]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
Prepare linux_find_memory_regions_full & co. for move
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46
47 static void target_info (char *, int);
48
49 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
50
51 static void default_terminal_info (struct target_ops *, const char *, int);
52
53 static int default_watchpoint_addr_within_range (struct target_ops *,
54 CORE_ADDR, CORE_ADDR, int);
55
56 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
57 CORE_ADDR, int);
58
59 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
60
61 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
62 long lwp, long tid);
63
64 static int default_follow_fork (struct target_ops *self, int follow_child,
65 int detach_fork);
66
67 static void default_mourn_inferior (struct target_ops *self);
68
69 static int default_search_memory (struct target_ops *ops,
70 CORE_ADDR start_addr,
71 ULONGEST search_space_len,
72 const gdb_byte *pattern,
73 ULONGEST pattern_len,
74 CORE_ADDR *found_addrp);
75
76 static int default_verify_memory (struct target_ops *self,
77 const gdb_byte *data,
78 CORE_ADDR memaddr, ULONGEST size);
79
80 static struct address_space *default_thread_address_space
81 (struct target_ops *self, ptid_t ptid);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static int return_zero (struct target_ops *);
86
87 static int return_zero_has_execution (struct target_ops *, ptid_t);
88
89 static void target_command (char *, int);
90
91 static struct target_ops *find_default_run_target (char *);
92
93 static struct gdbarch *default_thread_architecture (struct target_ops *ops,
94 ptid_t ptid);
95
96 static int dummy_find_memory_regions (struct target_ops *self,
97 find_memory_region_ftype ignore1,
98 void *ignore2);
99
100 static char *dummy_make_corefile_notes (struct target_ops *self,
101 bfd *ignore1, int *ignore2);
102
103 static char *default_pid_to_str (struct target_ops *ops, ptid_t ptid);
104
105 static enum exec_direction_kind default_execution_direction
106 (struct target_ops *self);
107
108 static struct target_ops debug_target;
109
110 #include "target-delegates.c"
111
112 static void init_dummy_target (void);
113
114 static void update_current_target (void);
115
116 /* Vector of existing target structures. */
117 typedef struct target_ops *target_ops_p;
118 DEF_VEC_P (target_ops_p);
119 static VEC (target_ops_p) *target_structs;
120
121 /* The initial current target, so that there is always a semi-valid
122 current target. */
123
124 static struct target_ops dummy_target;
125
126 /* Top of target stack. */
127
128 static struct target_ops *target_stack;
129
130 /* The target structure we are currently using to talk to a process
131 or file or whatever "inferior" we have. */
132
133 struct target_ops current_target;
134
135 /* Command list for target. */
136
137 static struct cmd_list_element *targetlist = NULL;
138
139 /* Nonzero if we should trust readonly sections from the
140 executable when reading memory. */
141
142 static int trust_readonly = 0;
143
144 /* Nonzero if we should show true memory content including
145 memory breakpoint inserted by gdb. */
146
147 static int show_memory_breakpoints = 0;
148
149 /* These globals control whether GDB attempts to perform these
150 operations; they are useful for targets that need to prevent
151 inadvertant disruption, such as in non-stop mode. */
152
153 int may_write_registers = 1;
154
155 int may_write_memory = 1;
156
157 int may_insert_breakpoints = 1;
158
159 int may_insert_tracepoints = 1;
160
161 int may_insert_fast_tracepoints = 1;
162
163 int may_stop = 1;
164
165 /* Non-zero if we want to see trace of target level stuff. */
166
167 static unsigned int targetdebug = 0;
168
169 static void
170 set_targetdebug (char *args, int from_tty, struct cmd_list_element *c)
171 {
172 update_current_target ();
173 }
174
175 static void
176 show_targetdebug (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
180 }
181
182 static void setup_target_debug (void);
183
184 /* The user just typed 'target' without the name of a target. */
185
186 static void
187 target_command (char *arg, int from_tty)
188 {
189 fputs_filtered ("Argument required (target name). Try `help target'\n",
190 gdb_stdout);
191 }
192
193 /* Default target_has_* methods for process_stratum targets. */
194
195 int
196 default_child_has_all_memory (struct target_ops *ops)
197 {
198 /* If no inferior selected, then we can't read memory here. */
199 if (ptid_equal (inferior_ptid, null_ptid))
200 return 0;
201
202 return 1;
203 }
204
205 int
206 default_child_has_memory (struct target_ops *ops)
207 {
208 /* If no inferior selected, then we can't read memory here. */
209 if (ptid_equal (inferior_ptid, null_ptid))
210 return 0;
211
212 return 1;
213 }
214
215 int
216 default_child_has_stack (struct target_ops *ops)
217 {
218 /* If no inferior selected, there's no stack. */
219 if (ptid_equal (inferior_ptid, null_ptid))
220 return 0;
221
222 return 1;
223 }
224
225 int
226 default_child_has_registers (struct target_ops *ops)
227 {
228 /* Can't read registers from no inferior. */
229 if (ptid_equal (inferior_ptid, null_ptid))
230 return 0;
231
232 return 1;
233 }
234
235 int
236 default_child_has_execution (struct target_ops *ops, ptid_t the_ptid)
237 {
238 /* If there's no thread selected, then we can't make it run through
239 hoops. */
240 if (ptid_equal (the_ptid, null_ptid))
241 return 0;
242
243 return 1;
244 }
245
246
247 int
248 target_has_all_memory_1 (void)
249 {
250 struct target_ops *t;
251
252 for (t = current_target.beneath; t != NULL; t = t->beneath)
253 if (t->to_has_all_memory (t))
254 return 1;
255
256 return 0;
257 }
258
259 int
260 target_has_memory_1 (void)
261 {
262 struct target_ops *t;
263
264 for (t = current_target.beneath; t != NULL; t = t->beneath)
265 if (t->to_has_memory (t))
266 return 1;
267
268 return 0;
269 }
270
271 int
272 target_has_stack_1 (void)
273 {
274 struct target_ops *t;
275
276 for (t = current_target.beneath; t != NULL; t = t->beneath)
277 if (t->to_has_stack (t))
278 return 1;
279
280 return 0;
281 }
282
283 int
284 target_has_registers_1 (void)
285 {
286 struct target_ops *t;
287
288 for (t = current_target.beneath; t != NULL; t = t->beneath)
289 if (t->to_has_registers (t))
290 return 1;
291
292 return 0;
293 }
294
295 int
296 target_has_execution_1 (ptid_t the_ptid)
297 {
298 struct target_ops *t;
299
300 for (t = current_target.beneath; t != NULL; t = t->beneath)
301 if (t->to_has_execution (t, the_ptid))
302 return 1;
303
304 return 0;
305 }
306
307 int
308 target_has_execution_current (void)
309 {
310 return target_has_execution_1 (inferior_ptid);
311 }
312
313 /* Complete initialization of T. This ensures that various fields in
314 T are set, if needed by the target implementation. */
315
316 void
317 complete_target_initialization (struct target_ops *t)
318 {
319 /* Provide default values for all "must have" methods. */
320
321 if (t->to_has_all_memory == NULL)
322 t->to_has_all_memory = return_zero;
323
324 if (t->to_has_memory == NULL)
325 t->to_has_memory = return_zero;
326
327 if (t->to_has_stack == NULL)
328 t->to_has_stack = return_zero;
329
330 if (t->to_has_registers == NULL)
331 t->to_has_registers = return_zero;
332
333 if (t->to_has_execution == NULL)
334 t->to_has_execution = return_zero_has_execution;
335
336 /* These methods can be called on an unpushed target and so require
337 a default implementation if the target might plausibly be the
338 default run target. */
339 gdb_assert (t->to_can_run == NULL || (t->to_can_async_p != NULL
340 && t->to_supports_non_stop != NULL));
341
342 install_delegators (t);
343 }
344
345 /* This is used to implement the various target commands. */
346
347 static void
348 open_target (char *args, int from_tty, struct cmd_list_element *command)
349 {
350 struct target_ops *ops = get_cmd_context (command);
351
352 if (targetdebug)
353 fprintf_unfiltered (gdb_stdlog, "-> %s->to_open (...)\n",
354 ops->to_shortname);
355
356 ops->to_open (args, from_tty);
357
358 if (targetdebug)
359 fprintf_unfiltered (gdb_stdlog, "<- %s->to_open (%s, %d)\n",
360 ops->to_shortname, args, from_tty);
361 }
362
363 /* Add possible target architecture T to the list and add a new
364 command 'target T->to_shortname'. Set COMPLETER as the command's
365 completer if not NULL. */
366
367 void
368 add_target_with_completer (struct target_ops *t,
369 completer_ftype *completer)
370 {
371 struct cmd_list_element *c;
372
373 complete_target_initialization (t);
374
375 VEC_safe_push (target_ops_p, target_structs, t);
376
377 if (targetlist == NULL)
378 add_prefix_cmd ("target", class_run, target_command, _("\
379 Connect to a target machine or process.\n\
380 The first argument is the type or protocol of the target machine.\n\
381 Remaining arguments are interpreted by the target protocol. For more\n\
382 information on the arguments for a particular protocol, type\n\
