }
1279
1280 /* Read LEN bytes of target memory at address MEMADDR, placing the
1281 results in GDB's memory at MYADDR. Returns either 0 for success or
1282 TARGET_XFER_E_IO if any error occurs.
1283
1284 If an error occurs, no guarantee is made about the contents of the data at
1285 MYADDR. In particular, the caller should not depend upon partial reads
1286 filling the buffer with good data. There is no way for the caller to know
1287 how much good data might have been transfered anyway. Callers that can
1288 deal with partial reads should call target_read (which will retry until
1289 it makes no progress, and then return how much was transferred). */
1290
1291 int
1292 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1293 {
1294 /* Dispatch to the topmost target, not the flattened current_target.
1295 Memory accesses check target->to_has_(all_)memory, and the
1296 flattened target doesn't inherit those. */
1297 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1298 myaddr, memaddr, len) == len)
1299 return 0;
1300 else
1301 return TARGET_XFER_E_IO;
1302 }
1303
1304 /* Like target_read_memory, but specify explicitly that this is a read
1305 from the target's raw memory. That is, this read bypasses the
1306 dcache, breakpoint shadowing, etc. */
1307
1308 int
1309 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1310 {
1311 /* See comment in target_read_memory about why the request starts at
1312 current_target.beneath. */
1313 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1314 myaddr, memaddr, len) == len)
1315 return 0;
1316 else
1317 return TARGET_XFER_E_IO;
1318 }
1319
1320 /* Like target_read_memory, but specify explicitly that this is a read from
1321 the target's stack. This may trigger different cache behavior. */
1322
1323 int
1324 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1325 {
1326 /* See comment in target_read_memory about why the request starts at
1327 current_target.beneath. */
1328 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1329 myaddr, memaddr, len) == len)
1330 return 0;
1331 else
1332 return TARGET_XFER_E_IO;
1333 }
1334
1335 /* Like target_read_memory, but specify explicitly that this is a read from
1336 the target's code. This may trigger different cache behavior. */
1337
1338 int
1339 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1340 {
1341 /* See comment in target_read_memory about why the request starts at
1342 current_target.beneath. */
1343 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1344 myaddr, memaddr, len) == len)
1345 return 0;
1346 else
1347 return TARGET_XFER_E_IO;
1348 }
1349
1350 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1351 Returns either 0 for success or TARGET_XFER_E_IO if any
1352 error occurs. If an error occurs, no guarantee is made about how
1353 much data got written. Callers that can deal with partial writes
1354 should call target_write. */
1355
1356 int
1357 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1358 {
1359 /* See comment in target_read_memory about why the request starts at
1360 current_target.beneath. */
1361 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1362 myaddr, memaddr, len) == len)
1363 return 0;
1364 else
1365 return TARGET_XFER_E_IO;
1366 }
1367
1368 /* Write LEN bytes from MYADDR to target raw memory at address
1369 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1370 if any error occurs. If an error occurs, no guarantee is made
1371 about how much data got written. Callers that can deal with
1372 partial writes should call target_write. */
1373
1374 int
1375 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1376 {
1377 /* See comment in target_read_memory about why the request starts at
1378 current_target.beneath. */
1379 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1380 myaddr, memaddr, len) == len)
1381 return 0;
1382 else
1383 return TARGET_XFER_E_IO;
1384 }
1385
1386 /* Fetch the target's memory map. */
1387
1388 VEC(mem_region_s) *
1389 target_memory_map (void)
1390 {
1391 VEC(mem_region_s) *result;
1392 struct mem_region *last_one, *this_one;
1393 int ix;
1394 struct target_ops *t;
1395
1396 if (targetdebug)
1397 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1398
1399 result = current_target.to_memory_map (&current_target);
1400 if (result == NULL)
1401 return NULL;
1402
1403 qsort (VEC_address (mem_region_s, result),
1404 VEC_length (mem_region_s, result),
1405 sizeof (struct mem_region), mem_region_cmp);
1406
1407 /* Check that regions do not overlap. Simultaneously assign
1408 a numbering for the "mem" commands to use to refer to
1409 each region. */
1410 last_one = NULL;
1411 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1412 {
1413 this_one->number = ix;
1414
1415 if (last_one && last_one->hi > this_one->lo)
1416 {
1417 warning (_("Overlapping regions in memory map: ignoring"));
1418 VEC_free (mem_region_s, result);
1419 return NULL;
1420 }
1421 last_one = this_one;
1422 }
1423
1424 return result;
1425 }
1426
1427 void
1428 target_flash_erase (ULONGEST address, LONGEST length)
1429 {
1430 if (targetdebug)
1431 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1432 hex_string (address), phex (length, 0));
1433 current_target.to_flash_erase (&current_target, address, length);
1434 }
1435
1436 void
1437 target_flash_done (void)
1438 {
1439 if (targetdebug)
1440 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1441 current_target.to_flash_done (&current_target);
1442 }
1443
1444 static void
1445 show_trust_readonly (struct ui_file *file, int from_tty,
1446 struct cmd_list_element *c, const char *value)
1447 {
1448 fprintf_filtered (file,
1449 _("Mode for reading from readonly sections is %s.\n"),
1450 value);
1451 }
1452
1453 /* Target vector read/write partial wrapper functions. */
1454
1455 static enum target_xfer_status
1456 target_read_partial (struct target_ops *ops,
1457 enum target_object object,
1458 const char *annex, gdb_byte *buf,
1459 ULONGEST offset, ULONGEST len,
1460 ULONGEST *xfered_len)
1461 {
1462 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1463 xfered_len);
1464 }
1465
1466 static enum target_xfer_status
1467 target_write_partial (struct target_ops *ops,
1468 enum target_object object,
1469 const char *annex, const gdb_byte *buf,
1470 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1471 {
1472 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1473 xfered_len);
1474 }
1475
1476 /* Wrappers to perform the full transfer. */
1477
1478 /* For docs on target_read see target.h. */
1479
1480 LONGEST
1481 target_read (struct target_ops *ops,
1482 enum target_object object,
1483 const char *annex, gdb_byte *buf,
1484 ULONGEST offset, LONGEST len)
1485 {
1486 LONGEST xfered = 0;
1487
1488 while (xfered < len)
1489 {
1490 ULONGEST xfered_len;
1491 enum target_xfer_status status;
1492
1493 status = target_read_partial (ops, object, annex,
1494 (gdb_byte *) buf + xfered,
1495 offset + xfered, len - xfered,
1496 &xfered_len);
1497
1498 /* Call an observer, notifying them of the xfer progress? */
1499 if (status == TARGET_XFER_EOF)
1500 return xfered;
1501 else if (status == TARGET_XFER_OK)
1502 {
1503 xfered += xfered_len;
1504 QUIT;
1505 }
1506 else
1507 return -1;
1508
1509 }
1510 return len;
1511 }
1512
1513 /* Assuming that the entire [begin, end) range of memory cannot be
1514 read, try to read whatever subrange is possible to read.
1515
1516 The function returns, in RESULT, either zero or one memory block.
1517 If there's a readable subrange at the beginning, it is completely
1518 read and returned. Any further readable subrange will not be read.
1519 Otherwise, if there's a readable subrange at the end, it will be
1520 completely read and returned. Any readable subranges before it
1521 (obviously, not starting at the beginning), will be ignored. In
1522 other cases -- either no readable subrange, or readable subrange(s)
1523 that is neither at the beginning, or end, nothing is returned.
1524
1525 The purpose of this function is to handle a read across a boundary
1526 of accessible memory in a case when memory map is not available.
1527 The above restrictions are fine for this case, but will give
1528 incorrect results if the memory is 'patchy'. However, supporting
1529 'patchy' memory would require trying to read every single byte,
1530 and it seems unacceptable solution. Explicit memory map is
1531 recommended for this case -- and target_read_memory_robust will
1532 take care of reading multiple ranges then. */
1533
1534 static void
1535 read_whatever_is_readable (struct target_ops *ops,
1536 ULONGEST begin, ULONGEST end,
1537 VEC(memory_read_result_s) **result)
1538 {
1539 gdb_byte *buf = xmalloc (end - begin);
1540 ULONGEST current_begin = begin;
1541 ULONGEST current_end = end;
1542 int forward;
1543 memory_read_result_s r;
1544 ULONGEST xfered_len;
1545
1546 /* If we previously failed to read 1 byte, nothing can be done here. */
1547 if (end - begin <= 1)
1548 {
1549 xfree (buf);
1550 return;
1551 }
1552
1553 /* Check that either first or the last byte is readable, and give up
1554 if not. This heuristic is meant to permit reading accessible memory
1555 at the boundary of accessible region. */
1556 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1557 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1558 {
1559 forward = 1;
1560 ++current_begin;
1561 }
1562 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1563 buf + (end-begin) - 1, end - 1, 1,
1564 &xfered_len) == TARGET_XFER_OK)
1565 {
1566 forward = 0;
1567 --current_end;
1568 }
1569 else
1570 {
1571 xfree (buf);
1572 return;
1573 }
1574
1575 /* Loop invariant is that the [current_begin, current_end) was previously
1576 found to be not readable as a whole.
1577
1578 Note loop condition -- if the range has 1 byte, we can't divide the range
1579 so there's no point trying further. */
1580 while (current_end - current_begin > 1)
1581 {
1582 ULONGEST first_half_begin, first_half_end;
1583 ULONGEST second_half_begin, second_half_end;
1584 LONGEST xfer;
1585 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1586
1587 if (forward)
1588 {
1589 first_half_begin = current_begin;
1590 first_half_end = middle;
1591 second_half_begin = middle;
1592 second_half_end = current_end;
1593 }
1594 else
1595 {
1596 first_half_begin = middle;
1597 first_half_end = current_end;
1598 second_half_begin = current_begin;
1599 second_half_end = middle;
1600 }
1601
1602 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1603 buf + (first_half_begin - begin),
1604 first_half_begin,
1605 first_half_end - first_half_begin);
1606
1607 if (xfer == first_half_end - first_half_begin)
1608 {
1609 /* This half reads up fine. So, the error must be in the
1610 other half. */
1611 current_begin = second_half_begin;
1612 current_end = second_half_end;
1613 }
1614 else
1615 {
1616 /* This half is not readable. Because we've tried one byte, we
1617 know some part of this half if actually redable. Go to the next
1618 iteration to divide again and try to read.
