]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
2006-07-18 Vladimir Prus <vladimir@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42
43 static void target_info (char *, int);
44
45 static void maybe_kill_then_attach (char *, int);
46
47 static void kill_or_be_killed (int);
48
49 static void default_terminal_info (char *, int);
50
51 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
52
53 static int nosymbol (char *, CORE_ADDR *);
54
55 static void tcomplain (void) ATTR_NORETURN;
56
57 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
58
59 static int return_zero (void);
60
61 static int return_one (void);
62
63 static int return_minus_one (void);
64
65 void target_ignore (void);
66
67 static void target_command (char *, int);
68
69 static struct target_ops *find_default_run_target (char *);
70
71 static void nosupport_runtime (void);
72
73 static LONGEST default_xfer_partial (struct target_ops *ops,
74 enum target_object object,
75 const char *annex, gdb_byte *readbuf,
76 const gdb_byte *writebuf,
77 ULONGEST offset, LONGEST len);
78
79 /* Transfer LEN bytes between target address MEMADDR and GDB address
80 MYADDR. Returns 0 for success, errno code for failure (which
81 includes partial transfers -- if you want a more useful response to
82 partial transfers, try either target_read_memory_partial or
83 target_write_memory_partial). */
84
85 static int target_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
86 int write);
87
88 static void init_dummy_target (void);
89
90 static struct target_ops debug_target;
91
92 static void debug_to_open (char *, int);
93
94 static void debug_to_close (int);
95
96 static void debug_to_attach (char *, int);
97
98 static void debug_to_detach (char *, int);
99
100 static void debug_to_resume (ptid_t, int, enum target_signal);
101
102 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
103
104 static void debug_to_fetch_registers (int);
105
106 static void debug_to_store_registers (int);
107
108 static void debug_to_prepare_to_store (void);
109
110 static void debug_to_files_info (struct target_ops *);
111
112 static int debug_to_insert_breakpoint (struct bp_target_info *);
113
114 static int debug_to_remove_breakpoint (struct bp_target_info *);
115
116 static int debug_to_can_use_hw_breakpoint (int, int, int);
117
118 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
119
120 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
121
122 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
123
124 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
125
126 static int debug_to_stopped_by_watchpoint (void);
127
128 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
129
130 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
131
132 static void debug_to_terminal_init (void);
133
134 static void debug_to_terminal_inferior (void);
135
136 static void debug_to_terminal_ours_for_output (void);
137
138 static void debug_to_terminal_save_ours (void);
139
140 static void debug_to_terminal_ours (void);
141
142 static void debug_to_terminal_info (char *, int);
143
144 static void debug_to_kill (void);
145
146 static void debug_to_load (char *, int);
147
148 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
149
150 static void debug_to_mourn_inferior (void);
151
152 static int debug_to_can_run (void);
153
154 static void debug_to_notice_signals (ptid_t);
155
156 static int debug_to_thread_alive (ptid_t);
157
158 static void debug_to_stop (void);
159
160 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
161 wierd and mysterious ways. Putting the variable here lets those
162 wierd and mysterious ways keep building while they are being
163 converted to the inferior inheritance structure. */
164 struct target_ops deprecated_child_ops;
165
166 /* Pointer to array of target architecture structures; the size of the
167 array; the current index into the array; the allocated size of the
168 array. */
169 struct target_ops **target_structs;
170 unsigned target_struct_size;
171 unsigned target_struct_index;
172 unsigned target_struct_allocsize;
173 #define DEFAULT_ALLOCSIZE 10
174
175 /* The initial current target, so that there is always a semi-valid
176 current target. */
177
178 static struct target_ops dummy_target;
179
180 /* Top of target stack. */
181
182 static struct target_ops *target_stack;
183
184 /* The target structure we are currently using to talk to a process
185 or file or whatever "inferior" we have. */
186
187 struct target_ops current_target;
188
189 /* Command list for target. */
190
191 static struct cmd_list_element *targetlist = NULL;
192
193 /* Nonzero if we are debugging an attached outside process
194 rather than an inferior. */
195
196 int attach_flag;
197
198 /* Non-zero if we want to see trace of target level stuff. */
199
200 static int targetdebug = 0;
201 static void
202 show_targetdebug (struct ui_file *file, int from_tty,
203 struct cmd_list_element *c, const char *value)
204 {
205 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
206 }
207
208 static void setup_target_debug (void);
209
210 DCACHE *target_dcache;
211
212 /* The user just typed 'target' without the name of a target. */
213
214 static void
215 target_command (char *arg, int from_tty)
216 {
217 fputs_filtered ("Argument required (target name). Try `help target'\n",
218 gdb_stdout);
219 }
220
221 /* Add a possible target architecture to the list. */
222
223 void
224 add_target (struct target_ops *t)
225 {
226 /* Provide default values for all "must have" methods. */
227 if (t->to_xfer_partial == NULL)
228 t->to_xfer_partial = default_xfer_partial;
229
230 if (!target_structs)
231 {
232 target_struct_allocsize = DEFAULT_ALLOCSIZE;
233 target_structs = (struct target_ops **) xmalloc
234 (target_struct_allocsize * sizeof (*target_structs));
235 }
236 if (target_struct_size >= target_struct_allocsize)
237 {
238 target_struct_allocsize *= 2;
239 target_structs = (struct target_ops **)
240 xrealloc ((char *) target_structs,
241 target_struct_allocsize * sizeof (*target_structs));
242 }
243 target_structs[target_struct_size++] = t;
244
245 if (targetlist == NULL)
246 add_prefix_cmd ("target", class_run, target_command, _("\
247 Connect to a target machine or process.\n\
248 The first argument is the type or protocol of the target machine.\n\
249 Remaining arguments are interpreted by the target protocol. For more\n\
250 information on the arguments for a particular protocol, type\n\
251 `help target ' followed by the protocol name."),
252 &targetlist, "target ", 0, &cmdlist);
253 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
254 }
255
256 /* Stub functions */
257
258 void
259 target_ignore (void)
260 {
261 }
262
263 void
264 target_load (char *arg, int from_tty)
265 {
266 dcache_invalidate (target_dcache);
267 (*current_target.to_load) (arg, from_tty);
268 }
269
270 static int
271 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
272 struct target_ops *t)
273 {
274 errno = EIO; /* Can't read/write this location */
275 return 0; /* No bytes handled */
276 }
277
278 static void
279 tcomplain (void)
280 {
281 error (_("You can't do that when your target is `%s'"),
282 current_target.to_shortname);
283 }
284
285 void
286 noprocess (void)
287 {
288 error (_("You can't do that without a process to debug."));
289 }
290
291 static int
292 nosymbol (char *name, CORE_ADDR *addrp)
293 {
294 return 1; /* Symbol does not exist in target env */
295 }
296
297 static void
298 nosupport_runtime (void)
299 {
300 if (ptid_equal (inferior_ptid, null_ptid))
301 noprocess ();
302 else
303 error (_("No run-time support for this"));
304 }
305
306
307 static void
308 default_terminal_info (char *args, int from_tty)
309 {
310 printf_unfiltered (_("No saved terminal information.\n"));
311 }
312
313 /* This is the default target_create_inferior and target_attach function.
314 If the current target is executing, it asks whether to kill it off.
315 If this function returns without calling error(), it has killed off
316 the target, and the operation should be attempted. */
317
318 static void
319 kill_or_be_killed (int from_tty)
320 {
321 if (target_has_execution)
322 {
323 printf_unfiltered (_("You are already running a program:\n"));
324 target_files_info ();
325 if (query ("Kill it? "))
326 {
327 target_kill ();
328 if (target_has_execution)
329 error (_("Killing the program did not help."));
330 return;
331 }
332 else
333 {
334 error (_("Program not killed."));
335 }
336 }
337 tcomplain ();
338 }
339
340 static void
341 maybe_kill_then_attach (char *args, int from_tty)
342 {
343 kill_or_be_killed (from_tty);
344 target_attach (args, from_tty);
345 }
346
347 static void
348 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
349 int from_tty)
350 {
351 kill_or_be_killed (0);
352 target_create_inferior (exec, args, env, from_tty);
353 }
354
355 /* Go through the target stack from top to bottom, copying over zero
356 entries in current_target, then filling in still empty entries. In
357 effect, we are doing class inheritance through the pushed target
358 vectors.
359
360 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
361 is currently implemented, is that it discards any knowledge of
362 which target an inherited method originally belonged to.
