1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24 #include "target-dcache.h"
29 #include "observable.h"
37 #include "target-descriptions.h"
38 #include "gdbthread.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "gdbsupport/fileio.h"
44 #include "gdbsupport/agent.h"
46 #include "target-debug.h"
48 #include "event-top.h"
50 #include "gdbsupport/byte-vector.h"
51 #include "gdbsupport/search.h"
53 #include <unordered_map>
54 #include "target-connection.h"
56 #include "cli/cli-decode.h"
58 static void generic_tls_error (void) ATTRIBUTE_NORETURN
;
60 static void default_terminal_info (struct target_ops
*, const char *, int);
62 static int default_watchpoint_addr_within_range (struct target_ops
*,
63 CORE_ADDR
, CORE_ADDR
, int);
65 static int default_region_ok_for_hw_watchpoint (struct target_ops
*,
68 static void default_rcmd (struct target_ops
*, const char *, struct ui_file
*);
70 static ptid_t
default_get_ada_task_ptid (struct target_ops
*self
,
71 long lwp
, ULONGEST tid
);
73 static void default_mourn_inferior (struct target_ops
*self
);
75 static int default_search_memory (struct target_ops
*ops
,
77 ULONGEST search_space_len
,
78 const gdb_byte
*pattern
,
80 CORE_ADDR
*found_addrp
);
82 static int default_verify_memory (struct target_ops
*self
,
84 CORE_ADDR memaddr
, ULONGEST size
);
86 static void tcomplain (void) ATTRIBUTE_NORETURN
;
88 static struct target_ops
*find_default_run_target (const char *);
90 static int dummy_find_memory_regions (struct target_ops
*self
,
91 find_memory_region_ftype ignore1
,
94 static gdb::unique_xmalloc_ptr
<char> dummy_make_corefile_notes
95 (struct target_ops
*self
, bfd
*ignore1
, int *ignore2
);
97 static std::string
default_pid_to_str (struct target_ops
*ops
, ptid_t ptid
);
99 static enum exec_direction_kind default_execution_direction
100 (struct target_ops
*self
);
102 /* Mapping between target_info objects (which have address identity)
103 and corresponding open/factory function/callback. Each add_target
104 call adds one entry to this map, and registers a "target
105 TARGET_NAME" command that when invoked calls the factory registered
106 here. The target_info object is associated with the command via
107 the command's context. */
108 static std::unordered_map
<const target_info
*, target_open_ftype
*>
111 /* The singleton debug target. */
113 static struct target_ops
*the_debug_target
;
115 /* Command list for target. */
117 static struct cmd_list_element
*targetlist
= NULL
;
119 /* True if we should trust readonly sections from the
120 executable when reading memory. */
122 static bool trust_readonly
= false;
124 /* Nonzero if we should show true memory content including
125 memory breakpoint inserted by gdb. */
127 static int show_memory_breakpoints
= 0;
129 /* These globals control whether GDB attempts to perform these
130 operations; they are useful for targets that need to prevent
131 inadvertent disruption, such as in non-stop mode. */
133 bool may_write_registers
= true;
135 bool may_write_memory
= true;
137 bool may_insert_breakpoints
= true;
139 bool may_insert_tracepoints
= true;
141 bool may_insert_fast_tracepoints
= true;
143 bool may_stop
= true;
145 /* Non-zero if we want to see trace of target level stuff. */
147 static unsigned int targetdebug
= 0;
150 set_targetdebug (const char *args
, int from_tty
, struct cmd_list_element
*c
)
153 current_inferior ()->push_target (the_debug_target
);
155 current_inferior ()->unpush_target (the_debug_target
);
159 show_targetdebug (struct ui_file
*file
, int from_tty
,
160 struct cmd_list_element
*c
, const char *value
)
162 gdb_printf (file
, _("Target debugging is %s.\n"), value
);
168 for (target_ops
*t
= current_inferior ()->top_target ();
171 if (t
->has_memory ())
180 for (target_ops
*t
= current_inferior ()->top_target ();
190 target_has_registers ()
192 for (target_ops
*t
= current_inferior ()->top_target ();
195 if (t
->has_registers ())
202 target_has_execution (inferior
*inf
)
205 inf
= current_inferior ();
207 for (target_ops
*t
= inf
->top_target ();
209 t
= inf
->find_target_beneath (t
))
210 if (t
->has_execution (inf
))
219 return current_inferior ()->top_target ()->shortname ();
225 target_attach_no_wait ()
227 return current_inferior ()->top_target ()->attach_no_wait ();
233 target_post_attach (int pid
)
235 return current_inferior ()->top_target ()->post_attach (pid
);
241 target_prepare_to_store (regcache
*regcache
)
243 return current_inferior ()->top_target ()->prepare_to_store (regcache
);
249 target_supports_enable_disable_tracepoint ()
251 target_ops
*target
= current_inferior ()->top_target ();
253 return target
->supports_enable_disable_tracepoint ();
257 target_supports_string_tracing ()
259 return current_inferior ()->top_target ()->supports_string_tracing ();
265 target_supports_evaluation_of_breakpoint_conditions ()
267 target_ops
*target
= current_inferior ()->top_target ();
269 return target
->supports_evaluation_of_breakpoint_conditions ();
275 target_supports_dumpcore ()
277 return current_inferior ()->top_target ()->supports_dumpcore ();
283 target_dumpcore (const char *filename
)
285 return current_inferior ()->top_target ()->dumpcore (filename
);
291 target_can_run_breakpoint_commands ()
293 return current_inferior ()->top_target ()->can_run_breakpoint_commands ();
301 return current_inferior ()->top_target ()->files_info ();
307 target_insert_fork_catchpoint (int pid
)
309 return current_inferior ()->top_target ()->insert_fork_catchpoint (pid
);
315 target_remove_fork_catchpoint (int pid
)
317 return current_inferior ()->top_target ()->remove_fork_catchpoint (pid
);
323 target_insert_vfork_catchpoint (int pid
)
325 return current_inferior ()->top_target ()->insert_vfork_catchpoint (pid
);
331 target_remove_vfork_catchpoint (int pid
)
333 return current_inferior ()->top_target ()->remove_vfork_catchpoint (pid
);
339 target_insert_exec_catchpoint (int pid
)
341 return current_inferior ()->top_target ()->insert_exec_catchpoint (pid
);
347 target_remove_exec_catchpoint (int pid
)
349 return current_inferior ()->top_target ()->remove_exec_catchpoint (pid
);
355 target_set_syscall_catchpoint (int pid
, bool needed
, int any_count
,
356 gdb::array_view
<const int> syscall_counts
)
358 target_ops
*target
= current_inferior ()->top_target ();
360 return target
->set_syscall_catchpoint (pid
, needed
, any_count
,
367 target_rcmd (const char *command
, struct ui_file
*outbuf
)
369 return current_inferior ()->top_target ()->rcmd (command
, outbuf
);
375 target_can_lock_scheduler ()
377 target_ops
*target
= current_inferior ()->top_target ();
379 return (target
->get_thread_control_capabilities ()& tc_schedlock
) != 0;
385 target_can_async_p ()
387 return target_can_async_p (current_inferior ()->top_target ());
393 target_can_async_p (struct target_ops
*target
)
395 if (!target_async_permitted
)
397 return target
->can_async_p ();
405 bool result
= current_inferior ()->top_target ()->is_async_p ();
406 gdb_assert (target_async_permitted
|| !result
);
411 target_execution_direction ()
413 return current_inferior ()->top_target ()->execution_direction ();
419 target_extra_thread_info (thread_info
*tp
)
421 return current_inferior ()->top_target ()->extra_thread_info (tp
);
427 target_pid_to_exec_file (int pid
)
429 return current_inferior ()->top_target ()->pid_to_exec_file (pid
);
435 target_thread_architecture (ptid_t ptid
)
437 return current_inferior ()->top_target ()->thread_architecture (ptid
);
443 target_find_memory_regions (find_memory_region_ftype func
, void *data
)
445 return current_inferior ()->top_target ()->find_memory_regions (func
, data
);
450 gdb::unique_xmalloc_ptr
<char>
451 target_make_corefile_notes (bfd
*bfd
, int *size_p
)
453 return current_inferior ()->top_target ()->make_corefile_notes (bfd
, size_p
);
457 target_get_bookmark (const char *args
, int from_tty
)
459 return current_inferior ()->top_target ()->get_bookmark (args
, from_tty
);
463 target_goto_bookmark (const gdb_byte
*arg
, int from_tty
)
465 return current_inferior ()->top_target ()->goto_bookmark (arg
, from_tty
);
471 target_stopped_by_watchpoint ()
473 return current_inferior ()->top_target ()->stopped_by_watchpoint ();
479 target_stopped_by_sw_breakpoint ()
481 return current_inferior ()->top_target ()->stopped_by_sw_breakpoint ();
485 target_supports_stopped_by_sw_breakpoint ()
487 target_ops
*target
= current_inferior ()->top_target ();
489 return target
->supports_stopped_by_sw_breakpoint ();
493 target_stopped_by_hw_breakpoint ()
495 return current_inferior ()->top_target ()->stopped_by_hw_breakpoint ();
499 target_supports_stopped_by_hw_breakpoint ()
501 target_ops
*target
= current_inferior ()->top_target ();
503 return target
->supports_stopped_by_hw_breakpoint ();
509 target_have_steppable_watchpoint ()
511 return current_inferior ()->top_target ()->have_steppable_watchpoint ();
517 target_can_use_hardware_watchpoint (bptype type
, int cnt
, int othertype
)
519 target_ops
*target
= current_inferior ()->top_target ();
521 return target
->can_use_hw_breakpoint (type
, cnt
, othertype
);
527 target_region_ok_for_hw_watchpoint (CORE_ADDR addr
, int len
)
529 target_ops
*target
= current_inferior ()->top_target ();
531 return target
->region_ok_for_hw_watchpoint (addr
, len
);
536 target_can_do_single_step ()
538 return current_inferior ()->top_target ()->can_do_single_step ();
544 target_insert_watchpoint (CORE_ADDR addr
, int len
, target_hw_bp_type type
,
547 target_ops
*target
= current_inferior ()->top_target ();
549 return target
->insert_watchpoint (addr
, len
, type
, cond
);
555 target_remove_watchpoint (CORE_ADDR addr
, int len
, target_hw_bp_type type
,
558 target_ops
*target
= current_inferior ()->top_target ();
560 return target
->remove_watchpoint (addr
, len
, type
, cond
);
566 target_insert_hw_breakpoint (gdbarch
*gdbarch
, bp_target_info
*bp_tgt
)
568 target_ops
*target
= current_inferior ()->top_target ();
570 return target
->insert_hw_breakpoint (gdbarch
, bp_tgt
);
576 target_remove_hw_breakpoint (gdbarch
*gdbarch
, bp_target_info
*bp_tgt
)
578 target_ops
*target
= current_inferior ()->top_target ();
580 return target
->remove_hw_breakpoint (gdbarch
, bp_tgt
);
586 target_can_accel_watchpoint_condition (CORE_ADDR addr
, int len
, int type
,
589 target_ops
*target
= current_inferior ()->top_target ();
591 return target
->can_accel_watchpoint_condition (addr
, len
, type
, cond
);
597 target_can_execute_reverse ()
599 return current_inferior ()->top_target ()->can_execute_reverse ();
603 target_get_ada_task_ptid (long lwp
, ULONGEST tid
)
605 return current_inferior ()->top_target ()->get_ada_task_ptid (lwp
, tid
);
609 target_filesystem_is_local ()
611 return current_inferior ()->top_target ()->filesystem_is_local ();
617 return current_inferior ()->top_target ()->trace_init ();
621 target_download_tracepoint (bp_location
*location
)
623 return current_inferior ()->top_target ()->download_tracepoint (location
);
627 target_can_download_tracepoint ()
629 return current_inferior ()->top_target ()->can_download_tracepoint ();
633 target_download_trace_state_variable (const trace_state_variable
&tsv
)
635 target_ops
*target
= current_inferior ()->top_target ();
637 return target
->download_trace_state_variable (tsv
);
641 target_enable_tracepoint (bp_location
*loc
)
643 return current_inferior ()->top_target ()->enable_tracepoint (loc
);
647 target_disable_tracepoint (bp_location
*loc
)
649 return current_inferior ()->top_target ()->disable_tracepoint (loc
);
653 target_trace_start ()
655 return current_inferior ()->top_target ()->trace_start ();
659 target_trace_set_readonly_regions ()
661 return current_inferior ()->top_target ()->trace_set_readonly_regions ();
665 target_get_trace_status (trace_status
*ts
)
667 return current_inferior ()->top_target ()->get_trace_status (ts
);
671 target_get_tracepoint_status (breakpoint
*tp
, uploaded_tp
*utp
)
673 return current_inferior ()->top_target ()->get_tracepoint_status (tp
, utp
);
679 return current_inferior ()->top_target ()->trace_stop ();
683 target_trace_find (trace_find_type type
, int num
,
684 CORE_ADDR addr1
, CORE_ADDR addr2
, int *tpp
)
686 target_ops
*target
= current_inferior ()->top_target ();
688 return target
->trace_find (type
, num
, addr1
, addr2
, tpp
);
692 target_get_trace_state_variable_value (int tsv
, LONGEST
*val
)
694 target_ops
*target
= current_inferior ()->top_target ();
696 return target
->get_trace_state_variable_value (tsv
, val
);
700 target_save_trace_data (const char *filename
)
702 return current_inferior ()->top_target ()->save_trace_data (filename
);
706 target_upload_tracepoints (uploaded_tp
**utpp
)
708 return current_inferior ()->top_target ()->upload_tracepoints (utpp
);
712 target_upload_trace_state_variables (uploaded_tsv
**utsvp
)
714 target_ops
*target
= current_inferior ()->top_target ();
716 return target
->upload_trace_state_variables (utsvp
);
720 target_get_raw_trace_data (gdb_byte
*buf
, ULONGEST offset
, LONGEST len
)
722 target_ops
*target
= current_inferior ()->top_target ();
724 return target
->get_raw_trace_data (buf
, offset
, len
);
728 target_get_min_fast_tracepoint_insn_len ()
730 target_ops
*target
= current_inferior ()->top_target ();
732 return target
->get_min_fast_tracepoint_insn_len ();
736 target_set_disconnected_tracing (int val
)
738 return current_inferior ()->top_target ()->set_disconnected_tracing (val
);
742 target_set_circular_trace_buffer (int val
)
744 return current_inferior ()->top_target ()->set_circular_trace_buffer (val
);
748 target_set_trace_buffer_size (LONGEST val
)
750 return current_inferior ()->top_target ()->set_trace_buffer_size (val
);
754 target_set_trace_notes (const char *user
, const char *notes
,
755 const char *stopnotes
)
757 target_ops
*target
= current_inferior ()->top_target ();
759 return target
->set_trace_notes (user
, notes
, stopnotes
);
763 target_get_tib_address (ptid_t ptid
, CORE_ADDR
*addr
)
765 return current_inferior ()->top_target ()->get_tib_address (ptid
, addr
);
769 target_set_permissions ()
771 return current_inferior ()->top_target ()->set_permissions ();
775 target_static_tracepoint_marker_at (CORE_ADDR addr
,
776 static_tracepoint_marker
*marker
)
778 target_ops
*target
= current_inferior ()->top_target ();
780 return target
->static_tracepoint_marker_at (addr
, marker
);
783 std::vector
<static_tracepoint_marker
>
784 target_static_tracepoint_markers_by_strid (const char *marker_id
)
786 target_ops
*target
= current_inferior ()->top_target ();
788 return target
->static_tracepoint_markers_by_strid (marker_id
);
792 target_traceframe_info ()
794 return current_inferior ()->top_target ()->traceframe_info ();
798 target_use_agent (bool use
)
800 return current_inferior ()->top_target ()->use_agent (use
);
804 target_can_use_agent ()
