]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
convert to_get_thread_local_address to use target delegation
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <errno.h>
24 #include <string.h>
25 #include "target.h"
26 #include "target-dcache.h"
27 #include "gdbcmd.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "infrun.h"
31 #include "bfd.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "dcache.h"
35 #include <signal.h>
36 #include "regcache.h"
37 #include "gdb_assert.h"
38 #include "gdbcore.h"
39 #include "exceptions.h"
40 #include "target-descriptions.h"
41 #include "gdbthread.h"
42 #include "solib.h"
43 #include "exec.h"
44 #include "inline-frame.h"
45 #include "tracepoint.h"
46 #include "gdb/fileio.h"
47 #include "agent.h"
48 #include "auxv.h"
49
50 static void target_info (char *, int);
51
52 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
53
54 static void default_terminal_info (struct target_ops *, const char *, int);
55
56 static int default_watchpoint_addr_within_range (struct target_ops *,
57 CORE_ADDR, CORE_ADDR, int);
58
59 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
60 CORE_ADDR, int);
61
62 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
63
64 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
65 long lwp, long tid);
66
67 static int default_follow_fork (struct target_ops *self, int follow_child,
68 int detach_fork);
69
70 static void default_mourn_inferior (struct target_ops *self);
71
72 static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79 static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83 static struct address_space *default_thread_address_space
84 (struct target_ops *self, ptid_t ptid);
85
86 static void tcomplain (void) ATTRIBUTE_NORETURN;
87
88 static int return_zero (struct target_ops *);
89
90 static int return_zero_has_execution (struct target_ops *, ptid_t);
91
92 static void target_command (char *, int);
93
94 static struct target_ops *find_default_run_target (char *);
95
96 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
97 ptid_t ptid);
98
99 static int dummy_find_memory_regions (struct target_ops *self,
100 find_memory_region_ftype ignore1,
101 void *ignore2);
102
103 static char *dummy_make_corefile_notes (struct target_ops *self,
104 bfd *ignore1, int *ignore2);
105
106 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
107
108 static enum exec_direction_kind default_execution_direction
109 (struct target_ops *self);
110
111 static CORE_ADDR default_target_decr_pc_after_break (struct target_ops *ops,
112 struct gdbarch *gdbarch);
113
114 #include "target-delegates.c"
115
116 static void init_dummy_target (void);
117
118 static struct target_ops debug_target;
119
120 static void debug_to_open (char *, int);
121
122 static void debug_to_prepare_to_store (struct target_ops *self,
123 struct regcache *);
124
125 static void debug_to_files_info (struct target_ops *);
126
127 static int debug_to_insert_breakpoint (struct target_ops *, struct gdbarch *,
128 struct bp_target_info *);
129
130 static int debug_to_remove_breakpoint (struct target_ops *, struct gdbarch *,
131 struct bp_target_info *);
132
133 static int debug_to_can_use_hw_breakpoint (struct target_ops *self,
134 int, int, int);
135
136 static int debug_to_insert_hw_breakpoint (struct target_ops *self,
137 struct gdbarch *,
138 struct bp_target_info *);
139
140 static int debug_to_remove_hw_breakpoint (struct target_ops *self,
141 struct gdbarch *,
142 struct bp_target_info *);
143
144 static int debug_to_insert_watchpoint (struct target_ops *self,
145 CORE_ADDR, int, int,
146 struct expression *);
147
148 static int debug_to_remove_watchpoint (struct target_ops *self,
149 CORE_ADDR, int, int,
150 struct expression *);
151
152 static int debug_to_stopped_data_address (struct target_ops *, CORE_ADDR *);
153
154 static int debug_to_watchpoint_addr_within_range (struct target_ops *,
155 CORE_ADDR, CORE_ADDR, int);
156
157 static int debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
158 CORE_ADDR, int);
159
160 static int debug_to_can_accel_watchpoint_condition (struct target_ops *self,
161 CORE_ADDR, int, int,
162 struct expression *);
163
164 static void debug_to_terminal_init (struct target_ops *self);
165
166 static void debug_to_terminal_inferior (struct target_ops *self);
167
168 static void debug_to_terminal_ours_for_output (struct target_ops *self);
169
170 static void debug_to_terminal_save_ours (struct target_ops *self);
171
172 static void debug_to_terminal_ours (struct target_ops *self);
173
174 static void debug_to_load (struct target_ops *self, const char *, int);
175
176 static int debug_to_can_run (struct target_ops *self);
177
178 static void debug_to_stop (struct target_ops *self, ptid_t);
179
180 /* Pointer to array of target architecture structures; the size of the
181 array; the current index into the array; the allocated size of the
182 array. */
183 struct target_ops **target_structs;
184 unsigned target_struct_size;
185 unsigned target_struct_allocsize;
186 #define DEFAULT_ALLOCSIZE 10
187
188 /* The initial current target, so that there is always a semi-valid
189 current target. */
190
191 static struct target_ops dummy_target;
192
193 /* Top of target stack. */
194
195 static struct target_ops *target_stack;
196
197 /* The target structure we are currently using to talk to a process
198 or file or whatever "inferior" we have. */
199
200 struct target_ops current_target;
201
202 /* Command list for target. */
203
204 static struct cmd_list_element *targetlist = NULL;
205
206 /* Nonzero if we should trust readonly sections from the
207 executable when reading memory. */
208
209 static int trust_readonly = 0;
210
211 /* Nonzero if we should show true memory content including
212 memory breakpoint inserted by gdb. */
213
214 static int show_memory_breakpoints = 0;
215
216 /* These globals control whether GDB attempts to perform these
217 operations; they are useful for targets that need to prevent
218 inadvertant disruption, such as in non-stop mode. */
219
220 int may_write_registers = 1;
221
222 int may_write_memory = 1;
223
224 int may_insert_breakpoints = 1;
225
226 int may_insert_tracepoints = 1;
227
228 int may_insert_fast_tracepoints = 1;
229
230 int may_stop = 1;
231
232 /* Non-zero if we want to see trace of target level stuff. */
233
234 static unsigned int targetdebug = 0;
235 static void
236 show_targetdebug (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238 {
239 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
240 }
241
242 static void setup_target_debug (void);
243
244 /* The user just typed 'target' without the name of a target. */
245
246 static void
247 target_command (char *arg, int from_tty)
248 {
249 fputs_filtered ("Argument required (target name). Try `help target'\n",
250 gdb_stdout);
251 }
252
253 /* Default target_has_* methods for process_stratum targets. */
254
255 int
256 default_child_has_all_memory (struct target_ops *ops)
257 {
258 /* If no inferior selected, then we can't read memory here. */
259 if (ptid_equal (inferior_ptid, null_ptid))
260 return 0;
261
262 return 1;
263 }
264
265 int
266 default_child_has_memory (struct target_ops *ops)
267 {
268 /* If no inferior selected, then we can't read memory here. */
269 if (ptid_equal (inferior_ptid, null_ptid))
270 return 0;
271
272 return 1;
273 }
274
275 int
276 default_child_has_stack (struct target_ops *ops)
277 {
278 /* If no inferior selected, there's no stack. */
279 if (ptid_equal (inferior_ptid, null_ptid))
280 return 0;
281
282 return 1;
283 }
284
285 int
286 default_child_has_registers (struct target_ops *ops)
287 {
288 /* Can't read registers from no inferior. */
289 if (ptid_equal (inferior_ptid, null_ptid))
290 return 0;
291
292 return 1;
293 }
294
295 int
296 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
297 {
298 /* If there's no thread selected, then we can't make it run through
299 hoops. */
300 if (ptid_equal (the_ptid, null_ptid))
301 return 0;
302
303 return 1;
304 }
305
306
307 int
308 target_has_all_memory_1 (void)
309 {
310 struct target_ops *t;
311
312 for (t = current_target.beneath; t != NULL; t = t->beneath)
313 if (t->to_has_all_memory (t))
314 return 1;
315
316 return 0;
317 }
318
319 int
320 target_has_memory_1 (void)
321 {
322 struct target_ops *t;
323
324 for (t = current_target.beneath; t != NULL; t = t->beneath)
325 if (t->to_has_memory (t))
326 return 1;
327
328 return 0;
329 }
330
331 int
332 target_has_stack_1 (void)
333 {
334 struct target_ops *t;
335
336 for (t = current_target.beneath; t != NULL; t = t->beneath)
337 if (t->to_has_stack (t))
338 return 1;
339
340 return 0;
341 }
342
343 int
344 target_has_registers_1 (void)
345 {
346 struct target_ops *t;
347
348 for (t = current_target.beneath; t != NULL; t = t->beneath)
349 if (t->to_has_registers (t))
350 return 1;
351
352 return 0;
353 }
354
355 int
356 target_has_execution_1 (ptid_t the_ptid)
357 {
358 struct target_ops *t;
359
360 for (t = current_target.beneath; t != NULL; t = t->beneath)
361 if (t->to_has_execution (t, the_ptid))
362 return 1;
363
364 return 0;
365 }
366
367 int
368 target_has_execution_current (void)
369 {
370 return target_has_execution_1 (inferior_ptid);
371 }
372
373 /* Complete initialization of T. This ensures that various fields in
374 T are set, if needed by the target implementation. */
375
376 void
377 complete_target_initialization (struct target_ops *t)
378 {
379 /* Provide default values for all "must have" methods. */
380
381 if (t->to_has_all_memory == NULL)
382 t->to_has_all_memory = return_zero;
383
384 if (t->to_has_memory == NULL)
385 t->to_has_memory = return_zero;
386
387 if (t->to_has_stack == NULL)
388 t->to_has_stack = return_zero;
389
390 if (t->to_has_registers == NULL)
391 t->to_has_registers = return_zero;
392
393 if (t->to_has_execution == NULL)
394 t->to_has_execution = return_zero_has_execution;
395
396 /* These methods can be called on an unpushed target and so require
397 a default implementation if the target might plausibly be the
398 default run target. */
399 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
400 && t->to_supports_non_stop != NULL));
401
402 install_delegators (t);
403 }
404
405 /* Add possible target architecture T to the list and add a new
406 command 'target T->to_shortname'. Set COMPLETER as the command's
407 completer if not NULL. */
408
409 void
410 add_target_with_completer (struct target_ops *t,
411 completer_ftype *completer)
412 {
413 struct cmd_list_element *c;
414
415 complete_target_initialization (t);
416
417 if (!target_structs)
418 {
419 target_struct_allocsize = DEFAULT_ALLOCSIZE;
420 target_structs = (struct target_ops **) xmalloc
421 (target_struct_allocsize * sizeof (*target_structs));
422 }
423 if (target_struct_size >= target_struct_allocsize)
424 {
425 target_struct_allocsize *= 2;
426 target_structs = (struct target_ops **)
427 xrealloc ((char *) target_structs,
428 target_struct_allocsize * sizeof (*target_structs));
429 }
430 target_structs[target_struct_size++] = t;
431
432 if (targetlist == NULL)
433 add_prefix_cmd ("target", class_run, target_command, _("\
434 Connect to a target machine or process.\n\
435 The first argument is the type or protocol of the target machine.\n\
436 Remaining arguments are interpreted by the target protocol. For more\n\
437 information on the arguments for a particular protocol, type\n\
438 `help target ' followed by the protocol name."),
439 &targetlist, "target ", 0, &cmdlist);
440 c = add_cmd (t->to_shortname, no_class, t->to_open, t->to_doc,
441 &targetlist);
442 if (completer != NULL)
443 set_cmd_completer (c, completer);
444 }
445
446 /* Add a possible target architecture to the list. */
447
448 void
449 add_target (struct target_ops *t)
450 {
451 add_target_with_completer (t, NULL);
452 }
453
454 /* See target.h. */
455
456 void
457 add_deprecated_target_alias (struct target_ops *t, char *alias)
458 {
459 struct cmd_list_element *c;
460 char *alt;
461
462 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
463 see PR cli/15104. */
464 c = add_cmd (alias, no_class, t->to_open, t->to_doc, &targetlist);
465 alt = xstrprintf ("target %s", t->to_shortname);
466 deprecate_cmd (c, alt);
467 }
468
469 /* Stub functions */
470
471 void
472 target_kill (void)
473 {
474 if (targetdebug)
475 fprintf_unfiltered (gdb_stdlog, "target_kill ()\n");
476
477 current_target.to_kill (&current_target);
478 }
479
480 void
481 target_load (const char *arg, int from_tty)
482 {
483 target_dcache_invalidate ();
484 (*current_target.to_load) (&current_target, arg, from_tty);
485 }
486
487 void
488 target_terminal_inferior (void)
489 {
490 /* A background resume (``run&'') should leave GDB in control of the
491 terminal. Use target_can_async_p, not target_is_async_p, since at
492 this point the target is not async yet. However, if sync_execution
493 is not set, we know it will become async prior to resume. */
494 if (target_can_async_p () && !sync_execution)
495 return;
496
497 /* If GDB is resuming the inferior in the foreground, install
498 inferior's terminal modes. */
499 (*current_target.to_terminal_inferior) (&current_target);
500 }
501
502 static void
503 tcomplain (void)
504 {
505 error (_("You can't do that when your target is `%s'"),
506 current_target.to_shortname);
507 }
508
509 void
510 noprocess (void)
511 {
512 error (_("You can't do that without a process to debug."));
513 }
514
515 static void
516 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
517 {
518 printf_unfiltered (_("No saved terminal information.\n"));
519 }
520
521 /* A default implementation for the to_get_ada_task_ptid target method.
522
523 This function builds the PTID by using both LWP and TID as part of
524 the PTID lwp and tid elements. The pid used is the pid of the
525 inferior_ptid. */
526
527 static ptid_t
528 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
529 {
530 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
531 }
532
533 static enum exec_direction_kind
534 default_execution_direction (struct target_ops *self)
535 {
536 if (!target_can_execute_reverse)
537 return EXEC_FORWARD;
538 else if (!target_can_async_p ())
539 return EXEC_FORWARD;
540 else
541 gdb_assert_not_reached ("\
542 to_execution_direction must be implemented for reverse async");
543 }
544
545 /* Go through the target stack from top to bottom, copying over zero
546 entries in current_target, then filling in still empty entries. In
547 effect, we are doing class inheritance through the pushed target
548 vectors.
549
550 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
551 is currently implemented, is that it discards any knowledge of
552 which target an inherited method originally belonged to.
553 Consequently, new new target methods should instead explicitly and
554 locally search the target stack for the target that can handle the
555 request. */
556
557 static void
558 update_current_target (void)
559 {
560 struct target_ops *t;
561
562 /* First, reset current's contents. */
563 memset (&current_target, 0, sizeof (current_target));
564
565 /* Install the delegators. */
566 install_delegators (&current_target);
567
568 current_target.to_stratum = target_stack->to_stratum;
569
570 #define INHERIT(FIELD, TARGET) \
571 if (!current_target.FIELD) \
572 current_target.FIELD = (TARGET)->FIELD
573
574 /* Do not add any new INHERITs here. Instead, use the delegation
575 mechanism provided by make-target-delegates. */
576 for (t = target_stack; t; t = t->beneath)
577 {
578 INHERIT (to_shortname, t);
579 INHERIT (to_longname, t);
580 INHERIT (to_attach_no_wait, t);
581 INHERIT (to_have_steppable_watchpoint, t);
582 INHERIT (to_have_continuable_watchpoint, t);
583 INHERIT (to_has_thread_control, t);
584 }
585 #undef INHERIT
586
587 /* Finally, position the target-stack beneath the squashed
588 "current_target". That way code looking for a non-inherited
589 target method can quickly and simply find it. */
590 current_target.beneath = target_stack;
591
592 if (targetdebug)
593 setup_target_debug ();
594 }
595
596 /* Push a new target type into the stack of the existing target accessors,
597 possibly superseding some of the existing accessors.