363 Consequently, new new target methods should instead explicitly and
364 locally search the target stack for the target that can handle the
365 request. */
366
367 static void
368 update_current_target (void)
369 {
370 struct target_ops *t;
371
372 /* First, reset curren'ts contents. */
373 memset (&current_target, 0, sizeof (current_target));
374
375 #define INHERIT(FIELD, TARGET) \
376 if (!current_target.FIELD) \
377 current_target.FIELD = (TARGET)->FIELD
378
379 for (t = target_stack; t; t = t->beneath)
380 {
381 INHERIT (to_shortname, t);
382 INHERIT (to_longname, t);
383 INHERIT (to_doc, t);
384 INHERIT (to_open, t);
385 INHERIT (to_close, t);
386 INHERIT (to_attach, t);
387 INHERIT (to_post_attach, t);
388 INHERIT (to_detach, t);
389 /* Do not inherit to_disconnect. */
390 INHERIT (to_resume, t);
391 INHERIT (to_wait, t);
392 INHERIT (to_fetch_registers, t);
393 INHERIT (to_store_registers, t);
394 INHERIT (to_prepare_to_store, t);
395 INHERIT (deprecated_xfer_memory, t);
396 INHERIT (to_files_info, t);
397 INHERIT (to_insert_breakpoint, t);
398 INHERIT (to_remove_breakpoint, t);
399 INHERIT (to_can_use_hw_breakpoint, t);
400 INHERIT (to_insert_hw_breakpoint, t);
401 INHERIT (to_remove_hw_breakpoint, t);
402 INHERIT (to_insert_watchpoint, t);
403 INHERIT (to_remove_watchpoint, t);
404 INHERIT (to_stopped_data_address, t);
405 INHERIT (to_stopped_by_watchpoint, t);
406 INHERIT (to_have_continuable_watchpoint, t);
407 INHERIT (to_region_ok_for_hw_watchpoint, t);
408 INHERIT (to_terminal_init, t);
409 INHERIT (to_terminal_inferior, t);
410 INHERIT (to_terminal_ours_for_output, t);
411 INHERIT (to_terminal_ours, t);
412 INHERIT (to_terminal_save_ours, t);
413 INHERIT (to_terminal_info, t);
414 INHERIT (to_kill, t);
415 INHERIT (to_load, t);
416 INHERIT (to_lookup_symbol, t);
417 INHERIT (to_create_inferior, t);
418 INHERIT (to_post_startup_inferior, t);
419 INHERIT (to_acknowledge_created_inferior, t);
420 INHERIT (to_insert_fork_catchpoint, t);
421 INHERIT (to_remove_fork_catchpoint, t);
422 INHERIT (to_insert_vfork_catchpoint, t);
423 INHERIT (to_remove_vfork_catchpoint, t);
424 /* Do not inherit to_follow_fork. */
425 INHERIT (to_insert_exec_catchpoint, t);
426 INHERIT (to_remove_exec_catchpoint, t);
427 INHERIT (to_reported_exec_events_per_exec_call, t);
428 INHERIT (to_has_exited, t);
429 INHERIT (to_mourn_inferior, t);
430 INHERIT (to_can_run, t);
431 INHERIT (to_notice_signals, t);
432 INHERIT (to_thread_alive, t);
433 INHERIT (to_find_new_threads, t);
434 INHERIT (to_pid_to_str, t);
435 INHERIT (to_extra_thread_info, t);
436 INHERIT (to_stop, t);
437 /* Do not inherit to_xfer_partial. */
438 INHERIT (to_rcmd, t);
439 INHERIT (to_enable_exception_callback, t);
440 INHERIT (to_get_current_exception_event, t);
441 INHERIT (to_pid_to_exec_file, t);
442 INHERIT (to_stratum, t);
443 INHERIT (to_has_all_memory, t);
444 INHERIT (to_has_memory, t);
445 INHERIT (to_has_stack, t);
446 INHERIT (to_has_registers, t);
447 INHERIT (to_has_execution, t);
448 INHERIT (to_has_thread_control, t);
449 INHERIT (to_sections, t);
450 INHERIT (to_sections_end, t);
451 INHERIT (to_can_async_p, t);
452 INHERIT (to_is_async_p, t);
453 INHERIT (to_async, t);
454 INHERIT (to_async_mask_value, t);
455 INHERIT (to_find_memory_regions, t);
456 INHERIT (to_make_corefile_notes, t);
457 INHERIT (to_get_thread_local_address, t);
458 INHERIT (to_magic, t);
459 }
460 #undef INHERIT
461
462 /* Clean up a target struct so it no longer has any zero pointers in
463 it. Some entries are defaulted to a method that print an error,
464 others are hard-wired to a standard recursive default. */
465
466 #define de_fault(field, value) \
467 if (!current_target.field) \
468 current_target.field = value
469
470 de_fault (to_open,
471 (void (*) (char *, int))
472 tcomplain);
473 de_fault (to_close,
474 (void (*) (int))
475 target_ignore);
476 de_fault (to_attach,
477 maybe_kill_then_attach);
478 de_fault (to_post_attach,
479 (void (*) (int))
480 target_ignore);
481 de_fault (to_detach,
482 (void (*) (char *, int))
483 target_ignore);
484 de_fault (to_resume,
485 (void (*) (ptid_t, int, enum target_signal))
486 noprocess);
487 de_fault (to_wait,
488 (ptid_t (*) (ptid_t, struct target_waitstatus *))
489 noprocess);
490 de_fault (to_fetch_registers,
491 (void (*) (int))
492 target_ignore);
493 de_fault (to_store_registers,
494 (void (*) (int))
495 noprocess);
496 de_fault (to_prepare_to_store,
497 (void (*) (void))
498 noprocess);
499 de_fault (deprecated_xfer_memory,
500 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
501 nomemory);
502 de_fault (to_files_info,
503 (void (*) (struct target_ops *))
504 target_ignore);
505 de_fault (to_insert_breakpoint,
506 memory_insert_breakpoint);
507 de_fault (to_remove_breakpoint,
508 memory_remove_breakpoint);
509 de_fault (to_can_use_hw_breakpoint,
510 (int (*) (int, int, int))
511 return_zero);
512 de_fault (to_insert_hw_breakpoint,
513 (int (*) (struct bp_target_info *))
514 return_minus_one);
515 de_fault (to_remove_hw_breakpoint,
516 (int (*) (struct bp_target_info *))
517 return_minus_one);
518 de_fault (to_insert_watchpoint,
519 (int (*) (CORE_ADDR, int, int))
520 return_minus_one);
521 de_fault (to_remove_watchpoint,
522 (int (*) (CORE_ADDR, int, int))
523 return_minus_one);
524 de_fault (to_stopped_by_watchpoint,
525 (int (*) (void))
526 return_zero);
527 de_fault (to_stopped_data_address,
528 (int (*) (struct target_ops *, CORE_ADDR *))
529 return_zero);
530 de_fault (to_region_ok_for_hw_watchpoint,
531 default_region_ok_for_hw_watchpoint);
532 de_fault (to_terminal_init,
533 (void (*) (void))
534 target_ignore);
535 de_fault (to_terminal_inferior,
536 (void (*) (void))
537 target_ignore);
538 de_fault (to_terminal_ours_for_output,
539 (void (*) (void))
540 target_ignore);
541 de_fault (to_terminal_ours,
542 (void (*) (void))
543 target_ignore);
544 de_fault (to_terminal_save_ours,
545 (void (*) (void))
546 target_ignore);
547 de_fault (to_terminal_info,
548 default_terminal_info);
549 de_fault (to_kill,
550 (void (*) (void))
551 noprocess);
552 de_fault (to_load,
553 (void (*) (char *, int))
554 tcomplain);
555 de_fault (to_lookup_symbol,
556 (int (*) (char *, CORE_ADDR *))
557 nosymbol);
558 de_fault (to_create_inferior,
559 maybe_kill_then_create_inferior);
560 de_fault (to_post_startup_inferior,
561 (void (*) (ptid_t))
562 target_ignore);
563 de_fault (to_acknowledge_created_inferior,
564 (void (*) (int))
565 target_ignore);
566 de_fault (to_insert_fork_catchpoint,
567 (void (*) (int))
568 tcomplain);
569 de_fault (to_remove_fork_catchpoint,
570 (int (*) (int))
571 tcomplain);
572 de_fault (to_insert_vfork_catchpoint,
573 (void (*) (int))
574 tcomplain);
575 de_fault (to_remove_vfork_catchpoint,
576 (int (*) (int))
577 tcomplain);
578 de_fault (to_insert_exec_catchpoint,
579 (void (*) (int))
580 tcomplain);
581 de_fault (to_remove_exec_catchpoint,
582 (int (*) (int))
583 tcomplain);
584 de_fault (to_reported_exec_events_per_exec_call,
585 (int (*) (void))
586 return_one);
587 de_fault (to_has_exited,
588 (int (*) (int, int, int *))
589 return_zero);
590 de_fault (to_mourn_inferior,
591 (void (*) (void))
592 noprocess);
593 de_fault (to_can_run,
594 return_zero);
595 de_fault (to_notice_signals,
596 (void (*) (ptid_t))
597 target_ignore);
598 de_fault (to_thread_alive,
599 (int (*) (ptid_t))
600 return_zero);
601 de_fault (to_find_new_threads,
602 (void (*) (void))
603 target_ignore);
604 de_fault (to_extra_thread_info,
605 (char *(*) (struct thread_info *))
606 return_zero);
607 de_fault (to_stop,
608 (void (*) (void))
609 target_ignore);
610 current_target.to_xfer_partial = default_xfer_partial;
611 de_fault (to_rcmd,
612 (void (*) (char *, struct ui_file *))
613 tcomplain);
614 de_fault (to_enable_exception_callback,
615 (struct symtab_and_line * (*) (enum exception_event_kind, int))
616 nosupport_runtime);
617 de_fault (to_get_current_exception_event,
618 (struct exception_event_record * (*) (void))
619 nosupport_runtime);
620 de_fault (to_pid_to_exec_file,
621 (char *(*) (int))
622 return_zero);
623 de_fault (to_can_async_p,
624 (int (*) (void))
625 return_zero);
626 de_fault (to_is_async_p,
627 (int (*) (void))
628 return_zero);
629 de_fault (to_async,
630 (void (*) (void (*) (enum inferior_event_type, void*), void*))
631 tcomplain);
632 #undef de_fault
633
634 /* Finally, position the target-stack beneath the squashed
635 "current_target". That way code looking for a non-inherited
636 target method can quickly and simply find it. */
637 current_target.beneath = target_stack;
638 }
639
640 /* Push a new target type into the stack of the existing target accessors,
641 possibly superseding some of the existing accessors.