806 return current_inferior ()->top_target ()->can_use_agent ();
810 target_augmented_libraries_svr4_read ()
812 return current_inferior ()->top_target ()->augmented_libraries_svr4_read ();
816 target_supports_memory_tagging ()
818 return current_inferior ()->top_target ()->supports_memory_tagging ();
822 target_fetch_memtags (CORE_ADDR address
, size_t len
, gdb::byte_vector
&tags
,
825 return current_inferior ()->top_target ()->fetch_memtags (address
, len
, tags
, type
);
829 target_store_memtags (CORE_ADDR address
, size_t len
,
830 const gdb::byte_vector
&tags
, int type
)
832 return current_inferior ()->top_target ()->store_memtags (address
, len
, tags
, type
);
836 target_log_command (const char *p
)
838 return current_inferior ()->top_target ()->log_command (p
);
841 /* This is used to implement the various target commands. */
844 open_target (const char *args
, int from_tty
, struct cmd_list_element
*command
)
846 auto *ti
= static_cast<target_info
*> (command
->context ());
847 target_open_ftype
*func
= target_factories
[ti
];
850 gdb_printf (gdb_stdlog
, "-> %s->open (...)\n",
853 func (args
, from_tty
);
856 gdb_printf (gdb_stdlog
, "<- %s->open (%s, %d)\n",
857 ti
->shortname
, args
, from_tty
);
863 add_target (const target_info
&t
, target_open_ftype
*func
,
864 completer_ftype
*completer
)
866 struct cmd_list_element
*c
;
868 auto &func_slot
= target_factories
[&t
];
869 if (func_slot
!= nullptr)
870 internal_error (__FILE__
, __LINE__
,
871 _("target already added (\"%s\")."), t
.shortname
);
874 if (targetlist
== NULL
)
875 add_basic_prefix_cmd ("target", class_run
, _("\
876 Connect to a target machine or process.\n\
877 The first argument is the type or protocol of the target machine.\n\
878 Remaining arguments are interpreted by the target protocol. For more\n\
879 information on the arguments for a particular protocol, type\n\
880 `help target ' followed by the protocol name."),
881 &targetlist
, 0, &cmdlist
);
882 c
= add_cmd (t
.shortname
, no_class
, t
.doc
, &targetlist
);
883 c
->set_context ((void *) &t
);
884 c
->func
= open_target
;
885 if (completer
!= NULL
)
886 set_cmd_completer (c
, completer
);
892 add_deprecated_target_alias (const target_info
&tinfo
, const char *alias
)
894 struct cmd_list_element
*c
;
896 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
898 c
= add_cmd (alias
, no_class
, tinfo
.doc
, &targetlist
);
899 c
->func
= open_target
;
900 c
->set_context ((void *) &tinfo
);
901 gdb::unique_xmalloc_ptr
<char> alt
902 = xstrprintf ("target %s", tinfo
.shortname
);
903 deprecate_cmd (c
, alt
.release ());
911 current_inferior ()->top_target ()->kill ();
915 target_load (const char *arg
, int from_tty
)
917 target_dcache_invalidate ();
918 current_inferior ()->top_target ()->load (arg
, from_tty
);
923 target_terminal_state
target_terminal::m_terminal_state
924 = target_terminal_state::is_ours
;
926 /* See target/target.h. */
929 target_terminal::init (void)
931 current_inferior ()->top_target ()->terminal_init ();
933 m_terminal_state
= target_terminal_state::is_ours
;
936 /* See target/target.h. */
939 target_terminal::inferior (void)
941 struct ui
*ui
= current_ui
;
943 /* A background resume (``run&'') should leave GDB in control of the
945 if (ui
->prompt_state
!= PROMPT_BLOCKED
)
948 /* Since we always run the inferior in the main console (unless "set
949 inferior-tty" is in effect), when some UI other than the main one
950 calls target_terminal::inferior, then we leave the main UI's
951 terminal settings as is. */
955 /* If GDB is resuming the inferior in the foreground, install
956 inferior's terminal modes. */
958 struct inferior
*inf
= current_inferior ();
960 if (inf
->terminal_state
!= target_terminal_state::is_inferior
)
962 current_inferior ()->top_target ()->terminal_inferior ();
963 inf
->terminal_state
= target_terminal_state::is_inferior
;
966 m_terminal_state
= target_terminal_state::is_inferior
;
968 /* If the user hit C-c before, pretend that it was hit right
970 if (check_quit_flag ())
971 target_pass_ctrlc ();
974 /* See target/target.h. */
977 target_terminal::restore_inferior (void)
979 struct ui
*ui
= current_ui
;
981 /* See target_terminal::inferior(). */
982 if (ui
->prompt_state
!= PROMPT_BLOCKED
|| ui
!= main_ui
)
985 /* Restore the terminal settings of inferiors that were in the
986 foreground but are now ours_for_output due to a temporary
987 target_target::ours_for_output() call. */
990 scoped_restore_current_inferior restore_inferior
;
992 for (::inferior
*inf
: all_inferiors ())
994 if (inf
->terminal_state
== target_terminal_state::is_ours_for_output
)
996 set_current_inferior (inf
);
997 current_inferior ()->top_target ()->terminal_inferior ();
998 inf
->terminal_state
= target_terminal_state::is_inferior
;
1003 m_terminal_state
= target_terminal_state::is_inferior
;
1005 /* If the user hit C-c before, pretend that it was hit right
1007 if (check_quit_flag ())
1008 target_pass_ctrlc ();
1011 /* Switch terminal state to DESIRED_STATE, either is_ours, or
1012 is_ours_for_output. */
1015 target_terminal_is_ours_kind (target_terminal_state desired_state
)
1017 scoped_restore_current_inferior restore_inferior
;
1019 /* Must do this in two passes. First, have all inferiors save the
1020 current terminal settings. Then, after all inferiors have add a
1021 chance to safely save the terminal settings, restore GDB's
1022 terminal settings. */
1024 for (inferior
*inf
: all_inferiors ())
1026 if (inf
->terminal_state
== target_terminal_state::is_inferior
)
1028 set_current_inferior (inf
);
1029 current_inferior ()->top_target ()->terminal_save_inferior ();
1033 for (inferior
*inf
: all_inferiors ())
1035 /* Note we don't check is_inferior here like above because we
1036 need to handle 'is_ours_for_output -> is_ours' too. Careful
1037 to never transition from 'is_ours' to 'is_ours_for_output',
1039 if (inf
->terminal_state
!= target_terminal_state::is_ours
1040 && inf
->terminal_state
!= desired_state
)
1042 set_current_inferior (inf
);
1043 if (desired_state
== target_terminal_state::is_ours
)
1044 current_inferior ()->top_target ()->terminal_ours ();
1045 else if (desired_state
== target_terminal_state::is_ours_for_output
)
1046 current_inferior ()->top_target ()->terminal_ours_for_output ();
1048 gdb_assert_not_reached ("unhandled desired state");
1049 inf
->terminal_state
= desired_state
;
1054 /* See target/target.h. */
1057 target_terminal::ours ()
1059 struct ui
*ui
= current_ui
;
1061 /* See target_terminal::inferior. */
1065 if (m_terminal_state
== target_terminal_state::is_ours
)
1068 target_terminal_is_ours_kind (target_terminal_state::is_ours
);
1069 m_terminal_state
= target_terminal_state::is_ours
;
1072 /* See target/target.h. */
1075 target_terminal::ours_for_output ()
1077 struct ui
*ui
= current_ui
;
1079 /* See target_terminal::inferior. */
1083 if (!target_terminal::is_inferior ())
1086 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output
);
1087 target_terminal::m_terminal_state
= target_terminal_state::is_ours_for_output
;
1090 /* See target/target.h. */
1093 target_terminal::info (const char *arg
, int from_tty
)
1095 current_inferior ()->top_target ()->terminal_info (arg
, from_tty
);
1101 target_supports_terminal_ours (void)
1103 /* The current top target is the target at the top of the target
1104 stack of the current inferior. While normally there's always an
1105 inferior, we must check for nullptr here because we can get here
1106 very early during startup, before the initial inferior is first
1108 inferior
*inf
= current_inferior ();
1112 return inf
->top_target ()->supports_terminal_ours ();
1118 error (_("You can't do that when your target is `%s'"),
1119 current_inferior ()->top_target ()->shortname ());
1125 error (_("You can't do that without a process to debug."));
1129 default_terminal_info (struct target_ops
*self
, const char *args
, int from_tty
)
1131 gdb_printf (_("No saved terminal information.\n"));
1134 /* A default implementation for the to_get_ada_task_ptid target method.
1136 This function builds the PTID by using both LWP and TID as part of
1137 the PTID lwp and tid elements. The pid used is the pid of the
1141 default_get_ada_task_ptid (struct target_ops
*self
, long lwp
, ULONGEST tid
)
1143 return ptid_t (inferior_ptid
.pid (), lwp
, tid
);
1146 static enum exec_direction_kind
1147 default_execution_direction (struct target_ops
*self
)
1149 if (!target_can_execute_reverse ())
1150 return EXEC_FORWARD
;
1151 else if (!target_can_async_p ())
1152 return EXEC_FORWARD
;
1154 gdb_assert_not_reached ("\
1155 to_execution_direction must be implemented for reverse async");
1161 decref_target (target_ops
*t
)
1164 if (t
->refcount () == 0)
1166 if (t
->stratum () == process_stratum
)
1167 connection_list_remove (as_process_stratum_target (t
));
1175 target_stack::push (target_ops
*t
)
1179 strata stratum
= t
->stratum ();
1181 if (stratum
== process_stratum
)
1182 connection_list_add (as_process_stratum_target (t
));
1184 /* If there's already a target at this stratum, remove it. */
1186 if (m_stack
[stratum
] != NULL
)
1187 unpush (m_stack
[stratum
]);
1189 /* Now add the new one. */
1190 m_stack
[stratum
] = t
;
1192 if (m_top
< stratum
)
1199 target_stack::unpush (target_ops
*t
)
1201 gdb_assert (t
!= NULL
);
1203 strata stratum
= t
->stratum ();
1205 if (stratum
== dummy_stratum
)
1206 internal_error (__FILE__
, __LINE__
,
1207 _("Attempt to unpush the dummy target"));
1209 /* Look for the specified target. Note that a target can only occur
1210 once in the target stack. */
1212 if (m_stack
[stratum
] != t
)
1214 /* If T wasn't pushed, quit. Only open targets should be
1219 /* Unchain the target. */
1220 m_stack
[stratum
] = NULL
;
1222 if (m_top
== stratum
)
1223 m_top
= this->find_beneath (t
)->stratum ();
1225 /* Finally close the target, if there are no inferiors
1226 referencing this target still. Note we do this after unchaining,
1227 so any target method calls from within the target_close
1228 implementation don't end up in T anymore. Do leave the target
1229 open if we have are other inferiors referencing this target
1236 /* Unpush TARGET and assert that it worked. */
1239 unpush_target_and_assert (struct target_ops
*target
)
1241 if (!current_inferior ()->unpush_target (target
))
1243 gdb_printf (gdb_stderr
,
1244 "pop_all_targets couldn't find target %s\n",
1245 target
->shortname ());
1246 internal_error (__FILE__
, __LINE__
,
1247 _("failed internal consistency check"));
1252 pop_all_targets_above (enum strata above_stratum
)
1254 while ((int) (current_inferior ()->top_target ()->stratum ())
1255 > (int) above_stratum
)
1256 unpush_target_and_assert (current_inferior ()->top_target ());
1262 pop_all_targets_at_and_above (enum strata stratum
)
1264 while ((int) (current_inferior ()->top_target ()->stratum ())
1266 unpush_target_and_assert (current_inferior ()->top_target ());
1270 pop_all_targets (void)
1272 pop_all_targets_above (dummy_stratum
);
1276 target_unpusher::operator() (struct target_ops
*ops
) const
1278 current_inferior ()->unpush_target (ops
);
1281 /* Default implementation of to_get_thread_local_address. */
1284 generic_tls_error (void)
1286 throw_error (TLS_GENERIC_ERROR
,
1287 _("Cannot find thread-local variables on this target"));
1290 /* Using the objfile specified in OBJFILE, find the address for the
1291 current thread's thread-local storage with offset OFFSET. */
1293 target_translate_tls_address (struct objfile
*objfile
, CORE_ADDR offset
)
1295 volatile CORE_ADDR addr
= 0;
1296 struct target_ops
*target
= current_inferior ()->top_target ();
1297 struct gdbarch
*gdbarch
= target_gdbarch ();
1299 /* If OBJFILE is a separate debug object file, look for the
1300 original object file. */
1301 if (objfile
->separate_debug_objfile_backlink
!= NULL
)
1302 objfile
= objfile
->separate_debug_objfile_backlink
;
1304 if (gdbarch_fetch_tls_load_module_address_p (gdbarch
))
1306 ptid_t ptid
= inferior_ptid
;
1312 /* Fetch the load module address for this objfile. */
1313 lm_addr
= gdbarch_fetch_tls_load_module_address (gdbarch
,
1316 if (gdbarch_get_thread_local_address_p (gdbarch
))
1317 addr
= gdbarch_get_thread_local_address (gdbarch
, ptid
, lm_addr
,
1320 addr
= target
->get_thread_local_address (ptid
, lm_addr
, offset
);
1322 /* If an error occurred, print TLS related messages here. Otherwise,
1323 throw the error to some higher catcher. */
1324 catch (const gdb_exception
&ex
)
1326 int objfile_is_library
= (objfile
->flags
& OBJF_SHARED
);
1330 case TLS_NO_LIBRARY_SUPPORT_ERROR
:
1331 error (_("Cannot find thread-local variables "
1332 "in this thread library."));
1334 case TLS_LOAD_MODULE_NOT_FOUND_ERROR
:
1335 if (objfile_is_library
)
1336 error (_("Cannot find shared library `%s' in dynamic"
1337 " linker's load module list"), objfile_name (objfile
));
1339 error (_("Cannot find executable file `%s' in dynamic"
1340 " linker's load module list"), objfile_name (objfile
));
1342 case TLS_NOT_ALLOCATED_YET_ERROR
:
1343 if (objfile_is_library
)
1344 error (_("The inferior has not yet allocated storage for"
1345 " thread-local variables in\n"
1346 "the shared library `%s'\n"
1348 objfile_name (objfile
),
1349 target_pid_to_str (ptid
).c_str ());
1351 error (_("The inferior has not yet allocated storage for"
1352 " thread-local variables in\n"
1353 "the executable `%s'\n"
1355 objfile_name (objfile
),
1356 target_pid_to_str (ptid
).c_str ());
1358 case TLS_GENERIC_ERROR
:
1359 if (objfile_is_library
)
1360 error (_("Cannot find thread-local storage for %s, "
1361 "shared library %s:\n%s"),
1362 target_pid_to_str (ptid
).c_str (),
1363 objfile_name (objfile
), ex
.what ());
1365 error (_("Cannot find thread-local storage for %s, "
1366 "executable file %s:\n%s"),
1367 target_pid_to_str (ptid
).c_str (),
1368 objfile_name (objfile
), ex
.what ());
1377 error (_("Cannot find thread-local variables on this target"));
1383 target_xfer_status_to_string (enum target_xfer_status status
)
1385 #define CASE(X) case X: return #X
1388 CASE(TARGET_XFER_E_IO
);
1389 CASE(TARGET_XFER_UNAVAILABLE
);
1397 const target_section_table
*
1398 target_get_section_table (struct target_ops
*target
)
1400 return target
->get_section_table ();
1403 /* Find a section containing ADDR. */
1405 const struct target_section
*
1406 target_section_by_addr (struct target_ops
*target
, CORE_ADDR addr
)
1408 const target_section_table
*table
= target_get_section_table (target
);
1413 for (const target_section
&secp
: *table
)
1415 if (addr
>= secp
.addr
&& addr
< secp
.endaddr
)
1423 const target_section_table
*
1424 default_get_section_table ()
1426 return ¤t_program_space
->target_sections ();
1429 /* Helper for the memory xfer routines. Checks the attributes of the
1430 memory region of MEMADDR against the read or write being attempted.
