]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
Copyright updates for 2007.
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 51 Franklin Street, Fifth Floor,
24 Boston, MA 02110-1301, USA. */
25
26 #include "defs.h"
27 #include <errno.h>
28 #include "gdb_string.h"
29 #include "target.h"
30 #include "gdbcmd.h"
31 #include "symtab.h"
32 #include "inferior.h"
33 #include "bfd.h"
34 #include "symfile.h"
35 #include "objfiles.h"
36 #include "gdb_wait.h"
37 #include "dcache.h"
38 #include <signal.h>
39 #include "regcache.h"
40 #include "gdb_assert.h"
41 #include "gdbcore.h"
42 #include "exceptions.h"
43 #include "target-descriptions.h"
44
45 static void target_info (char *, int);
46
47 static void maybe_kill_then_attach (char *, int);
48
49 static void kill_or_be_killed (int);
50
51 static void default_terminal_info (char *, int);
52
53 static int default_region_ok_for_hw_watchpoint (CORE_ADDR, int);
54
55 static int nosymbol (char *, CORE_ADDR *);
56
57 static void tcomplain (void) ATTR_NORETURN;
58
59 static int nomemory (CORE_ADDR, char *, int, int, struct target_ops *);
60
61 static int return_zero (void);
62
63 static int return_one (void);
64
65 static int return_minus_one (void);
66
67 void target_ignore (void);
68
69 static void target_command (char *, int);
70
71 static struct target_ops *find_default_run_target (char *);
72
73 static void nosupport_runtime (void);
74
75 static LONGEST default_xfer_partial (struct target_ops *ops,
76 enum target_object object,
77 const char *annex, gdb_byte *readbuf,
78 const gdb_byte *writebuf,
79 ULONGEST offset, LONGEST len);
80
81 static LONGEST current_xfer_partial (struct target_ops *ops,
82 enum target_object object,
83 const char *annex, gdb_byte *readbuf,
84 const gdb_byte *writebuf,
85 ULONGEST offset, LONGEST len);
86
87 static LONGEST target_xfer_partial (struct target_ops *ops,
88 enum target_object object,
89 const char *annex,
90 void *readbuf, const void *writebuf,
91 ULONGEST offset, LONGEST len);
92
93 static void init_dummy_target (void);
94
95 static struct target_ops debug_target;
96
97 static void debug_to_open (char *, int);
98
99 static void debug_to_close (int);
100
101 static void debug_to_attach (char *, int);
102
103 static void debug_to_detach (char *, int);
104
105 static void debug_to_resume (ptid_t, int, enum target_signal);
106
107 static ptid_t debug_to_wait (ptid_t, struct target_waitstatus *);
108
109 static void debug_to_fetch_registers (int);
110
111 static void debug_to_store_registers (int);
112
113 static void debug_to_prepare_to_store (void);
114
115 static void debug_to_files_info (struct target_ops *);
116
117 static int debug_to_insert_breakpoint (struct bp_target_info *);
118
119 static int debug_to_remove_breakpoint (struct bp_target_info *);
120
121 static int debug_to_can_use_hw_breakpoint (int, int, int);
122
123 static int debug_to_insert_hw_breakpoint (struct bp_target_info *);
124
125 static int debug_to_remove_hw_breakpoint (struct bp_target_info *);
126
127 static int debug_to_insert_watchpoint (CORE_ADDR, int, int);
128
129 static int debug_to_remove_watchpoint (CORE_ADDR, int, int);
130
131 static int debug_to_stopped_by_watchpoint (void);
132
133 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
134
135 static int debug_to_region_ok_for_hw_watchpoint (CORE_ADDR, int);
136
137 static void debug_to_terminal_init (void);
138
139 static void debug_to_terminal_inferior (void);
140
141 static void debug_to_terminal_ours_for_output (void);
142
143 static void debug_to_terminal_save_ours (void);
144
145 static void debug_to_terminal_ours (void);
146
147 static void debug_to_terminal_info (char *, int);
148
149 static void debug_to_kill (void);
150
151 static void debug_to_load (char *, int);
152
153 static int debug_to_lookup_symbol (char *, CORE_ADDR *);
154
155 static void debug_to_mourn_inferior (void);
156
157 static int debug_to_can_run (void);
158
159 static void debug_to_notice_signals (ptid_t);
160
161 static int debug_to_thread_alive (ptid_t);
162
163 static void debug_to_stop (void);
164
165 /* NOTE: cagney/2004-09-29: Many targets reference this variable in
166 wierd and mysterious ways. Putting the variable here lets those
167 wierd and mysterious ways keep building while they are being
168 converted to the inferior inheritance structure. */
169 struct target_ops deprecated_child_ops;
170
171 /* Pointer to array of target architecture structures; the size of the
172 array; the current index into the array; the allocated size of the
173 array. */
174 struct target_ops **target_structs;
175 unsigned target_struct_size;
176 unsigned target_struct_index;
177 unsigned target_struct_allocsize;
178 #define DEFAULT_ALLOCSIZE 10
179
180 /* The initial current target, so that there is always a semi-valid
181 current target. */
182
183 static struct target_ops dummy_target;
184
185 /* Top of target stack. */
186
187 static struct target_ops *target_stack;
188
189 /* The target structure we are currently using to talk to a process
190 or file or whatever "inferior" we have. */
191
192 struct target_ops current_target;
193
194 /* Command list for target. */
195
196 static struct cmd_list_element *targetlist = NULL;
197
198 /* Nonzero if we are debugging an attached outside process
199 rather than an inferior. */
200
201 int attach_flag;
202
203 /* Nonzero if we should trust readonly sections from the
204 executable when reading memory. */
205
206 static int trust_readonly = 0;
207
208 /* Non-zero if we want to see trace of target level stuff. */
209
210 static int targetdebug = 0;
211 static void
212 show_targetdebug (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
216 }
217
218 static void setup_target_debug (void);
219
220 DCACHE *target_dcache;
221
222 /* The user just typed 'target' without the name of a target. */
223
224 static void
225 target_command (char *arg, int from_tty)
226 {
227 fputs_filtered ("Argument required (target name). Try `help target'\n",
228 gdb_stdout);
229 }
230
231 /* Add a possible target architecture to the list. */
232
233 void
234 add_target (struct target_ops *t)
235 {
236 /* Provide default values for all "must have" methods. */
237 if (t->to_xfer_partial == NULL)
238 t->to_xfer_partial = default_xfer_partial;
239
240 if (!target_structs)
241 {
242 target_struct_allocsize = DEFAULT_ALLOCSIZE;
243 target_structs = (struct target_ops **) xmalloc
244 (target_struct_allocsize * sizeof (*target_structs));
245 }
246 if (target_struct_size >= target_struct_allocsize)
247 {
248 target_struct_allocsize *= 2;
249 target_structs = (struct target_ops **)
250 xrealloc ((char *) target_structs,
251 target_struct_allocsize * sizeof (*target_structs));
252 }
253 target_structs[target_struct_size++] = t;
254
255 if (targetlist == NULL)
256 add_prefix_cmd ("target", class_run, target_command, _("\
257 Connect to a target machine or process.\n\
258 The first argument is the type or protocol of the target machine.\n\
259 Remaining arguments are interpreted by the target protocol. For more\n\
260 information on the arguments for a particular protocol, type\n\
261 `help target ' followed by the protocol name."),
262 &targetlist, "target ", 0, &cmdlist);
263 add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc, &targetlist);
264 }
265
266 /* Stub functions */
267
268 void
269 target_ignore (void)
270 {
271 }
272
273 void
274 target_load (char *arg, int from_tty)
275 {
276 dcache_invalidate (target_dcache);
277 (*current_target.to_load) (arg, from_tty);
278 }
279
280 static int
281 nomemory (CORE_ADDR memaddr, char *myaddr, int len, int write,
282 struct target_ops *t)
283 {
284 errno = EIO; /* Can't read/write this location */
285 return 0; /* No bytes handled */
286 }
287
288 static void
289 tcomplain (void)
290 {
291 error (_("You can't do that when your target is `%s'"),
292 current_target.to_shortname);
293 }
294
295 void
296 noprocess (void)
297 {
298 error (_("You can't do that without a process to debug."));
299 }
300
301 static int
302 nosymbol (char *name, CORE_ADDR *addrp)
303 {
304 return 1; /* Symbol does not exist in target env */
305 }
306
307 static void
308 nosupport_runtime (void)
309 {
310 if (ptid_equal (inferior_ptid, null_ptid))
311 noprocess ();
312 else
313 error (_("No run-time support for this"));
314 }
315
316
317 static void
318 default_terminal_info (char *args, int from_tty)
319 {
320 printf_unfiltered (_("No saved terminal information.\n"));
321 }
322
323 /* This is the default target_create_inferior and target_attach function.
324 If the current target is executing, it asks whether to kill it off.
325 If this function returns without calling error(), it has killed off
326 the target, and the operation should be attempted. */
327
328 static void
329 kill_or_be_killed (int from_tty)
330 {
331 if (target_has_execution)
332 {
333 printf_unfiltered (_("You are already running a program:\n"));
334 target_files_info ();
335 if (query ("Kill it? "))
336 {
337 target_kill ();
338 if (target_has_execution)
339 error (_("Killing the program did not help."));
340 return;
341 }
342 else
343 {
344 error (_("Program not killed."));
345 }
346 }
347 tcomplain ();
348 }
349
350 static void
351 maybe_kill_then_attach (char *args, int from_tty)
352 {
353 kill_or_be_killed (from_tty);
354 target_attach (args, from_tty);
355 }
356
357 static void
358 maybe_kill_then_create_inferior (char *exec, char *args, char **env,
359 int from_tty)
360 {
361 kill_or_be_killed (0);
362 target_create_inferior (exec, args, env, from_tty);
363 }
364
365 /* Go through the target stack from top to bottom, copying over zero
366 entries in current_target, then filling in still empty entries. In
367 effect, we are doing class inheritance through the pushed target
368 vectors.
369
370 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
371 is currently implemented, is that it discards any knowledge of
372 which target an inherited method originally belonged to.