383 `help target ' followed by the protocol name."),
384 &targetlist, "target ", 0, &cmdlist);
385 c = add_cmd (t->to_shortname, no_class, NULL, t->to_doc, &targetlist);
386 set_cmd_sfunc (c, open_target);
387 set_cmd_context (c, t);
388 if (completer != NULL)
389 set_cmd_completer (c, completer);
390 }
391
392 /* Add a possible target architecture to the list. */
393
394 void
395 add_target (struct target_ops *t)
396 {
397 add_target_with_completer (t, NULL);
398 }
399
400 /* See target.h. */
401
402 void
403 add_deprecated_target_alias (struct target_ops *t, char *alias)
404 {
405 struct cmd_list_element *c;
406 char *alt;
407
408 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
409 see PR cli/15104. */
410 c = add_cmd (alias, no_class, NULL, t->to_doc, &targetlist);
411 set_cmd_sfunc (c, open_target);
412 set_cmd_context (c, t);
413 alt = xstrprintf ("target %s", t->to_shortname);
414 deprecate_cmd (c, alt);
415 }
416
417 /* Stub functions */
418
419 void
420 target_kill (void)
421 {
422 current_target.to_kill (&current_target);
423 }
424
425 void
426 target_load (const char *arg, int from_tty)
427 {
428 target_dcache_invalidate ();
429 (*current_target.to_load) (&current_target, arg, from_tty);
430 }
431
432 /* Possible terminal states. */
433
434 enum terminal_state
435 {
436 /* The inferior's terminal settings are in effect. */
437 terminal_is_inferior = 0,
438
439 /* Some of our terminal settings are in effect, enough to get
440 proper output. */
441 terminal_is_ours_for_output = 1,
442
443 /* Our terminal settings are in effect, for output and input. */
444 terminal_is_ours = 2
445 };
446
447 static enum terminal_state terminal_state;
448
449 /* See target.h. */
450
451 void
452 target_terminal_init (void)
453 {
454 (*current_target.to_terminal_init) (&current_target);
455
456 terminal_state = terminal_is_ours;
457 }
458
459 /* See target.h. */
460
461 int
462 target_terminal_is_inferior (void)
463 {
464 return (terminal_state == terminal_is_inferior);
465 }
466
467 /* See target.h. */
468
469 void
470 target_terminal_inferior (void)
471 {
472 /* A background resume (``run&'') should leave GDB in control of the
473 terminal. Use target_can_async_p, not target_is_async_p, since at
474 this point the target is not async yet. However, if sync_execution
475 is not set, we know it will become async prior to resume. */
476 if (target_can_async_p () && !sync_execution)
477 return;
478
479 if (terminal_state == terminal_is_inferior)
480 return;
481
482 /* If GDB is resuming the inferior in the foreground, install
483 inferior's terminal modes. */
484 (*current_target.to_terminal_inferior) (&current_target);
485 terminal_state = terminal_is_inferior;
486 }
487
488 /* See target.h. */
489
490 void
491 target_terminal_ours (void)
492 {
493 if (terminal_state == terminal_is_ours)
494 return;
495
496 (*current_target.to_terminal_ours) (&current_target);
497 terminal_state = terminal_is_ours;
498 }
499
500 /* See target.h. */
501
502 void
503 target_terminal_ours_for_output (void)
504 {
505 if (terminal_state != terminal_is_inferior)
506 return;
507 (*current_target.to_terminal_ours_for_output) (&current_target);
508 terminal_state = terminal_is_ours_for_output;
509 }
510
511 /* See target.h. */
512
513 int
514 target_supports_terminal_ours (void)
515 {
516 struct target_ops *t;
517
518 for (t = current_target.beneath; t != NULL; t = t->beneath)
519 {
520 if (t->to_terminal_ours != delegate_terminal_ours
521 && t->to_terminal_ours != tdefault_terminal_ours)
522 return 1;
523 }
524
525 return 0;
526 }
527
528 /* Restore the terminal to its previous state (helper for
529 make_cleanup_restore_target_terminal). */
530
531 static void
532 cleanup_restore_target_terminal (void *arg)
533 {
534 enum terminal_state *previous_state = arg;
535
536 switch (*previous_state)
537 {
538 case terminal_is_ours:
539 target_terminal_ours ();
540 break;
541 case terminal_is_ours_for_output:
542 target_terminal_ours_for_output ();
543 break;
544 case terminal_is_inferior:
545 target_terminal_inferior ();
546 break;
547 }
548 }
549
550 /* See target.h. */
551
552 struct cleanup *
553 make_cleanup_restore_target_terminal (void)
554 {
555 enum terminal_state *ts = xmalloc (sizeof (*ts));
556
557 *ts = terminal_state;
558
559 return make_cleanup_dtor (cleanup_restore_target_terminal, ts, xfree);
560 }
561
562 static void
563 tcomplain (void)
564 {
565 error (_("You can't do that when your target is `%s'"),
566 current_target.to_shortname);
567 }
568
569 void
570 noprocess (void)
571 {
572 error (_("You can't do that without a process to debug."));
573 }
574
575 static void
576 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
577 {
578 printf_unfiltered (_("No saved terminal information.\n"));
579 }
580
581 /* A default implementation for the to_get_ada_task_ptid target method.
582
583 This function builds the PTID by using both LWP and TID as part of
584 the PTID lwp and tid elements. The pid used is the pid of the
585 inferior_ptid. */
586
587 static ptid_t
588 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
589 {
590 return ptid_build (ptid_get_pid (inferior_ptid), lwp, tid);
591 }
592
593 static enum exec_direction_kind
594 default_execution_direction (struct target_ops *self)
595 {
596 if (!target_can_execute_reverse)
597 return EXEC_FORWARD;
598 else if (!target_can_async_p ())
599 return EXEC_FORWARD;
600 else
601 gdb_assert_not_reached ("\
602 to_execution_direction must be implemented for reverse async");
603 }
604
605 /* Go through the target stack from top to bottom, copying over zero
606 entries in current_target, then filling in still empty entries. In
607 effect, we are doing class inheritance through the pushed target
608 vectors.
609
610 NOTE: cagney/2003-10-17: The problem with this inheritance, as it
611 is currently implemented, is that it discards any knowledge of
612 which target an inherited method originally belonged to.
613 Consequently, new new target methods should instead explicitly and
614 locally search the target stack for the target that can handle the
615 request. */
616
617 static void
618 update_current_target (void)
619 {
620 struct target_ops *t;
621
622 /* First, reset current's contents. */
623 memset (&current_target, 0, sizeof (current_target));
624
625 /* Install the delegators. */
626 install_delegators (&current_target);
627
628 current_target.to_stratum = target_stack->to_stratum;
629
630 #define INHERIT(FIELD, TARGET) \
631 if (!current_target.FIELD) \
632 current_target.FIELD = (TARGET)->FIELD
633
634 /* Do not add any new INHERITs here. Instead, use the delegation
635 mechanism provided by make-target-delegates. */
636 for (t = target_stack; t; t = t->beneath)
637 {
638 INHERIT (to_shortname, t);
639 INHERIT (to_longname, t);
640 INHERIT (to_attach_no_wait, t);
641 INHERIT (to_have_steppable_watchpoint, t);
642 INHERIT (to_have_continuable_watchpoint, t);
643 INHERIT (to_has_thread_control, t);
644 }
645 #undef INHERIT
646
647 /* Finally, position the target-stack beneath the squashed
648 "current_target". That way code looking for a non-inherited
649 target method can quickly and simply find it. */
650 current_target.beneath = target_stack;
651
652 if (targetdebug)
653 setup_target_debug ();
654 }
655
656 /* Push a new target type into the stack of the existing target accessors,
657 possibly superseding some of the existing accessors.
658
659 Rather than allow an empty stack, we always have the dummy target at
660 the bottom stratum, so we can call the function vectors without
661 checking them. */
662
663 void
664 push_target (struct target_ops *t)
665 {
666 struct target_ops **cur;
667
668 /* Check magic number. If wrong, it probably means someone changed
669 the struct definition, but not all the places that initialize one. */
670 if (t->to_magic != OPS_MAGIC)
671 {
672 fprintf_unfiltered (gdb_stderr,
673 "Magic number of %s target struct wrong\n",
674 t->to_shortname);
675 internal_error (__FILE__, __LINE__,
676 _("failed internal consistency check"));
677 }
678
679 /* Find the proper stratum to install this target in. */
680 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
681 {
682 if ((int) (t->to_stratum) >= (int) (*cur)->to_stratum)
683 break;
684 }
685
686 /* If there's already targets at this stratum, remove them. */
687 /* FIXME: cagney/2003-10-15: I think this should be popping all
688 targets to CUR, and not just those at this stratum level. */
689 while ((*cur) != NULL && t->to_stratum == (*cur)->to_stratum)
690 {
691 /* There's already something at this stratum level. Close it,
692 and un-hook it from the stack. */
693 struct target_ops *tmp = (*cur);
694
695 (*cur) = (*cur)->beneath;
696 tmp->beneath = NULL;
697 target_close (tmp);
698 }
699
700 /* We have removed all targets in our stratum, now add the new one. */
701 t->beneath = (*cur);
702 (*cur) = t;
703
704 update_current_target ();
705 }
706
707 /* Remove a target_ops vector from the stack, wherever it may be.