642
643 Result is zero if the pushed target ended up on top of the stack,
644 nonzero if at least one target is on top of it.
645
646 Rather than allow an empty stack, we always have the dummy target at
647 the bottom stratum, so we can call the function vectors without
648 checking them. */
649
650 int
651 push_target (struct target_ops *t)
652 {
653 struct target_ops **cur;
654
655 /* Check magic number. If wrong, it probably means someone changed
656 the struct definition, but not all the places that initialize one. */
657 if (t->to_magic != OPS_MAGIC)
658 {
659 fprintf_unfiltered (gdb_stderr,
660 "Magic number of %s target struct wrong\n",
661 t->to_shortname);
662 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
663 }
664
665 /* Find the proper stratum to install this target in. */
666 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
667 {
668 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
669 break;
670 }
671
672 /* If there's already targets at this stratum, remove them. */
673 /* FIXME: cagney/2003-10-15: I think this should be popping all
674 targets to CUR, and not just those at this stratum level. */
675 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
676 {
677 /* There's already something at this stratum level. Close it,
678 and un-hook it from the stack. */
679 struct target_ops *tmp = (*cur);
680 (*cur) = (*cur)->beneath;
681 tmp->beneath = NULL;
682 target_close (tmp, 0);
683 }
684
685 /* We have removed all targets in our stratum, now add the new one. */
686 t->beneath = (*cur);
687 (*cur) = t;
688
689 update_current_target ();
690
691 if (targetdebug)
692 setup_target_debug ();
693
694 /* Not on top? */
695 return (t != target_stack);
696 }
697
698 /* Remove a target_ops vector from the stack, wherever it may be.
699 Return how many times it was removed (0 or 1). */
700
701 int
702 unpush_target (struct target_ops *t)
703 {
704 struct target_ops **cur;
705 struct target_ops *tmp;
706
707 /* Look for the specified target. Note that we assume that a target
708 can only occur once in the target stack. */
709
710 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
711 {
712 if ((*cur) == t)
713 break;
714 }
715
716 if ((*cur) == NULL)
717 return 0; /* Didn't find target_ops, quit now */
718
719 /* NOTE: cagney/2003-12-06: In '94 the close call was made
720 unconditional by moving it to before the above check that the
721 target was in the target stack (something about "Change the way
722 pushing and popping of targets work to support target overlays
723 and inheritance"). This doesn't make much sense - only open
724 targets should be closed. */
725 target_close (t, 0);
726
727 /* Unchain the target */
728 tmp = (*cur);
729 (*cur) = (*cur)->beneath;
730 tmp->beneath = NULL;
731
732 update_current_target ();
733
734 return 1;
735 }
736
737 void
738 pop_target (void)
739 {
740 target_close (&current_target, 0); /* Let it clean up */
741 if (unpush_target (target_stack) == 1)
742 return;
743
744 fprintf_unfiltered (gdb_stderr,
745 "pop_target couldn't find target %s\n",
746 current_target.to_shortname);
747 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
748 }
749
750 #undef MIN
751 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
752
753 /* target_read_string -- read a null terminated string, up to LEN bytes,
754 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
755 Set *STRING to a pointer to malloc'd memory containing the data; the caller
756 is responsible for freeing it. Return the number of bytes successfully
757 read. */
758
759 int
760 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
761 {
762 int tlen, origlen, offset, i;
763 gdb_byte buf[4];
764 int errcode = 0;
765 char *buffer;
766 int buffer_allocated;
767 char *bufptr;
768 unsigned int nbytes_read = 0;
769
770 /* Small for testing. */
771 buffer_allocated = 4;
772 buffer = xmalloc (buffer_allocated);
773 bufptr = buffer;
774
775 origlen = len;
776
777 while (len > 0)
778 {
779 tlen = MIN (len, 4 - (memaddr & 3));
780 offset = memaddr & 3;
781
782 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
783 if (errcode != 0)
784 {
785 /* The transfer request might have crossed the boundary to an
786 unallocated region of memory. Retry the transfer, requesting
787 a single byte. */
788 tlen = 1;
789 offset = 0;
790 errcode = target_read_memory (memaddr, buf, 1);
791 if (errcode != 0)
792 goto done;
793 }
794
795 if (bufptr - buffer + tlen > buffer_allocated)
796 {
797 unsigned int bytes;
798 bytes = bufptr - buffer;
799 buffer_allocated *= 2;
800 buffer = xrealloc (buffer, buffer_allocated);
801 bufptr = buffer + bytes;
802 }
803
804 for (i = 0; i < tlen; i++)
805 {
806 *bufptr++ = buf[i + offset];
807 if (buf[i + offset] == '\000')
808 {
809 nbytes_read += i + 1;
810 goto done;
811 }
812 }
813
814 memaddr += tlen;
815 len -= tlen;
816 nbytes_read += tlen;
817 }
818 done:
819 if (errnop != NULL)
820 *errnop = errcode;
821 if (string != NULL)
822 *string = buffer;
823 return nbytes_read;
824 }
825
826 /* Find a section containing ADDR. */
827 struct section_table *
828 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
829 {
830 struct section_table *secp;
831 for (secp = target->to_sections;
832 secp < target->to_sections_end;
833 secp++)
834 {
835 if (addr >= secp->addr && addr < secp->endaddr)
836 return secp;
837 }
838 return NULL;
839 }
840
841 /* Return non-zero when the target vector has supplied an xfer_partial
842 method and it, rather than xfer_memory, should be used. */
843 static int
844 target_xfer_partial_p (void)
845 {
846 return (target_stack != NULL
847 && target_stack->to_xfer_partial != default_xfer_partial);
848 }
849
850 static LONGEST
851 target_xfer_partial (struct target_ops *ops,
852 enum target_object object, const char *annex,
853 void *readbuf, const void *writebuf,
854 ULONGEST offset, LONGEST len)
855 {
856 LONGEST retval;
857
858 gdb_assert (ops->to_xfer_partial != NULL);
859 retval = ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
860 offset, len);
861 if (targetdebug)
862 {
863 const unsigned char *myaddr = NULL;
864
865 fprintf_unfiltered (gdb_stdlog,
866 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
867 ops->to_shortname,
868 (int) object,
869 (annex ? annex : "(null)"),
870 (long) readbuf, (long) writebuf,
871 paddr_nz (offset), paddr_d (len), paddr_d (retval));
872
873 if (readbuf)
874 myaddr = readbuf;
875 if (writebuf)
876 myaddr = writebuf;
877 if (retval > 0 && myaddr != NULL)
878 {
879 int i;
880
881 fputs_unfiltered (", bytes =", gdb_stdlog);
882 for (i = 0; i < retval; i++)
883 {
884 if ((((long) &(myaddr[i])) & 0xf) == 0)
885 {
886 if (targetdebug < 2 && i > 0)
887 {
888 fprintf_unfiltered (gdb_stdlog, " ...");
889 break;
890 }
891 fprintf_unfiltered (gdb_stdlog, "\n");
892 }
893
894 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
895 }
896 }
897
898 fputc_unfiltered ('\n', gdb_stdlog);
899 }
900 return retval;
901 }
902
903 /* Attempt a transfer all LEN bytes starting at OFFSET between the
904 inferior's KIND:ANNEX space and GDB's READBUF/WRITEBUF buffer. If
905 the transfer succeeds, return zero, otherwize the host ERRNO is
906 returned.
907
908 The inferior is formed from several layers. In the case of
909 corefiles, inf-corefile is layered above inf-exec and a request for
910 text (corefiles do not include text pages) will be first sent to
911 the core-stratum, fail, and then sent to the object-file where it
912 will succeed.
913
914 NOTE: cagney/2004-09-30:
915
916 The old code tried to use four separate mechanisms for mapping an
917 object:offset:len tuple onto an inferior and its address space: the
918 target stack; the inferior's TO_SECTIONS; solib's SO_LIST;
919 overlays.