1431 If the access is permitted returns true, otherwise returns false.
1432 REGION_P is an optional output parameter. If not-NULL, it is
1433 filled with a pointer to the memory region of MEMADDR. REG_LEN
1434 returns LEN trimmed to the end of the region. This is how much the
1435 caller can continue requesting, if the access is permitted. A
1436 single xfer request must not straddle memory region boundaries. */
1439 memory_xfer_check_region (gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
1440 ULONGEST memaddr
, ULONGEST len
, ULONGEST
*reg_len
,
1441 struct mem_region
**region_p
)
1443 struct mem_region
*region
;
1445 region
= lookup_mem_region (memaddr
);
1447 if (region_p
!= NULL
)
1450 switch (region
->attrib
.mode
)
1453 if (writebuf
!= NULL
)
1458 if (readbuf
!= NULL
)
1463 /* We only support writing to flash during "load" for now. */
1464 if (writebuf
!= NULL
)
1465 error (_("Writing to flash memory forbidden in this context"));
1472 /* region->hi == 0 means there's no upper bound. */
1473 if (memaddr
+ len
< region
->hi
|| region
->hi
== 0)
1476 *reg_len
= region
->hi
- memaddr
;
1481 /* Read memory from more than one valid target. A core file, for
1482 instance, could have some of memory but delegate other bits to
1483 the target below it. So, we must manually try all targets. */
1485 enum target_xfer_status
1486 raw_memory_xfer_partial (struct target_ops
*ops
, gdb_byte
*readbuf
,
1487 const gdb_byte
*writebuf
, ULONGEST memaddr
, LONGEST len
,
1488 ULONGEST
*xfered_len
)
1490 enum target_xfer_status res
;
1494 res
= ops
->xfer_partial (TARGET_OBJECT_MEMORY
, NULL
,
1495 readbuf
, writebuf
, memaddr
, len
,
1497 if (res
== TARGET_XFER_OK
)
1500 /* Stop if the target reports that the memory is not available. */
1501 if (res
== TARGET_XFER_UNAVAILABLE
)
1504 /* Don't continue past targets which have all the memory.
1505 At one time, this code was necessary to read data from
1506 executables / shared libraries when data for the requested
1507 addresses weren't available in the core file. But now the
1508 core target handles this case itself. */
1509 if (ops
->has_all_memory ())
1512 ops
= ops
->beneath ();
1514 while (ops
!= NULL
);
1516 /* The cache works at the raw memory level. Make sure the cache
1517 gets updated with raw contents no matter what kind of memory
1518 object was originally being written. Note we do write-through
1519 first, so that if it fails, we don't write to the cache contents
1520 that never made it to the target. */
1521 if (writebuf
!= NULL
1522 && inferior_ptid
!= null_ptid
1523 && target_dcache_init_p ()
1524 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1526 DCACHE
*dcache
= target_dcache_get ();
1528 /* Note that writing to an area of memory which wasn't present
1529 in the cache doesn't cause it to be loaded in. */
1530 dcache_update (dcache
, res
, memaddr
, writebuf
, *xfered_len
);
1536 /* Perform a partial memory transfer.
1537 For docs see target.h, to_xfer_partial. */
1539 static enum target_xfer_status
1540 memory_xfer_partial_1 (struct target_ops
*ops
, enum target_object object
,
1541 gdb_byte
*readbuf
, const gdb_byte
*writebuf
, ULONGEST memaddr
,
1542 ULONGEST len
, ULONGEST
*xfered_len
)
1544 enum target_xfer_status res
;
1546 struct mem_region
*region
;
1547 struct inferior
*inf
;
1549 /* For accesses to unmapped overlay sections, read directly from
1550 files. Must do this first, as MEMADDR may need adjustment. */
1551 if (readbuf
!= NULL
&& overlay_debugging
)
1553 struct obj_section
*section
= find_pc_overlay (memaddr
);
1555 if (pc_in_unmapped_range (memaddr
, section
))
1557 const target_section_table
*table
= target_get_section_table (ops
);
1558 const char *section_name
= section
->the_bfd_section
->name
;
1560 memaddr
= overlay_mapped_address (memaddr
, section
);
1562 auto match_cb
= [=] (const struct target_section
*s
)
1564 return (strcmp (section_name
, s
->the_bfd_section
->name
) == 0);
1567 return section_table_xfer_memory_partial (readbuf
, writebuf
,
1568 memaddr
, len
, xfered_len
,
1573 /* Try the executable files, if "trust-readonly-sections" is set. */
1574 if (readbuf
!= NULL
&& trust_readonly
)
1576 const struct target_section
*secp
1577 = target_section_by_addr (ops
, memaddr
);
1579 && (bfd_section_flags (secp
->the_bfd_section
) & SEC_READONLY
))
1581 const target_section_table
*table
= target_get_section_table (ops
);
1582 return section_table_xfer_memory_partial (readbuf
, writebuf
,
1583 memaddr
, len
, xfered_len
,
1588 /* Try GDB's internal data cache. */
1590 if (!memory_xfer_check_region (readbuf
, writebuf
, memaddr
, len
, ®_len
,
1592 return TARGET_XFER_E_IO
;
1594 if (inferior_ptid
!= null_ptid
)
1595 inf
= current_inferior ();
1601 /* The dcache reads whole cache lines; that doesn't play well
1602 with reading from a trace buffer, because reading outside of
1603 the collected memory range fails. */
1604 && get_traceframe_number () == -1
1605 && (region
->attrib
.cache
1606 || (stack_cache_enabled_p () && object
== TARGET_OBJECT_STACK_MEMORY
)
1607 || (code_cache_enabled_p () && object
== TARGET_OBJECT_CODE_MEMORY
)))
1609 DCACHE
*dcache
= target_dcache_get_or_init ();
1611 return dcache_read_memory_partial (ops
, dcache
, memaddr
, readbuf
,
1612 reg_len
, xfered_len
);
1615 /* If none of those methods found the memory we wanted, fall back
1616 to a target partial transfer. Normally a single call to
1617 to_xfer_partial is enough; if it doesn't recognize an object
1618 it will call the to_xfer_partial of the next target down.
1619 But for memory this won't do. Memory is the only target
1620 object which can be read from more than one valid target.
1621 A core file, for instance, could have some of memory but
1622 delegate other bits to the target below it. So, we must
1623 manually try all targets. */
1625 res
= raw_memory_xfer_partial (ops
, readbuf
, writebuf
, memaddr
, reg_len
,
1628 /* If we still haven't got anything, return the last error. We
1633 /* Perform a partial memory transfer. For docs see target.h,
1636 static enum target_xfer_status
1637 memory_xfer_partial (struct target_ops
*ops
, enum target_object object
,
1638 gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
1639 ULONGEST memaddr
, ULONGEST len
, ULONGEST
*xfered_len
)
1641 enum target_xfer_status res
;
1643 /* Zero length requests are ok and require no work. */
1645 return TARGET_XFER_EOF
;
1647 memaddr
= address_significant (target_gdbarch (), memaddr
);
1649 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1650 breakpoint insns, thus hiding out from higher layers whether
1651 there are software breakpoints inserted in the code stream. */
1652 if (readbuf
!= NULL
)
1654 res
= memory_xfer_partial_1 (ops
, object
, readbuf
, NULL
, memaddr
, len
,
1657 if (res
== TARGET_XFER_OK
&& !show_memory_breakpoints
)
1658 breakpoint_xfer_memory (readbuf
, NULL
, NULL
, memaddr
, *xfered_len
);
1662 /* A large write request is likely to be partially satisfied
1663 by memory_xfer_partial_1. We will continually malloc
1664 and free a copy of the entire write request for breakpoint
1665 shadow handling even though we only end up writing a small
1666 subset of it. Cap writes to a limit specified by the target
1667 to mitigate this. */
1668 len
= std::min (ops
->get_memory_xfer_limit (), len
);
1670 gdb::byte_vector
buf (writebuf
, writebuf
+ len
);
1671 breakpoint_xfer_memory (NULL
, buf
.data (), writebuf
, memaddr
, len
);
1672 res
= memory_xfer_partial_1 (ops
, object
, NULL
, buf
.data (), memaddr
, len
,
1679 scoped_restore_tmpl
<int>
1680 make_scoped_restore_show_memory_breakpoints (int show
)
1682 return make_scoped_restore (&show_memory_breakpoints
, show
);
1685 /* For docs see target.h, to_xfer_partial. */
1687 enum target_xfer_status
1688 target_xfer_partial (struct target_ops
*ops
,
1689 enum target_object object
, const char *annex
,
1690 gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
1691 ULONGEST offset
, ULONGEST len
,
1692 ULONGEST
*xfered_len
)
1694 enum target_xfer_status retval
;
1696 /* Transfer is done when LEN is zero. */
1698 return TARGET_XFER_EOF
;
1700 if (writebuf
&& !may_write_memory
)
1701 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1702 core_addr_to_string_nz (offset
), plongest (len
));
1706 /* If this is a memory transfer, let the memory-specific code
1707 have a look at it instead. Memory transfers are more
1709 if (object
== TARGET_OBJECT_MEMORY
|| object
== TARGET_OBJECT_STACK_MEMORY
1710 || object
== TARGET_OBJECT_CODE_MEMORY
)
1711 retval
= memory_xfer_partial (ops
, object
, readbuf
,
1712 writebuf
, offset
, len
, xfered_len
);
1713 else if (object
== TARGET_OBJECT_RAW_MEMORY
)
1715 /* Skip/avoid accessing the target if the memory region
1716 attributes block the access. Check this here instead of in
1717 raw_memory_xfer_partial as otherwise we'd end up checking
1718 this twice in the case of the memory_xfer_partial path is
1719 taken; once before checking the dcache, and another in the
1720 tail call to raw_memory_xfer_partial. */
1721 if (!memory_xfer_check_region (readbuf
, writebuf
, offset
, len
, &len
,
1723 return TARGET_XFER_E_IO
;
1725 /* Request the normal memory object from other layers. */
1726 retval
= raw_memory_xfer_partial (ops
, readbuf
, writebuf
, offset
, len
,
1730 retval
= ops
->xfer_partial (object
, annex
, readbuf
,
1731 writebuf
, offset
, len
, xfered_len
);
1735 const unsigned char *myaddr
= NULL
;
1737 gdb_printf (gdb_stdlog
,
1738 "%s:target_xfer_partial "
1739 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1742 (annex
? annex
: "(null)"),
1743 host_address_to_string (readbuf
),
1744 host_address_to_string (writebuf
),
1745 core_addr_to_string_nz (offset
),
1746 pulongest (len
), retval
,
1747 pulongest (*xfered_len
));
1753 if (retval
== TARGET_XFER_OK
&& myaddr
!= NULL
)
1757 gdb_puts (", bytes =", gdb_stdlog
);
1758 for (i
= 0; i
< *xfered_len
; i
++)
1760 if ((((intptr_t) &(myaddr
[i
])) & 0xf) == 0)
1762 if (targetdebug
< 2 && i
> 0)
1764 gdb_printf (gdb_stdlog
, " ...");
1767 gdb_printf (gdb_stdlog
, "\n");
1770 gdb_printf (gdb_stdlog
, " %02x", myaddr
[i
] & 0xff);
1774 gdb_putc ('\n', gdb_stdlog
);
1777 /* Check implementations of to_xfer_partial update *XFERED_LEN
1778 properly. Do assertion after printing debug messages, so that we
1779 can find more clues on assertion failure from debugging messages. */
1780 if (retval
== TARGET_XFER_OK
|| retval
== TARGET_XFER_UNAVAILABLE
)
1781 gdb_assert (*xfered_len
> 0);
1786 /* Read LEN bytes of target memory at address MEMADDR, placing the
1787 results in GDB's memory at MYADDR. Returns either 0 for success or
1788 -1 if any error occurs.