373 Consequently, new new target methods should instead explicitly and
374 locally search the target stack for the target that can handle the
375 request. */
376
377 static void
378 update_current_target (void)
379 {
380 struct target_ops *t;
381
382 /* First, reset curren'ts contents. */
383 memset (&current_target, 0, sizeof (current_target));
384
385 #define INHERIT(FIELD, TARGET) \
386 if (!current_target.FIELD) \
387 current_target.FIELD = (TARGET)->FIELD
388
389 for (t = target_stack; t; t = t->beneath)
390 {
391 INHERIT (to_shortname, t);
392 INHERIT (to_longname, t);
393 INHERIT (to_doc, t);
394 INHERIT (to_open, t);
395 INHERIT (to_close, t);
396 INHERIT (to_attach, t);
397 INHERIT (to_post_attach, t);
398 INHERIT (to_detach, t);
399 /* Do not inherit to_disconnect. */
400 INHERIT (to_resume, t);
401 INHERIT (to_wait, t);
402 INHERIT (to_fetch_registers, t);
403 INHERIT (to_store_registers, t);
404 INHERIT (to_prepare_to_store, t);
405 INHERIT (deprecated_xfer_memory, t);
406 INHERIT (to_files_info, t);
407 INHERIT (to_insert_breakpoint, t);
408 INHERIT (to_remove_breakpoint, t);
409 INHERIT (to_can_use_hw_breakpoint, t);
410 INHERIT (to_insert_hw_breakpoint, t);
411 INHERIT (to_remove_hw_breakpoint, t);
412 INHERIT (to_insert_watchpoint, t);
413 INHERIT (to_remove_watchpoint, t);
414 INHERIT (to_stopped_data_address, t);
415 INHERIT (to_stopped_by_watchpoint, t);
416 INHERIT (to_have_continuable_watchpoint, t);
417 INHERIT (to_region_ok_for_hw_watchpoint, t);
418 INHERIT (to_terminal_init, t);
419 INHERIT (to_terminal_inferior, t);
420 INHERIT (to_terminal_ours_for_output, t);
421 INHERIT (to_terminal_ours, t);
422 INHERIT (to_terminal_save_ours, t);
423 INHERIT (to_terminal_info, t);
424 INHERIT (to_kill, t);
425 INHERIT (to_load, t);
426 INHERIT (to_lookup_symbol, t);
427 INHERIT (to_create_inferior, t);
428 INHERIT (to_post_startup_inferior, t);
429 INHERIT (to_acknowledge_created_inferior, t);
430 INHERIT (to_insert_fork_catchpoint, t);
431 INHERIT (to_remove_fork_catchpoint, t);
432 INHERIT (to_insert_vfork_catchpoint, t);
433 INHERIT (to_remove_vfork_catchpoint, t);
434 /* Do not inherit to_follow_fork. */
435 INHERIT (to_insert_exec_catchpoint, t);
436 INHERIT (to_remove_exec_catchpoint, t);
437 INHERIT (to_reported_exec_events_per_exec_call, t);
438 INHERIT (to_has_exited, t);
439 INHERIT (to_mourn_inferior, t);
440 INHERIT (to_can_run, t);
441 INHERIT (to_notice_signals, t);
442 INHERIT (to_thread_alive, t);
443 INHERIT (to_find_new_threads, t);
444 INHERIT (to_pid_to_str, t);
445 INHERIT (to_extra_thread_info, t);
446 INHERIT (to_stop, t);
447 /* Do not inherit to_xfer_partial. */
448 INHERIT (to_rcmd, t);
449 INHERIT (to_enable_exception_callback, t);
450 INHERIT (to_get_current_exception_event, t);
451 INHERIT (to_pid_to_exec_file, t);
452 INHERIT (to_stratum, t);
453 INHERIT (to_has_all_memory, t);
454 INHERIT (to_has_memory, t);
455 INHERIT (to_has_stack, t);
456 INHERIT (to_has_registers, t);
457 INHERIT (to_has_execution, t);
458 INHERIT (to_has_thread_control, t);
459 INHERIT (to_sections, t);
460 INHERIT (to_sections_end, t);
461 INHERIT (to_can_async_p, t);
462 INHERIT (to_is_async_p, t);
463 INHERIT (to_async, t);
464 INHERIT (to_async_mask_value, t);
465 INHERIT (to_find_memory_regions, t);
466 INHERIT (to_make_corefile_notes, t);
467 INHERIT (to_get_thread_local_address, t);
468 /* Do not inherit to_read_description. */
469 INHERIT (to_magic, t);
470 /* Do not inherit to_memory_map. */
471 /* Do not inherit to_flash_erase. */
472 /* Do not inherit to_flash_done. */
473 }
474 #undef INHERIT
475
476 /* Clean up a target struct so it no longer has any zero pointers in
477 it. Some entries are defaulted to a method that print an error,
478 others are hard-wired to a standard recursive default. */
479
480 #define de_fault(field, value) \
481 if (!current_target.field) \
482 current_target.field = value
483
484 de_fault (to_open,
485 (void (*) (char *, int))
486 tcomplain);
487 de_fault (to_close,
488 (void (*) (int))
489 target_ignore);
490 de_fault (to_attach,
491 maybe_kill_then_attach);
492 de_fault (to_post_attach,
493 (void (*) (int))
494 target_ignore);
495 de_fault (to_detach,
496 (void (*) (char *, int))
497 target_ignore);
498 de_fault (to_resume,
499 (void (*) (ptid_t, int, enum target_signal))
500 noprocess);
501 de_fault (to_wait,
502 (ptid_t (*) (ptid_t, struct target_waitstatus *))
503 noprocess);
504 de_fault (to_fetch_registers,
505 (void (*) (int))
506 target_ignore);
507 de_fault (to_store_registers,
508 (void (*) (int))
509 noprocess);
510 de_fault (to_prepare_to_store,
511 (void (*) (void))
512 noprocess);
513 de_fault (deprecated_xfer_memory,
514 (int (*) (CORE_ADDR, gdb_byte *, int, int, struct mem_attrib *, struct target_ops *))
515 nomemory);
516 de_fault (to_files_info,
517 (void (*) (struct target_ops *))
518 target_ignore);
519 de_fault (to_insert_breakpoint,
520 memory_insert_breakpoint);
521 de_fault (to_remove_breakpoint,
522 memory_remove_breakpoint);
523 de_fault (to_can_use_hw_breakpoint,
524 (int (*) (int, int, int))
525 return_zero);
526 de_fault (to_insert_hw_breakpoint,
527 (int (*) (struct bp_target_info *))
528 return_minus_one);
529 de_fault (to_remove_hw_breakpoint,
530 (int (*) (struct bp_target_info *))
531 return_minus_one);
532 de_fault (to_insert_watchpoint,
533 (int (*) (CORE_ADDR, int, int))
534 return_minus_one);
535 de_fault (to_remove_watchpoint,
536 (int (*) (CORE_ADDR, int, int))
537 return_minus_one);
538 de_fault (to_stopped_by_watchpoint,
539 (int (*) (void))
540 return_zero);
541 de_fault (to_stopped_data_address,
542 (int (*) (struct target_ops *, CORE_ADDR *))
543 return_zero);
544 de_fault (to_region_ok_for_hw_watchpoint,
545 default_region_ok_for_hw_watchpoint);
546 de_fault (to_terminal_init,
547 (void (*) (void))
548 target_ignore);
549 de_fault (to_terminal_inferior,
550 (void (*) (void))
551 target_ignore);
552 de_fault (to_terminal_ours_for_output,
553 (void (*) (void))
554 target_ignore);
555 de_fault (to_terminal_ours,
556 (void (*) (void))
557 target_ignore);
558 de_fault (to_terminal_save_ours,
559 (void (*) (void))
560 target_ignore);
561 de_fault (to_terminal_info,
562 default_terminal_info);
563 de_fault (to_kill,
564 (void (*) (void))
565 noprocess);
566 de_fault (to_load,
567 (void (*) (char *, int))
568 tcomplain);
569 de_fault (to_lookup_symbol,
570 (int (*) (char *, CORE_ADDR *))
571 nosymbol);
572 de_fault (to_create_inferior,
573 maybe_kill_then_create_inferior);
574 de_fault (to_post_startup_inferior,
575 (void (*) (ptid_t))
576 target_ignore);
577 de_fault (to_acknowledge_created_inferior,
578 (void (*) (int))
579 target_ignore);
580 de_fault (to_insert_fork_catchpoint,
581 (void (*) (int))
582 tcomplain);
583 de_fault (to_remove_fork_catchpoint,
584 (int (*) (int))
585 tcomplain);
586 de_fault (to_insert_vfork_catchpoint,
587 (void (*) (int))
588 tcomplain);
589 de_fault (to_remove_vfork_catchpoint,
590 (int (*) (int))
591 tcomplain);
592 de_fault (to_insert_exec_catchpoint,
593 (void (*) (int))
594 tcomplain);
595 de_fault (to_remove_exec_catchpoint,
596 (int (*) (int))
597 tcomplain);
598 de_fault (to_reported_exec_events_per_exec_call,
599 (int (*) (void))
600 return_one);
601 de_fault (to_has_exited,
602 (int (*) (int, int, int *))
603 return_zero);
604 de_fault (to_mourn_inferior,
605 (void (*) (void))
606 noprocess);
607 de_fault (to_can_run,
608 return_zero);
609 de_fault (to_notice_signals,
610 (void (*) (ptid_t))
611 target_ignore);
612 de_fault (to_thread_alive,
613 (int (*) (ptid_t))
614 return_zero);
615 de_fault (to_find_new_threads,
616 (void (*) (void))
617 target_ignore);
618 de_fault (to_extra_thread_info,
619 (char *(*) (struct thread_info *))
620 return_zero);
621 de_fault (to_stop,
622 (void (*) (void))
623 target_ignore);
624 current_target.to_xfer_partial = current_xfer_partial;
625 de_fault (to_rcmd,
626 (void (*) (char *, struct ui_file *))
627 tcomplain);
628 de_fault (to_enable_exception_callback,
629 (struct symtab_and_line * (*) (enum exception_event_kind, int))
630 nosupport_runtime);
631 de_fault (to_get_current_exception_event,
632 (struct exception_event_record * (*) (void))
633 nosupport_runtime);
634 de_fault (to_pid_to_exec_file,
635 (char *(*) (int))
636 return_zero);
637 de_fault (to_can_async_p,
638 (int (*) (void))
639 return_zero);
640 de_fault (to_is_async_p,
641 (int (*) (void))
642 return_zero);
643 de_fault (to_async,
644 (void (*) (void (*) (enum inferior_event_type, void*), void*))
645 tcomplain);
646 current_target.to_read_description = NULL;
647 #undef de_fault
648
649 /* Finally, position the target-stack beneath the squashed
650 "current_target". That way code looking for a non-inherited
651 target method can quickly and simply find it. */
652 current_target.beneath = target_stack;
653 }
654
655 /* Mark OPS as a running target. This reverses the effect
656 of target_mark_exited. */
657
658 void
659 target_mark_running (struct target_ops *ops)
660 {
661 struct target_ops *t;
662
663 for (t = target_stack; t != NULL; t = t->beneath)
664 if (t == ops)
665 break;
666 if (t == NULL)
667 internal_error (__FILE__, __LINE__,
668 "Attempted to mark unpushed target \"%s\" as running",
669 ops->to_shortname);
670
671 ops->to_has_execution = 1;
672 ops->to_has_all_memory = 1;
673 ops->to_has_memory = 1;
674 ops->to_has_stack = 1;
675 ops->to_has_registers = 1;
676
677 update_current_target ();
678 }
679
680 /* Mark OPS as a non-running target. This reverses the effect
681 of target_mark_running. */
682
683 void
684 target_mark_exited (struct target_ops *ops)
685 {
686 struct target_ops *t;
687
688 for (t = target_stack; t != NULL; t = t->beneath)
689 if (t == ops)
690 break;
691 if (t == NULL)
692 internal_error (__FILE__, __LINE__,
693 "Attempted to mark unpushed target \"%s\" as running",
694 ops->to_shortname);
695
696 ops->to_has_execution = 0;
697 ops->to_has_all_memory = 0;
698 ops->to_has_memory = 0;
699 ops->to_has_stack = 0;
700 ops->to_has_registers = 0;
701
702 update_current_target ();
703 }
704
705 /* Push a new target type into the stack of the existing target accessors,
706 possibly superseding some of the existing accessors.