1619
1620 We don't handle the other half, because this function only tries
1621 to read a single readable subrange. */
1622 current_begin = first_half_begin;
1623 current_end = first_half_end;
1624 }
1625 }
1626
1627 if (forward)
1628 {
1629 /* The [begin, current_begin) range has been read. */
1630 r.begin = begin;
1631 r.end = current_begin;
1632 r.data = buf;
1633 }
1634 else
1635 {
1636 /* The [current_end, end) range has been read. */
1637 LONGEST rlen = end - current_end;
1638
1639 r.data = xmalloc (rlen);
1640 memcpy (r.data, buf + current_end - begin, rlen);
1641 r.begin = current_end;
1642 r.end = end;
1643 xfree (buf);
1644 }
1645 VEC_safe_push(memory_read_result_s, (*result), &r);
1646 }
1647
1648 void
1649 free_memory_read_result_vector (void *x)
1650 {
1651 VEC(memory_read_result_s) *v = x;
1652 memory_read_result_s *current;
1653 int ix;
1654
1655 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1656 {
1657 xfree (current->data);
1658 }
1659 VEC_free (memory_read_result_s, v);
1660 }
1661
1662 VEC(memory_read_result_s) *
1663 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1664 {
1665 VEC(memory_read_result_s) *result = 0;
1666
1667 LONGEST xfered = 0;
1668 while (xfered < len)
1669 {
1670 struct mem_region *region = lookup_mem_region (offset + xfered);
1671 LONGEST rlen;
1672
1673 /* If there is no explicit region, a fake one should be created. */
1674 gdb_assert (region);
1675
1676 if (region->hi == 0)
1677 rlen = len - xfered;
1678 else
1679 rlen = region->hi - offset;
1680
1681 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1682 {
1683 /* Cannot read this region. Note that we can end up here only
1684 if the region is explicitly marked inaccessible, or
1685 'inaccessible-by-default' is in effect. */
1686 xfered += rlen;
1687 }
1688 else
1689 {
1690 LONGEST to_read = min (len - xfered, rlen);
1691 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1692
1693 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1694 (gdb_byte *) buffer,
1695 offset + xfered, to_read);
1696 /* Call an observer, notifying them of the xfer progress? */
1697 if (xfer <= 0)
1698 {
1699 /* Got an error reading full chunk. See if maybe we can read
1700 some subrange. */
1701 xfree (buffer);
1702 read_whatever_is_readable (ops, offset + xfered,
1703 offset + xfered + to_read, &result);
1704 xfered += to_read;
1705 }
1706 else
1707 {
1708 struct memory_read_result r;
1709 r.data = buffer;
1710 r.begin = offset + xfered;
1711 r.end = r.begin + xfer;
1712 VEC_safe_push (memory_read_result_s, result, &r);
1713 xfered += xfer;
1714 }
1715 QUIT;
1716 }
1717 }
1718 return result;
1719 }
1720
1721
1722 /* An alternative to target_write with progress callbacks. */
1723
1724 LONGEST
1725 target_write_with_progress (struct target_ops *ops,
1726 enum target_object object,
1727 const char *annex, const gdb_byte *buf,
1728 ULONGEST offset, LONGEST len,
1729 void (*progress) (ULONGEST, void *), void *baton)
1730 {
1731 LONGEST xfered = 0;
1732
1733 /* Give the progress callback a chance to set up. */
1734 if (progress)
1735 (*progress) (0, baton);
1736
1737 while (xfered < len)
1738 {
1739 ULONGEST xfered_len;
1740 enum target_xfer_status status;
1741
1742 status = target_write_partial (ops, object, annex,
1743 (gdb_byte *) buf + xfered,
1744 offset + xfered, len - xfered,
1745 &xfered_len);
1746
1747 if (status != TARGET_XFER_OK)
1748 return status == TARGET_XFER_EOF ? xfered : -1;
1749
1750 if (progress)
1751 (*progress) (xfered_len, baton);
1752
1753 xfered += xfered_len;
1754 QUIT;
1755 }
1756 return len;
1757 }
1758
1759 /* For docs on target_write see target.h. */
1760
1761 LONGEST
1762 target_write (struct target_ops *ops,
1763 enum target_object object,
1764 const char *annex, const gdb_byte *buf,
1765 ULONGEST offset, LONGEST len)
1766 {
1767 return target_write_with_progress (ops, object, annex, buf, offset, len,
1768 NULL, NULL);
1769 }
1770
1771 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1772 the size of the transferred data. PADDING additional bytes are
1773 available in *BUF_P. This is a helper function for
1774 target_read_alloc; see the declaration of that function for more
1775 information. */
1776
1777 static LONGEST
1778 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1779 const char *annex, gdb_byte **buf_p, int padding)
1780 {
1781 size_t buf_alloc, buf_pos;
1782 gdb_byte *buf;
1783
1784 /* This function does not have a length parameter; it reads the
1785 entire OBJECT). Also, it doesn't support objects fetched partly
1786 from one target and partly from another (in a different stratum,
1787 e.g. a core file and an executable). Both reasons make it
1788 unsuitable for reading memory. */
1789 gdb_assert (object != TARGET_OBJECT_MEMORY);
1790
1791 /* Start by reading up to 4K at a time. The target will throttle
1792 this number down if necessary. */
1793 buf_alloc = 4096;
1794 buf = xmalloc (buf_alloc);
1795 buf_pos = 0;
1796 while (1)
1797 {
1798 ULONGEST xfered_len;
1799 enum target_xfer_status status;
1800
1801 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1802 buf_pos, buf_alloc - buf_pos - padding,
1803 &xfered_len);
1804
1805 if (status == TARGET_XFER_EOF)
1806 {
1807 /* Read all there was. */
1808 if (buf_pos == 0)
1809 xfree (buf);
1810 else
1811 *buf_p = buf;
1812 return buf_pos;
1813 }
1814 else if (status != TARGET_XFER_OK)
1815 {
1816 /* An error occurred. */
1817 xfree (buf);
1818 return TARGET_XFER_E_IO;
1819 }
1820
1821 buf_pos += xfered_len;
1822
1823 /* If the buffer is filling up, expand it. */
1824 if (buf_alloc < buf_pos * 2)
1825 {
1826 buf_alloc *= 2;
1827 buf = xrealloc (buf, buf_alloc);
1828 }
1829
1830 QUIT;
1831 }
1832 }
1833
1834 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1835 the size of the transferred data. See the declaration in "target.h"
1836 function for more information about the return value. */
1837
1838 LONGEST
1839 target_read_alloc (struct target_ops *ops, enum target_object object,
1840 const char *annex, gdb_byte **buf_p)
1841 {
1842 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1843 }
1844
1845 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1846 returned as a string, allocated using xmalloc. If an error occurs
1847 or the transfer is unsupported, NULL is returned. Empty objects
1848 are returned as allocated but empty strings. A warning is issued
1849 if the result contains any embedded NUL bytes. */
1850
1851 char *
1852 target_read_stralloc (struct target_ops *ops, enum target_object object,
1853 const char *annex)
1854 {
1855 gdb_byte *buffer;
1856 char *bufstr;
1857 LONGEST i, transferred;
1858
1859 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1860 bufstr = (char *) buffer;
1861
1862 if (transferred < 0)
1863 return NULL;
1864
1865 if (transferred == 0)
1866 return xstrdup ("");
1867
1868 bufstr[transferred] = 0;
1869
1870 /* Check for embedded NUL bytes; but allow trailing NULs. */
1871 for (i = strlen (bufstr); i < transferred; i++)
1872 if (bufstr[i] != 0)
1873 {
1874 warning (_("target object %d, annex %s, "
1875 "contained unexpected null characters"),
1876 (int) object, annex ? annex : "(none)");
1877 break;
1878 }
1879
1880 return bufstr;
1881 }
1882
1883 /* Memory transfer methods. */
1884
1885 void
1886 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1887 LONGEST len)
1888 {
1889 /* This method is used to read from an alternate, non-current
1890 target. This read must bypass the overlay support (as symbols
1891 don't match this target), and GDB's internal cache (wrong cache
1892 for this target). */
1893 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1894 != len)
1895 memory_error (TARGET_XFER_E_IO, addr);
1896 }
1897
1898 ULONGEST
1899 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1900 int len, enum bfd_endian byte_order)
1901 {
1902 gdb_byte buf[sizeof (ULONGEST)];
1903
1904 gdb_assert (len <= sizeof (buf));
1905 get_target_memory (ops, addr, buf, len);
1906 return extract_unsigned_integer (buf, len, byte_order);
1907 }
1908
1909 /* See target.h. */
1910
1911 int
1912 target_insert_breakpoint (struct gdbarch *gdbarch,
1913 struct bp_target_info *bp_tgt)
1914 {
1915 if (!may_insert_breakpoints)
1916 {
1917 warning (_("May not insert breakpoints"));
1918 return 1;
1919 }
1920
1921 return current_target.to_insert_breakpoint (&current_target,
1922 gdbarch, bp_tgt);
1923 }
1924
1925 /* See target.h. */
1926
1927 int
1928 target_remove_breakpoint (struct gdbarch *gdbarch,
1929 struct bp_target_info *bp_tgt)
1930 {
1931 /* This is kind of a weird case to handle, but the permission might
1932 have been changed after breakpoints were inserted - in which case
1933 we should just take the user literally and assume that any
1934 breakpoints should be left in place. */
1935 if (!may_insert_breakpoints)
1936 {
1937 warning (_("May not remove breakpoints"));
1938 return 1;
1939 }
1940
1941 return current_target.to_remove_breakpoint (&current_target,
1942 gdbarch, bp_tgt);
1943 }
1944
1945 static void
1946 target_info (char *args, int from_tty)
1947 {
1948 struct target_ops *t;
1949 int has_all_mem = 0;
1950
1951 if (symfile_objfile != NULL)
1952 printf_unfiltered (_("Symbols from \"%s\".\n"),
1953 objfile_name (symfile_objfile));
1954
1955 for (t = target_stack; t != NULL; t = t->beneath)
1956 {
1957 if (!(*t->to_has_memory) (t))
1958 continue;
1959
1960 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1961 continue;
1962 if (has_all_mem)
1963 printf_unfiltered (_("\tWhile running this, "
1964 "GDB does not access memory from...\n"));
1965 printf_unfiltered ("%s:\n", t->to_longname);
1966 (t->to_files_info) (t);
1967 has_all_mem = (*t->to_has_all_memory) (t);
1968 }
1969 }
1970
1971 /* This function is called before any new inferior is created, e.g.
1972 by running a program, attaching, or connecting to a target.
1973 It cleans up any state from previous invocations which might
1974 change between runs. This is a subset of what target_preopen
1975 resets (things which might change between targets). */
1976
1977 void
1978 target_pre_inferior (int from_tty)
1979 {
1980 /* Clear out solib state. Otherwise the solib state of the previous
1981 inferior might have survived and is entirely wrong for the new
1982 target. This has been observed on GNU/Linux using glibc 2.3. How
1983 to reproduce:
1984
1985 bash$ ./foo&
1986 [1] 4711
1987 bash$ ./foo&
1988 [1] 4712
1989 bash$ gdb ./foo
1990 [...]