598
599 Rather than allow an empty stack, we always have the dummy target at
600 the bottom stratum, so we can call the function vectors without
601 checking them. */
602
603 void
604 push_target (struct target_ops *t)
605 {
606 struct target_ops **cur;
607
608 /* Check magic number. If wrong, it probably means someone changed
609 the struct definition, but not all the places that initialize one. */
610 if (t->to_magic != OPS_MAGIC)
611 {
612 fprintf_unfiltered (gdb_stderr,
613 "Magic number of %s target struct wrong\n",
614 t->to_shortname);
615 internal_error (__FILE__, __LINE__,
616 _("failed internal consistency check"));
617 }
618
619 /* Find the proper stratum to install this target in. */
620 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
621 {
622 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
623 break;
624 }
625
626 /* If there's already targets at this stratum, remove them. */
627 /* FIXME: cagney/2003-10-15: I think this should be popping all
628 targets to CUR, and not just those at this stratum level. */
629 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
630 {
631 /* There's already something at this stratum level. Close it,
632 and un-hook it from the stack. */
633 struct target_ops *tmp = (*cur);
634
635 (*cur) = (*cur)->beneath;
636 tmp->beneath = NULL;
637 target_close (tmp);
638 }
639
640 /* We have removed all targets in our stratum, now add the new one. */
641 t->beneath = (*cur);
642 (*cur) = t;
643
644 update_current_target ();
645 }
646
647 /* Remove a target_ops vector from the stack, wherever it may be.
648 Return how many times it was removed (0 or 1). */
649
650 int
651 unpush_target (struct target_ops *t)
652 {
653 struct target_ops **cur;
654 struct target_ops *tmp;
655
656 if (t->to_stratum == dummy_stratum)
657 internal_error (__FILE__, __LINE__,
658 _("Attempt to unpush the dummy target"));
659
660 /* Look for the specified target. Note that we assume that a target
661 can only occur once in the target stack. */
662
663 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
664 {
665 if ((*cur) == t)
666 break;
667 }
668
669 /* If we don't find target_ops, quit. Only open targets should be
670 closed. */
671 if ((*cur) == NULL)
672 return 0;
673
674 /* Unchain the target. */
675 tmp = (*cur);
676 (*cur) = (*cur)->beneath;
677 tmp->beneath = NULL;
678
679 update_current_target ();
680
681 /* Finally close the target. Note we do this after unchaining, so
682 any target method calls from within the target_close
683 implementation don't end up in T anymore. */
684 target_close (t);
685
686 return 1;
687 }
688
689 void
690 pop_all_targets_above (enum strata above_stratum)
691 {
692 while ((int) (current_target.to_stratum) > (int) above_stratum)
693 {
694 if (!unpush_target (target_stack))
695 {
696 fprintf_unfiltered (gdb_stderr,
697 "pop_all_targets couldn't find target %s\n",
698 target_stack->to_shortname);
699 internal_error (__FILE__, __LINE__,
700 _("failed internal consistency check"));
701 break;
702 }
703 }
704 }
705
706 void
707 pop_all_targets (void)
708 {
709 pop_all_targets_above (dummy_stratum);
710 }
711
712 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
713
714 int
715 target_is_pushed (struct target_ops *t)
716 {
717 struct target_ops **cur;
718
719 /* Check magic number. If wrong, it probably means someone changed
720 the struct definition, but not all the places that initialize one. */
721 if (t->to_magic != OPS_MAGIC)
722 {
723 fprintf_unfiltered (gdb_stderr,
724 "Magic number of %s target struct wrong\n",
725 t->to_shortname);
726 internal_error (__FILE__, __LINE__,
727 _("failed internal consistency check"));
728 }
729
730 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
731 if (*cur == t)
732 return 1;
733
734 return 0;
735 }
736
737 /* Default implementation of to_get_thread_local_address. */
738
739 static void
740 generic_tls_error (void)
741 {
742 throw_error (TLS_GENERIC_ERROR,
743 _("Cannot find thread-local variables on this target"));
744 }
745
746 /* Using the objfile specified in OBJFILE, find the address for the
747 current thread's thread-local storage with offset OFFSET. */
748 CORE_ADDR
749 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
750 {
751 volatile CORE_ADDR addr = 0;
752 struct target_ops *target = &current_target;
753
754 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
755 {
756 ptid_t ptid = inferior_ptid;
757 volatile struct gdb_exception ex;
758
759 TRY_CATCH (ex, RETURN_MASK_ALL)
760 {
761 CORE_ADDR lm_addr;
762
763 /* Fetch the load module address for this objfile. */
764 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
765 objfile);
766
767 addr = target->to_get_thread_local_address (target, ptid,
768 lm_addr, offset);
769 }
770 /* If an error occurred, print TLS related messages here. Otherwise,
771 throw the error to some higher catcher. */
772 if (ex.reason < 0)
773 {
774 int objfile_is_library = (objfile->flags & OBJF_SHARED);
775
776 switch (ex.error)
777 {
778 case TLS_NO_LIBRARY_SUPPORT_ERROR:
779 error (_("Cannot find thread-local variables "
780 "in this thread library."));
781 break;
782 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
783 if (objfile_is_library)
784 error (_("Cannot find shared library `%s' in dynamic"
785 " linker's load module list"), objfile_name (objfile));
786 else
787 error (_("Cannot find executable file `%s' in dynamic"
788 " linker's load module list"), objfile_name (objfile));
789 break;
790 case TLS_NOT_ALLOCATED_YET_ERROR:
791 if (objfile_is_library)
792 error (_("The inferior has not yet allocated storage for"
793 " thread-local variables in\n"
794 "the shared library `%s'\n"
795 "for %s"),
796 objfile_name (objfile), target_pid_to_str (ptid));
797 else
798 error (_("The inferior has not yet allocated storage for"
799 " thread-local variables in\n"
800 "the executable `%s'\n"
801 "for %s"),
802 objfile_name (objfile), target_pid_to_str (ptid));
803 break;
804 case TLS_GENERIC_ERROR:
805 if (objfile_is_library)
806 error (_("Cannot find thread-local storage for %s, "
807 "shared library %s:\n%s"),
808 target_pid_to_str (ptid),
809 objfile_name (objfile), ex.message);
810 else
811 error (_("Cannot find thread-local storage for %s, "
812 "executable file %s:\n%s"),
813 target_pid_to_str (ptid),
814 objfile_name (objfile), ex.message);
815 break;
816 default:
817 throw_exception (ex);
818 break;
819 }
820 }
821 }
822 /* It wouldn't be wrong here to try a gdbarch method, too; finding
823 TLS is an ABI-specific thing. But we don't do that yet. */
824 else
825 error (_("Cannot find thread-local variables on this target"));
826
827 return addr;
828 }
829
830 const char *
831 target_xfer_status_to_string (enum target_xfer_status status)
832 {
833 #define CASE(X) case X: return #X
834 switch (status)
835 {
836 CASE(TARGET_XFER_E_IO);
837 CASE(TARGET_XFER_UNAVAILABLE);
838 default:
839 return "<unknown>";
840 }
841 #undef CASE
842 };
843
844
845 #undef MIN
846 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
847
848 /* target_read_string -- read a null terminated string, up to LEN bytes,
849 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
850 Set *STRING to a pointer to malloc'd memory containing the data; the caller
851 is responsible for freeing it. Return the number of bytes successfully
852 read. */
853
854 int
855 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
856 {
857 int tlen, offset, i;
858 gdb_byte buf[4];
859 int errcode = 0;
860 char *buffer;
861 int buffer_allocated;
862 char *bufptr;
863 unsigned int nbytes_read = 0;
864
865 gdb_assert (string);
866
867 /* Small for testing. */
868 buffer_allocated = 4;
869 buffer = xmalloc (buffer_allocated);
870 bufptr = buffer;
871
872 while (len > 0)
873 {
874 tlen = MIN (len, 4 - (memaddr & 3));
875 offset = memaddr & 3;
876
877 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
878 if (errcode != 0)
879 {
880 /* The transfer request might have crossed the boundary to an
881 unallocated region of memory. Retry the transfer, requesting
882 a single byte. */
883 tlen = 1;
884 offset = 0;
885 errcode = target_read_memory (memaddr, buf, 1);
886 if (errcode != 0)
887 goto done;
888 }
889
890 if (bufptr - buffer + tlen > buffer_allocated)
891 {
892 unsigned int bytes;
893
894 bytes = bufptr - buffer;
895 buffer_allocated *= 2;
896 buffer = xrealloc (buffer, buffer_allocated);
897 bufptr = buffer + bytes;
898 }
899
900 for (i = 0; i < tlen; i++)
901 {
902 *bufptr++ = buf[i + offset];
903 if (buf[i + offset] == '\000')
904 {
905 nbytes_read += i + 1;
906 goto done;
907 }
908 }
909
910 memaddr += tlen;
911 len -= tlen;
912 nbytes_read += tlen;
913 }
914 done:
915 *string = buffer;
916 if (errnop != NULL)
917 *errnop = errcode;
918 return nbytes_read;
919 }
920
921 struct target_section_table *
922 target_get_section_table (struct target_ops *target)
923 {
924 if (targetdebug)
925 fprintf_unfiltered (gdb_stdlog, "target_get_section_table ()\n");
926
927 return (*target->to_get_section_table) (target);
928 }
929
930 /* Find a section containing ADDR. */
931
932 struct target_section *
933 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
934 {
935 struct target_section_table *table = target_get_section_table (target);
936 struct target_section *secp;
937
938 if (table == NULL)
939 return NULL;
940
941 for (secp = table->sections; secp < table->sections_end; secp++)
942 {
943 if (addr >= secp->addr && addr < secp->endaddr)
944 return secp;
945 }
946 return NULL;
947 }
948
949 /* Read memory from more than one valid target. A core file, for
950 instance, could have some of memory but delegate other bits to
951 the target below it. So, we must manually try all targets. */
952
953 static enum target_xfer_status
954 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
955 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
956 ULONGEST *xfered_len)
957 {
958 enum target_xfer_status res;
959
960 do
961 {
962 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
963 readbuf, writebuf, memaddr, len,
964 xfered_len);
965 if (res == TARGET_XFER_OK)
966 break;
967
968 /* Stop if the target reports that the memory is not available. */
969 if (res == TARGET_XFER_UNAVAILABLE)
970 break;
971
972 /* We want to continue past core files to executables, but not
973 past a running target's memory. */
974 if (ops->to_has_all_memory (ops))
975 break;
976
977 ops = ops->beneath;
978 }
979 while (ops != NULL);
980
981 /* The cache works at the raw memory level. Make sure the cache
982 gets updated with raw contents no matter what kind of memory
983 object was originally being written. Note we do write-through
984 first, so that if it fails, we don't write to the cache contents
985 that never made it to the target. */
986 if (writebuf != NULL
987 && !ptid_equal (inferior_ptid, null_ptid)
988 && target_dcache_init_p ()
989 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
990 {
991 DCACHE *dcache = target_dcache_get ();
992
993 /* Note that writing to an area of memory which wasn't present
994 in the cache doesn't cause it to be loaded in. */
995 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
996 }
997
998 return res;
999 }
1000
1001 /* Perform a partial memory transfer.
1002 For docs see target.h, to_xfer_partial. */
1003
1004 static enum target_xfer_status
1005 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1006 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1007 ULONGEST len, ULONGEST *xfered_len)
1008 {
1009 enum target_xfer_status res;
1010 int reg_len;
1011 struct mem_region *region;
1012 struct inferior *inf;
1013
1014 /* For accesses to unmapped overlay sections, read directly from
1015 files. Must do this first, as MEMADDR may need adjustment. */
1016 if (readbuf != NULL && overlay_debugging)
1017 {
1018 struct obj_section *section = find_pc_overlay (memaddr);
1019
1020 if (pc_in_unmapped_range (memaddr, section))
1021 {
1022 struct target_section_table *table
1023 = target_get_section_table (ops);
1024 const char *section_name = section->the_bfd_section->name;
1025
1026 memaddr = overlay_mapped_address (memaddr, section);
1027 return section_table_xfer_memory_partial (readbuf, writebuf,
1028 memaddr, len, xfered_len,
1029 table->sections,
1030 table->sections_end,
1031 section_name);
1032 }
1033 }
1034
1035 /* Try the executable files, if "trust-readonly-sections" is set. */
1036 if (readbuf != NULL && trust_readonly)
1037 {
1038 struct target_section *secp;
1039 struct target_section_table *table;
1040
1041 secp = target_section_by_addr (ops, memaddr);
1042 if (secp != NULL
1043 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1044 secp->the_bfd_section)
1045 & SEC_READONLY))
1046 {
1047 table = target_get_section_table (ops);
1048 return section_table_xfer_memory_partial (readbuf, writebuf,
1049 memaddr, len, xfered_len,
1050 table->sections,
1051 table->sections_end,
1052 NULL);
1053 }
1054 }
1055
1056 /* Try GDB's internal data cache. */
1057 region = lookup_mem_region (memaddr);
1058 /* region->hi == 0 means there's no upper bound. */
1059 if (memaddr + len < region->hi || region->hi == 0)
1060 reg_len = len;
1061 else
1062 reg_len = region->hi - memaddr;
1063
1064 switch (region->attrib.mode)
1065 {
1066 case MEM_RO:
1067 if (writebuf != NULL)
1068 return TARGET_XFER_E_IO;
1069 break;
1070
1071 case MEM_WO:
1072 if (readbuf != NULL)
1073 return TARGET_XFER_E_IO;
1074 break;
1075
1076 case MEM_FLASH:
1077 /* We only support writing to flash during "load" for now. */
1078 if (writebuf != NULL)
1079 error (_("Writing to flash memory forbidden in this context"));
1080 break;
1081
1082 case MEM_NONE:
1083 return TARGET_XFER_E_IO;
1084 }
1085
1086 if (!ptid_equal (inferior_ptid, null_ptid))
1087 inf = find_inferior_pid (ptid_get_pid (inferior_ptid));
1088 else
1089 inf = NULL;
1090
1091 if (inf != NULL
1092 && readbuf != NULL
1093 /* The dcache reads whole cache lines; that doesn't play well
1094 with reading from a trace buffer, because reading outside of
1095 the collected memory range fails. */
1096 && get_traceframe_number () == -1
1097 && (region->attrib.cache
1098 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1099 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1100 {
1101 DCACHE *dcache = target_dcache_get_or_init ();
1102
1103 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1104 reg_len, xfered_len);
1105 }
1106
1107 /* If none of those methods found the memory we wanted, fall back
1108 to a target partial transfer. Normally a single call to
1109 to_xfer_partial is enough; if it doesn't recognize an object
1110 it will call the to_xfer_partial of the next target down.
1111 But for memory this won't do. Memory is the only target
1112 object which can be read from more than one valid target.