707
708 Result is zero if the pushed target ended up on top of the stack,
709 nonzero if at least one target is on top of it.
710
711 Rather than allow an empty stack, we always have the dummy target at
712 the bottom stratum, so we can call the function vectors without
713 checking them. */
714
715 int
716 push_target (struct target_ops *t)
717 {
718 struct target_ops **cur;
719
720 /* Check magic number. If wrong, it probably means someone changed
721 the struct definition, but not all the places that initialize one. */
722 if (t->to_magic != OPS_MAGIC)
723 {
724 fprintf_unfiltered (gdb_stderr,
725 "Magic number of %s target struct wrong\n",
726 t->to_shortname);
727 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
728 }
729
730 /* Find the proper stratum to install this target in. */
731 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
732 {
733 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
734 break;
735 }
736
737 /* If there's already targets at this stratum, remove them. */
738 /* FIXME: cagney/2003-10-15: I think this should be popping all
739 targets to CUR, and not just those at this stratum level. */
740 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
741 {
742 /* There's already something at this stratum level. Close it,
743 and un-hook it from the stack. */
744 struct target_ops *tmp = (*cur);
745 (*cur) = (*cur)->beneath;
746 tmp->beneath = NULL;
747 target_close (tmp, 0);
748 }
749
750 /* We have removed all targets in our stratum, now add the new one. */
751 t->beneath = (*cur);
752 (*cur) = t;
753
754 update_current_target ();
755
756 if (targetdebug)
757 setup_target_debug ();
758
759 /* Not on top? */
760 return (t != target_stack);
761 }
762
763 /* Remove a target_ops vector from the stack, wherever it may be.
764 Return how many times it was removed (0 or 1). */
765
766 int
767 unpush_target (struct target_ops *t)
768 {
769 struct target_ops **cur;
770 struct target_ops *tmp;
771
772 /* Look for the specified target. Note that we assume that a target
773 can only occur once in the target stack. */
774
775 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
776 {
777 if ((*cur) == t)
778 break;
779 }
780
781 if ((*cur) == NULL)
782 return 0; /* Didn't find target_ops, quit now */
783
784 /* NOTE: cagney/2003-12-06: In '94 the close call was made
785 unconditional by moving it to before the above check that the
786 target was in the target stack (something about "Change the way
787 pushing and popping of targets work to support target overlays
788 and inheritance"). This doesn't make much sense - only open
789 targets should be closed. */
790 target_close (t, 0);
791
792 /* Unchain the target */
793 tmp = (*cur);
794 (*cur) = (*cur)->beneath;
795 tmp->beneath = NULL;
796
797 update_current_target ();
798
799 return 1;
800 }
801
802 void
803 pop_target (void)
804 {
805 target_close (&current_target, 0); /* Let it clean up */
806 if (unpush_target (target_stack) == 1)
807 return;
808
809 fprintf_unfiltered (gdb_stderr,
810 "pop_target couldn't find target %s\n",
811 current_target.to_shortname);
812 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
813 }
814
815 /* Using the objfile specified in BATON, find the address for the
816 current thread's thread-local storage with offset OFFSET. */
817 CORE_ADDR
818 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
819 {
820 volatile CORE_ADDR addr = 0;
821
822 if (target_get_thread_local_address_p ()
823 && gdbarch_fetch_tls_load_module_address_p (current_gdbarch))
824 {
825 ptid_t ptid = inferior_ptid;
826 volatile struct gdb_exception ex;
827
828 TRY_CATCH (ex, RETURN_MASK_ALL)
829 {
830 CORE_ADDR lm_addr;
831
832 /* Fetch the load module address for this objfile. */
833 lm_addr = gdbarch_fetch_tls_load_module_address (current_gdbarch,
834 objfile);
835 /* If it's 0, throw the appropriate exception. */
836 if (lm_addr == 0)
837 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
838 _("TLS load module not found"));
839
840 addr = target_get_thread_local_address (ptid, lm_addr, offset);
841 }
842 /* If an error occurred, print TLS related messages here. Otherwise,
843 throw the error to some higher catcher. */
844 if (ex.reason < 0)
845 {
846 int objfile_is_library = (objfile->flags & OBJF_SHARED);
847
848 switch (ex.error)
849 {
850 case TLS_NO_LIBRARY_SUPPORT_ERROR:
851 error (_("Cannot find thread-local variables in this thread library."));
852 break;
853 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
854 if (objfile_is_library)
855 error (_("Cannot find shared library `%s' in dynamic"
856 " linker's load module list"), objfile->name);
857 else
858 error (_("Cannot find executable file `%s' in dynamic"
859 " linker's load module list"), objfile->name);
860 break;
861 case TLS_NOT_ALLOCATED_YET_ERROR:
862 if (objfile_is_library)
863 error (_("The inferior has not yet allocated storage for"
864 " thread-local variables in\n"
865 "the shared library `%s'\n"
866 "for %s"),
867 objfile->name, target_pid_to_str (ptid));
868 else
869 error (_("The inferior has not yet allocated storage for"
870 " thread-local variables in\n"
871 "the executable `%s'\n"
872 "for %s"),
873 objfile->name, target_pid_to_str (ptid));
874 break;
875 case TLS_GENERIC_ERROR:
876 if (objfile_is_library)
877 error (_("Cannot find thread-local storage for %s, "
878 "shared library %s:\n%s"),
879 target_pid_to_str (ptid),
880 objfile->name, ex.message);
881 else
882 error (_("Cannot find thread-local storage for %s, "
883 "executable file %s:\n%s"),
884 target_pid_to_str (ptid),
885 objfile->name, ex.message);
886 break;
887 default:
888 throw_exception (ex);
889 break;
890 }
891 }
892 }
893 /* It wouldn't be wrong here to try a gdbarch method, too; finding
894 TLS is an ABI-specific thing. But we don't do that yet. */
895 else
896 error (_("Cannot find thread-local variables on this target"));
897
898 return addr;
899 }
900
901 #undef MIN
902 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
903
904 /* target_read_string -- read a null terminated string, up to LEN bytes,
905 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
906 Set *STRING to a pointer to malloc'd memory containing the data; the caller
907 is responsible for freeing it. Return the number of bytes successfully
908 read. */
909
910 int
911 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
912 {
913 int tlen, origlen, offset, i;
914 gdb_byte buf[4];
915 int errcode = 0;
916 char *buffer;
917 int buffer_allocated;
918 char *bufptr;
919 unsigned int nbytes_read = 0;
920
921 /* Small for testing. */
922 buffer_allocated = 4;
923 buffer = xmalloc (buffer_allocated);
924 bufptr = buffer;
925
926 origlen = len;
927
928 while (len > 0)
929 {
930 tlen = MIN (len, 4 - (memaddr & 3));
931 offset = memaddr & 3;
932
933 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
934 if (errcode != 0)
935 {
936 /* The transfer request might have crossed the boundary to an
937 unallocated region of memory. Retry the transfer, requesting
938 a single byte. */
939 tlen = 1;
940 offset = 0;
941 errcode = target_read_memory (memaddr, buf, 1);
942 if (errcode != 0)
943 goto done;
944 }
945
946 if (bufptr - buffer + tlen > buffer_allocated)
947 {
948 unsigned int bytes;
949 bytes = bufptr - buffer;
950 buffer_allocated *= 2;
951 buffer = xrealloc (buffer, buffer_allocated);
952 bufptr = buffer + bytes;
953 }
954
955 for (i = 0; i < tlen; i++)
956 {
957 *bufptr++ = buf[i + offset];
958 if (buf[i + offset] == '\000')
959 {
960 nbytes_read += i + 1;
961 goto done;
962 }
963 }
964
965 memaddr += tlen;
966 len -= tlen;
967 nbytes_read += tlen;
968 }
969 done:
970 if (errnop != NULL)
971 *errnop = errcode;
972 if (string != NULL)
973 *string = buffer;
974 return nbytes_read;
975 }
976
977 /* Find a section containing ADDR. */
978 struct section_table *
979 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
980 {
981 struct section_table *secp;
982 for (secp = target->to_sections;
983 secp < target->to_sections_end;
984 secp++)
985 {
986 if (addr >= secp->addr && addr < secp->endaddr)
987 return secp;
988 }
989 return NULL;
990 }
991
992 /* Perform a partial memory transfer. The arguments and return
993 value are just as for target_xfer_partial. */
994
995 static LONGEST
996 memory_xfer_partial (struct target_ops *ops, void *readbuf, const void *writebuf,
997 ULONGEST memaddr, LONGEST len)
998 {
999 LONGEST res;
1000 int reg_len;
1001 struct mem_region *region;
1002
1003 /* Zero length requests are ok and require no work. */
1004 if (len == 0)
1005 return 0;
1006
1007 /* Try the executable file, if "trust-readonly-sections" is set. */
1008 if (readbuf != NULL && trust_readonly)
1009 {
1010 struct section_table *secp;
1011
1012 secp = target_section_by_addr (ops, memaddr);
1013 if (secp != NULL
1014 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
1015 & SEC_READONLY))
1016 return xfer_memory (memaddr, readbuf, len, 0, NULL, ops);
1017 }
1018
1019 /* Try GDB's internal data cache. */
1020 region = lookup_mem_region (memaddr);
1021 /* region->hi == 0 means there's no upper bound. */
1022 if (memaddr + len < region->hi || region->hi == 0)
1023 reg_len = len;
1024 else
1025 reg_len = region->hi - memaddr;
1026
1027 switch (region->attrib.mode)
1028 {
1029 case MEM_RO:
1030 if (writebuf != NULL)
1031 return -1;
1032 break;
1033
1034 case MEM_WO:
1035 if (readbuf != NULL)
1036 return -1;
1037 break;
1038
1039 case MEM_FLASH:
1040 /* We only support writing to flash during "load" for now. */
1041 if (writebuf != NULL)
1042 error (_("Writing to flash memory forbidden in this context"));
1043 break;
1044
1045 case MEM_NONE:
1046 return -1;
1047 }
1048
1049 if (region->attrib.cache)
1050 {
1051 /* FIXME drow/2006-08-09: This call discards OPS, so the raw
1052 memory request will start back at current_target. */
1053 if (readbuf != NULL)
1054 res = dcache_xfer_memory (target_dcache, memaddr, readbuf,
1055 reg_len, 0);
1056 else
1057 /* FIXME drow/2006-08-09: If we're going to preserve const
1058 correctness dcache_xfer_memory should take readbuf and
1059 writebuf. */
1060 res = dcache_xfer_memory (target_dcache, memaddr,
1061 (void *) writebuf,
1062 reg_len, 1);
1063 if (res <= 0)
1064 return -1;
1065 else
1066 return res;
1067 }
1068
1069 /* If none of those methods found the memory we wanted, fall back
1070 to a target partial transfer. Normally a single call to
1071 to_xfer_partial is enough; if it doesn't recognize an object
1072 it will call the to_xfer_partial of the next target down.