1790 If an error occurs, no guarantee is made about the contents of the data at
1791 MYADDR. In particular, the caller should not depend upon partial reads
1792 filling the buffer with good data. There is no way for the caller to know
1793 how much good data might have been transfered anyway. Callers that can
1794 deal with partial reads should call target_read (which will retry until
1795 it makes no progress, and then return how much was transferred). */
1798 target_read_memory (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1800 if (target_read (current_inferior ()->top_target (),
1801 TARGET_OBJECT_MEMORY
, NULL
,
1802 myaddr
, memaddr
, len
) == len
)
1808 /* See target/target.h. */
1811 target_read_uint32 (CORE_ADDR memaddr
, uint32_t *result
)
1816 r
= target_read_memory (memaddr
, buf
, sizeof buf
);
1819 *result
= extract_unsigned_integer (buf
, sizeof buf
,
1820 gdbarch_byte_order (target_gdbarch ()));
1824 /* Like target_read_memory, but specify explicitly that this is a read
1825 from the target's raw memory. That is, this read bypasses the
1826 dcache, breakpoint shadowing, etc. */
1829 target_read_raw_memory (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1831 if (target_read (current_inferior ()->top_target (),
1832 TARGET_OBJECT_RAW_MEMORY
, NULL
,
1833 myaddr
, memaddr
, len
) == len
)
1839 /* Like target_read_memory, but specify explicitly that this is a read from
1840 the target's stack. This may trigger different cache behavior. */
1843 target_read_stack (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1845 if (target_read (current_inferior ()->top_target (),
1846 TARGET_OBJECT_STACK_MEMORY
, NULL
,
1847 myaddr
, memaddr
, len
) == len
)
1853 /* Like target_read_memory, but specify explicitly that this is a read from
1854 the target's code. This may trigger different cache behavior. */
1857 target_read_code (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1859 if (target_read (current_inferior ()->top_target (),
1860 TARGET_OBJECT_CODE_MEMORY
, NULL
,
1861 myaddr
, memaddr
, len
) == len
)
1867 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1868 Returns either 0 for success or -1 if any error occurs. If an
1869 error occurs, no guarantee is made about how much data got written.
1870 Callers that can deal with partial writes should call
1874 target_write_memory (CORE_ADDR memaddr
, const gdb_byte
*myaddr
, ssize_t len
)
1876 if (target_write (current_inferior ()->top_target (),
1877 TARGET_OBJECT_MEMORY
, NULL
,
1878 myaddr
, memaddr
, len
) == len
)
1884 /* Write LEN bytes from MYADDR to target raw memory at address
1885 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1886 If an error occurs, no guarantee is made about how much data got
1887 written. Callers that can deal with partial writes should call
1891 target_write_raw_memory (CORE_ADDR memaddr
, const gdb_byte
*myaddr
, ssize_t len
)
1893 if (target_write (current_inferior ()->top_target (),
1894 TARGET_OBJECT_RAW_MEMORY
, NULL
,
1895 myaddr
, memaddr
, len
) == len
)
1901 /* Fetch the target's memory map. */
1903 std::vector
<mem_region
>
1904 target_memory_map (void)
1906 target_ops
*target
= current_inferior ()->top_target ();
1907 std::vector
<mem_region
> result
= target
->memory_map ();
1908 if (result
.empty ())
1911 std::sort (result
.begin (), result
.end ());
1913 /* Check that regions do not overlap. Simultaneously assign
1914 a numbering for the "mem" commands to use to refer to
1916 mem_region
*last_one
= NULL
;
1917 for (size_t ix
= 0; ix
< result
.size (); ix
++)
1919 mem_region
*this_one
= &result
[ix
];
1920 this_one
->number
= ix
;
1922 if (last_one
!= NULL
&& last_one
->hi
> this_one
->lo
)
1924 warning (_("Overlapping regions in memory map: ignoring"));
1925 return std::vector
<mem_region
> ();
1928 last_one
= this_one
;
1935 target_flash_erase (ULONGEST address
, LONGEST length
)
1937 current_inferior ()->top_target ()->flash_erase (address
, length
);
1941 target_flash_done (void)
1943 current_inferior ()->top_target ()->flash_done ();
1947 show_trust_readonly (struct ui_file
*file
, int from_tty
,
1948 struct cmd_list_element
*c
, const char *value
)
1951 _("Mode for reading from readonly sections is %s.\n"),
1955 /* Target vector read/write partial wrapper functions. */
1957 static enum target_xfer_status
1958 target_read_partial (struct target_ops
*ops
,
1959 enum target_object object
,
1960 const char *annex
, gdb_byte
*buf
,
1961 ULONGEST offset
, ULONGEST len
,
1962 ULONGEST
*xfered_len
)
1964 return target_xfer_partial (ops
, object
, annex
, buf
, NULL
, offset
, len
,
1968 static enum target_xfer_status
1969 target_write_partial (struct target_ops
*ops
,
1970 enum target_object object
,
1971 const char *annex
, const gdb_byte
*buf
,
1972 ULONGEST offset
, LONGEST len
, ULONGEST
*xfered_len
)
1974 return target_xfer_partial (ops
, object
, annex
, NULL
, buf
, offset
, len
,
1978 /* Wrappers to perform the full transfer. */
1980 /* For docs on target_read see target.h. */
1983 target_read (struct target_ops
*ops
,
1984 enum target_object object
,
1985 const char *annex
, gdb_byte
*buf
,
1986 ULONGEST offset
, LONGEST len
)
1988 LONGEST xfered_total
= 0;
1991 /* If we are reading from a memory object, find the length of an addressable
1992 unit for that architecture. */
1993 if (object
== TARGET_OBJECT_MEMORY
1994 || object
== TARGET_OBJECT_STACK_MEMORY
1995 || object
== TARGET_OBJECT_CODE_MEMORY
1996 || object
== TARGET_OBJECT_RAW_MEMORY
)
1997 unit_size
= gdbarch_addressable_memory_unit_size (target_gdbarch ());
1999 while (xfered_total
< len
)
2001 ULONGEST xfered_partial
;
2002 enum target_xfer_status status
;
2004 status
= target_read_partial (ops
, object
, annex
,
2005 buf
+ xfered_total
* unit_size
,
2006 offset
+ xfered_total
, len
- xfered_total
,
2009 /* Call an observer, notifying them of the xfer progress? */
2010 if (status
== TARGET_XFER_EOF
)
2011 return xfered_total
;
2012 else if (status
== TARGET_XFER_OK
)
2014 xfered_total
+= xfered_partial
;
2018 return TARGET_XFER_E_IO
;
2024 /* Assuming that the entire [begin, end) range of memory cannot be
2025 read, try to read whatever subrange is possible to read.
2027 The function returns, in RESULT, either zero or one memory block.
2028 If there's a readable subrange at the beginning, it is completely
2029 read and returned. Any further readable subrange will not be read.
2030 Otherwise, if there's a readable subrange at the end, it will be
2031 completely read and returned. Any readable subranges before it
2032 (obviously, not starting at the beginning), will be ignored. In
2033 other cases -- either no readable subrange, or readable subrange(s)
2034 that is neither at the beginning, or end, nothing is returned.
2036 The purpose of this function is to handle a read across a boundary
2037 of accessible memory in a case when memory map is not available.
2038 The above restrictions are fine for this case, but will give
2039 incorrect results if the memory is 'patchy'. However, supporting
2040 'patchy' memory would require trying to read every single byte,
2041 and it seems unacceptable solution. Explicit memory map is
2042 recommended for this case -- and target_read_memory_robust will
2043 take care of reading multiple ranges then. */
2046 read_whatever_is_readable (struct target_ops
*ops
,
2047 const ULONGEST begin
, const ULONGEST end
,
2049 std::vector
<memory_read_result
> *result
)
2051 ULONGEST current_begin
= begin
;
2052 ULONGEST current_end
= end
;
2054 ULONGEST xfered_len
;
2056 /* If we previously failed to read 1 byte, nothing can be done here. */
2057 if (end
- begin
<= 1)
2060 gdb::unique_xmalloc_ptr
<gdb_byte
> buf ((gdb_byte
*) xmalloc (end
- begin
));
2062 /* Check that either first or the last byte is readable, and give up
2063 if not. This heuristic is meant to permit reading accessible memory
2064 at the boundary of accessible region. */
2065 if (target_read_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
2066 buf
.get (), begin
, 1, &xfered_len
) == TARGET_XFER_OK
)
2071 else if (target_read_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
2072 buf
.get () + (end
- begin
) - 1, end
- 1, 1,
2073 &xfered_len
) == TARGET_XFER_OK
)
2081 /* Loop invariant is that the [current_begin, current_end) was previously
2082 found to be not readable as a whole.
2084 Note loop condition -- if the range has 1 byte, we can't divide the range
2085 so there's no point trying further. */
2086 while (current_end
- current_begin
> 1)
2088 ULONGEST first_half_begin
, first_half_end
;
2089 ULONGEST second_half_begin
, second_half_end
;
2091 ULONGEST middle
= current_begin
+ (current_end
- current_begin
) / 2;
2095 first_half_begin
= current_begin
;
2096 first_half_end
= middle
;
2097 second_half_begin
= middle
;
2098 second_half_end
= current_end
;
2102 first_half_begin
= middle
;
2103 first_half_end
= current_end
;
2104 second_half_begin
= current_begin
;
2105 second_half_end
= middle
;
2108 xfer
= target_read (ops
, TARGET_OBJECT_MEMORY
, NULL
,
2109 buf
.get () + (first_half_begin
- begin
) * unit_size
,
2111 first_half_end
- first_half_begin
);
2113 if (xfer
== first_half_end
- first_half_begin
)
2115 /* This half reads up fine. So, the error must be in the
2117 current_begin
= second_half_begin
;
2118 current_end
= second_half_end
;
2122 /* This half is not readable. Because we've tried one byte, we
2123 know some part of this half if actually readable. Go to the next
2124 iteration to divide again and try to read.
2126 We don't handle the other half, because this function only tries
2127 to read a single readable subrange. */
2128 current_begin
= first_half_begin
;
2129 current_end
= first_half_end
;
2135 /* The [begin, current_begin) range has been read. */
2136 result
->emplace_back (begin
, current_end
, std::move (buf
));
2140 /* The [current_end, end) range has been read. */
2141 LONGEST region_len
= end
- current_end
;
2143 gdb::unique_xmalloc_ptr
<gdb_byte
> data
2144 ((gdb_byte
*) xmalloc (region_len
* unit_size
));
2145 memcpy (data
.get (), buf
.get () + (current_end
- begin
) * unit_size
,
2146 region_len
* unit_size
);
2147 result
->emplace_back (current_end
, end
, std::move (data
));
2151 std::vector
<memory_read_result
>
2152 read_memory_robust (struct target_ops
*ops
,
2153 const ULONGEST offset
, const LONGEST len
)
2155 std::vector
<memory_read_result
> result
;
2156 int unit_size
= gdbarch_addressable_memory_unit_size (target_gdbarch ());
2158 LONGEST xfered_total
= 0;
2159 while (xfered_total
< len
)
2161 struct mem_region
*region
= lookup_mem_region (offset
+ xfered_total
);
2164 /* If there is no explicit region, a fake one should be created. */
2165 gdb_assert (region
);
2167 if (region
->hi
== 0)
2168 region_len
= len
- xfered_total
;
2170 region_len
= region
->hi
- offset
;
2172 if (region
->attrib
.mode
== MEM_NONE
|| region
->attrib
.mode
== MEM_WO
)
2174 /* Cannot read this region. Note that we can end up here only
2175 if the region is explicitly marked inaccessible, or
2176 'inaccessible-by-default' is in effect. */
2177 xfered_total
+= region_len
;
2181 LONGEST to_read
= std::min (len
- xfered_total
, region_len
);
2182 gdb::unique_xmalloc_ptr
<gdb_byte
> buffer
2183 ((gdb_byte
*) xmalloc (to_read
* unit_size
));
2185 LONGEST xfered_partial
=
2186 target_read (ops
, TARGET_OBJECT_MEMORY
, NULL
, buffer
.get (),
2187 offset
+ xfered_total
, to_read
);
2188 /* Call an observer, notifying them of the xfer progress? */
2189 if (xfered_partial
<= 0)
2191 /* Got an error reading full chunk. See if maybe we can read
2193 read_whatever_is_readable (ops
, offset
+ xfered_total
,
2194 offset
+ xfered_total
+ to_read
,
2195 unit_size
, &result
);
2196 xfered_total
+= to_read
;
2200 result
.emplace_back (offset
+ xfered_total
,
2201 offset
+ xfered_total
+ xfered_partial
,
2202 std::move (buffer
));
2203 xfered_total
+= xfered_partial
;
2213 /* An alternative to target_write with progress callbacks. */
2216 target_write_with_progress (struct target_ops
*ops
,
2217 enum target_object object
,
2218 const char *annex
, const gdb_byte
*buf
,
2219 ULONGEST offset
, LONGEST len
,
2220 void (*progress
) (ULONGEST
, void *), void *baton
)
2222 LONGEST xfered_total
= 0;
2225 /* If we are writing to a memory object, find the length of an addressable
2226 unit for that architecture. */
2227 if (object
== TARGET_OBJECT_MEMORY
2228 || object
== TARGET_OBJECT_STACK_MEMORY
2229 || object
== TARGET_OBJECT_CODE_MEMORY
2230 || object
== TARGET_OBJECT_RAW_MEMORY
)
2231 unit_size
= gdbarch_addressable_memory_unit_size (target_gdbarch ());
2233 /* Give the progress callback a chance to set up. */
2235 (*progress
) (0, baton
);
2237 while (xfered_total
< len
)
2239 ULONGEST xfered_partial
;
2240 enum target_xfer_status status
;
2242 status
= target_write_partial (ops
, object
, annex
,
2243 buf
+ xfered_total
* unit_size
,
2244 offset
+ xfered_total
, len
- xfered_total
,
2247 if (status
!= TARGET_XFER_OK
)
2248 return status
== TARGET_XFER_EOF
? xfered_total
: TARGET_XFER_E_IO
;
2251 (*progress
) (xfered_partial
, baton
);
2253 xfered_total
+= xfered_partial
;
2259 /* For docs on target_write see target.h. */
2262 target_write (struct target_ops
*ops
,
2263 enum target_object object
,
2264 const char *annex
, const gdb_byte
*buf
,
2265 ULONGEST offset
, LONGEST len
)
2267 return target_write_with_progress (ops
, object
, annex
, buf
, offset
, len
,
2271 /* Help for target_read_alloc and target_read_stralloc. See their comments
2274 template <typename T
>