1113 A core file, for instance, could have some of memory but
1114 delegate other bits to the target below it. So, we must
1115 manually try all targets. */
1116
1117 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1118 xfered_len);
1119
1120 /* If we still haven't got anything, return the last error. We
1121 give up. */
1122 return res;
1123 }
1124
1125 /* Perform a partial memory transfer. For docs see target.h,
1126 to_xfer_partial. */
1127
1128 static enum target_xfer_status
1129 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1130 gdb_byte *readbuf, const gdb_byte *writebuf,
1131 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1132 {
1133 enum target_xfer_status res;
1134
1135 /* Zero length requests are ok and require no work. */
1136 if (len == 0)
1137 return TARGET_XFER_EOF;
1138
1139 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1140 breakpoint insns, thus hiding out from higher layers whether
1141 there are software breakpoints inserted in the code stream. */
1142 if (readbuf != NULL)
1143 {
1144 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1145 xfered_len);
1146
1147 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1148 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1149 }
1150 else
1151 {
1152 void *buf;
1153 struct cleanup *old_chain;
1154
1155 /* A large write request is likely to be partially satisfied
1156 by memory_xfer_partial_1. We will continually malloc
1157 and free a copy of the entire write request for breakpoint
1158 shadow handling even though we only end up writing a small
1159 subset of it. Cap writes to 4KB to mitigate this. */
1160 len = min (4096, len);
1161
1162 buf = xmalloc (len);
1163 old_chain = make_cleanup (xfree, buf);
1164 memcpy (buf, writebuf, len);
1165
1166 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1167 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1168 xfered_len);
1169
1170 do_cleanups (old_chain);
1171 }
1172
1173 return res;
1174 }
1175
1176 static void
1177 restore_show_memory_breakpoints (void *arg)
1178 {
1179 show_memory_breakpoints = (uintptr_t) arg;
1180 }
1181
1182 struct cleanup *
1183 make_show_memory_breakpoints_cleanup (int show)
1184 {
1185 int current = show_memory_breakpoints;
1186
1187 show_memory_breakpoints = show;
1188 return make_cleanup (restore_show_memory_breakpoints,
1189 (void *) (uintptr_t) current);
1190 }
1191
1192 /* For docs see target.h, to_xfer_partial. */
1193
1194 enum target_xfer_status
1195 target_xfer_partial (struct target_ops *ops,
1196 enum target_object object, const char *annex,
1197 gdb_byte *readbuf, const gdb_byte *writebuf,
1198 ULONGEST offset, ULONGEST len,
1199 ULONGEST *xfered_len)
1200 {
1201 enum target_xfer_status retval;
1202
1203 gdb_assert (ops->to_xfer_partial != NULL);
1204
1205 /* Transfer is done when LEN is zero. */
1206 if (len == 0)
1207 return TARGET_XFER_EOF;
1208
1209 if (writebuf && !may_write_memory)
1210 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1211 core_addr_to_string_nz (offset), plongest (len));
1212
1213 *xfered_len = 0;
1214
1215 /* If this is a memory transfer, let the memory-specific code
1216 have a look at it instead. Memory transfers are more
1217 complicated. */
1218 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1219 || object == TARGET_OBJECT_CODE_MEMORY)
1220 retval = memory_xfer_partial (ops, object, readbuf,
1221 writebuf, offset, len, xfered_len);
1222 else if (object == TARGET_OBJECT_RAW_MEMORY)
1223 {
1224 /* Request the normal memory object from other layers. */
1225 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1226 xfered_len);
1227 }
1228 else
1229 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1230 writebuf, offset, len, xfered_len);
1231
1232 if (targetdebug)
1233 {
1234 const unsigned char *myaddr = NULL;
1235
1236 fprintf_unfiltered (gdb_stdlog,
1237 "%s:target_xfer_partial "
1238 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1239 ops->to_shortname,
1240 (int) object,
1241 (annex ? annex : "(null)"),
1242 host_address_to_string (readbuf),
1243 host_address_to_string (writebuf),
1244 core_addr_to_string_nz (offset),
1245 pulongest (len), retval,
1246 pulongest (*xfered_len));
1247
1248 if (readbuf)
1249 myaddr = readbuf;
1250 if (writebuf)
1251 myaddr = writebuf;
1252 if (retval == TARGET_XFER_OK && myaddr != NULL)
1253 {
1254 int i;
1255
1256 fputs_unfiltered (", bytes =", gdb_stdlog);
1257 for (i = 0; i < *xfered_len; i++)
1258 {
1259 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1260 {
1261 if (targetdebug < 2 && i > 0)
1262 {
1263 fprintf_unfiltered (gdb_stdlog, " ...");
1264 break;
1265 }
1266 fprintf_unfiltered (gdb_stdlog, "\n");
1267 }
1268
1269 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1270 }
1271 }
1272
1273 fputc_unfiltered ('\n', gdb_stdlog);
1274 }
1275
1276 /* Check implementations of to_xfer_partial update *XFERED_LEN
1277 properly. Do assertion after printing debug messages, so that we
1278 can find more clues on assertion failure from debugging messages. */
1279 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1280 gdb_assert (*xfered_len > 0);
1281
1282 return retval;
1283 }
1284
1285 /* Read LEN bytes of target memory at address MEMADDR, placing the
1286 results in GDB's memory at MYADDR. Returns either 0 for success or
1287 TARGET_XFER_E_IO if any error occurs.
1288
1289 If an error occurs, no guarantee is made about the contents of the data at
1290 MYADDR. In particular, the caller should not depend upon partial reads
1291 filling the buffer with good data. There is no way for the caller to know
1292 how much good data might have been transfered anyway. Callers that can
1293 deal with partial reads should call target_read (which will retry until
1294 it makes no progress, and then return how much was transferred). */
1295
1296 int
1297 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1298 {
1299 /* Dispatch to the topmost target, not the flattened current_target.
1300 Memory accesses check target->to_has_(all_)memory, and the
1301 flattened target doesn't inherit those. */
1302 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1303 myaddr, memaddr, len) == len)
1304 return 0;
1305 else
1306 return TARGET_XFER_E_IO;
1307 }
1308
1309 /* Like target_read_memory, but specify explicitly that this is a read
1310 from the target's raw memory. That is, this read bypasses the
1311 dcache, breakpoint shadowing, etc. */
1312
1313 int
1314 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1315 {
1316 /* See comment in target_read_memory about why the request starts at
1317 current_target.beneath. */
1318 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1319 myaddr, memaddr, len) == len)
1320 return 0;
1321 else
1322 return TARGET_XFER_E_IO;
1323 }
1324
1325 /* Like target_read_memory, but specify explicitly that this is a read from
1326 the target's stack. This may trigger different cache behavior. */
1327
1328 int
1329 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1330 {
1331 /* See comment in target_read_memory about why the request starts at
1332 current_target.beneath. */
1333 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1334 myaddr, memaddr, len) == len)
1335 return 0;
1336 else
1337 return TARGET_XFER_E_IO;
1338 }
1339
1340 /* Like target_read_memory, but specify explicitly that this is a read from
1341 the target's code. This may trigger different cache behavior. */
1342
1343 int
1344 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1345 {
1346 /* See comment in target_read_memory about why the request starts at
1347 current_target.beneath. */
1348 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1349 myaddr, memaddr, len) == len)
1350 return 0;
1351 else
1352 return TARGET_XFER_E_IO;
1353 }
1354
1355 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1356 Returns either 0 for success or TARGET_XFER_E_IO if any
1357 error occurs. If an error occurs, no guarantee is made about how
1358 much data got written. Callers that can deal with partial writes
1359 should call target_write. */
1360
1361 int
1362 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1363 {
1364 /* See comment in target_read_memory about why the request starts at
1365 current_target.beneath. */
1366 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return TARGET_XFER_E_IO;
1371 }
1372
1373 /* Write LEN bytes from MYADDR to target raw memory at address
1374 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1375 if any error occurs. If an error occurs, no guarantee is made
1376 about how much data got written. Callers that can deal with
1377 partial writes should call target_write. */
1378
1379 int
1380 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1381 {
1382 /* See comment in target_read_memory about why the request starts at
1383 current_target.beneath. */
1384 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1385 myaddr, memaddr, len) == len)
1386 return 0;
1387 else
1388 return TARGET_XFER_E_IO;
1389 }
1390
1391 /* Fetch the target's memory map. */
1392
1393 VEC(mem_region_s) *
1394 target_memory_map (void)
1395 {
1396 VEC(mem_region_s) *result;
1397 struct mem_region *last_one, *this_one;
1398 int ix;
1399 struct target_ops *t;
1400
1401 if (targetdebug)
1402 fprintf_unfiltered (gdb_stdlog, "target_memory_map ()\n");
1403
1404 result = current_target.to_memory_map (&current_target);
1405 if (result == NULL)
1406 return NULL;
1407
1408 qsort (VEC_address (mem_region_s, result),
1409 VEC_length (mem_region_s, result),
1410 sizeof (struct mem_region), mem_region_cmp);
1411
1412 /* Check that regions do not overlap. Simultaneously assign
1413 a numbering for the "mem" commands to use to refer to
1414 each region. */
1415 last_one = NULL;
1416 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1417 {
1418 this_one->number = ix;
1419
1420 if (last_one && last_one->hi > this_one->lo)
1421 {
1422 warning (_("Overlapping regions in memory map: ignoring"));
1423 VEC_free (mem_region_s, result);
1424 return NULL;
1425 }
1426 last_one = this_one;
1427 }
1428
1429 return result;
1430 }
1431
1432 void
1433 target_flash_erase (ULONGEST address, LONGEST length)
1434 {
1435 if (targetdebug)
1436 fprintf_unfiltered (gdb_stdlog, "target_flash_erase (%s, %s)\n",
1437 hex_string (address), phex (length, 0));
1438 current_target.to_flash_erase (&current_target, address, length);
1439 }
1440
1441 void
1442 target_flash_done (void)
1443 {
1444 if (targetdebug)
1445 fprintf_unfiltered (gdb_stdlog, "target_flash_done\n");
1446 current_target.to_flash_done (&current_target);
1447 }
1448
1449 static void
1450 show_trust_readonly (struct ui_file *file, int from_tty,
1451 struct cmd_list_element *c, const char *value)
1452 {
1453 fprintf_filtered (file,
1454 _("Mode for reading from readonly sections is %s.\n"),
1455 value);
1456 }
1457
1458 /* Target vector read/write partial wrapper functions. */
1459
1460 static enum target_xfer_status
1461 target_read_partial (struct target_ops *ops,
1462 enum target_object object,
1463 const char *annex, gdb_byte *buf,
1464 ULONGEST offset, ULONGEST len,
1465 ULONGEST *xfered_len)
1466 {
1467 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1468 xfered_len);
1469 }
1470
1471 static enum target_xfer_status
1472 target_write_partial (struct target_ops *ops,
1473 enum target_object object,
1474 const char *annex, const gdb_byte *buf,
1475 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1476 {
1477 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1478 xfered_len);
1479 }
1480
1481 /* Wrappers to perform the full transfer. */
1482
1483 /* For docs on target_read see target.h. */
1484
1485 LONGEST
1486 target_read (struct target_ops *ops,
1487 enum target_object object,
1488 const char *annex, gdb_byte *buf,
1489 ULONGEST offset, LONGEST len)
1490 {
1491 LONGEST xfered = 0;
1492
1493 while (xfered < len)
1494 {
1495 ULONGEST xfered_len;
1496 enum target_xfer_status status;
1497
1498 status = target_read_partial (ops, object, annex,
1499 (gdb_byte *) buf + xfered,
1500 offset + xfered, len - xfered,
1501 &xfered_len);
1502
1503 /* Call an observer, notifying them of the xfer progress? */
1504 if (status == TARGET_XFER_EOF)
1505 return xfered;
1506 else if (status == TARGET_XFER_OK)
1507 {
1508 xfered += xfered_len;
1509 QUIT;
1510 }
1511 else
1512 return -1;
1513
1514 }
1515 return len;
1516 }
1517
1518 /* Assuming that the entire [begin, end) range of memory cannot be
1519 read, try to read whatever subrange is possible to read.
1520
1521 The function returns, in RESULT, either zero or one memory block.
1522 If there's a readable subrange at the beginning, it is completely
1523 read and returned. Any further readable subrange will not be read.
1524 Otherwise, if there's a readable subrange at the end, it will be
1525 completely read and returned. Any readable subranges before it
1526 (obviously, not starting at the beginning), will be ignored. In
1527 other cases -- either no readable subrange, or readable subrange(s)
1528 that is neither at the beginning, or end, nothing is returned.
1529
1530 The purpose of this function is to handle a read across a boundary
1531 of accessible memory in a case when memory map is not available.
1532 The above restrictions are fine for this case, but will give
1533 incorrect results if the memory is 'patchy'. However, supporting
1534 'patchy' memory would require trying to read every single byte,
1535 and it seems unacceptable solution. Explicit memory map is
1536 recommended for this case -- and target_read_memory_robust will
1537 take care of reading multiple ranges then. */
1538
1539 static void
1540 read_whatever_is_readable (struct target_ops *ops,
1541 ULONGEST begin, ULONGEST end,
1542 VEC(memory_read_result_s) **result)
1543 {
1544 gdb_byte *buf = xmalloc (end - begin);
1545 ULONGEST current_begin = begin;
1546 ULONGEST current_end = end;
1547 int forward;
1548 memory_read_result_s r;
1549 ULONGEST xfered_len;
1550
1551 /* If we previously failed to read 1 byte, nothing can be done here. */
1552 if (end - begin <= 1)
1553 {
1554 xfree (buf);
1555 return;
1556 }
1557
1558 /* Check that either first or the last byte is readable, and give up
1559 if not. This heuristic is meant to permit reading accessible memory
1560 at the boundary of accessible region. */
1561 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1562 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1563 {
1564 forward = 1;
1565 ++current_begin;
1566 }
1567 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1568 buf + (end-begin) - 1, end - 1, 1,
1569 &xfered_len) == TARGET_XFER_OK)
1570 {
1571 forward = 0;
1572 --current_end;
1573 }
1574 else
1575 {
1576 xfree (buf);
1577 return;
1578 }
1579
1580 /* Loop invariant is that the [current_begin, current_end) was previously
1581 found to be not readable as a whole.
1582
1583 Note loop condition -- if the range has 1 byte, we can't divide the range
1584 so there's no point trying further. */
1585 while (current_end - current_begin > 1)
1586 {
1587 ULONGEST first_half_begin, first_half_end;
1588 ULONGEST second_half_begin, second_half_end;
1589 LONGEST xfer;
1590 ULONGEST middle = current_begin + (current_end - current_begin)/2;
1591
1592 if (forward)
1593 {
1594 first_half_begin = current_begin;
1595 first_half_end = middle;
1596 second_half_begin = middle;
1597 second_half_end = current_end;
1598 }
1599 else
1600 {
1601 first_half_begin = middle;
1602 first_half_end = current_end;
1603 second_half_begin = current_begin;
1604 second_half_end = middle;
1605 }
1606
1607 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1608 buf + (first_half_begin - begin),
1609 first_half_begin,
1610 first_half_end - first_half_begin);
1611
1612 if (xfer == first_half_end - first_half_begin)
1613 {
1614 /* This half reads up fine. So, the error must be in the
1615 other half. */
1616 current_begin = second_half_begin;
1617 current_end = second_half_end;
1618 }
1619 else
1620 {
1621 /* This half is not readable. Because we've tried one byte, we
1622 know some part of this half if actually redable. Go to the next
1623 iteration to divide again and try to read.
