]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
fix regressions with target-async
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdb_assert.h"
37 #include "gdbcore.h"
38 #include "exceptions.h"
39 #include "target-descriptions.h"
40 #include "gdbthread.h"
41 #include "solib.h"
42 #include "exec.h"
43 #include "inline-frame.h"
44 #include "tracepoint.h"
45 #include "gdb/fileio.h"
46 #include "agent.h"
47 #include "auxv.h"
48
49 static void target_info (char *, int);
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static void tcomplain (void) ATTRIBUTE_NORETURN;
77
78 static int return_zero (struct target_ops *);
79
80 static int return_zero_has_execution (struct target_ops *, ptid_t);
81
82 static void target_command (char *, int);
83
84 static struct target_ops *find_default_run_target (char *);
85
86 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
87 ptid_t ptid);
88
89 static int dummy_find_memory_regions (struct target_ops *self,
90 find_memory_region_ftype ignore1,
91 void *ignore2);
92
93 static char *dummy_make_corefile_notes (struct target_ops *self,
94 bfd *ignore1, int *ignore2);
95
96 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
97
98 static enum exec_direction_kind default_execution_direction
99 (struct target_ops *self);
100
101 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
102 struct gdbarch *gdbarch);
103
104 #include "target-delegates.c"
105
106 static void init_dummy_target (void);
107
108 static struct target_ops debug_target;
109
110 static void debug_to_open (char *, int);
111
112 static void debug_to_prepare_to_store (struct target_ops *self,
113 struct regcache *);
114
115 static void debug_to_files_info (struct target_ops *);
116
117 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
118 struct bp_target_info *);
119
120 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
121 struct bp_target_info *);
122
123 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
124 int, int, int);
125
126 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
127 struct gdbarch *,
128 struct bp_target_info *);
129
130 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
131 struct gdbarch *,
132 struct bp_target_info *);
133
134 static int debug_to_insert_watchpoint (struct target_ops *self,
135 CORE_ADDR, int, int,
136 struct expression *);
137
138 static int debug_to_remove_watchpoint (struct target_ops *self,
139 CORE_ADDR, int, int,
140 struct expression *);
141
142 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
143
144 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
145 CORE_ADDR, CORE_ADDR, int);
146
147 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
148 CORE_ADDR, int);
149
150 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
151 CORE_ADDR, int, int,
152 struct expression *);
153
154 static void debug_to_terminal_init (struct target_ops *self);
155
156 static void debug_to_terminal_inferior (struct target_ops *self);
157
158 static void debug_to_terminal_ours_for_output (struct target_ops *self);
159
160 static void debug_to_terminal_save_ours (struct target_ops *self);
161
162 static void debug_to_terminal_ours (struct target_ops *self);
163
164 static void debug_to_load (struct target_ops *self, char *, int);
165
166 static int debug_to_can_run (struct target_ops *self);
167
168 static void debug_to_stop (struct target_ops *self, ptid_t);
169
170 /* Pointer to array of target architecture structures; the size of the
171 array; the current index into the array; the allocated size of the
172 array. */
173 struct target_ops **target_structs;
174 unsigned target_struct_size;
175 unsigned target_struct_allocsize;
176 #define DEFAULT_ALLOCSIZE 10
177
178 /* The initial current target, so that there is always a semi-valid
179 current target. */
180
181 static struct target_ops dummy_target;
182
183 /* Top of target stack. */
184
185 static struct target_ops *target_stack;
186
187 /* The target structure we are currently using to talk to a process
188 or file or whatever "inferior" we have. */
189
190 struct target_ops current_target;
191
192 /* Command list for target. */
193
194 static struct cmd_list_element *targetlist = NULL;
195
196 /* Nonzero if we should trust readonly sections from the
197 executable when reading memory. */
198
199 static int trust_readonly = 0;
200
201 /* Nonzero if we should show true memory content including
202 memory breakpoint inserted by gdb. */
203
204 static int show_memory_breakpoints = 0;
205
206 /* These globals control whether GDB attempts to perform these
207 operations; they are useful for targets that need to prevent
208 inadvertant disruption, such as in non-stop mode. */
209
210 int may_write_registers = 1;
211
212 int may_write_memory = 1;
213
214 int may_insert_breakpoints = 1;
215
216 int may_insert_tracepoints = 1;
217
218 int may_insert_fast_tracepoints = 1;
219
220 int may_stop = 1;
221
222 /* Non-zero if we want to see trace of target level stuff. */
223
224 static unsigned int targetdebug = 0;
225 static void
226 show_targetdebug (struct ui_file *file, int from_tty,
227 struct cmd_list_element *c, const char *value)
228 {
229 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
230 }
231
232 static void setup_target_debug (void);
233
234 /* The user just typed 'target' without the name of a target. */
235
236 static void
237 target_command (char *arg, int from_tty)
238 {
239 fputs_filtered ("Argument required (target name). Try `help target'\n",
240 gdb_stdout);
241 }
242
243 /* Default target_has_* methods for process_stratum targets. */
244
245 int
246 default_child_has_all_memory (struct target_ops *ops)
247 {
248 /* If no inferior selected, then we can't read memory here. */
249 if (ptid_equal (inferior_ptid, null_ptid))
250 return 0;
251
252 return 1;
253 }
254
255 int
256 default_child_has_memory (struct target_ops *ops)
257 {
258 /* If no inferior selected, then we can't read memory here. */
259 if (ptid_equal (inferior_ptid, null_ptid))
260 return 0;
261
262 return 1;
263 }
264
265 int
266 default_child_has_stack (struct target_ops *ops)
267 {
268 /* If no inferior selected, there's no stack. */
269 if (ptid_equal (inferior_ptid, null_ptid))
270 return 0;
271
272 return 1;
273 }
274
275 int
276 default_child_has_registers (struct target_ops *ops)
277 {
278 /* Can't read registers from no inferior. */
279 if (ptid_equal (inferior_ptid, null_ptid))
280 return 0;
281
282 return 1;
283 }
284
285 int
286 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
287 {
288 /* If there's no thread selected, then we can't make it run through
289 hoops. */
290 if (ptid_equal (the_ptid, null_ptid))
291 return 0;
292
293 return 1;
294 }
295
296
297 int
298 target_has_all_memory_1 (void)
299 {
300 struct target_ops *t;
301
302 for (t = current_target.beneath; t != NULL; t = t->beneath)
303 if (t->to_has_all_memory (t))
304 return 1;
305
306 return 0;
307 }
308
309 int
310 target_has_memory_1 (void)
311 {
312 struct target_ops *t;
313
314 for (t = current_target.beneath; t != NULL; t = t->beneath)
315 if (t->to_has_memory (t))
316 return 1;
317
318 return 0;
319 }
320
321 int
322 target_has_stack_1 (void)
323 {
324 struct target_ops *t;
325
326 for (t = current_target.beneath; t != NULL; t = t->beneath)
327 if (t->to_has_stack (t))
328 return 1;
329
330 return 0;
331 }
332
333 int
334 target_has_registers_1 (void)
335 {
336 struct target_ops *t;
337
338 for (t = current_target.beneath; t != NULL; t = t->beneath)
339 if (t->to_has_registers (t))
340 return 1;
341
342 return 0;
343 }
344
345 int
346 target_has_execution_1 (ptid_t the_ptid)
347 {
348 struct target_ops *t;
349
350 for (t = current_target.beneath; t != NULL; t = t->beneath)
351 if (t->to_has_execution (t, the_ptid))
352 return 1;
353
354 return 0;
355 }
356
357 int
358 target_has_execution_current (void)
359 {
360 return target_has_execution_1 (inferior_ptid);
361 }
362
363 /* Complete initialization of T. This ensures that various fields in
364 T are set, if needed by the target implementation. */
365
366 void
367 complete_target_initialization (struct target_ops *t)
368 {
369 /* Provide default values for all "must have" methods. */
370
371 if (t->to_has_all_memory == NULL)
372 t->to_has_all_memory = return_zero;
373
374 if (t->to_has_memory == NULL)
375 t->to_has_memory = return_zero;
376
377 if (t->to_has_stack == NULL)
378 t->to_has_stack = return_zero;
379
380 if (t->to_has_registers == NULL)
381 t->to_has_registers = return_zero;
382
383 if (t->to_has_execution == NULL)
384 t->to_has_execution = return_zero_has_execution;
385
386 /* These methods can be called on an unpushed target and so require
387 a default implementation if the target might plausibly be the
388 default run target. */
389 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
390 && t->to_supports_non_stop != NULL));
391
392 install_delegators (t);
393 }
394
395 /* Add possible target architecture T to the list and add a new
396 command 'target T->to_shortname'. Set COMPLETER as the command's
397 completer if not NULL. */
398
399 void
400 add_target_with_completer (struct target_ops *t,
401 completer_ftype *completer)
402 {
403 struct cmd_list_element *c;
404
405 complete_target_initialization (t);
406
407 if (!target_structs)
408 {
409 target_struct_allocsize = DEFAULT_ALLOCSIZE;
410 target_structs = (struct target_ops **) xmalloc
411 (target_struct_allocsize * sizeof (*target_structs));
412 }
413 if (target_struct_size >= target_struct_allocsize)
414 {
415 target_struct_allocsize *= 2;
416 target_structs = (struct target_ops **)
417 xrealloc ((char *) target_structs,
418 target_struct_allocsize * sizeof (*target_structs));
419 }
420 target_structs[target_struct_size++] = t;
421
422 if (targetlist == NULL)
423 add_prefix_cmd ("target", class_run, target_command, _("\
424 Connect to a target machine or process.\n\
425 The first argument is the type or protocol of the target machine.\n\
426 Remaining arguments are interpreted by the target protocol. For more\n\
427 information on the arguments for a particular protocol, type\n\
428 `help target ' followed by the protocol name."),
429 &targetlist, "target ", 0, &cmdlist);
430 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
431 &targetlist);
432 if (completer != NULL)
433 set_cmd_completer (c, completer);
434 }
435
436 /* Add a possible target architecture to the list. */
437
438 void
439 add_target (struct target_ops *t)
440 {
441 add_target_with_completer (t, NULL);
442 }
443
444 /* See target.h. */
445
446 void
447 add_deprecated_target_alias (struct target_ops *t, char *alias)
448 {
449 struct cmd_list_element *c;
450 char *alt;
451
452 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
453 see PR cli/15104. */
454 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
455 alt = xstrprintf ("target %s", t->to_shortname);
456 deprecate_cmd (c, alt);
457 }
458
459 /* Stub functions */
460
461 void
462 target_kill (void)
463 {
464 if (targetdebug)
465 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
466
467 current_target.to_kill (&current_target);
468 }
469
470 void
471 target_load (char *arg, int from_tty)
472 {
473 target_dcache_invalidate ();
474 (*current_target.to_load) (&current_target, arg, from_tty);
475 }
476
477 void
478 target_terminal_inferior (void)
479 {
480 /* A background resume (``run&'') should leave GDB in control of the
481 terminal. Use target_can_async_p, not target_is_async_p, since at
482 this point the target is not async yet. However, if sync_execution
483 is not set, we know it will become async prior to resume. */
484 if (target_can_async_p () && !sync_execution)
485 return;
486
487 /* If GDB is resuming the inferior in the foreground, install
488 inferior's terminal modes. */
489 (*current_target.to_terminal_inferior) (&current_target);
490 }
491
492 static void
493 tcomplain (void)
494 {
495 error (_("You can't do that when your target is `%s'"),
496 current_target.to_shortname);
497 }
498
499 void
500 noprocess (void)
501 {
502 error (_("You can't do that without a process to debug."));
503 }
504
505 static void
506 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
507 {
508 printf_unfiltered (_("No saved terminal information.\n"));
509 }
510
511 /* A default implementation for the to_get_ada_task_ptid target method.
512
513 This function builds the PTID by using both LWP and TID as part of
514 the PTID lwp and tid elements. The pid used is the pid of the
515 inferior_ptid. */
516
517 static ptid_t
518 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
519 {
520 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
521 }
522
523 static enum exec_direction_kind
524 default_execution_direction (struct target_ops *self)
525 {
526 if (!target_can_execute_reverse)
527 return EXEC_FORWARD;
528 else if (!target_can_async_p ())
529 return EXEC_FORWARD;
530 else
531 gdb_assert_not_reached ("\
532 to_execution_direction must be implemented for reverse async");
533 }
534
535 /* Go through the target stack from top to bottom, copying over zero
536 entries in current_target, then filling in still empty entries. In
537 effect, we are doing class inheritance through the pushed target
538 vectors.
539
540 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
541 is currently implemented, is that it discards any knowledge of
542 which target an inherited method originally belonged to.
543 Consequently, new new target methods should instead explicitly and
544 locally search the target stack for the target that can handle the
545 request. */
546
547 static void
548 update_current_target (void)
549 {
550 struct target_ops *t;
551
552 /* First, reset current's contents. */
553 memset (&current_target, 0, sizeof (current_target));
554
555 /* Install the delegators. */
556 install_delegators (&current_target);
557
558 current_target.to_stratum = target_stack->to_stratum;
559
560 #define INHERIT(FIELD, TARGET) \
561 if (!current_target.FIELD) \
562 current_target.FIELD = (TARGET)->FIELD
563
564 /* Do not add any new INHERITs here. Instead, use the delegation
565 mechanism provided by make-target-delegates. */
566 for (t = target_stack; t; t = t->beneath)
567 {
568 INHERIT (to_shortname, t);
569 INHERIT (to_longname, t);
570 INHERIT (to_attach_no_wait, t);
571 INHERIT (to_have_steppable_watchpoint, t);
572 INHERIT (to_have_continuable_watchpoint, t);
573 INHERIT (to_has_thread_control, t);
574 }
575 #undef INHERIT
576
577 /* Finally, position the target-stack beneath the squashed
578 "current_target". That way code looking for a non-inherited
579 target method can quickly and simply find it. */
580 current_target.beneath = target_stack;
581
582 if (targetdebug)
583 setup_target_debug ();
584 }
585
586 /* Push a new target type into the stack of the existing target accessors,
587 possibly superseding some of the existing accessors.
588
589 Rather than allow an empty stack, we always have the dummy target at
590 the bottom stratum, so we can call the function vectors without
591 checking them. */
592
593 void
594 push_target (struct target_ops *t)
595 {
596 struct target_ops **cur;
597
598 /* Check magic number. If wrong, it probably means someone changed
599 the struct definition, but not all the places that initialize one. */
600 if (t->to_magic != OPS_MAGIC)
601 {
602 fprintf_unfiltered (gdb_stderr,
603 "Magic number of %s target struct wrong\n",
604 t->to_shortname);
605 internal_error (__FILE__, __LINE__,
606 _("failed internal consistency check"));
607 }
608
609 /* Find the proper stratum to install this target in. */
610 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
611 {
612 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
613 break;
614 }
615
616 /* If there's already targets at this stratum, remove them. */
617 /* FIXME: cagney/2003-10-15: I think this should be popping all
618 targets to CUR, and not just those at this stratum level. */
619 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
620 {
621 /* There's already something at this stratum level. Close it,
622 and un-hook it from the stack. */
623 struct target_ops *tmp = (*cur);
624
625 (*cur) = (*cur)->beneath;
626 tmp->beneath = NULL;
627 target_close (tmp);
628 }
629
630 /* We have removed all targets in our stratum, now add the new one. */
631 t->beneath = (*cur);
632 (*cur) = t;
633
634 update_current_target ();
635 }
636
637 /* Remove a target_ops vector from the stack, wherever it may be.