708 Return how many times it was removed (0 or 1). */
709
710 int
711 unpush_target (struct target_ops *t)
712 {
713 struct target_ops **cur;
714 struct target_ops *tmp;
715
716 if (t->to_stratum == dummy_stratum)
717 internal_error (__FILE__, __LINE__,
718 _("Attempt to unpush the dummy target"));
719
720 /* Look for the specified target. Note that we assume that a target
721 can only occur once in the target stack. */
722
723 for (cur = &target_stack; (*cur) != NULL; cur = &(*cur)->beneath)
724 {
725 if ((*cur) == t)
726 break;
727 }
728
729 /* If we don't find target_ops, quit. Only open targets should be
730 closed. */
731 if ((*cur) == NULL)
732 return 0;
733
734 /* Unchain the target. */
735 tmp = (*cur);
736 (*cur) = (*cur)->beneath;
737 tmp->beneath = NULL;
738
739 update_current_target ();
740
741 /* Finally close the target. Note we do this after unchaining, so
742 any target method calls from within the target_close
743 implementation don't end up in T anymore. */
744 target_close (t);
745
746 return 1;
747 }
748
749 void
750 pop_all_targets_above (enum strata above_stratum)
751 {
752 while ((int) (current_target.to_stratum) > (int) above_stratum)
753 {
754 if (!unpush_target (target_stack))
755 {
756 fprintf_unfiltered (gdb_stderr,
757 "pop_all_targets couldn't find target %s\n",
758 target_stack->to_shortname);
759 internal_error (__FILE__, __LINE__,
760 _("failed internal consistency check"));
761 break;
762 }
763 }
764 }
765
766 void
767 pop_all_targets (void)
768 {
769 pop_all_targets_above (dummy_stratum);
770 }
771
772 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
773
774 int
775 target_is_pushed (struct target_ops *t)
776 {
777 struct target_ops *cur;
778
779 /* Check magic number. If wrong, it probably means someone changed
780 the struct definition, but not all the places that initialize one. */
781 if (t->to_magic != OPS_MAGIC)
782 {
783 fprintf_unfiltered (gdb_stderr,
784 "Magic number of %s target struct wrong\n",
785 t->to_shortname);
786 internal_error (__FILE__, __LINE__,
787 _("failed internal consistency check"));
788 }
789
790 for (cur = target_stack; cur != NULL; cur = cur->beneath)
791 if (cur == t)
792 return 1;
793
794 return 0;
795 }
796
797 /* Default implementation of to_get_thread_local_address. */
798
799 static void
800 generic_tls_error (void)
801 {
802 throw_error (TLS_GENERIC_ERROR,
803 _("Cannot find thread-local variables on this target"));
804 }
805
806 /* Using the objfile specified in OBJFILE, find the address for the
807 current thread's thread-local storage with offset OFFSET. */
808 CORE_ADDR
809 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
810 {
811 volatile CORE_ADDR addr = 0;
812 struct target_ops *target = &current_target;
813
814 if (gdbarch_fetch_tls_load_module_address_p (target_gdbarch ()))
815 {
816 ptid_t ptid = inferior_ptid;
817
818 TRY
819 {
820 CORE_ADDR lm_addr;
821
822 /* Fetch the load module address for this objfile. */
823 lm_addr = gdbarch_fetch_tls_load_module_address (target_gdbarch (),
824 objfile);
825
826 addr = target->to_get_thread_local_address (target, ptid,
827 lm_addr, offset);
828 }
829 /* If an error occurred, print TLS related messages here. Otherwise,
830 throw the error to some higher catcher. */
831 CATCH (ex, RETURN_MASK_ALL)
832 {
833 int objfile_is_library = (objfile->flags & OBJF_SHARED);
834
835 switch (ex.error)
836 {
837 case TLS_NO_LIBRARY_SUPPORT_ERROR:
838 error (_("Cannot find thread-local variables "
839 "in this thread library."));
840 break;
841 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
842 if (objfile_is_library)
843 error (_("Cannot find shared library `%s' in dynamic"
844 " linker's load module list"), objfile_name (objfile));
845 else
846 error (_("Cannot find executable file `%s' in dynamic"
847 " linker's load module list"), objfile_name (objfile));
848 break;
849 case TLS_NOT_ALLOCATED_YET_ERROR:
850 if (objfile_is_library)
851 error (_("The inferior has not yet allocated storage for"
852 " thread-local variables in\n"
853 "the shared library `%s'\n"
854 "for %s"),
855 objfile_name (objfile), target_pid_to_str (ptid));
856 else
857 error (_("The inferior has not yet allocated storage for"
858 " thread-local variables in\n"
859 "the executable `%s'\n"
860 "for %s"),
861 objfile_name (objfile), target_pid_to_str (ptid));
862 break;
863 case TLS_GENERIC_ERROR:
864 if (objfile_is_library)
865 error (_("Cannot find thread-local storage for %s, "
866 "shared library %s:\n%s"),
867 target_pid_to_str (ptid),
868 objfile_name (objfile), ex.message);
869 else
870 error (_("Cannot find thread-local storage for %s, "
871 "executable file %s:\n%s"),
872 target_pid_to_str (ptid),
873 objfile_name (objfile), ex.message);
874 break;
875 default:
876 throw_exception (ex);
877 break;
878 }
879 }
880 END_CATCH
881 }
882 /* It wouldn't be wrong here to try a gdbarch method, too; finding
883 TLS is an ABI-specific thing. But we don't do that yet. */
884 else
885 error (_("Cannot find thread-local variables on this target"));
886
887 return addr;
888 }
889
890 const char *
891 target_xfer_status_to_string (enum target_xfer_status status)
892 {
893 #define CASE(X) case X: return #X
894 switch (status)
895 {
896 CASE(TARGET_XFER_E_IO);
897 CASE(TARGET_XFER_UNAVAILABLE);
898 default:
899 return "<unknown>";
900 }
901 #undef CASE
902 };
903
904
905 #undef MIN
906 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
907
908 /* target_read_string -- read a null terminated string, up to LEN bytes,
909 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
910 Set *STRING to a pointer to malloc'd memory containing the data; the caller
911 is responsible for freeing it. Return the number of bytes successfully
912 read. */
913
914 int
915 target_read_string (CORE_ADDR memaddr, char **string, int len, int *errnop)
916 {
917 int tlen, offset, i;
918 gdb_byte buf[4];
919 int errcode = 0;
920 char *buffer;
921 int buffer_allocated;
922 char *bufptr;
923 unsigned int nbytes_read = 0;
924
925 gdb_assert (string);
926
927 /* Small for testing. */
928 buffer_allocated = 4;
929 buffer = xmalloc (buffer_allocated);
930 bufptr = buffer;
931
932 while (len > 0)
933 {
934 tlen = MIN (len, 4 - (memaddr & 3));
935 offset = memaddr & 3;
936
937 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
938 if (errcode != 0)
939 {
940 /* The transfer request might have crossed the boundary to an
941 unallocated region of memory. Retry the transfer, requesting
942 a single byte. */
943 tlen = 1;
944 offset = 0;
945 errcode = target_read_memory (memaddr, buf, 1);
946 if (errcode != 0)
947 goto done;
948 }
949
950 if (bufptr - buffer + tlen > buffer_allocated)
951 {
952 unsigned int bytes;
953
954 bytes = bufptr - buffer;
955 buffer_allocated *= 2;
956 buffer = xrealloc (buffer, buffer_allocated);
957 bufptr = buffer + bytes;
958 }
959
960 for (i = 0; i < tlen; i++)
961 {
962 *bufptr++ = buf[i + offset];
963 if (buf[i + offset] == '\000')
964 {
965 nbytes_read += i + 1;
966 goto done;
967 }
968 }
969
970 memaddr += tlen;
971 len -= tlen;
972 nbytes_read += tlen;
973 }
974 done:
975 *string = buffer;
976 if (errnop != NULL)
977 *errnop = errcode;
978 return nbytes_read;
979 }
980
981 struct target_section_table *
982 target_get_section_table (struct target_ops *target)
983 {
984 return (*target->to_get_section_table) (target);
985 }
986
987 /* Find a section containing ADDR. */
988
989 struct target_section *
990 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
991 {
992 struct target_section_table *table = target_get_section_table (target);
993 struct target_section *secp;
994
995 if (table == NULL)
996 return NULL;
997
998 for (secp = table->sections; secp < table->sections_end; secp++)
999 {
1000 if (addr >= secp->addr && addr < secp->endaddr)
1001 return secp;
1002 }
1003 return NULL;
1004 }
1005
1006
1007 /* Helper for the memory xfer routines. Checks the attributes of the
1008 memory region of MEMADDR against the read or write being attempted.