1991 (gdb) attach 4711
1992 (gdb) detach
1993 (gdb) attach 4712
1994 Cannot access memory at address 0xdeadbeef
1995 */
1996
1997 /* In some OSs, the shared library list is the same/global/shared
1998 across inferiors. If code is shared between processes, so are
1999 memory regions and features. */
2000 if (!gdbarch_has_global_solist (target_gdbarch ()))
2001 {
2002 no_shared_libraries (NULL, from_tty);
2003
2004 invalidate_target_mem_regions ();
2005
2006 target_clear_description ();
2007 }
2008
2009 agent_capability_invalidate ();
2010 }
2011
2012 /* Callback for iterate_over_inferiors. Gets rid of the given
2013 inferior. */
2014
2015 static int
2016 dispose_inferior (struct inferior *inf, void *args)
2017 {
2018 struct thread_info *thread;
2019
2020 thread = any_thread_of_process (inf->pid);
2021 if (thread)
2022 {
2023 switch_to_thread (thread->ptid);
2024
2025 /* Core inferiors actually should be detached, not killed. */
2026 if (target_has_execution)
2027 target_kill ();
2028 else
2029 target_detach (NULL, 0);
2030 }
2031
2032 return 0;
2033 }
2034
2035 /* This is to be called by the open routine before it does
2036 anything. */
2037
2038 void
2039 target_preopen (int from_tty)
2040 {
2041 dont_repeat ();
2042
2043 if (have_inferiors ())
2044 {
2045 if (!from_tty
2046 || !have_live_inferiors ()
2047 || query (_("A program is being debugged already. Kill it? ")))
2048 iterate_over_inferiors (dispose_inferior, NULL);
2049 else
2050 error (_("Program not killed."));
2051 }
2052
2053 /* Calling target_kill may remove the target from the stack. But if
2054 it doesn't (which seems like a win for UDI), remove it now. */
2055 /* Leave the exec target, though. The user may be switching from a
2056 live process to a core of the same program. */
2057 pop_all_targets_above (file_stratum);
2058
2059 target_pre_inferior (from_tty);
2060 }
2061
2062 /* Detach a target after doing deferred register stores. */
2063
2064 void
2065 target_detach (const char *args, int from_tty)
2066 {
2067 struct target_ops* t;
2068
2069 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2070 /* Don't remove global breakpoints here. They're removed on
2071 disconnection from the target. */
2072 ;
2073 else
2074 /* If we're in breakpoints-always-inserted mode, have to remove
2075 them before detaching. */
2076 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2077
2078 prepare_for_detach ();
2079
2080 current_target.to_detach (&current_target, args, from_tty);
2081 if (targetdebug)
2082 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2083 args, from_tty);
2084 }
2085
2086 void
2087 target_disconnect (char *args, int from_tty)
2088 {
2089 /* If we're in breakpoints-always-inserted mode or if breakpoints
2090 are global across processes, we have to remove them before
2091 disconnecting. */
2092 remove_breakpoints ();
2093
2094 if (targetdebug)
2095 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2096 args, from_tty);
2097 current_target.to_disconnect (&current_target, args, from_tty);
2098 }
2099
2100 ptid_t
2101 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2102 {
2103 struct target_ops *t;
2104 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2105 status, options);
2106
2107 if (targetdebug)
2108 {
2109 char *status_string;
2110 char *options_string;
2111
2112 status_string = target_waitstatus_to_string (status);
2113 options_string = target_options_to_string (options);
2114 fprintf_unfiltered (gdb_stdlog,
2115 "target_wait (%d, status, options={%s})"
2116 " = %d, %s\n",
2117 ptid_get_pid (ptid), options_string,
2118 ptid_get_pid (retval), status_string);
2119 xfree (status_string);
2120 xfree (options_string);
2121 }
2122
2123 return retval;
2124 }
2125
2126 char *
2127 target_pid_to_str (ptid_t ptid)
2128 {
2129 return (*current_target.to_pid_to_str) (&current_target, ptid);
2130 }
2131
2132 char *
2133 target_thread_name (struct thread_info *info)
2134 {
2135 return current_target.to_thread_name (&current_target, info);
2136 }
2137
2138 void
2139 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2140 {
2141 struct target_ops *t;
2142
2143 target_dcache_invalidate ();
2144
2145 current_target.to_resume (&current_target, ptid, step, signal);
2146 if (targetdebug)
2147 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2148 ptid_get_pid (ptid),
2149 step ? "step" : "continue",
2150 gdb_signal_to_name (signal));
2151
2152 registers_changed_ptid (ptid);
2153 set_executing (ptid, 1);
2154 set_running (ptid, 1);
2155 clear_inline_frame_state (ptid);
2156 }
2157
2158 void
2159 target_pass_signals (int numsigs, unsigned char *pass_signals)
2160 {
2161 if (targetdebug)
2162 {
2163 int i;
2164
2165 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2166 numsigs);
2167
2168 for (i = 0; i < numsigs; i++)
2169 if (pass_signals[i])
2170 fprintf_unfiltered (gdb_stdlog, " %s",
2171 gdb_signal_to_name (i));
2172
2173 fprintf_unfiltered (gdb_stdlog, " })\n");
2174 }
2175
2176 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2177 }
2178
2179 void
2180 target_program_signals (int numsigs, unsigned char *program_signals)
2181 {
2182 if (targetdebug)
2183 {
2184 int i;
2185
2186 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2187 numsigs);
2188
2189 for (i = 0; i < numsigs; i++)
2190 if (program_signals[i])
2191 fprintf_unfiltered (gdb_stdlog, " %s",
2192 gdb_signal_to_name (i));
2193
2194 fprintf_unfiltered (gdb_stdlog, " })\n");
2195 }
2196
2197 (*current_target.to_program_signals) (&current_target,
2198 numsigs, program_signals);
2199 }
2200
2201 static int
2202 default_follow_fork (struct target_ops *self, int follow_child,
2203 int detach_fork)
2204 {
2205 /* Some target returned a fork event, but did not know how to follow it. */
2206 internal_error (__FILE__, __LINE__,
2207 _("could not find a target to follow fork"));
2208 }
2209
2210 /* Look through the list of possible targets for a target that can
2211 follow forks. */
2212
2213 int
2214 target_follow_fork (int follow_child, int detach_fork)
2215 {
2216 int retval = current_target.to_follow_fork (&current_target,
2217 follow_child, detach_fork);
2218
2219 if (targetdebug)
2220 fprintf_unfiltered (gdb_stdlog,
2221 "target_follow_fork (%d, %d) = %d\n",
2222 follow_child, detach_fork, retval);
2223 return retval;
2224 }
2225
2226 static void
2227 default_mourn_inferior (struct target_ops *self)
2228 {
2229 internal_error (__FILE__, __LINE__,
2230 _("could not find a target to follow mourn inferior"));
2231 }
2232
2233 void
2234 target_mourn_inferior (void)
2235 {
2236 current_target.to_mourn_inferior (&current_target);
2237 if (targetdebug)
2238 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2239
2240 /* We no longer need to keep handles on any of the object files.
2241 Make sure to release them to avoid unnecessarily locking any
2242 of them while we're not actually debugging. */
2243 bfd_cache_close_all ();
2244 }
2245
2246 /* Look for a target which can describe architectural features, starting
2247 from TARGET. If we find one, return its description. */
2248
2249 const struct target_desc *
2250 target_read_description (struct target_ops *target)
2251 {
2252 return target->to_read_description (target);
2253 }
2254
2255 /* This implements a basic search of memory, reading target memory and
2256 performing the search here (as opposed to performing the search in on the
2257 target side with, for example, gdbserver). */
2258
2259 int
2260 simple_search_memory (struct target_ops *ops,
2261 CORE_ADDR start_addr, ULONGEST search_space_len,
2262 const gdb_byte *pattern, ULONGEST pattern_len,
2263 CORE_ADDR *found_addrp)
2264 {
2265 /* NOTE: also defined in find.c testcase. */
2266 #define SEARCH_CHUNK_SIZE 16000
2267 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2268 /* Buffer to hold memory contents for searching. */
2269 gdb_byte *search_buf;
2270 unsigned search_buf_size;
2271 struct cleanup *old_cleanups;
2272
2273 search_buf_size = chunk_size + pattern_len - 1;
2274
2275 /* No point in trying to allocate a buffer larger than the search space. */
2276 if (search_space_len < search_buf_size)
2277 search_buf_size = search_space_len;
2278
2279 search_buf = malloc (search_buf_size);
2280 if (search_buf == NULL)
2281 error (_("Unable to allocate memory to perform the search."));
2282 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2283
2284 /* Prime the search buffer. */
2285
2286 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2287 search_buf, start_addr, search_buf_size) != search_buf_size)
2288 {
2289 warning (_("Unable to access %s bytes of target "
2290 "memory at %s, halting search."),
2291 pulongest (search_buf_size), hex_string (start_addr));
2292 do_cleanups (old_cleanups);
2293 return -1;
2294 }
2295
2296 /* Perform the search.
2297
2298 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2299 When we've scanned N bytes we copy the trailing bytes to the start and
2300 read in another N bytes. */
2301
2302 while (search_space_len >= pattern_len)
2303 {
2304 gdb_byte *found_ptr;
2305 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2306
2307 found_ptr = memmem (search_buf, nr_search_bytes,
2308 pattern, pattern_len);
2309
2310 if (found_ptr != NULL)
2311 {
2312 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2313
2314 *found_addrp = found_addr;
2315 do_cleanups (old_cleanups);
2316 return 1;
2317 }
2318
2319 /* Not found in this chunk, skip to next chunk. */
2320
2321 /* Don't let search_space_len wrap here, it's unsigned. */
2322 if (search_space_len >= chunk_size)
2323 search_space_len -= chunk_size;
2324 else
2325 search_space_len = 0;
2326
2327 if (search_space_len >= pattern_len)
2328 {
2329 unsigned keep_len = search_buf_size - chunk_size;
2330 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2331 int nr_to_read;
2332
2333 /* Copy the trailing part of the previous iteration to the front
2334 of the buffer for the next iteration. */
2335 gdb_assert (keep_len == pattern_len - 1);
2336 memcpy (search_buf, search_buf + chunk_size, keep_len);
2337
2338 nr_to_read = min (search_space_len - keep_len, chunk_size);
2339
2340 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2341 search_buf + keep_len, read_addr,
2342 nr_to_read) != nr_to_read)
2343 {
2344 warning (_("Unable to access %s bytes of target "
2345 "memory at %s, halting search."),
2346 plongest (nr_to_read),
2347 hex_string (read_addr));
2348 do_cleanups (old_cleanups);
2349 return -1;
2350 }
2351
2352 start_addr += chunk_size;
2353 }
2354 }
2355
2356 /* Not found. */
2357
2358 do_cleanups (old_cleanups);
2359 return 0;
2360 }
2361
2362 /* Default implementation of memory-searching. */
2363
2364 static int
2365 default_search_memory (struct target_ops *self,
2366 CORE_ADDR start_addr, ULONGEST search_space_len,
2367 const gdb_byte *pattern, ULONGEST pattern_len,
2368 CORE_ADDR *found_addrp)
2369 {
2370 /* Start over from the top of the target stack. */
2371 return simple_search_memory (current_target.beneath,
2372 start_addr, search_space_len,
2373 pattern, pattern_len, found_addrp);
2374 }
2375
2376 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2377 sequence of bytes in PATTERN with length PATTERN_LEN.