638 Return how many times it was removed (0 or 1). */
639
640 int
641 unpush_target (struct target_ops *t)
642 {
643 struct target_ops **cur;
644 struct target_ops *tmp;
645
646 if (t->to_stratum == dummy_stratum)
647 internal_error (__FILE__, __LINE__,
648 _("Attempt to unpush the dummy target"));
649
650 /* Look for the specified target. Note that we assume that a target
651 can only occur once in the target stack. */
652
653 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
654 {
655 if ((*cur) == t)
656 break;
657 }
658
659 /* If we don't find target_ops, quit. Only open targets should be
660 closed. */
661 if ((*cur) == NULL)
662 return 0;
663
664 /* Unchain the target. */
665 tmp = (*cur);
666 (*cur) = (*cur)->beneath;
667 tmp->beneath = NULL;
668
669 update_current_target ();
670
671 /* Finally close the target. Note we do this after unchaining, so
672 any target method calls from within the target_close
673 implementation don't end up in T anymore. */
674 target_close (t);
675
676 return 1;
677 }
678
679 void
680 pop_all_targets_above (enum strata above_stratum)
681 {
682 while ((int) (current_target.to_stratum) > (int) above_stratum)
683 {
684 if (!unpush_target (target_stack))
685 {
686 fprintf_unfiltered (gdb_stderr,
687 "pop_all_targets couldn't find target %s\n",
688 target_stack->to_shortname);
689 internal_error (__FILE__, __LINE__,
690 _("failed internal consistency check"));
691 break;
692 }
693 }
694 }
695
696 void
697 pop_all_targets (void)
698 {
699 pop_all_targets_above (dummy_stratum);
700 }
701
702 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
703
704 int
705 target_is_pushed (struct target_ops *t)
706 {
707 struct target_ops **cur;
708
709 /* Check magic number. If wrong, it probably means someone changed
710 the struct definition, but not all the places that initialize one. */
711 if (t->to_magic != OPS_MAGIC)
712 {
713 fprintf_unfiltered (gdb_stderr,
714 "Magic number of %s target struct wrong\n",
715 t->to_shortname);
716 internal_error (__FILE__, __LINE__,
717 _("failed internal consistency check"));
718 }
719
720 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
721 if (*cur == t)
722 return 1;
723
724 return 0;
725 }
726
727 /* Using the objfile specified in OBJFILE, find the address for the
728 current thread's thread-local storage with offset OFFSET. */
729 CORE_ADDR
730 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
731 {
732 volatile CORE_ADDR addr = 0;
733 struct target_ops *target;
734
735 for (target = current_target.beneath;
736 target != NULL;
737 target = target->beneath)
738 {
739 if (target->to_get_thread_local_address != NULL)
740 break;
741 }
742
743 if (target != NULL
744 && gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
745 {
746 ptid_t ptid = inferior_ptid;
747 volatile struct gdb_exception ex;
748
749 TRY_CATCH (ex, RETURN_MASK_ALL)
750 {
751 CORE_ADDR lm_addr;
752
753 /* Fetch the load module address for this objfile. */
754 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
755 objfile);
756 /* If it's 0, throw the appropriate exception. */
757 if (lm_addr == 0)
758 throw_error (TLS_LOAD_MODULE_NOT_FOUND_ERROR,
759 _("TLS load module not found"));
760
761 addr = target->to_get_thread_local_address (target, ptid,
762 lm_addr, offset);
763 }
764 /* If an error occurred, print TLS related messages here. Otherwise,
765 throw the error to some higher catcher. */
766 if (ex.reason < 0)
767 {
768 int objfile_is_library = (objfile->flags & OBJF_SHARED);
769
770 switch (ex.error)
771 {
772 case TLS_NO_LIBRARY_SUPPORT_ERROR:
773 error (_("Cannot find thread-local variables "
774 "in this thread library."));
775 break;
776 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
777 if (objfile_is_library)
778 error (_("Cannot find shared library `%s' in dynamic"
779 " linker's load module list"), objfile_name (objfile));
780 else
781 error (_("Cannot find executable file `%s' in dynamic"
782 " linker's load module list"), objfile_name (objfile));
783 break;
784 case TLS_NOT_ALLOCATED_YET_ERROR:
785 if (objfile_is_library)
786 error (_("The inferior has not yet allocated storage for"
787 " thread-local variables in\n"
788 "the shared library `%s'\n"
789 "for %s"),
790 objfile_name (objfile), target_pid_to_str (ptid));
791 else
792 error (_("The inferior has not yet allocated storage for"
793 " thread-local variables in\n"
794 "the executable `%s'\n"
795 "for %s"),
796 objfile_name (objfile), target_pid_to_str (ptid));
797 break;
798 case TLS_GENERIC_ERROR:
799 if (objfile_is_library)
800 error (_("Cannot find thread-local storage for %s, "
801 "shared library %s:\n%s"),
802 target_pid_to_str (ptid),
803 objfile_name (objfile), ex.message);
804 else
805 error (_("Cannot find thread-local storage for %s, "
806 "executable file %s:\n%s"),
807 target_pid_to_str (ptid),
808 objfile_name (objfile), ex.message);
809 break;
810 default:
811 throw_exception (ex);
812 break;
813 }
814 }
815 }
816 /* It wouldn't be wrong here to try a gdbarch method, too; finding
817 TLS is an ABI-specific thing. But we don't do that yet. */
818 else
819 error (_("Cannot find thread-local variables on this target"));
820
821 return addr;
822 }
823
824 const char *
825 target_xfer_status_to_string (enum target_xfer_status status)
826 {
827 #define CASE(X) case X: return #X
828 switch (status)
829 {
830 CASE(TARGET_XFER_E_IO);
831 CASE(TARGET_XFER_UNAVAILABLE);
832 default:
833 return "<unknown>";
834 }
835 #undef CASE
836 };
837
838
839 #undef MIN
840 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
841
842 /* target_read_string -- read a null terminated string, up to LEN bytes,
843 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
844 Set *STRING to a pointer to malloc'd memory containing the data; the caller
845 is responsible for freeing it. Return the number of bytes successfully
846 read. */
847
848 int
849 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
850 {
851 int tlen, offset, i;
852 gdb_byte buf[4];
853 int errcode = 0;
854 char *buffer;
855 int buffer_allocated;
856 char *bufptr;
857 unsigned int nbytes_read = 0;
858
859 gdb_assert (string);
860
861 /* Small for testing. */
862 buffer_allocated = 4;
863 buffer = xmalloc (buffer_allocated);
864 bufptr = buffer;
865
866 while (len > 0)
867 {
868 tlen = MIN (len, 4 - (memaddr & 3));
869 offset = memaddr & 3;
870
871 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
872 if (errcode != 0)
873 {
874 /* The transfer request might have crossed the boundary to an
875 unallocated region of memory. Retry the transfer, requesting
876 a single byte. */
877 tlen = 1;
878 offset = 0;
879 errcode = target_read_memory (memaddr, buf, 1);
880 if (errcode != 0)
881 goto done;
882 }
883
884 if (bufptr - buffer + tlen > buffer_allocated)
885 {
886 unsigned int bytes;
887
888 bytes = bufptr - buffer;
889 buffer_allocated *= 2;
890 buffer = xrealloc (buffer, buffer_allocated);
891 bufptr = buffer + bytes;
892 }
893
894 for (i = 0; i < tlen; i++)
895 {
896 *bufptr++ = buf[i + offset];
897 if (buf[i + offset] == '\000')
898 {
899 nbytes_read += i + 1;
900 goto done;
901 }
902 }
903
904 memaddr += tlen;
905 len -= tlen;
906 nbytes_read += tlen;
907 }
908 done:
909 *string = buffer;
910 if (errnop != NULL)
911 *errnop = errcode;
912 return nbytes_read;
913 }
914
915 struct target_section_table *
916 target_get_section_table (struct target_ops *target)
917 {
918 if (targetdebug)
919 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
920
921 return (*target->to_get_section_table) (target);
922 }
923
924 /* Find a section containing ADDR. */
925
926 struct target_section *
927 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
928 {
929 struct target_section_table *table = target_get_section_table (target);
930 struct target_section *secp;
931
932 if (table == NULL)
933 return NULL;
934
935 for (secp = table->sections; secp < table->sections_end; secp++)
936 {
937 if (addr >= secp->addr && addr < secp->endaddr)
938 return secp;
939 }
940 return NULL;
941 }
942
943 /* Read memory from the live target, even if currently inspecting a
944 traceframe. The return is the same as that of target_read. */
945
946 static enum target_xfer_status
947 target_read_live_memory (enum target_object object,
948 ULONGEST memaddr, gdb_byte *myaddr, ULONGEST len,
949 ULONGEST *xfered_len)
950 {
951 enum target_xfer_status ret;
952 struct cleanup *cleanup;
953
954 /* Switch momentarily out of tfind mode so to access live memory.
955 Note that this must not clear global state, such as the frame
956 cache, which must still remain valid for the previous traceframe.
957 We may be _building_ the frame cache at this point. */
958 cleanup = make_cleanup_restore_traceframe_number ();
959 set_traceframe_number (-1);
960
961 ret = target_xfer_partial (current_target.beneath, object, NULL,
962 myaddr, NULL, memaddr, len, xfered_len);
963
964 do_cleanups (cleanup);
965 return ret;
966 }
967
968 /* Using the set of read-only target sections of OPS, read live
969 read-only memory. Note that the actual reads start from the
970 top-most target again.
971
972 For interface/parameters/return description see target.h,
973 to_xfer_partial. */
974
975 static enum target_xfer_status
976 memory_xfer_live_readonly_partial (struct target_ops *ops,
977 enum target_object object,
978 gdb_byte *readbuf, ULONGEST memaddr,
979 ULONGEST len, ULONGEST *xfered_len)
980 {
981 struct target_section *secp;
982 struct target_section_table *table;
983
984 secp = target_section_by_addr (ops, memaddr);
985 if (secp != NULL
986 && (bfd_get_section_flags (secp->the_bfd_section->owner,
987 secp->the_bfd_section)
988 & SEC_READONLY))
989 {
990 struct target_section *p;
991 ULONGEST memend = memaddr + len;
992
993 table = target_get_section_table (ops);
994
995 for (p = table->sections; p < table->sections_end; p++)
996 {
997 if (memaddr >= p->addr)
998 {
999 if (memend <= p->endaddr)
1000 {
1001 /* Entire transfer is within this section. */
1002 return target_read_live_memory (object, memaddr,
1003 readbuf, len, xfered_len);
1004 }
1005 else if (memaddr >= p->endaddr)
1006 {
1007 /* This section ends before the transfer starts. */
1008 continue;
1009 }
1010 else
1011 {
1012 /* This section overlaps the transfer. Just do half. */
1013 len = p->endaddr - memaddr;
1014 return target_read_live_memory (object, memaddr,
1015 readbuf, len, xfered_len);
1016 }
1017 }
1018 }
1019 }
1020
1021 return TARGET_XFER_EOF;
1022 }
1023
1024 /* Read memory from more than one valid target. A core file, for
1025 instance, could have some of memory but delegate other bits to
1026 the target below it. So, we must manually try all targets. */
1027
1028 static enum target_xfer_status
1029 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1030 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1031 ULONGEST *xfered_len)
1032 {
1033 enum target_xfer_status res;
1034
1035 do
1036 {
1037 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1038 readbuf, writebuf, memaddr, len,
1039 xfered_len);
1040 if (res == TARGET_XFER_OK)
1041 break;
1042
1043 /* Stop if the target reports that the memory is not available. */
1044 if (res == TARGET_XFER_UNAVAILABLE)
1045 break;
1046
1047 /* We want to continue past core files to executables, but not
1048 past a running target's memory. */
1049 if (ops->to_has_all_memory (ops))
1050 break;
1051
1052 ops = ops->beneath;
1053 }
1054 while (ops != NULL);
1055
1056 /* The cache works at the raw memory level. Make sure the cache
1057 gets updated with raw contents no matter what kind of memory
1058 object was originally being written. Note we do write-through
1059 first, so that if it fails, we don't write to the cache contents
1060 that never made it to the target. */
1061 if (writebuf != NULL
1062 && !ptid_equal (inferior_ptid, null_ptid)
1063 && target_dcache_init_p ()
1064 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1065 {
1066 DCACHE *dcache = target_dcache_get ();
1067
1068 /* Note that writing to an area of memory which wasn't present
1069 in the cache doesn't cause it to be loaded in. */
1070 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1071 }
1072
1073 return res;
1074 }
1075
1076 /* Perform a partial memory transfer.