1009 If the access is permitted returns true, otherwise returns false.
1010 REGION_P is an optional output parameter. If not-NULL, it is
1011 filled with a pointer to the memory region of MEMADDR. REG_LEN
1012 returns LEN trimmed to the end of the region. This is how much the
1013 caller can continue requesting, if the access is permitted. A
1014 single xfer request must not straddle memory region boundaries. */
1015
1016 static int
1017 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1018 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1019 struct mem_region **region_p)
1020 {
1021 struct mem_region *region;
1022
1023 region = lookup_mem_region (memaddr);
1024
1025 if (region_p != NULL)
1026 *region_p = region;
1027
1028 switch (region->attrib.mode)
1029 {
1030 case MEM_RO:
1031 if (writebuf != NULL)
1032 return 0;
1033 break;
1034
1035 case MEM_WO:
1036 if (readbuf != NULL)
1037 return 0;
1038 break;
1039
1040 case MEM_FLASH:
1041 /* We only support writing to flash during "load" for now. */
1042 if (writebuf != NULL)
1043 error (_("Writing to flash memory forbidden in this context"));
1044 break;
1045
1046 case MEM_NONE:
1047 return 0;
1048 }
1049
1050 /* region->hi == 0 means there's no upper bound. */
1051 if (memaddr + len < region->hi || region->hi == 0)
1052 *reg_len = len;
1053 else
1054 *reg_len = region->hi - memaddr;
1055
1056 return 1;
1057 }
1058
1059 /* Read memory from more than one valid target. A core file, for
1060 instance, could have some of memory but delegate other bits to
1061 the target below it. So, we must manually try all targets. */
1062
1063 static enum target_xfer_status
1064 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1065 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1066 ULONGEST *xfered_len)
1067 {
1068 enum target_xfer_status res;
1069
1070 do
1071 {
1072 res = ops->to_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1073 readbuf, writebuf, memaddr, len,
1074 xfered_len);
1075 if (res == TARGET_XFER_OK)
1076 break;
1077
1078 /* Stop if the target reports that the memory is not available. */
1079 if (res == TARGET_XFER_UNAVAILABLE)
1080 break;
1081
1082 /* We want to continue past core files to executables, but not
1083 past a running target's memory. */
1084 if (ops->to_has_all_memory (ops))
1085 break;
1086
1087 ops = ops->beneath;
1088 }
1089 while (ops != NULL);
1090
1091 /* The cache works at the raw memory level. Make sure the cache
1092 gets updated with raw contents no matter what kind of memory
1093 object was originally being written. Note we do write-through
1094 first, so that if it fails, we don't write to the cache contents
1095 that never made it to the target. */
1096 if (writebuf != NULL
1097 && !ptid_equal (inferior_ptid, null_ptid)
1098 && target_dcache_init_p ()
1099 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1100 {
1101 DCACHE *dcache = target_dcache_get ();
1102
1103 /* Note that writing to an area of memory which wasn't present
1104 in the cache doesn't cause it to be loaded in. */
1105 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1106 }
1107
1108 return res;
1109 }
1110
1111 /* Perform a partial memory transfer.
1112 For docs see target.h, to_xfer_partial. */
1113
1114 static enum target_xfer_status
1115 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1116 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1117 ULONGEST len, ULONGEST *xfered_len)
1118 {
1119 enum target_xfer_status res;
1120 ULONGEST reg_len;
1121 struct mem_region *region;
1122 struct inferior *inf;
1123
1124 /* For accesses to unmapped overlay sections, read directly from
1125 files. Must do this first, as MEMADDR may need adjustment. */
1126 if (readbuf != NULL && overlay_debugging)
1127 {
1128 struct obj_section *section = find_pc_overlay (memaddr);
1129
1130 if (pc_in_unmapped_range (memaddr, section))
1131 {
1132 struct target_section_table *table
1133 = target_get_section_table (ops);
1134 const char *section_name = section->the_bfd_section->name;
1135
1136 memaddr = overlay_mapped_address (memaddr, section);
1137 return section_table_xfer_memory_partial (readbuf, writebuf,
1138 memaddr, len, xfered_len,
1139 table->sections,
1140 table->sections_end,
1141 section_name);
1142 }
1143 }
1144
1145 /* Try the executable files, if "trust-readonly-sections" is set. */
1146 if (readbuf != NULL && trust_readonly)
1147 {
1148 struct target_section *secp;
1149 struct target_section_table *table;
1150
1151 secp = target_section_by_addr (ops, memaddr);
1152 if (secp != NULL
1153 && (bfd_get_section_flags (secp->the_bfd_section->owner,
1154 secp->the_bfd_section)
1155 & SEC_READONLY))
1156 {
1157 table = target_get_section_table (ops);
1158 return section_table_xfer_memory_partial (readbuf, writebuf,
1159 memaddr, len, xfered_len,
1160 table->sections,
1161 table->sections_end,
1162 NULL);
1163 }
1164 }
1165
1166 /* Try GDB's internal data cache. */
1167
1168 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1169 &region))
1170 return TARGET_XFER_E_IO;
1171
1172 if (!ptid_equal (inferior_ptid, null_ptid))
1173 inf = find_inferior_ptid (inferior_ptid);
1174 else
1175 inf = NULL;
1176
1177 if (inf != NULL
1178 && readbuf != NULL
1179 /* The dcache reads whole cache lines; that doesn't play well
1180 with reading from a trace buffer, because reading outside of
1181 the collected memory range fails. */
1182 && get_traceframe_number () == -1
1183 && (region->attrib.cache
1184 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1185 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1186 {
1187 DCACHE *dcache = target_dcache_get_or_init ();
1188
1189 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1190 reg_len, xfered_len);
1191 }
1192
1193 /* If none of those methods found the memory we wanted, fall back
1194 to a target partial transfer. Normally a single call to
1195 to_xfer_partial is enough; if it doesn't recognize an object
1196 it will call the to_xfer_partial of the next target down.
1197 But for memory this won't do. Memory is the only target
1198 object which can be read from more than one valid target.
1199 A core file, for instance, could have some of memory but
1200 delegate other bits to the target below it. So, we must
1201 manually try all targets. */
1202
1203 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1204 xfered_len);
1205
1206 /* If we still haven't got anything, return the last error. We
1207 give up. */
1208 return res;
1209 }
1210
1211 /* Perform a partial memory transfer. For docs see target.h,
1212 to_xfer_partial. */
1213
1214 static enum target_xfer_status
1215 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1216 gdb_byte *readbuf, const gdb_byte *writebuf,
1217 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1218 {
1219 enum target_xfer_status res;
1220
1221 /* Zero length requests are ok and require no work. */
1222 if (len == 0)
1223 return TARGET_XFER_EOF;
1224
1225 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1226 breakpoint insns, thus hiding out from higher layers whether
1227 there are software breakpoints inserted in the code stream. */
1228 if (readbuf != NULL)
1229 {
1230 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1231 xfered_len);
1232
1233 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1234 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1235 }
1236 else
1237 {
1238 void *buf;
1239 struct cleanup *old_chain;
1240
1241 /* A large write request is likely to be partially satisfied
1242 by memory_xfer_partial_1. We will continually malloc
1243 and free a copy of the entire write request for breakpoint
1244 shadow handling even though we only end up writing a small
1245 subset of it. Cap writes to 4KB to mitigate this. */
1246 len = min (4096, len);
1247
1248 buf = xmalloc (len);
1249 old_chain = make_cleanup (xfree, buf);
1250 memcpy (buf, writebuf, len);
1251
1252 breakpoint_xfer_memory (NULL, buf, writebuf, memaddr, len);
1253 res = memory_xfer_partial_1 (ops, object, NULL, buf, memaddr, len,
1254 xfered_len);
1255
1256 do_cleanups (old_chain);
1257 }
1258
1259 return res;
1260 }
1261
1262 static void
1263 restore_show_memory_breakpoints (void *arg)
1264 {
1265 show_memory_breakpoints = (uintptr_t) arg;
1266 }
1267
1268 struct cleanup *
1269 make_show_memory_breakpoints_cleanup (int show)
1270 {
1271 int current = show_memory_breakpoints;
1272
1273 show_memory_breakpoints = show;
1274 return make_cleanup (restore_show_memory_breakpoints,
1275 (void *) (uintptr_t) current);
1276 }
1277
1278 /* For docs see target.h, to_xfer_partial. */
1279
1280 enum target_xfer_status
1281 target_xfer_partial (struct target_ops *ops,
1282 enum target_object object, const char *annex,
1283 gdb_byte *readbuf, const gdb_byte *writebuf,
1284 ULONGEST offset, ULONGEST len,
1285 ULONGEST *xfered_len)
1286 {
1287 enum target_xfer_status retval;
1288
1289 gdb_assert (ops->to_xfer_partial != NULL);
1290
1291 /* Transfer is done when LEN is zero. */
1292 if (len == 0)
1293 return TARGET_XFER_EOF;
1294
1295 if (writebuf && !may_write_memory)
1296 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1297 core_addr_to_string_nz (offset), plongest (len));
1298
1299 *xfered_len = 0;
1300
1301 /* If this is a memory transfer, let the memory-specific code
1302 have a look at it instead. Memory transfers are more
1303 complicated. */
1304 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1305 || object == TARGET_OBJECT_CODE_MEMORY)
1306 retval = memory_xfer_partial (ops, object, readbuf,
1307 writebuf, offset, len, xfered_len);
1308 else if (object == TARGET_OBJECT_RAW_MEMORY)
1309 {
1310 /* Skip/avoid accessing the target if the memory region
1311 attributes block the access. Check this here instead of in
1312 raw_memory_xfer_partial as otherwise we'd end up checking
1313 this twice in the case of the memory_xfer_partial path is
1314 taken; once before checking the dcache, and another in the
1315 tail call to raw_memory_xfer_partial. */
1316 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1317 NULL))
1318 return TARGET_XFER_E_IO;
1319
1320 /* Request the normal memory object from other layers. */
1321 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1322 xfered_len);
1323 }
1324 else
1325 retval = ops->to_xfer_partial (ops, object, annex, readbuf,
1326 writebuf, offset, len, xfered_len);
1327
1328 if (targetdebug)
1329 {
1330 const unsigned char *myaddr = NULL;
1331
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s:target_xfer_partial "
1334 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1335 ops->to_shortname,
1336 (int) object,
1337 (annex ? annex : "(null)"),
1338 host_address_to_string (readbuf),
1339 host_address_to_string (writebuf),
1340 core_addr_to_string_nz (offset),
1341 pulongest (len), retval,
1342 pulongest (*xfered_len));
1343
1344 if (readbuf)
1345 myaddr = readbuf;
1346 if (writebuf)
1347 myaddr = writebuf;
1348 if (retval == TARGET_XFER_OK && myaddr != NULL)
1349 {
1350 int i;
1351
1352 fputs_unfiltered (", bytes =", gdb_stdlog);
1353 for (i = 0; i < *xfered_len; i++)
1354 {
1355 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1356 {
1357 if (targetdebug < 2 && i > 0)
1358 {
1359 fprintf_unfiltered (gdb_stdlog, " ...");
1360 break;
1361 }
1362 fprintf_unfiltered (gdb_stdlog, "\n");
1363 }
1364
1365 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1366 }
1367 }
1368
1369 fputc_unfiltered ('\n', gdb_stdlog);
1370 }
1371
1372 /* Check implementations of to_xfer_partial update *XFERED_LEN
1373 properly. Do assertion after printing debug messages, so that we
1374 can find more clues on assertion failure from debugging messages. */
1375 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1376 gdb_assert (*xfered_len > 0);
1377
1378 return retval;