1624
1625 We don't handle the other half, because this function only tries
1626 to read a single readable subrange. */
1627 current_begin = first_half_begin;
1628 current_end = first_half_end;
1629 }
1630 }
1631
1632 if (forward)
1633 {
1634 /* The [begin, current_begin) range has been read. */
1635 r.begin = begin;
1636 r.end = current_begin;
1637 r.data = buf;
1638 }
1639 else
1640 {
1641 /* The [current_end, end) range has been read. */
1642 LONGEST rlen = end - current_end;
1643
1644 r.data = xmalloc (rlen);
1645 memcpy (r.data, buf + current_end - begin, rlen);
1646 r.begin = current_end;
1647 r.end = end;
1648 xfree (buf);
1649 }
1650 VEC_safe_push(memory_read_result_s, (*result), &r);
1651 }
1652
1653 void
1654 free_memory_read_result_vector (void *x)
1655 {
1656 VEC(memory_read_result_s) *v = x;
1657 memory_read_result_s *current;
1658 int ix;
1659
1660 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1661 {
1662 xfree (current->data);
1663 }
1664 VEC_free (memory_read_result_s, v);
1665 }
1666
1667 VEC(memory_read_result_s) *
1668 read_memory_robust (struct target_ops *ops, ULONGEST offset, LONGEST len)
1669 {
1670 VEC(memory_read_result_s) *result = 0;
1671
1672 LONGEST xfered = 0;
1673 while (xfered < len)
1674 {
1675 struct mem_region *region = lookup_mem_region (offset + xfered);
1676 LONGEST rlen;
1677
1678 /* If there is no explicit region, a fake one should be created. */
1679 gdb_assert (region);
1680
1681 if (region->hi == 0)
1682 rlen = len - xfered;
1683 else
1684 rlen = region->hi - offset;
1685
1686 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1687 {
1688 /* Cannot read this region. Note that we can end up here only
1689 if the region is explicitly marked inaccessible, or
1690 'inaccessible-by-default' is in effect. */
1691 xfered += rlen;
1692 }
1693 else
1694 {
1695 LONGEST to_read = min (len - xfered, rlen);
1696 gdb_byte *buffer = (gdb_byte *)xmalloc (to_read);
1697
1698 LONGEST xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1699 (gdb_byte *) buffer,
1700 offset + xfered, to_read);
1701 /* Call an observer, notifying them of the xfer progress? */
1702 if (xfer <= 0)
1703 {
1704 /* Got an error reading full chunk. See if maybe we can read
1705 some subrange. */
1706 xfree (buffer);
1707 read_whatever_is_readable (ops, offset + xfered,
1708 offset + xfered + to_read, &result);
1709 xfered += to_read;
1710 }
1711 else
1712 {
1713 struct memory_read_result r;
1714 r.data = buffer;
1715 r.begin = offset + xfered;
1716 r.end = r.begin + xfer;
1717 VEC_safe_push (memory_read_result_s, result, &r);
1718 xfered += xfer;
1719 }
1720 QUIT;
1721 }
1722 }
1723 return result;
1724 }
1725
1726
1727 /* An alternative to target_write with progress callbacks. */
1728
1729 LONGEST
1730 target_write_with_progress (struct target_ops *ops,
1731 enum target_object object,
1732 const char *annex, const gdb_byte *buf,
1733 ULONGEST offset, LONGEST len,
1734 void (*progress) (ULONGEST, void *), void *baton)
1735 {
1736 LONGEST xfered = 0;
1737
1738 /* Give the progress callback a chance to set up. */
1739 if (progress)
1740 (*progress) (0, baton);
1741
1742 while (xfered < len)
1743 {
1744 ULONGEST xfered_len;
1745 enum target_xfer_status status;
1746
1747 status = target_write_partial (ops, object, annex,
1748 (gdb_byte *) buf + xfered,
1749 offset + xfered, len - xfered,
1750 &xfered_len);
1751
1752 if (status != TARGET_XFER_OK)
1753 return status == TARGET_XFER_EOF ? xfered : -1;
1754
1755 if (progress)
1756 (*progress) (xfered_len, baton);
1757
1758 xfered += xfered_len;
1759 QUIT;
1760 }
1761 return len;
1762 }
1763
1764 /* For docs on target_write see target.h. */
1765
1766 LONGEST
1767 target_write (struct target_ops *ops,
1768 enum target_object object,
1769 const char *annex, const gdb_byte *buf,
1770 ULONGEST offset, LONGEST len)
1771 {
1772 return target_write_with_progress (ops, object, annex, buf, offset, len,
1773 NULL, NULL);
1774 }
1775
1776 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1777 the size of the transferred data. PADDING additional bytes are
1778 available in *BUF_P. This is a helper function for
1779 target_read_alloc; see the declaration of that function for more
1780 information. */
1781
1782 static LONGEST
1783 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1784 const char *annex, gdb_byte **buf_p, int padding)
1785 {
1786 size_t buf_alloc, buf_pos;
1787 gdb_byte *buf;
1788
1789 /* This function does not have a length parameter; it reads the
1790 entire OBJECT). Also, it doesn't support objects fetched partly
1791 from one target and partly from another (in a different stratum,
1792 e.g. a core file and an executable). Both reasons make it
1793 unsuitable for reading memory. */
1794 gdb_assert (object != TARGET_OBJECT_MEMORY);
1795
1796 /* Start by reading up to 4K at a time. The target will throttle
1797 this number down if necessary. */
1798 buf_alloc = 4096;
1799 buf = xmalloc (buf_alloc);
1800 buf_pos = 0;
1801 while (1)
1802 {
1803 ULONGEST xfered_len;
1804 enum target_xfer_status status;
1805
1806 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1807 buf_pos, buf_alloc - buf_pos - padding,
1808 &xfered_len);
1809
1810 if (status == TARGET_XFER_EOF)
1811 {
1812 /* Read all there was. */
1813 if (buf_pos == 0)
1814 xfree (buf);
1815 else
1816 *buf_p = buf;
1817 return buf_pos;
1818 }
1819 else if (status != TARGET_XFER_OK)
1820 {
1821 /* An error occurred. */
1822 xfree (buf);
1823 return TARGET_XFER_E_IO;
1824 }
1825
1826 buf_pos += xfered_len;
1827
1828 /* If the buffer is filling up, expand it. */
1829 if (buf_alloc < buf_pos * 2)
1830 {
1831 buf_alloc *= 2;
1832 buf = xrealloc (buf, buf_alloc);
1833 }
1834
1835 QUIT;
1836 }
1837 }
1838
1839 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1840 the size of the transferred data. See the declaration in "target.h"
1841 function for more information about the return value. */
1842
1843 LONGEST
1844 target_read_alloc (struct target_ops *ops, enum target_object object,
1845 const char *annex, gdb_byte **buf_p)
1846 {
1847 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1848 }
1849
1850 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1851 returned as a string, allocated using xmalloc. If an error occurs
1852 or the transfer is unsupported, NULL is returned. Empty objects
1853 are returned as allocated but empty strings. A warning is issued
1854 if the result contains any embedded NUL bytes. */
1855
1856 char *
1857 target_read_stralloc (struct target_ops *ops, enum target_object object,
1858 const char *annex)
1859 {
1860 gdb_byte *buffer;
1861 char *bufstr;
1862 LONGEST i, transferred;
1863
1864 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1865 bufstr = (char *) buffer;
1866
1867 if (transferred < 0)
1868 return NULL;
1869
1870 if (transferred == 0)
1871 return xstrdup ("");
1872
1873 bufstr[transferred] = 0;
1874
1875 /* Check for embedded NUL bytes; but allow trailing NULs. */
1876 for (i = strlen (bufstr); i < transferred; i++)
1877 if (bufstr[i] != 0)
1878 {
1879 warning (_("target object %d, annex %s, "
1880 "contained unexpected null characters"),
1881 (int) object, annex ? annex : "(none)");
1882 break;
1883 }
1884
1885 return bufstr;
1886 }
1887
1888 /* Memory transfer methods. */
1889
1890 void
1891 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1892 LONGEST len)
1893 {
1894 /* This method is used to read from an alternate, non-current
1895 target. This read must bypass the overlay support (as symbols
1896 don't match this target), and GDB's internal cache (wrong cache
1897 for this target). */
1898 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1899 != len)
1900 memory_error (TARGET_XFER_E_IO, addr);
1901 }
1902
1903 ULONGEST
1904 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1905 int len, enum bfd_endian byte_order)
1906 {
1907 gdb_byte buf[sizeof (ULONGEST)];
1908
1909 gdb_assert (len <= sizeof (buf));
1910 get_target_memory (ops, addr, buf, len);
1911 return extract_unsigned_integer (buf, len, byte_order);
1912 }
1913
1914 /* See target.h. */
1915
1916 int
1917 target_insert_breakpoint (struct gdbarch *gdbarch,
1918 struct bp_target_info *bp_tgt)
1919 {
1920 if (!may_insert_breakpoints)
1921 {
1922 warning (_("May not insert breakpoints"));
1923 return 1;
1924 }
1925
1926 return current_target.to_insert_breakpoint (&current_target,
1927 gdbarch, bp_tgt);
1928 }
1929
1930 /* See target.h. */
1931
1932 int
1933 target_remove_breakpoint (struct gdbarch *gdbarch,
1934 struct bp_target_info *bp_tgt)
1935 {
1936 /* This is kind of a weird case to handle, but the permission might
1937 have been changed after breakpoints were inserted - in which case
1938 we should just take the user literally and assume that any
1939 breakpoints should be left in place. */
1940 if (!may_insert_breakpoints)
1941 {
1942 warning (_("May not remove breakpoints"));
1943 return 1;
1944 }
1945
1946 return current_target.to_remove_breakpoint (&current_target,
1947 gdbarch, bp_tgt);
1948 }
1949
1950 static void
1951 target_info (char *args, int from_tty)
1952 {
1953 struct target_ops *t;
1954 int has_all_mem = 0;
1955
1956 if (symfile_objfile != NULL)
1957 printf_unfiltered (_("Symbols from \"%s\".\n"),
1958 objfile_name (symfile_objfile));
1959
1960 for (t = target_stack; t != NULL; t = t->beneath)
1961 {
1962 if (!(*t->to_has_memory) (t))
1963 continue;
1964
1965 if ((int) (t->to_stratum) <= (int) dummy_stratum)
1966 continue;
1967 if (has_all_mem)
1968 printf_unfiltered (_("\tWhile running this, "
1969 "GDB does not access memory from...\n"));
1970 printf_unfiltered ("%s:\n", t->to_longname);
1971 (t->to_files_info) (t);
1972 has_all_mem = (*t->to_has_all_memory) (t);
1973 }
1974 }
1975
1976 /* This function is called before any new inferior is created, e.g.
1977 by running a program, attaching, or connecting to a target.
1978 It cleans up any state from previous invocations which might
1979 change between runs. This is a subset of what target_preopen
1980 resets (things which might change between targets). */
1981
1982 void
1983 target_pre_inferior (int from_tty)
1984 {
1985 /* Clear out solib state. Otherwise the solib state of the previous
1986 inferior might have survived and is entirely wrong for the new
1987 target. This has been observed on GNU/Linux using glibc 2.3. How
1988 to reproduce:
1989
1990 bash$ ./foo&
1991 [1] 4711
1992 bash$ ./foo&
1993 [1] 4712
1994 bash$ gdb ./foo
1995 [...]
1996 (gdb) attach 4711
1997 (gdb) detach
1998 (gdb) attach 4712
1999 Cannot access memory at address 0xdeadbeef
2000 */
2001
2002 /* In some OSs, the shared library list is the same/global/shared
2003 across inferiors. If code is shared between processes, so are
2004 memory regions and features. */
2005 if (!gdbarch_has_global_solist (target_gdbarch ()))
2006 {
2007 no_shared_libraries (NULL, from_tty);
2008
2009 invalidate_target_mem_regions ();
2010
2011 target_clear_description ();
2012 }
2013
2014 agent_capability_invalidate ();
2015 }
2016
2017 /* Callback for iterate_over_inferiors. Gets rid of the given
2018 inferior. */
2019
2020 static int
2021 dispose_inferior (struct inferior *inf, void *args)
2022 {
2023 struct thread_info *thread;
2024
2025 thread = any_thread_of_process (inf->pid);
2026 if (thread)
2027 {
2028 switch_to_thread (thread->ptid);
2029
2030 /* Core inferiors actually should be detached, not killed. */
2031 if (target_has_execution)
2032 target_kill ();
2033 else
2034 target_detach (NULL, 0);
2035 }
2036
2037 return 0;
2038 }
2039
2040 /* This is to be called by the open routine before it does
2041 anything. */
2042
2043 void
2044 target_preopen (int from_tty)
2045 {
2046 dont_repeat ();
2047
2048 if (have_inferiors ())
2049 {
2050 if (!from_tty
2051 || !have_live_inferiors ()
2052 || query (_("A program is being debugged already. Kill it? ")))
2053 iterate_over_inferiors (dispose_inferior, NULL);
2054 else
2055 error (_("Program not killed."));
2056 }
2057
2058 /* Calling target_kill may remove the target from the stack. But if
2059 it doesn't (which seems like a win for UDI), remove it now. */
2060 /* Leave the exec target, though. The user may be switching from a
2061 live process to a core of the same program. */
2062 pop_all_targets_above (file_stratum);
2063
2064 target_pre_inferior (from_tty);
2065 }
2066
2067 /* Detach a target after doing deferred register stores. */
2068
2069 void
2070 target_detach (const char *args, int from_tty)
2071 {
2072 struct target_ops* t;
2073
2074 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2075 /* Don't remove global breakpoints here. They're removed on
2076 disconnection from the target. */
2077 ;
2078 else
2079 /* If we're in breakpoints-always-inserted mode, have to remove
2080 them before detaching. */
2081 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2082
2083 prepare_for_detach ();
2084
2085 current_target.to_detach (&current_target, args, from_tty);
2086 if (targetdebug)
2087 fprintf_unfiltered (gdb_stdlog, "target_detach (%s, %d)\n",
2088 args, from_tty);
2089 }
2090
2091 void
2092 target_disconnect (const char *args, int from_tty)
2093 {
2094 /* If we're in breakpoints-always-inserted mode or if breakpoints
2095 are global across processes, we have to remove them before
2096 disconnecting. */
2097 remove_breakpoints ();
2098
2099 if (targetdebug)
2100 fprintf_unfiltered (gdb_stdlog, "target_disconnect (%s, %d)\n",
2101 args, from_tty);
2102 current_target.to_disconnect (&current_target, args, from_tty);
2103 }
2104
2105 ptid_t
2106 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2107 {
2108 struct target_ops *t;
2109 ptid_t retval = (current_target.to_wait) (&current_target, ptid,
2110 status, options);
2111
2112 if (targetdebug)
2113 {
2114 char *status_string;
2115 char *options_string;
2116
2117 status_string = target_waitstatus_to_string (status);
2118 options_string = target_options_to_string (options);
2119 fprintf_unfiltered (gdb_stdlog,
2120 "target_wait (%d, status, options={%s})"
2121 " = %d, %s\n",
2122 ptid_get_pid (ptid), options_string,
2123 ptid_get_pid (retval), status_string);
2124 xfree (status_string);
2125 xfree (options_string);
2126 }
2127
2128 return retval;
2129 }
2130
2131 char *
2132 target_pid_to_str (ptid_t ptid)
2133 {
2134 return (*current_target.to_pid_to_str) (&current_target, ptid);
2135 }
2136
2137 char *
2138 target_thread_name (struct thread_info *info)
2139 {
2140 return current_target.to_thread_name (&current_target, info);
2141 }
2142
2143 void
2144 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2145 {
2146 struct target_ops *t;
2147
2148 target_dcache_invalidate ();
2149
2150 current_target.to_resume (&current_target, ptid, step, signal);
2151 if (targetdebug)
2152 fprintf_unfiltered (gdb_stdlog, "target_resume (%d, %s, %s)\n",
2153 ptid_get_pid (ptid),
2154 step ? "step" : "continue",
2155 gdb_signal_to_name (signal));
2156
2157 registers_changed_ptid (ptid);
2158 /* We only set the internal executing state here. The user/frontend
2159 running state is set at a higher level. */
2160 set_executing (ptid, 1);
2161 clear_inline_frame_state (ptid);
2162 }
2163
2164 void
2165 target_pass_signals (int numsigs, unsigned char *pass_signals)
2166 {
2167 if (targetdebug)
2168 {
2169 int i;
2170
2171 fprintf_unfiltered (gdb_stdlog, "target_pass_signals (%d, {",
2172 numsigs);
2173
2174 for (i = 0; i < numsigs; i++)
2175 if (pass_signals[i])
2176 fprintf_unfiltered (gdb_stdlog, " %s",
2177 gdb_signal_to_name (i));
2178
2179 fprintf_unfiltered (gdb_stdlog, " })\n");
2180 }
2181
2182 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2183 }
2184
2185 void
2186 target_program_signals (int numsigs, unsigned char *program_signals)
2187 {
2188 if (targetdebug)
2189 {
2190 int i;
2191
2192 fprintf_unfiltered (gdb_stdlog, "target_program_signals (%d, {",
2193 numsigs);
2194
2195 for (i = 0; i < numsigs; i++)
2196 if (program_signals[i])
2197 fprintf_unfiltered (gdb_stdlog, " %s",
2198 gdb_signal_to_name (i));
2199
2200 fprintf_unfiltered (gdb_stdlog, " })\n");
2201 }
2202
2203 (*current_target.to_program_signals) (&current_target,
2204 numsigs, program_signals);
2205 }
2206
2207 static int
2208 default_follow_fork (struct target_ops *self, int follow_child,
2209 int detach_fork)
2210 {
2211 /* Some target returned a fork event, but did not know how to follow it. */
2212 internal_error (__FILE__, __LINE__,
2213 _("could not find a target to follow fork"));
2214 }
2215
2216 /* Look through the list of possible targets for a target that can
2217 follow forks. */
2218
2219 int
2220 target_follow_fork (int follow_child, int detach_fork)
2221 {
2222 int retval = current_target.to_follow_fork (&current_target,
2223 follow_child, detach_fork);
2224
2225 if (targetdebug)
2226 fprintf_unfiltered (gdb_stdlog,
2227 "target_follow_fork (%d, %d) = %d\n",
2228 follow_child, detach_fork, retval);
2229 return retval;
2230 }
2231
2232 static void
2233 default_mourn_inferior (struct target_ops *self)
2234 {
2235 internal_error (__FILE__, __LINE__,
2236 _("could not find a target to follow mourn inferior"));
2237 }
2238
2239 void
2240 target_mourn_inferior (void)
2241 {
2242 current_target.to_mourn_inferior (&current_target);
2243 if (targetdebug)
2244 fprintf_unfiltered (gdb_stdlog, "target_mourn_inferior ()\n");
2245
2246 /* We no longer need to keep handles on any of the object files.