1077 For docs see target.h, to_xfer_partial. */
1078
1079 static enum target_xfer_status
1080 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1081 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1082 ULONGEST len, ULONGEST *xfered_len)
1083 {
1084 enum target_xfer_status res;
1085 int reg_len;
1086 struct mem_region *region;
1087 struct inferior *inf;
1088
1089 /* For accesses to unmapped overlay sections, read directly from
1090 files. Must do this first, as MEMADDR may need adjustment. */
1091 if (readbuf != NULL && overlay_debugging)
1092 {
1093 struct obj_section *section = find_pc_overlay (memaddr);
1094
1095 if (pc_in_unmapped_range (memaddr, section))
1096 {
1097 struct target_section_table *table
1098 = target_get_section_table (ops);
1099 const char *section_name = section->the_bfd_section->name;
1100
1101 memaddr = overlay_mapped_address (memaddr, section);
1102 return section_table_xfer_memory_partial (readbuf, writebuf,
1103 memaddr, len, xfered_len,
1104 table->sections,
1105 table->sections_end,
1106 section_name);
1107 }
1108 }
1109
1110 /* Try the executable files, if "trust-readonly-sections" is set. */
1111 if (readbuf != NULL && trust_readonly)
1112 {
1113 struct target_section *secp;
1114 struct target_section_table *table;
1115
1116 secp = target_section_by_addr (ops, memaddr);
1117 if (secp != NULL
1118 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1119 secp->the_bfd_section)
1120 & SEC_READONLY))
1121 {
1122 table = target_get_section_table (ops);
1123 return section_table_xfer_memory_partial (readbuf, writebuf,
1124 memaddr, len, xfered_len,
1125 table->sections,
1126 table->sections_end,
1127 NULL);
1128 }
1129 }
1130
1131 /* If reading unavailable memory in the context of traceframes, and
1132 this address falls within a read-only section, fallback to
1133 reading from live memory. */
1134 if (readbuf != NULL && get_traceframe_number () != -1)
1135 {
1136 VEC(mem_range_s) *available;
1137
1138 /* If we fail to get the set of available memory, then the
1139 target does not support querying traceframe info, and so we
1140 attempt reading from the traceframe anyway (assuming the
1141 target implements the old QTro packet then). */
1142 if (traceframe_available_memory (&available, memaddr, len))
1143 {
1144 struct cleanup *old_chain;
1145
1146 old_chain = make_cleanup (VEC_cleanup(mem_range_s), &available);
1147
1148 if (VEC_empty (mem_range_s, available)
1149 || VEC_index (mem_range_s, available, 0)->start != memaddr)
1150 {
1151 /* Don't read into the traceframe's available
1152 memory. */
1153 if (!VEC_empty (mem_range_s, available))
1154 {
1155 LONGEST oldlen = len;
1156
1157 len = VEC_index (mem_range_s, available, 0)->start - memaddr;
1158 gdb_assert (len <= oldlen);
1159 }
1160
1161 do_cleanups (old_chain);
1162
1163 /* This goes through the topmost target again. */
1164 res = memory_xfer_live_readonly_partial (ops, object,
1165 readbuf, memaddr,
1166 len, xfered_len);
1167 if (res == TARGET_XFER_OK)
1168 return TARGET_XFER_OK;
1169 else
1170 {
1171 /* No use trying further, we know some memory starting
1172 at MEMADDR isn't available. */
1173 *xfered_len = len;
1174 return TARGET_XFER_UNAVAILABLE;
1175 }
1176 }
1177
1178 /* Don't try to read more than how much is available, in
1179 case the target implements the deprecated QTro packet to
1180 cater for older GDBs (the target's knowledge of read-only
1181 sections may be outdated by now). */
1182 len = VEC_index (mem_range_s, available, 0)->length;
1183
1184 do_cleanups (old_chain);
1185 }
1186 }
1187
1188 /* Try GDB's internal data cache. */
1189 region = lookup_mem_region (memaddr);
1190 /* region->hi == 0 means there's no upper bound. */
1191 if (memaddr + len < region->hi || region->hi == 0)
1192 reg_len = len;
1193 else
1194 reg_len = region->hi - memaddr;
1195
1196 switch (region->attrib.mode)
1197 {
1198 case MEM_RO:
1199 if (writebuf != NULL)
1200 return TARGET_XFER_E_IO;
1201 break;
1202
1203 case MEM_WO:
1204 if (readbuf != NULL)
1205 return TARGET_XFER_E_IO;
1206 break;
1207
1208 case MEM_FLASH:
1209 /* We only support writing to flash during "load" for now. */
1210 if (writebuf != NULL)
1211 error (_("Writing to flash memory forbidden in this context"));
1212 break;
1213
1214 case MEM_NONE:
1215 return TARGET_XFER_E_IO;
1216 }
1217
1218 if (!ptid_equal (inferior_ptid, null_ptid))
1219 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1220 else
1221 inf = NULL;
1222
1223 if (inf != NULL
1224 && readbuf != NULL
1225 /* The dcache reads whole cache lines; that doesn't play well
1226 with reading from a trace buffer, because reading outside of
1227 the collected memory range fails. */
1228 && get_traceframe_number () == -1
1229 && (region->attrib.cache
1230 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1231 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1232 {
1233 DCACHE *dcache = target_dcache_get_or_init ();
1234
1235 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1236 reg_len, xfered_len);
1237 }
1238
1239 /* If none of those methods found the memory we wanted, fall back
1240 to a target partial transfer. Normally a single call to
1241 to_xfer_partial is enough; if it doesn't recognize an object
1242 it will call the to_xfer_partial of the next target down.
1243 But for memory this won't do. Memory is the only target
1244 object which can be read from more than one valid target.
1245 A core file, for instance, could have some of memory but
1246 delegate other bits to the target below it. So, we must
1247 manually try all targets. */
1248
1249 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1250 xfered_len);
1251
1252 /* If we still haven't got anything, return the last error. We
1253 give up. */
1254 return res;
1255 }
1256
1257 /* Perform a partial memory transfer. For docs see target.h,
1258 to_xfer_partial. */
1259
1260 static enum target_xfer_status
1261 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1262 gdb_byte *readbuf, const gdb_byte *writebuf,
1263 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1264 {
1265 enum target_xfer_status res;
1266
1267 /* Zero length requests are ok and require no work. */
1268 if (len == 0)
1269 return TARGET_XFER_EOF;
1270
1271 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1272 breakpoint insns, thus hiding out from higher layers whether
1273 there are software breakpoints inserted in the code stream. */
1274 if (readbuf != NULL)
1275 {
1276 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1277 xfered_len);
1278
1279 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1280 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1281 }
1282 else
1283 {
1284 void *buf;
1285 struct cleanup *old_chain;
1286
1287 /* A large write request is likely to be partially satisfied
1288 by memory_xfer_partial_1. We will continually malloc
1289 and free a copy of the entire write request for breakpoint
1290 shadow handling even though we only end up writing a small
1291 subset of it. Cap writes to 4KB to mitigate this. */
1292 len = min (4096, len);
1293
1294 buf = xmalloc (len);
1295 old_chain = make_cleanup (xfree, buf);
1296 memcpy (buf, writebuf, len);
1297
1298 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1299 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1300 xfered_len);
1301
1302 do_cleanups (old_chain);
1303 }
1304
1305 return res;
1306 }
1307
1308 static void
1309 restore_show_memory_breakpoints (void *arg)
1310 {
1311 show_memory_breakpoints = (uintptr_t) arg;
1312 }
1313
1314 struct cleanup *
1315 make_show_memory_breakpoints_cleanup (int show)
1316 {
1317 int current = show_memory_breakpoints;
1318
1319 show_memory_breakpoints = show;
1320 return make_cleanup (restore_show_memory_breakpoints,
1321 (void *) (uintptr_t) current);
1322 }
1323
1324 /* For docs see target.h, to_xfer_partial. */
1325
1326 enum target_xfer_status
1327 target_xfer_partial (struct target_ops *ops,
1328 enum target_object object, const char *annex,
1329 gdb_byte *readbuf, const gdb_byte *writebuf,
1330 ULONGEST offset, ULONGEST len,
1331 ULONGEST *xfered_len)
1332 {
1333 enum target_xfer_status retval;
1334
1335 gdb_assert (ops->to_xfer_partial != NULL);
1336
1337 /* Transfer is done when LEN is zero. */
1338 if (len == 0)
1339 return TARGET_XFER_EOF;
1340
1341 if (writebuf && !may_write_memory)
1342 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1343 core_addr_to_string_nz (offset), plongest (len));
1344
1345 *xfered_len = 0;
1346
1347 /* If this is a memory transfer, let the memory-specific code
1348 have a look at it instead. Memory transfers are more
1349 complicated. */
1350 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1351 || object == TARGET_OBJECT_CODE_MEMORY)
1352 retval = memory_xfer_partial (ops, object, readbuf,
1353 writebuf, offset, len, xfered_len);
1354 else if (object == TARGET_OBJECT_RAW_MEMORY)
1355 {
1356 /* Request the normal memory object from other layers. */
1357 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1358 xfered_len);
1359 }
1360 else
1361 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1362 writebuf, offset, len, xfered_len);
1363
1364 if (targetdebug)
1365 {
1366 const unsigned char *myaddr = NULL;
1367
1368 fprintf_unfiltered (gdb_stdlog,
1369 "%s:target_xfer_partial "
1370 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1371 ops->to_shortname,
1372 (int) object,
1373 (annex ? annex : "(null)"),
1374 host_address_to_string (readbuf),
1375 host_address_to_string (writebuf),
1376 core_addr_to_string_nz (offset),
1377 pulongest (len), retval,
1378 pulongest (*xfered_len));
1379
1380 if (readbuf)
1381 myaddr = readbuf;
1382 if (writebuf)
1383 myaddr = writebuf;
1384 if (retval == TARGET_XFER_OK && myaddr != NULL)
1385 {
1386 int i;
1387
1388 fputs_unfiltered (", bytes =", gdb_stdlog);
1389 for (i = 0; i < *xfered_len; i++)
1390 {
1391 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1392 {
1393 if (targetdebug < 2 && i > 0)
1394 {
1395 fprintf_unfiltered (gdb_stdlog, " ...");
1396 break;
1397 }
1398 fprintf_unfiltered (gdb_stdlog, "\n");
1399 }
1400
1401 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1402 }
1403 }
1404
1405 fputc_unfiltered ('\n', gdb_stdlog);
1406 }
1407
1408 /* Check implementations of to_xfer_partial update *XFERED_LEN
1409 properly. Do assertion after printing debug messages, so that we
1410 can find more clues on assertion failure from debugging messages. */
1411 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1412 gdb_assert (*xfered_len > 0);
1413
1414 return retval;
1415 }
1416
1417 /* Read LEN bytes of target memory at address MEMADDR, placing the
1418 results in GDB's memory at MYADDR. Returns either 0 for success or
1419 TARGET_XFER_E_IO if any error occurs.
1420
1421 If an error occurs, no guarantee is made about the contents of the data at
1422 MYADDR. In particular, the caller should not depend upon partial reads
1423 filling the buffer with good data. There is no way for the caller to know
1424 how much good data might have been transfered anyway. Callers that can
1425 deal with partial reads should call target_read (which will retry until
1426 it makes no progress, and then return how much was transferred). */
1427
1428 int
1429 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1430 {
1431 /* Dispatch to the topmost target, not the flattened current_target.
1432 Memory accesses check target->to_has_(all_)memory, and the
1433 flattened target doesn't inherit those. */
1434 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1435 myaddr, memaddr, len) == len)
1436 return 0;
1437 else
1438 return TARGET_XFER_E_IO;
1439 }
1440
1441 /* Like target_read_memory, but specify explicitly that this is a read
1442 from the target's raw memory. That is, this read bypasses the
1443 dcache, breakpoint shadowing, etc. */
1444
1445 int
1446 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1447 {
1448 /* See comment in target_read_memory about why the request starts at
1449 current_target.beneath. */
1450 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1451 myaddr, memaddr, len) == len)
1452 return 0;
1453 else
1454 return TARGET_XFER_E_IO;
1455 }
1456
1457 /* Like target_read_memory, but specify explicitly that this is a read from
1458 the target's stack. This may trigger different cache behavior. */
1459
1460 int
1461 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1462 {
1463 /* See comment in target_read_memory about why the request starts at
1464 current_target.beneath. */
1465 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1466 myaddr, memaddr, len) == len)
1467 return 0;
1468 else
1469 return TARGET_XFER_E_IO;
1470 }
1471
1472 /* Like target_read_memory, but specify explicitly that this is a read from
1473 the target's code. This may trigger different cache behavior. */
1474
1475 int
1476 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1477 {
1478 /* See comment in target_read_memory about why the request starts at
1479 current_target.beneath. */
1480 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1481 myaddr, memaddr, len) == len)
1482 return 0;
1483 else
1484 return TARGET_XFER_E_IO;
1485 }
1486
1487 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1488 Returns either 0 for success or TARGET_XFER_E_IO if any
1489 error occurs. If an error occurs, no guarantee is made about how
1490 much data got written. Callers that can deal with partial writes
1491 should call target_write. */
1492
1493 int
1494 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1495 {
1496 /* See comment in target_read_memory about why the request starts at
1497 current_target.beneath. */
1498 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1499 myaddr, memaddr, len) == len)
1500 return 0;
1501 else
1502 return TARGET_XFER_E_IO;
1503 }
1504
1505 /* Write LEN bytes from MYADDR to target raw memory at address
1506 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1507 if any error occurs. If an error occurs, no guarantee is made
1508 about how much data got written. Callers that can deal with
1509 partial writes should call target_write. */
1510
1511 int
1512 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1513 {
1514 /* See comment in target_read_memory about why the request starts at
1515 current_target.beneath. */
1516 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1517 myaddr, memaddr, len) == len)
1518 return 0;
1519 else
1520 return TARGET_XFER_E_IO;
1521 }
1522
1523 /* Fetch the target's memory map. */
1524
1525 VEC(mem_region_s) *
1526 target_memory_map (void)
1527 {
1528 VEC(mem_region_s) *result;
1529 struct mem_region *last_one, *this_one;
1530 int ix;
1531 struct target_ops *t;
1532
1533 if (targetdebug)
1534 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1535
1536 result = current_target.to_memory_map (&current_target);
1537 if (result == NULL)
1538 return NULL;
1539
1540 qsort (VEC_address (mem_region_s, result),
1541 VEC_length (mem_region_s, result),
1542 sizeof (struct mem_region), mem_region_cmp);
1543
1544 /* Check that regions do not overlap. Simultaneously assign
1545 a numbering for the "mem" commands to use to refer to
1546 each region. */
1547 last_one = NULL;
1548 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1549 {
1550 this_one->number = ix;
1551
1552 if (last_one && last_one->hi > this_one->lo)
1553 {
1554 warning (_("Overlapping regions in memory map: ignoring"));
1555 VEC_free (mem_region_s, result);
1556 return NULL;
1557 }
1558 last_one = this_one;
1559 }
1560
1561 return result;
1562 }
1563
1564 void
1565 target_flash_erase (ULONGEST address, LONGEST length)
1566 {
1567 if (targetdebug)
1568 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1569 hex_string (address), phex (length, 0));
1570 current_target.to_flash_erase (&current_target, address, length);
1571 }
1572
1573 void
1574 target_flash_done (void)
1575 {
1576 if (targetdebug)
1577 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1578 current_target.to_flash_done (&current_target);
1579 }
1580
1581 static void
1582 show_trust_readonly (struct ui_file *file, int from_tty,
1583 struct cmd_list_element *c, const char *value)
1584 {
1585 fprintf_filtered (file,
1586 _("Mode for reading from readonly sections is %s.\n"),
1587 value);
1588 }
1589
1590 /* Target vector read/write partial wrapper functions. */
1591
1592 static enum target_xfer_status
1593 target_read_partial (struct target_ops *ops,
1594 enum target_object object,
1595 const char *annex, gdb_byte *buf,
1596 ULONGEST offset, ULONGEST len,
1597 ULONGEST *xfered_len)
1598 {
1599 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1600 xfered_len);
1601 }
1602
1603 static enum target_xfer_status
1604 target_write_partial (struct target_ops *ops,
1605 enum target_object object,
1606 const char *annex, const gdb_byte *buf,
1607 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1608 {
1609 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1610 xfered_len);
1611 }
1612
1613 /* Wrappers to perform the full transfer. */
1614
1615 /* For docs on target_read see target.h. */
1616
1617 LONGEST
1618 target_read (struct target_ops *ops,
1619 enum target_object object,
1620 const char *annex, gdb_byte *buf,
1621 ULONGEST offset, LONGEST len)
1622 {
1623 LONGEST xfered = 0;
1624
1625 while (xfered < len)
1626 {
1627 ULONGEST xfered_len;
1628 enum target_xfer_status status;
1629
1630 status = target_read_partial (ops, object, annex,
1631 (gdb_byte *) buf + xfered,
1632 offset + xfered, len - xfered,
1633 &xfered_len);
1634
1635 /* Call an observer, notifying them of the xfer progress? */
1636 if (status == TARGET_XFER_EOF)
1637 return xfered;
1638 else if (status == TARGET_XFER_OK)
1639 {
1640 xfered += xfered_len;
1641 QUIT;
1642 }
1643 else
1644 return -1;
1645
1646 }
1647 return len;
1648 }
1649
1650 /* Assuming that the entire [begin, end) range of memory cannot be
1651 read, try to read whatever subrange is possible to read.
1652
1653 The function returns, in RESULT, either zero or one memory block.
1654 If there's a readable subrange at the beginning, it is completely
1655 read and returned. Any further readable subrange will not be read.
1656 Otherwise, if there's a readable subrange at the end, it will be
1657 completely read and returned. Any readable subranges before it
1658 (obviously, not starting at the beginning), will be ignored. In
1659 other cases -- either no readable subrange, or readable subrange(s)
1660 that is neither at the beginning, or end, nothing is returned.