1073 But for memory this won't do. Memory is the only target
1074 object which can be read from more than one valid target.
1075 A core file, for instance, could have some of memory but
1076 delegate other bits to the target below it. So, we must
1077 manually try all targets. */
1078
1079 do
1080 {
1081 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1082 readbuf, writebuf, memaddr, reg_len);
1083 if (res > 0)
1084 return res;
1085
1086 ops = ops->beneath;
1087 }
1088 while (ops != NULL);
1089
1090 /* If we still haven't got anything, return the last error. We
1091 give up. */
1092 return res;
1093 }
1094
1095 static LONGEST
1096 target_xfer_partial (struct target_ops *ops,
1097 enum target_object object, const char *annex,
1098 void *readbuf, const void *writebuf,
1099 ULONGEST offset, LONGEST len)
1100 {
1101 LONGEST retval;
1102
1103 gdb_assert (ops->to_xfer_partial != NULL);
1104
1105 /* If this is a memory transfer, let the memory-specific code
1106 have a look at it instead. Memory transfers are more
1107 complicated. */
1108 if (object == TARGET_OBJECT_MEMORY)
1109 retval = memory_xfer_partial (ops, readbuf, writebuf, offset, len);
1110 else
1111 {
1112 enum target_object raw_object = object;
1113
1114 /* If this is a raw memory transfer, request the normal
1115 memory object from other layers. */
1116 if (raw_object == TARGET_OBJECT_RAW_MEMORY)
1117 raw_object = TARGET_OBJECT_MEMORY;
1118
1119 retval = ops->to_xfer_partial (ops, raw_object, annex, readbuf,
1120 writebuf, offset, len);
1121 }
1122
1123 if (targetdebug)
1124 {
1125 const unsigned char *myaddr = NULL;
1126
1127 fprintf_unfiltered (gdb_stdlog,
1128 "%s:target_xfer_partial (%d, %s, 0x%lx, 0x%lx, 0x%s, %s) = %s",
1129 ops->to_shortname,
1130 (int) object,
1131 (annex ? annex : "(null)"),
1132 (long) readbuf, (long) writebuf,
1133 paddr_nz (offset), paddr_d (len), paddr_d (retval));
1134
1135 if (readbuf)
1136 myaddr = readbuf;
1137 if (writebuf)
1138 myaddr = writebuf;
1139 if (retval > 0 && myaddr != NULL)
1140 {
1141 int i;
1142
1143 fputs_unfiltered (", bytes =", gdb_stdlog);
1144 for (i = 0; i < retval; i++)
1145 {
1146 if ((((long) &(myaddr[i])) & 0xf) == 0)
1147 {
1148 if (targetdebug < 2 && i > 0)
1149 {
1150 fprintf_unfiltered (gdb_stdlog, " ...");
1151 break;
1152 }
1153 fprintf_unfiltered (gdb_stdlog, "\n");
1154 }
1155
1156 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1157 }
1158 }
1159
1160 fputc_unfiltered ('\n', gdb_stdlog);
1161 }
1162 return retval;
1163 }
1164
1165 /* Read LEN bytes of target memory at address MEMADDR, placing the results in
1166 GDB's memory at MYADDR. Returns either 0 for success or an errno value
1167 if any error occurs.
1168
1169 If an error occurs, no guarantee is made about the contents of the data at
1170 MYADDR. In particular, the caller should not depend upon partial reads
1171 filling the buffer with good data. There is no way for the caller to know
1172 how much good data might have been transfered anyway. Callers that can
1173 deal with partial reads should call target_read (which will retry until
1174 it makes no progress, and then return how much was transferred). */
1175
1176 int
1177 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len)
1178 {
1179 if (target_read (&current_target, TARGET_OBJECT_MEMORY, NULL,
1180 myaddr, memaddr, len) == len)
1181 return 0;
1182 else
1183 return EIO;
1184 }
1185
1186 int
1187 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
1188 {
1189 if (target_write (&current_target, TARGET_OBJECT_MEMORY, NULL,
1190 myaddr, memaddr, len) == len)
1191 return 0;
1192 else
1193 return EIO;
1194 }
1195
1196 /* Fetch the target's memory map. */
1197
1198 VEC(mem_region_s) *
1199 target_memory_map (void)
1200 {
1201 VEC(mem_region_s) *result;
1202 struct mem_region *last_one, *this_one;
1203 int ix;
1204 struct target_ops *t;
1205
1206 if (targetdebug)
1207 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1208
1209 for (t = current_target.beneath; t != NULL; t = t->beneath)
1210 if (t->to_memory_map != NULL)
1211 break;
1212
1213 if (t == NULL)
1214 return NULL;
1215
1216 result = t->to_memory_map (t);
1217 if (result == NULL)
1218 return NULL;
1219
1220 qsort (VEC_address (mem_region_s, result),
1221 VEC_length (mem_region_s, result),
1222 sizeof (struct mem_region), mem_region_cmp);
1223
1224 /* Check that regions do not overlap. Simultaneously assign
1225 a numbering for the "mem" commands to use to refer to
1226 each region. */
1227 last_one = NULL;
1228 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1229 {
1230 this_one->number = ix;
1231
1232 if (last_one && last_one->hi > this_one->lo)
1233 {
1234 warning (_("Overlapping regions in memory map: ignoring"));
1235 VEC_free (mem_region_s, result);
1236 return NULL;
1237 }
1238 last_one = this_one;
1239 }
1240
1241 return result;
1242 }
1243
1244 void
1245 target_flash_erase (ULONGEST address, LONGEST length)
1246 {
1247 struct target_ops *t;
1248
1249 for (t = current_target.beneath; t != NULL; t = t->beneath)
1250 if (t->to_flash_erase != NULL)
1251 {
1252 if (targetdebug)
1253 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1254 paddr (address), phex (length, 0));
1255 return t->to_flash_erase (t, address, length);
1256 }
1257
1258 tcomplain ();
1259 }
1260
1261 void
1262 target_flash_done (void)
1263 {
1264 struct target_ops *t;
1265
1266 for (t = current_target.beneath; t != NULL; t = t->beneath)
1267 if (t->to_flash_done != NULL)
1268 {
1269 if (targetdebug)
1270 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1271 return t->to_flash_done (t);
1272 }
1273
1274 tcomplain ();
1275 }
1276
1277 #ifndef target_stopped_data_address_p
1278 int
1279 target_stopped_data_address_p (struct target_ops *target)
1280 {
1281 if (target->to_stopped_data_address
1282 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero)
1283 return 0;
1284 if (target->to_stopped_data_address == debug_to_stopped_data_address
1285 && (debug_target.to_stopped_data_address
1286 == (int (*) (struct target_ops *, CORE_ADDR *)) return_zero))
1287 return 0;
1288 return 1;
1289 }
1290 #endif
1291
1292 static void
1293 show_trust_readonly (struct ui_file *file, int from_tty,
1294 struct cmd_list_element *c, const char *value)
1295 {
1296 fprintf_filtered (file, _("\
1297 Mode for reading from readonly sections is %s.\n"),
1298 value);
1299 }
1300
1301 /* More generic transfers. */
1302
1303 static LONGEST
1304 default_xfer_partial (struct target_ops *ops, enum target_object object,
1305 const char *annex, gdb_byte *readbuf,
1306 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1307 {
1308 if (object == TARGET_OBJECT_MEMORY
1309 && ops->deprecated_xfer_memory != NULL)
1310 /* If available, fall back to the target's
1311 "deprecated_xfer_memory" method. */
1312 {
1313 int xfered = -1;
1314 errno = 0;
1315 if (writebuf != NULL)
1316 {
1317 void *buffer = xmalloc (len);
1318 struct cleanup *cleanup = make_cleanup (xfree, buffer);
1319 memcpy (buffer, writebuf, len);
1320 xfered = ops->deprecated_xfer_memory (offset, buffer, len,
1321 1/*write*/, NULL, ops);
1322 do_cleanups (cleanup);
1323 }
1324 if (readbuf != NULL)
1325 xfered = ops->deprecated_xfer_memory (offset, readbuf, len, 0/*read*/,
1326 NULL, ops);
1327 if (xfered > 0)
1328 return xfered;
1329 else if (xfered == 0 && errno == 0)
1330 /* "deprecated_xfer_memory" uses 0, cross checked against
1331 ERRNO as one indication of an error. */
1332 return 0;
1333 else
1334 return -1;
1335 }
1336 else if (ops->beneath != NULL)
1337 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1338 readbuf, writebuf, offset, len);
1339 else
1340 return -1;
1341 }
1342
1343 /* The xfer_partial handler for the topmost target. Unlike the default,
1344 it does not need to handle memory specially; it just passes all
1345 requests down the stack. */
1346
1347 static LONGEST
1348 current_xfer_partial (struct target_ops *ops, enum target_object object,
1349 const char *annex, gdb_byte *readbuf,
1350 const gdb_byte *writebuf, ULONGEST offset, LONGEST len)
1351 {
1352 if (ops->beneath != NULL)
1353 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
1354 readbuf, writebuf, offset, len);
1355 else
1356 return -1;
1357 }
1358
1359 /* Target vector read/write partial wrapper functions.