2247 Make sure to release them to avoid unnecessarily locking any
2248 of them while we're not actually debugging. */
2249 bfd_cache_close_all ();
2250 }
2251
2252 /* Look for a target which can describe architectural features, starting
2253 from TARGET. If we find one, return its description. */
2254
2255 const struct target_desc *
2256 target_read_description (struct target_ops *target)
2257 {
2258 return target->to_read_description (target);
2259 }
2260
2261 /* This implements a basic search of memory, reading target memory and
2262 performing the search here (as opposed to performing the search in on the
2263 target side with, for example, gdbserver). */
2264
2265 int
2266 simple_search_memory (struct target_ops *ops,
2267 CORE_ADDR start_addr, ULONGEST search_space_len,
2268 const gdb_byte *pattern, ULONGEST pattern_len,
2269 CORE_ADDR *found_addrp)
2270 {
2271 /* NOTE: also defined in find.c testcase. */
2272 #define SEARCH_CHUNK_SIZE 16000
2273 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2274 /* Buffer to hold memory contents for searching. */
2275 gdb_byte *search_buf;
2276 unsigned search_buf_size;
2277 struct cleanup *old_cleanups;
2278
2279 search_buf_size = chunk_size + pattern_len - 1;
2280
2281 /* No point in trying to allocate a buffer larger than the search space. */
2282 if (search_space_len < search_buf_size)
2283 search_buf_size = search_space_len;
2284
2285 search_buf = malloc (search_buf_size);
2286 if (search_buf == NULL)
2287 error (_("Unable to allocate memory to perform the search."));
2288 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2289
2290 /* Prime the search buffer. */
2291
2292 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2293 search_buf, start_addr, search_buf_size) != search_buf_size)
2294 {
2295 warning (_("Unable to access %s bytes of target "
2296 "memory at %s, halting search."),
2297 pulongest (search_buf_size), hex_string (start_addr));
2298 do_cleanups (old_cleanups);
2299 return -1;
2300 }
2301
2302 /* Perform the search.
2303
2304 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2305 When we've scanned N bytes we copy the trailing bytes to the start and
2306 read in another N bytes. */
2307
2308 while (search_space_len >= pattern_len)
2309 {
2310 gdb_byte *found_ptr;
2311 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2312
2313 found_ptr = memmem (search_buf, nr_search_bytes,
2314 pattern, pattern_len);
2315
2316 if (found_ptr != NULL)
2317 {
2318 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2319
2320 *found_addrp = found_addr;
2321 do_cleanups (old_cleanups);
2322 return 1;
2323 }
2324
2325 /* Not found in this chunk, skip to next chunk. */
2326
2327 /* Don't let search_space_len wrap here, it's unsigned. */
2328 if (search_space_len >= chunk_size)
2329 search_space_len -= chunk_size;
2330 else
2331 search_space_len = 0;
2332
2333 if (search_space_len >= pattern_len)
2334 {
2335 unsigned keep_len = search_buf_size - chunk_size;
2336 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2337 int nr_to_read;
2338
2339 /* Copy the trailing part of the previous iteration to the front
2340 of the buffer for the next iteration. */
2341 gdb_assert (keep_len == pattern_len - 1);
2342 memcpy (search_buf, search_buf + chunk_size, keep_len);
2343
2344 nr_to_read = min (search_space_len - keep_len, chunk_size);
2345
2346 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2347 search_buf + keep_len, read_addr,
2348 nr_to_read) != nr_to_read)
2349 {
2350 warning (_("Unable to access %s bytes of target "
2351 "memory at %s, halting search."),
2352 plongest (nr_to_read),
2353 hex_string (read_addr));
2354 do_cleanups (old_cleanups);
2355 return -1;
2356 }
2357
2358 start_addr += chunk_size;
2359 }
2360 }
2361
2362 /* Not found. */
2363
2364 do_cleanups (old_cleanups);
2365 return 0;
2366 }
2367
2368 /* Default implementation of memory-searching. */
2369
2370 static int
2371 default_search_memory (struct target_ops *self,
2372 CORE_ADDR start_addr, ULONGEST search_space_len,
2373 const gdb_byte *pattern, ULONGEST pattern_len,
2374 CORE_ADDR *found_addrp)
2375 {
2376 /* Start over from the top of the target stack. */
2377 return simple_search_memory (current_target.beneath,
2378 start_addr, search_space_len,
2379 pattern, pattern_len, found_addrp);
2380 }
2381
2382 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2383 sequence of bytes in PATTERN with length PATTERN_LEN.
2384
2385 The result is 1 if found, 0 if not found, and -1 if there was an error
2386 requiring halting of the search (e.g. memory read error).
2387 If the pattern is found the address is recorded in FOUND_ADDRP. */
2388
2389 int
2390 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2391 const gdb_byte *pattern, ULONGEST pattern_len,
2392 CORE_ADDR *found_addrp)
2393 {
2394 int found;
2395
2396 if (targetdebug)
2397 fprintf_unfiltered (gdb_stdlog, "target_search_memory (%s, ...)\n",
2398 hex_string (start_addr));
2399
2400 found = current_target.to_search_memory (&current_target, start_addr,
2401 search_space_len,
2402 pattern, pattern_len, found_addrp);
2403
2404 if (targetdebug)
2405 fprintf_unfiltered (gdb_stdlog, " = %d\n", found);
2406
2407 return found;
2408 }
2409
2410 /* Look through the currently pushed targets. If none of them will
2411 be able to restart the currently running process, issue an error
2412 message. */
2413
2414 void
2415 target_require_runnable (void)
2416 {
2417 struct target_ops *t;
2418
2419 for (t = target_stack; t != NULL; t = t->beneath)
2420 {
2421 /* If this target knows how to create a new program, then
2422 assume we will still be able to after killing the current
2423 one. Either killing and mourning will not pop T, or else
2424 find_default_run_target will find it again. */
2425 if (t->to_create_inferior != NULL)
2426 return;
2427
2428 /* Do not worry about thread_stratum targets that can not
2429 create inferiors. Assume they will be pushed again if
2430 necessary, and continue to the process_stratum. */
2431 if (t->to_stratum == thread_stratum
2432 || t->to_stratum == arch_stratum)
2433 continue;
2434
2435 error (_("The \"%s\" target does not support \"run\". "
2436 "Try \"help target\" or \"continue\"."),
2437 t->to_shortname);
2438 }
2439
2440 /* This function is only called if the target is running. In that
2441 case there should have been a process_stratum target and it
2442 should either know how to create inferiors, or not... */
2443 internal_error (__FILE__, __LINE__, _("No targets found"));
2444 }
2445
2446 /* Whether GDB is allowed to fall back to the default run target for
2447 "run", "attach", etc. when no target is connected yet. */
2448 static int auto_connect_native_target = 1;
2449
2450 static void
2451 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2452 struct cmd_list_element *c, const char *value)
2453 {
2454 fprintf_filtered (file,
2455 _("Whether GDB may automatically connect to the "
2456 "native target is %s.\n"),
2457 value);
2458 }
2459
2460 /* Look through the list of possible targets for a target that can
2461 execute a run or attach command without any other data. This is
2462 used to locate the default process stratum.
2463
2464 If DO_MESG is not NULL, the result is always valid (error() is
2465 called for errors); else, return NULL on error. */
2466
2467 static struct target_ops *
2468 find_default_run_target (char *do_mesg)
2469 {
2470 struct target_ops *runable = NULL;
2471
2472 if (auto_connect_native_target)
2473 {
2474 struct target_ops **t;
2475 int count = 0;
2476
2477 for (t = target_structs; t < target_structs + target_struct_size;
2478 ++t)
2479 {
2480 if ((*t)->to_can_run != delegate_can_run && target_can_run (*t))
2481 {
2482 runable = *t;
2483 ++count;
2484 }
2485 }
2486
2487 if (count != 1)
2488 runable = NULL;
2489 }
2490
2491 if (runable == NULL)
2492 {
2493 if (do_mesg)
2494 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2495 else
2496 return NULL;
2497 }
2498
2499 return runable;
2500 }
2501
2502 /* See target.h. */
2503
2504 struct target_ops *
2505 find_attach_target (void)
2506 {
2507 struct target_ops *t;
2508
2509 /* If a target on the current stack can attach, use it. */
2510 for (t = current_target.beneath; t != NULL; t = t->beneath)
2511 {
2512 if (t->to_attach != NULL)
2513 break;
2514 }
2515
2516 /* Otherwise, use the default run target for attaching. */
2517 if (t == NULL)
2518 t = find_default_run_target ("attach");
2519
2520 return t;
2521 }
2522
2523 /* See target.h. */
2524
2525 struct target_ops *
2526 find_run_target (void)
2527 {
2528 struct target_ops *t;
2529
2530 /* If a target on the current stack can attach, use it. */
2531 for (t = current_target.beneath; t != NULL; t = t->beneath)
2532 {
2533 if (t->to_create_inferior != NULL)
2534 break;
2535 }
2536
2537 /* Otherwise, use the default run target. */
2538 if (t == NULL)
2539 t = find_default_run_target ("run");
2540
2541 return t;
2542 }
2543
2544 /* Implement the "info proc" command. */
2545
2546 int
2547 target_info_proc (const char *args, enum info_proc_what what)
2548 {
2549 struct target_ops *t;
2550
2551 /* If we're already connected to something that can get us OS
2552 related data, use it. Otherwise, try using the native
2553 target. */
2554 if (current_target.to_stratum >= process_stratum)
2555 t = current_target.beneath;
2556 else
2557 t = find_default_run_target (NULL);
2558
2559 for (; t != NULL; t = t->beneath)
2560 {
2561 if (t->to_info_proc != NULL)
2562 {
2563 t->to_info_proc (t, args, what);
2564
2565 if (targetdebug)
2566 fprintf_unfiltered (gdb_stdlog,
2567 "target_info_proc (\"%s\", %d)\n", args, what);
2568
2569 return 1;
2570 }
2571 }
2572
2573 return 0;
2574 }
2575
2576 static int
2577 find_default_supports_disable_randomization (struct target_ops *self)
2578 {
2579 struct target_ops *t;
2580
2581 t = find_default_run_target (NULL);
2582 if (t && t->to_supports_disable_randomization)
2583 return (t->to_supports_disable_randomization) (t);
2584 return 0;
2585 }
2586
2587 int
2588 target_supports_disable_randomization (void)
2589 {
2590 struct target_ops *t;
2591
2592 for (t = &current_target; t != NULL; t = t->beneath)
2593 if (t->to_supports_disable_randomization)
2594 return t->to_supports_disable_randomization (t);
2595
2596 return 0;
2597 }
2598
2599 char *
2600 target_get_osdata (const char *type)
2601 {
2602 struct target_ops *t;
2603
2604 /* If we're already connected to something that can get us OS
2605 related data, use it. Otherwise, try using the native
2606 target. */
2607 if (current_target.to_stratum >= process_stratum)
2608 t = current_target.beneath;
2609 else
2610 t = find_default_run_target ("get OS data");
2611
2612 if (!t)
2613 return NULL;
2614
2615 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2616 }
2617
2618 static struct address_space *
2619 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2620 {
2621 struct inferior *inf;
2622
2623 /* Fall-back to the "main" address space of the inferior. */
2624 inf = find_inferior_pid (ptid_get_pid (ptid));
2625
2626 if (inf == NULL || inf->aspace == NULL)
2627 internal_error (__FILE__, __LINE__,
2628 _("Can't determine the current "
2629 "address space of thread %s\n"),
2630 target_pid_to_str (ptid));
2631
2632 return inf->aspace;
2633 }
2634
2635 /* Determine the current address space of thread PTID. */
2636
2637 struct address_space *
2638 target_thread_address_space (ptid_t ptid)
2639 {
2640 struct address_space *aspace;
2641
2642 aspace = current_target.to_thread_address_space (&current_target, ptid);
2643 gdb_assert (aspace != NULL);
2644
2645 if (targetdebug)
2646 fprintf_unfiltered (gdb_stdlog,
2647 "target_thread_address_space (%s) = %d\n",
2648 target_pid_to_str (ptid),
2649 address_space_num (aspace));
2650
2651 return aspace;
2652 }
2653
2654
2655 /* Target file operations. */
2656
2657 static struct target_ops *
2658 default_fileio_target (void)
2659 {
2660 /* If we're already connected to something that can perform
2661 file I/O, use it. Otherwise, try using the native target. */
2662 if (current_target.to_stratum >= process_stratum)
2663 return current_target.beneath;
2664 else
2665 return find_default_run_target ("file I/O");
2666 }
2667
2668 /* Open FILENAME on the target, using FLAGS and MODE. Return a
2669 target file descriptor, or -1 if an error occurs (and set
2670 *TARGET_ERRNO). */
2671 int
2672 target_fileio_open (const char *filename, int flags, int mode,
2673 int *target_errno)
2674 {
2675 struct target_ops *t;
2676
2677 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2678 {
2679 if (t->to_fileio_open != NULL)
2680 {
2681 int fd = t->to_fileio_open (t, filename, flags, mode, target_errno);
2682
2683 if (targetdebug)
2684 fprintf_unfiltered (gdb_stdlog,
2685 "target_fileio_open (%s,0x%x,0%o) = %d (%d)\n",
2686 filename, flags, mode,
2687 fd, fd != -1 ? 0 : *target_errno);
2688 return fd;
2689 }
2690 }
2691
2692 *target_errno = FILEIO_ENOSYS;
2693 return -1;
2694 }
2695
2696 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2697 Return the number of bytes written, or -1 if an error occurs
2698 (and set *TARGET_ERRNO). */
2699 int
2700 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2701 ULONGEST offset, int *target_errno)
2702 {
2703 struct target_ops *t;
2704
2705 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2706 {
2707 if (t->to_fileio_pwrite != NULL)
2708 {
2709 int ret = t->to_fileio_pwrite (t, fd, write_buf, len, offset,
2710 target_errno);
2711
2712 if (targetdebug)
2713 fprintf_unfiltered (gdb_stdlog,
2714 "target_fileio_pwrite (%d,...,%d,%s) "
2715 "= %d (%d)\n",
2716 fd, len, pulongest (offset),
2717 ret, ret != -1 ? 0 : *target_errno);
2718 return ret;
2719 }
2720 }
2721
2722 *target_errno = FILEIO_ENOSYS;
2723 return -1;
2724 }
2725
2726 /* Read up to LEN bytes FD on the target into READ_BUF.