1661
1662 The purpose of this function is to handle a read across a boundary
1663 of accessible memory in a case when memory map is not available.
1664 The above restrictions are fine for this case, but will give
1665 incorrect results if the memory is 'patchy'. However, supporting
1666 'patchy' memory would require trying to read every single byte,
1667 and it seems unacceptable solution. Explicit memory map is
1668 recommended for this case -- and target_read_memory_robust will
1669 take care of reading multiple ranges then. */
1670
1671 static void
1672 read_whatever_is_readable (struct target_ops *ops,
1673 ULONGEST begin, ULONGEST end,
1674 VEC(memory_read_result_s) **result)
1675 {
1676 gdb_byte *buf = xmalloc (end - begin);
1677 ULONGEST current_begin = begin;
1678 ULONGEST current_end = end;
1679 int forward;
1680 memory_read_result_s r;
1681 ULONGEST xfered_len;
1682
1683 /* If we previously failed to read 1 byte, nothing can be done here. */
1684 if (end - begin <= 1)
1685 {
1686 xfree (buf);
1687 return;
1688 }
1689
1690 /* Check that either first or the last byte is readable, and give up
1691 if not. This heuristic is meant to permit reading accessible memory
1692 at the boundary of accessible region. */
1693 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1694 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1695 {
1696 forward = 1;
1697 ++current_begin;
1698 }
1699 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1700 buf + (end-begin) - 1, end - 1, 1,
1701 &xfered_len) == TARGET_XFER_OK)
1702 {
1703 forward = 0;
1704 --current_end;
1705 }
1706 else
1707 {
1708 xfree (buf);
1709 return;
1710 }
1711
1712 /* Loop invariant is that the [current_begin, current_end) was previously
1713 found to be not readable as a whole.
1714
1715 Note loop condition -- if the range has 1 byte, we can't divide the range
1716 so there's no point trying further. */
1717 while (current_end - current_begin > 1)
1718 {
1719 ULONGEST first_half_begin, first_half_end;
1720 ULONGEST second_half_begin, second_half_end;
1721 LONGEST xfer;
1722 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1723
1724 if (forward)
1725 {
1726 first_half_begin = current_begin;
1727 first_half_end = middle;
1728 second_half_begin = middle;
1729 second_half_end = current_end;
1730 }
1731 else
1732 {
1733 first_half_begin = middle;
1734 first_half_end = current_end;
1735 second_half_begin = current_begin;
1736 second_half_end = middle;
1737 }
1738
1739 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1740 buf + (first_half_begin - begin),
1741 first_half_begin,
1742 first_half_end - first_half_begin);
1743
1744 if (xfer == first_half_end - first_half_begin)
1745 {
1746 /* This half reads up fine. So, the error must be in the
1747 other half. */
1748 current_begin = second_half_begin;
1749 current_end = second_half_end;
1750 }
1751 else
1752 {
1753 /* This half is not readable. Because we've tried one byte, we
1754 know some part of this half if actually redable. Go to the next
1755 iteration to divide again and try to read.
1756
1757 We don't handle the other half, because this function only tries
1758 to read a single readable subrange. */
1759 current_begin = first_half_begin;
1760 current_end = first_half_end;
1761 }
1762 }
1763
1764 if (forward)
1765 {
1766 /* The [begin, current_begin) range has been read. */
1767 r.begin = begin;
1768 r.end = current_begin;
1769 r.data = buf;
1770 }
1771 else
1772 {
1773 /* The [current_end, end) range has been read. */
1774 LONGEST rlen = end - current_end;
1775
1776 r.data = xmalloc (rlen);
1777 memcpy (r.data, buf + current_end - begin, rlen);
1778 r.begin = current_end;
1779 r.end = end;
1780 xfree (buf);
1781 }
1782 VEC_safe_push(memory_read_result_s, (*result), &r);
1783 }
1784
1785 void
1786 free_memory_read_result_vector (void *x)
1787 {
1788 VEC(memory_read_result_s) *v = x;
1789 memory_read_result_s *current;
1790 int ix;
1791
1792 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1793 {
1794 xfree (current->data);
1795 }
1796 VEC_free (memory_read_result_s, v);
1797 }
1798
1799 VEC(memory_read_result_s) *
1800 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1801 {
1802 VEC(memory_read_result_s) *result = 0;
1803
1804 LONGEST xfered = 0;
1805 while (xfered < len)
1806 {
1807 struct mem_region *region = lookup_mem_region (offset + xfered);
1808 LONGEST rlen;
1809
1810 /* If there is no explicit region, a fake one should be created. */
1811 gdb_assert (region);
1812
1813 if (region->hi == 0)
1814 rlen = len - xfered;
1815 else
1816 rlen = region->hi - offset;
1817
1818 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1819 {
1820 /* Cannot read this region. Note that we can end up here only
1821 if the region is explicitly marked inaccessible, or
1822 'inaccessible-by-default' is in effect. */
1823 xfered += rlen;
1824 }
1825 else
1826 {
1827 LONGEST to_read = min (len - xfered, rlen);
1828 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1829
1830 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1831 (gdb_byte *) buffer,
1832 offset + xfered, to_read);
1833 /* Call an observer, notifying them of the xfer progress? */
1834 if (xfer <= 0)
1835 {
1836 /* Got an error reading full chunk. See if maybe we can read
1837 some subrange. */
1838 xfree (buffer);
1839 read_whatever_is_readable (ops, offset + xfered,
1840 offset + xfered + to_read, &result);
1841 xfered += to_read;
1842 }
1843 else
1844 {
1845 struct memory_read_result r;
1846 r.data = buffer;
1847 r.begin = offset + xfered;
1848 r.end = r.begin + xfer;
1849 VEC_safe_push (memory_read_result_s, result, &r);
1850 xfered += xfer;
1851 }
1852 QUIT;
1853 }
1854 }
1855 return result;
1856 }
1857
1858
1859 /* An alternative to target_write with progress callbacks. */
1860
1861 LONGEST
1862 target_write_with_progress (struct target_ops *ops,
1863 enum target_object object,
1864 const char *annex, const gdb_byte *buf,
1865 ULONGEST offset, LONGEST len,
1866 void (*progress) (ULONGEST, void *), void *baton)
1867 {
1868 LONGEST xfered = 0;
1869
1870 /* Give the progress callback a chance to set up. */
1871 if (progress)
1872 (*progress) (0, baton);
1873
1874 while (xfered < len)
1875 {
1876 ULONGEST xfered_len;
1877 enum target_xfer_status status;
1878
1879 status = target_write_partial (ops, object, annex,
1880 (gdb_byte *) buf + xfered,
1881 offset + xfered, len - xfered,
1882 &xfered_len);
1883
1884 if (status != TARGET_XFER_OK)
1885 return status == TARGET_XFER_EOF ? xfered : -1;
1886
1887 if (progress)
1888 (*progress) (xfered_len, baton);
1889
1890 xfered += xfered_len;
1891 QUIT;
1892 }
1893 return len;
1894 }
1895
1896 /* For docs on target_write see target.h. */
1897
1898 LONGEST
1899 target_write (struct target_ops *ops,
1900 enum target_object object,
1901 const char *annex, const gdb_byte *buf,
1902 ULONGEST offset, LONGEST len)
1903 {
1904 return target_write_with_progress (ops, object, annex, buf, offset, len,
1905 NULL, NULL);
1906 }
1907
1908 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1909 the size of the transferred data. PADDING additional bytes are
1910 available in *BUF_P. This is a helper function for
1911 target_read_alloc; see the declaration of that function for more
1912 information. */
1913
1914 static LONGEST
1915 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1916 const char *annex, gdb_byte **buf_p, int padding)
1917 {
1918 size_t buf_alloc, buf_pos;
1919 gdb_byte *buf;
1920
1921 /* This function does not have a length parameter; it reads the
1922 entire OBJECT). Also, it doesn't support objects fetched partly
1923 from one target and partly from another (in a different stratum,
1924 e.g. a core file and an executable). Both reasons make it
1925 unsuitable for reading memory. */
1926 gdb_assert (object != TARGET_OBJECT_MEMORY);
1927
1928 /* Start by reading up to 4K at a time. The target will throttle
1929 this number down if necessary. */
1930 buf_alloc = 4096;
1931 buf = xmalloc (buf_alloc);
1932 buf_pos = 0;
1933 while (1)
1934 {
1935 ULONGEST xfered_len;
1936 enum target_xfer_status status;
1937
1938 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1939 buf_pos, buf_alloc - buf_pos - padding,
1940 &xfered_len);
1941
1942 if (status == TARGET_XFER_EOF)
1943 {
1944 /* Read all there was. */
1945 if (buf_pos == 0)
1946 xfree (buf);
1947 else
1948 *buf_p = buf;
1949 return buf_pos;
1950 }
1951 else if (status != TARGET_XFER_OK)
1952 {
1953 /* An error occurred. */
1954 xfree (buf);
1955 return TARGET_XFER_E_IO;
1956 }
1957
1958 buf_pos += xfered_len;
1959
1960 /* If the buffer is filling up, expand it. */
1961 if (buf_alloc < buf_pos * 2)
1962 {
1963 buf_alloc *= 2;
1964 buf = xrealloc (buf, buf_alloc);
1965 }
1966
1967 QUIT;
1968 }
1969 }
1970
1971 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1972 the size of the transferred data. See the declaration in "target.h"
1973 function for more information about the return value. */
1974
1975 LONGEST
1976 target_read_alloc (struct target_ops *ops, enum target_object object,
1977 const char *annex, gdb_byte **buf_p)
1978 {
1979 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1980 }
1981
1982 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1983 returned as a string, allocated using xmalloc. If an error occurs
1984 or the transfer is unsupported, NULL is returned. Empty objects
1985 are returned as allocated but empty strings. A warning is issued
1986 if the result contains any embedded NUL bytes. */
1987
1988 char *
1989 target_read_stralloc (struct target_ops *ops, enum target_object object,
1990 const char *annex)
1991 {
1992 gdb_byte *buffer;
1993 char *bufstr;
1994 LONGEST i, transferred;
1995
1996 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1997 bufstr = (char *) buffer;
1998
1999 if (transferred < 0)
2000 return NULL;
2001
2002 if (transferred == 0)
2003 return xstrdup ("");
2004
2005 bufstr[transferred] = 0;
2006
2007 /* Check for embedded NUL bytes; but allow trailing NULs. */
2008 for (i = strlen (bufstr); i < transferred; i++)
2009 if (bufstr[i] != 0)
2010 {
2011 warning (_("target object %d, annex %s, "
2012 "contained unexpected null characters"),
2013 (int) object, annex ? annex : "(none)");
2014 break;
2015 }
2016
2017 return bufstr;
2018 }
2019
2020 /* Memory transfer methods. */
2021
2022 void
2023 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2024 LONGEST len)
2025 {
2026 /* This method is used to read from an alternate, non-current
2027 target. This read must bypass the overlay support (as symbols
2028 don't match this target), and GDB's internal cache (wrong cache
2029 for this target). */
2030 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2031 != len)
2032 memory_error (TARGET_XFER_E_IO, addr);
2033 }
2034
2035 ULONGEST
2036 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2037 int len, enum bfd_endian byte_order)
2038 {
2039 gdb_byte buf[sizeof (ULONGEST)];
2040
2041 gdb_assert (len <= sizeof (buf));
2042 get_target_memory (ops, addr, buf, len);
2043 return extract_unsigned_integer (buf, len, byte_order);
2044 }
2045
2046 /* See target.h. */
2047
2048 int
2049 target_insert_breakpoint (struct gdbarch *gdbarch,
2050 struct bp_target_info *bp_tgt)
2051 {
2052 if (!may_insert_breakpoints)
2053 {
2054 warning (_("May not insert breakpoints"));
2055 return 1;
2056 }
2057
2058 return current_target.to_insert_breakpoint (&current_target,
2059 gdbarch, bp_tgt);
2060 }
2061
2062 /* See target.h. */
2063
2064 int
2065 target_remove_breakpoint (struct gdbarch *gdbarch,
2066 struct bp_target_info *bp_tgt)
2067 {
2068 /* This is kind of a weird case to handle, but the permission might
2069 have been changed after breakpoints were inserted - in which case
2070 we should just take the user literally and assume that any
2071 breakpoints should be left in place. */
2072 if (!may_insert_breakpoints)
2073 {
2074 warning (_("May not remove breakpoints"));
2075 return 1;
2076 }
2077
2078 return current_target.to_remove_breakpoint (&current_target,
2079 gdbarch, bp_tgt);
2080 }
2081
2082 static void
2083 target_info (char *args, int from_tty)
2084 {
2085 struct target_ops *t;
2086 int has_all_mem = 0;
2087
2088 if (symfile_objfile != NULL)
2089 printf_unfiltered (_("Symbols from \"%s\".\n"),
2090 objfile_name (symfile_objfile));
2091
2092 for (t = target_stack; t != NULL; t = t->beneath)
2093 {
2094 if (!(*t->to_has_memory) (t))
2095 continue;
2096
2097 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2098 continue;
2099 if (has_all_mem)
2100 printf_unfiltered (_("\tWhile running this, "
2101 "GDB does not access memory from...\n"));
2102 printf_unfiltered ("%s:\n", t->to_longname);
2103 (t->to_files_info) (t);
2104 has_all_mem = (*t->to_has_all_memory) (t);
2105 }
2106 }
2107
2108 /* This function is called before any new inferior is created, e.g.
2109 by running a program, attaching, or connecting to a target.
2110 It cleans up any state from previous invocations which might
2111 change between runs. This is a subset of what target_preopen
2112 resets (things which might change between targets). */
2113
2114 void
2115 target_pre_inferior (int from_tty)
2116 {
2117 /* Clear out solib state. Otherwise the solib state of the previous
2118 inferior might have survived and is entirely wrong for the new
2119 target. This has been observed on GNU/Linux using glibc 2.3. How
2120 to reproduce:
2121
2122 bash$ ./foo&
2123 [1] 4711
2124 bash$ ./foo&
2125 [1] 4712
2126 bash$ gdb ./foo
2127 [...]