920
921 This is stupid.
922
923 The code below is instead using a single mechanism (currently
924 strata). If that mechanism proves insufficient then re-factor it
925 implementing another singluar mechanism (for instance, a generic
926 object:annex onto inferior:object:annex say). */
927
928 static LONGEST
929 xfer_using_stratum (enum target_object object, const char *annex,
930 ULONGEST offset, LONGEST len, void *readbuf,
931 const void *writebuf)
932 {
933 LONGEST xfered;
934 struct target_ops *target;
935
936 /* Always successful. */
937 if (len == 0)
938 return 0;
939 /* Never successful. */
940 if (target_stack == NULL)
941 return EIO;
942
943 target = target_stack;
944 while (1)
945 {
946 xfered = target_xfer_partial (target, object, annex,
947 readbuf, writebuf, offset, len);
948 if (xfered > 0)
949 {
950 /* The partial xfer succeeded, update the counts, check that
951 the xfer hasn't finished and if it hasn't set things up
952 for the next round. */
953 len -= xfered;
954 if (len <= 0)
955 return 0;
956 offset += xfered;
957 if (readbuf != NULL)
958 readbuf = (gdb_byte *) readbuf + xfered;
959 if (writebuf != NULL)
960 writebuf = (gdb_byte *) writebuf + xfered;
961 target = target_stack;
962 }
963 else if (xfered < 0)
964 {
965 /* Something totally screwed up, abandon the attempt to
966 xfer. */
967 if (errno)
968 return errno;
969 else
970 return EIO;
971 }
972 else
973 {
974 /* This "stratum" didn't work, try the next one down. */
975 target = target->beneath;
976 if (target == NULL)
977 return EIO;
978 }
979 }
980 }
981
982 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
983 GDB's memory at MYADDR. Returns either 0 for success or an errno value
984 if any error occurs.
985
986 If an error occurs, no guarantee is made about the contents of the data at
987 MYADDR. In particular, the caller should not depend upon partial reads
988 filling the buffer with good data. There is no way for the caller to know
989 how much good data might have been transfered anyway. Callers that can
990 deal with partial reads should call target_read_memory_partial. */
991
992 int
993 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
994 {
995 if (target_xfer_partial_p ())
996 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
997 memaddr, len, myaddr, NULL);
998 else
999 return target_xfer_memory (memaddr, myaddr, len, 0);
1000 }
1001
1002 int
1003 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1004 {
1005 gdb_byte *bytes = alloca (len);
1006 memcpy (bytes, myaddr, len);
1007 if (target_xfer_partial_p ())
1008 return xfer_using_stratum (TARGET_OBJECT_MEMORY, NULL,
1009 memaddr, len, NULL, bytes);
1010 else
1011 return target_xfer_memory (memaddr, bytes, len, 1);
1012 }
1013
1014 #ifndef target_stopped_data_address_p
1015 int
1016 target_stopped_data_address_p (struct target_ops *target)
1017 {
1018 if (target->to_stopped_data_address
1019 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1020 return 0;
1021 if (target->to_stopped_data_address == debug_to_stopped_data_address
1022 && (debug_target.to_stopped_data_address
1023 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1024 return 0;
1025 return 1;
1026 }
1027 #endif
1028
1029 static int trust_readonly = 0;
1030 static void
1031 show_trust_readonly (struct ui_file *file, int from_tty,
1032 struct cmd_list_element *c, const char *value)
1033 {
1034 fprintf_filtered (file, _("\
1035 Mode for reading from readonly sections is %s.\n"),
1036 value);
1037 }
1038
1039 /* Move memory to or from the targets. The top target gets priority;
1040 if it cannot handle it, it is offered to the next one down, etc.
1041
1042 Result is -1 on error, or the number of bytes transfered. */
1043
1044 int
1045 do_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
1046 struct mem_attrib *attrib)
1047 {
1048 int res;
1049 int done = 0;
1050 struct target_ops *t;
1051
1052 /* Zero length requests are ok and require no work. */
1053 if (len == 0)
1054 return 0;
1055
1056 /* deprecated_xfer_memory is not guaranteed to set errno, even when
1057 it returns 0. */
1058 errno = 0;
1059
1060 if (!write && trust_readonly)
1061 {
1062 struct section_table *secp;
1063 /* User-settable option, "trust-readonly-sections". If true,
1064 then memory from any SEC_READONLY bfd section may be read
1065 directly from the bfd file. */
1066 secp = target_section_by_addr (&current_target, memaddr);
1067 if (secp != NULL
1068 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1069 & SEC_READONLY))
1070 return xfer_memory (memaddr, myaddr, len, 0, attrib, &current_target);
1071 }
1072
1073 /* The quick case is that the top target can handle the transfer. */
1074 res = current_target.deprecated_xfer_memory
1075 (memaddr, myaddr, len, write, attrib, &current_target);
1076
1077 /* If res <= 0 then we call it again in the loop. Ah well. */
1078 if (res <= 0)
1079 {
1080 for (t = target_stack; t != NULL; t = t->beneath)
1081 {
1082 if (!t->to_has_memory)
1083 continue;
1084
1085 res = t->deprecated_xfer_memory (memaddr, myaddr, len, write, attrib, t);
1086 if (res > 0)
1087 break; /* Handled all or part of xfer */
1088 if (t->to_has_all_memory)
1089 break;
1090 }
1091
1092 if (res <= 0)
1093 return -1;
1094 }
1095
1096 return res;
1097 }
1098
1099
1100 /* Perform a memory transfer. Iterate until the entire region has
1101 been transfered.
1102
1103 Result is 0 or errno value. */
1104
1105 static int
1106 target_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write)
1107 {
1108 int res;
1109 int reg_len;
1110 struct mem_region *region;
1111
1112 /* Zero length requests are ok and require no work. */
1113 if (len == 0)
1114 {
1115 return 0;
1116 }
1117
1118 while (len > 0)
1119 {
1120 region = lookup_mem_region(memaddr);
1121 if (memaddr + len < region->hi)
1122 reg_len = len;
1123 else
1124 reg_len = region->hi - memaddr;
1125
1126 switch (region->attrib.mode)
1127 {
1128 case MEM_RO:
1129 if (write)
1130 return EIO;
1131 break;
1132
1133 case MEM_WO:
1134 if (!write)
1135 return EIO;
1136 break;
1137 }
1138
1139 while (reg_len > 0)
1140 {
1141 if (region->attrib.cache)
1142 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1143 reg_len, write);
1144 else
1145 res = do_xfer_memory (memaddr, myaddr, reg_len, write,
1146 &region->attrib);
1147
1148 if (res <= 0)
1149 {
1150 /* If this address is for nonexistent memory, read zeros
1151 if reading, or do nothing if writing. Return
1152 error. */
1153 if (!write)
1154 memset (myaddr, 0, len);
1155 if (errno == 0)
1156 return EIO;
1157 else
1158 return errno;
1159 }
1160
1161 memaddr += res;
1162 myaddr += res;
1163 len -= res;
1164 reg_len -= res;
1165 }
1166 }
1167
1168 return 0; /* We managed to cover it all somehow. */
1169 }
1170
1171
1172 /* Perform a partial memory transfer.
1173
1174 If we succeed, set *ERR to zero and return the number of bytes transferred.
1175 If we fail, set *ERR to a non-zero errno value, and return -1. */
1176
1177 static int
1178 target_xfer_memory_partial (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
1179 int write_p, int *err)
1180 {
1181 int res;
1182 int reg_len;
1183 struct mem_region *region;
1184
1185 /* Zero length requests are ok and require no work. */
1186 if (len == 0)
1187 {
1188 *err = 0;
1189 return 0;
1190 }
1191
1192 region = lookup_mem_region(memaddr);
1193 if (memaddr + len < region->hi)
1194 reg_len = len;
1195 else
1196 reg_len = region->hi - memaddr;
1197
1198 switch (region->attrib.mode)
1199 {
1200 case MEM_RO:
1201 if (write_p)
1202 {
1203 *err = EIO;
1204 return -1;
1205 }
1206 break;
1207
1208 case MEM_WO:
1209 if (write_p)
1210 {
1211 *err = EIO;
1212 return -1;
1213 }
1214 break;
1215 }
1216
1217 if (region->attrib.cache)
1218 res = dcache_xfer_memory (target_dcache, memaddr, myaddr,
1219 reg_len, write_p);
1220 else
1221 res = do_xfer_memory (memaddr, myaddr, reg_len, write_p,
1222 &region->attrib);
1223
1224 if (res <= 0)
1225 {
1226 if (errno != 0)
1227 *err = errno;
1228 else
1229 *err = EIO;
1230
1231 return -1;
1232 }
1233
1234 *err = 0;
1235 return res;
1236 }
1237
1238 int
1239 target_read_memory_partial (CORE_ADDR memaddr, gdb_byte *buf,
1240 int len, int *err)
1241 {
1242 if (target_xfer_partial_p ())
1243 {
1244 int retval;
1245
1246 retval = target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY,
1247 NULL, buf, NULL, memaddr, len);
1248
1249 if (retval <= 0)
1250 {
1251 if (errno)
1252 *err = errno;
1253 else
1254 *err = EIO;
1255 return -1;
1256 }
1257 else
1258 {
1259 *err = 0;
1260 return retval;
1261 }
1262 }
1263 else
1264 return target_xfer_memory_partial (memaddr, buf, len, 0, err);
1265 }
1266
1267 int
1268 target_write_memory_partial (CORE_ADDR memaddr, gdb_byte *buf,
1269 int len, int *err)
1270 {
1271 if (target_xfer_partial_p ())
1272 {
1273 int retval;
1274
1275 retval = target_xfer_partial (target_stack, TARGET_OBJECT_MEMORY,
1276 NULL, NULL, buf, memaddr, len);
1277
1278 if (retval <= 0)
1279 {
1280 if (errno)
1281 *err = errno;
1282 else
1283 *err = EIO;
1284 return -1;
1285 }
1286 else
1287 {
1288 *err = 0;
1289 return retval;
1290 }
1291 }
1292 else
1293 return target_xfer_memory_partial (memaddr, buf, len, 1, err);
1294 }
1295
1296 /* More generic transfers. */
1297
1298 static LONGEST
1299 default_xfer_partial (struct target_ops *ops, enum target_object object,
1300 const char *annex, gdb_byte *readbuf,
1301 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1302 {
1303 if (object == TARGET_OBJECT_MEMORY
1304 && ops->deprecated_xfer_memory != NULL)
1305 /* If available, fall back to the target's
1306 "deprecated_xfer_memory" method. */
1307 {
1308 int xfered = -1;
1309 errno = 0;
1310 if (writebuf != NULL)
1311 {
1312 void *buffer = xmalloc (len);
1313 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1314 memcpy (buffer, writebuf, len);
1315 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1316 1/*write*/, NULL, ops);
1317 do_cleanups (cleanup);
1318 }
1319 if (readbuf != NULL)
1320 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1321 NULL, ops);
1322 if (xfered > 0)
1323 return xfered;
1324 else if (xfered == 0 && errno == 0)
1325 /* "deprecated_xfer_memory" uses 0, cross checked against
1326 ERRNO as one indication of an error. */
1327 return 0;
1328 else
1329 return -1;
1330 }
1331 else if (ops->beneath != NULL)
1332 return target_xfer_partial (ops->beneath, object, annex,
1333 readbuf, writebuf, offset, len);
1334 else
1335 return -1;
1336 }
1337
1338 /* Target vector read/write partial wrapper functions.