2378
2379 The result is 1 if found, 0 if not found, and -1 if there was an error
2380 requiring halting of the search (e.g. memory read error).
2381 If the pattern is found the address is recorded in FOUND_ADDRP. */
2382
2383 int
2384 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2385 const gdb_byte *pattern, ULONGEST pattern_len,
2386 CORE_ADDR *found_addrp)
2387 {
2388 int found;
2389
2390 if (targetdebug)
2391 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2392 hex_string (start_addr));
2393
2394 found = current_target.to_search_memory (&current_target, start_addr,
2395 search_space_len,
2396 pattern, pattern_len, found_addrp);
2397
2398 if (targetdebug)
2399 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2400
2401 return found;
2402 }
2403
2404 /* Look through the currently pushed targets. If none of them will
2405 be able to restart the currently running process, issue an error
2406 message. */
2407
2408 void
2409 target_require_runnable (void)
2410 {
2411 struct target_ops *t;
2412
2413 for (t = target_stack; t != NULL; t = t->beneath)
2414 {
2415 /* If this target knows how to create a new program, then
2416 assume we will still be able to after killing the current
2417 one. Either killing and mourning will not pop T, or else
2418 find_default_run_target will find it again. */
2419 if (t->to_create_inferior != NULL)
2420 return;
2421
2422 /* Do not worry about thread_stratum targets that can not
2423 create inferiors. Assume they will be pushed again if
2424 necessary, and continue to the process_stratum. */
2425 if (t->to_stratum == thread_stratum
2426 || t->to_stratum == arch_stratum)
2427 continue;
2428
2429 error (_("The \"%s\" target does not support \"run\". "
2430 "Try \"help target\" or \"continue\"."),
2431 t->to_shortname);
2432 }
2433
2434 /* This function is only called if the target is running. In that
2435 case there should have been a process_stratum target and it
2436 should either know how to create inferiors, or not... */
2437 internal_error (__FILE__, __LINE__, _("No targets found"));
2438 }
2439
2440 /* Whether GDB is allowed to fall back to the default run target for
2441 "run", "attach", etc. when no target is connected yet. */
2442 static int auto_connect_native_target = 1;
2443
2444 static void
2445 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2446 struct cmd_list_element *c, const char *value)
2447 {
2448 fprintf_filtered (file,
2449 _("Whether GDB may automatically connect to the "
2450 "native target is %s.\n"),
2451 value);
2452 }
2453
2454 /* Look through the list of possible targets for a target that can
2455 execute a run or attach command without any other data. This is
2456 used to locate the default process stratum.
2457
2458 If DO_MESG is not NULL, the result is always valid (error() is
2459 called for errors); else, return NULL on error. */
2460
2461 static struct target_ops *
2462 find_default_run_target (char *do_mesg)
2463 {
2464 struct target_ops *runable = NULL;
2465
2466 if (auto_connect_native_target)
2467 {
2468 struct target_ops **t;
2469 int count = 0;
2470
2471 for (t = target_structs; t < target_structs + target_struct_size;
2472 ++t)
2473 {
2474 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2475 {
2476 runable = *t;
2477 ++count;
2478 }
2479 }
2480
2481 if (count != 1)
2482 runable = NULL;
2483 }
2484
2485 if (runable == NULL)
2486 {
2487 if (do_mesg)
2488 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2489 else
2490 return NULL;
2491 }
2492
2493 return runable;
2494 }
2495
2496 /* See target.h. */
2497
2498 struct target_ops *
2499 find_attach_target (void)
2500 {
2501 struct target_ops *t;
2502
2503 /* If a target on the current stack can attach, use it. */
2504 for (t = current_target.beneath; t != NULL; t = t->beneath)
2505 {
2506 if (t->to_attach != NULL)
2507 break;
2508 }
2509
2510 /* Otherwise, use the default run target for attaching. */
2511 if (t == NULL)
2512 t = find_default_run_target ("attach");
2513
2514 return t;
2515 }
2516
2517 /* See target.h. */
2518
2519 struct target_ops *
2520 find_run_target (void)
2521 {
2522 struct target_ops *t;
2523
2524 /* If a target on the current stack can attach, use it. */
2525 for (t = current_target.beneath; t != NULL; t = t->beneath)
2526 {
2527 if (t->to_create_inferior != NULL)
2528 break;
2529 }
2530
2531 /* Otherwise, use the default run target. */
2532 if (t == NULL)
2533 t = find_default_run_target ("run");
2534
2535 return t;
2536 }
2537
2538 /* Implement the "info proc" command. */
2539
2540 int
2541 target_info_proc (char *args, enum info_proc_what what)
2542 {
2543 struct target_ops *t;
2544
2545 /* If we're already connected to something that can get us OS
2546 related data, use it. Otherwise, try using the native
2547 target. */
2548 if (current_target.to_stratum >= process_stratum)
2549 t = current_target.beneath;
2550 else
2551 t = find_default_run_target (NULL);
2552
2553 for (; t != NULL; t = t->beneath)
2554 {
2555 if (t->to_info_proc != NULL)
2556 {
2557 t->to_info_proc (t, args, what);
2558
2559 if (targetdebug)
2560 fprintf_unfiltered (gdb_stdlog,
2561 "target_info_proc (\"%s\", %d)\n", args, what);
2562
2563 return 1;
2564 }
2565 }
2566
2567 return 0;
2568 }
2569
2570 static int
2571 find_default_supports_disable_randomization (struct target_ops *self)
2572 {
2573 struct target_ops *t;
2574
2575 t = find_default_run_target (NULL);
2576 if (t && t->to_supports_disable_randomization)
2577 return (t->to_supports_disable_randomization) (t);
2578 return 0;
2579 }
2580
2581 int
2582 target_supports_disable_randomization (void)
2583 {
2584 struct target_ops *t;
2585
2586 for (t = &current_target; t != NULL; t = t->beneath)
2587 if (t->to_supports_disable_randomization)
2588 return t->to_supports_disable_randomization (t);
2589
2590 return 0;
2591 }
2592
2593 char *
2594 target_get_osdata (const char *type)
2595 {
2596 struct target_ops *t;
2597
2598 /* If we're already connected to something that can get us OS
2599 related data, use it. Otherwise, try using the native
2600 target. */
2601 if (current_target.to_stratum >= process_stratum)
2602 t = current_target.beneath;
2603 else
2604 t = find_default_run_target ("get OS data");
2605
2606 if (!t)
2607 return NULL;
2608
2609 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2610 }
2611
2612 /* Determine the current address space of thread PTID. */
2613
2614 struct address_space *
2615 target_thread_address_space (ptid_t ptid)
2616 {
2617 struct address_space *aspace;
2618 struct inferior *inf;
2619 struct target_ops *t;
2620
2621 for (t = current_target.beneath; t != NULL; t = t->beneath)
2622 {
2623 if (t->to_thread_address_space != NULL)
2624 {
2625 aspace = t->to_thread_address_space (t, ptid);
2626 gdb_assert (aspace);
2627
2628 if (targetdebug)
2629 fprintf_unfiltered (gdb_stdlog,
2630 "target_thread_address_space (%s) = %d\n",
2631 target_pid_to_str (ptid),
2632 address_space_num (aspace));
2633 return aspace;
2634 }
2635 }
2636
2637 /* Fall-back to the "main" address space of the inferior. */
2638 inf = find_inferior_pid (ptid_get_pid (ptid));
2639
2640 if (inf == NULL || inf->aspace == NULL)
2641 internal_error (__FILE__, __LINE__,
2642 _("Can't determine the current "
2643 "address space of thread %s\n"),
2644 target_pid_to_str (ptid));
2645
2646 return inf->aspace;
2647 }
2648
2649
2650 /* Target file operations. */
2651
2652 static struct target_ops *
2653 default_fileio_target (void)
2654 {
2655 /* If we're already connected to something that can perform
2656 file I/O, use it. Otherwise, try using the native target. */
2657 if (current_target.to_stratum >= process_stratum)
2658 return current_target.beneath;
2659 else
2660 return find_default_run_target ("file I/O");
2661 }
2662
2663 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2664 target file descriptor, or -1 if an error occurs (and set
2665 *TARGET_ERRNO). */
2666 int
2667 target_fileio_open (const char *filename, int flags, int mode,
2668 int *target_errno)
2669 {
2670 struct target_ops *t;
2671
2672 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2673 {
2674 if (t->to_fileio_open != NULL)
2675 {
2676 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2677
2678 if (targetdebug)
2679 fprintf_unfiltered (gdb_stdlog,
2680 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2681 filename, flags, mode,
2682 fd, fd != -1 ? 0 : *target_errno);
2683 return fd;
2684 }
2685 }
2686
2687 *target_errno = FILEIO_ENOSYS;
2688 return -1;
2689 }
2690
2691 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2692 Return the number of bytes written, or -1 if an error occurs
2693 (and set *TARGET_ERRNO). */
2694 int
2695 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2696 ULONGEST offset, int *target_errno)
2697 {
2698 struct target_ops *t;
2699
2700 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2701 {
2702 if (t->to_fileio_pwrite != NULL)
2703 {
2704 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2705 target_errno);
2706
2707 if (targetdebug)
2708 fprintf_unfiltered (gdb_stdlog,
2709 "target_fileio_pwrite (%d,...,%d,%s) "
2710 "= %d (%d)\n",
2711 fd, len, pulongest (offset),
2712 ret, ret != -1 ? 0 : *target_errno);
2713 return ret;
2714 }
2715 }
2716
2717 *target_errno = FILEIO_ENOSYS;
2718 return -1;
2719 }
2720
2721 /* Read up to LEN bytes FD on the target into READ_BUF.