2128 (gdb) attach 4711
2129 (gdb) detach
2130 (gdb) attach 4712
2131 Cannot access memory at address 0xdeadbeef
2132 */
2133
2134 /* In some OSs, the shared library list is the same/global/shared
2135 across inferiors. If code is shared between processes, so are
2136 memory regions and features. */
2137 if (!gdbarch_has_global_solist (target_gdbarch ()))
2138 {
2139 no_shared_libraries (NULL, from_tty);
2140
2141 invalidate_target_mem_regions ();
2142
2143 target_clear_description ();
2144 }
2145
2146 agent_capability_invalidate ();
2147 }
2148
2149 /* Callback for iterate_over_inferiors. Gets rid of the given
2150 inferior. */
2151
2152 static int
2153 dispose_inferior (struct inferior *inf, void *args)
2154 {
2155 struct thread_info *thread;
2156
2157 thread = any_thread_of_process (inf->pid);
2158 if (thread)
2159 {
2160 switch_to_thread (thread->ptid);
2161
2162 /* Core inferiors actually should be detached, not killed. */
2163 if (target_has_execution)
2164 target_kill ();
2165 else
2166 target_detach (NULL, 0);
2167 }
2168
2169 return 0;
2170 }
2171
2172 /* This is to be called by the open routine before it does
2173 anything. */
2174
2175 void
2176 target_preopen (int from_tty)
2177 {
2178 dont_repeat ();
2179
2180 if (have_inferiors ())
2181 {
2182 if (!from_tty
2183 || !have_live_inferiors ()
2184 || query (_("A program is being debugged already. Kill it? ")))
2185 iterate_over_inferiors (dispose_inferior, NULL);
2186 else
2187 error (_("Program not killed."));
2188 }
2189
2190 /* Calling target_kill may remove the target from the stack. But if
2191 it doesn't (which seems like a win for UDI), remove it now. */
2192 /* Leave the exec target, though. The user may be switching from a
2193 live process to a core of the same program. */
2194 pop_all_targets_above (file_stratum);
2195
2196 target_pre_inferior (from_tty);
2197 }
2198
2199 /* Detach a target after doing deferred register stores. */
2200
2201 void
2202 target_detach (const char *args, int from_tty)
2203 {
2204 struct target_ops* t;
2205
2206 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2207 /* Don't remove global breakpoints here. They're removed on
2208 disconnection from the target. */
2209 ;
2210 else
2211 /* If we're in breakpoints-always-inserted mode, have to remove
2212 them before detaching. */
2213 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2214
2215 prepare_for_detach ();
2216
2217 current_target.to_detach (&current_target, args, from_tty);
2218 if (targetdebug)
2219 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2220 args, from_tty);
2221 }
2222
2223 void
2224 target_disconnect (char *args, int from_tty)
2225 {
2226 /* If we're in breakpoints-always-inserted mode or if breakpoints
2227 are global across processes, we have to remove them before
2228 disconnecting. */
2229 remove_breakpoints ();
2230
2231 if (targetdebug)
2232 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2233 args, from_tty);
2234 current_target.to_disconnect (&current_target, args, from_tty);
2235 }
2236
2237 ptid_t
2238 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2239 {
2240 struct target_ops *t;
2241 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2242 status, options);
2243
2244 if (targetdebug)
2245 {
2246 char *status_string;
2247 char *options_string;
2248
2249 status_string = target_waitstatus_to_string (status);
2250 options_string = target_options_to_string (options);
2251 fprintf_unfiltered (gdb_stdlog,
2252 "target_wait (%d, status, options={%s})"
2253 " = %d, %s\n",
2254 ptid_get_pid (ptid), options_string,
2255 ptid_get_pid (retval), status_string);
2256 xfree (status_string);
2257 xfree (options_string);
2258 }
2259
2260 return retval;
2261 }
2262
2263 char *
2264 target_pid_to_str (ptid_t ptid)
2265 {
2266 return (*current_target.to_pid_to_str) (&current_target, ptid);
2267 }
2268
2269 char *
2270 target_thread_name (struct thread_info *info)
2271 {
2272 return current_target.to_thread_name (&current_target, info);
2273 }
2274
2275 void
2276 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2277 {
2278 struct target_ops *t;
2279
2280 target_dcache_invalidate ();
2281
2282 current_target.to_resume (&current_target, ptid, step, signal);
2283 if (targetdebug)
2284 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2285 ptid_get_pid (ptid),
2286 step ? "step" : "continue",
2287 gdb_signal_to_name (signal));
2288
2289 registers_changed_ptid (ptid);
2290 set_executing (ptid, 1);
2291 set_running (ptid, 1);
2292 clear_inline_frame_state (ptid);
2293 }
2294
2295 void
2296 target_pass_signals (int numsigs, unsigned char *pass_signals)
2297 {
2298 if (targetdebug)
2299 {
2300 int i;
2301
2302 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2303 numsigs);
2304
2305 for (i = 0; i < numsigs; i++)
2306 if (pass_signals[i])
2307 fprintf_unfiltered (gdb_stdlog, " %s",
2308 gdb_signal_to_name (i));
2309
2310 fprintf_unfiltered (gdb_stdlog, " })\n");
2311 }
2312
2313 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2314 }
2315
2316 void
2317 target_program_signals (int numsigs, unsigned char *program_signals)
2318 {
2319 if (targetdebug)
2320 {
2321 int i;
2322
2323 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2324 numsigs);
2325
2326 for (i = 0; i < numsigs; i++)
2327 if (program_signals[i])
2328 fprintf_unfiltered (gdb_stdlog, " %s",
2329 gdb_signal_to_name (i));
2330
2331 fprintf_unfiltered (gdb_stdlog, " })\n");
2332 }
2333
2334 (*current_target.to_program_signals) (&current_target,
2335 numsigs, program_signals);
2336 }
2337
2338 static int
2339 default_follow_fork (struct target_ops *self, int follow_child,
2340 int detach_fork)
2341 {
2342 /* Some target returned a fork event, but did not know how to follow it. */
2343 internal_error (__FILE__, __LINE__,
2344 _("could not find a target to follow fork"));
2345 }
2346
2347 /* Look through the list of possible targets for a target that can
2348 follow forks. */
2349
2350 int
2351 target_follow_fork (int follow_child, int detach_fork)
2352 {
2353 int retval = current_target.to_follow_fork (&current_target,
2354 follow_child, detach_fork);
2355
2356 if (targetdebug)
2357 fprintf_unfiltered (gdb_stdlog,
2358 "target_follow_fork (%d, %d) = %d\n",
2359 follow_child, detach_fork, retval);
2360 return retval;
2361 }
2362
2363 static void
2364 default_mourn_inferior (struct target_ops *self)
2365 {
2366 internal_error (__FILE__, __LINE__,
2367 _("could not find a target to follow mourn inferior"));
2368 }
2369
2370 void
2371 target_mourn_inferior (void)
2372 {
2373 current_target.to_mourn_inferior (&current_target);
2374 if (targetdebug)
2375 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2376
2377 /* We no longer need to keep handles on any of the object files.
2378 Make sure to release them to avoid unnecessarily locking any
2379 of them while we're not actually debugging. */
2380 bfd_cache_close_all ();
2381 }
2382
2383 /* Look for a target which can describe architectural features, starting
2384 from TARGET. If we find one, return its description. */
2385
2386 const struct target_desc *
2387 target_read_description (struct target_ops *target)
2388 {
2389 return target->to_read_description (target);
2390 }
2391
2392 /* This implements a basic search of memory, reading target memory and
2393 performing the search here (as opposed to performing the search in on the
2394 target side with, for example, gdbserver). */
2395
2396 int
2397 simple_search_memory (struct target_ops *ops,
2398 CORE_ADDR start_addr, ULONGEST search_space_len,
2399 const gdb_byte *pattern, ULONGEST pattern_len,
2400 CORE_ADDR *found_addrp)
2401 {
2402 /* NOTE: also defined in find.c testcase. */
2403 #define SEARCH_CHUNK_SIZE 16000
2404 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2405 /* Buffer to hold memory contents for searching. */
2406 gdb_byte *search_buf;
2407 unsigned search_buf_size;
2408 struct cleanup *old_cleanups;
2409
2410 search_buf_size = chunk_size + pattern_len - 1;
2411
2412 /* No point in trying to allocate a buffer larger than the search space. */
2413 if (search_space_len < search_buf_size)
2414 search_buf_size = search_space_len;
2415
2416 search_buf = malloc (search_buf_size);
2417 if (search_buf == NULL)
2418 error (_("Unable to allocate memory to perform the search."));
2419 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2420
2421 /* Prime the search buffer. */
2422
2423 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2424 search_buf, start_addr, search_buf_size) != search_buf_size)
2425 {
2426 warning (_("Unable to access %s bytes of target "
2427 "memory at %s, halting search."),
2428 pulongest (search_buf_size), hex_string (start_addr));
2429 do_cleanups (old_cleanups);
2430 return -1;
2431 }
2432
2433 /* Perform the search.
2434
2435 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2436 When we've scanned N bytes we copy the trailing bytes to the start and
2437 read in another N bytes. */
2438
2439 while (search_space_len >= pattern_len)
2440 {
2441 gdb_byte *found_ptr;
2442 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2443
2444 found_ptr = memmem (search_buf, nr_search_bytes,
2445 pattern, pattern_len);
2446
2447 if (found_ptr != NULL)
2448 {
2449 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2450
2451 *found_addrp = found_addr;
2452 do_cleanups (old_cleanups);
2453 return 1;
2454 }
2455
2456 /* Not found in this chunk, skip to next chunk. */
2457
2458 /* Don't let search_space_len wrap here, it's unsigned. */
2459 if (search_space_len >= chunk_size)
2460 search_space_len -= chunk_size;
2461 else
2462 search_space_len = 0;
2463
2464 if (search_space_len >= pattern_len)
2465 {
2466 unsigned keep_len = search_buf_size - chunk_size;
2467 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2468 int nr_to_read;
2469
2470 /* Copy the trailing part of the previous iteration to the front
2471 of the buffer for the next iteration. */
2472 gdb_assert (keep_len == pattern_len - 1);
2473 memcpy (search_buf, search_buf + chunk_size, keep_len);
2474
2475 nr_to_read = min (search_space_len - keep_len, chunk_size);
2476
2477 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2478 search_buf + keep_len, read_addr,
2479 nr_to_read) != nr_to_read)
2480 {
2481 warning (_("Unable to access %s bytes of target "
2482 "memory at %s, halting search."),
2483 plongest (nr_to_read),
2484 hex_string (read_addr));
2485 do_cleanups (old_cleanups);
2486 return -1;
2487 }
2488
2489 start_addr += chunk_size;
2490 }
2491 }
2492
2493 /* Not found. */
2494
2495 do_cleanups (old_cleanups);
2496 return 0;
2497 }
2498
2499 /* Default implementation of memory-searching. */
2500
2501 static int
2502 default_search_memory (struct target_ops *self,
2503 CORE_ADDR start_addr, ULONGEST search_space_len,
2504 const gdb_byte *pattern, ULONGEST pattern_len,
2505 CORE_ADDR *found_addrp)
2506 {
2507 /* Start over from the top of the target stack. */
2508 return simple_search_memory (current_target.beneath,
2509 start_addr, search_space_len,
2510 pattern, pattern_len, found_addrp);
2511 }
2512
2513 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2514 sequence of bytes in PATTERN with length PATTERN_LEN.
2515
2516 The result is 1 if found, 0 if not found, and -1 if there was an error
2517 requiring halting of the search (e.g. memory read error).
2518 If the pattern is found the address is recorded in FOUND_ADDRP. */
2519
2520 int
2521 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2522 const gdb_byte *pattern, ULONGEST pattern_len,
2523 CORE_ADDR *found_addrp)
2524 {
2525 int found;
2526
2527 if (targetdebug)
2528 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2529 hex_string (start_addr));
2530
2531 found = current_target.to_search_memory (&current_target, start_addr,
2532 search_space_len,
2533 pattern, pattern_len, found_addrp);
2534
2535 if (targetdebug)
2536 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2537
2538 return found;
2539 }
2540
2541 /* Look through the currently pushed targets. If none of them will
2542 be able to restart the currently running process, issue an error
2543 message. */
2544
2545 void
2546 target_require_runnable (void)
2547 {
2548 struct target_ops *t;
2549
2550 for (t = target_stack; t != NULL; t = t->beneath)
2551 {
2552 /* If this target knows how to create a new program, then
2553 assume we will still be able to after killing the current
2554 one. Either killing and mourning will not pop T, or else
2555 find_default_run_target will find it again. */
2556 if (t->to_create_inferior != NULL)
2557 return;
2558
2559 /* Do not worry about thread_stratum targets that can not
2560 create inferiors. Assume they will be pushed again if
2561 necessary, and continue to the process_stratum. */
2562 if (t->to_stratum == thread_stratum
2563 || t->to_stratum == arch_stratum)
2564 continue;
2565
2566 error (_("The \"%s\" target does not support \"run\". "
2567 "Try \"help target\" or \"continue\"."),
2568 t->to_shortname);
2569 }
2570
2571 /* This function is only called if the target is running. In that
2572 case there should have been a process_stratum target and it
2573 should either know how to create inferiors, or not... */
2574 internal_error (__FILE__, __LINE__, _("No targets found"));
2575 }
2576
2577 /* Look through the list of possible targets for a target that can
2578 execute a run or attach command without any other data. This is
2579 used to locate the default process stratum.