2275 gdb::optional
<gdb::def_vector
<T
>>
2276 target_read_alloc_1 (struct target_ops
*ops
, enum target_object object
,
2279 gdb::def_vector
<T
> buf
;
2281 const int chunk
= 4096;
2283 /* This function does not have a length parameter; it reads the
2284 entire OBJECT). Also, it doesn't support objects fetched partly
2285 from one target and partly from another (in a different stratum,
2286 e.g. a core file and an executable). Both reasons make it
2287 unsuitable for reading memory. */
2288 gdb_assert (object
!= TARGET_OBJECT_MEMORY
);
2290 /* Start by reading up to 4K at a time. The target will throttle
2291 this number down if necessary. */
2294 ULONGEST xfered_len
;
2295 enum target_xfer_status status
;
2297 buf
.resize (buf_pos
+ chunk
);
2299 status
= target_read_partial (ops
, object
, annex
,
2300 (gdb_byte
*) &buf
[buf_pos
],
2304 if (status
== TARGET_XFER_EOF
)
2306 /* Read all there was. */
2307 buf
.resize (buf_pos
);
2310 else if (status
!= TARGET_XFER_OK
)
2312 /* An error occurred. */
2316 buf_pos
+= xfered_len
;
2324 gdb::optional
<gdb::byte_vector
>
2325 target_read_alloc (struct target_ops
*ops
, enum target_object object
,
2328 return target_read_alloc_1
<gdb_byte
> (ops
, object
, annex
);
2333 gdb::optional
<gdb::char_vector
>
2334 target_read_stralloc (struct target_ops
*ops
, enum target_object object
,
2337 gdb::optional
<gdb::char_vector
> buf
2338 = target_read_alloc_1
<char> (ops
, object
, annex
);
2343 if (buf
->empty () || buf
->back () != '\0')
2344 buf
->push_back ('\0');
2346 /* Check for embedded NUL bytes; but allow trailing NULs. */
2347 for (auto it
= std::find (buf
->begin (), buf
->end (), '\0');
2348 it
!= buf
->end (); it
++)
2351 warning (_("target object %d, annex %s, "
2352 "contained unexpected null characters"),
2353 (int) object
, annex
? annex
: "(none)");
2360 /* Memory transfer methods. */
2363 get_target_memory (struct target_ops
*ops
, CORE_ADDR addr
, gdb_byte
*buf
,
2366 /* This method is used to read from an alternate, non-current
2367 target. This read must bypass the overlay support (as symbols
2368 don't match this target), and GDB's internal cache (wrong cache
2369 for this target). */
2370 if (target_read (ops
, TARGET_OBJECT_RAW_MEMORY
, NULL
, buf
, addr
, len
)
2372 memory_error (TARGET_XFER_E_IO
, addr
);
2376 get_target_memory_unsigned (struct target_ops
*ops
, CORE_ADDR addr
,
2377 int len
, enum bfd_endian byte_order
)
2379 gdb_byte buf
[sizeof (ULONGEST
)];
2381 gdb_assert (len
<= sizeof (buf
));
2382 get_target_memory (ops
, addr
, buf
, len
);
2383 return extract_unsigned_integer (buf
, len
, byte_order
);
2389 target_insert_breakpoint (struct gdbarch
*gdbarch
,
2390 struct bp_target_info
*bp_tgt
)
2392 if (!may_insert_breakpoints
)
2394 warning (_("May not insert breakpoints"));
2398 target_ops
*target
= current_inferior ()->top_target ();
2400 return target
->insert_breakpoint (gdbarch
, bp_tgt
);
2406 target_remove_breakpoint (struct gdbarch
*gdbarch
,
2407 struct bp_target_info
*bp_tgt
,
2408 enum remove_bp_reason reason
)
2410 /* This is kind of a weird case to handle, but the permission might
2411 have been changed after breakpoints were inserted - in which case
2412 we should just take the user literally and assume that any
2413 breakpoints should be left in place. */
2414 if (!may_insert_breakpoints
)
2416 warning (_("May not remove breakpoints"));
2420 target_ops
*target
= current_inferior ()->top_target ();
2422 return target
->remove_breakpoint (gdbarch
, bp_tgt
, reason
);
2426 info_target_command (const char *args
, int from_tty
)
2428 int has_all_mem
= 0;
2430 if (current_program_space
->symfile_object_file
!= NULL
)
2432 objfile
*objf
= current_program_space
->symfile_object_file
;
2433 gdb_printf (_("Symbols from \"%s\".\n"),
2434 objfile_name (objf
));
2437 for (target_ops
*t
= current_inferior ()->top_target ();
2441 if (!t
->has_memory ())
2444 if ((int) (t
->stratum ()) <= (int) dummy_stratum
)
2447 gdb_printf (_("\tWhile running this, "
2448 "GDB does not access memory from...\n"));
2449 gdb_printf ("%s:\n", t
->longname ());
2451 has_all_mem
= t
->has_all_memory ();
2455 /* This function is called before any new inferior is created, e.g.
2456 by running a program, attaching, or connecting to a target.
2457 It cleans up any state from previous invocations which might
2458 change between runs. This is a subset of what target_preopen
2459 resets (things which might change between targets). */
2462 target_pre_inferior (int from_tty
)
2464 /* Clear out solib state. Otherwise the solib state of the previous
2465 inferior might have survived and is entirely wrong for the new
2466 target. This has been observed on GNU/Linux using glibc 2.3. How
2478 Cannot access memory at address 0xdeadbeef
2481 /* In some OSs, the shared library list is the same/global/shared
2482 across inferiors. If code is shared between processes, so are
2483 memory regions and features. */
2484 if (!gdbarch_has_global_solist (target_gdbarch ()))
2486 no_shared_libraries (NULL
, from_tty
);
2488 invalidate_target_mem_regions ();
2490 target_clear_description ();
2493 /* attach_flag may be set if the previous process associated with
2494 the inferior was attached to. */
2495 current_inferior ()->attach_flag
= 0;
2497 current_inferior ()->highest_thread_num
= 0;
2499 agent_capability_invalidate ();
2502 /* This is to be called by the open routine before it does
2506 target_preopen (int from_tty
)
2510 if (current_inferior ()->pid
!= 0)
2513 || !target_has_execution ()
2514 || query (_("A program is being debugged already. Kill it? ")))
2516 /* Core inferiors actually should be detached, not
2518 if (target_has_execution ())
2521 target_detach (current_inferior (), 0);
2524 error (_("Program not killed."));
2527 /* Calling target_kill may remove the target from the stack. But if
2528 it doesn't (which seems like a win for UDI), remove it now. */
2529 /* Leave the exec target, though. The user may be switching from a
2530 live process to a core of the same program. */
2531 pop_all_targets_above (file_stratum
);
2533 target_pre_inferior (from_tty
);
2539 target_detach (inferior
*inf
, int from_tty
)
2541 /* After we have detached, we will clear the register cache for this inferior
2542 by calling registers_changed_ptid. We must save the pid_ptid before
2543 detaching, as the target detach method will clear inf->pid. */
2544 ptid_t save_pid_ptid
= ptid_t (inf
->pid
);
2546 /* As long as some to_detach implementations rely on the current_inferior
2547 (either directly, or indirectly, like through target_gdbarch or by
2548 reading memory), INF needs to be the current inferior. When that
2549 requirement will become no longer true, then we can remove this
2551 gdb_assert (inf
== current_inferior ());
2553 prepare_for_detach ();
2555 /* Hold a strong reference because detaching may unpush the
2557 auto proc_target_ref
= target_ops_ref::new_reference (inf
->process_target ());
2559 current_inferior ()->top_target ()->detach (inf
, from_tty
);
2561 process_stratum_target
*proc_target
2562 = as_process_stratum_target (proc_target_ref
.get ());
2564 registers_changed_ptid (proc_target
, save_pid_ptid
);
2566 /* We have to ensure we have no frame cache left. Normally,
2567 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2568 inferior_ptid matches save_pid_ptid, but in our case, it does not
2569 call it, as inferior_ptid has been reset. */
2570 reinit_frame_cache ();
2574 target_disconnect (const char *args
, int from_tty
)
2576 /* If we're in breakpoints-always-inserted mode or if breakpoints
2577 are global across processes, we have to remove them before
2579 remove_breakpoints ();
2581 current_inferior ()->top_target ()->disconnect (args
, from_tty
);
2584 /* See target/target.h. */
2587 target_wait (ptid_t ptid
, struct target_waitstatus
*status
,
2588 target_wait_flags options
)
2590 target_ops
*target
= current_inferior ()->top_target ();
2591 process_stratum_target
*proc_target
= current_inferior ()->process_target ();
2593 gdb_assert (!proc_target
->commit_resumed_state
);
2595 if (!target_can_async_p (target
))
2596 gdb_assert ((options
& TARGET_WNOHANG
) == 0);
2600 gdb::observers::target_pre_wait
.notify (ptid
);
2601 ptid_t event_ptid
= target
->wait (ptid
, status
, options
);
2602 gdb::observers::target_post_wait
.notify (event_ptid
);
2607 gdb::observers::target_post_wait
.notify (null_ptid
);
2615 default_target_wait (struct target_ops
*ops
,
2616 ptid_t ptid
, struct target_waitstatus
*status
,
2617 target_wait_flags options
)
2619 status
->set_ignore ();
2620 return minus_one_ptid
;
2624 target_pid_to_str (ptid_t ptid
)
2626 return current_inferior ()->top_target ()->pid_to_str (ptid
);
2630 target_thread_name (struct thread_info
*info
)
2632 gdb_assert (info
->inf
== current_inferior ());
2634 return current_inferior ()->top_target ()->thread_name (info
);
2637 struct thread_info
*
2638 target_thread_handle_to_thread_info (const gdb_byte
*thread_handle
,
2640 struct inferior
*inf
)
2642 target_ops
*target
= current_inferior ()->top_target ();
2644 return target
->thread_handle_to_thread_info (thread_handle
, handle_len
, inf
);
2650 target_thread_info_to_thread_handle (struct thread_info
*tip
)
2652 target_ops
*target
= current_inferior ()->top_target ();
2654 return target
->thread_info_to_thread_handle (tip
);
2658 target_resume (ptid_t scope_ptid
, int step
, enum gdb_signal signal
)
2660 process_stratum_target
*curr_target
= current_inferior ()->process_target ();
2661 gdb_assert (!curr_target
->commit_resumed_state
);
2663 gdb_assert (inferior_ptid
!= null_ptid
);
2664 gdb_assert (inferior_ptid
.matches (scope_ptid
));
2666 target_dcache_invalidate ();
2668 current_inferior ()->top_target ()->resume (scope_ptid
, step
, signal
);
2670 registers_changed_ptid (curr_target
, scope_ptid
);
2671 /* We only set the internal executing state here. The user/frontend
2672 running state is set at a higher level. This also clears the
2673 thread's stop_pc as side effect. */
2674 set_executing (curr_target
, scope_ptid
, true);
2675 clear_inline_frame_state (curr_target
, scope_ptid
);
2677 if (target_can_async_p ())
2678 target_async (true);
2684 target_commit_resumed ()
2686 gdb_assert (current_inferior ()->process_target ()->commit_resumed_state
);
2687 current_inferior ()->top_target ()->commit_resumed ();
2693 target_has_pending_events ()
2695 return current_inferior ()->top_target ()->has_pending_events ();
2699 target_pass_signals (gdb::array_view
<const unsigned char> pass_signals
)
2701 current_inferior ()->top_target ()->pass_signals (pass_signals
);
2705 target_program_signals (gdb::array_view
<const unsigned char> program_signals
)
2707 current_inferior ()->top_target ()->program_signals (program_signals
);
2711 default_follow_fork (struct target_ops
*self
, inferior
*child_inf
,
2712 ptid_t child_ptid
, target_waitkind fork_kind
,
2713 bool follow_child
, bool detach_fork
)
2715 /* Some target returned a fork event, but did not know how to follow it. */
2716 internal_error (__FILE__
, __LINE__
,
2717 _("could not find a target to follow fork"));
2723 target_follow_fork (inferior
*child_inf
, ptid_t child_ptid
,
2724 target_waitkind fork_kind
, bool follow_child
,
2727 target_ops
*target
= current_inferior ()->top_target ();
2729 /* Check consistency between CHILD_INF, CHILD_PTID, FOLLOW_CHILD and
2731 if (child_inf
!= nullptr)
2733 gdb_assert (follow_child
|| !detach_fork
);
2734 gdb_assert (child_inf
->pid
== child_ptid
.pid ());
2737 gdb_assert (!follow_child
&& detach_fork
);
2739 return target
->follow_fork (child_inf
, child_ptid
, fork_kind
, follow_child
,
2746 target_follow_exec (inferior
*follow_inf
, ptid_t ptid
,
2747 const char *execd_pathname
)
2749 current_inferior ()->top_target ()->follow_exec (follow_inf
, ptid
,
2754 default_mourn_inferior (struct target_ops
*self
)
2756 internal_error (__FILE__
, __LINE__
,
2757 _("could not find a target to follow mourn inferior"));
2761 target_mourn_inferior (ptid_t ptid
)
2763 gdb_assert (ptid
.pid () == inferior_ptid
.pid ());
2764 current_inferior ()->top_target ()->mourn_inferior ();
2766 /* We no longer need to keep handles on any of the object files.
2767 Make sure to release them to avoid unnecessarily locking any
2768 of them while we're not actually debugging. */
2769 bfd_cache_close_all ();
2772 /* Look for a target which can describe architectural features, starting
2773 from TARGET. If we find one, return its description. */
2775 const struct target_desc
*
2776 target_read_description (struct target_ops
*target
)
2778 return target
->read_description ();
2782 /* Default implementation of memory-searching. */
2785 default_search_memory (struct target_ops
*self
,
2786 CORE_ADDR start_addr
, ULONGEST search_space_len
,
2787 const gdb_byte
*pattern
, ULONGEST pattern_len
,
2788 CORE_ADDR
*found_addrp
)
2790 auto read_memory
= [=] (CORE_ADDR addr
, gdb_byte
*result
, size_t len
)
2792 return target_read (current_inferior ()->top_target (),
2793 TARGET_OBJECT_MEMORY
, NULL
,
2794 result
, addr
, len
) == len
;
2797 /* Start over from the top of the target stack. */
2798 return simple_search_memory (read_memory
, start_addr
, search_space_len
,
2799 pattern
, pattern_len
, found_addrp
);
2802 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2803 sequence of bytes in PATTERN with length PATTERN_LEN.
2805 The result is 1 if found, 0 if not found, and -1 if there was an error
2806 requiring halting of the search (e.g. memory read error).