2727 Return the number of bytes read, or -1 if an error occurs
2728 (and set *TARGET_ERRNO). */
2729 int
2730 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2731 ULONGEST offset, int *target_errno)
2732 {
2733 struct target_ops *t;
2734
2735 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2736 {
2737 if (t->to_fileio_pread != NULL)
2738 {
2739 int ret = t->to_fileio_pread (t, fd, read_buf, len, offset,
2740 target_errno);
2741
2742 if (targetdebug)
2743 fprintf_unfiltered (gdb_stdlog,
2744 "target_fileio_pread (%d,...,%d,%s) "
2745 "= %d (%d)\n",
2746 fd, len, pulongest (offset),
2747 ret, ret != -1 ? 0 : *target_errno);
2748 return ret;
2749 }
2750 }
2751
2752 *target_errno = FILEIO_ENOSYS;
2753 return -1;
2754 }
2755
2756 /* Close FD on the target. Return 0, or -1 if an error occurs
2757 (and set *TARGET_ERRNO). */
2758 int
2759 target_fileio_close (int fd, int *target_errno)
2760 {
2761 struct target_ops *t;
2762
2763 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2764 {
2765 if (t->to_fileio_close != NULL)
2766 {
2767 int ret = t->to_fileio_close (t, fd, target_errno);
2768
2769 if (targetdebug)
2770 fprintf_unfiltered (gdb_stdlog,
2771 "target_fileio_close (%d) = %d (%d)\n",
2772 fd, ret, ret != -1 ? 0 : *target_errno);
2773 return ret;
2774 }
2775 }
2776
2777 *target_errno = FILEIO_ENOSYS;
2778 return -1;
2779 }
2780
2781 /* Unlink FILENAME on the target. Return 0, or -1 if an error
2782 occurs (and set *TARGET_ERRNO). */
2783 int
2784 target_fileio_unlink (const char *filename, int *target_errno)
2785 {
2786 struct target_ops *t;
2787
2788 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2789 {
2790 if (t->to_fileio_unlink != NULL)
2791 {
2792 int ret = t->to_fileio_unlink (t, filename, target_errno);
2793
2794 if (targetdebug)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "target_fileio_unlink (%s) = %d (%d)\n",
2797 filename, ret, ret != -1 ? 0 : *target_errno);
2798 return ret;
2799 }
2800 }
2801
2802 *target_errno = FILEIO_ENOSYS;
2803 return -1;
2804 }
2805
2806 /* Read value of symbolic link FILENAME on the target. Return a
2807 null-terminated string allocated via xmalloc, or NULL if an error
2808 occurs (and set *TARGET_ERRNO). */
2809 char *
2810 target_fileio_readlink (const char *filename, int *target_errno)
2811 {
2812 struct target_ops *t;
2813
2814 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2815 {
2816 if (t->to_fileio_readlink != NULL)
2817 {
2818 char *ret = t->to_fileio_readlink (t, filename, target_errno);
2819
2820 if (targetdebug)
2821 fprintf_unfiltered (gdb_stdlog,
2822 "target_fileio_readlink (%s) = %s (%d)\n",
2823 filename, ret? ret : "(nil)",
2824 ret? 0 : *target_errno);
2825 return ret;
2826 }
2827 }
2828
2829 *target_errno = FILEIO_ENOSYS;
2830 return NULL;
2831 }
2832
2833 static void
2834 target_fileio_close_cleanup (void *opaque)
2835 {
2836 int fd = *(int *) opaque;
2837 int target_errno;
2838
2839 target_fileio_close (fd, &target_errno);
2840 }
2841
2842 /* Read target file FILENAME. Store the result in *BUF_P and
2843 return the size of the transferred data. PADDING additional bytes are
2844 available in *BUF_P. This is a helper function for
2845 target_fileio_read_alloc; see the declaration of that function for more
2846 information. */
2847
2848 static LONGEST
2849 target_fileio_read_alloc_1 (const char *filename,
2850 gdb_byte **buf_p, int padding)
2851 {
2852 struct cleanup *close_cleanup;
2853 size_t buf_alloc, buf_pos;
2854 gdb_byte *buf;
2855 LONGEST n;
2856 int fd;
2857 int target_errno;
2858
2859 fd = target_fileio_open (filename, FILEIO_O_RDONLY, 0700, &target_errno);
2860 if (fd == -1)
2861 return -1;
2862
2863 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
2864
2865 /* Start by reading up to 4K at a time. The target will throttle
2866 this number down if necessary. */
2867 buf_alloc = 4096;
2868 buf = xmalloc (buf_alloc);
2869 buf_pos = 0;
2870 while (1)
2871 {
2872 n = target_fileio_pread (fd, &buf[buf_pos],
2873 buf_alloc - buf_pos - padding, buf_pos,
2874 &target_errno);
2875 if (n < 0)
2876 {
2877 /* An error occurred. */
2878 do_cleanups (close_cleanup);
2879 xfree (buf);
2880 return -1;
2881 }
2882 else if (n == 0)
2883 {
2884 /* Read all there was. */
2885 do_cleanups (close_cleanup);
2886 if (buf_pos == 0)
2887 xfree (buf);
2888 else
2889 *buf_p = buf;
2890 return buf_pos;
2891 }
2892
2893 buf_pos += n;
2894
2895 /* If the buffer is filling up, expand it. */
2896 if (buf_alloc < buf_pos * 2)
2897 {
2898 buf_alloc *= 2;
2899 buf = xrealloc (buf, buf_alloc);
2900 }
2901
2902 QUIT;
2903 }
2904 }
2905
2906 /* Read target file FILENAME. Store the result in *BUF_P and return
2907 the size of the transferred data. See the declaration in "target.h"
2908 function for more information about the return value. */
2909
2910 LONGEST
2911 target_fileio_read_alloc (const char *filename, gdb_byte **buf_p)
2912 {
2913 return target_fileio_read_alloc_1 (filename, buf_p, 0);
2914 }
2915
2916 /* Read target file FILENAME. The result is NUL-terminated and
2917 returned as a string, allocated using xmalloc. If an error occurs
2918 or the transfer is unsupported, NULL is returned. Empty objects
2919 are returned as allocated but empty strings. A warning is issued
2920 if the result contains any embedded NUL bytes. */
2921
2922 char *
2923 target_fileio_read_stralloc (const char *filename)
2924 {
2925 gdb_byte *buffer;
2926 char *bufstr;
2927 LONGEST i, transferred;
2928
2929 transferred = target_fileio_read_alloc_1 (filename, &buffer, 1);
2930 bufstr = (char *) buffer;
2931
2932 if (transferred < 0)
2933 return NULL;
2934
2935 if (transferred == 0)
2936 return xstrdup ("");
2937
2938 bufstr[transferred] = 0;
2939
2940 /* Check for embedded NUL bytes; but allow trailing NULs. */
2941 for (i = strlen (bufstr); i < transferred; i++)
2942 if (bufstr[i] != 0)
2943 {
2944 warning (_("target file %s "
2945 "contained unexpected null characters"),
2946 filename);
2947 break;
2948 }
2949
2950 return bufstr;
2951 }
2952
2953
2954 static int
2955 default_region_ok_for_hw_watchpoint (struct target_ops *self,
2956 CORE_ADDR addr, int len)
2957 {
2958 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
2959 }
2960
2961 static int
2962 default_watchpoint_addr_within_range (struct target_ops *target,
2963 CORE_ADDR addr,
2964 CORE_ADDR start, int length)
2965 {
2966 return addr >= start && addr < start + length;
2967 }
2968
2969 static struct gdbarch *
2970 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
2971 {
2972 return target_gdbarch ();
2973 }
2974
2975 static int
2976 return_zero (struct target_ops *ignore)
2977 {
2978 return 0;
2979 }
2980
2981 static int
2982 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
2983 {
2984 return 0;
2985 }
2986
2987 /*
2988 * Find the next target down the stack from the specified target.
2989 */
2990
2991 struct target_ops *
2992 find_target_beneath (struct target_ops *t)
2993 {
2994 return t->beneath;
2995 }
2996
2997 /* See target.h. */
2998
2999 struct target_ops *
3000 find_target_at (enum strata stratum)
3001 {
3002 struct target_ops *t;
3003
3004 for (t = current_target.beneath; t != NULL; t = t->beneath)
3005 if (t->to_stratum == stratum)
3006 return t;
3007
3008 return NULL;
3009 }
3010
3011 \f
3012 /* The inferior process has died. Long live the inferior! */
3013
3014 void
3015 generic_mourn_inferior (void)
3016 {
3017 ptid_t ptid;
3018
3019 ptid = inferior_ptid;
3020 inferior_ptid = null_ptid;
3021
3022 /* Mark breakpoints uninserted in case something tries to delete a
3023 breakpoint while we delete the inferior's threads (which would
3024 fail, since the inferior is long gone). */
3025 mark_breakpoints_out ();
3026
3027 if (!ptid_equal (ptid, null_ptid))
3028 {
3029 int pid = ptid_get_pid (ptid);
3030 exit_inferior (pid);
3031 }
3032
3033 /* Note this wipes step-resume breakpoints, so needs to be done
3034 after exit_inferior, which ends up referencing the step-resume
3035 breakpoints through clear_thread_inferior_resources. */
3036 breakpoint_init_inferior (inf_exited);
3037
3038 registers_changed ();
3039
3040 reopen_exec_file ();
3041 reinit_frame_cache ();
3042
3043 if (deprecated_detach_hook)
3044 deprecated_detach_hook ();
3045 }
3046 \f
3047 /* Convert a normal process ID to a string. Returns the string in a
3048 static buffer. */
3049
3050 char *
3051 normal_pid_to_str (ptid_t ptid)
3052 {
3053 static char buf[32];
3054
3055 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3056 return buf;
3057 }
3058
3059 static char *
3060 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3061 {
3062 return normal_pid_to_str (ptid);
3063 }
3064
3065 /* Error-catcher for target_find_memory_regions. */
3066 static int
3067 dummy_find_memory_regions (struct target_ops *self,
3068 find_memory_region_ftype ignore1, void *ignore2)
3069 {
3070 error (_("Command not implemented for this target."));
3071 return 0;
3072 }
3073
3074 /* Error-catcher for target_make_corefile_notes. */
3075 static char *
3076 dummy_make_corefile_notes (struct target_ops *self,
3077 bfd *ignore1, int *ignore2)
3078 {
3079 error (_("Command not implemented for this target."));
3080 return NULL;
3081 }
3082
3083 /* Set up the handful of non-empty slots needed by the dummy target
3084 vector. */
3085
3086 static void
3087 init_dummy_target (void)
3088 {
3089 dummy_target.to_shortname = "None";
3090 dummy_target.to_longname = "None";
3091 dummy_target.to_doc = "";
3092 dummy_target.to_supports_disable_randomization
3093 = find_default_supports_disable_randomization;
3094 dummy_target.to_stratum = dummy_stratum;
3095 dummy_target.to_has_all_memory = return_zero;
3096 dummy_target.to_has_memory = return_zero;
3097 dummy_target.to_has_stack = return_zero;
3098 dummy_target.to_has_registers = return_zero;
3099 dummy_target.to_has_execution = return_zero_has_execution;
3100 dummy_target.to_magic = OPS_MAGIC;
3101
3102 install_dummy_methods (&dummy_target);
3103 }
3104 \f
3105 static void
3106 debug_to_open (char *args, int from_tty)
3107 {
3108 debug_target.to_open (args, from_tty);
3109
3110 fprintf_unfiltered (gdb_stdlog, "target_open (%s, %d)\n", args, from_tty);
3111 }
3112
3113 void
3114 target_close (struct target_ops *targ)
3115 {
3116 gdb_assert (!target_is_pushed (targ));
3117
3118 if (targ->to_xclose != NULL)
3119 targ->to_xclose (targ);
3120 else if (targ->to_close != NULL)
3121 targ->to_close (targ);
3122
3123 if (targetdebug)
3124 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3125 }
3126
3127 int
3128 target_thread_alive (ptid_t ptid)
3129 {
3130 int retval;
3131
3132 retval = current_target.to_thread_alive (&current_target, ptid);
3133 if (targetdebug)
3134 fprintf_unfiltered (gdb_stdlog, "target_thread_alive (%d) = %d\n",
3135 ptid_get_pid (ptid), retval);
3136
3137 return retval;
3138 }
3139
3140 void
3141 target_find_new_threads (void)
3142 {
3143 current_target.to_find_new_threads (&current_target);
3144 if (targetdebug)
3145 fprintf_unfiltered (gdb_stdlog, "target_find_new_threads ()\n");
3146 }
3147
3148 void
3149 target_stop (ptid_t ptid)
3150 {
3151 if (!may_stop)
3152 {
3153 warning (_("May not interrupt or stop the target, ignoring attempt"));
3154 return;
3155 }
3156
3157 (*current_target.to_stop) (&current_target, ptid);
3158 }
3159
3160 static void
3161 debug_to_post_attach (struct target_ops *self, int pid)
3162 {
3163 debug_target.to_post_attach (&debug_target, pid);
3164
3165 fprintf_unfiltered (gdb_stdlog, "target_post_attach (%d)\n", pid);
3166 }
3167
3168 /* Concatenate ELEM to LIST, a comma separate list, and return the
3169 result. The LIST incoming argument is released. */
3170
3171 static char *
3172 str_comma_list_concat_elem (char *list, const char *elem)
3173 {
3174 if (list == NULL)
3175 return xstrdup (elem);
3176 else
3177 return reconcat (list, list, ", ", elem, (char *) NULL);
3178 }
3179
3180 /* Helper for target_options_to_string. If OPT is present in
3181 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3182 Returns the new resulting string. OPT is removed from
3183 TARGET_OPTIONS. */
3184
3185 static char *
3186 do_option (int *target_options, char *ret,
3187 int opt, char *opt_str)
3188 {
3189 if ((*target_options & opt) != 0)
3190 {
3191 ret = str_comma_list_concat_elem (ret, opt_str);
3192 *target_options &= ~opt;
3193 }
3194
3195 return ret;
3196 }
3197
3198 char *
3199 target_options_to_string (int target_options)
3200 {
3201 char *ret = NULL;
3202
3203 #define DO_TARG_OPTION(OPT) \
3204 ret = do_option (&target_options, ret, OPT, #OPT)
3205
3206 DO_TARG_OPTION (TARGET_WNOHANG);
3207
3208 if (target_options != 0)
3209 ret = str_comma_list_concat_elem (ret, "unknown???");
3210
3211 if (ret == NULL)
3212 ret = xstrdup ("");
3213 return ret;
3214 }
3215
3216 static void
3217 debug_print_register (const char * func,
3218 struct regcache *regcache, int regno)
3219 {
3220 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3221
3222 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3223 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3224 && gdbarch_register_name (gdbarch, regno) != NULL
3225 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3226 fprintf_unfiltered (gdb_stdlog, "(%s)",
3227 gdbarch_register_name (gdbarch, regno));
3228 else
3229 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3230 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3231 {
3232 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3233 int i, size = register_size (gdbarch, regno);
3234 gdb_byte buf[MAX_REGISTER_SIZE];
3235
3236 regcache_raw_collect (regcache, regno, buf);
3237 fprintf_unfiltered (gdb_stdlog, " = ");
3238 for (i = 0; i < size; i++)
3239 {
3240 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3241 }
3242 if (size <= sizeof (LONGEST))
3243 {
3244 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3245
3246 fprintf_unfiltered (gdb_stdlog, " %s %s",
3247 core_addr_to_string_nz (val), plongest (val));
3248 }
3249 }
3250 fprintf_unfiltered (gdb_stdlog, "\n");
3251 }
3252
3253 void
3254 target_fetch_registers (struct regcache *regcache, int regno)
3255 {
3256 current_target.to_fetch_registers (&current_target, regcache, regno);
3257 if (targetdebug)
3258 debug_print_register ("target_fetch_registers", regcache, regno);
3259 }
3260
3261 void
3262 target_store_registers (struct regcache *regcache, int regno)
3263 {
3264 struct target_ops *t;
3265
3266 if (!may_write_registers)
3267 error (_("Writing to registers is not allowed (regno %d)"), regno);
3268
3269 current_target.to_store_registers (&current_target, regcache, regno);
3270 if (targetdebug)
3271 {
3272 debug_print_register ("target_store_registers", regcache, regno);
3273 }
3274 }
3275
3276 int
3277 target_core_of_thread (ptid_t ptid)
3278 {
3279 int retval = current_target.to_core_of_thread (&current_target, ptid);
3280
3281 if (targetdebug)
3282 fprintf_unfiltered (gdb_stdlog,
3283 "target_core_of_thread (%d) = %d\n",
3284 ptid_get_pid (ptid), retval);
3285 return retval;
3286 }
3287
3288 int
3289 simple_verify_memory (struct target_ops *ops,
3290 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3291 {
3292 LONGEST total_xfered = 0;
3293
3294 while (total_xfered < size)
3295 {
3296 ULONGEST xfered_len;
3297 enum target_xfer_status status;
3298 gdb_byte buf[1024];
3299 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3300
3301 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3302 buf, NULL, lma + total_xfered, howmuch,