2580
2581 If DO_MESG is not NULL, the result is always valid (error() is
2582 called for errors); else, return NULL on error. */
2583
2584 static struct target_ops *
2585 find_default_run_target (char *do_mesg)
2586 {
2587 struct target_ops **t;
2588 struct target_ops *runable = NULL;
2589 int count;
2590
2591 count = 0;
2592
2593 for (t = target_structs; t < target_structs + target_struct_size;
2594 ++t)
2595 {
2596 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2597 {
2598 runable = *t;
2599 ++count;
2600 }
2601 }
2602
2603 if (count != 1)
2604 {
2605 if (do_mesg)
2606 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2607 else
2608 return NULL;
2609 }
2610
2611 return runable;
2612 }
2613
2614 /* See target.h. */
2615
2616 struct target_ops *
2617 find_attach_target (void)
2618 {
2619 struct target_ops *t;
2620
2621 /* If a target on the current stack can attach, use it. */
2622 for (t = current_target.beneath; t != NULL; t = t->beneath)
2623 {
2624 if (t->to_attach != NULL)
2625 break;
2626 }
2627
2628 /* Otherwise, use the default run target for attaching. */
2629 if (t == NULL)
2630 t = find_default_run_target ("attach");
2631
2632 return t;
2633 }
2634
2635 /* See target.h. */
2636
2637 struct target_ops *
2638 find_run_target (void)
2639 {
2640 struct target_ops *t;
2641
2642 /* If a target on the current stack can attach, use it. */
2643 for (t = current_target.beneath; t != NULL; t = t->beneath)
2644 {
2645 if (t->to_create_inferior != NULL)
2646 break;
2647 }
2648
2649 /* Otherwise, use the default run target. */
2650 if (t == NULL)
2651 t = find_default_run_target ("run");
2652
2653 return t;
2654 }
2655
2656 /* Implement the "info proc" command. */
2657
2658 int
2659 target_info_proc (char *args, enum info_proc_what what)
2660 {
2661 struct target_ops *t;
2662
2663 /* If we're already connected to something that can get us OS
2664 related data, use it. Otherwise, try using the native
2665 target. */
2666 if (current_target.to_stratum >= process_stratum)
2667 t = current_target.beneath;
2668 else
2669 t = find_default_run_target (NULL);
2670
2671 for (; t != NULL; t = t->beneath)
2672 {
2673 if (t->to_info_proc != NULL)
2674 {
2675 t->to_info_proc (t, args, what);
2676
2677 if (targetdebug)
2678 fprintf_unfiltered (gdb_stdlog,
2679 "target_info_proc (\"%s\", %d)\n", args, what);
2680
2681 return 1;
2682 }
2683 }
2684
2685 return 0;
2686 }
2687
2688 static int
2689 find_default_supports_disable_randomization (struct target_ops *self)
2690 {
2691 struct target_ops *t;
2692
2693 t = find_default_run_target (NULL);
2694 if (t && t->to_supports_disable_randomization)
2695 return (t->to_supports_disable_randomization) (t);
2696 return 0;
2697 }
2698
2699 int
2700 target_supports_disable_randomization (void)
2701 {
2702 struct target_ops *t;
2703
2704 for (t = &current_target; t != NULL; t = t->beneath)
2705 if (t->to_supports_disable_randomization)
2706 return t->to_supports_disable_randomization (t);
2707
2708 return 0;
2709 }
2710
2711 char *
2712 target_get_osdata (const char *type)
2713 {
2714 struct target_ops *t;
2715
2716 /* If we're already connected to something that can get us OS
2717 related data, use it. Otherwise, try using the native
2718 target. */
2719 if (current_target.to_stratum >= process_stratum)
2720 t = current_target.beneath;
2721 else
2722 t = find_default_run_target ("get OS data");
2723
2724 if (!t)
2725 return NULL;
2726
2727 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2728 }
2729
2730 /* Determine the current address space of thread PTID. */
2731
2732 struct address_space *
2733 target_thread_address_space (ptid_t ptid)
2734 {
2735 struct address_space *aspace;
2736 struct inferior *inf;
2737 struct target_ops *t;
2738
2739 for (t = current_target.beneath; t != NULL; t = t->beneath)
2740 {
2741 if (t->to_thread_address_space != NULL)
2742 {
2743 aspace = t->to_thread_address_space (t, ptid);
2744 gdb_assert (aspace);
2745
2746 if (targetdebug)
2747 fprintf_unfiltered (gdb_stdlog,
2748 "target_thread_address_space (%s) = %d\n",
2749 target_pid_to_str (ptid),
2750 address_space_num (aspace));
2751 return aspace;
2752 }
2753 }
2754
2755 /* Fall-back to the "main" address space of the inferior. */
2756 inf = find_inferior_pid (ptid_get_pid (ptid));
2757
2758 if (inf == NULL || inf->aspace == NULL)
2759 internal_error (__FILE__, __LINE__,
2760 _("Can't determine the current "
2761 "address space of thread %s\n"),
2762 target_pid_to_str (ptid));
2763
2764 return inf->aspace;
2765 }
2766
2767
2768 /* Target file operations. */
2769
2770 static struct target_ops *
2771 default_fileio_target (void)
2772 {
2773 /* If we're already connected to something that can perform
2774 file I/O, use it. Otherwise, try using the native target. */
2775 if (current_target.to_stratum >= process_stratum)
2776 return current_target.beneath;
2777 else
2778 return find_default_run_target ("file I/O");
2779 }
2780
2781 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2782 target file descriptor, or -1 if an error occurs (and set
2783 *TARGET_ERRNO). */
2784 int
2785 target_fileio_open (const char *filename, int flags, int mode,
2786 int *target_errno)
2787 {
2788 struct target_ops *t;
2789
2790 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2791 {
2792 if (t->to_fileio_open != NULL)
2793 {
2794 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2795
2796 if (targetdebug)
2797 fprintf_unfiltered (gdb_stdlog,
2798 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2799 filename, flags, mode,
2800 fd, fd != -1 ? 0 : *target_errno);
2801 return fd;
2802 }
2803 }
2804
2805 *target_errno = FILEIO_ENOSYS;
2806 return -1;
2807 }
2808
2809 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2810 Return the number of bytes written, or -1 if an error occurs
2811 (and set *TARGET_ERRNO). */
2812 int
2813 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2814 ULONGEST offset, int *target_errno)
2815 {
2816 struct target_ops *t;
2817
2818 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2819 {
2820 if (t->to_fileio_pwrite != NULL)
2821 {
2822 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2823 target_errno);
2824
2825 if (targetdebug)
2826 fprintf_unfiltered (gdb_stdlog,
2827 "target_fileio_pwrite (%d,...,%d,%s) "
2828 "= %d (%d)\n",
2829 fd, len, pulongest (offset),
2830 ret, ret != -1 ? 0 : *target_errno);
2831 return ret;
2832 }
2833 }
2834
2835 *target_errno = FILEIO_ENOSYS;
2836 return -1;
2837 }
2838
2839 /* Read up to LEN bytes FD on the target into READ_BUF.
2840 Return the number of bytes read, or -1 if an error occurs
2841 (and set *TARGET_ERRNO). */
2842 int
2843 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2844 ULONGEST offset, int *target_errno)
2845 {
2846 struct target_ops *t;
2847
2848 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2849 {
2850 if (t->to_fileio_pread != NULL)
2851 {
2852 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2853 target_errno);
2854
2855 if (targetdebug)
2856 fprintf_unfiltered (gdb_stdlog,
2857 "target_fileio_pread (%d,...,%d,%s) "
2858 "= %d (%d)\n",
2859 fd, len, pulongest (offset),
2860 ret, ret != -1 ? 0 : *target_errno);
2861 return ret;
2862 }
2863 }
2864
2865 *target_errno = FILEIO_ENOSYS;
2866 return -1;
2867 }
2868
2869 /* Close FD on the target. Return 0, or -1 if an error occurs
2870 (and set *TARGET_ERRNO). */
2871 int
2872 target_fileio_close (int fd, int *target_errno)
2873 {
2874 struct target_ops *t;
2875
2876 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2877 {
2878 if (t->to_fileio_close != NULL)
2879 {
2880 int ret = t->to_fileio_close (t, fd, target_errno);
2881
2882 if (targetdebug)
2883 fprintf_unfiltered (gdb_stdlog,
2884 "target_fileio_close (%d) = %d (%d)\n",
2885 fd, ret, ret != -1 ? 0 : *target_errno);
2886 return ret;
2887 }
2888 }
2889
2890 *target_errno = FILEIO_ENOSYS;
2891 return -1;
2892 }
2893
2894 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2895 occurs (and set *TARGET_ERRNO). */
2896 int
2897 target_fileio_unlink (const char *filename, int *target_errno)
2898 {
2899 struct target_ops *t;
2900
2901 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2902 {
2903 if (t->to_fileio_unlink != NULL)
2904 {
2905 int ret = t->to_fileio_unlink (t, filename, target_errno);
2906
2907 if (targetdebug)
2908 fprintf_unfiltered (gdb_stdlog,
2909 "target_fileio_unlink (%s) = %d (%d)\n",
2910 filename, ret, ret != -1 ? 0 : *target_errno);
2911 return ret;
2912 }
2913 }
2914
2915 *target_errno = FILEIO_ENOSYS;
2916 return -1;
2917 }
2918
2919 /* Read value of symbolic link FILENAME on the target. Return a
2920 null-terminated string allocated via xmalloc, or NULL if an error
2921 occurs (and set *TARGET_ERRNO). */
2922 char *
2923 target_fileio_readlink (const char *filename, int *target_errno)
2924 {
2925 struct target_ops *t;
2926
2927 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2928 {
2929 if (t->to_fileio_readlink != NULL)
2930 {
2931 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2932
2933 if (targetdebug)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "target_fileio_readlink (%s) = %s (%d)\n",
2936 filename, ret? ret : "(nil)",
2937 ret? 0 : *target_errno);
2938 return ret;
2939 }
2940 }
2941
2942 *target_errno = FILEIO_ENOSYS;
2943 return NULL;
2944 }
2945
2946 static void
2947 target_fileio_close_cleanup (void *opaque)
2948 {
2949 int fd = *(int *) opaque;
2950 int target_errno;
2951
2952 target_fileio_close (fd, &target_errno);
2953 }
2954
2955 /* Read target file FILENAME. Store the result in *BUF_P and
2956 return the size of the transferred data. PADDING additional bytes are
2957 available in *BUF_P. This is a helper function for
2958 target_fileio_read_alloc; see the declaration of that function for more
2959 information. */
2960
2961 static LONGEST
2962 target_fileio_read_alloc_1 (const char *filename,
2963 gdb_byte **buf_p, int padding)
2964 {
2965 struct cleanup *close_cleanup;
2966 size_t buf_alloc, buf_pos;
2967 gdb_byte *buf;
2968 LONGEST n;
2969 int fd;
2970 int target_errno;
2971
2972 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2973 if (fd == -1)
2974 return -1;
2975
2976 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2977
2978 /* Start by reading up to 4K at a time. The target will throttle
2979 this number down if necessary. */
2980 buf_alloc = 4096;
2981 buf = xmalloc (buf_alloc);
2982 buf_pos = 0;
2983 while (1)
2984 {
2985 n = target_fileio_pread (fd, &buf[buf_pos],
2986 buf_alloc - buf_pos - padding, buf_pos,
2987 &target_errno);
2988 if (n < 0)
2989 {
2990 /* An error occurred. */
2991 do_cleanups (close_cleanup);
2992 xfree (buf);
2993 return -1;
2994 }
2995 else if (n == 0)
2996 {
2997 /* Read all there was. */
2998 do_cleanups (close_cleanup);
2999 if (buf_pos == 0)
3000 xfree (buf);
3001 else
3002 *buf_p = buf;
3003 return buf_pos;
3004 }
3005
3006 buf_pos += n;
3007
3008 /* If the buffer is filling up, expand it. */
3009 if (buf_alloc < buf_pos * 2)
3010 {
3011 buf_alloc *= 2;
3012 buf = xrealloc (buf, buf_alloc);
3013 }
3014
3015 QUIT;
3016 }
3017 }
3018
3019 /* Read target file FILENAME. Store the result in *BUF_P and return
3020 the size of the transferred data. See the declaration in "target.h"
3021 function for more information about the return value. */
3022
3023 LONGEST
3024 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
3025 {
3026 return target_fileio_read_alloc_1 (filename, buf_p, 0);
3027 }
3028
3029 /* Read target file FILENAME. The result is NUL-terminated and
3030 returned as a string, allocated using xmalloc. If an error occurs
3031 or the transfer is unsupported, NULL is returned. Empty objects
3032 are returned as allocated but empty strings. A warning is issued
3033 if the result contains any embedded NUL bytes. */
3034
3035 char *
3036 target_fileio_read_stralloc (const char *filename)
3037 {
3038 gdb_byte *buffer;
3039 char *bufstr;
3040 LONGEST i, transferred;
3041
3042 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
3043 bufstr = (char *) buffer;
3044
3045 if (transferred < 0)
3046 return NULL;
3047
3048 if (transferred == 0)
3049 return xstrdup ("");
3050
3051 bufstr[transferred] = 0;
3052
3053 /* Check for embedded NUL bytes; but allow trailing NULs. */
3054 for (i = strlen (bufstr); i < transferred; i++)
3055 if (bufstr[i] != 0)
3056 {
3057 warning (_("target file %s "
3058 "contained unexpected null characters"),
3059 filename);
3060 break;
3061 }
3062
3063 return bufstr;
3064 }
3065
3066
3067 static int
3068 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3069 CORE_ADDR addr, int len)
3070 {
3071 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3072 }
3073
3074 static int
3075 default_watchpoint_addr_within_range (struct target_ops *target,
3076 CORE_ADDR addr,
3077 CORE_ADDR start, int length)
3078 {
3079 return addr >= start && addr < start + length;
3080 }
3081
3082 static struct gdbarch *
3083 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3084 {
3085 return target_gdbarch ();
3086 }
3087
3088 static int
3089 return_zero (struct target_ops *ignore)
3090 {
3091 return 0;
3092 }
3093
3094 static int
3095 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3096 {
3097 return 0;
3098 }
3099
3100 /*
3101 * Find the next target down the stack from the specified target.