1339
1340 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1341 (inbuf, outbuf)", instead of separate read/write methods, make life
1342 easier. */
1343
1344 static LONGEST
1345 target_read_partial (struct target_ops *ops,
1346 enum target_object object,
1347 const char *annex, gdb_byte *buf,
1348 ULONGEST offset, LONGEST len)
1349 {
1350 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1351 }
1352
1353 static LONGEST
1354 target_write_partial (struct target_ops *ops,
1355 enum target_object object,
1356 const char *annex, const gdb_byte *buf,
1357 ULONGEST offset, LONGEST len)
1358 {
1359 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1360 }
1361
1362 /* Wrappers to perform the full transfer. */
1363 LONGEST
1364 target_read (struct target_ops *ops,
1365 enum target_object object,
1366 const char *annex, gdb_byte *buf,
1367 ULONGEST offset, LONGEST len)
1368 {
1369 LONGEST xfered = 0;
1370 while (xfered < len)
1371 {
1372 LONGEST xfer = target_read_partial (ops, object, annex,
1373 (gdb_byte *) buf + xfered,
1374 offset + xfered, len - xfered);
1375 /* Call an observer, notifying them of the xfer progress? */
1376 if (xfer == 0)
1377 return xfered;
1378 if (xfer < 0)
1379 return -1;
1380 xfered += xfer;
1381 QUIT;
1382 }
1383 return len;
1384 }
1385
1386 LONGEST
1387 target_write (struct target_ops *ops,
1388 enum target_object object,
1389 const char *annex, const gdb_byte *buf,
1390 ULONGEST offset, LONGEST len)
1391 {
1392 LONGEST xfered = 0;
1393 while (xfered < len)
1394 {
1395 LONGEST xfer = target_write_partial (ops, object, annex,
1396 (gdb_byte *) buf + xfered,
1397 offset + xfered, len - xfered);
1398 /* Call an observer, notifying them of the xfer progress? */
1399 if (xfer == 0)
1400 return xfered;
1401 if (xfer < 0)
1402 return -1;
1403 xfered += xfer;
1404 QUIT;
1405 }
1406 return len;
1407 }
1408
1409 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
1410 be read using OPS. The return value will be -1 if the transfer
1411 fails or is not supported; 0 if the object is empty; or the length
1412 of the object otherwise. If a positive value is returned, a
1413 sufficiently large buffer will be allocated using xmalloc and
1414 returned in *BUF_P containing the contents of the object.
1415
1416 This method should be used for objects sufficiently small to store
1417 in a single xmalloc'd buffer, when no fixed bound on the object's
1418 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
1419 through this function. */
1420
1421 LONGEST
1422 target_read_alloc (struct target_ops *ops,
1423 enum target_object object,
1424 const char *annex, gdb_byte **buf_p)
1425 {
1426 size_t buf_alloc, buf_pos;
1427 gdb_byte *buf;
1428 LONGEST n;
1429
1430 /* This function does not have a length parameter; it reads the
1431 entire OBJECT). Also, it doesn't support objects fetched partly
1432 from one target and partly from another (in a different stratum,
1433 e.g. a core file and an executable). Both reasons make it
1434 unsuitable for reading memory. */
1435 gdb_assert (object != TARGET_OBJECT_MEMORY);
1436
1437 /* Start by reading up to 4K at a time. The target will throttle
1438 this number down if necessary. */
1439 buf_alloc = 4096;
1440 buf = xmalloc (buf_alloc);
1441 buf_pos = 0;
1442 while (1)
1443 {
1444 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1445 buf_pos, buf_alloc - buf_pos);
1446 if (n < 0)
1447 {
1448 /* An error occurred. */
1449 xfree (buf);
1450 return -1;
1451 }
1452 else if (n == 0)
1453 {
1454 /* Read all there was. */
1455 if (buf_pos == 0)
1456 xfree (buf);
1457 else
1458 *buf_p = buf;
1459 return buf_pos;
1460 }
1461
1462 buf_pos += n;
1463
1464 /* If the buffer is filling up, expand it. */
1465 if (buf_alloc < buf_pos * 2)
1466 {
1467 buf_alloc *= 2;
1468 buf = xrealloc (buf, buf_alloc);
1469 }
1470
1471 QUIT;
1472 }
1473 }
1474
1475 /* Memory transfer methods. */
1476
1477 void
1478 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1479 LONGEST len)
1480 {
1481 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1482 != len)
1483 memory_error (EIO, addr);
1484 }
1485
1486 ULONGEST
1487 get_target_memory_unsigned (struct target_ops *ops,
1488 CORE_ADDR addr, int len)
1489 {
1490 gdb_byte buf[sizeof (ULONGEST)];
1491
1492 gdb_assert (len <= sizeof (buf));
1493 get_target_memory (ops, addr, buf, len);
1494 return extract_unsigned_integer (buf, len);
1495 }
1496
1497 static void
1498 target_info (char *args, int from_tty)
1499 {
1500 struct target_ops *t;
1501 int has_all_mem = 0;
1502
1503 if (symfile_objfile != NULL)
1504 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1505
1506 for (t = target_stack; t != NULL; t = t->beneath)
1507 {
1508 if (!t->to_has_memory)
1509 continue;
1510
1511 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1512 continue;
1513 if (has_all_mem)
1514 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1515 printf_unfiltered ("%s:\n", t->to_longname);
1516 (t->to_files_info) (t);
1517 has_all_mem = t->to_has_all_memory;
1518 }
1519 }
1520
1521 /* This is to be called by the open routine before it does
1522 anything. */
1523
1524 void
1525 target_preopen (int from_tty)
1526 {
1527 dont_repeat ();
1528
1529 if (target_has_execution)
1530 {
1531 if (!from_tty
1532 || query (_("A program is being debugged already. Kill it? ")))
1533 target_kill ();
1534 else
1535 error (_("Program not killed."));
1536 }
1537
1538 /* Calling target_kill may remove the target from the stack. But if
1539 it doesn't (which seems like a win for UDI), remove it now. */
1540
1541 if (target_has_execution)
1542 pop_target ();
1543 }
1544
1545 /* Detach a target after doing deferred register stores. */
1546
1547 void
1548 target_detach (char *args, int from_tty)
1549 {
1550 (current_target.to_detach) (args, from_tty);
1551 }
1552
1553 void
1554 target_disconnect (char *args, int from_tty)
1555 {
1556 struct target_ops *t;
1557
1558 for (t = current_target.beneath; t != NULL; t = t->beneath)
1559 if (t->to_disconnect != NULL)
1560 {
1561 if (targetdebug)
1562 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1563 args, from_tty);
1564 t->to_disconnect (t, args, from_tty);
1565 return;
1566 }
1567
1568 tcomplain ();
1569 }
1570
1571 int
1572 target_async_mask (int mask)
1573 {
1574 int saved_async_masked_status = target_async_mask_value;
1575 target_async_mask_value = mask;
1576 return saved_async_masked_status;
1577 }
1578
1579 /* Look through the list of possible targets for a target that can
1580 follow forks. */
1581
1582 int
1583 target_follow_fork (int follow_child)
1584 {
1585 struct target_ops *t;
1586
1587 for (t = current_target.beneath; t != NULL; t = t->beneath)
1588 {
1589 if (t->to_follow_fork != NULL)
1590 {
1591 int retval = t->to_follow_fork (t, follow_child);
1592 if (targetdebug)
1593 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1594 follow_child, retval);
1595 return retval;
1596 }
1597 }
1598
1599 /* Some target returned a fork event, but did not know how to follow it. */
1600 internal_error (__FILE__, __LINE__,
1601 "could not find a target to follow fork");
1602 }
1603
1604 /* Look through the list of possible targets for a target that can
1605 execute a run or attach command without any other data. This is
1606 used to locate the default process stratum.