1360
1361 NOTE: cagney/2003-10-21: I wonder if having "to_xfer_partial
1362 (inbuf, outbuf)", instead of separate read/write methods, make life
1363 easier. */
1364
1365 static LONGEST
1366 target_read_partial (struct target_ops *ops,
1367 enum target_object object,
1368 const char *annex, gdb_byte *buf,
1369 ULONGEST offset, LONGEST len)
1370 {
1371 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len);
1372 }
1373
1374 static LONGEST
1375 target_write_partial (struct target_ops *ops,
1376 enum target_object object,
1377 const char *annex, const gdb_byte *buf,
1378 ULONGEST offset, LONGEST len)
1379 {
1380 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len);
1381 }
1382
1383 /* Wrappers to perform the full transfer. */
1384 LONGEST
1385 target_read (struct target_ops *ops,
1386 enum target_object object,
1387 const char *annex, gdb_byte *buf,
1388 ULONGEST offset, LONGEST len)
1389 {
1390 LONGEST xfered = 0;
1391 while (xfered < len)
1392 {
1393 LONGEST xfer = target_read_partial (ops, object, annex,
1394 (gdb_byte *) buf + xfered,
1395 offset + xfered, len - xfered);
1396 /* Call an observer, notifying them of the xfer progress? */
1397 if (xfer == 0)
1398 return xfered;
1399 if (xfer < 0)
1400 return -1;
1401 xfered += xfer;
1402 QUIT;
1403 }
1404 return len;
1405 }
1406
1407 /* An alternative to target_write with progress callbacks. */
1408
1409 LONGEST
1410 target_write_with_progress (struct target_ops *ops,
1411 enum target_object object,
1412 const char *annex, const gdb_byte *buf,
1413 ULONGEST offset, LONGEST len,
1414 void (*progress) (ULONGEST, void *), void *baton)
1415 {
1416 LONGEST xfered = 0;
1417
1418 /* Give the progress callback a chance to set up. */
1419 if (progress)
1420 (*progress) (0, baton);
1421
1422 while (xfered < len)
1423 {
1424 LONGEST xfer = target_write_partial (ops, object, annex,
1425 (gdb_byte *) buf + xfered,
1426 offset + xfered, len - xfered);
1427
1428 if (xfer == 0)
1429 return xfered;
1430 if (xfer < 0)
1431 return -1;
1432
1433 if (progress)
1434 (*progress) (xfer, baton);
1435
1436 xfered += xfer;
1437 QUIT;
1438 }
1439 return len;
1440 }
1441
1442 LONGEST
1443 target_write (struct target_ops *ops,
1444 enum target_object object,
1445 const char *annex, const gdb_byte *buf,
1446 ULONGEST offset, LONGEST len)
1447 {
1448 return target_write_with_progress (ops, object, annex, buf, offset, len,
1449 NULL, NULL);
1450 }
1451
1452 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1453 the size of the transferred data. PADDING additional bytes are
1454 available in *BUF_P. This is a helper function for
1455 target_read_alloc; see the declaration of that function for more
1456 information. */
1457
1458 static LONGEST
1459 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1460 const char *annex, gdb_byte **buf_p, int padding)
1461 {
1462 size_t buf_alloc, buf_pos;
1463 gdb_byte *buf;
1464 LONGEST n;
1465
1466 /* This function does not have a length parameter; it reads the
1467 entire OBJECT). Also, it doesn't support objects fetched partly
1468 from one target and partly from another (in a different stratum,
1469 e.g. a core file and an executable). Both reasons make it
1470 unsuitable for reading memory. */
1471 gdb_assert (object != TARGET_OBJECT_MEMORY);
1472
1473 /* Start by reading up to 4K at a time. The target will throttle
1474 this number down if necessary. */
1475 buf_alloc = 4096;
1476 buf = xmalloc (buf_alloc);
1477 buf_pos = 0;
1478 while (1)
1479 {
1480 n = target_read_partial (ops, object, annex, &buf[buf_pos],
1481 buf_pos, buf_alloc - buf_pos - padding);
1482 if (n < 0)
1483 {
1484 /* An error occurred. */
1485 xfree (buf);
1486 return -1;
1487 }
1488 else if (n == 0)
1489 {
1490 /* Read all there was. */
1491 if (buf_pos == 0)
1492 xfree (buf);
1493 else
1494 *buf_p = buf;
1495 return buf_pos;
1496 }
1497
1498 buf_pos += n;
1499
1500 /* If the buffer is filling up, expand it. */
1501 if (buf_alloc < buf_pos * 2)
1502 {
1503 buf_alloc *= 2;
1504 buf = xrealloc (buf, buf_alloc);
1505 }
1506
1507 QUIT;
1508 }
1509 }
1510
1511 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1512 the size of the transferred data. See the declaration in "target.h"
1513 function for more information about the return value. */
1514
1515 LONGEST
1516 target_read_alloc (struct target_ops *ops, enum target_object object,
1517 const char *annex, gdb_byte **buf_p)
1518 {
1519 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1520 }
1521
1522 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1523 returned as a string, allocated using xmalloc. If an error occurs
1524 or the transfer is unsupported, NULL is returned. Empty objects
1525 are returned as allocated but empty strings. A warning is issued
1526 if the result contains any embedded NUL bytes. */
1527
1528 char *
1529 target_read_stralloc (struct target_ops *ops, enum target_object object,
1530 const char *annex)
1531 {
1532 gdb_byte *buffer;
1533 LONGEST transferred;
1534
1535 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1536
1537 if (transferred < 0)
1538 return NULL;
1539
1540 if (transferred == 0)
1541 return xstrdup ("");
1542
1543 buffer[transferred] = 0;
1544 if (strlen (buffer) < transferred)
1545 warning (_("target object %d, annex %s, "
1546 "contained unexpected null characters"),
1547 (int) object, annex ? annex : "(none)");
1548
1549 return (char *) buffer;
1550 }
1551
1552 /* Memory transfer methods. */
1553
1554 void
1555 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1556 LONGEST len)
1557 {
1558 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL, buf, addr, len)
1559 != len)
1560 memory_error (EIO, addr);
1561 }
1562
1563 ULONGEST
1564 get_target_memory_unsigned (struct target_ops *ops,
1565 CORE_ADDR addr, int len)
1566 {
1567 gdb_byte buf[sizeof (ULONGEST)];
1568
1569 gdb_assert (len <= sizeof (buf));
1570 get_target_memory (ops, addr, buf, len);
1571 return extract_unsigned_integer (buf, len);
1572 }
1573
1574 static void
1575 target_info (char *args, int from_tty)
1576 {
1577 struct target_ops *t;
1578 int has_all_mem = 0;
1579
1580 if (symfile_objfile != NULL)
1581 printf_unfiltered (_("Symbols from \"%s\".\n"), symfile_objfile->name);
1582
1583 for (t = target_stack; t != NULL; t = t->beneath)
1584 {
1585 if (!t->to_has_memory)
1586 continue;
1587
1588 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1589 continue;
1590 if (has_all_mem)
1591 printf_unfiltered (_("\tWhile running this, GDB does not access memory from...\n"));
1592 printf_unfiltered ("%s:\n", t->to_longname);
1593 (t->to_files_info) (t);
1594 has_all_mem = t->to_has_all_memory;
1595 }
1596 }
1597
1598 /* This function is called before any new inferior is created, e.g.
1599 by running a program, attaching, or connecting to a target.
1600 It cleans up any state from previous invocations which might
1601 change between runs. This is a subset of what target_preopen
1602 resets (things which might change between targets). */
1603
1604 void
1605 target_pre_inferior (int from_tty)
1606 {
1607 invalidate_target_mem_regions ();
1608
1609 target_clear_description ();
1610 }
1611
1612 /* This is to be called by the open routine before it does
1613 anything. */
1614
1615 void
1616 target_preopen (int from_tty)
1617 {
1618 dont_repeat ();
1619
1620 if (target_has_execution)
1621 {
1622 if (!from_tty
1623 || query (_("A program is being debugged already. Kill it? ")))
1624 target_kill ();
1625 else
1626 error (_("Program not killed."));
1627 }
1628
1629 /* Calling target_kill may remove the target from the stack. But if
1630 it doesn't (which seems like a win for UDI), remove it now. */
1631
1632 if (target_has_execution)
1633 pop_target ();
1634
1635 target_pre_inferior (from_tty);
1636 }
1637
1638 /* Detach a target after doing deferred register stores. */
1639
1640 void
1641 target_detach (char *args, int from_tty)
1642 {
1643 (current_target.to_detach) (args, from_tty);
1644 }
1645
1646 void
1647 target_disconnect (char *args, int from_tty)
1648 {
1649 struct target_ops *t;
1650
1651 for (t = current_target.beneath; t != NULL; t = t->beneath)
1652 if (t->to_disconnect != NULL)
1653 {
1654 if (targetdebug)
1655 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
1656 args, from_tty);
1657 t->to_disconnect (t, args, from_tty);
1658 return;
1659 }
1660
1661 tcomplain ();
1662 }
1663
1664 int
1665 target_async_mask (int mask)
1666 {
1667 int saved_async_masked_status = target_async_mask_value;
1668 target_async_mask_value = mask;
1669 return saved_async_masked_status;
1670 }
1671
1672 /* Look through the list of possible targets for a target that can
1673 follow forks. */
1674
1675 int
1676 target_follow_fork (int follow_child)
1677 {
1678 struct target_ops *t;
1679
1680 for (t = current_target.beneath; t != NULL; t = t->beneath)
1681 {
1682 if (t->to_follow_fork != NULL)
1683 {
1684 int retval = t->to_follow_fork (t, follow_child);
1685 if (targetdebug)
1686 fprintf_unfiltered (gdb_stdlog, "target_follow_fork (%d) = %d\n",
1687 follow_child, retval);
1688 return retval;
1689 }
1690 }
1691
1692 /* Some target returned a fork event, but did not know how to follow it. */
1693 internal_error (__FILE__, __LINE__,
1694 "could not find a target to follow fork");
1695 }
1696
1697 /* Look for a target which can describe architectural features, starting
1698 from TARGET. If we find one, return its description. */
1699
1700 const struct target_desc *
1701 target_read_description (struct target_ops *target)
1702 {
1703 struct target_ops *t;
1704
1705 for (t = target; t != NULL; t = t->beneath)
1706 if (t->to_read_description != NULL)
1707 {
1708 const struct target_desc *tdesc;
1709
1710 tdesc = t->to_read_description (t);
1711 if (tdesc)
1712 return tdesc;
1713 }
1714
1715 return NULL;
1716 }
1717
1718 /* Look through the list of possible targets for a target that can
1719 execute a run or attach command without any other data. This is
1720 used to locate the default process stratum.
1721
1722 Result is always valid (error() is called for errors). */
1723
1724 static struct target_ops *
1725 find_default_run_target (char *do_mesg)
1726 {
1727 struct target_ops **t;
1728 struct target_ops *runable = NULL;
1729 int count;
1730
1731 count = 0;
1732
1733 for (t = target_structs; t < target_structs + target_struct_size;
1734 ++t)
1735 {
1736 if ((*t)->to_can_run && target_can_run (*t))
1737 {
1738 runable = *t;
1739 ++count;
1740 }
1741 }
1742
1743 if (count != 1)
1744 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
1745
1746 return runable;
1747 }
1748
1749 void
1750 find_default_attach (char *args, int from_tty)
1751 {
1752 struct target_ops *t;
1753
1754 t = find_default_run_target ("attach");
1755 (t->to_attach) (args, from_tty);
1756 return;
1757 }
1758
1759 void
1760 find_default_create_inferior (char *exec_file, char *allargs, char **env,
1761 int from_tty)
1762 {
1763 struct target_ops *t;
1764
1765 t = find_default_run_target ("run");
1766 (t->to_create_inferior) (exec_file, allargs, env, from_tty);
1767 return;
1768 }
1769
1770 static int
1771 default_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
1772 {
1773 return (len <= TYPE_LENGTH (builtin_type_void_data_ptr));
1774 }
1775
1776 static int
1777 return_zero (void)
1778 {
1779 return 0;
1780 }
1781
1782 static int
1783 return_one (void)
1784 {
1785 return 1;
1786 }
1787
1788 static int
1789 return_minus_one (void)
1790 {
1791 return -1;
1792 }
1793
1794 /*
1795 * Resize the to_sections pointer. Also make sure that anyone that
1796 * was holding on to an old value of it gets updated.