3102 */
3103
3104 struct target_ops *
3105 find_target_beneath (struct target_ops *t)
3106 {
3107 return t->beneath;
3108 }
3109
3110 /* See target.h. */
3111
3112 struct target_ops *
3113 find_target_at (enum strata stratum)
3114 {
3115 struct target_ops *t;
3116
3117 for (t = current_target.beneath; t != NULL; t = t->beneath)
3118 if (t->to_stratum == stratum)
3119 return t;
3120
3121 return NULL;
3122 }
3123
3124 \f
3125 /* The inferior process has died. Long live the inferior! */
3126
3127 void
3128 generic_mourn_inferior (void)
3129 {
3130 ptid_t ptid;
3131
3132 ptid = inferior_ptid;
3133 inferior_ptid = null_ptid;
3134
3135 /* Mark breakpoints uninserted in case something tries to delete a
3136 breakpoint while we delete the inferior's threads (which would
3137 fail, since the inferior is long gone). */
3138 mark_breakpoints_out ();
3139
3140 if (!ptid_equal (ptid, null_ptid))
3141 {
3142 int pid = ptid_get_pid (ptid);
3143 exit_inferior (pid);
3144 }
3145
3146 /* Note this wipes step-resume breakpoints, so needs to be done
3147 after exit_inferior, which ends up referencing the step-resume
3148 breakpoints through clear_thread_inferior_resources. */
3149 breakpoint_init_inferior (inf_exited);
3150
3151 registers_changed ();
3152
3153 reopen_exec_file ();
3154 reinit_frame_cache ();
3155
3156 if (deprecated_detach_hook)
3157 deprecated_detach_hook ();
3158 }
3159 \f
3160 /* Convert a normal process ID to a string. Returns the string in a
3161 static buffer. */
3162
3163 char *
3164 normal_pid_to_str (ptid_t ptid)
3165 {
3166 static char buf[32];
3167
3168 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3169 return buf;
3170 }
3171
3172 static char *
3173 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3174 {
3175 return normal_pid_to_str (ptid);
3176 }
3177
3178 /* Error-catcher for target_find_memory_regions. */
3179 static int
3180 dummy_find_memory_regions (struct target_ops *self,
3181 find_memory_region_ftype ignore1, void *ignore2)
3182 {
3183 error (_("Command not implemented for this target."));
3184 return 0;
3185 }
3186
3187 /* Error-catcher for target_make_corefile_notes. */
3188 static char *
3189 dummy_make_corefile_notes (struct target_ops *self,
3190 bfd *ignore1, int *ignore2)
3191 {
3192 error (_("Command not implemented for this target."));
3193 return NULL;
3194 }
3195
3196 /* Set up the handful of non-empty slots needed by the dummy target
3197 vector. */
3198
3199 static void
3200 init_dummy_target (void)
3201 {
3202 dummy_target.to_shortname = "None";
3203 dummy_target.to_longname = "None";
3204 dummy_target.to_doc = "";
3205 dummy_target.to_supports_disable_randomization
3206 = find_default_supports_disable_randomization;
3207 dummy_target.to_stratum = dummy_stratum;
3208 dummy_target.to_has_all_memory = return_zero;
3209 dummy_target.to_has_memory = return_zero;
3210 dummy_target.to_has_stack = return_zero;
3211 dummy_target.to_has_registers = return_zero;
3212 dummy_target.to_has_execution = return_zero_has_execution;
3213 dummy_target.to_magic = OPS_MAGIC;
3214
3215 install_dummy_methods (&dummy_target);
3216 }
3217 \f
3218 static void
3219 debug_to_open (char *args, int from_tty)
3220 {
3221 debug_target.to_open (args, from_tty);
3222
3223 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3224 }
3225
3226 void
3227 target_close (struct target_ops *targ)
3228 {
3229 gdb_assert (!target_is_pushed (targ));
3230
3231 if (targ->to_xclose != NULL)
3232 targ->to_xclose (targ);
3233 else if (targ->to_close != NULL)
3234 targ->to_close (targ);
3235
3236 if (targetdebug)
3237 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3238 }
3239
3240 int
3241 target_thread_alive (ptid_t ptid)
3242 {
3243 int retval;
3244
3245 retval = current_target.to_thread_alive (&current_target, ptid);
3246 if (targetdebug)
3247 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3248 ptid_get_pid (ptid), retval);
3249
3250 return retval;
3251 }
3252
3253 void
3254 target_find_new_threads (void)
3255 {
3256 current_target.to_find_new_threads (&current_target);
3257 if (targetdebug)
3258 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3259 }
3260
3261 void
3262 target_stop (ptid_t ptid)
3263 {
3264 if (!may_stop)
3265 {
3266 warning (_("May not interrupt or stop the target, ignoring attempt"));
3267 return;
3268 }
3269
3270 (*current_target.to_stop) (&current_target, ptid);
3271 }
3272
3273 static void
3274 debug_to_post_attach (struct target_ops *self, int pid)
3275 {
3276 debug_target.to_post_attach (&debug_target, pid);
3277
3278 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3279 }
3280
3281 /* Concatenate ELEM to LIST, a comma separate list, and return the
3282 result. The LIST incoming argument is released. */
3283
3284 static char *
3285 str_comma_list_concat_elem (char *list, const char *elem)
3286 {
3287 if (list == NULL)
3288 return xstrdup (elem);
3289 else
3290 return reconcat (list, list, ", ", elem, (char *) NULL);
3291 }
3292
3293 /* Helper for target_options_to_string. If OPT is present in
3294 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3295 Returns the new resulting string. OPT is removed from
3296 TARGET_OPTIONS. */
3297
3298 static char *
3299 do_option (int *target_options, char *ret,
3300 int opt, char *opt_str)
3301 {
3302 if ((*target_options & opt) != 0)
3303 {
3304 ret = str_comma_list_concat_elem (ret, opt_str);
3305 *target_options &= ~opt;
3306 }
3307
3308 return ret;
3309 }
3310
3311 char *
3312 target_options_to_string (int target_options)
3313 {
3314 char *ret = NULL;
3315
3316 #define DO_TARG_OPTION(OPT) \
3317 ret = do_option (&target_options, ret, OPT, #OPT)
3318
3319 DO_TARG_OPTION (TARGET_WNOHANG);
3320
3321 if (target_options != 0)
3322 ret = str_comma_list_concat_elem (ret, "unknown???");
3323
3324 if (ret == NULL)
3325 ret = xstrdup ("");
3326 return ret;
3327 }
3328
3329 static void
3330 debug_print_register (const char * func,
3331 struct regcache *regcache, int regno)
3332 {
3333 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3334
3335 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3336 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3337 && gdbarch_register_name (gdbarch, regno) != NULL
3338 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3339 fprintf_unfiltered (gdb_stdlog, "(%s)",
3340 gdbarch_register_name (gdbarch, regno));
3341 else
3342 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3343 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3344 {
3345 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3346 int i, size = register_size (gdbarch, regno);
3347 gdb_byte buf[MAX_REGISTER_SIZE];
3348
3349 regcache_raw_collect (regcache, regno, buf);
3350 fprintf_unfiltered (gdb_stdlog, " = ");
3351 for (i = 0; i < size; i++)
3352 {
3353 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3354 }
3355 if (size <= sizeof (LONGEST))
3356 {
3357 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3358
3359 fprintf_unfiltered (gdb_stdlog, " %s %s",
3360 core_addr_to_string_nz (val), plongest (val));
3361 }
3362 }
3363 fprintf_unfiltered (gdb_stdlog, "\n");
3364 }
3365
3366 void
3367 target_fetch_registers (struct regcache *regcache, int regno)
3368 {
3369 current_target.to_fetch_registers (&current_target, regcache, regno);
3370 if (targetdebug)
3371 debug_print_register ("target_fetch_registers", regcache, regno);
3372 }
3373
3374 void
3375 target_store_registers (struct regcache *regcache, int regno)
3376 {
3377 struct target_ops *t;
3378
3379 if (!may_write_registers)
3380 error (_("Writing to registers is not allowed (regno %d)"), regno);
3381
3382 current_target.to_store_registers (&current_target, regcache, regno);
3383 if (targetdebug)
3384 {
3385 debug_print_register ("target_store_registers", regcache, regno);
3386 }
3387 }
3388
3389 int
3390 target_core_of_thread (ptid_t ptid)
3391 {
3392 int retval = current_target.to_core_of_thread (&current_target, ptid);
3393
3394 if (targetdebug)
3395 fprintf_unfiltered (gdb_stdlog,
3396 "target_core_of_thread (%d) = %d\n",
3397 ptid_get_pid (ptid), retval);
3398 return retval;
3399 }
3400
3401 int
3402 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3403 {
3404 int retval = current_target.to_verify_memory (&current_target,
3405 data, memaddr, size);
3406
3407 if (targetdebug)
3408 fprintf_unfiltered (gdb_stdlog,
3409 "target_verify_memory (%s, %s) = %d\n",
3410 paddress (target_gdbarch (), memaddr),
3411 pulongest (size),
3412 retval);
3413 return retval;
3414 }
3415
3416 /* The documentation for this function is in its prototype declaration in
3417 target.h. */
3418
3419 int
3420 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3421 {
3422 int ret;
3423
3424 ret = current_target.to_insert_mask_watchpoint (&current_target,
3425 addr, mask, rw);
3426
3427 if (targetdebug)
3428 fprintf_unfiltered (gdb_stdlog, "\
3429 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3430 core_addr_to_string (addr),
3431 core_addr_to_string (mask), rw, ret);
3432
3433 return ret;
3434 }
3435
3436 /* The documentation for this function is in its prototype declaration in
3437 target.h. */
3438
3439 int
3440 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3441 {
3442 int ret;
3443
3444 ret = current_target.to_remove_mask_watchpoint (&current_target,
3445 addr, mask, rw);
3446
3447 if (targetdebug)
3448 fprintf_unfiltered (gdb_stdlog, "\
3449 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3450 core_addr_to_string (addr),
3451 core_addr_to_string (mask), rw, ret);
3452
3453 return ret;
3454 }
3455
3456 /* The documentation for this function is in its prototype declaration
3457 in target.h. */
3458
3459 int
3460 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3461 {
3462 return current_target.to_masked_watch_num_registers (&current_target,
3463 addr, mask);
3464 }
3465
3466 /* The documentation for this function is in its prototype declaration
3467 in target.h. */
3468
3469 int
3470 target_ranged_break_num_registers (void)
3471 {
3472 return current_target.to_ranged_break_num_registers (&current_target);
3473 }
3474
3475 /* See target.h. */
3476
3477 struct btrace_target_info *
3478 target_enable_btrace (ptid_t ptid)
3479 {
3480 return current_target.to_enable_btrace (&current_target, ptid);
3481 }
3482
3483 /* See target.h. */
3484
3485 void
3486 target_disable_btrace (struct btrace_target_info *btinfo)
3487 {
3488 current_target.to_disable_btrace (&current_target, btinfo);
3489 }
3490
3491 /* See target.h. */
3492
3493 void
3494 target_teardown_btrace (struct btrace_target_info *btinfo)
3495 {
3496 current_target.to_teardown_btrace (&current_target, btinfo);
3497 }
3498
3499 /* See target.h. */
3500
3501 enum btrace_error
3502 target_read_btrace (VEC (btrace_block_s) **btrace,
3503 struct btrace_target_info *btinfo,
3504 enum btrace_read_type type)
3505 {
3506 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3507 }
3508
3509 /* See target.h. */
3510
3511 void
3512 target_stop_recording (void)
3513 {
3514 current_target.to_stop_recording (&current_target);
3515 }
3516
3517 /* See target.h. */
3518
3519 void
3520 target_info_record (void)
3521 {
3522 struct target_ops *t;
3523
3524 for (t = current_target.beneath; t != NULL; t = t->beneath)
3525 if (t->to_info_record != NULL)
3526 {
3527 t->to_info_record (t);
3528 return;
3529 }
3530
3531 tcomplain ();
3532 }
3533
3534 /* See target.h. */
3535
3536 void
3537 target_save_record (const char *filename)
3538 {
3539 current_target.to_save_record (&current_target, filename);
3540 }
3541
3542 /* See target.h. */
3543
3544 int
3545 target_supports_delete_record (void)
3546 {
3547 struct target_ops *t;
3548
3549 for (t = current_target.beneath; t != NULL; t = t->beneath)
3550 if (t->to_delete_record != NULL)
3551 return 1;
3552
3553 return 0;
3554 }
3555
3556 /* See target.h. */
3557
3558 void
3559 target_delete_record (void)
3560 {
3561 current_target.to_delete_record (&current_target);
3562 }
3563
3564 /* See target.h. */
3565
3566 int
3567 target_record_is_replaying (void)
3568 {
3569 return current_target.to_record_is_replaying (&current_target);
3570 }
3571
3572 /* See target.h. */
3573
3574 void
3575 target_goto_record_begin (void)
3576 {
3577 current_target.to_goto_record_begin (&current_target);
3578 }
3579
3580 /* See target.h. */
3581
3582 void
3583 target_goto_record_end (void)
3584 {
3585 current_target.to_goto_record_end (&current_target);
3586 }
3587
3588 /* See target.h. */
3589
3590 void
3591 target_goto_record (ULONGEST insn)
3592 {
3593 current_target.to_goto_record (&current_target, insn);
3594 }
3595
3596 /* See target.h. */
3597
3598 void
3599 target_insn_history (int size, int flags)
3600 {
3601 current_target.to_insn_history (&current_target, size, flags);
3602 }
3603
3604 /* See target.h. */
3605
3606 void
3607 target_insn_history_from (ULONGEST from, int size, int flags)
3608 {
3609 current_target.to_insn_history_from (&current_target, from, size, flags);
3610 }
3611
3612 /* See target.h. */
3613
3614 void
3615 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3616 {
3617 current_target.to_insn_history_range (&current_target, begin, end, flags);
3618 }
3619
3620 /* See target.h. */
3621
3622 void
3623 target_call_history (int size, int flags)
3624 {
3625 current_target.to_call_history (&current_target, size, flags);
3626 }
3627
3628 /* See target.h. */
3629
3630 void
3631 target_call_history_from (ULONGEST begin, int size, int flags)
3632 {
3633 current_target.to_call_history_from (&current_target, begin, size, flags);
3634 }
3635
3636 /* See target.h. */
3637
3638 void
3639 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3640 {
3641 current_target.to_call_history_range (&current_target, begin, end, flags);
3642 }
3643
3644 static void
3645 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3646 {
3647 debug_target.to_prepare_to_store (&debug_target, regcache);
3648
3649 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3650 }
3651
3652 /* See target.h. */
3653
3654 const struct frame_unwind *
3655 target_get_unwinder (void)
3656 {
3657 return current_target.to_get_unwinder (&current_target);
3658 }
3659
3660 /* See target.h. */
3661
3662 const struct frame_unwind *
3663 target_get_tailcall_unwinder (void)
3664 {
3665 return current_target.to_get_tailcall_unwinder (&current_target);
3666 }
3667
3668 /* Default implementation of to_decr_pc_after_break. */
3669
3670 static CORE_ADDR
3671 default_target_decr_pc_after_break (struct target_ops *ops,
3672 struct gdbarch *gdbarch)
3673 {
3674 return gdbarch_decr_pc_after_break (gdbarch);
3675 }
3676
3677 /* See target.h. */
3678
3679 CORE_ADDR
3680 target_decr_pc_after_break (struct gdbarch *gdbarch)
3681 {
3682 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3683 }
3684
3685 static void
3686 debug_to_files_info (struct target_ops *target)
3687 {
3688 debug_target.to_files_info (target);
3689
3690 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3691 }
3692
3693 static int
3694 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3695 struct bp_target_info *bp_tgt)
3696 {
3697 int retval;
3698
3699 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
3700
3701 fprintf_unfiltered (gdb_stdlog,
3702 "target_insert_breakpoint (%s, xxx) = %ld\n",
3703 core_addr_to_string (bp_tgt->placed_address),
3704 (unsigned long) retval);
3705 return retval;
3706 }
3707
3708 static int
3709 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3710 struct bp_target_info *bp_tgt)
3711 {
3712 int retval;
3713
3714 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
3715
3716 fprintf_unfiltered (gdb_stdlog,
3717 "target_remove_breakpoint (%s, xxx) = %ld\n",
3718 core_addr_to_string (bp_tgt->placed_address),
3719 (unsigned long) retval);
3720 return retval;
3721 }
3722
3723 static int
3724 debug_to_can_use_hw_breakpoint (struct target_ops *self,
3725 int type, int cnt, int from_tty)
3726 {
3727 int retval;
3728
3729 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3730 type, cnt, from_tty);
3731
3732 fprintf_unfiltered (gdb_stdlog,
3733 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3734 (unsigned long) type,
3735 (unsigned long) cnt,
3736 (unsigned long) from_tty,
3737 (unsigned long) retval);
3738 return retval;
3739 }
3740
3741 static int
3742 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3743 CORE_ADDR addr, int len)
3744 {
3745 CORE_ADDR retval;
3746
3747 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3748 addr, len);
3749
3750 fprintf_unfiltered (gdb_stdlog,
3751 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3752 core_addr_to_string (addr), (unsigned long) len,
3753 core_addr_to_string (retval));
3754 return retval;
3755 }
3756
3757 static int
3758 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3759 CORE_ADDR addr, int len, int rw,
3760 struct expression *cond)
3761 {
3762 int retval;
3763
3764 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3765 addr, len,
3766 rw, cond);
3767
3768 fprintf_unfiltered (gdb_stdlog,
3769 "target_can_accel_watchpoint_condition "
3770 "(%s, %d, %d, %s) = %ld\n",
3771 core_addr_to_string (addr), len, rw,
3772 host_address_to_string (cond), (unsigned long) retval);
3773 return retval;
3774 }
3775
3776 static int
3777 debug_to_stopped_by_watchpoint (struct target_ops *ops)
3778 {
3779 int retval;
3780
3781 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
3782
3783 fprintf_unfiltered (gdb_stdlog,
3784 "target_stopped_by_watchpoint () = %ld\n",
3785 (unsigned long) retval);
3786 return retval;
3787 }
3788
3789 static int
3790 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3791 {
3792 int retval;
3793
3794 retval = debug_target.to_stopped_data_address (target, addr);
3795
3796 fprintf_unfiltered (gdb_stdlog,
3797 "target_stopped_data_address ([%s]) = %ld\n",
3798 core_addr_to_string (*addr),
3799 (unsigned long)retval);
3800 return retval;
3801 }
3802
3803 static int
3804 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3805 CORE_ADDR addr,
3806 CORE_ADDR start, int length)
3807 {
3808 int retval;
3809