1379 }
1380
1381 /* Read LEN bytes of target memory at address MEMADDR, placing the
1382 results in GDB's memory at MYADDR. Returns either 0 for success or
1383 TARGET_XFER_E_IO if any error occurs.
1384
1385 If an error occurs, no guarantee is made about the contents of the data at
1386 MYADDR. In particular, the caller should not depend upon partial reads
1387 filling the buffer with good data. There is no way for the caller to know
1388 how much good data might have been transfered anyway. Callers that can
1389 deal with partial reads should call target_read (which will retry until
1390 it makes no progress, and then return how much was transferred). */
1391
1392 int
1393 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1394 {
1395 /* Dispatch to the topmost target, not the flattened current_target.
1396 Memory accesses check target->to_has_(all_)memory, and the
1397 flattened target doesn't inherit those. */
1398 if (target_read (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1399 myaddr, memaddr, len) == len)
1400 return 0;
1401 else
1402 return TARGET_XFER_E_IO;
1403 }
1404
1405 /* See target/target.h. */
1406
1407 int
1408 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1409 {
1410 gdb_byte buf[4];
1411 int r;
1412
1413 r = target_read_memory (memaddr, buf, sizeof buf);
1414 if (r != 0)
1415 return r;
1416 *result = extract_unsigned_integer (buf, sizeof buf,
1417 gdbarch_byte_order (target_gdbarch ()));
1418 return 0;
1419 }
1420
1421 /* Like target_read_memory, but specify explicitly that this is a read
1422 from the target's raw memory. That is, this read bypasses the
1423 dcache, breakpoint shadowing, etc. */
1424
1425 int
1426 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1427 {
1428 /* See comment in target_read_memory about why the request starts at
1429 current_target.beneath. */
1430 if (target_read (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1431 myaddr, memaddr, len) == len)
1432 return 0;
1433 else
1434 return TARGET_XFER_E_IO;
1435 }
1436
1437 /* Like target_read_memory, but specify explicitly that this is a read from
1438 the target's stack. This may trigger different cache behavior. */
1439
1440 int
1441 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1442 {
1443 /* See comment in target_read_memory about why the request starts at
1444 current_target.beneath. */
1445 if (target_read (current_target.beneath, TARGET_OBJECT_STACK_MEMORY, NULL,
1446 myaddr, memaddr, len) == len)
1447 return 0;
1448 else
1449 return TARGET_XFER_E_IO;
1450 }
1451
1452 /* Like target_read_memory, but specify explicitly that this is a read from
1453 the target's code. This may trigger different cache behavior. */
1454
1455 int
1456 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1457 {
1458 /* See comment in target_read_memory about why the request starts at
1459 current_target.beneath. */
1460 if (target_read (current_target.beneath, TARGET_OBJECT_CODE_MEMORY, NULL,
1461 myaddr, memaddr, len) == len)
1462 return 0;
1463 else
1464 return TARGET_XFER_E_IO;
1465 }
1466
1467 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1468 Returns either 0 for success or TARGET_XFER_E_IO if any
1469 error occurs. If an error occurs, no guarantee is made about how
1470 much data got written. Callers that can deal with partial writes
1471 should call target_write. */
1472
1473 int
1474 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1475 {
1476 /* See comment in target_read_memory about why the request starts at
1477 current_target.beneath. */
1478 if (target_write (current_target.beneath, TARGET_OBJECT_MEMORY, NULL,
1479 myaddr, memaddr, len) == len)
1480 return 0;
1481 else
1482 return TARGET_XFER_E_IO;
1483 }
1484
1485 /* Write LEN bytes from MYADDR to target raw memory at address
1486 MEMADDR. Returns either 0 for success or TARGET_XFER_E_IO
1487 if any error occurs. If an error occurs, no guarantee is made
1488 about how much data got written. Callers that can deal with
1489 partial writes should call target_write. */
1490
1491 int
1492 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1493 {
1494 /* See comment in target_read_memory about why the request starts at
1495 current_target.beneath. */
1496 if (target_write (current_target.beneath, TARGET_OBJECT_RAW_MEMORY, NULL,
1497 myaddr, memaddr, len) == len)
1498 return 0;
1499 else
1500 return TARGET_XFER_E_IO;
1501 }
1502
1503 /* Fetch the target's memory map. */
1504
1505 VEC(mem_region_s) *
1506 target_memory_map (void)
1507 {
1508 VEC(mem_region_s) *result;
1509 struct mem_region *last_one, *this_one;
1510 int ix;
1511 struct target_ops *t;
1512
1513 result = current_target.to_memory_map (&current_target);
1514 if (result == NULL)
1515 return NULL;
1516
1517 qsort (VEC_address (mem_region_s, result),
1518 VEC_length (mem_region_s, result),
1519 sizeof (struct mem_region), mem_region_cmp);
1520
1521 /* Check that regions do not overlap. Simultaneously assign
1522 a numbering for the "mem" commands to use to refer to
1523 each region. */
1524 last_one = NULL;
1525 for (ix = 0; VEC_iterate (mem_region_s, result, ix, this_one); ix++)
1526 {
1527 this_one->number = ix;
1528
1529 if (last_one && last_one->hi > this_one->lo)
1530 {
1531 warning (_("Overlapping regions in memory map: ignoring"));
1532 VEC_free (mem_region_s, result);
1533 return NULL;
1534 }
1535 last_one = this_one;
1536 }
1537
1538 return result;
1539 }
1540
1541 void
1542 target_flash_erase (ULONGEST address, LONGEST length)
1543 {
1544 current_target.to_flash_erase (&current_target, address, length);
1545 }
1546
1547 void
1548 target_flash_done (void)
1549 {
1550 current_target.to_flash_done (&current_target);
1551 }
1552
1553 static void
1554 show_trust_readonly (struct ui_file *file, int from_tty,
1555 struct cmd_list_element *c, const char *value)
1556 {
1557 fprintf_filtered (file,
1558 _("Mode for reading from readonly sections is %s.\n"),
1559 value);
1560 }
1561
1562 /* Target vector read/write partial wrapper functions. */
1563
1564 static enum target_xfer_status
1565 target_read_partial (struct target_ops *ops,
1566 enum target_object object,
1567 const char *annex, gdb_byte *buf,
1568 ULONGEST offset, ULONGEST len,
1569 ULONGEST *xfered_len)
1570 {
1571 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1572 xfered_len);
1573 }
1574
1575 static enum target_xfer_status
1576 target_write_partial (struct target_ops *ops,
1577 enum target_object object,
1578 const char *annex, const gdb_byte *buf,
1579 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1580 {
1581 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1582 xfered_len);
1583 }
1584
1585 /* Wrappers to perform the full transfer. */
1586
1587 /* For docs on target_read see target.h. */
1588
1589 LONGEST
1590 target_read (struct target_ops *ops,
1591 enum target_object object,
1592 const char *annex, gdb_byte *buf,
1593 ULONGEST offset, LONGEST len)
1594 {
1595 LONGEST xfered_total = 0;
1596 int unit_size = 1;
1597
1598 /* If we are reading from a memory object, find the length of an addressable
1599 unit for that architecture. */
1600 if (object == TARGET_OBJECT_MEMORY
1601 || object == TARGET_OBJECT_STACK_MEMORY
1602 || object == TARGET_OBJECT_CODE_MEMORY
1603 || object == TARGET_OBJECT_RAW_MEMORY)
1604 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1605
1606 while (xfered_total < len)
1607 {
1608 ULONGEST xfered_partial;
1609 enum target_xfer_status status;
1610
1611 status = target_read_partial (ops, object, annex,
1612 buf + xfered_total * unit_size,
1613 offset + xfered_total, len - xfered_total,
1614 &xfered_partial);
1615
1616 /* Call an observer, notifying them of the xfer progress? */
1617 if (status == TARGET_XFER_EOF)
1618 return xfered_total;
1619 else if (status == TARGET_XFER_OK)
1620 {
1621 xfered_total += xfered_partial;
1622 QUIT;
1623 }
1624 else
1625 return TARGET_XFER_E_IO;
1626
1627 }
1628 return len;
1629 }
1630
1631 /* Assuming that the entire [begin, end) range of memory cannot be
1632 read, try to read whatever subrange is possible to read.