3303 &xfered_len);
3304 if (status == TARGET_XFER_OK
3305 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3306 {
3307 total_xfered += xfered_len;
3308 QUIT;
3309 }
3310 else
3311 return 0;
3312 }
3313 return 1;
3314 }
3315
3316 /* Default implementation of memory verification. */
3317
3318 static int
3319 default_verify_memory (struct target_ops *self,
3320 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3321 {
3322 /* Start over from the top of the target stack. */
3323 return simple_verify_memory (current_target.beneath,
3324 data, memaddr, size);
3325 }
3326
3327 int
3328 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3329 {
3330 int retval = current_target.to_verify_memory (&current_target,
3331 data, memaddr, size);
3332
3333 if (targetdebug)
3334 fprintf_unfiltered (gdb_stdlog,
3335 "target_verify_memory (%s, %s) = %d\n",
3336 paddress (target_gdbarch (), memaddr),
3337 pulongest (size),
3338 retval);
3339 return retval;
3340 }
3341
3342 /* The documentation for this function is in its prototype declaration in
3343 target.h. */
3344
3345 int
3346 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3347 {
3348 int ret;
3349
3350 ret = current_target.to_insert_mask_watchpoint (&current_target,
3351 addr, mask, rw);
3352
3353 if (targetdebug)
3354 fprintf_unfiltered (gdb_stdlog, "\
3355 target_insert_mask_watchpoint (%s, %s, %d) = %d\n",
3356 core_addr_to_string (addr),
3357 core_addr_to_string (mask), rw, ret);
3358
3359 return ret;
3360 }
3361
3362 /* The documentation for this function is in its prototype declaration in
3363 target.h. */
3364
3365 int
3366 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3367 {
3368 int ret;
3369
3370 ret = current_target.to_remove_mask_watchpoint (&current_target,
3371 addr, mask, rw);
3372
3373 if (targetdebug)
3374 fprintf_unfiltered (gdb_stdlog, "\
3375 target_remove_mask_watchpoint (%s, %s, %d) = %d\n",
3376 core_addr_to_string (addr),
3377 core_addr_to_string (mask), rw, ret);
3378
3379 return ret;
3380 }
3381
3382 /* The documentation for this function is in its prototype declaration
3383 in target.h. */
3384
3385 int
3386 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3387 {
3388 return current_target.to_masked_watch_num_registers (&current_target,
3389 addr, mask);
3390 }
3391
3392 /* The documentation for this function is in its prototype declaration
3393 in target.h. */
3394
3395 int
3396 target_ranged_break_num_registers (void)
3397 {
3398 return current_target.to_ranged_break_num_registers (&current_target);
3399 }
3400
3401 /* See target.h. */
3402
3403 struct btrace_target_info *
3404 target_enable_btrace (ptid_t ptid)
3405 {
3406 return current_target.to_enable_btrace (&current_target, ptid);
3407 }
3408
3409 /* See target.h. */
3410
3411 void
3412 target_disable_btrace (struct btrace_target_info *btinfo)
3413 {
3414 current_target.to_disable_btrace (&current_target, btinfo);
3415 }
3416
3417 /* See target.h. */
3418
3419 void
3420 target_teardown_btrace (struct btrace_target_info *btinfo)
3421 {
3422 current_target.to_teardown_btrace (&current_target, btinfo);
3423 }
3424
3425 /* See target.h. */
3426
3427 enum btrace_error
3428 target_read_btrace (VEC (btrace_block_s) **btrace,
3429 struct btrace_target_info *btinfo,
3430 enum btrace_read_type type)
3431 {
3432 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3433 }
3434
3435 /* See target.h. */
3436
3437 void
3438 target_stop_recording (void)
3439 {
3440 current_target.to_stop_recording (&current_target);
3441 }
3442
3443 /* See target.h. */
3444
3445 void
3446 target_info_record (void)
3447 {
3448 struct target_ops *t;
3449
3450 for (t = current_target.beneath; t != NULL; t = t->beneath)
3451 if (t->to_info_record != NULL)
3452 {
3453 t->to_info_record (t);
3454 return;
3455 }
3456
3457 tcomplain ();
3458 }
3459
3460 /* See target.h. */
3461
3462 void
3463 target_save_record (const char *filename)
3464 {
3465 current_target.to_save_record (&current_target, filename);
3466 }
3467
3468 /* See target.h. */
3469
3470 int
3471 target_supports_delete_record (void)
3472 {
3473 struct target_ops *t;
3474
3475 for (t = current_target.beneath; t != NULL; t = t->beneath)
3476 if (t->to_delete_record != NULL)
3477 return 1;
3478
3479 return 0;
3480 }
3481
3482 /* See target.h. */
3483
3484 void
3485 target_delete_record (void)
3486 {
3487 current_target.to_delete_record (&current_target);
3488 }
3489
3490 /* See target.h. */
3491
3492 int
3493 target_record_is_replaying (void)
3494 {
3495 return current_target.to_record_is_replaying (&current_target);
3496 }
3497
3498 /* See target.h. */
3499
3500 void
3501 target_goto_record_begin (void)
3502 {
3503 current_target.to_goto_record_begin (&current_target);
3504 }
3505
3506 /* See target.h. */
3507
3508 void
3509 target_goto_record_end (void)
3510 {
3511 current_target.to_goto_record_end (&current_target);
3512 }
3513
3514 /* See target.h. */
3515
3516 void
3517 target_goto_record (ULONGEST insn)
3518 {
3519 current_target.to_goto_record (&current_target, insn);
3520 }
3521
3522 /* See target.h. */
3523
3524 void
3525 target_insn_history (int size, int flags)
3526 {
3527 current_target.to_insn_history (&current_target, size, flags);
3528 }
3529
3530 /* See target.h. */
3531
3532 void
3533 target_insn_history_from (ULONGEST from, int size, int flags)
3534 {
3535 current_target.to_insn_history_from (&current_target, from, size, flags);
3536 }
3537
3538 /* See target.h. */
3539
3540 void
3541 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3542 {
3543 current_target.to_insn_history_range (&current_target, begin, end, flags);
3544 }
3545
3546 /* See target.h. */
3547
3548 void
3549 target_call_history (int size, int flags)
3550 {
3551 current_target.to_call_history (&current_target, size, flags);
3552 }
3553
3554 /* See target.h. */
3555
3556 void
3557 target_call_history_from (ULONGEST begin, int size, int flags)
3558 {
3559 current_target.to_call_history_from (&current_target, begin, size, flags);
3560 }
3561
3562 /* See target.h. */
3563
3564 void
3565 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3566 {
3567 current_target.to_call_history_range (&current_target, begin, end, flags);
3568 }
3569
3570 static void
3571 debug_to_prepare_to_store (struct target_ops *self, struct regcache *regcache)
3572 {
3573 debug_target.to_prepare_to_store (&debug_target, regcache);
3574
3575 fprintf_unfiltered (gdb_stdlog, "target_prepare_to_store ()\n");
3576 }
3577
3578 /* See target.h. */
3579
3580 const struct frame_unwind *
3581 target_get_unwinder (void)
3582 {
3583 return current_target.to_get_unwinder (&current_target);
3584 }
3585
3586 /* See target.h. */
3587
3588 const struct frame_unwind *
3589 target_get_tailcall_unwinder (void)
3590 {
3591 return current_target.to_get_tailcall_unwinder (&current_target);
3592 }
3593
3594 /* Default implementation of to_decr_pc_after_break. */
3595
3596 static CORE_ADDR
3597 default_target_decr_pc_after_break (struct target_ops *ops,
3598 struct gdbarch *gdbarch)
3599 {
3600 return gdbarch_decr_pc_after_break (gdbarch);
3601 }
3602
3603 /* See target.h. */
3604
3605 CORE_ADDR
3606 target_decr_pc_after_break (struct gdbarch *gdbarch)
3607 {
3608 return current_target.to_decr_pc_after_break (&current_target, gdbarch);
3609 }
3610
3611 /* See target.h. */
3612
3613 void
3614 target_prepare_to_generate_core (void)
3615 {
3616 current_target.to_prepare_to_generate_core (&current_target);
3617 }
3618
3619 /* See target.h. */
3620
3621 void
3622 target_done_generating_core (void)
3623 {
3624 current_target.to_done_generating_core (&current_target);
3625 }
3626
3627 static void
3628 debug_to_files_info (struct target_ops *target)
3629 {
3630 debug_target.to_files_info (target);
3631
3632 fprintf_unfiltered (gdb_stdlog, "target_files_info (xxx)\n");
3633 }
3634
3635 static int
3636 debug_to_insert_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3637 struct bp_target_info *bp_tgt)
3638 {
3639 int retval;
3640
3641 retval = debug_target.to_insert_breakpoint (&debug_target, gdbarch, bp_tgt);
3642
3643 fprintf_unfiltered (gdb_stdlog,
3644 "target_insert_breakpoint (%s, xxx) = %ld\n",
3645 core_addr_to_string (bp_tgt->placed_address),
3646 (unsigned long) retval);
3647 return retval;
3648 }
3649
3650 static int
3651 debug_to_remove_breakpoint (struct target_ops *ops, struct gdbarch *gdbarch,
3652 struct bp_target_info *bp_tgt)
3653 {
3654 int retval;
3655
3656 retval = debug_target.to_remove_breakpoint (&debug_target, gdbarch, bp_tgt);
3657
3658 fprintf_unfiltered (gdb_stdlog,
3659 "target_remove_breakpoint (%s, xxx) = %ld\n",
3660 core_addr_to_string (bp_tgt->placed_address),
3661 (unsigned long) retval);
3662 return retval;
3663 }
3664
3665 static int
3666 debug_to_can_use_hw_breakpoint (struct target_ops *self,
3667 int type, int cnt, int from_tty)
3668 {
3669 int retval;
3670
3671 retval = debug_target.to_can_use_hw_breakpoint (&debug_target,
3672 type, cnt, from_tty);
3673
3674 fprintf_unfiltered (gdb_stdlog,
3675 "target_can_use_hw_breakpoint (%ld, %ld, %ld) = %ld\n",
3676 (unsigned long) type,
3677 (unsigned long) cnt,
3678 (unsigned long) from_tty,
3679 (unsigned long) retval);
3680 return retval;
3681 }
3682
3683 static int
3684 debug_to_region_ok_for_hw_watchpoint (struct target_ops *self,
3685 CORE_ADDR addr, int len)
3686 {
3687 CORE_ADDR retval;
3688
3689 retval = debug_target.to_region_ok_for_hw_watchpoint (&debug_target,
3690 addr, len);
3691
3692 fprintf_unfiltered (gdb_stdlog,
3693 "target_region_ok_for_hw_watchpoint (%s, %ld) = %s\n",
3694 core_addr_to_string (addr), (unsigned long) len,
3695 core_addr_to_string (retval));
3696 return retval;
3697 }
3698
3699 static int
3700 debug_to_can_accel_watchpoint_condition (struct target_ops *self,
3701 CORE_ADDR addr, int len, int rw,
3702 struct expression *cond)
3703 {
3704 int retval;
3705
3706 retval = debug_target.to_can_accel_watchpoint_condition (&debug_target,
3707 addr, len,
3708 rw, cond);
3709
3710 fprintf_unfiltered (gdb_stdlog,
3711 "target_can_accel_watchpoint_condition "
3712 "(%s, %d, %d, %s) = %ld\n",
3713 core_addr_to_string (addr), len, rw,
3714 host_address_to_string (cond), (unsigned long) retval);
3715 return retval;
3716 }
3717
3718 static int
3719 debug_to_stopped_by_watchpoint (struct target_ops *ops)
3720 {
3721 int retval;
3722
3723 retval = debug_target.to_stopped_by_watchpoint (&debug_target);
3724
3725 fprintf_unfiltered (gdb_stdlog,
3726 "target_stopped_by_watchpoint () = %ld\n",
3727 (unsigned long) retval);
3728 return retval;
3729 }
3730
3731 static int
3732 debug_to_stopped_data_address (struct target_ops *target, CORE_ADDR *addr)
3733 {
3734 int retval;
3735
3736 retval = debug_target.to_stopped_data_address (target, addr);
3737
3738 fprintf_unfiltered (gdb_stdlog,
3739 "target_stopped_data_address ([%s]) = %ld\n",
3740 core_addr_to_string (*addr),
3741 (unsigned long)retval);
3742 return retval;
3743 }
3744
3745 static int
3746 debug_to_watchpoint_addr_within_range (struct target_ops *target,
3747 CORE_ADDR addr,
3748 CORE_ADDR start, int length)
3749 {
3750 int retval;
3751
3752 retval = debug_target.to_watchpoint_addr_within_range (target, addr,
3753 start, length);
3754
3755 fprintf_filtered (gdb_stdlog,
3756 "target_watchpoint_addr_within_range (%s, %s, %d) = %d\n",
3757 core_addr_to_string (addr), core_addr_to_string (start),
3758 length, retval);
3759 return retval;
3760 }
3761
3762 static int
3763 debug_to_insert_hw_breakpoint (struct target_ops *self,
3764 struct gdbarch *gdbarch,
3765 struct bp_target_info *bp_tgt)
3766 {
3767 int retval;
3768
3769 retval = debug_target.to_insert_hw_breakpoint (&debug_target,
3770 gdbarch, bp_tgt);
3771
3772 fprintf_unfiltered (gdb_stdlog,
3773 "target_insert_hw_breakpoint (%s, xxx) = %ld\n",
3774 core_addr_to_string (bp_tgt->placed_address),
3775 (unsigned long) retval);
3776 return retval;
3777 }
3778
3779 static int
3780 debug_to_remove_hw_breakpoint (struct target_ops *self,
3781 struct gdbarch *gdbarch,
3782 struct bp_target_info *bp_tgt)
3783 {
3784 int retval;
3785
3786 retval = debug_target.to_remove_hw_breakpoint (&debug_target,
3787 gdbarch, bp_tgt);
3788
3789 fprintf_unfiltered (gdb_stdlog,
3790 "target_remove_hw_breakpoint (%s, xxx) = %ld\n",
3791 core_addr_to_string (bp_tgt->placed_address),
3792 (unsigned long) retval);
3793 return retval;
3794 }
3795
3796 static int
3797 debug_to_insert_watchpoint (struct target_ops *self,
3798 CORE_ADDR addr, int len, int type,
3799 struct expression *cond)
3800 {
3801 int retval;
3802
3803 retval = debug_target.to_insert_watchpoint (&debug_target,
3804 addr, len, type, cond);
3805
3806 fprintf_unfiltered (gdb_stdlog,
3807 "target_insert_watchpoint (%s, %d, %d, %s) = %ld\n",
3808 core_addr_to_string (addr), len, type,
3809 host_address_to_string (cond), (unsigned long) retval);
3810 return retval;
3811 }
3812
3813 static int
3814 debug_to_remove_watchpoint (struct target_ops *self,
3815 CORE_ADDR addr, int len, int type,
3816 struct expression *cond)
3817 {
3818 int retval;
3819
3820 retval = debug_target.to_remove_watchpoint (&debug_target,
3821 addr, len, type, cond);
3822
3823 fprintf_unfiltered (gdb_stdlog,
3824 "target_remove_watchpoint (%s, %d, %d, %s) = %ld\n",
3825 core_addr_to_string (addr), len, type,
3826 host_address_to_string (cond), (unsigned long) retval);
3827 return retval;
3828 }
3829
3830 static void
3831 debug_to_terminal_init (struct target_ops *self)
3832 {
3833 debug_target.to_terminal_init (&debug_target);
3834
3835 fprintf_unfiltered (gdb_stdlog, "target_terminal_init ()\n");
3836 }
3837
3838 static void
3839 debug_to_terminal_inferior (struct target_ops *self)
3840 {
3841 debug_target.to_terminal_inferior (&debug_target);
3842
3843 fprintf_unfiltered (gdb_stdlog, "target_terminal_inferior ()\n");
3844 }
3845
3846 static void
3847 debug_to_terminal_ours_for_output (struct target_ops *self)
3848 {
3849 debug_target.to_terminal_ours_for_output (&debug_target);
3850
3851 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours_for_output ()\n");
3852 }
3853
3854 static void
3855 debug_to_terminal_ours (struct target_ops *self)
3856 {
3857 debug_target.to_terminal_ours (&debug_target);
3858
3859 fprintf_unfiltered (gdb_stdlog, "target_terminal_ours ()\n");
3860 }
3861
3862 static void
3863 debug_to_terminal_save_ours (struct target_ops *self)
3864 {
3865 debug_target.to_terminal_save_ours (&debug_target);
3866
3867 fprintf_unfiltered (gdb_stdlog, "target_terminal_save_ours ()\n");
3868 }
3869
3870 static void
3871 debug_to_terminal_info (struct target_ops *self,
3872 const char *arg, int from_tty)
3873 {
3874 debug_target.to_terminal_info (&debug_target, arg, from_tty);
3875
3876 fprintf_unfiltered (gdb_stdlog, "target_terminal_info (%s, %d)\n", arg,
3877 from_tty);
3878 }
3879
3880 static void
3881 debug_to_load (struct target_ops *self, const char *args, int from_tty)
3882 {
3883 debug_target.to_load (&debug_target, args, from_tty);
3884
3885 fprintf_unfiltered (gdb_stdlog, "target_load (%s, %d)\n", args, from_tty);
3886 }
3887
3888 static void
3889 debug_to_post_startup_inferior (struct target_ops *self, ptid_t ptid)
3890 {
3891 debug_target.to_post_startup_inferior (&debug_target, ptid);
3892
3893 fprintf_unfiltered (gdb_stdlog, "target_post_startup_inferior (%d)\n",
3894 ptid_get_pid (ptid));
3895 }
3896
3897 static int