3810 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3811 start, length);
3812
3813 fprintf_filtered (gdb_stdlog,
3814 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3815 core_addr_to_string (addr), core_addr_to_string (start),
3816 length, retval);
3817 return retval;
3818 }
3819
3820 static int
3821 debug_to_insert_hw_breakpoint (struct target_ops *self,
3822 struct gdbarch *gdbarch,
3823 struct bp_target_info *bp_tgt)
3824 {
3825 int retval;
3826
3827 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3828 gdbarch, bp_tgt);
3829
3830 fprintf_unfiltered (gdb_stdlog,
3831 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3832 core_addr_to_string (bp_tgt->placed_address),
3833 (unsigned long) retval);
3834 return retval;
3835 }
3836
3837 static int
3838 debug_to_remove_hw_breakpoint (struct target_ops *self,
3839 struct gdbarch *gdbarch,
3840 struct bp_target_info *bp_tgt)
3841 {
3842 int retval;
3843
3844 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3845 gdbarch, bp_tgt);
3846
3847 fprintf_unfiltered (gdb_stdlog,
3848 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3849 core_addr_to_string (bp_tgt->placed_address),
3850 (unsigned long) retval);
3851 return retval;
3852 }
3853
3854 static int
3855 debug_to_insert_watchpoint (struct target_ops *self,
3856 CORE_ADDR addr, int len, int type,
3857 struct expression *cond)
3858 {
3859 int retval;
3860
3861 retval = debug_target.to_insert_watchpoint (&debug_target,
3862 addr, len, type, cond);
3863
3864 fprintf_unfiltered (gdb_stdlog,
3865 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3866 core_addr_to_string (addr), len, type,
3867 host_address_to_string (cond), (unsigned long) retval);
3868 return retval;
3869 }
3870
3871 static int
3872 debug_to_remove_watchpoint (struct target_ops *self,
3873 CORE_ADDR addr, int len, int type,
3874 struct expression *cond)
3875 {
3876 int retval;
3877
3878 retval = debug_target.to_remove_watchpoint (&debug_target,
3879 addr, len, type, cond);
3880
3881 fprintf_unfiltered (gdb_stdlog,
3882 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3883 core_addr_to_string (addr), len, type,
3884 host_address_to_string (cond), (unsigned long) retval);
3885 return retval;
3886 }
3887
3888 static void
3889 debug_to_terminal_init (struct target_ops *self)
3890 {
3891 debug_target.to_terminal_init (&debug_target);
3892
3893 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3894 }
3895
3896 static void
3897 debug_to_terminal_inferior (struct target_ops *self)
3898 {
3899 debug_target.to_terminal_inferior (&debug_target);
3900
3901 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3902 }
3903
3904 static void
3905 debug_to_terminal_ours_for_output (struct target_ops *self)
3906 {
3907 debug_target.to_terminal_ours_for_output (&debug_target);
3908
3909 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3910 }
3911
3912 static void
3913 debug_to_terminal_ours (struct target_ops *self)
3914 {
3915 debug_target.to_terminal_ours (&debug_target);
3916
3917 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3918 }
3919
3920 static void
3921 debug_to_terminal_save_ours (struct target_ops *self)
3922 {
3923 debug_target.to_terminal_save_ours (&debug_target);
3924
3925 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3926 }
3927
3928 static void
3929 debug_to_terminal_info (struct target_ops *self,
3930 const char *arg, int from_tty)
3931 {
3932 debug_target.to_terminal_info (&debug_target, arg, from_tty);
3933
3934 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3935 from_tty);
3936 }
3937
3938 static void
3939 debug_to_load (struct target_ops *self, char *args, int from_tty)
3940 {
3941 debug_target.to_load (&debug_target, args, from_tty);
3942
3943 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3944 }
3945
3946 static void
3947 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
3948 {
3949 debug_target.to_post_startup_inferior (&debug_target, ptid);
3950
3951 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3952 ptid_get_pid (ptid));
3953 }
3954
3955 static int
3956 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
3957 {
3958 int retval;
3959
3960 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
3961
3962 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3963 pid, retval);
3964
3965 return retval;
3966 }
3967
3968 static int
3969 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
3970 {
3971 int retval;
3972
3973 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
3974
3975 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3976 pid, retval);
3977
3978 return retval;
3979 }
3980
3981 static int
3982 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
3983 {
3984 int retval;
3985
3986 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
3987
3988 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3989 pid, retval);
3990
3991 return retval;
3992 }
3993
3994 static int
3995 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
3996 {
3997 int retval;
3998
3999 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
4000
4001 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
4002 pid, retval);
4003
4004 return retval;
4005 }
4006
4007 static int
4008 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
4009 {
4010 int retval;
4011
4012 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
4013
4014 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
4015 pid, retval);
4016
4017 return retval;
4018 }
4019
4020 static int
4021 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
4022 {
4023 int retval;
4024
4025 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
4026
4027 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
4028 pid, retval);
4029
4030 return retval;
4031 }
4032
4033 static int
4034 debug_to_has_exited (struct target_ops *self,
4035 int pid, int wait_status, int *exit_status)
4036 {
4037 int has_exited;
4038
4039 has_exited = debug_target.to_has_exited (&debug_target,
4040 pid, wait_status, exit_status);
4041
4042 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
4043 pid, wait_status, *exit_status, has_exited);
4044
4045 return has_exited;
4046 }
4047
4048 static int
4049 debug_to_can_run (struct target_ops *self)
4050 {
4051 int retval;
4052
4053 retval = debug_target.to_can_run (&debug_target);
4054
4055 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
4056
4057 return retval;
4058 }
4059
4060 static struct gdbarch *
4061 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4062 {
4063 struct gdbarch *retval;
4064
4065 retval = debug_target.to_thread_architecture (ops, ptid);
4066
4067 fprintf_unfiltered (gdb_stdlog,
4068 "target_thread_architecture (%s) = %s [%s]\n",
4069 target_pid_to_str (ptid),
4070 host_address_to_string (retval),
4071 gdbarch_bfd_arch_info (retval)->printable_name);
4072 return retval;
4073 }
4074
4075 static void
4076 debug_to_stop (struct target_ops *self, ptid_t ptid)
4077 {
4078 debug_target.to_stop (&debug_target, ptid);
4079
4080 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4081 target_pid_to_str (ptid));
4082 }
4083
4084 static void
4085 debug_to_rcmd (struct target_ops *self, char *command,
4086 struct ui_file *outbuf)
4087 {
4088 debug_target.to_rcmd (&debug_target, command, outbuf);
4089 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4090 }
4091
4092 static char *
4093 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4094 {
4095 char *exec_file;
4096
4097 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4098
4099 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4100 pid, exec_file);
4101
4102 return exec_file;
4103 }
4104
4105 static void
4106 setup_target_debug (void)
4107 {
4108 memcpy (&debug_target, &current_target, sizeof debug_target);
4109
4110 current_target.to_open = debug_to_open;
4111 current_target.to_post_attach = debug_to_post_attach;
4112 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4113 current_target.to_files_info = debug_to_files_info;
4114 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4115 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4116 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4117 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4118 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4119 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4120 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4121 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4122 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4123 current_target.to_watchpoint_addr_within_range
4124 = debug_to_watchpoint_addr_within_range;
4125 current_target.to_region_ok_for_hw_watchpoint
4126 = debug_to_region_ok_for_hw_watchpoint;
4127 current_target.to_can_accel_watchpoint_condition
4128 = debug_to_can_accel_watchpoint_condition;
4129 current_target.to_terminal_init = debug_to_terminal_init;
4130 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4131 current_target.to_terminal_ours_for_output
4132 = debug_to_terminal_ours_for_output;
4133 current_target.to_terminal_ours = debug_to_terminal_ours;
4134 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4135 current_target.to_terminal_info = debug_to_terminal_info;
4136 current_target.to_load = debug_to_load;
4137 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4138 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4139 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4140 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4141 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4142 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4143 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4144 current_target.to_has_exited = debug_to_has_exited;
4145 current_target.to_can_run = debug_to_can_run;
4146 current_target.to_stop = debug_to_stop;
4147 current_target.to_rcmd = debug_to_rcmd;
4148 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4149 current_target.to_thread_architecture = debug_to_thread_architecture;
4150 }
4151 \f
4152
4153 static char targ_desc[] =
4154 "Names of targets and files being debugged.\nShows the entire \
4155 stack of targets currently in use (including the exec-file,\n\
4156 core-file, and process, if any), as well as the symbol file name.";
4157
4158 static void
4159 default_rcmd (struct target_ops *self, char *command, struct ui_file *output)
4160 {
4161 error (_("\"monitor\" command not supported by this target."));
4162 }
4163
4164 static void
4165 do_monitor_command (char *cmd,
4166 int from_tty)
4167 {
4168 target_rcmd (cmd, gdb_stdtarg);
4169 }
4170
4171 /* Print the name of each layers of our target stack. */
4172
4173 static void
4174 maintenance_print_target_stack (char *cmd, int from_tty)
4175 {
4176 struct target_ops *t;
4177
4178 printf_filtered (_("The current target stack is:\n"));
4179
4180 for (t = target_stack; t != NULL; t = t->beneath)
4181 {
4182 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4183 }
4184 }
4185
4186 /* Controls if async mode is permitted. */
4187 int target_async_permitted = 0;
4188
4189 /* The set command writes to this variable. If the inferior is
4190 executing, target_async_permitted is *not* updated. */
4191 static int target_async_permitted_1 = 0;
4192
4193 static void
4194 set_target_async_command (char *args, int from_tty,
4195 struct cmd_list_element *c)
4196 {
4197 if (have_live_inferiors ())
4198 {
4199 target_async_permitted_1 = target_async_permitted;
4200 error (_("Cannot change this setting while the inferior is running."));
4201 }
4202
4203 target_async_permitted = target_async_permitted_1;
4204 }
4205
4206 static void
4207 show_target_async_command (struct ui_file *file, int from_tty,
4208 struct cmd_list_element *c,
4209 const char *value)
4210 {
4211 fprintf_filtered (file,
4212 _("Controlling the inferior in "
4213 "asynchronous mode is %s.\n"), value);
4214 }
4215
4216 /* Temporary copies of permission settings. */
4217
4218 static int may_write_registers_1 = 1;
4219 static int may_write_memory_1 = 1;
4220 static int may_insert_breakpoints_1 = 1;
4221 static int may_insert_tracepoints_1 = 1;
4222 static int may_insert_fast_tracepoints_1 = 1;
4223 static int may_stop_1 = 1;
4224
4225 /* Make the user-set values match the real values again. */
4226
4227 void
4228 update_target_permissions (void)
4229 {
4230 may_write_registers_1 = may_write_registers;
4231 may_write_memory_1 = may_write_memory;
4232 may_insert_breakpoints_1 = may_insert_breakpoints;
4233 may_insert_tracepoints_1 = may_insert_tracepoints;
4234 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4235 may_stop_1 = may_stop;
4236 }
4237
4238 /* The one function handles (most of) the permission flags in the same
4239 way. */
4240
4241 static void
4242 set_target_permissions (char *args, int from_tty,
4243 struct cmd_list_element *c)
4244 {
4245 if (target_has_execution)
4246 {
4247 update_target_permissions ();
4248 error (_("Cannot change this setting while the inferior is running."));
4249 }
4250
4251 /* Make the real values match the user-changed values. */
4252 may_write_registers = may_write_registers_1;
4253 may_insert_breakpoints = may_insert_breakpoints_1;
4254 may_insert_tracepoints = may_insert_tracepoints_1;
4255 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4256 may_stop = may_stop_1;
4257 update_observer_mode ();
4258 }
4259
4260 /* Set memory write permission independently of observer mode. */
4261
4262 static void
4263 set_write_memory_permission (char *args, int from_tty,
4264 struct cmd_list_element *c)
4265 {
4266 /* Make the real values match the user-changed values. */
4267 may_write_memory = may_write_memory_1;
4268 update_observer_mode ();
4269 }
4270
4271
4272 void
4273 initialize_targets (void)
4274 {
4275 init_dummy_target ();
4276 push_target (&dummy_target);
4277
4278 add_info ("target", target_info, targ_desc);
4279 add_info ("files", target_info, targ_desc);
4280
4281 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4282 Set target debugging."), _("\
4283 Show target debugging."), _("\
4284 When non-zero, target debugging is enabled. Higher numbers are more\n\
4285 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4286 command."),
4287 NULL,
4288 show_targetdebug,
4289 &setdebuglist, &showdebuglist);
4290
4291 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4292 &trust_readonly, _("\
4293 Set mode for reading from readonly sections."), _("\
4294 Show mode for reading from readonly sections."), _("\
4295 When this mode is on, memory reads from readonly sections (such as .text)\n\
4296 will be read from the object file instead of from the target. This will\n\
4297 result in significant performance improvement for remote targets."),
4298 NULL,
4299 show_trust_readonly,
4300 &setlist, &showlist);
4301
4302 add_com ("monitor", class_obscure, do_monitor_command,
4303 _("Send a command to the remote monitor (remote targets only)."));
4304
4305 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4306 _("Print the name of each layer of the internal target stack."),
4307 &maintenanceprintlist);
4308
4309 add_setshow_boolean_cmd ("target-async", no_class,
4310 &target_async_permitted_1, _("\
4311 Set whether gdb controls the inferior in asynchronous mode."), _("\
4312 Show whether gdb controls the inferior in asynchronous mode."), _("\
4313 Tells gdb whether to control the inferior in asynchronous mode."),
4314 set_target_async_command,
4315 show_target_async_command,
4316 &setlist,
4317 &showlist);
4318
4319 add_setshow_boolean_cmd ("may-write-registers", class_support,
4320 &may_write_registers_1, _("\
4321 Set permission to write into registers."), _("\
4322 Show permission to write into registers."), _("\
4323 When this permission is on, GDB may write into the target's registers.\n\
4324 Otherwise, any sort of write attempt will result in an error."),
4325 set_target_permissions, NULL,
4326 &setlist, &showlist);
4327
4328 add_setshow_boolean_cmd ("may-write-memory", class_support,
4329 &may_write_memory_1, _("\
4330 Set permission to write into target memory."), _("\
4331 Show permission to write into target memory."), _("\
4332 When this permission is on, GDB may write into the target's memory.\n\
4333 Otherwise, any sort of write attempt will result in an error."),
4334 set_write_memory_permission, NULL,
4335 &setlist, &showlist);
4336
4337 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4338 &may_insert_breakpoints_1, _("\
4339 Set permission to insert breakpoints in the target."), _("\
4340 Show permission to insert breakpoints in the target."), _("\
4341 When this permission is on, GDB may insert breakpoints in the program.\n\
4342 Otherwise, any sort of insertion attempt will result in an error."),
4343 set_target_permissions, NULL,
4344 &setlist, &showlist);
4345
4346 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4347 &may_insert_tracepoints_1, _("\
4348 Set permission to insert tracepoints in the target."), _("\
4349 Show permission to insert tracepoints in the target."), _("\
4350 When this permission is on, GDB may insert tracepoints in the program.\n\
4351 Otherwise, any sort of insertion attempt will result in an error."),
4352 set_target_permissions, NULL,
4353 &setlist, &showlist);
4354
4355 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4356 &may_insert_fast_tracepoints_1, _("\
4357 Set permission to insert fast tracepoints in the target."), _("\
4358 Show permission to insert fast tracepoints in the target."), _("\
4359 When this permission is on, GDB may insert fast tracepoints.\n\
4360 Otherwise, any sort of insertion attempt will result in an error."),
4361 set_target_permissions, NULL,
4362 &setlist, &showlist);
4363
4364 add_setshow_boolean_cmd ("may-interrupt", class_support,
4365 &may_stop_1, _("\
4366 Set permission to interrupt or signal the target."), _("\
4367 Show permission to interrupt or signal the target."), _("\
4368 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4369 Otherwise, any attempt to interrupt or stop will be ignored."),
4370 set_target_permissions, NULL,
4371 &setlist, &showlist);
4372 }