2807 If the pattern is found the address is recorded in FOUND_ADDRP. */
2810 target_search_memory (CORE_ADDR start_addr
, ULONGEST search_space_len
,
2811 const gdb_byte
*pattern
, ULONGEST pattern_len
,
2812 CORE_ADDR
*found_addrp
)
2814 target_ops
*target
= current_inferior ()->top_target ();
2816 return target
->search_memory (start_addr
, search_space_len
, pattern
,
2817 pattern_len
, found_addrp
);
2820 /* Look through the currently pushed targets. If none of them will
2821 be able to restart the currently running process, issue an error
2825 target_require_runnable (void)
2827 for (target_ops
*t
= current_inferior ()->top_target ();
2831 /* If this target knows how to create a new program, then
2832 assume we will still be able to after killing the current
2833 one. Either killing and mourning will not pop T, or else
2834 find_default_run_target will find it again. */
2835 if (t
->can_create_inferior ())
2838 /* Do not worry about targets at certain strata that can not
2839 create inferiors. Assume they will be pushed again if
2840 necessary, and continue to the process_stratum. */
2841 if (t
->stratum () > process_stratum
)
2844 error (_("The \"%s\" target does not support \"run\". "
2845 "Try \"help target\" or \"continue\"."),
2849 /* This function is only called if the target is running. In that
2850 case there should have been a process_stratum target and it
2851 should either know how to create inferiors, or not... */
2852 internal_error (__FILE__
, __LINE__
, _("No targets found"));
2855 /* Whether GDB is allowed to fall back to the default run target for
2856 "run", "attach", etc. when no target is connected yet. */
2857 static bool auto_connect_native_target
= true;
2860 show_auto_connect_native_target (struct ui_file
*file
, int from_tty
,
2861 struct cmd_list_element
*c
, const char *value
)
2864 _("Whether GDB may automatically connect to the "
2865 "native target is %s.\n"),
2869 /* A pointer to the target that can respond to "run" or "attach".
2870 Native targets are always singletons and instantiated early at GDB
2872 static target_ops
*the_native_target
;
2877 set_native_target (target_ops
*target
)
2879 if (the_native_target
!= NULL
)
2880 internal_error (__FILE__
, __LINE__
,
2881 _("native target already set (\"%s\")."),
2882 the_native_target
->longname ());
2884 the_native_target
= target
;
2890 get_native_target ()
2892 return the_native_target
;
2895 /* Look through the list of possible targets for a target that can
2896 execute a run or attach command without any other data. This is
2897 used to locate the default process stratum.
2899 If DO_MESG is not NULL, the result is always valid (error() is
2900 called for errors); else, return NULL on error. */
2902 static struct target_ops
*
2903 find_default_run_target (const char *do_mesg
)
2905 if (auto_connect_native_target
&& the_native_target
!= NULL
)
2906 return the_native_target
;
2908 if (do_mesg
!= NULL
)
2909 error (_("Don't know how to %s. Try \"help target\"."), do_mesg
);
2916 find_attach_target (void)
2918 /* If a target on the current stack can attach, use it. */
2919 for (target_ops
*t
= current_inferior ()->top_target ();
2923 if (t
->can_attach ())
2927 /* Otherwise, use the default run target for attaching. */
2928 return find_default_run_target ("attach");
2934 find_run_target (void)
2936 /* If a target on the current stack can run, use it. */
2937 for (target_ops
*t
= current_inferior ()->top_target ();
2941 if (t
->can_create_inferior ())
2945 /* Otherwise, use the default run target. */
2946 return find_default_run_target ("run");
2950 target_ops::info_proc (const char *args
, enum info_proc_what what
)
2955 /* Implement the "info proc" command. */
2958 target_info_proc (const char *args
, enum info_proc_what what
)
2960 struct target_ops
*t
;
2962 /* If we're already connected to something that can get us OS
2963 related data, use it. Otherwise, try using the native
2965 t
= find_target_at (process_stratum
);
2967 t
= find_default_run_target (NULL
);
2969 for (; t
!= NULL
; t
= t
->beneath ())
2971 if (t
->info_proc (args
, what
))
2974 gdb_printf (gdb_stdlog
,
2975 "target_info_proc (\"%s\", %d)\n", args
, what
);
2985 find_default_supports_disable_randomization (struct target_ops
*self
)
2987 struct target_ops
*t
;
2989 t
= find_default_run_target (NULL
);
2991 return t
->supports_disable_randomization ();
2996 target_supports_disable_randomization (void)
2998 return current_inferior ()->top_target ()->supports_disable_randomization ();
3001 /* See target/target.h. */
3004 target_supports_multi_process (void)
3006 return current_inferior ()->top_target ()->supports_multi_process ();
3011 gdb::optional
<gdb::char_vector
>
3012 target_get_osdata (const char *type
)
3014 struct target_ops
*t
;
3016 /* If we're already connected to something that can get us OS
3017 related data, use it. Otherwise, try using the native
3019 t
= find_target_at (process_stratum
);
3021 t
= find_default_run_target ("get OS data");
3026 return target_read_stralloc (t
, TARGET_OBJECT_OSDATA
, type
);
3029 /* Determine the current address space of thread PTID. */
3031 struct address_space
*
3032 target_thread_address_space (ptid_t ptid
)
3034 struct address_space
*aspace
;
3036 aspace
= current_inferior ()->top_target ()->thread_address_space (ptid
);
3037 gdb_assert (aspace
!= NULL
);
3045 target_ops::beneath () const
3047 return current_inferior ()->find_target_beneath (this);
3051 target_ops::close ()
3056 target_ops::can_attach ()
3062 target_ops::attach (const char *, int)
3064 gdb_assert_not_reached ("target_ops::attach called");
3068 target_ops::can_create_inferior ()
3074 target_ops::create_inferior (const char *, const std::string
&,
3077 gdb_assert_not_reached ("target_ops::create_inferior called");
3081 target_ops::can_run ()
3089 for (target_ops
*t
= current_inferior ()->top_target ();
3100 /* Target file operations. */
3102 static struct target_ops
*
3103 default_fileio_target (void)
3105 struct target_ops
*t
;
3107 /* If we're already connected to something that can perform
3108 file I/O, use it. Otherwise, try using the native target. */
3109 t
= find_target_at (process_stratum
);
3112 return find_default_run_target ("file I/O");
3115 /* File handle for target file operations. */
3119 /* The target on which this file is open. NULL if the target is
3120 meanwhile closed while the handle is open. */
3123 /* The file descriptor on the target. */
3126 /* Check whether this fileio_fh_t represents a closed file. */
3129 return target_fd
< 0;
3133 /* Vector of currently open file handles. The value returned by
3134 target_fileio_open and passed as the FD argument to other
3135 target_fileio_* functions is an index into this vector. This
3136 vector's entries are never freed; instead, files are marked as
3137 closed, and the handle becomes available for reuse. */
3138 static std::vector
<fileio_fh_t
> fileio_fhandles
;
3140 /* Index into fileio_fhandles of the lowest handle that might be
3141 closed. This permits handle reuse without searching the whole
3142 list each time a new file is opened. */
3143 static int lowest_closed_fd
;
3148 fileio_handles_invalidate_target (target_ops
*targ
)
3150 for (fileio_fh_t
&fh
: fileio_fhandles
)
3151 if (fh
.target
== targ
)
3155 /* Acquire a target fileio file descriptor. */
3158 acquire_fileio_fd (target_ops
*target
, int target_fd
)
3160 /* Search for closed handles to reuse. */
3161 for (; lowest_closed_fd
< fileio_fhandles
.size (); lowest_closed_fd
++)
3163 fileio_fh_t
&fh
= fileio_fhandles
[lowest_closed_fd
];
3165 if (fh
.is_closed ())
3169 /* Push a new handle if no closed handles were found. */
3170 if (lowest_closed_fd
== fileio_fhandles
.size ())
3171 fileio_fhandles
.push_back (fileio_fh_t
{target
, target_fd
});
3173 fileio_fhandles
[lowest_closed_fd
] = {target
, target_fd
};
3175 /* Should no longer be marked closed. */
3176 gdb_assert (!fileio_fhandles
[lowest_closed_fd
].is_closed ());
3178 /* Return its index, and start the next lookup at
3180 return lowest_closed_fd
++;
3183 /* Release a target fileio file descriptor. */
3186 release_fileio_fd (int fd
, fileio_fh_t
*fh
)
3189 lowest_closed_fd
= std::min (lowest_closed_fd
, fd
);
3192 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
3194 static fileio_fh_t
*
3195 fileio_fd_to_fh (int fd
)
3197 return &fileio_fhandles
[fd
];
3201 /* Default implementations of file i/o methods. We don't want these
3202 to delegate automatically, because we need to know which target
3203 supported the method, in order to call it directly from within
3204 pread/pwrite, etc. */
3207 target_ops::fileio_open (struct inferior
*inf
, const char *filename
,
3208 int flags
, int mode
, int warn_if_slow
,
3209 fileio_error
*target_errno
)
3211 *target_errno
= FILEIO_ENOSYS
;
3216 target_ops::fileio_pwrite (int fd
, const gdb_byte
*write_buf
, int len
,
3217 ULONGEST offset
, fileio_error
*target_errno
)
3219 *target_errno
= FILEIO_ENOSYS
;
3224 target_ops::fileio_pread (int fd
, gdb_byte
*read_buf
, int len
,
3225 ULONGEST offset
, fileio_error
*target_errno
)
3227 *target_errno
= FILEIO_ENOSYS
;
3232 target_ops::fileio_fstat (int fd
, struct stat
*sb
, fileio_error
*target_errno
)
3234 *target_errno
= FILEIO_ENOSYS
;
3239 target_ops::fileio_close (int fd
, fileio_error
*target_errno
)
3241 *target_errno
= FILEIO_ENOSYS
;
3246 target_ops::fileio_unlink (struct inferior
*inf
, const char *filename
,
3247 fileio_error
*target_errno
)
3249 *target_errno
= FILEIO_ENOSYS
;
3253 gdb::optional
<std::string
>
3254 target_ops::fileio_readlink (struct inferior
*inf
, const char *filename
,
3255 fileio_error
*target_errno
)
3257 *target_errno
= FILEIO_ENOSYS
;
3264 target_fileio_open (struct inferior
*inf
, const char *filename
,
3265 int flags
, int mode
, bool warn_if_slow
, fileio_error
*target_errno
)
3267 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
3269 int fd
= t
->fileio_open (inf
, filename
, flags
, mode
,
3270 warn_if_slow
, target_errno
);
3272 if (fd
== -1 && *target_errno
== FILEIO_ENOSYS
)
3278 fd
= acquire_fileio_fd (t
, fd
);
3281 gdb_printf (gdb_stdlog
,
3282 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
3284 inf
== NULL
? 0 : inf
->num
,
3285 filename
, flags
, mode
,
3287 fd
!= -1 ? 0 : *target_errno
);
3291 *target_errno
= FILEIO_ENOSYS
;
3298 target_fileio_pwrite (int fd
, const gdb_byte
*write_buf
, int len
,
3299 ULONGEST offset
, fileio_error
*target_errno
)
3301 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
3304 if (fh
->is_closed ())
3305 *target_errno
= FILEIO_EBADF
;
3306 else if (fh
->target
== NULL
)
3307 *target_errno
= FILEIO_EIO
;
3309 ret
= fh
->target
->fileio_pwrite (fh
->target_fd
, write_buf
,
3310 len
, offset
, target_errno
);
3313 gdb_printf (gdb_stdlog
,
3314 "target_fileio_pwrite (%d,...,%d,%s) "
3316 fd
, len
, pulongest (offset
),
3317 ret
, ret
!= -1 ? 0 : *target_errno
);
3324 target_fileio_pread (int fd
, gdb_byte
*read_buf
, int len
,
3325 ULONGEST offset
, fileio_error
*target_errno
)
3327 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
3330 if (fh
->is_closed ())
3331 *target_errno
= FILEIO_EBADF
;
3332 else if (fh
->target
== NULL
)
3333 *target_errno
= FILEIO_EIO
;
3335 ret
= fh
->target
->fileio_pread (fh
->target_fd
, read_buf
,
3336 len
, offset
, target_errno
);
3339 gdb_printf (gdb_stdlog
,
3340 "target_fileio_pread (%d,...,%d,%s) "
3342 fd
, len
, pulongest (offset
),
3343 ret
, ret
!= -1 ? 0 : *target_errno
);
3350 target_fileio_fstat (int fd
, struct stat
*sb
, fileio_error
*target_errno
)
3352 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
3355 if (fh
->is_closed ())
3356 *target_errno
= FILEIO_EBADF
;
3357 else if (fh
->target
== NULL
)
3358 *target_errno
= FILEIO_EIO
;
3360 ret
= fh
->target
->fileio_fstat (fh
->target_fd
, sb
, target_errno
);
3363 gdb_printf (gdb_stdlog
,
3364 "target_fileio_fstat (%d) = %d (%d)\n",
3365 fd
, ret
, ret
!= -1 ? 0 : *target_errno
);
3372 target_fileio_close (int fd
, fileio_error
*target_errno
)
3374 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
3377 if (fh
->is_closed ())
3378 *target_errno
= FILEIO_EBADF
;
3381 if (fh
->target
!= NULL
)
3382 ret
= fh
->target
->fileio_close (fh
->target_fd
,
3386 release_fileio_fd (fd
, fh
);
3390 gdb_printf (gdb_stdlog
,
3391 "target_fileio_close (%d) = %d (%d)\n",
3392 fd
, ret
, ret
!= -1 ? 0 : *target_errno
);
3399 target_fileio_unlink (struct inferior
*inf
, const char *filename
,
3400 fileio_error
*target_errno
)
3402 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
3404 int ret
= t
->fileio_unlink (inf
, filename
, target_errno
);
3406 if (ret
== -1 && *target_errno
== FILEIO_ENOSYS
)
3410 gdb_printf (gdb_stdlog
,
3411 "target_fileio_unlink (%d,%s)"
3413 inf
== NULL
? 0 : inf
->num
, filename
,
3414 ret
, ret
!= -1 ? 0 : *target_errno
);
3418 *target_errno
= FILEIO_ENOSYS
;
3424 gdb::optional
<std::string
>
3425 target_fileio_readlink (struct inferior
*inf
, const char *filename
,
3426 fileio_error
*target_errno
)
3428 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
3430 gdb::optional
<std::string
> ret
3431 = t
->fileio_readlink (inf
, filename
, target_errno
);
3433 if (!ret
.has_value () && *target_errno
== FILEIO_ENOSYS
)
3437 gdb_printf (gdb_stdlog
,
3438 "target_fileio_readlink (%d,%s)"
3440 inf
== NULL
? 0 : inf
->num
,
3441 filename
, ret
? ret
->c_str () : "(nil)",
3442 ret
? 0 : *target_errno
);
3446 *target_errno
= FILEIO_ENOSYS
;
3450 /* Like scoped_fd, but specific to target fileio. */
3452 class scoped_target_fd
3455 explicit scoped_target_fd (int fd
) noexcept