1633
1634 The function returns, in RESULT, either zero or one memory block.
1635 If there's a readable subrange at the beginning, it is completely
1636 read and returned. Any further readable subrange will not be read.
1637 Otherwise, if there's a readable subrange at the end, it will be
1638 completely read and returned. Any readable subranges before it
1639 (obviously, not starting at the beginning), will be ignored. In
1640 other cases -- either no readable subrange, or readable subrange(s)
1641 that is neither at the beginning, or end, nothing is returned.
1642
1643 The purpose of this function is to handle a read across a boundary
1644 of accessible memory in a case when memory map is not available.
1645 The above restrictions are fine for this case, but will give
1646 incorrect results if the memory is 'patchy'. However, supporting
1647 'patchy' memory would require trying to read every single byte,
1648 and it seems unacceptable solution. Explicit memory map is
1649 recommended for this case -- and target_read_memory_robust will
1650 take care of reading multiple ranges then. */
1651
1652 static void
1653 read_whatever_is_readable (struct target_ops *ops,
1654 const ULONGEST begin, const ULONGEST end,
1655 int unit_size,
1656 VEC(memory_read_result_s) **result)
1657 {
1658 gdb_byte *buf = xmalloc (end - begin);
1659 ULONGEST current_begin = begin;
1660 ULONGEST current_end = end;
1661 int forward;
1662 memory_read_result_s r;
1663 ULONGEST xfered_len;
1664
1665 /* If we previously failed to read 1 byte, nothing can be done here. */
1666 if (end - begin <= 1)
1667 {
1668 xfree (buf);
1669 return;
1670 }
1671
1672 /* Check that either first or the last byte is readable, and give up
1673 if not. This heuristic is meant to permit reading accessible memory
1674 at the boundary of accessible region. */
1675 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1676 buf, begin, 1, &xfered_len) == TARGET_XFER_OK)
1677 {
1678 forward = 1;
1679 ++current_begin;
1680 }
1681 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1682 buf + (end - begin) - 1, end - 1, 1,
1683 &xfered_len) == TARGET_XFER_OK)
1684 {
1685 forward = 0;
1686 --current_end;
1687 }
1688 else
1689 {
1690 xfree (buf);
1691 return;
1692 }
1693
1694 /* Loop invariant is that the [current_begin, current_end) was previously
1695 found to be not readable as a whole.
1696
1697 Note loop condition -- if the range has 1 byte, we can't divide the range
1698 so there's no point trying further. */
1699 while (current_end - current_begin > 1)
1700 {
1701 ULONGEST first_half_begin, first_half_end;
1702 ULONGEST second_half_begin, second_half_end;
1703 LONGEST xfer;
1704 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1705
1706 if (forward)
1707 {
1708 first_half_begin = current_begin;
1709 first_half_end = middle;
1710 second_half_begin = middle;
1711 second_half_end = current_end;
1712 }
1713 else
1714 {
1715 first_half_begin = middle;
1716 first_half_end = current_end;
1717 second_half_begin = current_begin;
1718 second_half_end = middle;
1719 }
1720
1721 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1722 buf + (first_half_begin - begin) * unit_size,
1723 first_half_begin,
1724 first_half_end - first_half_begin);
1725
1726 if (xfer == first_half_end - first_half_begin)
1727 {
1728 /* This half reads up fine. So, the error must be in the
1729 other half. */
1730 current_begin = second_half_begin;
1731 current_end = second_half_end;
1732 }
1733 else
1734 {
1735 /* This half is not readable. Because we've tried one byte, we
1736 know some part of this half if actually readable. Go to the next
1737 iteration to divide again and try to read.
1738
1739 We don't handle the other half, because this function only tries
1740 to read a single readable subrange. */
1741 current_begin = first_half_begin;
1742 current_end = first_half_end;
1743 }
1744 }
1745
1746 if (forward)
1747 {
1748 /* The [begin, current_begin) range has been read. */
1749 r.begin = begin;
1750 r.end = current_begin;
1751 r.data = buf;
1752 }
1753 else
1754 {
1755 /* The [current_end, end) range has been read. */
1756 LONGEST region_len = end - current_end;
1757
1758 r.data = xmalloc (region_len * unit_size);
1759 memcpy (r.data, buf + (current_end - begin) * unit_size,
1760 region_len * unit_size);
1761 r.begin = current_end;
1762 r.end = end;
1763 xfree (buf);
1764 }
1765 VEC_safe_push(memory_read_result_s, (*result), &r);
1766 }
1767
1768 void
1769 free_memory_read_result_vector (void *x)
1770 {
1771 VEC(memory_read_result_s) *v = x;
1772 memory_read_result_s *current;
1773 int ix;
1774
1775 for (ix = 0; VEC_iterate (memory_read_result_s, v, ix, current); ++ix)
1776 {
1777 xfree (current->data);
1778 }
1779 VEC_free (memory_read_result_s, v);
1780 }
1781
1782 VEC(memory_read_result_s) *
1783 read_memory_robust (struct target_ops *ops,
1784 const ULONGEST offset, const LONGEST len)
1785 {
1786 VEC(memory_read_result_s) *result = 0;
1787 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1788
1789 LONGEST xfered_total = 0;
1790 while (xfered_total < len)
1791 {
1792 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1793 LONGEST region_len;
1794
1795 /* If there is no explicit region, a fake one should be created. */
1796 gdb_assert (region);
1797
1798 if (region->hi == 0)
1799 region_len = len - xfered_total;
1800 else
1801 region_len = region->hi - offset;
1802
1803 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1804 {
1805 /* Cannot read this region. Note that we can end up here only
1806 if the region is explicitly marked inaccessible, or
1807 'inaccessible-by-default' is in effect. */
1808 xfered_total += region_len;
1809 }
1810 else
1811 {
1812 LONGEST to_read = min (len - xfered_total, region_len);
1813 gdb_byte *buffer = (gdb_byte *) xmalloc (to_read * unit_size);
1814
1815 LONGEST xfered_partial =
1816 target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1817 (gdb_byte *) buffer,
1818 offset + xfered_total, to_read);
1819 /* Call an observer, notifying them of the xfer progress? */
1820 if (xfered_partial <= 0)
1821 {
1822 /* Got an error reading full chunk. See if maybe we can read
1823 some subrange. */
1824 xfree (buffer);
1825 read_whatever_is_readable (ops, offset + xfered_total, unit_size,
1826 offset + xfered_total + to_read, &result);
1827 xfered_total += to_read;
1828 }
1829 else
1830 {
1831 struct memory_read_result r;
1832 r.data = buffer;
1833 r.begin = offset + xfered_total;
1834 r.end = r.begin + xfered_partial;
1835 VEC_safe_push (memory_read_result_s, result, &r);
1836 xfered_total += xfered_partial;
1837 }
1838 QUIT;
1839 }
1840 }
1841 return result;
1842 }
1843
1844
1845 /* An alternative to target_write with progress callbacks. */
1846
1847 LONGEST
1848 target_write_with_progress (struct target_ops *ops,
1849 enum target_object object,
1850 const char *annex, const gdb_byte *buf,
1851 ULONGEST offset, LONGEST len,
1852 void (*progress) (ULONGEST, void *), void *baton)
1853 {
1854 LONGEST xfered_total = 0;
1855 int unit_size = 1;
1856
1857 /* If we are writing to a memory object, find the length of an addressable
1858 unit for that architecture. */
1859 if (object == TARGET_OBJECT_MEMORY
1860 || object == TARGET_OBJECT_STACK_MEMORY
1861 || object == TARGET_OBJECT_CODE_MEMORY
1862 || object == TARGET_OBJECT_RAW_MEMORY)
1863 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1864
1865 /* Give the progress callback a chance to set up. */