2722 Return the number of bytes read, or -1 if an error occurs
2723 (and set *TARGET_ERRNO). */
2724 int
2725 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2726 ULONGEST offset, int *target_errno)
2727 {
2728 struct target_ops *t;
2729
2730 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2731 {
2732 if (t->to_fileio_pread != NULL)
2733 {
2734 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2735 target_errno);
2736
2737 if (targetdebug)
2738 fprintf_unfiltered (gdb_stdlog,
2739 "target_fileio_pread (%d,...,%d,%s) "
2740 "= %d (%d)\n",
2741 fd, len, pulongest (offset),
2742 ret, ret != -1 ? 0 : *target_errno);
2743 return ret;
2744 }
2745 }
2746
2747 *target_errno = FILEIO_ENOSYS;
2748 return -1;
2749 }
2750
2751 /* Close FD on the target. Return 0, or -1 if an error occurs
2752 (and set *TARGET_ERRNO). */
2753 int
2754 target_fileio_close (int fd, int *target_errno)
2755 {
2756 struct target_ops *t;
2757
2758 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2759 {
2760 if (t->to_fileio_close != NULL)
2761 {
2762 int ret = t->to_fileio_close (t, fd, target_errno);
2763
2764 if (targetdebug)
2765 fprintf_unfiltered (gdb_stdlog,
2766 "target_fileio_close (%d) = %d (%d)\n",
2767 fd, ret, ret != -1 ? 0 : *target_errno);
2768 return ret;
2769 }
2770 }
2771
2772 *target_errno = FILEIO_ENOSYS;
2773 return -1;
2774 }
2775
2776 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2777 occurs (and set *TARGET_ERRNO). */
2778 int
2779 target_fileio_unlink (const char *filename, int *target_errno)
2780 {
2781 struct target_ops *t;
2782
2783 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2784 {
2785 if (t->to_fileio_unlink != NULL)
2786 {
2787 int ret = t->to_fileio_unlink (t, filename, target_errno);
2788
2789 if (targetdebug)
2790 fprintf_unfiltered (gdb_stdlog,
2791 "target_fileio_unlink (%s) = %d (%d)\n",
2792 filename, ret, ret != -1 ? 0 : *target_errno);
2793 return ret;
2794 }
2795 }
2796
2797 *target_errno = FILEIO_ENOSYS;
2798 return -1;
2799 }
2800
2801 /* Read value of symbolic link FILENAME on the target. Return a
2802 null-terminated string allocated via xmalloc, or NULL if an error
2803 occurs (and set *TARGET_ERRNO). */
2804 char *
2805 target_fileio_readlink (const char *filename, int *target_errno)
2806 {
2807 struct target_ops *t;
2808
2809 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2810 {
2811 if (t->to_fileio_readlink != NULL)
2812 {
2813 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2814
2815 if (targetdebug)
2816 fprintf_unfiltered (gdb_stdlog,
2817 "target_fileio_readlink (%s) = %s (%d)\n",
2818 filename, ret? ret : "(nil)",
2819 ret? 0 : *target_errno);
2820 return ret;
2821 }
2822 }
2823
2824 *target_errno = FILEIO_ENOSYS;
2825 return NULL;
2826 }
2827
2828 static void
2829 target_fileio_close_cleanup (void *opaque)
2830 {
2831 int fd = *(int *) opaque;
2832 int target_errno;
2833
2834 target_fileio_close (fd, &target_errno);
2835 }
2836
2837 /* Read target file FILENAME. Store the result in *BUF_P and
2838 return the size of the transferred data. PADDING additional bytes are
2839 available in *BUF_P. This is a helper function for
2840 target_fileio_read_alloc; see the declaration of that function for more
2841 information. */
2842
2843 static LONGEST
2844 target_fileio_read_alloc_1 (const char *filename,
2845 gdb_byte **buf_p, int padding)
2846 {
2847 struct cleanup *close_cleanup;
2848 size_t buf_alloc, buf_pos;
2849 gdb_byte *buf;
2850 LONGEST n;
2851 int fd;
2852 int target_errno;
2853
2854 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2855 if (fd == -1)
2856 return -1;
2857
2858 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2859
2860 /* Start by reading up to 4K at a time. The target will throttle
2861 this number down if necessary. */
2862 buf_alloc = 4096;
2863 buf = xmalloc (buf_alloc);
2864 buf_pos = 0;
2865 while (1)
2866 {
2867 n = target_fileio_pread (fd, &buf[buf_pos],
2868 buf_alloc - buf_pos - padding, buf_pos,
2869 &target_errno);
2870 if (n < 0)
2871 {
2872 /* An error occurred. */
2873 do_cleanups (close_cleanup);
2874 xfree (buf);
2875 return -1;
2876 }
2877 else if (n == 0)
2878 {
2879 /* Read all there was. */
2880 do_cleanups (close_cleanup);
2881 if (buf_pos == 0)
2882 xfree (buf);
2883 else
2884 *buf_p = buf;
2885 return buf_pos;
2886 }
2887
2888 buf_pos += n;
2889
2890 /* If the buffer is filling up, expand it. */
2891 if (buf_alloc < buf_pos * 2)
2892 {
2893 buf_alloc *= 2;
2894 buf = xrealloc (buf, buf_alloc);
2895 }
2896
2897 QUIT;
2898 }
2899 }
2900
2901 /* Read target file FILENAME. Store the result in *BUF_P and return
2902 the size of the transferred data. See the declaration in "target.h"
2903 function for more information about the return value. */
2904
2905 LONGEST
2906 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2907 {
2908 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2909 }
2910
2911 /* Read target file FILENAME. The result is NUL-terminated and
2912 returned as a string, allocated using xmalloc. If an error occurs
2913 or the transfer is unsupported, NULL is returned. Empty objects
2914 are returned as allocated but empty strings. A warning is issued
2915 if the result contains any embedded NUL bytes. */
2916
2917 char *
2918 target_fileio_read_stralloc (const char *filename)
2919 {
2920 gdb_byte *buffer;
2921 char *bufstr;
2922 LONGEST i, transferred;
2923
2924 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2925 bufstr = (char *) buffer;
2926
2927 if (transferred < 0)
2928 return NULL;
2929
2930 if (transferred == 0)
2931 return xstrdup ("");
2932
2933 bufstr[transferred] = 0;
2934
2935 /* Check for embedded NUL bytes; but allow trailing NULs. */
2936 for (i = strlen (bufstr); i < transferred; i++)
2937 if (bufstr[i] != 0)
2938 {
2939 warning (_("target file %s "
2940 "contained unexpected null characters"),
2941 filename);
2942 break;
2943 }
2944
2945 return bufstr;
2946 }
2947
2948
2949 static int
2950 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2951 CORE_ADDR addr, int len)
2952 {
2953 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2954 }
2955
2956 static int
2957 default_watchpoint_addr_within_range (struct target_ops *target,
2958 CORE_ADDR addr,
2959 CORE_ADDR start, int length)
2960 {
2961 return addr >= start && addr < start + length;
2962 }
2963
2964 static struct gdbarch *
2965 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2966 {
2967 return target_gdbarch ();
2968 }
2969
2970 static int
2971 return_zero (struct target_ops *ignore)
2972 {
2973 return 0;
2974 }
2975
2976 static int
2977 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2978 {
2979 return 0;
2980 }
2981
2982 /*
2983 * Find the next target down the stack from the specified target.
2984 */
2985
2986 struct target_ops *
2987 find_target_beneath (struct target_ops *t)
2988 {
2989 return t->beneath;
2990 }
2991
2992 /* See target.h. */
2993
2994 struct target_ops *
2995 find_target_at (enum strata stratum)
2996 {
2997 struct target_ops *t;
2998
2999 for (t = current_target.beneath; t != NULL; t = t->beneath)
3000 if (t->to_stratum == stratum)
3001 return t;
3002
3003 return NULL;
3004 }
3005
3006 \f
3007 /* The inferior process has died. Long live the inferior! */
3008
3009 void
3010 generic_mourn_inferior (void)
3011 {
3012 ptid_t ptid;
3013
3014 ptid = inferior_ptid;
3015 inferior_ptid = null_ptid;
3016
3017 /* Mark breakpoints uninserted in case something tries to delete a
3018 breakpoint while we delete the inferior's threads (which would
3019 fail, since the inferior is long gone). */
3020 mark_breakpoints_out ();
3021
3022 if (!ptid_equal (ptid, null_ptid))
3023 {
3024 int pid = ptid_get_pid (ptid);
3025 exit_inferior (pid);
3026 }
3027
3028 /* Note this wipes step-resume breakpoints, so needs to be done
3029 after exit_inferior, which ends up referencing the step-resume
3030 breakpoints through clear_thread_inferior_resources. */
3031 breakpoint_init_inferior (inf_exited);
3032
3033 registers_changed ();
3034
3035 reopen_exec_file ();
3036 reinit_frame_cache ();
3037
3038 if (deprecated_detach_hook)
3039 deprecated_detach_hook ();
3040 }
3041 \f
3042 /* Convert a normal process ID to a string. Returns the string in a
3043 static buffer. */
3044
3045 char *
3046 normal_pid_to_str (ptid_t ptid)
3047 {
3048 static char buf[32];
3049
3050 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3051 return buf;
3052 }
3053
3054 static char *
3055 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3056 {
3057 return normal_pid_to_str (ptid);
3058 }
3059
3060 /* Error-catcher for target_find_memory_regions. */
3061 static int
3062 dummy_find_memory_regions (struct target_ops *self,
3063 find_memory_region_ftype ignore1, void *ignore2)
3064 {
3065 error (_("Command not implemented for this target."));
3066 return 0;
3067 }
3068
3069 /* Error-catcher for target_make_corefile_notes. */
3070 static char *
3071 dummy_make_corefile_notes (struct target_ops *self,
3072 bfd *ignore1, int *ignore2)
3073 {
3074 error (_("Command not implemented for this target."));
3075 return NULL;
3076 }
3077
3078 /* Set up the handful of non-empty slots needed by the dummy target
3079 vector. */
3080
3081 static void
3082 init_dummy_target (void)
3083 {
3084 dummy_target.to_shortname = "None";
3085 dummy_target.to_longname = "None";
3086 dummy_target.to_doc = "";
3087 dummy_target.to_supports_disable_randomization
3088 = find_default_supports_disable_randomization;
3089 dummy_target.to_stratum = dummy_stratum;
3090 dummy_target.to_has_all_memory = return_zero;
3091 dummy_target.to_has_memory = return_zero;
3092 dummy_target.to_has_stack = return_zero;
3093 dummy_target.to_has_registers = return_zero;
3094 dummy_target.to_has_execution = return_zero_has_execution;
3095 dummy_target.to_magic = OPS_MAGIC;
3096
3097 install_dummy_methods (&dummy_target);
3098 }
3099 \f
3100 static void
3101 debug_to_open (char *args, int from_tty)
3102 {
3103 debug_target.to_open (args, from_tty);
3104
3105 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3106 }
3107
3108 void
3109 target_close (struct target_ops *targ)
3110 {
3111 gdb_assert (!target_is_pushed (targ));
3112
3113 if (targ->to_xclose != NULL)
3114 targ->to_xclose (targ);
3115 else if (targ->to_close != NULL)
3116 targ->to_close (targ);
3117
3118 if (targetdebug)
3119 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3120 }
3121
3122 int
3123 target_thread_alive (ptid_t ptid)
3124 {
3125 int retval;
3126
3127 retval = current_target.to_thread_alive (&current_target, ptid);
3128 if (targetdebug)
3129 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3130 ptid_get_pid (ptid), retval);
3131
3132 return retval;
3133 }
3134
3135 void
3136 target_find_new_threads (void)
3137 {
3138 current_target.to_find_new_threads (&current_target);
3139 if (targetdebug)
3140 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3141 }
3142
3143 void
3144 target_stop (ptid_t ptid)
3145 {
3146 if (!may_stop)
3147 {
3148 warning (_("May not interrupt or stop the target, ignoring attempt"));
3149 return;
3150 }
3151