3460 ~scoped_target_fd ()
3464 fileio_error target_errno
;
3466 target_fileio_close (m_fd
, &target_errno
);
3470 DISABLE_COPY_AND_ASSIGN (scoped_target_fd
);
3472 int get () const noexcept
3481 /* Read target file FILENAME, in the filesystem as seen by INF. If
3482 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3483 remote targets, the remote stub). Store the result in *BUF_P and
3484 return the size of the transferred data. PADDING additional bytes
3485 are available in *BUF_P. This is a helper function for
3486 target_fileio_read_alloc; see the declaration of that function for
3487 more information. */
3490 target_fileio_read_alloc_1 (struct inferior
*inf
, const char *filename
,
3491 gdb_byte
**buf_p
, int padding
)
3493 size_t buf_alloc
, buf_pos
;
3496 fileio_error target_errno
;
3498 scoped_target_fd
fd (target_fileio_open (inf
, filename
, FILEIO_O_RDONLY
,
3499 0700, false, &target_errno
));
3500 if (fd
.get () == -1)
3503 /* Start by reading up to 4K at a time. The target will throttle
3504 this number down if necessary. */
3506 buf
= (gdb_byte
*) xmalloc (buf_alloc
);
3510 n
= target_fileio_pread (fd
.get (), &buf
[buf_pos
],
3511 buf_alloc
- buf_pos
- padding
, buf_pos
,
3515 /* An error occurred. */
3521 /* Read all there was. */
3531 /* If the buffer is filling up, expand it. */
3532 if (buf_alloc
< buf_pos
* 2)
3535 buf
= (gdb_byte
*) xrealloc (buf
, buf_alloc
);
3545 target_fileio_read_alloc (struct inferior
*inf
, const char *filename
,
3548 return target_fileio_read_alloc_1 (inf
, filename
, buf_p
, 0);
3553 gdb::unique_xmalloc_ptr
<char>
3554 target_fileio_read_stralloc (struct inferior
*inf
, const char *filename
)
3558 LONGEST i
, transferred
;
3560 transferred
= target_fileio_read_alloc_1 (inf
, filename
, &buffer
, 1);
3561 bufstr
= (char *) buffer
;
3563 if (transferred
< 0)
3564 return gdb::unique_xmalloc_ptr
<char> (nullptr);
3566 if (transferred
== 0)
3567 return make_unique_xstrdup ("");
3569 bufstr
[transferred
] = 0;
3571 /* Check for embedded NUL bytes; but allow trailing NULs. */
3572 for (i
= strlen (bufstr
); i
< transferred
; i
++)
3575 warning (_("target file %s "
3576 "contained unexpected null characters"),
3581 return gdb::unique_xmalloc_ptr
<char> (bufstr
);
3586 default_region_ok_for_hw_watchpoint (struct target_ops
*self
,
3587 CORE_ADDR addr
, int len
)
3589 return (len
<= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT
);
3593 default_watchpoint_addr_within_range (struct target_ops
*target
,
3595 CORE_ADDR start
, int length
)
3597 return addr
>= start
&& addr
< start
+ length
;
3603 target_stack::find_beneath (const target_ops
*t
) const
3605 /* Look for a non-empty slot at stratum levels beneath T's. */
3606 for (int stratum
= t
->stratum () - 1; stratum
>= 0; --stratum
)
3607 if (m_stack
[stratum
] != NULL
)
3608 return m_stack
[stratum
];
3616 find_target_at (enum strata stratum
)
3618 return current_inferior ()->target_at (stratum
);
3626 target_announce_detach (int from_tty
)
3629 const char *exec_file
;
3634 pid
= inferior_ptid
.pid ();
3635 exec_file
= get_exec_file (0);
3636 if (exec_file
== nullptr)
3637 gdb_printf ("Detaching from pid %s\n",
3638 target_pid_to_str (ptid_t (pid
)).c_str ());
3640 gdb_printf (_("Detaching from program: %s, %s\n"), exec_file
,
3641 target_pid_to_str (ptid_t (pid
)).c_str ());
3647 target_announce_attach (int from_tty
, int pid
)
3652 const char *exec_file
= get_exec_file (0);
3654 if (exec_file
!= nullptr)
3655 gdb_printf ("Attaching to program: %s, %s\n", exec_file
,
3656 target_pid_to_str (ptid_t (pid
)).c_str ());
3658 gdb_printf ("Attaching to %s\n",
3659 target_pid_to_str (ptid_t (pid
)).c_str ());
3662 /* The inferior process has died. Long live the inferior! */
3665 generic_mourn_inferior (void)
3667 inferior
*inf
= current_inferior ();
3669 switch_to_no_thread ();
3671 /* Mark breakpoints uninserted in case something tries to delete a
3672 breakpoint while we delete the inferior's threads (which would
3673 fail, since the inferior is long gone). */
3674 mark_breakpoints_out ();
3677 exit_inferior (inf
);
3679 /* Note this wipes step-resume breakpoints, so needs to be done
3680 after exit_inferior, which ends up referencing the step-resume
3681 breakpoints through clear_thread_inferior_resources. */
3682 breakpoint_init_inferior (inf_exited
);
3684 registers_changed ();
3686 reopen_exec_file ();
3687 reinit_frame_cache ();
3689 if (deprecated_detach_hook
)
3690 deprecated_detach_hook ();
3693 /* Convert a normal process ID to a string. Returns the string in a
3697 normal_pid_to_str (ptid_t ptid
)
3699 return string_printf ("process %d", ptid
.pid ());
3703 default_pid_to_str (struct target_ops
*ops
, ptid_t ptid
)
3705 return normal_pid_to_str (ptid
);
3708 /* Error-catcher for target_find_memory_regions. */
3710 dummy_find_memory_regions (struct target_ops
*self
,
3711 find_memory_region_ftype ignore1
, void *ignore2
)
3713 error (_("Command not implemented for this target."));
3717 /* Error-catcher for target_make_corefile_notes. */
3718 static gdb::unique_xmalloc_ptr
<char>
3719 dummy_make_corefile_notes (struct target_ops
*self
,
3720 bfd
*ignore1
, int *ignore2
)
3722 error (_("Command not implemented for this target."));
3726 #include "target-delegates.c"
3728 /* The initial current target, so that there is always a semi-valid
3731 static dummy_target the_dummy_target
;
3738 return &the_dummy_target
;
3741 static const target_info dummy_target_info
= {
3748 dummy_target::stratum () const
3750 return dummy_stratum
;
3754 debug_target::stratum () const
3756 return debug_stratum
;
3760 dummy_target::info () const
3762 return dummy_target_info
;
3766 debug_target::info () const
3768 return beneath ()->info ();
3774 target_close (struct target_ops
*targ
)
3776 for (inferior
*inf
: all_inferiors ())
3777 gdb_assert (!inf
->target_is_pushed (targ
));
3779 fileio_handles_invalidate_target (targ
);
3784 gdb_printf (gdb_stdlog
, "target_close ()\n");
3788 target_thread_alive (ptid_t ptid
)
3790 return current_inferior ()->top_target ()->thread_alive (ptid
);
3794 target_update_thread_list (void)
3796 current_inferior ()->top_target ()->update_thread_list ();
3800 target_stop (ptid_t ptid
)
3802 process_stratum_target
*proc_target
= current_inferior ()->process_target ();
3804 gdb_assert (!proc_target
->commit_resumed_state
);
3808 warning (_("May not interrupt or stop the target, ignoring attempt"));
3812 current_inferior ()->top_target ()->stop (ptid
);
3820 warning (_("May not interrupt or stop the target, ignoring attempt"));
3824 current_inferior ()->top_target ()->interrupt ();
3830 target_pass_ctrlc (void)
3832 /* Pass the Ctrl-C to the first target that has a thread
3834 for (inferior
*inf
: all_inferiors ())
3836 target_ops
*proc_target
= inf
->process_target ();
3837 if (proc_target
== NULL
)
3840 for (thread_info
*thr
: inf
->non_exited_threads ())
3842 /* A thread can be THREAD_STOPPED and executing, while
3843 running an infcall. */
3844 if (thr
->state
== THREAD_RUNNING
|| thr
->executing ())
3846 /* We can get here quite deep in target layers. Avoid
3847 switching thread context or anything that would
3848 communicate with the target (e.g., to fetch
3849 registers), or flushing e.g., the frame cache. We
3850 just switch inferior in order to be able to call
3851 through the target_stack. */
3852 scoped_restore_current_inferior restore_inferior
;
3853 set_current_inferior (inf
);
3854 current_inferior ()->top_target ()->pass_ctrlc ();
3864 default_target_pass_ctrlc (struct target_ops
*ops
)
3866 target_interrupt ();
3869 /* See target/target.h. */
3872 target_stop_and_wait (ptid_t ptid
)
3874 struct target_waitstatus status
;
3875 bool was_non_stop
= non_stop
;
3880 target_wait (ptid
, &status
, 0);
3882 non_stop
= was_non_stop
;
3885 /* See target/target.h. */
3888 target_continue_no_signal (ptid_t ptid
)
3890 target_resume (ptid
, 0, GDB_SIGNAL_0
);
3893 /* See target/target.h. */
3896 target_continue (ptid_t ptid
, enum gdb_signal signal
)
3898 target_resume (ptid
, 0, signal
);
3901 /* Concatenate ELEM to LIST, a comma-separated list. */
3904 str_comma_list_concat_elem (std::string
*list
, const char *elem
)
3906 if (!list
->empty ())
3907 list
->append (", ");
3909 list
->append (elem
);
3912 /* Helper for target_options_to_string. If OPT is present in
3913 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3914 OPT is removed from TARGET_OPTIONS. */
3917 do_option (target_wait_flags
*target_options
, std::string
*ret
,
3918 target_wait_flag opt
, const char *opt_str
)
3920 if ((*target_options
& opt
) != 0)
3922 str_comma_list_concat_elem (ret
, opt_str
);
3923 *target_options
&= ~opt
;
3930 target_options_to_string (target_wait_flags target_options
)
3934 #define DO_TARG_OPTION(OPT) \
3935 do_option (&target_options, &ret, OPT, #OPT)
3937 DO_TARG_OPTION (TARGET_WNOHANG
);
3939 if (target_options
!= 0)
3940 str_comma_list_concat_elem (&ret
, "unknown???");
3946 target_fetch_registers (struct regcache
*regcache
, int regno
)
3948 current_inferior ()->top_target ()->fetch_registers (regcache
, regno
);
3950 regcache
->debug_print_register ("target_fetch_registers", regno
);
3954 target_store_registers (struct regcache
*regcache
, int regno
)
3956 if (!may_write_registers
)
3957 error (_("Writing to registers is not allowed (regno %d)"), regno
);
3959 current_inferior ()->top_target ()->store_registers (regcache
, regno
);
3962 regcache
->debug_print_register ("target_store_registers", regno
);
3967 target_core_of_thread (ptid_t ptid
)
3969 return current_inferior ()->top_target ()->core_of_thread (ptid
);
3973 simple_verify_memory (struct target_ops
*ops
,
3974 const gdb_byte
*data
, CORE_ADDR lma
, ULONGEST size
)
3976 LONGEST total_xfered
= 0;
3978 while (total_xfered
< size
)
3980 ULONGEST xfered_len
;
3981 enum target_xfer_status status
;
3983 ULONGEST howmuch
= std::min
<ULONGEST
> (sizeof (buf
), size
- total_xfered
);
3985 status
= target_xfer_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
3986 buf
, NULL
, lma
+ total_xfered
, howmuch
,
3988 if (status
== TARGET_XFER_OK
3989 && memcmp (data
+ total_xfered
, buf
, xfered_len
) == 0)
3991 total_xfered
+= xfered_len
;
4000 /* Default implementation of memory verification. */
4003 default_verify_memory (struct target_ops
*self
,
4004 const gdb_byte
*data
, CORE_ADDR memaddr
, ULONGEST size
)
4006 /* Start over from the top of the target stack. */
4007 return simple_verify_memory (current_inferior ()->top_target (),
4008 data
, memaddr
, size
);
4012 target_verify_memory (const gdb_byte
*data
, CORE_ADDR memaddr
, ULONGEST size
)
4014 target_ops
*target
= current_inferior ()->top_target ();
4016 return target
->verify_memory (data
, memaddr
, size
);
4019 /* The documentation for this function is in its prototype declaration in
4023 target_insert_mask_watchpoint (CORE_ADDR addr
, CORE_ADDR mask
,
4024 enum target_hw_bp_type rw
)
4026 target_ops
*target
= current_inferior ()->top_target ();
4028 return target
->insert_mask_watchpoint (addr
, mask
, rw
);
4031 /* The documentation for this function is in its prototype declaration in
4035 target_remove_mask_watchpoint (CORE_ADDR addr
, CORE_ADDR mask
,
4036 enum target_hw_bp_type rw
)
4038 target_ops
*target
= current_inferior ()->top_target ();
4040 return target
->remove_mask_watchpoint (addr
, mask
, rw
);
4043 /* The documentation for this function is in its prototype declaration
4047 target_masked_watch_num_registers (CORE_ADDR addr
, CORE_ADDR mask
)
4049 target_ops
*target
= current_inferior ()->top_target ();
4051 return target
->masked_watch_num_registers (addr
, mask
);
4054 /* The documentation for this function is in its prototype declaration
4058 target_ranged_break_num_registers (void)
4060 return current_inferior ()->top_target ()->ranged_break_num_registers ();
4065 struct btrace_target_info
*
4066 target_enable_btrace (thread_info
*tp
, const struct btrace_config
*conf
)
4068 return current_inferior ()->top_target ()->enable_btrace (tp
, conf
);
4074 target_disable_btrace (struct btrace_target_info
*btinfo
)
4076 current_inferior ()->top_target ()->disable_btrace (btinfo
);
4082 target_teardown_btrace (struct btrace_target_info
*btinfo
)
4084 current_inferior ()->top_target ()->teardown_btrace (btinfo
);
4090 target_read_btrace (struct btrace_data
*btrace
,
4091 struct btrace_target_info
*btinfo
,
4092 enum btrace_read_type type
)
4094 target_ops
*target
= current_inferior ()->top_target ();
4096 return target
->read_btrace (btrace
, btinfo
, type
);
4101 const struct btrace_config
*
4102 target_btrace_conf (const struct btrace_target_info
*btinfo
)
4104 return current_inferior ()->top_target ()->btrace_conf (btinfo
);
4110 target_stop_recording (void)
4112 current_inferior ()->top_target ()->stop_recording ();
4118 target_save_record (const char *filename
)
4120 current_inferior ()->top_target ()->save_record (filename
);
4126 target_supports_delete_record ()
4128 return current_inferior ()->top_target ()->supports_delete_record ();
4134 target_delete_record (void)
4136 current_inferior ()->top_target ()->delete_record ();
4142 target_record_method (ptid_t ptid
)
4144 return current_inferior ()->top_target ()->record_method (ptid
);
4150 target_record_is_replaying (ptid_t ptid
)
4152 return current_inferior ()->top_target ()->record_is_replaying (ptid
);
4158 target_record_will_replay (ptid_t ptid
, int dir
)
4160 return current_inferior ()->top_target ()->record_will_replay (ptid
, dir
);
4166 target_record_stop_replaying (void)
4168 current_inferior ()->top_target ()->record_stop_replaying ();