1866 if (progress)
1867 (*progress) (0, baton);
1868
1869 while (xfered_total < len)
1870 {
1871 ULONGEST xfered_partial;
1872 enum target_xfer_status status;
1873
1874 status = target_write_partial (ops, object, annex,
1875 buf + xfered_total * unit_size,
1876 offset + xfered_total, len - xfered_total,
1877 &xfered_partial);
1878
1879 if (status != TARGET_XFER_OK)
1880 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1881
1882 if (progress)
1883 (*progress) (xfered_partial, baton);
1884
1885 xfered_total += xfered_partial;
1886 QUIT;
1887 }
1888 return len;
1889 }
1890
1891 /* For docs on target_write see target.h. */
1892
1893 LONGEST
1894 target_write (struct target_ops *ops,
1895 enum target_object object,
1896 const char *annex, const gdb_byte *buf,
1897 ULONGEST offset, LONGEST len)
1898 {
1899 return target_write_with_progress (ops, object, annex, buf, offset, len,
1900 NULL, NULL);
1901 }
1902
1903 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1904 the size of the transferred data. PADDING additional bytes are
1905 available in *BUF_P. This is a helper function for
1906 target_read_alloc; see the declaration of that function for more
1907 information. */
1908
1909 static LONGEST
1910 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1911 const char *annex, gdb_byte **buf_p, int padding)
1912 {
1913 size_t buf_alloc, buf_pos;
1914 gdb_byte *buf;
1915
1916 /* This function does not have a length parameter; it reads the
1917 entire OBJECT). Also, it doesn't support objects fetched partly
1918 from one target and partly from another (in a different stratum,
1919 e.g. a core file and an executable). Both reasons make it
1920 unsuitable for reading memory. */
1921 gdb_assert (object != TARGET_OBJECT_MEMORY);
1922
1923 /* Start by reading up to 4K at a time. The target will throttle
1924 this number down if necessary. */
1925 buf_alloc = 4096;
1926 buf = xmalloc (buf_alloc);
1927 buf_pos = 0;
1928 while (1)
1929 {
1930 ULONGEST xfered_len;
1931 enum target_xfer_status status;
1932
1933 status = target_read_partial (ops, object, annex, &buf[buf_pos],
1934 buf_pos, buf_alloc - buf_pos - padding,
1935 &xfered_len);
1936
1937 if (status == TARGET_XFER_EOF)
1938 {
1939 /* Read all there was. */
1940 if (buf_pos == 0)
1941 xfree (buf);
1942 else
1943 *buf_p = buf;
1944 return buf_pos;
1945 }
1946 else if (status != TARGET_XFER_OK)
1947 {
1948 /* An error occurred. */
1949 xfree (buf);
1950 return TARGET_XFER_E_IO;
1951 }
1952
1953 buf_pos += xfered_len;
1954
1955 /* If the buffer is filling up, expand it. */
1956 if (buf_alloc < buf_pos * 2)
1957 {
1958 buf_alloc *= 2;
1959 buf = xrealloc (buf, buf_alloc);
1960 }
1961
1962 QUIT;
1963 }
1964 }
1965
1966 /* Read OBJECT/ANNEX using OPS. Store the result in *BUF_P and return
1967 the size of the transferred data. See the declaration in "target.h"
1968 function for more information about the return value. */
1969
1970 LONGEST
1971 target_read_alloc (struct target_ops *ops, enum target_object object,
1972 const char *annex, gdb_byte **buf_p)
1973 {
1974 return target_read_alloc_1 (ops, object, annex, buf_p, 0);
1975 }
1976
1977 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
1978 returned as a string, allocated using xmalloc. If an error occurs
1979 or the transfer is unsupported, NULL is returned. Empty objects
1980 are returned as allocated but empty strings. A warning is issued
1981 if the result contains any embedded NUL bytes. */
1982
1983 char *
1984 target_read_stralloc (struct target_ops *ops, enum target_object object,
1985 const char *annex)
1986 {
1987 gdb_byte *buffer;
1988 char *bufstr;
1989 LONGEST i, transferred;
1990
1991 transferred = target_read_alloc_1 (ops, object, annex, &buffer, 1);
1992 bufstr = (char *) buffer;
1993
1994 if (transferred < 0)
1995 return NULL;
1996
1997 if (transferred == 0)
1998 return xstrdup ("");
1999
2000 bufstr[transferred] = 0;
2001
2002 /* Check for embedded NUL bytes; but allow trailing NULs. */
2003 for (i = strlen (bufstr); i < transferred; i++)
2004 if (bufstr[i] != 0)
2005 {
2006 warning (_("target object %d, annex %s, "
2007 "contained unexpected null characters"),
2008 (int) object, annex ? annex : "(none)");
2009 break;
2010 }
2011
2012 return bufstr;
2013 }
2014
2015 /* Memory transfer methods. */
2016
2017 void
2018 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2019 LONGEST len)
2020 {
2021 /* This method is used to read from an alternate, non-current
2022 target. This read must bypass the overlay support (as symbols
2023 don't match this target), and GDB's internal cache (wrong cache
2024 for this target). */
2025 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2026 != len)
2027 memory_error (TARGET_XFER_E_IO, addr);
2028 }
2029
2030 ULONGEST
2031 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2032 int len, enum bfd_endian byte_order)
2033 {
2034 gdb_byte buf[sizeof (ULONGEST)];
2035
2036 gdb_assert (len <= sizeof (buf));
2037 get_target_memory (ops, addr, buf, len);
2038 return extract_unsigned_integer (buf, len, byte_order);
2039 }
2040
2041 /* See target.h. */
2042
2043 int
2044 target_insert_breakpoint (struct gdbarch *gdbarch,
2045 struct bp_target_info *bp_tgt)
2046 {
2047 if (!may_insert_breakpoints)
2048 {
2049 warning (_("May not insert breakpoints"));
2050 return 1;
2051 }
2052
2053 return current_target.to_insert_breakpoint (&current_target,
2054 gdbarch, bp_tgt);
2055 }
2056
2057 /* See target.h. */
2058
2059 int
2060 target_remove_breakpoint (struct gdbarch *gdbarch,
2061 struct bp_target_info *bp_tgt)
2062 {
2063 /* This is kind of a weird case to handle, but the permission might
2064 have been changed after breakpoints were inserted - in which case
2065 we should just take the user literally and assume that any
2066 breakpoints should be left in place. */
2067 if (!may_insert_breakpoints)
2068 {
2069 warning (_("May not remove breakpoints"));
2070 return 1;
2071 }
2072
2073 return current_target.to_remove_breakpoint (&current_target,
2074 gdbarch, bp_tgt);
2075 }
2076
2077 static void
2078 target_info (char *args, int from_tty)
2079 {
2080 struct target_ops *t;
2081 int has_all_mem = 0;
2082
2083 if (symfile_objfile != NULL)
2084 printf_unfiltered (_("Symbols from \"%s\".\n"),
2085 objfile_name (symfile_objfile));
2086
2087 for (t = target_stack; t != NULL; t = t->beneath)
2088 {
2089 if (!(*t->to_has_memory) (t))
2090 continue;
2091
2092 if ((int) (t->to_stratum) <= (int) dummy_stratum)
2093 continue;
2094 if (has_all_mem)
2095 printf_unfiltered (_("\tWhile running this, "
2096 "GDB does not access memory from...\n"));
2097 printf_unfiltered ("%s:\n", t->to_longname);
2098 (t->to_files_info) (t);
2099 has_all_mem = (*t->to_has_all_memory) (t);
2100 }
2101 }
2102
2103 /* This function is called before any new inferior is created, e.g.
2104 by running a program, attaching, or connecting to a target.
2105 It cleans up any state from previous invocations which might
2106 change between runs. This is a subset of what target_preopen
2107 resets (things which might change between targets). */
2108
2109 void
2110 target_pre_inferior (int from_tty)
2111 {
2112 /* Clear out solib state. Otherwise the solib state of the previous
2113 inferior might have survived and is entirely wrong for the new
2114 target. This has been observed on GNU/Linux using glibc 2.3. How
2115 to reproduce:
2116
2117 bash$ ./foo&
2118 [1] 4711
2119 bash$ ./foo&
2120 [1] 4712
2121 bash$ gdb ./foo
2122 [...]