3152 (*current_target.to_stop) (&current_target, ptid);
3153 }
3154
3155 static void
3156 debug_to_post_attach (struct target_ops *self, int pid)
3157 {
3158 debug_target.to_post_attach (&debug_target, pid);
3159
3160 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3161 }
3162
3163 /* Concatenate ELEM to LIST, a comma separate list, and return the
3164 result. The LIST incoming argument is released. */
3165
3166 static char *
3167 str_comma_list_concat_elem (char *list, const char *elem)
3168 {
3169 if (list == NULL)
3170 return xstrdup (elem);
3171 else
3172 return reconcat (list, list, ", ", elem, (char *) NULL);
3173 }
3174
3175 /* Helper for target_options_to_string. If OPT is present in
3176 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3177 Returns the new resulting string. OPT is removed from
3178 TARGET_OPTIONS. */
3179
3180 static char *
3181 do_option (int *target_options, char *ret,
3182 int opt, char *opt_str)
3183 {
3184 if ((*target_options & opt) != 0)
3185 {
3186 ret = str_comma_list_concat_elem (ret, opt_str);
3187 *target_options &= ~opt;
3188 }
3189
3190 return ret;
3191 }
3192
3193 char *
3194 target_options_to_string (int target_options)
3195 {
3196 char *ret = NULL;
3197
3198 #define DO_TARG_OPTION(OPT) \
3199 ret = do_option (&target_options, ret, OPT, #OPT)
3200
3201 DO_TARG_OPTION (TARGET_WNOHANG);
3202
3203 if (target_options != 0)
3204 ret = str_comma_list_concat_elem (ret, "unknown???");
3205
3206 if (ret == NULL)
3207 ret = xstrdup ("");
3208 return ret;
3209 }
3210
3211 static void
3212 debug_print_register (const char * func,
3213 struct regcache *regcache, int regno)
3214 {
3215 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3216
3217 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3218 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3219 && gdbarch_register_name (gdbarch, regno) != NULL
3220 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3221 fprintf_unfiltered (gdb_stdlog, "(%s)",
3222 gdbarch_register_name (gdbarch, regno));
3223 else
3224 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3225 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3226 {
3227 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3228 int i, size = register_size (gdbarch, regno);
3229 gdb_byte buf[MAX_REGISTER_SIZE];
3230
3231 regcache_raw_collect (regcache, regno, buf);
3232 fprintf_unfiltered (gdb_stdlog, " = ");
3233 for (i = 0; i < size; i++)
3234 {
3235 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3236 }
3237 if (size <= sizeof (LONGEST))
3238 {
3239 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3240
3241 fprintf_unfiltered (gdb_stdlog, " %s %s",
3242 core_addr_to_string_nz (val), plongest (val));
3243 }
3244 }
3245 fprintf_unfiltered (gdb_stdlog, "\n");
3246 }
3247
3248 void
3249 target_fetch_registers (struct regcache *regcache, int regno)
3250 {
3251 current_target.to_fetch_registers (&current_target, regcache, regno);
3252 if (targetdebug)
3253 debug_print_register ("target_fetch_registers", regcache, regno);
3254 }
3255
3256 void
3257 target_store_registers (struct regcache *regcache, int regno)
3258 {
3259 struct target_ops *t;
3260
3261 if (!may_write_registers)
3262 error (_("Writing to registers is not allowed (regno %d)"), regno);
3263
3264 current_target.to_store_registers (&current_target, regcache, regno);
3265 if (targetdebug)
3266 {
3267 debug_print_register ("target_store_registers", regcache, regno);
3268 }
3269 }
3270
3271 int
3272 target_core_of_thread (ptid_t ptid)
3273 {
3274 int retval = current_target.to_core_of_thread (&current_target, ptid);
3275
3276 if (targetdebug)
3277 fprintf_unfiltered (gdb_stdlog,
3278 "target_core_of_thread (%d) = %d\n",
3279 ptid_get_pid (ptid), retval);
3280 return retval;
3281 }
3282
3283 int
3284 simple_verify_memory (struct target_ops *ops,
3285 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3286 {
3287 LONGEST total_xfered = 0;
3288
3289 while (total_xfered < size)
3290 {
3291 ULONGEST xfered_len;
3292 enum target_xfer_status status;
3293 gdb_byte buf[1024];
3294 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3295
3296 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3297 buf, NULL, lma + total_xfered, howmuch,
3298 &xfered_len);
3299 if (status == TARGET_XFER_OK
3300 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3301 {
3302 total_xfered += xfered_len;
3303 QUIT;
3304 }
3305 else
3306 return 0;
3307 }
3308 return 1;
3309 }
3310
3311 /* Default implementation of memory verification. */
3312
3313 static int
3314 default_verify_memory (struct target_ops *self,
3315 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3316 {
3317 /* Start over from the top of the target stack. */
3318 return simple_verify_memory (current_target.beneath,
3319 data, memaddr, size);
3320 }
3321
3322 int
3323 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3324 {
3325 int retval = current_target.to_verify_memory (&current_target,
3326 data, memaddr, size);
3327
3328 if (targetdebug)
3329 fprintf_unfiltered (gdb_stdlog,
3330 "target_verify_memory (%s, %s) = %d\n",
3331 paddress (target_gdbarch (), memaddr),
3332 pulongest (size),
3333 retval);
3334 return retval;
3335 }
3336
3337 /* The documentation for this function is in its prototype declaration in
3338 target.h. */
3339
3340 int
3341 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3342 {
3343 int ret;
3344
3345 ret = current_target.to_insert_mask_watchpoint (&current_target,
3346 addr, mask, rw);
3347
3348 if (targetdebug)
3349 fprintf_unfiltered (gdb_stdlog, "\
3350 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3351 core_addr_to_string (addr),
3352 core_addr_to_string (mask), rw, ret);
3353
3354 return ret;
3355 }
3356
3357 /* The documentation for this function is in its prototype declaration in
3358 target.h. */
3359
3360 int
3361 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3362 {
3363 int ret;
3364
3365 ret = current_target.to_remove_mask_watchpoint (&current_target,
3366 addr, mask, rw);
3367
3368 if (targetdebug)
3369 fprintf_unfiltered (gdb_stdlog, "\
3370 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3371 core_addr_to_string (addr),
3372 core_addr_to_string (mask), rw, ret);
3373
3374 return ret;
3375 }
3376
3377 /* The documentation for this function is in its prototype declaration
3378 in target.h. */
3379
3380 int
3381 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3382 {
3383 return current_target.to_masked_watch_num_registers (&current_target,
3384 addr, mask);
3385 }
3386
3387 /* The documentation for this function is in its prototype declaration
3388 in target.h. */
3389
3390 int
3391 target_ranged_break_num_registers (void)
3392 {
3393 return current_target.to_ranged_break_num_registers (&current_target);
3394 }
3395
3396 /* See target.h. */
3397
3398 struct btrace_target_info *
3399 target_enable_btrace (ptid_t ptid)
3400 {
3401 return current_target.to_enable_btrace (&current_target, ptid);
3402 }
3403
3404 /* See target.h. */
3405
3406 void
3407 target_disable_btrace (struct btrace_target_info *btinfo)
3408 {
3409 current_target.to_disable_btrace (&current_target, btinfo);
3410 }
3411
3412 /* See target.h. */
3413
3414 void
3415 target_teardown_btrace (struct btrace_target_info *btinfo)
3416 {
3417 current_target.to_teardown_btrace (&current_target, btinfo);
3418 }
3419
3420 /* See target.h. */
3421
3422 enum btrace_error
3423 target_read_btrace (VEC (btrace_block_s) **btrace,
3424 struct btrace_target_info *btinfo,
3425 enum btrace_read_type type)
3426 {
3427 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3428 }
3429
3430 /* See target.h. */
3431
3432 void
3433 target_stop_recording (void)
3434 {
3435 current_target.to_stop_recording (&current_target);
3436 }
3437
3438 /* See target.h. */
3439
3440 void
3441 target_info_record (void)
3442 {
3443 struct target_ops *t;
3444
3445 for (t = current_target.beneath; t != NULL; t = t->beneath)
3446 if (t->to_info_record != NULL)
3447 {
3448 t->to_info_record (t);
3449 return;
3450 }
3451
3452 tcomplain ();
3453 }
3454
3455 /* See target.h. */
3456
3457 void
3458 target_save_record (const char *filename)
3459 {
3460 current_target.to_save_record (&current_target, filename);
3461 }
3462
3463 /* See target.h. */
3464
3465 int
3466 target_supports_delete_record (void)
3467 {
3468 struct target_ops *t;
3469
3470 for (t = current_target.beneath; t != NULL; t = t->beneath)
3471 if (t->to_delete_record != NULL)
3472 return 1;
3473
3474 return 0;
3475 }
3476
3477 /* See target.h. */
3478
3479 void
3480 target_delete_record (void)
3481 {
3482 current_target.to_delete_record (&current_target);
3483 }
3484
3485 /* See target.h. */
3486
3487 int
3488 target_record_is_replaying (void)
3489 {
3490 return current_target.to_record_is_replaying (&current_target);
3491 }
3492
3493 /* See target.h. */
3494
3495 void
3496 target_goto_record_begin (void)
3497 {
3498 current_target.to_goto_record_begin (&current_target);
3499 }
3500
3501 /* See target.h. */
3502
3503 void
3504 target_goto_record_end (void)
3505 {
3506 current_target.to_goto_record_end (&current_target);
3507 }
3508
3509 /* See target.h. */
3510
3511 void
3512 target_goto_record (ULONGEST insn)
3513 {
3514 current_target.to_goto_record (&current_target, insn);
3515 }
3516
3517 /* See target.h. */
3518
3519 void
3520 target_insn_history (int size, int flags)
3521 {
3522 current_target.to_insn_history (&current_target, size, flags);
3523 }
3524
3525 /* See target.h. */
3526
3527 void
3528 target_insn_history_from (ULONGEST from, int size, int flags)
3529 {
3530 current_target.to_insn_history_from (&current_target, from, size, flags);
3531 }
3532
3533 /* See target.h. */
3534
3535 void
3536 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3537 {
3538 current_target.to_insn_history_range (&current_target, begin, end, flags);
3539 }
3540
3541 /* See target.h. */
3542
3543 void
3544 target_call_history (int size, int flags)
3545 {
3546 current_target.to_call_history (&current_target, size, flags);
3547 }
3548
3549 /* See target.h. */
3550
3551 void
3552 target_call_history_from (ULONGEST begin, int size, int flags)
3553 {
3554 current_target.to_call_history_from (&current_target, begin, size, flags);
3555 }
3556
3557 /* See target.h. */
3558
3559 void
3560 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3561 {
3562 current_target.to_call_history_range (&current_target, begin, end, flags);
3563 }
3564
3565 static void
3566 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3567 {
3568 debug_target.to_prepare_to_store (&debug_target, regcache);
3569
3570 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3571 }
3572
3573 /* See target.h. */
3574
3575 const struct frame_unwind *
3576 target_get_unwinder (void)
3577 {
3578 return current_target.to_get_unwinder (&current_target);
3579 }
3580
3581 /* See target.h. */
3582
3583 const struct frame_unwind *
3584 target_get_tailcall_unwinder (void)
3585 {
3586 return current_target.to_get_tailcall_unwinder (&current_target);
3587 }
3588
3589 /* Default implementation of to_decr_pc_after_break. */