1797 * Returns the old size.
1798 */
1799
1800 int
1801 target_resize_to_sections (struct target_ops *target, int num_added)
1802 {
1803 struct target_ops **t;
1804 struct section_table *old_value;
1805 int old_count;
1806
1807 old_value = target->to_sections;
1808
1809 if (target->to_sections)
1810 {
1811 old_count = target->to_sections_end - target->to_sections;
1812 target->to_sections = (struct section_table *)
1813 xrealloc ((char *) target->to_sections,
1814 (sizeof (struct section_table)) * (num_added + old_count));
1815 }
1816 else
1817 {
1818 old_count = 0;
1819 target->to_sections = (struct section_table *)
1820 xmalloc ((sizeof (struct section_table)) * num_added);
1821 }
1822 target->to_sections_end = target->to_sections + (num_added + old_count);
1823
1824 /* Check to see if anyone else was pointing to this structure.
1825 If old_value was null, then no one was. */
1826
1827 if (old_value)
1828 {
1829 for (t = target_structs; t < target_structs + target_struct_size;
1830 ++t)
1831 {
1832 if ((*t)->to_sections == old_value)
1833 {
1834 (*t)->to_sections = target->to_sections;
1835 (*t)->to_sections_end = target->to_sections_end;
1836 }
1837 }
1838 /* There is a flattened view of the target stack in current_target,
1839 so its to_sections pointer might also need updating. */
1840 if (current_target.to_sections == old_value)
1841 {
1842 current_target.to_sections = target->to_sections;
1843 current_target.to_sections_end = target->to_sections_end;
1844 }
1845 }
1846
1847 return old_count;
1848
1849 }
1850
1851 /* Remove all target sections taken from ABFD.
1852
1853 Scan the current target stack for targets whose section tables
1854 refer to sections from BFD, and remove those sections. We use this
1855 when we notice that the inferior has unloaded a shared object, for
1856 example. */
1857 void
1858 remove_target_sections (bfd *abfd)
1859 {
1860 struct target_ops **t;
1861
1862 for (t = target_structs; t < target_structs + target_struct_size; t++)
1863 {
1864 struct section_table *src, *dest;
1865
1866 dest = (*t)->to_sections;
1867 for (src = (*t)->to_sections; src < (*t)->to_sections_end; src++)
1868 if (src->bfd != abfd)
1869 {
1870 /* Keep this section. */
1871 if (dest < src) *dest = *src;
1872 dest++;
1873 }
1874
1875 /* If we've dropped any sections, resize the section table. */
1876 if (dest < src)
1877 target_resize_to_sections (*t, dest - src);
1878 }
1879 }
1880
1881
1882
1883
1884 /* Find a single runnable target in the stack and return it. If for
1885 some reason there is more than one, return NULL. */
1886
1887 struct target_ops *
1888 find_run_target (void)
1889 {
1890 struct target_ops **t;
1891 struct target_ops *runable = NULL;
1892 int count;
1893
1894 count = 0;
1895
1896 for (t = target_structs; t < target_structs + target_struct_size; ++t)
1897 {
1898 if ((*t)->to_can_run && target_can_run (*t))
1899 {
1900 runable = *t;
1901 ++count;
1902 }
1903 }
1904
1905 return (count == 1 ? runable : NULL);
1906 }
1907
1908 /* Find a single core_stratum target in the list of targets and return it.
1909 If for some reason there is more than one, return NULL. */
1910
1911 struct target_ops *
1912 find_core_target (void)
1913 {
1914 struct target_ops **t;
1915 struct target_ops *runable = NULL;
1916 int count;
1917
1918 count = 0;
1919
1920 for (t = target_structs; t < target_structs + target_struct_size;
1921 ++t)
1922 {
1923 if ((*t)->to_stratum == core_stratum)
1924 {
1925 runable = *t;
1926 ++count;
1927 }
1928 }
1929
1930 return (count == 1 ? runable : NULL);
1931 }
1932
1933 /*
1934 * Find the next target down the stack from the specified target.
1935 */
1936
1937 struct target_ops *
1938 find_target_beneath (struct target_ops *t)
1939 {
1940 return t->beneath;
1941 }
1942
1943 \f
1944 /* The inferior process has died. Long live the inferior! */
1945
1946 void
1947 generic_mourn_inferior (void)
1948 {
1949 extern int show_breakpoint_hit_counts;
1950
1951 inferior_ptid = null_ptid;
1952 attach_flag = 0;
1953 breakpoint_init_inferior (inf_exited);
1954 registers_changed ();
1955
1956 reopen_exec_file ();
1957 reinit_frame_cache ();
1958
1959 /* It is confusing to the user for ignore counts to stick around
1960 from previous runs of the inferior. So clear them. */
1961 /* However, it is more confusing for the ignore counts to disappear when
1962 using hit counts. So don't clear them if we're counting hits. */
1963 if (!show_breakpoint_hit_counts)
1964 breakpoint_clear_ignore_counts ();
1965
1966 if (deprecated_detach_hook)
1967 deprecated_detach_hook ();
1968 }
1969 \f
1970 /* Helper function for child_wait and the Lynx derivatives of child_wait.
1971 HOSTSTATUS is the waitstatus from wait() or the equivalent; store our
1972 translation of that in OURSTATUS. */
1973 void
1974 store_waitstatus (struct target_waitstatus *ourstatus, int hoststatus)
1975 {
1976 #ifdef CHILD_SPECIAL_WAITSTATUS
1977 /* CHILD_SPECIAL_WAITSTATUS should return nonzero and set *OURSTATUS
1978 if it wants to deal with hoststatus. */
1979 if (CHILD_SPECIAL_WAITSTATUS (ourstatus, hoststatus))
1980 return;
1981 #endif
1982
1983 if (WIFEXITED (hoststatus))
1984 {
1985 ourstatus->kind = TARGET_WAITKIND_EXITED;
1986 ourstatus->value.integer = WEXITSTATUS (hoststatus);
1987 }
1988 else if (!WIFSTOPPED (hoststatus))
1989 {
1990 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
1991 ourstatus->value.sig = target_signal_from_host (WTERMSIG (hoststatus));
1992 }
1993 else
1994 {
1995 ourstatus->kind = TARGET_WAITKIND_STOPPED;
1996 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (hoststatus));
1997 }
1998 }
1999 \f
2000 /* Returns zero to leave the inferior alone, one to interrupt it. */
2001 int (*target_activity_function) (void);
2002 int target_activity_fd;
2003 \f
2004 /* Convert a normal process ID to a string. Returns the string in a
2005 static buffer. */
2006
2007 char *
2008 normal_pid_to_str (ptid_t ptid)
2009 {
2010 static char buf[32];
2011
2012 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
2013 return buf;
2014 }
2015
2016 /* Error-catcher for target_find_memory_regions */
2017 static int dummy_find_memory_regions (int (*ignore1) (), void *ignore2)
2018 {
2019 error (_("No target."));
2020 return 0;
2021 }
2022
2023 /* Error-catcher for target_make_corefile_notes */
2024 static char * dummy_make_corefile_notes (bfd *ignore1, int *ignore2)
2025 {
2026 error (_("No target."));
2027 return NULL;
2028 }
2029
2030 /* Set up the handful of non-empty slots needed by the dummy target
2031 vector. */
2032
2033 static void
2034 init_dummy_target (void)
2035 {
2036 dummy_target.to_shortname = "None";
2037 dummy_target.to_longname = "None";
2038 dummy_target.to_doc = "";
2039 dummy_target.to_attach = find_default_attach;
2040 dummy_target.to_create_inferior = find_default_create_inferior;
2041 dummy_target.to_pid_to_str = normal_pid_to_str;
2042 dummy_target.to_stratum = dummy_stratum;
2043 dummy_target.to_find_memory_regions = dummy_find_memory_regions;
2044 dummy_target.to_make_corefile_notes = dummy_make_corefile_notes;
2045 dummy_target.to_xfer_partial = default_xfer_partial;
2046 dummy_target.to_magic = OPS_MAGIC;
2047 }
2048 \f
2049 static void
2050 debug_to_open (char *args, int from_tty)
2051 {
2052 debug_target.to_open (args, from_tty);
2053
2054 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
2055 }
2056
2057 static void
2058 debug_to_close (int quitting)
2059 {
2060 target_close (&debug_target, quitting);
2061 fprintf_unfiltered (gdb_stdlog, "target_close (%d)\n", quitting);
2062 }
2063
2064 void
2065 target_close (struct target_ops *targ, int quitting)
2066 {
2067 if (targ->to_xclose != NULL)
2068 targ->to_xclose (targ, quitting);
2069 else if (targ->to_close != NULL)
2070 targ->to_close (quitting);
2071 }
2072
2073 static void
2074 debug_to_attach (char *args, int from_tty)
2075 {
2076 debug_target.to_attach (args, from_tty);
2077
2078 fprintf_unfiltered (gdb_stdlog, "target_attach (%s, %d)\n", args, from_tty);
2079 }
2080
2081
2082 static void
2083 debug_to_post_attach (int pid)
2084 {
2085 debug_target.to_post_attach (pid);
2086
2087 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
2088 }
2089
2090 static void
2091 debug_to_detach (char *args, int from_tty)
2092 {
2093 debug_target.to_detach (args, from_tty);
2094
2095 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n", args, from_tty);
2096 }
2097
2098 static void
2099 debug_to_resume (ptid_t ptid, int step, enum target_signal siggnal)
2100 {
2101 debug_target.to_resume (ptid, step, siggnal);
2102
2103 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n", PIDGET (ptid),
2104 step ? "step" : "continue",
2105 target_signal_to_name (siggnal));
2106 }
2107
2108 static ptid_t
2109 debug_to_wait (ptid_t ptid, struct target_waitstatus *status)
2110 {
2111 ptid_t retval;
2112
2113 retval = debug_target.to_wait (ptid, status);
2114
2115 fprintf_unfiltered (gdb_stdlog,
2116 "target_wait (%d, status) = %d, ", PIDGET (ptid),
2117 PIDGET (retval));
2118 fprintf_unfiltered (gdb_stdlog, "status->kind = ");
2119 switch (status->kind)
2120 {
2121 case TARGET_WAITKIND_EXITED:
2122 fprintf_unfiltered (gdb_stdlog, "exited, status = %d\n",
2123 status->value.integer);
2124 break;
2125 case TARGET_WAITKIND_STOPPED:
2126 fprintf_unfiltered (gdb_stdlog, "stopped, signal = %s\n",
2127 target_signal_to_name (status->value.sig));
2128 break;
2129 case TARGET_WAITKIND_SIGNALLED:
2130 fprintf_unfiltered (gdb_stdlog, "signalled, signal = %s\n",
2131 target_signal_to_name (status->value.sig));
2132 break;
2133 case TARGET_WAITKIND_LOADED:
2134 fprintf_unfiltered (gdb_stdlog, "loaded\n");
2135 break;
2136 case TARGET_WAITKIND_FORKED:
2137 fprintf_unfiltered (gdb_stdlog, "forked\n");
2138 break;