1607
1608 Result is always valid (error() is called for errors). */
1609
1610 static struct target_ops *
1611 find_default_run_target (char *do_mesg)
1612 {
1613 struct target_ops **t;
1614 struct target_ops *runable = NULL;
1615 int count;
1616
1617 count = 0;
1618
1619 for (t = target_structs; t < target_structs + target_struct_size;
1620 ++t)
1621 {
1622 if ((*t)->to_can_run && target_can_run (*t))
1623 {
1624 runable = *t;
1625 ++count;
1626 }
1627 }
1628
1629 if (count != 1)
1630 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1631
1632 return runable;
1633 }
1634
1635 void
1636 find_default_attach (char *args, int from_tty)
1637 {
1638 struct target_ops *t;
1639
1640 t = find_default_run_target ("attach");
1641 (t->to_attach) (args, from_tty);
1642 return;
1643 }
1644
1645 void
1646 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1647 int from_tty)
1648 {
1649 struct target_ops *t;
1650
1651 t = find_default_run_target ("run");
1652 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1653 return;
1654 }
1655
1656 static int
1657 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1658 {
1659 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1660 }
1661
1662 static int
1663 return_zero (void)
1664 {
1665 return 0;
1666 }
1667
1668 static int
1669 return_one (void)
1670 {
1671 return 1;
1672 }
1673
1674 static int
1675 return_minus_one (void)
1676 {
1677 return -1;
1678 }
1679
1680 /*
1681 * Resize the to_sections pointer. Also make sure that anyone that
1682 * was holding on to an old value of it gets updated.
1683 * Returns the old size.
1684 */
1685
1686 int
1687 target_resize_to_sections (struct target_ops *target, int num_added)
1688 {
1689 struct target_ops **t;
1690 struct section_table *old_value;
1691 int old_count;
1692
1693 old_value = target->to_sections;
1694
1695 if (target->to_sections)
1696 {
1697 old_count = target->to_sections_end - target->to_sections;
1698 target->to_sections = (struct section_table *)
1699 xrealloc ((char *) target->to_sections,
1700 (sizeof (struct section_table)) * (num_added + old_count));
1701 }
1702 else
1703 {
1704 old_count = 0;
1705 target->to_sections = (struct section_table *)
1706 xmalloc ((sizeof (struct section_table)) * num_added);
1707 }
1708 target->to_sections_end = target->to_sections + (num_added + old_count);
1709
1710 /* Check to see if anyone else was pointing to this structure.
1711 If old_value was null, then no one was. */
1712
1713 if (old_value)
1714 {
1715 for (t = target_structs; t < target_structs + target_struct_size;
1716 ++t)
1717 {
1718 if ((*t)->to_sections == old_value)
1719 {
1720 (*t)->to_sections = target->to_sections;
1721 (*t)->to_sections_end = target->to_sections_end;
1722 }
1723 }
1724 /* There is a flattened view of the target stack in current_target,
1725 so its to_sections pointer might also need updating. */
1726 if (current_target.to_sections == old_value)
1727 {
1728 current_target.to_sections = target->to_sections;
1729 current_target.to_sections_end = target->to_sections_end;
1730 }
1731 }
1732
1733 return old_count;
1734
1735 }
1736
1737 /* Remove all target sections taken from ABFD.
1738
1739 Scan the current target stack for targets whose section tables
1740 refer to sections from BFD, and remove those sections. We use this
1741 when we notice that the inferior has unloaded a shared object, for
1742 example. */
1743 void
1744 remove_target_sections (bfd *abfd)
1745 {
1746 struct target_ops **t;
1747
1748 for (t = target_structs; t < target_structs + target_struct_size; t++)
1749 {
1750 struct section_table *src, *dest;
1751
1752 dest = (*t)->to_sections;
1753 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1754 if (src->bfd != abfd)
1755 {
1756 /* Keep this section. */
1757 if (dest < src) *dest = *src;
1758 dest++;
1759 }
1760
1761 /* If we've dropped any sections, resize the section table. */
1762 if (dest < src)
1763 target_resize_to_sections (*t, dest - src);
1764 }
1765 }
1766
1767
1768
1769
1770 /* Find a single runnable target in the stack and return it. If for
1771 some reason there is more than one, return NULL. */
1772
1773 struct target_ops *
1774 find_run_target (void)
1775 {
1776 struct target_ops **t;
1777 struct target_ops *runable = NULL;
1778 int count;
1779
1780 count = 0;
1781
1782 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1783 {
1784 if ((*t)->to_can_run && target_can_run (*t))
1785 {
1786 runable = *t;
1787 ++count;
1788 }
1789 }
1790
1791 return (count == 1 ? runable : NULL);
1792 }
1793
1794 /* Find a single core_stratum target in the list of targets and return it.
1795 If for some reason there is more than one, return NULL. */
1796
1797 struct target_ops *
1798 find_core_target (void)
1799 {
1800 struct target_ops **t;
1801 struct target_ops *runable = NULL;
1802 int count;
1803
1804 count = 0;
1805
1806 for (t = target_structs; t < target_structs + target_struct_size;
1807 ++t)
1808 {
1809 if ((*t)->to_stratum == core_stratum)
1810 {
1811 runable = *t;
1812 ++count;
1813 }
1814 }
1815
1816 return (count == 1 ? runable : NULL);
1817 }
1818
1819 /*
1820 * Find the next target down the stack from the specified target.
1821 */
1822
1823 struct target_ops *
1824 find_target_beneath (struct target_ops *t)
1825 {
1826 return t->beneath;
1827 }
1828
1829 \f
1830 /* The inferior process has died. Long live the inferior! */
1831
1832 void
1833 generic_mourn_inferior (void)
1834 {
1835 extern int show_breakpoint_hit_counts;
1836
1837 inferior_ptid = null_ptid;
1838 attach_flag = 0;
1839 breakpoint_init_inferior (inf_exited);
1840 registers_changed ();
1841
1842 reopen_exec_file ();
1843 reinit_frame_cache ();
1844
1845 /* It is confusing to the user for ignore counts to stick around
1846 from previous runs of the inferior. So clear them. */
1847 /* However, it is more confusing for the ignore counts to disappear when
1848 using hit counts. So don't clear them if we're counting hits. */
1849 if (!show_breakpoint_hit_counts)
1850 breakpoint_clear_ignore_counts ();
1851
1852 if (deprecated_detach_hook)
1853 deprecated_detach_hook ();
1854 }
1855 \f
1856 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1857 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1858 translation of that in OURSTATUS. */
1859 void
1860 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1861 {
1862 #ifdef CHILD_SPECIAL_WAITSTATUS
1863 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1864 if it wants to deal with hoststatus. */
1865 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1866 return;
1867 #endif
1868
1869 if (WIFEXITED (hoststatus))
1870 {
1871 ourstatus->kind = TARGET_WAITKIND_EXITED;
1872 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1873 }
1874 else if (!WIFSTOPPED (hoststatus))
1875 {
1876 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1877 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1878 }
1879 else
1880 {
1881 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1882 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1883 }
1884 }
1885 \f
1886 /* Returns zero to leave the inferior alone, one to interrupt it. */
1887 int (*target_activity_function) (void);
1888 int target_activity_fd;
1889 \f
1890 /* Convert a normal process ID to a string. Returns the string in a
1891 static buffer. */
1892
1893 char *
1894 normal_pid_to_str (ptid_t ptid)
1895 {
1896 static char buf[32];
1897
1898 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
1899 return buf;
1900 }
1901
1902 /* Error-catcher for target_find_memory_regions */
1903 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
1904 {
1905 error (_("No target."));
1906 return 0;
1907 }
1908
1909 /* Error-catcher for target_make_corefile_notes */
1910 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
1911 {
1912 error (_("No target."));
1913 return NULL;
1914 }
1915
1916 /* Set up the handful of non-empty slots needed by the dummy target
1917 vector. */
1918
1919 static void
1920 init_dummy_target (void)
1921 {
1922 dummy_target.to_shortname = "None";
1923 dummy_target.to_longname = "None";
1924 dummy_target.to_doc = "";
1925 dummy_target.to_attach = find_default_attach;
1926 dummy_target.to_create_inferior = find_default_create_inferior;
1927 dummy_target.to_pid_to_str = normal_pid_to_str;
1928 dummy_target.to_stratum = dummy_stratum;
1929 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
1930 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
1931 dummy_target.to_xfer_partial = default_xfer_partial;
1932 dummy_target.to_magic = OPS_MAGIC;
1933 }
1934 \f
1935 static void
1936 debug_to_open (char *args, int from_tty)
1937 {
1938 debug_target.to_open (args, from_tty);
1939
1940 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
1941 }
1942
1943 static void
1944 debug_to_close (int quitting)
1945 {
1946 target_close (&debug_target, quitting);
1947 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
1948 }
1949
1950 void
1951 target_close (struct target_ops *targ, int quitting)
1952 {
1953 if (targ->to_xclose != NULL)
1954 targ->to_xclose (targ, quitting);
1955 else if (targ->to_close != NULL)
1956 targ->to_close (quitting);
1957 }
1958
1959 static void
1960 debug_to_attach (char *args, int from_tty)
1961 {
1962 debug_target.to_attach (args, from_tty);
1963
1964 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
1965 }
1966
1967
1968 static void
1969 debug_to_post_attach (int pid)
1970 {
1971 debug_target.to_post_attach (pid);
1972
1973 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
1974 }
1975
1976 static void
1977 debug_to_detach (char *args, int from_tty)
1978 {
1979 debug_target.to_detach (args, from_tty);
1980
1981 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
1982 }
1983
1984 static void
1985 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
1986 {
1987 debug_target.to_resume (ptid, step, siggnal);
1988
1989 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