3590
3591 static CORE_ADDR
3592 default_target_decr_pc_after_break (struct target_ops *ops,
3593 struct gdbarch *gdbarch)
3594 {
3595 return gdbarch_decr_pc_after_break (gdbarch);
3596 }
3597
3598 /* See target.h. */
3599
3600 CORE_ADDR
3601 target_decr_pc_after_break (struct gdbarch *gdbarch)
3602 {
3603 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3604 }
3605
3606 static void
3607 debug_to_files_info (struct target_ops *target)
3608 {
3609 debug_target.to_files_info (target);
3610
3611 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3612 }
3613
3614 static int
3615 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3616 struct bp_target_info *bp_tgt)
3617 {
3618 int retval;
3619
3620 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
3621
3622 fprintf_unfiltered (gdb_stdlog,
3623 "target_insert_breakpoint (%s, xxx) = %ld\n",
3624 core_addr_to_string (bp_tgt->placed_address),
3625 (unsigned long) retval);
3626 return retval;
3627 }
3628
3629 static int
3630 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3631 struct bp_target_info *bp_tgt)
3632 {
3633 int retval;
3634
3635 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
3636
3637 fprintf_unfiltered (gdb_stdlog,
3638 "target_remove_breakpoint (%s, xxx) = %ld\n",
3639 core_addr_to_string (bp_tgt->placed_address),
3640 (unsigned long) retval);
3641 return retval;
3642 }
3643
3644 static int
3645 debug_to_can_use_hw_breakpoint (struct target_ops *self,
3646 int type, int cnt, int from_tty)
3647 {
3648 int retval;
3649
3650 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3651 type, cnt, from_tty);
3652
3653 fprintf_unfiltered (gdb_stdlog,
3654 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3655 (unsigned long) type,
3656 (unsigned long) cnt,
3657 (unsigned long) from_tty,
3658 (unsigned long) retval);
3659 return retval;
3660 }
3661
3662 static int
3663 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3664 CORE_ADDR addr, int len)
3665 {
3666 CORE_ADDR retval;
3667
3668 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3669 addr, len);
3670
3671 fprintf_unfiltered (gdb_stdlog,
3672 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3673 core_addr_to_string (addr), (unsigned long) len,
3674 core_addr_to_string (retval));
3675 return retval;
3676 }
3677
3678 static int
3679 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3680 CORE_ADDR addr, int len, int rw,
3681 struct expression *cond)
3682 {
3683 int retval;
3684
3685 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3686 addr, len,
3687 rw, cond);
3688
3689 fprintf_unfiltered (gdb_stdlog,
3690 "target_can_accel_watchpoint_condition "
3691 "(%s, %d, %d, %s) = %ld\n",
3692 core_addr_to_string (addr), len, rw,
3693 host_address_to_string (cond), (unsigned long) retval);
3694 return retval;
3695 }
3696
3697 static int
3698 debug_to_stopped_by_watchpoint (struct target_ops *ops)
3699 {
3700 int retval;
3701
3702 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
3703
3704 fprintf_unfiltered (gdb_stdlog,
3705 "target_stopped_by_watchpoint () = %ld\n",
3706 (unsigned long) retval);
3707 return retval;
3708 }
3709
3710 static int
3711 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3712 {
3713 int retval;
3714
3715 retval = debug_target.to_stopped_data_address (target, addr);
3716
3717 fprintf_unfiltered (gdb_stdlog,
3718 "target_stopped_data_address ([%s]) = %ld\n",
3719 core_addr_to_string (*addr),
3720 (unsigned long)retval);
3721 return retval;
3722 }
3723
3724 static int
3725 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3726 CORE_ADDR addr,
3727 CORE_ADDR start, int length)
3728 {
3729 int retval;
3730
3731 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3732 start, length);
3733
3734 fprintf_filtered (gdb_stdlog,
3735 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3736 core_addr_to_string (addr), core_addr_to_string (start),
3737 length, retval);
3738 return retval;
3739 }
3740
3741 static int
3742 debug_to_insert_hw_breakpoint (struct target_ops *self,
3743 struct gdbarch *gdbarch,
3744 struct bp_target_info *bp_tgt)
3745 {
3746 int retval;
3747
3748 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3749 gdbarch, bp_tgt);
3750
3751 fprintf_unfiltered (gdb_stdlog,
3752 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3753 core_addr_to_string (bp_tgt->placed_address),
3754 (unsigned long) retval);
3755 return retval;
3756 }
3757
3758 static int
3759 debug_to_remove_hw_breakpoint (struct target_ops *self,
3760 struct gdbarch *gdbarch,
3761 struct bp_target_info *bp_tgt)
3762 {
3763 int retval;
3764
3765 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3766 gdbarch, bp_tgt);
3767
3768 fprintf_unfiltered (gdb_stdlog,
3769 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3770 core_addr_to_string (bp_tgt->placed_address),
3771 (unsigned long) retval);
3772 return retval;
3773 }
3774
3775 static int
3776 debug_to_insert_watchpoint (struct target_ops *self,
3777 CORE_ADDR addr, int len, int type,
3778 struct expression *cond)
3779 {
3780 int retval;
3781
3782 retval = debug_target.to_insert_watchpoint (&debug_target,
3783 addr, len, type, cond);
3784
3785 fprintf_unfiltered (gdb_stdlog,
3786 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3787 core_addr_to_string (addr), len, type,
3788 host_address_to_string (cond), (unsigned long) retval);
3789 return retval;
3790 }
3791
3792 static int
3793 debug_to_remove_watchpoint (struct target_ops *self,
3794 CORE_ADDR addr, int len, int type,
3795 struct expression *cond)
3796 {
3797 int retval;
3798
3799 retval = debug_target.to_remove_watchpoint (&debug_target,
3800 addr, len, type, cond);
3801
3802 fprintf_unfiltered (gdb_stdlog,
3803 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3804 core_addr_to_string (addr), len, type,
3805 host_address_to_string (cond), (unsigned long) retval);
3806 return retval;
3807 }
3808
3809 static void
3810 debug_to_terminal_init (struct target_ops *self)
3811 {
3812 debug_target.to_terminal_init (&debug_target);
3813
3814 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3815 }
3816
3817 static void
3818 debug_to_terminal_inferior (struct target_ops *self)
3819 {
3820 debug_target.to_terminal_inferior (&debug_target);
3821
3822 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3823 }
3824
3825 static void
3826 debug_to_terminal_ours_for_output (struct target_ops *self)
3827 {
3828 debug_target.to_terminal_ours_for_output (&debug_target);
3829
3830 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3831 }
3832
3833 static void
3834 debug_to_terminal_ours (struct target_ops *self)
3835 {
3836 debug_target.to_terminal_ours (&debug_target);
3837
3838 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3839 }
3840
3841 static void
3842 debug_to_terminal_save_ours (struct target_ops *self)
3843 {
3844 debug_target.to_terminal_save_ours (&debug_target);
3845
3846 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3847 }
3848
3849 static void
3850 debug_to_terminal_info (struct target_ops *self,
3851 const char *arg, int from_tty)
3852 {
3853 debug_target.to_terminal_info (&debug_target, arg, from_tty);
3854
3855 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3856 from_tty);
3857 }
3858
3859 static void
3860 debug_to_load (struct target_ops *self, char *args, int from_tty)
3861 {
3862 debug_target.to_load (&debug_target, args, from_tty);
3863
3864 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3865 }
3866
3867 static void
3868 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
3869 {
3870 debug_target.to_post_startup_inferior (&debug_target, ptid);
3871
3872 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3873 ptid_get_pid (ptid));
3874 }
3875
3876 static int
3877 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
3878 {
3879 int retval;
3880
3881 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
3882
3883 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3884 pid, retval);
3885
3886 return retval;
3887 }
3888
3889 static int
3890 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
3891 {
3892 int retval;
3893
3894 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
3895
3896 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3897 pid, retval);
3898
3899 return retval;
3900 }
3901
3902 static int
3903 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
3904 {
3905 int retval;
3906
3907 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
3908
3909 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3910 pid, retval);
3911
3912 return retval;
3913 }
3914
3915 static int
3916 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
3917 {
3918 int retval;
3919
3920 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
3921
3922 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3923 pid, retval);
3924
3925 return retval;
3926 }
3927
3928 static int
3929 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
3930 {
3931 int retval;
3932
3933 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
3934
3935 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3936 pid, retval);
3937
3938 return retval;
3939 }
3940
3941 static int
3942 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
3943 {
3944 int retval;
3945
3946 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
3947
3948 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3949 pid, retval);
3950
3951 return retval;
3952 }
3953
3954 static int
3955 debug_to_has_exited (struct target_ops *self,
3956 int pid, int wait_status, int *exit_status)
3957 {
3958 int has_exited;
3959
3960 has_exited = debug_target.to_has_exited (&debug_target,
3961 pid, wait_status, exit_status);
3962
3963 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3964 pid, wait_status, *exit_status, has_exited);
3965
3966 return has_exited;
3967 }
3968
3969 static int
3970 debug_to_can_run (struct target_ops *self)
3971 {
3972 int retval;
3973
3974 retval = debug_target.to_can_run (&debug_target);
3975
3976 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3977
3978 return retval;
3979 }
3980
3981 static struct gdbarch *
3982 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
3983 {
3984 struct gdbarch *retval;
3985
3986 retval = debug_target.to_thread_architecture (ops, ptid);
3987
3988 fprintf_unfiltered (gdb_stdlog,
3989 "target_thread_architecture (%s) = %s [%s]\n",
3990 target_pid_to_str (ptid),
3991 host_address_to_string (retval),
3992 gdbarch_bfd_arch_info (retval)->printable_name);
3993 return retval;
3994 }
3995
3996 static void
3997 debug_to_stop (struct target_ops *self, ptid_t ptid)
3998 {
3999 debug_target.to_stop (&debug_target, ptid);
4000
4001 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4002 target_pid_to_str (ptid));
4003 }
4004
4005 static void
4006 debug_to_rcmd (struct target_ops *self, char *command,
4007 struct ui_file *outbuf)
4008 {
4009 debug_target.to_rcmd (&debug_target, command, outbuf);
4010 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4011 }
4012
4013 static char *
4014 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4015 {
4016 char *exec_file;