3898 debug_to_insert_fork_catchpoint (struct target_ops *self, int pid)
3899 {
3900 int retval;
3901
3902 retval = debug_target.to_insert_fork_catchpoint (&debug_target, pid);
3903
3904 fprintf_unfiltered (gdb_stdlog, "target_insert_fork_catchpoint (%d) = %d\n",
3905 pid, retval);
3906
3907 return retval;
3908 }
3909
3910 static int
3911 debug_to_remove_fork_catchpoint (struct target_ops *self, int pid)
3912 {
3913 int retval;
3914
3915 retval = debug_target.to_remove_fork_catchpoint (&debug_target, pid);
3916
3917 fprintf_unfiltered (gdb_stdlog, "target_remove_fork_catchpoint (%d) = %d\n",
3918 pid, retval);
3919
3920 return retval;
3921 }
3922
3923 static int
3924 debug_to_insert_vfork_catchpoint (struct target_ops *self, int pid)
3925 {
3926 int retval;
3927
3928 retval = debug_target.to_insert_vfork_catchpoint (&debug_target, pid);
3929
3930 fprintf_unfiltered (gdb_stdlog, "target_insert_vfork_catchpoint (%d) = %d\n",
3931 pid, retval);
3932
3933 return retval;
3934 }
3935
3936 static int
3937 debug_to_remove_vfork_catchpoint (struct target_ops *self, int pid)
3938 {
3939 int retval;
3940
3941 retval = debug_target.to_remove_vfork_catchpoint (&debug_target, pid);
3942
3943 fprintf_unfiltered (gdb_stdlog, "target_remove_vfork_catchpoint (%d) = %d\n",
3944 pid, retval);
3945
3946 return retval;
3947 }
3948
3949 static int
3950 debug_to_insert_exec_catchpoint (struct target_ops *self, int pid)
3951 {
3952 int retval;
3953
3954 retval = debug_target.to_insert_exec_catchpoint (&debug_target, pid);
3955
3956 fprintf_unfiltered (gdb_stdlog, "target_insert_exec_catchpoint (%d) = %d\n",
3957 pid, retval);
3958
3959 return retval;
3960 }
3961
3962 static int
3963 debug_to_remove_exec_catchpoint (struct target_ops *self, int pid)
3964 {
3965 int retval;
3966
3967 retval = debug_target.to_remove_exec_catchpoint (&debug_target, pid);
3968
3969 fprintf_unfiltered (gdb_stdlog, "target_remove_exec_catchpoint (%d) = %d\n",
3970 pid, retval);
3971
3972 return retval;
3973 }
3974
3975 static int
3976 debug_to_has_exited (struct target_ops *self,
3977 int pid, int wait_status, int *exit_status)
3978 {
3979 int has_exited;
3980
3981 has_exited = debug_target.to_has_exited (&debug_target,
3982 pid, wait_status, exit_status);
3983
3984 fprintf_unfiltered (gdb_stdlog, "target_has_exited (%d, %d, %d) = %d\n",
3985 pid, wait_status, *exit_status, has_exited);
3986
3987 return has_exited;
3988 }
3989
3990 static int
3991 debug_to_can_run (struct target_ops *self)
3992 {
3993 int retval;
3994
3995 retval = debug_target.to_can_run (&debug_target);
3996
3997 fprintf_unfiltered (gdb_stdlog, "target_can_run () = %d\n", retval);
3998
3999 return retval;
4000 }
4001
4002 static struct gdbarch *
4003 debug_to_thread_architecture (struct target_ops *ops, ptid_t ptid)
4004 {
4005 struct gdbarch *retval;
4006
4007 retval = debug_target.to_thread_architecture (ops, ptid);
4008
4009 fprintf_unfiltered (gdb_stdlog,
4010 "target_thread_architecture (%s) = %s [%s]\n",
4011 target_pid_to_str (ptid),
4012 host_address_to_string (retval),
4013 gdbarch_bfd_arch_info (retval)->printable_name);
4014 return retval;
4015 }
4016
4017 static void
4018 debug_to_stop (struct target_ops *self, ptid_t ptid)
4019 {
4020 debug_target.to_stop (&debug_target, ptid);
4021
4022 fprintf_unfiltered (gdb_stdlog, "target_stop (%s)\n",
4023 target_pid_to_str (ptid));
4024 }
4025
4026 static void
4027 debug_to_rcmd (struct target_ops *self, const char *command,
4028 struct ui_file *outbuf)
4029 {
4030 debug_target.to_rcmd (&debug_target, command, outbuf);
4031 fprintf_unfiltered (gdb_stdlog, "target_rcmd (%s, ...)\n", command);
4032 }
4033
4034 static char *
4035 debug_to_pid_to_exec_file (struct target_ops *self, int pid)
4036 {
4037 char *exec_file;
4038
4039 exec_file = debug_target.to_pid_to_exec_file (&debug_target, pid);
4040
4041 fprintf_unfiltered (gdb_stdlog, "target_pid_to_exec_file (%d) = %s\n",
4042 pid, exec_file);
4043
4044 return exec_file;
4045 }
4046
4047 static void
4048 setup_target_debug (void)
4049 {
4050 memcpy (&debug_target, &current_target, sizeof debug_target);
4051
4052 current_target.to_open = debug_to_open;
4053 current_target.to_post_attach = debug_to_post_attach;
4054 current_target.to_prepare_to_store = debug_to_prepare_to_store;
4055 current_target.to_files_info = debug_to_files_info;
4056 current_target.to_insert_breakpoint = debug_to_insert_breakpoint;
4057 current_target.to_remove_breakpoint = debug_to_remove_breakpoint;
4058 current_target.to_can_use_hw_breakpoint = debug_to_can_use_hw_breakpoint;
4059 current_target.to_insert_hw_breakpoint = debug_to_insert_hw_breakpoint;
4060 current_target.to_remove_hw_breakpoint = debug_to_remove_hw_breakpoint;
4061 current_target.to_insert_watchpoint = debug_to_insert_watchpoint;
4062 current_target.to_remove_watchpoint = debug_to_remove_watchpoint;
4063 current_target.to_stopped_by_watchpoint = debug_to_stopped_by_watchpoint;
4064 current_target.to_stopped_data_address = debug_to_stopped_data_address;
4065 current_target.to_watchpoint_addr_within_range
4066 = debug_to_watchpoint_addr_within_range;
4067 current_target.to_region_ok_for_hw_watchpoint
4068 = debug_to_region_ok_for_hw_watchpoint;
4069 current_target.to_can_accel_watchpoint_condition
4070 = debug_to_can_accel_watchpoint_condition;
4071 current_target.to_terminal_init = debug_to_terminal_init;
4072 current_target.to_terminal_inferior = debug_to_terminal_inferior;
4073 current_target.to_terminal_ours_for_output
4074 = debug_to_terminal_ours_for_output;
4075 current_target.to_terminal_ours = debug_to_terminal_ours;
4076 current_target.to_terminal_save_ours = debug_to_terminal_save_ours;
4077 current_target.to_terminal_info = debug_to_terminal_info;
4078 current_target.to_load = debug_to_load;
4079 current_target.to_post_startup_inferior = debug_to_post_startup_inferior;
4080 current_target.to_insert_fork_catchpoint = debug_to_insert_fork_catchpoint;
4081 current_target.to_remove_fork_catchpoint = debug_to_remove_fork_catchpoint;
4082 current_target.to_insert_vfork_catchpoint = debug_to_insert_vfork_catchpoint;
4083 current_target.to_remove_vfork_catchpoint = debug_to_remove_vfork_catchpoint;
4084 current_target.to_insert_exec_catchpoint = debug_to_insert_exec_catchpoint;
4085 current_target.to_remove_exec_catchpoint = debug_to_remove_exec_catchpoint;
4086 current_target.to_has_exited = debug_to_has_exited;
4087 current_target.to_can_run = debug_to_can_run;
4088 current_target.to_stop = debug_to_stop;
4089 current_target.to_rcmd = debug_to_rcmd;
4090 current_target.to_pid_to_exec_file = debug_to_pid_to_exec_file;
4091 current_target.to_thread_architecture = debug_to_thread_architecture;
4092 }
4093 \f
4094
4095 static char targ_desc[] =
4096 "Names of targets and files being debugged.\nShows the entire \
4097 stack of targets currently in use (including the exec-file,\n\
4098 core-file, and process, if any), as well as the symbol file name.";
4099
4100 static void
4101 default_rcmd (struct target_ops *self, const char *command,
4102 struct ui_file *output)
4103 {
4104 error (_("\"monitor\" command not supported by this target."));
4105 }
4106
4107 static void
4108 do_monitor_command (char *cmd,
4109 int from_tty)
4110 {
4111 target_rcmd (cmd, gdb_stdtarg);
4112 }
4113
4114 /* Print the name of each layers of our target stack. */
4115
4116 static void
4117 maintenance_print_target_stack (char *cmd, int from_tty)
4118 {
4119 struct target_ops *t;
4120
4121 printf_filtered (_("The current target stack is:\n"));
4122
4123 for (t = target_stack; t != NULL; t = t->beneath)
4124 {
4125 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
4126 }
4127 }
4128
4129 /* Controls if targets can report that they can/are async. This is
4130 just for maintainers to use when debugging gdb. */
4131 int target_async_permitted = 1;
4132
4133 /* The set command writes to this variable. If the inferior is
4134 executing, target_async_permitted is *not* updated. */
4135 static int target_async_permitted_1 = 1;
4136
4137 static void
4138 maint_set_target_async_command (char *args, int from_tty,
4139 struct cmd_list_element *c)
4140 {
4141 if (have_live_inferiors ())
4142 {
4143 target_async_permitted_1 = target_async_permitted;
4144 error (_("Cannot change this setting while the inferior is running."));
4145 }
4146
4147 target_async_permitted = target_async_permitted_1;
4148 }
4149
4150 static void
4151 maint_show_target_async_command (struct ui_file *file, int from_tty,
4152 struct cmd_list_element *c,
4153 const char *value)
4154 {
4155 fprintf_filtered (file,
4156 _("Controlling the inferior in "
4157 "asynchronous mode is %s.\n"), value);
4158 }
4159
4160 /* Temporary copies of permission settings. */
4161
4162 static int may_write_registers_1 = 1;
4163 static int may_write_memory_1 = 1;
4164 static int may_insert_breakpoints_1 = 1;
4165 static int may_insert_tracepoints_1 = 1;
4166 static int may_insert_fast_tracepoints_1 = 1;
4167 static int may_stop_1 = 1;
4168
4169 /* Make the user-set values match the real values again. */
4170
4171 void
4172 update_target_permissions (void)
4173 {
4174 may_write_registers_1 = may_write_registers;
4175 may_write_memory_1 = may_write_memory;
4176 may_insert_breakpoints_1 = may_insert_breakpoints;
4177 may_insert_tracepoints_1 = may_insert_tracepoints;
4178 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4179 may_stop_1 = may_stop;
4180 }
4181
4182 /* The one function handles (most of) the permission flags in the same
4183 way. */
4184
4185 static void
4186 set_target_permissions (char *args, int from_tty,
4187 struct cmd_list_element *c)
4188 {
4189 if (target_has_execution)
4190 {
4191 update_target_permissions ();
4192 error (_("Cannot change this setting while the inferior is running."));
4193 }
4194
4195 /* Make the real values match the user-changed values. */
4196 may_write_registers = may_write_registers_1;
4197 may_insert_breakpoints = may_insert_breakpoints_1;
4198 may_insert_tracepoints = may_insert_tracepoints_1;
4199 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4200 may_stop = may_stop_1;
4201 update_observer_mode ();
4202 }
4203
4204 /* Set memory write permission independently of observer mode. */
4205
4206 static void
4207 set_write_memory_permission (char *args, int from_tty,
4208 struct cmd_list_element *c)
4209 {
4210 /* Make the real values match the user-changed values. */
4211 may_write_memory = may_write_memory_1;
4212 update_observer_mode ();
4213 }
4214
4215
4216 void
4217 initialize_targets (void)
4218 {
4219 init_dummy_target ();
4220 push_target (&dummy_target);
4221
4222 add_info ("target", target_info, targ_desc);
4223 add_info ("files", target_info, targ_desc);
4224
4225 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4226 Set target debugging."), _("\
4227 Show target debugging."), _("\
4228 When non-zero, target debugging is enabled. Higher numbers are more\n\
4229 verbose. Changes do not take effect until the next \"run\" or \"target\"\n\
4230 command."),
4231 NULL,
4232 show_targetdebug,
4233 &setdebuglist, &showdebuglist);
4234
4235 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4236 &trust_readonly, _("\
4237 Set mode for reading from readonly sections."), _("\
4238 Show mode for reading from readonly sections."), _("\
4239 When this mode is on, memory reads from readonly sections (such as .text)\n\
4240 will be read from the object file instead of from the target. This will\n\
4241 result in significant performance improvement for remote targets."),
4242 NULL,
4243 show_trust_readonly,
4244 &setlist, &showlist);
4245
4246 add_com ("monitor", class_obscure, do_monitor_command,
4247 _("Send a command to the remote monitor (remote targets only)."));
4248
4249 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4250 _("Print the name of each layer of the internal target stack."),
4251 &maintenanceprintlist);
4252
4253 add_setshow_boolean_cmd ("target-async", no_class,
4254 &target_async_permitted_1, _("\
4255 Set whether gdb controls the inferior in asynchronous mode."), _("\
4256 Show whether gdb controls the inferior in asynchronous mode."), _("\
4257 Tells gdb whether to control the inferior in asynchronous mode."),
4258 maint_set_target_async_command,
4259 maint_show_target_async_command,
4260 &maintenance_set_cmdlist,
4261 &maintenance_show_cmdlist);
4262
4263 add_setshow_boolean_cmd ("may-write-registers", class_support,
4264 &may_write_registers_1, _("\
4265 Set permission to write into registers."), _("\
4266 Show permission to write into registers."), _("\
4267 When this permission is on, GDB may write into the target's registers.\n\
4268 Otherwise, any sort of write attempt will result in an error."),
4269 set_target_permissions, NULL,
4270 &setlist, &showlist);
4271
4272 add_setshow_boolean_cmd ("may-write-memory", class_support,
4273 &may_write_memory_1, _("\
4274 Set permission to write into target memory."), _("\
4275 Show permission to write into target memory."), _("\
4276 When this permission is on, GDB may write into the target's memory.\n\
4277 Otherwise, any sort of write attempt will result in an error."),
4278 set_write_memory_permission, NULL,
4279 &setlist, &showlist);
4280
4281 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4282 &may_insert_breakpoints_1, _("\
4283 Set permission to insert breakpoints in the target."), _("\
4284 Show permission to insert breakpoints in the target."), _("\
4285 When this permission is on, GDB may insert breakpoints in the program.\n\
4286 Otherwise, any sort of insertion attempt will result in an error."),
4287 set_target_permissions, NULL,
4288 &setlist, &showlist);
4289
4290 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4291 &may_insert_tracepoints_1, _("\
4292 Set permission to insert tracepoints in the target."), _("\
4293 Show permission to insert tracepoints in the target."), _("\
4294 When this permission is on, GDB may insert tracepoints in the program.\n\
4295 Otherwise, any sort of insertion attempt will result in an error."),
4296 set_target_permissions, NULL,
4297 &setlist, &showlist);
4298
4299 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4300 &may_insert_fast_tracepoints_1, _("\
4301 Set permission to insert fast tracepoints in the target."), _("\
4302 Show permission to insert fast tracepoints in the target."), _("\
4303 When this permission is on, GDB may insert fast tracepoints.\n\
4304 Otherwise, any sort of insertion attempt will result in an error."),
4305 set_target_permissions, NULL,
4306 &setlist, &showlist);
4307
4308 add_setshow_boolean_cmd ("may-interrupt", class_support,
4309 &may_stop_1, _("\
4310 Set permission to interrupt or signal the target."), _("\
4311 Show permission to interrupt or signal the target."), _("\
4312 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4313 Otherwise, any attempt to interrupt or stop will be ignored."),
4314 set_target_permissions, NULL,
4315 &setlist, &showlist);
4316
4317 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4318 &auto_connect_native_target, _("\
4319 Set whether GDB may automatically connect to the native target."), _("\
4320 Show whether GDB may automatically connect to the native target."), _("\
4321 When on, and GDB is not connected to a target yet, GDB\n\
4322 attempts \"run\" and other commands with the native target."),
4323 NULL, show_auto_connect_native_target,
4324 &setlist, &showlist);
4325 }