1990 step ? "step" : "continue",
1991 target_signal_to_name (siggnal));
1992 }
1993
1994 static ptid_t
1995 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
1996 {
1997 ptid_t retval;
1998
1999 retval = debug_target.to_wait (ptid, status);
2000
2001 fprintf_unfiltered (gdb_stdlog,
2002 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2003 PIDGET (retval));
2004 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2005 switch (status->kind)
2006 {
2007 case TARGET_WAITKIND_EXITED:
2008 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2009 status->value.integer);
2010 break;
2011 case TARGET_WAITKIND_STOPPED:
2012 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2013 target_signal_to_name (status->value.sig));
2014 break;
2015 case TARGET_WAITKIND_SIGNALLED:
2016 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2017 target_signal_to_name (status->value.sig));
2018 break;
2019 case TARGET_WAITKIND_LOADED:
2020 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2021 break;
2022 case TARGET_WAITKIND_FORKED:
2023 fprintf_unfiltered (gdb_stdlog, "forked\n");
2024 break;
2025 case TARGET_WAITKIND_VFORKED:
2026 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2027 break;
2028 case TARGET_WAITKIND_EXECD:
2029 fprintf_unfiltered (gdb_stdlog, "execd\n");
2030 break;
2031 case TARGET_WAITKIND_SPURIOUS:
2032 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2033 break;
2034 default:
2035 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2036 break;
2037 }
2038
2039 return retval;
2040 }
2041
2042 static void
2043 debug_print_register (const char * func, int regno)
2044 {
2045 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2046 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
2047 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
2048 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
2049 else
2050 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2051 if (regno >= 0)
2052 {
2053 int i;
2054 unsigned char buf[MAX_REGISTER_SIZE];
2055 deprecated_read_register_gen (regno, buf);
2056 fprintf_unfiltered (gdb_stdlog, " = ");
2057 for (i = 0; i < register_size (current_gdbarch, regno); i++)
2058 {
2059 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2060 }
2061 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
2062 {
2063 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2064 paddr_nz (read_register (regno)),
2065 paddr_d (read_register (regno)));
2066 }
2067 }
2068 fprintf_unfiltered (gdb_stdlog, "\n");
2069 }
2070
2071 static void
2072 debug_to_fetch_registers (int regno)
2073 {
2074 debug_target.to_fetch_registers (regno);
2075 debug_print_register ("target_fetch_registers", regno);
2076 }
2077
2078 static void
2079 debug_to_store_registers (int regno)
2080 {
2081 debug_target.to_store_registers (regno);
2082 debug_print_register ("target_store_registers", regno);
2083 fprintf_unfiltered (gdb_stdlog, "\n");
2084 }
2085
2086 static void
2087 debug_to_prepare_to_store (void)
2088 {
2089 debug_target.to_prepare_to_store ();
2090
2091 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2092 }
2093
2094 static int
2095 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2096 int write, struct mem_attrib *attrib,
2097 struct target_ops *target)
2098 {
2099 int retval;
2100
2101 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2102 attrib, target);
2103
2104 fprintf_unfiltered (gdb_stdlog,
2105 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2106 (unsigned int) memaddr, /* possable truncate long long */
2107 len, write ? "write" : "read", retval);
2108
2109 if (retval > 0)
2110 {
2111 int i;
2112
2113 fputs_unfiltered (", bytes =", gdb_stdlog);
2114 for (i = 0; i < retval; i++)
2115 {
2116 if ((((long) &(myaddr[i])) & 0xf) == 0)
2117 {
2118 if (targetdebug < 2 && i > 0)
2119 {
2120 fprintf_unfiltered (gdb_stdlog, " ...");
2121 break;
2122 }
2123 fprintf_unfiltered (gdb_stdlog, "\n");
2124 }
2125
2126 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2127 }
2128 }
2129
2130 fputc_unfiltered ('\n', gdb_stdlog);
2131
2132 return retval;
2133 }
2134
2135 static void
2136 debug_to_files_info (struct target_ops *target)
2137 {
2138 debug_target.to_files_info (target);
2139
2140 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2141 }
2142
2143 static int
2144 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2145 {
2146 int retval;
2147
2148 retval = debug_target.to_insert_breakpoint (bp_tgt);
2149
2150 fprintf_unfiltered (gdb_stdlog,
2151 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2152 (unsigned long) bp_tgt->placed_address,
2153 (unsigned long) retval);
2154 return retval;
2155 }
2156
2157 static int
2158 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2159 {
2160 int retval;
2161
2162 retval = debug_target.to_remove_breakpoint (bp_tgt);
2163
2164 fprintf_unfiltered (gdb_stdlog,
2165 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2166 (unsigned long) bp_tgt->placed_address,
2167 (unsigned long) retval);
2168 return retval;
2169 }
2170
2171 static int
2172 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2173 {
2174 int retval;
2175
2176 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2177
2178 fprintf_unfiltered (gdb_stdlog,
2179 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2180 (unsigned long) type,
2181 (unsigned long) cnt,
2182 (unsigned long) from_tty,
2183 (unsigned long) retval);
2184 return retval;
2185 }
2186
2187 static int
2188 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2189 {
2190 CORE_ADDR retval;
2191
2192 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2193
2194 fprintf_unfiltered (gdb_stdlog,
2195 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2196 (unsigned long) addr,
2197 (unsigned long) len,
2198 (unsigned long) retval);
2199 return retval;
2200 }
2201
2202 static int
2203 debug_to_stopped_by_watchpoint (void)
2204 {
2205 int retval;
2206
2207 retval = debug_target.to_stopped_by_watchpoint ();
2208
2209 fprintf_unfiltered (gdb_stdlog,
2210 "STOPPED_BY_WATCHPOINT () = %ld\n",
2211 (unsigned long) retval);
2212 return retval;
2213 }
2214
2215 static int
2216 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2217 {
2218 int retval;
2219
2220 retval = debug_target.to_stopped_data_address (target, addr);
2221
2222 fprintf_unfiltered (gdb_stdlog,
2223 "target_stopped_data_address ([0x%lx]) = %ld\n",
2224 (unsigned long)*addr,
2225 (unsigned long)retval);
2226 return retval;
2227 }
2228
2229 static int
2230 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2231 {
2232 int retval;
2233
2234 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2235
2236 fprintf_unfiltered (gdb_stdlog,
2237 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2238 (unsigned long) bp_tgt->placed_address,
2239 (unsigned long) retval);
2240 return retval;
2241 }
2242
2243 static int
2244 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2245 {
2246 int retval;
2247
2248 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2249
2250 fprintf_unfiltered (gdb_stdlog,
2251 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2252 (unsigned long) bp_tgt->placed_address,
2253 (unsigned long) retval);
2254 return retval;
2255 }
2256
2257 static int
2258 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2259 {
2260 int retval;
2261
2262 retval = debug_target.to_insert_watchpoint (addr, len, type);
2263
2264 fprintf_unfiltered (gdb_stdlog,
2265 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2266 (unsigned long) addr, len, type, (unsigned long) retval);
2267 return retval;
2268 }
2269
2270 static int
2271 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2272 {
2273 int retval;
2274
2275 retval = debug_target.to_insert_watchpoint (addr, len, type);
2276
2277 fprintf_unfiltered (gdb_stdlog,
2278 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2279 (unsigned long) addr, len, type, (unsigned long) retval);
2280 return retval;
2281 }
2282
2283 static void
2284 debug_to_terminal_init (void)
2285 {
2286 debug_target.to_terminal_init ();
2287
2288 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2289 }
2290
2291 static void
2292 debug_to_terminal_inferior (void)
2293 {
2294 debug_target.to_terminal_inferior ();
2295
2296 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2297 }
2298
2299 static void
2300 debug_to_terminal_ours_for_output (void)
2301 {
2302 debug_target.to_terminal_ours_for_output ();
2303
2304 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2305 }
2306
2307 static void
2308 debug_to_terminal_ours (void)
2309 {
2310 debug_target.to_terminal_ours ();
2311
2312 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2313 }
2314
2315 static void
2316 debug_to_terminal_save_ours (void)
2317 {
2318 debug_target.to_terminal_save_ours ();
2319
2320 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2321 }
2322
2323 static void
2324 debug_to_terminal_info (char *arg, int from_tty)
2325 {
2326 debug_target.to_terminal_info (arg, from_tty);
2327
2328 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2329 from_tty);
2330 }
2331
2332 static void
2333 debug_to_kill (void)
2334 {
2335 debug_target.to_kill ();
2336
2337 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2338 }
2339
2340 static void
2341 debug_to_load (char *args, int from_tty)
2342 {
2343 debug_target.to_load (args, from_tty);
2344
2345 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2346 }
2347
2348 static int
2349 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2350 {
2351 int retval;
2352
2353 retval = debug_target.to_lookup_symbol (name, addrp);
2354
2355 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2356
2357 return retval;
2358 }
2359
2360 static void
2361 debug_to_create_inferior (char *exec_file, char *args, char **env,
2362 int from_tty)
2363 {
2364 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2365
2366 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2367 exec_file, args, from_tty);
2368 }
2369