4017
4018 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4019
4020 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4021 pid, exec_file);
4022
4023 return exec_file;
4024 }
4025
4026 static void
4027 setup_target_debug (void)
4028 {
4029 memcpy (&debug_target, &current_target, sizeof debug_target);
4030
4031 current_target.to_open = debug_to_open;
4032 current_target.to_post_attach = debug_to_post_attach;
4033 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4034 current_target.to_files_info = debug_to_files_info;
4035 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4036 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4037 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4038 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4039 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4040 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4041 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4042 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4043 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4044 current_target.to_watchpoint_addr_within_range
4045 = debug_to_watchpoint_addr_within_range;
4046 current_target.to_region_ok_for_hw_watchpoint
4047 = debug_to_region_ok_for_hw_watchpoint;
4048 current_target.to_can_accel_watchpoint_condition
4049 = debug_to_can_accel_watchpoint_condition;
4050 current_target.to_terminal_init = debug_to_terminal_init;
4051 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4052 current_target.to_terminal_ours_for_output
4053 = debug_to_terminal_ours_for_output;
4054 current_target.to_terminal_ours = debug_to_terminal_ours;
4055 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4056 current_target.to_terminal_info = debug_to_terminal_info;
4057 current_target.to_load = debug_to_load;
4058 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4059 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4060 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4061 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4062 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4063 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4064 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4065 current_target.to_has_exited = debug_to_has_exited;
4066 current_target.to_can_run = debug_to_can_run;
4067 current_target.to_stop = debug_to_stop;
4068 current_target.to_rcmd = debug_to_rcmd;
4069 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4070 current_target.to_thread_architecture = debug_to_thread_architecture;
4071 }
4072 \f
4073
4074 static char targ_desc[] =
4075 "Names of targets and files being debugged.\nShows the entire \
4076 stack of targets currently in use (including the exec-file,\n\
4077 core-file, and process, if any), as well as the symbol file name.";
4078
4079 static void
4080 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4081 {
4082 error (_("\"monitor\" command not supported by this target."));
4083 }
4084
4085 static void
4086 do_monitor_command (char *cmd,
4087 int from_tty)
4088 {
4089 target_rcmd (cmd, gdb_stdtarg);
4090 }
4091
4092 /* Print the name of each layers of our target stack. */
4093
4094 static void
4095 maintenance_print_target_stack (char *cmd, int from_tty)
4096 {
4097 struct target_ops *t;
4098
4099 printf_filtered (_("The current target stack is:\n"));
4100
4101 for (t = target_stack; t != NULL; t = t->beneath)
4102 {
4103 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4104 }
4105 }
4106
4107 /* Controls if async mode is permitted. */
4108 int target_async_permitted = 0;
4109
4110 /* The set command writes to this variable. If the inferior is
4111 executing, target_async_permitted is *not* updated. */
4112 static int target_async_permitted_1 = 0;
4113
4114 static void
4115 set_target_async_command (char *args, int from_tty,
4116 struct cmd_list_element *c)
4117 {
4118 if (have_live_inferiors ())
4119 {
4120 target_async_permitted_1 = target_async_permitted;
4121 error (_("Cannot change this setting while the inferior is running."));
4122 }
4123
4124 target_async_permitted = target_async_permitted_1;
4125 }
4126
4127 static void
4128 show_target_async_command (struct ui_file *file, int from_tty,
4129 struct cmd_list_element *c,
4130 const char *value)
4131 {
4132 fprintf_filtered (file,
4133 _("Controlling the inferior in "
4134 "asynchronous mode is %s.\n"), value);
4135 }
4136
4137 /* Temporary copies of permission settings. */
4138
4139 static int may_write_registers_1 = 1;
4140 static int may_write_memory_1 = 1;
4141 static int may_insert_breakpoints_1 = 1;
4142 static int may_insert_tracepoints_1 = 1;
4143 static int may_insert_fast_tracepoints_1 = 1;
4144 static int may_stop_1 = 1;
4145
4146 /* Make the user-set values match the real values again. */
4147
4148 void
4149 update_target_permissions (void)
4150 {
4151 may_write_registers_1 = may_write_registers;
4152 may_write_memory_1 = may_write_memory;
4153 may_insert_breakpoints_1 = may_insert_breakpoints;
4154 may_insert_tracepoints_1 = may_insert_tracepoints;
4155 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4156 may_stop_1 = may_stop;
4157 }
4158
4159 /* The one function handles (most of) the permission flags in the same
4160 way. */
4161
4162 static void
4163 set_target_permissions (char *args, int from_tty,
4164 struct cmd_list_element *c)
4165 {
4166 if (target_has_execution)
4167 {
4168 update_target_permissions ();
4169 error (_("Cannot change this setting while the inferior is running."));
4170 }
4171
4172 /* Make the real values match the user-changed values. */
4173 may_write_registers = may_write_registers_1;
4174 may_insert_breakpoints = may_insert_breakpoints_1;
4175 may_insert_tracepoints = may_insert_tracepoints_1;
4176 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4177 may_stop = may_stop_1;
4178 update_observer_mode ();
4179 }
4180
4181 /* Set memory write permission independently of observer mode. */
4182
4183 static void
4184 set_write_memory_permission (char *args, int from_tty,
4185 struct cmd_list_element *c)
4186 {
4187 /* Make the real values match the user-changed values. */
4188 may_write_memory = may_write_memory_1;
4189 update_observer_mode ();
4190 }
4191
4192
4193 void
4194 initialize_targets (void)
4195 {
4196 init_dummy_target ();
4197 push_target (&dummy_target);
4198
4199 add_info ("target", target_info, targ_desc);
4200 add_info ("files", target_info, targ_desc);
4201
4202 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4203 Set target debugging."), _("\
4204 Show target debugging."), _("\
4205 When non-zero, target debugging is enabled. Higher numbers are more\n\
4206 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4207 command."),
4208 NULL,
4209 show_targetdebug,
4210 &setdebuglist, &showdebuglist);
4211
4212 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4213 &trust_readonly, _("\
4214 Set mode for reading from readonly sections."), _("\
4215 Show mode for reading from readonly sections."), _("\
4216 When this mode is on, memory reads from readonly sections (such as .text)\n\
4217 will be read from the object file instead of from the target. This will\n\
4218 result in significant performance improvement for remote targets."),
4219 NULL,
4220 show_trust_readonly,
4221 &setlist, &showlist);
4222
4223 add_com ("monitor", class_obscure, do_monitor_command,
4224 _("Send a command to the remote monitor (remote targets only)."));
4225
4226 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4227 _("Print the name of each layer of the internal target stack."),
4228 &maintenanceprintlist);
4229
4230 add_setshow_boolean_cmd ("target-async", no_class,
4231 &target_async_permitted_1, _("\
4232 Set whether gdb controls the inferior in asynchronous mode."), _("\
4233 Show whether gdb controls the inferior in asynchronous mode."), _("\
4234 Tells gdb whether to control the inferior in asynchronous mode."),
4235 set_target_async_command,
4236 show_target_async_command,
4237 &setlist,
4238 &showlist);
4239
4240 add_setshow_boolean_cmd ("may-write-registers", class_support,
4241 &may_write_registers_1, _("\
4242 Set permission to write into registers."), _("\
4243 Show permission to write into registers."), _("\
4244 When this permission is on, GDB may write into the target's registers.\n\
4245 Otherwise, any sort of write attempt will result in an error."),
4246 set_target_permissions, NULL,
4247 &setlist, &showlist);
4248
4249 add_setshow_boolean_cmd ("may-write-memory", class_support,
4250 &may_write_memory_1, _("\
4251 Set permission to write into target memory."), _("\
4252 Show permission to write into target memory."), _("\
4253 When this permission is on, GDB may write into the target's memory.\n\
4254 Otherwise, any sort of write attempt will result in an error."),
4255 set_write_memory_permission, NULL,
4256 &setlist, &showlist);
4257
4258 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4259 &may_insert_breakpoints_1, _("\
4260 Set permission to insert breakpoints in the target."), _("\
4261 Show permission to insert breakpoints in the target."), _("\
4262 When this permission is on, GDB may insert breakpoints in the program.\n\
4263 Otherwise, any sort of insertion attempt will result in an error."),
4264 set_target_permissions, NULL,
4265 &setlist, &showlist);
4266
4267 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4268 &may_insert_tracepoints_1, _("\
4269 Set permission to insert tracepoints in the target."), _("\
4270 Show permission to insert tracepoints in the target."), _("\
4271 When this permission is on, GDB may insert tracepoints in the program.\n\
4272 Otherwise, any sort of insertion attempt will result in an error."),
4273 set_target_permissions, NULL,
4274 &setlist, &showlist);
4275
4276 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4277 &may_insert_fast_tracepoints_1, _("\
4278 Set permission to insert fast tracepoints in the target."), _("\
4279 Show permission to insert fast tracepoints in the target."), _("\
4280 When this permission is on, GDB may insert fast tracepoints.\n\
4281 Otherwise, any sort of insertion attempt will result in an error."),
4282 set_target_permissions, NULL,
4283 &setlist, &showlist);
4284
4285 add_setshow_boolean_cmd ("may-interrupt", class_support,
4286 &may_stop_1, _("\
4287 Set permission to interrupt or signal the target."), _("\
4288 Show permission to interrupt or signal the target."), _("\
4289 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4290 Otherwise, any attempt to interrupt or stop will be ignored."),
4291 set_target_permissions, NULL,
4292 &setlist, &showlist);
4293
4294 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4295 &auto_connect_native_target, _("\
4296 Set whether GDB may automatically connect to the native target."), _("\
4297 Show whether GDB may automatically connect to the native target."), _("\
4298 When on, and GDB is not connected to a target yet, GDB\n\
4299 attempts \"run\" and other commands with the native target."),
4300 NULL, show_auto_connect_native_target,
4301 &setlist, &showlist);
4302 }