2139 case TARGET_WAITKIND_VFORKED:
2140 fprintf_unfiltered (gdb_stdlog, "vforked\n");
2141 break;
2142 case TARGET_WAITKIND_EXECD:
2143 fprintf_unfiltered (gdb_stdlog, "execd\n");
2144 break;
2145 case TARGET_WAITKIND_SPURIOUS:
2146 fprintf_unfiltered (gdb_stdlog, "spurious\n");
2147 break;
2148 default:
2149 fprintf_unfiltered (gdb_stdlog, "unknown???\n");
2150 break;
2151 }
2152
2153 return retval;
2154 }
2155
2156 static void
2157 debug_print_register (const char * func, int regno)
2158 {
2159 fprintf_unfiltered (gdb_stdlog, "%s ", func);
2160 if (regno >= 0 && regno < NUM_REGS + NUM_PSEUDO_REGS
2161 && REGISTER_NAME (regno) != NULL && REGISTER_NAME (regno)[0] != '\0')
2162 fprintf_unfiltered (gdb_stdlog, "(%s)", REGISTER_NAME (regno));
2163 else
2164 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
2165 if (regno >= 0)
2166 {
2167 int i;
2168 unsigned char buf[MAX_REGISTER_SIZE];
2169 deprecated_read_register_gen (regno, buf);
2170 fprintf_unfiltered (gdb_stdlog, " = ");
2171 for (i = 0; i < register_size (current_gdbarch, regno); i++)
2172 {
2173 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
2174 }
2175 if (register_size (current_gdbarch, regno) <= sizeof (LONGEST))
2176 {
2177 fprintf_unfiltered (gdb_stdlog, " 0x%s %s",
2178 paddr_nz (read_register (regno)),
2179 paddr_d (read_register (regno)));
2180 }
2181 }
2182 fprintf_unfiltered (gdb_stdlog, "\n");
2183 }
2184
2185 static void
2186 debug_to_fetch_registers (int regno)
2187 {
2188 debug_target.to_fetch_registers (regno);
2189 debug_print_register ("target_fetch_registers", regno);
2190 }
2191
2192 static void
2193 debug_to_store_registers (int regno)
2194 {
2195 debug_target.to_store_registers (regno);
2196 debug_print_register ("target_store_registers", regno);
2197 fprintf_unfiltered (gdb_stdlog, "\n");
2198 }
2199
2200 static void
2201 debug_to_prepare_to_store (void)
2202 {
2203 debug_target.to_prepare_to_store ();
2204
2205 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
2206 }
2207
2208 static int
2209 deprecated_debug_xfer_memory (CORE_ADDR memaddr, bfd_byte *myaddr, int len,
2210 int write, struct mem_attrib *attrib,
2211 struct target_ops *target)
2212 {
2213 int retval;
2214
2215 retval = debug_target.deprecated_xfer_memory (memaddr, myaddr, len, write,
2216 attrib, target);
2217
2218 fprintf_unfiltered (gdb_stdlog,
2219 "target_xfer_memory (0x%x, xxx, %d, %s, xxx) = %d",
2220 (unsigned int) memaddr, /* possable truncate long long */
2221 len, write ? "write" : "read", retval);
2222
2223 if (retval > 0)
2224 {
2225 int i;
2226
2227 fputs_unfiltered (", bytes =", gdb_stdlog);
2228 for (i = 0; i < retval; i++)
2229 {
2230 if ((((long) &(myaddr[i])) & 0xf) == 0)
2231 {
2232 if (targetdebug < 2 && i > 0)
2233 {
2234 fprintf_unfiltered (gdb_stdlog, " ...");
2235 break;
2236 }
2237 fprintf_unfiltered (gdb_stdlog, "\n");
2238 }
2239
2240 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
2241 }
2242 }
2243
2244 fputc_unfiltered ('\n', gdb_stdlog);
2245
2246 return retval;
2247 }
2248
2249 static void
2250 debug_to_files_info (struct target_ops *target)
2251 {
2252 debug_target.to_files_info (target);
2253
2254 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
2255 }
2256
2257 static int
2258 debug_to_insert_breakpoint (struct bp_target_info *bp_tgt)
2259 {
2260 int retval;
2261
2262 retval = debug_target.to_insert_breakpoint (bp_tgt);
2263
2264 fprintf_unfiltered (gdb_stdlog,
2265 "target_insert_breakpoint (0x%lx, xxx) = %ld\n",
2266 (unsigned long) bp_tgt->placed_address,
2267 (unsigned long) retval);
2268 return retval;
2269 }
2270
2271 static int
2272 debug_to_remove_breakpoint (struct bp_target_info *bp_tgt)
2273 {
2274 int retval;
2275
2276 retval = debug_target.to_remove_breakpoint (bp_tgt);
2277
2278 fprintf_unfiltered (gdb_stdlog,
2279 "target_remove_breakpoint (0x%lx, xxx) = %ld\n",
2280 (unsigned long) bp_tgt->placed_address,
2281 (unsigned long) retval);
2282 return retval;
2283 }
2284
2285 static int
2286 debug_to_can_use_hw_breakpoint (int type, int cnt, int from_tty)
2287 {
2288 int retval;
2289
2290 retval = debug_target.to_can_use_hw_breakpoint (type, cnt, from_tty);
2291
2292 fprintf_unfiltered (gdb_stdlog,
2293 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
2294 (unsigned long) type,
2295 (unsigned long) cnt,
2296 (unsigned long) from_tty,
2297 (unsigned long) retval);
2298 return retval;
2299 }
2300
2301 static int
2302 debug_to_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
2303 {
2304 CORE_ADDR retval;
2305
2306 retval = debug_target.to_region_ok_for_hw_watchpoint (addr, len);
2307
2308 fprintf_unfiltered (gdb_stdlog,
2309 "TARGET_REGION_OK_FOR_HW_WATCHPOINT (%ld, %ld) = 0x%lx\n",
2310 (unsigned long) addr,
2311 (unsigned long) len,
2312 (unsigned long) retval);
2313 return retval;
2314 }
2315
2316 static int
2317 debug_to_stopped_by_watchpoint (void)
2318 {
2319 int retval;
2320
2321 retval = debug_target.to_stopped_by_watchpoint ();
2322
2323 fprintf_unfiltered (gdb_stdlog,
2324 "STOPPED_BY_WATCHPOINT () = %ld\n",
2325 (unsigned long) retval);
2326 return retval;
2327 }
2328
2329 static int
2330 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
2331 {
2332 int retval;
2333
2334 retval = debug_target.to_stopped_data_address (target, addr);
2335
2336 fprintf_unfiltered (gdb_stdlog,
2337 "target_stopped_data_address ([0x%lx]) = %ld\n",
2338 (unsigned long)*addr,
2339 (unsigned long)retval);
2340 return retval;
2341 }
2342
2343 static int
2344 debug_to_insert_hw_breakpoint (struct bp_target_info *bp_tgt)
2345 {
2346 int retval;
2347
2348 retval = debug_target.to_insert_hw_breakpoint (bp_tgt);
2349
2350 fprintf_unfiltered (gdb_stdlog,
2351 "target_insert_hw_breakpoint (0x%lx, xxx) = %ld\n",
2352 (unsigned long) bp_tgt->placed_address,
2353 (unsigned long) retval);
2354 return retval;
2355 }
2356
2357 static int
2358 debug_to_remove_hw_breakpoint (struct bp_target_info *bp_tgt)
2359 {
2360 int retval;
2361
2362 retval = debug_target.to_remove_hw_breakpoint (bp_tgt);
2363
2364 fprintf_unfiltered (gdb_stdlog,
2365 "target_remove_hw_breakpoint (0x%lx, xxx) = %ld\n",
2366 (unsigned long) bp_tgt->placed_address,
2367 (unsigned long) retval);
2368 return retval;
2369 }
2370
2371 static int
2372 debug_to_insert_watchpoint (CORE_ADDR addr, int len, int type)
2373 {
2374 int retval;
2375
2376 retval = debug_target.to_insert_watchpoint (addr, len, type);
2377
2378 fprintf_unfiltered (gdb_stdlog,
2379 "target_insert_watchpoint (0x%lx, %d, %d) = %ld\n",
2380 (unsigned long) addr, len, type, (unsigned long) retval);
2381 return retval;
2382 }
2383
2384 static int
2385 debug_to_remove_watchpoint (CORE_ADDR addr, int len, int type)
2386 {
2387 int retval;
2388
2389 retval = debug_target.to_remove_watchpoint (addr, len, type);
2390
2391 fprintf_unfiltered (gdb_stdlog,
2392 "target_remove_watchpoint (0x%lx, %d, %d) = %ld\n",
2393 (unsigned long) addr, len, type, (unsigned long) retval);
2394 return retval;
2395 }
2396
2397 static void
2398 debug_to_terminal_init (void)
2399 {
2400 debug_target.to_terminal_init ();
2401
2402 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
2403 }
2404
2405 static void
2406 debug_to_terminal_inferior (void)
2407 {
2408 debug_target.to_terminal_inferior ();
2409
2410 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
2411 }
2412
2413 static void
2414 debug_to_terminal_ours_for_output (void)
2415 {
2416 debug_target.to_terminal_ours_for_output ();
2417
2418 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
2419 }
2420
2421 static void
2422 debug_to_terminal_ours (void)
2423 {
2424 debug_target.to_terminal_ours ();
2425
2426 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
2427 }
2428
2429 static void
2430 debug_to_terminal_save_ours (void)
2431 {
2432 debug_target.to_terminal_save_ours ();
2433
2434 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
2435 }
2436
2437 static void
2438 debug_to_terminal_info (char *arg, int from_tty)
2439 {
2440 debug_target.to_terminal_info (arg, from_tty);
2441
2442 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
2443 from_tty);
2444 }
2445
2446 static void
2447 debug_to_kill (void)
2448 {
2449 debug_target.to_kill ();
2450
2451 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
2452 }
2453
2454 static void
2455 debug_to_load (char *args, int from_tty)
2456 {
2457 debug_target.to_load (args, from_tty);
2458
2459 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
2460 }
2461
2462 static int
2463 debug_to_lookup_symbol (char *name, CORE_ADDR *addrp)
2464 {
2465 int retval;
2466
2467 retval = debug_target.to_lookup_symbol (name, addrp);
2468
2469 fprintf_unfiltered (gdb_stdlog, "target_lookup_symbol (%s, xxx)\n", name);
2470
2471 return retval;
2472 }
2473
2474 static void
2475 debug_to_create_inferior (char *exec_file, char *args, char **env,
2476 int from_tty)
2477 {
2478 debug_target.to_create_inferior (exec_file, args, env, from_tty);
2479
2480 fprintf_unfiltered (gdb_stdlog, "target_create_inferior (%s, %s, xxx, %d)\n",
2481 exec_file, args, from_tty);
2482 }
2483
2484 static void
2485 debug_to_post_startup_inferior (ptid_t ptid)
2486 {
2487 debug_target.to_post_startup_inferior (ptid);
2488
2489 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
2490 PIDGET (ptid));
2491 }
2492
2493 static void
2494 debug_to_acknowledge_created_inferior (int pid)
2495 {
2496 debug_target.to_acknowledge_created_inferior (pid);
2497
2498 fprintf_unfiltered (gdb_stdlog, "target_acknowledge_created_inferior (%d)\n",
2499 pid);
2500 }
2501
2502 static void
2503 debug_to_insert_fork_catchpoint (int pid)
2504 {
2505 debug_target.to_insert_fork_catchpoint (pid);
2506
2507 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d)\n",
2508 pid);
2509 }
2510