4174 target_goto_record_begin (void)
4176 current_inferior ()->top_target ()->goto_record_begin ();
4182 target_goto_record_end (void)
4184 current_inferior ()->top_target ()->goto_record_end ();
4190 target_goto_record (ULONGEST insn
)
4192 current_inferior ()->top_target ()->goto_record (insn
);
4198 target_insn_history (int size
, gdb_disassembly_flags flags
)
4200 current_inferior ()->top_target ()->insn_history (size
, flags
);
4206 target_insn_history_from (ULONGEST from
, int size
,
4207 gdb_disassembly_flags flags
)
4209 current_inferior ()->top_target ()->insn_history_from (from
, size
, flags
);
4215 target_insn_history_range (ULONGEST begin
, ULONGEST end
,
4216 gdb_disassembly_flags flags
)
4218 current_inferior ()->top_target ()->insn_history_range (begin
, end
, flags
);
4224 target_call_history (int size
, record_print_flags flags
)
4226 current_inferior ()->top_target ()->call_history (size
, flags
);
4232 target_call_history_from (ULONGEST begin
, int size
, record_print_flags flags
)
4234 current_inferior ()->top_target ()->call_history_from (begin
, size
, flags
);
4240 target_call_history_range (ULONGEST begin
, ULONGEST end
, record_print_flags flags
)
4242 current_inferior ()->top_target ()->call_history_range (begin
, end
, flags
);
4247 const struct frame_unwind
*
4248 target_get_unwinder (void)
4250 return current_inferior ()->top_target ()->get_unwinder ();
4255 const struct frame_unwind
*
4256 target_get_tailcall_unwinder (void)
4258 return current_inferior ()->top_target ()->get_tailcall_unwinder ();
4264 target_prepare_to_generate_core (void)
4266 current_inferior ()->top_target ()->prepare_to_generate_core ();
4272 target_done_generating_core (void)
4274 current_inferior ()->top_target ()->done_generating_core ();
4279 static char targ_desc
[] =
4280 "Names of targets and files being debugged.\nShows the entire \
4281 stack of targets currently in use (including the exec-file,\n\
4282 core-file, and process, if any), as well as the symbol file name.";
4285 default_rcmd (struct target_ops
*self
, const char *command
,
4286 struct ui_file
*output
)
4288 error (_("\"monitor\" command not supported by this target."));
4292 do_monitor_command (const char *cmd
, int from_tty
)
4294 target_rcmd (cmd
, gdb_stdtarg
);
4297 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
4301 flash_erase_command (const char *cmd
, int from_tty
)
4303 /* Used to communicate termination of flash operations to the target. */
4304 bool found_flash_region
= false;
4305 struct gdbarch
*gdbarch
= target_gdbarch ();
4307 std::vector
<mem_region
> mem_regions
= target_memory_map ();
4309 /* Iterate over all memory regions. */
4310 for (const mem_region
&m
: mem_regions
)
4312 /* Is this a flash memory region? */
4313 if (m
.attrib
.mode
== MEM_FLASH
)
4315 found_flash_region
= true;
4316 target_flash_erase (m
.lo
, m
.hi
- m
.lo
);
4318 ui_out_emit_tuple
tuple_emitter (current_uiout
, "erased-regions");
4320 current_uiout
->message (_("Erasing flash memory region at address "));
4321 current_uiout
->field_core_addr ("address", gdbarch
, m
.lo
);
4322 current_uiout
->message (", size = ");
4323 current_uiout
->field_string ("size", hex_string (m
.hi
- m
.lo
));
4324 current_uiout
->message ("\n");
4328 /* Did we do any flash operations? If so, we need to finalize them. */
4329 if (found_flash_region
)
4330 target_flash_done ();
4332 current_uiout
->message (_("No flash memory regions found.\n"));
4335 /* Print the name of each layers of our target stack. */
4338 maintenance_print_target_stack (const char *cmd
, int from_tty
)
4340 gdb_printf (_("The current target stack is:\n"));
4342 for (target_ops
*t
= current_inferior ()->top_target ();
4346 if (t
->stratum () == debug_stratum
)
4348 gdb_printf (" - %s (%s)\n", t
->shortname (), t
->longname ());
4355 target_async (bool enable
)
4357 /* If we are trying to enable async mode then it must be the case that
4358 async mode is possible for this target. */
4359 gdb_assert (!enable
|| target_can_async_p ());
4360 infrun_async (enable
);
4361 current_inferior ()->top_target ()->async (enable
);
4367 target_thread_events (int enable
)
4369 current_inferior ()->top_target ()->thread_events (enable
);
4372 /* Controls if targets can report that they can/are async. This is
4373 just for maintainers to use when debugging gdb. */
4374 bool target_async_permitted
= true;
4377 set_maint_target_async (bool permitted
)
4379 if (have_live_inferiors ())
4380 error (_("Cannot change this setting while the inferior is running."));
4382 target_async_permitted
= permitted
;
4386 get_maint_target_async ()
4388 return target_async_permitted
;
4392 show_maint_target_async (ui_file
*file
, int from_tty
,
4393 cmd_list_element
*c
, const char *value
)
4396 _("Controlling the inferior in "
4397 "asynchronous mode is %s.\n"), value
);
4400 /* Return true if the target operates in non-stop mode even with "set
4404 target_always_non_stop_p (void)
4406 return current_inferior ()->top_target ()->always_non_stop_p ();
4412 target_is_non_stop_p ()
4415 || target_non_stop_enabled
== AUTO_BOOLEAN_TRUE
4416 || (target_non_stop_enabled
== AUTO_BOOLEAN_AUTO
4417 && target_always_non_stop_p ()))
4418 && target_can_async_p ());
4424 exists_non_stop_target ()
4426 if (target_is_non_stop_p ())
4429 scoped_restore_current_thread restore_thread
;
4431 for (inferior
*inf
: all_inferiors ())
4433 switch_to_inferior_no_thread (inf
);
4434 if (target_is_non_stop_p ())
4441 /* Controls if targets can report that they always run in non-stop
4442 mode. This is just for maintainers to use when debugging gdb. */
4443 enum auto_boolean target_non_stop_enabled
= AUTO_BOOLEAN_AUTO
;
4445 /* Set callback for maint target-non-stop setting. */
4448 set_maint_target_non_stop (auto_boolean enabled
)
4450 if (have_live_inferiors ())
4451 error (_("Cannot change this setting while the inferior is running."));
4453 target_non_stop_enabled
= enabled
;
4456 /* Get callback for maint target-non-stop setting. */
4459 get_maint_target_non_stop ()
4461 return target_non_stop_enabled
;
4465 show_maint_target_non_stop (ui_file
*file
, int from_tty
,
4466 cmd_list_element
*c
, const char *value
)
4468 if (target_non_stop_enabled
== AUTO_BOOLEAN_AUTO
)
4470 _("Whether the target is always in non-stop mode "
4471 "is %s (currently %s).\n"), value
,
4472 target_always_non_stop_p () ? "on" : "off");
4475 _("Whether the target is always in non-stop mode "
4476 "is %s.\n"), value
);
4479 /* Temporary copies of permission settings. */
4481 static bool may_write_registers_1
= true;
4482 static bool may_write_memory_1
= true;
4483 static bool may_insert_breakpoints_1
= true;
4484 static bool may_insert_tracepoints_1
= true;
4485 static bool may_insert_fast_tracepoints_1
= true;
4486 static bool may_stop_1
= true;
4488 /* Make the user-set values match the real values again. */
4491 update_target_permissions (void)
4493 may_write_registers_1
= may_write_registers
;
4494 may_write_memory_1
= may_write_memory
;
4495 may_insert_breakpoints_1
= may_insert_breakpoints
;
4496 may_insert_tracepoints_1
= may_insert_tracepoints
;
4497 may_insert_fast_tracepoints_1
= may_insert_fast_tracepoints
;
4498 may_stop_1
= may_stop
;
4501 /* The one function handles (most of) the permission flags in the same
4505 set_target_permissions (const char *args
, int from_tty
,
4506 struct cmd_list_element
*c
)
4508 if (target_has_execution ())
4510 update_target_permissions ();
4511 error (_("Cannot change this setting while the inferior is running."));
4514 /* Make the real values match the user-changed values. */
4515 may_write_registers
= may_write_registers_1
;
4516 may_insert_breakpoints
= may_insert_breakpoints_1
;
4517 may_insert_tracepoints
= may_insert_tracepoints_1
;
4518 may_insert_fast_tracepoints
= may_insert_fast_tracepoints_1
;
4519 may_stop
= may_stop_1
;
4520 update_observer_mode ();
4523 /* Set memory write permission independently of observer mode. */
4526 set_write_memory_permission (const char *args
, int from_tty
,
4527 struct cmd_list_element
*c
)
4529 /* Make the real values match the user-changed values. */
4530 may_write_memory
= may_write_memory_1
;
4531 update_observer_mode ();
4534 void _initialize_target ();
4537 _initialize_target ()
4539 the_debug_target
= new debug_target ();
4541 add_info ("target", info_target_command
, targ_desc
);
4542 add_info ("files", info_target_command
, targ_desc
);
4544 add_setshow_zuinteger_cmd ("target", class_maintenance
, &targetdebug
, _("\
4545 Set target debugging."), _("\
4546 Show target debugging."), _("\
4547 When non-zero, target debugging is enabled. Higher numbers are more\n\
4551 &setdebuglist
, &showdebuglist
);
4553 add_setshow_boolean_cmd ("trust-readonly-sections", class_support
,
4554 &trust_readonly
, _("\
4555 Set mode for reading from readonly sections."), _("\
4556 Show mode for reading from readonly sections."), _("\
4557 When this mode is on, memory reads from readonly sections (such as .text)\n\
4558 will be read from the object file instead of from the target. This will\n\
4559 result in significant performance improvement for remote targets."),
4561 show_trust_readonly
,
4562 &setlist
, &showlist
);
4564 add_com ("monitor", class_obscure
, do_monitor_command
,
4565 _("Send a command to the remote monitor (remote targets only)."));
4567 add_cmd ("target-stack", class_maintenance
, maintenance_print_target_stack
,
4568 _("Print the name of each layer of the internal target stack."),
4569 &maintenanceprintlist
);
4571 add_setshow_boolean_cmd ("target-async", no_class
,
4573 Set whether gdb controls the inferior in asynchronous mode."), _("\
4574 Show whether gdb controls the inferior in asynchronous mode."), _("\
4575 Tells gdb whether to control the inferior in asynchronous mode."),
4576 set_maint_target_async
,
4577 get_maint_target_async
,
4578 show_maint_target_async
,
4579 &maintenance_set_cmdlist
,
4580 &maintenance_show_cmdlist
);
4582 add_setshow_auto_boolean_cmd ("target-non-stop", no_class
,
4584 Set whether gdb always controls the inferior in non-stop mode."), _("\
4585 Show whether gdb always controls the inferior in non-stop mode."), _("\
4586 Tells gdb whether to control the inferior in non-stop mode."),
4587 set_maint_target_non_stop
,
4588 get_maint_target_non_stop
,
4589 show_maint_target_non_stop
,
4590 &maintenance_set_cmdlist
,
4591 &maintenance_show_cmdlist
);
4593 add_setshow_boolean_cmd ("may-write-registers", class_support
,
4594 &may_write_registers_1
, _("\
4595 Set permission to write into registers."), _("\
4596 Show permission to write into registers."), _("\
4597 When this permission is on, GDB may write into the target's registers.\n\
4598 Otherwise, any sort of write attempt will result in an error."),
4599 set_target_permissions
, NULL
,
4600 &setlist
, &showlist
);
4602 add_setshow_boolean_cmd ("may-write-memory", class_support
,
4603 &may_write_memory_1
, _("\
4604 Set permission to write into target memory."), _("\
4605 Show permission to write into target memory."), _("\
4606 When this permission is on, GDB may write into the target's memory.\n\
4607 Otherwise, any sort of write attempt will result in an error."),
4608 set_write_memory_permission
, NULL
,
4609 &setlist
, &showlist
);
4611 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support
,
4612 &may_insert_breakpoints_1
, _("\
4613 Set permission to insert breakpoints in the target."), _("\
4614 Show permission to insert breakpoints in the target."), _("\
4615 When this permission is on, GDB may insert breakpoints in the program.\n\
4616 Otherwise, any sort of insertion attempt will result in an error."),
4617 set_target_permissions
, NULL
,
4618 &setlist
, &showlist
);
4620 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support
,
4621 &may_insert_tracepoints_1
, _("\
4622 Set permission to insert tracepoints in the target."), _("\
4623 Show permission to insert tracepoints in the target."), _("\
4624 When this permission is on, GDB may insert tracepoints in the program.\n\
4625 Otherwise, any sort of insertion attempt will result in an error."),
4626 set_target_permissions
, NULL
,
4627 &setlist
, &showlist
);
4629 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support
,
4630 &may_insert_fast_tracepoints_1
, _("\
4631 Set permission to insert fast tracepoints in the target."), _("\
4632 Show permission to insert fast tracepoints in the target."), _("\
4633 When this permission is on, GDB may insert fast tracepoints.\n\
4634 Otherwise, any sort of insertion attempt will result in an error."),
4635 set_target_permissions
, NULL
,
4636 &setlist
, &showlist
);
4638 add_setshow_boolean_cmd ("may-interrupt", class_support
,
4640 Set permission to interrupt or signal the target."), _("\
4641 Show permission to interrupt or signal the target."), _("\
4642 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4643 Otherwise, any attempt to interrupt or stop will be ignored."),
4644 set_target_permissions
, NULL
,
4645 &setlist
, &showlist
);
4647 add_com ("flash-erase", no_class
, flash_erase_command
,
4648 _("Erase all flash memory regions."));
4650 add_setshow_boolean_cmd ("auto-connect-native-target", class_support
,
4651 &auto_connect_native_target
, _("\
4652 Set whether GDB may automatically connect to the native target."), _("\
4653 Show whether GDB may automatically connect to the native target."), _("\
4654 When on, and GDB is not connected to a target yet, GDB\n\
4655 attempts \"run\" and other commands with the native target."),
4656 NULL
, show_auto_connect_native_target
,
4657 &setlist
, &showlist
);