2370 static void
2371 debug_to_post_startup_inferior (ptid_t ptid)
2372 {
2373 debug_target.to_post_startup_inferior (ptid);
2374
2375 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2376 PIDGET (ptid));
2377 }
2378
2379 static void
2380 debug_to_acknowledge_created_inferior (int pid)
2381 {
2382 debug_target.to_acknowledge_created_inferior (pid);
2383
2384 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2385 pid);
2386 }
2387
2388 static void
2389 debug_to_insert_fork_catchpoint (int pid)
2390 {
2391 debug_target.to_insert_fork_catchpoint (pid);
2392
2393 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2394 pid);
2395 }
2396
2397 static int
2398 debug_to_remove_fork_catchpoint (int pid)
2399 {
2400 int retval;
2401
2402 retval = debug_target.to_remove_fork_catchpoint (pid);
2403
2404 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2405 pid, retval);
2406
2407 return retval;
2408 }
2409
2410 static void
2411 debug_to_insert_vfork_catchpoint (int pid)
2412 {
2413 debug_target.to_insert_vfork_catchpoint (pid);
2414
2415 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2416 pid);
2417 }
2418
2419 static int
2420 debug_to_remove_vfork_catchpoint (int pid)
2421 {
2422 int retval;
2423
2424 retval = debug_target.to_remove_vfork_catchpoint (pid);
2425
2426 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2427 pid, retval);
2428
2429 return retval;
2430 }
2431
2432 static void
2433 debug_to_insert_exec_catchpoint (int pid)
2434 {
2435 debug_target.to_insert_exec_catchpoint (pid);
2436
2437 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2438 pid);
2439 }
2440
2441 static int
2442 debug_to_remove_exec_catchpoint (int pid)
2443 {
2444 int retval;
2445
2446 retval = debug_target.to_remove_exec_catchpoint (pid);
2447
2448 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2449 pid, retval);
2450
2451 return retval;
2452 }
2453
2454 static int
2455 debug_to_reported_exec_events_per_exec_call (void)
2456 {
2457 int reported_exec_events;
2458
2459 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2460
2461 fprintf_unfiltered (gdb_stdlog,
2462 "target_reported_exec_events_per_exec_call () = %d\n",
2463 reported_exec_events);
2464
2465 return reported_exec_events;
2466 }
2467
2468 static int
2469 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2470 {
2471 int has_exited;
2472
2473 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2474
2475 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2476 pid, wait_status, *exit_status, has_exited);
2477
2478 return has_exited;
2479 }
2480
2481 static void
2482 debug_to_mourn_inferior (void)
2483 {
2484 debug_target.to_mourn_inferior ();
2485
2486 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2487 }
2488
2489 static int
2490 debug_to_can_run (void)
2491 {
2492 int retval;
2493
2494 retval = debug_target.to_can_run ();
2495
2496 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2497
2498 return retval;
2499 }
2500
2501 static void
2502 debug_to_notice_signals (ptid_t ptid)
2503 {
2504 debug_target.to_notice_signals (ptid);
2505
2506 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2507 PIDGET (ptid));
2508 }
2509
2510 static int
2511 debug_to_thread_alive (ptid_t ptid)
2512 {
2513 int retval;
2514
2515 retval = debug_target.to_thread_alive (ptid);
2516
2517 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2518 PIDGET (ptid), retval);
2519
2520 return retval;
2521 }
2522
2523 static void
2524 debug_to_find_new_threads (void)
2525 {
2526 debug_target.to_find_new_threads ();
2527
2528 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2529 }
2530
2531 static void
2532 debug_to_stop (void)
2533 {
2534 debug_target.to_stop ();
2535
2536 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2537 }
2538
2539 static void
2540 debug_to_rcmd (char *command,
2541 struct ui_file *outbuf)
2542 {
2543 debug_target.to_rcmd (command, outbuf);
2544 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2545 }
2546
2547 static struct symtab_and_line *
2548 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2549 {
2550 struct symtab_and_line *result;
2551 result = debug_target.to_enable_exception_callback (kind, enable);
2552 fprintf_unfiltered (gdb_stdlog,
2553 "target get_exception_callback_sal (%d, %d)\n",
2554 kind, enable);
2555 return result;
2556 }
2557
2558 static struct exception_event_record *
2559 debug_to_get_current_exception_event (void)
2560 {
2561 struct exception_event_record *result;
2562 result = debug_target.to_get_current_exception_event ();
2563 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2564 return result;
2565 }
2566
2567 static char *
2568 debug_to_pid_to_exec_file (int pid)
2569 {
2570 char *exec_file;
2571
2572 exec_file = debug_target.to_pid_to_exec_file (pid);
2573
2574 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2575 pid, exec_file);
2576
2577 return exec_file;
2578 }
2579
2580 static void
2581 setup_target_debug (void)
2582 {
2583 memcpy (&debug_target, &current_target, sizeof debug_target);
2584
2585 current_target.to_open = debug_to_open;
2586 current_target.to_close = debug_to_close;
2587 current_target.to_attach = debug_to_attach;
2588 current_target.to_post_attach = debug_to_post_attach;
2589 current_target.to_detach = debug_to_detach;
2590 current_target.to_resume = debug_to_resume;
2591 current_target.to_wait = debug_to_wait;
2592 current_target.to_fetch_registers = debug_to_fetch_registers;
2593 current_target.to_store_registers = debug_to_store_registers;
2594 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2595 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2596 current_target.to_files_info = debug_to_files_info;
2597 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2598 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2599 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2600 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2601 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2602 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2603 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2604 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2605 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2606 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2607 current_target.to_terminal_init = debug_to_terminal_init;
2608 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2609 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2610 current_target.to_terminal_ours = debug_to_terminal_ours;
2611 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2612 current_target.to_terminal_info = debug_to_terminal_info;
2613 current_target.to_kill = debug_to_kill;
2614 current_target.to_load = debug_to_load;
2615 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2616 current_target.to_create_inferior = debug_to_create_inferior;
2617 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2618 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2619 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2620 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2621 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2622 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2623 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2624 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2625 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2626 current_target.to_has_exited = debug_to_has_exited;
2627 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2628 current_target.to_can_run = debug_to_can_run;
2629 current_target.to_notice_signals = debug_to_notice_signals;
2630 current_target.to_thread_alive = debug_to_thread_alive;
2631 current_target.to_find_new_threads = debug_to_find_new_threads;
2632 current_target.to_stop = debug_to_stop;
2633 current_target.to_rcmd = debug_to_rcmd;
2634 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2635 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2636 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2637 }
2638 \f
2639
2640 static char targ_desc[] =
2641 "Names of targets and files being debugged.\n\
2642 Shows the entire stack of targets currently in use (including the exec-file,\n\
2643 core-file, and process, if any), as well as the symbol file name.";
2644
2645 static void
2646 do_monitor_command (char *cmd,
2647 int from_tty)
2648 {
2649 if ((current_target.to_rcmd
2650 == (void (*) (char *, struct ui_file *)) tcomplain)
2651 || (current_target.to_rcmd == debug_to_rcmd
2652 && (debug_target.to_rcmd
2653 == (void (*) (char *, struct ui_file *)) tcomplain)))
2654 error (_("\"monitor\" command not supported by this target."));
2655 target_rcmd (cmd, gdb_stdtarg);
2656 }
2657
2658 void
2659 initialize_targets (void)
2660 {
2661 init_dummy_target ();
2662 push_target (&dummy_target);
2663
2664 add_info ("target", target_info, targ_desc);
2665 add_info ("files", target_info, targ_desc);
2666
2667 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2668 Set target debugging."), _("\
2669 Show target debugging."), _("\
2670 When non-zero, target debugging is enabled. Higher numbers are more\n\
2671 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2672 command."),
2673 NULL,
2674 show_targetdebug,
2675 &setdebuglist, &showdebuglist);
2676
2677 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2678 &trust_readonly, _("\
2679 Set mode for reading from readonly sections."), _("\
2680 Show mode for reading from readonly sections."), _("\
2681 When this mode is on, memory reads from readonly sections (such as .text)\n\
2682 will be read from the object file instead of from the target. This will\n\
2683 result in significant performance improvement for remote targets."),
2684 NULL,
2685 show_trust_readonly,
2686 &setlist, &showlist);
2687
2688 add_com ("monitor", class_obscure, do_monitor_command,
2689 _("Send a command to the remote monitor (remote targets only)."));
2690
2691 target_dcache = dcache_init ();
2692 }