2511 static int
2512 debug_to_remove_fork_catchpoint (int pid)
2513 {
2514 int retval;
2515
2516 retval = debug_target.to_remove_fork_catchpoint (pid);
2517
2518 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
2519 pid, retval);
2520
2521 return retval;
2522 }
2523
2524 static void
2525 debug_to_insert_vfork_catchpoint (int pid)
2526 {
2527 debug_target.to_insert_vfork_catchpoint (pid);
2528
2529 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d)\n",
2530 pid);
2531 }
2532
2533 static int
2534 debug_to_remove_vfork_catchpoint (int pid)
2535 {
2536 int retval;
2537
2538 retval = debug_target.to_remove_vfork_catchpoint (pid);
2539
2540 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
2541 pid, retval);
2542
2543 return retval;
2544 }
2545
2546 static void
2547 debug_to_insert_exec_catchpoint (int pid)
2548 {
2549 debug_target.to_insert_exec_catchpoint (pid);
2550
2551 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d)\n",
2552 pid);
2553 }
2554
2555 static int
2556 debug_to_remove_exec_catchpoint (int pid)
2557 {
2558 int retval;
2559
2560 retval = debug_target.to_remove_exec_catchpoint (pid);
2561
2562 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
2563 pid, retval);
2564
2565 return retval;
2566 }
2567
2568 static int
2569 debug_to_reported_exec_events_per_exec_call (void)
2570 {
2571 int reported_exec_events;
2572
2573 reported_exec_events = debug_target.to_reported_exec_events_per_exec_call ();
2574
2575 fprintf_unfiltered (gdb_stdlog,
2576 "target_reported_exec_events_per_exec_call () = %d\n",
2577 reported_exec_events);
2578
2579 return reported_exec_events;
2580 }
2581
2582 static int
2583 debug_to_has_exited (int pid, int wait_status, int *exit_status)
2584 {
2585 int has_exited;
2586
2587 has_exited = debug_target.to_has_exited (pid, wait_status, exit_status);
2588
2589 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
2590 pid, wait_status, *exit_status, has_exited);
2591
2592 return has_exited;
2593 }
2594
2595 static void
2596 debug_to_mourn_inferior (void)
2597 {
2598 debug_target.to_mourn_inferior ();
2599
2600 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2601 }
2602
2603 static int
2604 debug_to_can_run (void)
2605 {
2606 int retval;
2607
2608 retval = debug_target.to_can_run ();
2609
2610 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
2611
2612 return retval;
2613 }
2614
2615 static void
2616 debug_to_notice_signals (ptid_t ptid)
2617 {
2618 debug_target.to_notice_signals (ptid);
2619
2620 fprintf_unfiltered (gdb_stdlog, "target_notice_signals (%d)\n",
2621 PIDGET (ptid));
2622 }
2623
2624 static int
2625 debug_to_thread_alive (ptid_t ptid)
2626 {
2627 int retval;
2628
2629 retval = debug_target.to_thread_alive (ptid);
2630
2631 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
2632 PIDGET (ptid), retval);
2633
2634 return retval;
2635 }
2636
2637 static void
2638 debug_to_find_new_threads (void)
2639 {
2640 debug_target.to_find_new_threads ();
2641
2642 fputs_unfiltered ("target_find_new_threads ()\n", gdb_stdlog);
2643 }
2644
2645 static void
2646 debug_to_stop (void)
2647 {
2648 debug_target.to_stop ();
2649
2650 fprintf_unfiltered (gdb_stdlog, "target_stop ()\n");
2651 }
2652
2653 static void
2654 debug_to_rcmd (char *command,
2655 struct ui_file *outbuf)
2656 {
2657 debug_target.to_rcmd (command, outbuf);
2658 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
2659 }
2660
2661 static struct symtab_and_line *
2662 debug_to_enable_exception_callback (enum exception_event_kind kind, int enable)
2663 {
2664 struct symtab_and_line *result;
2665 result = debug_target.to_enable_exception_callback (kind, enable);
2666 fprintf_unfiltered (gdb_stdlog,
2667 "target get_exception_callback_sal (%d, %d)\n",
2668 kind, enable);
2669 return result;
2670 }
2671
2672 static struct exception_event_record *
2673 debug_to_get_current_exception_event (void)
2674 {
2675 struct exception_event_record *result;
2676 result = debug_target.to_get_current_exception_event ();
2677 fprintf_unfiltered (gdb_stdlog, "target get_current_exception_event ()\n");
2678 return result;
2679 }
2680
2681 static char *
2682 debug_to_pid_to_exec_file (int pid)
2683 {
2684 char *exec_file;
2685
2686 exec_file = debug_target.to_pid_to_exec_file (pid);
2687
2688 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
2689 pid, exec_file);
2690
2691 return exec_file;
2692 }
2693
2694 static void
2695 setup_target_debug (void)
2696 {
2697 memcpy (&debug_target, &current_target, sizeof debug_target);
2698
2699 current_target.to_open = debug_to_open;
2700 current_target.to_close = debug_to_close;
2701 current_target.to_attach = debug_to_attach;
2702 current_target.to_post_attach = debug_to_post_attach;
2703 current_target.to_detach = debug_to_detach;
2704 current_target.to_resume = debug_to_resume;
2705 current_target.to_wait = debug_to_wait;
2706 current_target.to_fetch_registers = debug_to_fetch_registers;
2707 current_target.to_store_registers = debug_to_store_registers;
2708 current_target.to_prepare_to_store = debug_to_prepare_to_store;
2709 current_target.deprecated_xfer_memory = deprecated_debug_xfer_memory;
2710 current_target.to_files_info = debug_to_files_info;
2711 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
2712 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
2713 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
2714 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
2715 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
2716 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
2717 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
2718 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
2719 current_target.to_stopped_data_address = debug_to_stopped_data_address;
2720 current_target.to_region_ok_for_hw_watchpoint = debug_to_region_ok_for_hw_watchpoint;
2721 current_target.to_terminal_init = debug_to_terminal_init;
2722 current_target.to_terminal_inferior = debug_to_terminal_inferior;
2723 current_target.to_terminal_ours_for_output = debug_to_terminal_ours_for_output;
2724 current_target.to_terminal_ours = debug_to_terminal_ours;
2725 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
2726 current_target.to_terminal_info = debug_to_terminal_info;
2727 current_target.to_kill = debug_to_kill;
2728 current_target.to_load = debug_to_load;
2729 current_target.to_lookup_symbol = debug_to_lookup_symbol;
2730 current_target.to_create_inferior = debug_to_create_inferior;
2731 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
2732 current_target.to_acknowledge_created_inferior = debug_to_acknowledge_created_inferior;
2733 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
2734 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
2735 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
2736 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
2737 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
2738 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
2739 current_target.to_reported_exec_events_per_exec_call = debug_to_reported_exec_events_per_exec_call;
2740 current_target.to_has_exited = debug_to_has_exited;
2741 current_target.to_mourn_inferior = debug_to_mourn_inferior;
2742 current_target.to_can_run = debug_to_can_run;
2743 current_target.to_notice_signals = debug_to_notice_signals;
2744 current_target.to_thread_alive = debug_to_thread_alive;
2745 current_target.to_find_new_threads = debug_to_find_new_threads;
2746 current_target.to_stop = debug_to_stop;
2747 current_target.to_rcmd = debug_to_rcmd;
2748 current_target.to_enable_exception_callback = debug_to_enable_exception_callback;
2749 current_target.to_get_current_exception_event = debug_to_get_current_exception_event;
2750 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
2751 }
2752 \f
2753
2754 static char targ_desc[] =
2755 "Names of targets and files being debugged.\n\
2756 Shows the entire stack of targets currently in use (including the exec-file,\n\
2757 core-file, and process, if any), as well as the symbol file name.";
2758
2759 static void
2760 do_monitor_command (char *cmd,
2761 int from_tty)
2762 {
2763 if ((current_target.to_rcmd
2764 == (void (*) (char *, struct ui_file *)) tcomplain)
2765 || (current_target.to_rcmd == debug_to_rcmd
2766 && (debug_target.to_rcmd
2767 == (void (*) (char *, struct ui_file *)) tcomplain)))
2768 error (_("\"monitor\" command not supported by this target."));
2769 target_rcmd (cmd, gdb_stdtarg);
2770 }
2771
2772 void
2773 initialize_targets (void)
2774 {
2775 init_dummy_target ();
2776 push_target (&dummy_target);
2777
2778 add_info ("target", target_info, targ_desc);
2779 add_info ("files", target_info, targ_desc);
2780
2781 add_setshow_zinteger_cmd ("target", class_maintenance, &targetdebug, _("\
2782 Set target debugging."), _("\
2783 Show target debugging."), _("\
2784 When non-zero, target debugging is enabled. Higher numbers are more\n\
2785 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
2786 command."),
2787 NULL,
2788 show_targetdebug,
2789 &setdebuglist, &showdebuglist);
2790
2791 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
2792 &trust_readonly, _("\
2793 Set mode for reading from readonly sections."), _("\
2794 Show mode for reading from readonly sections."), _("\
2795 When this mode is on, memory reads from readonly sections (such as .text)\n\
2796 will be read from the object file instead of from the target. This will\n\
2797 result in significant performance improvement for remote targets."),
2798 NULL,
2799 show_trust_readonly,
2800 &setlist, &showlist);
2801
2802 add_com ("monitor", class_obscure, do_monitor_command,
2803 _("Send a command to the remote monitor (remote targets only)."));
2804
2805 target_dcache = dcache_init ();
2806 }