2123 (gdb) attach 4711
2124 (gdb) detach
2125 (gdb) attach 4712
2126 Cannot access memory at address 0xdeadbeef
2127 */
2128
2129 /* In some OSs, the shared library list is the same/global/shared
2130 across inferiors. If code is shared between processes, so are
2131 memory regions and features. */
2132 if (!gdbarch_has_global_solist (target_gdbarch ()))
2133 {
2134 no_shared_libraries (NULL, from_tty);
2135
2136 invalidate_target_mem_regions ();
2137
2138 target_clear_description ();
2139 }
2140
2141 agent_capability_invalidate ();
2142 }
2143
2144 /* Callback for iterate_over_inferiors. Gets rid of the given
2145 inferior. */
2146
2147 static int
2148 dispose_inferior (struct inferior *inf, void *args)
2149 {
2150 struct thread_info *thread;
2151
2152 thread = any_thread_of_process (inf->pid);
2153 if (thread)
2154 {
2155 switch_to_thread (thread->ptid);
2156
2157 /* Core inferiors actually should be detached, not killed. */
2158 if (target_has_execution)
2159 target_kill ();
2160 else
2161 target_detach (NULL, 0);
2162 }
2163
2164 return 0;
2165 }
2166
2167 /* This is to be called by the open routine before it does
2168 anything. */
2169
2170 void
2171 target_preopen (int from_tty)
2172 {
2173 dont_repeat ();
2174
2175 if (have_inferiors ())
2176 {
2177 if (!from_tty
2178 || !have_live_inferiors ()
2179 || query (_("A program is being debugged already. Kill it? ")))
2180 iterate_over_inferiors (dispose_inferior, NULL);
2181 else
2182 error (_("Program not killed."));
2183 }
2184
2185 /* Calling target_kill may remove the target from the stack. But if
2186 it doesn't (which seems like a win for UDI), remove it now. */
2187 /* Leave the exec target, though. The user may be switching from a
2188 live process to a core of the same program. */
2189 pop_all_targets_above (file_stratum);
2190
2191 target_pre_inferior (from_tty);
2192 }
2193
2194 /* Detach a target after doing deferred register stores. */
2195
2196 void
2197 target_detach (const char *args, int from_tty)
2198 {
2199 struct target_ops* t;
2200
2201 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2202 /* Don't remove global breakpoints here. They're removed on
2203 disconnection from the target. */
2204 ;
2205 else
2206 /* If we're in breakpoints-always-inserted mode, have to remove
2207 them before detaching. */
2208 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
2209
2210 prepare_for_detach ();
2211
2212 current_target.to_detach (&current_target, args, from_tty);
2213 }
2214
2215 void
2216 target_disconnect (const char *args, int from_tty)
2217 {
2218 /* If we're in breakpoints-always-inserted mode or if breakpoints
2219 are global across processes, we have to remove them before
2220 disconnecting. */
2221 remove_breakpoints ();
2222
2223 current_target.to_disconnect (&current_target, args, from_tty);
2224 }
2225
2226 ptid_t
2227 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2228 {
2229 return (current_target.to_wait) (&current_target, ptid, status, options);
2230 }
2231
2232 char *
2233 target_pid_to_str (ptid_t ptid)
2234 {
2235 return (*current_target.to_pid_to_str) (&current_target, ptid);
2236 }
2237
2238 char *
2239 target_thread_name (struct thread_info *info)
2240 {
2241 return current_target.to_thread_name (&current_target, info);
2242 }
2243
2244 void
2245 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2246 {
2247 struct target_ops *t;
2248
2249 target_dcache_invalidate ();
2250
2251 current_target.to_resume (&current_target, ptid, step, signal);
2252
2253 registers_changed_ptid (ptid);
2254 /* We only set the internal executing state here. The user/frontend
2255 running state is set at a higher level. */
2256 set_executing (ptid, 1);
2257 clear_inline_frame_state (ptid);
2258 }
2259
2260 void
2261 target_pass_signals (int numsigs, unsigned char *pass_signals)
2262 {
2263 (*current_target.to_pass_signals) (&current_target, numsigs, pass_signals);
2264 }
2265
2266 void
2267 target_program_signals (int numsigs, unsigned char *program_signals)
2268 {
2269 (*current_target.to_program_signals) (&current_target,
2270 numsigs, program_signals);
2271 }
2272
2273 static int
2274 default_follow_fork (struct target_ops *self, int follow_child,
2275 int detach_fork)
2276 {
2277 /* Some target returned a fork event, but did not know how to follow it. */
2278 internal_error (__FILE__, __LINE__,
2279 _("could not find a target to follow fork"));
2280 }
2281
2282 /* Look through the list of possible targets for a target that can
2283 follow forks. */
2284
2285 int
2286 target_follow_fork (int follow_child, int detach_fork)
2287 {
2288 return current_target.to_follow_fork (&current_target,
2289 follow_child, detach_fork);
2290 }
2291
2292 static void
2293 default_mourn_inferior (struct target_ops *self)
2294 {
2295 internal_error (__FILE__, __LINE__,
2296 _("could not find a target to follow mourn inferior"));
2297 }
2298
2299 void
2300 target_mourn_inferior (void)
2301 {
2302 current_target.to_mourn_inferior (&current_target);
2303
2304 /* We no longer need to keep handles on any of the object files.
2305 Make sure to release them to avoid unnecessarily locking any
2306 of them while we're not actually debugging. */
2307 bfd_cache_close_all ();
2308 }
2309
2310 /* Look for a target which can describe architectural features, starting
2311 from TARGET. If we find one, return its description. */
2312
2313 const struct target_desc *
2314 target_read_description (struct target_ops *target)
2315 {
2316 return target->to_read_description (target);
2317 }
2318
2319 /* This implements a basic search of memory, reading target memory and
2320 performing the search here (as opposed to performing the search in on the
2321 target side with, for example, gdbserver). */
2322
2323 int
2324 simple_search_memory (struct target_ops *ops,
2325 CORE_ADDR start_addr, ULONGEST search_space_len,
2326 const gdb_byte *pattern, ULONGEST pattern_len,
2327 CORE_ADDR *found_addrp)
2328 {
2329 /* NOTE: also defined in find.c testcase. */
2330 #define SEARCH_CHUNK_SIZE 16000
2331 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2332 /* Buffer to hold memory contents for searching. */
2333 gdb_byte *search_buf;
2334 unsigned search_buf_size;
2335 struct cleanup *old_cleanups;
2336
2337 search_buf_size = chunk_size + pattern_len - 1;
2338
2339 /* No point in trying to allocate a buffer larger than the search space. */
2340 if (search_space_len < search_buf_size)
2341 search_buf_size = search_space_len;
2342
2343 search_buf = malloc (search_buf_size);
2344 if (search_buf == NULL)
2345 error (_("Unable to allocate memory to perform the search."));
2346 old_cleanups = make_cleanup (free_current_contents, &search_buf);
2347
2348 /* Prime the search buffer. */
2349
2350 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2351 search_buf, start_addr, search_buf_size) != search_buf_size)
2352 {
2353 warning (_("Unable to access %s bytes of target "
2354 "memory at %s, halting search."),
2355 pulongest (search_buf_size), hex_string (start_addr));
2356 do_cleanups (old_cleanups);
2357 return -1;
2358 }
2359
2360 /* Perform the search.
2361
2362 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2363 When we've scanned N bytes we copy the trailing bytes to the start and
2364 read in another N bytes. */
2365
2366 while (search_space_len >= pattern_len)
2367 {
2368 gdb_byte *found_ptr;
2369 unsigned nr_search_bytes = min (search_space_len, search_buf_size);
2370
2371 found_ptr = memmem (search_buf, nr_search_bytes,
2372 pattern, pattern_len);
2373
2374 if (found_ptr != NULL)
2375 {
2376 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf);
2377
2378 *found_addrp = found_addr;
2379 do_cleanups (old_cleanups);
2380 return 1;
2381 }
2382
2383 /* Not found in this chunk, skip to next chunk. */
2384
2385 /* Don't let search_space_len wrap here, it's unsigned. */
2386 if (search_space_len >= chunk_size)
2387 search_space_len -= chunk_size;
2388 else
2389 search_space_len = 0;
2390
2391 if (search_space_len >= pattern_len)
2392 {
2393 unsigned keep_len = search_buf_size - chunk_size;
2394 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2395 int nr_to_read;
2396
2397 /* Copy the trailing part of the previous iteration to the front
2398 of the buffer for the next iteration. */
2399 gdb_assert (keep_len == pattern_len - 1);
2400 memcpy (search_buf, search_buf + chunk_size, keep_len);
2401
2402 nr_to_read = min (search_space_len - keep_len, chunk_size);
2403
2404 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2405 search_buf + keep_len, read_addr,
2406 nr_to_read) != nr_to_read)
2407 {
2408 warning (_("Unable to access %s bytes of target "
2409 "memory at %s, halting search."),
2410 plongest (nr_to_read),
2411 hex_string (read_addr));
2412 do_cleanups (old_cleanups);
2413 return -1;
2414 }
2415
2416 start_addr += chunk_size;
2417 }
2418 }
2419
2420 /* Not found. */
2421
2422 do_cleanups (old_cleanups);
2423 return 0;
2424 }
2425
2426 /* Default implementation of memory-searching. */
2427
2428 static int
2429 default_search_memory (struct target_ops *self,
2430 CORE_ADDR start_addr, ULONGEST search_space_len,
2431 const gdb_byte *pattern, ULONGEST pattern_len,
2432 CORE_ADDR *found_addrp)
2433 {
2434 /* Start over from the top of the target stack. */
2435 return simple_search_memory (current_target.beneath,
2436 start_addr, search_space_len,
2437 pattern, pattern_len, found_addrp);
2438 }
2439
2440 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2441 sequence of bytes in PATTERN with length PATTERN_LEN.
2442
2443 The result is 1 if found, 0 if not found, and -1 if there was an error
2444 requiring halting of the search (e.g. memory read error).
2445 If the pattern is found the address is recorded in FOUND_ADDRP. */
2446
2447 int
2448 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2449 const gdb_byte *pattern, ULONGEST pattern_len,
2450 CORE_ADDR *found_addrp)
2451 {
2452 return current_target.to_search_memory (&current_target, start_addr,
2453 search_space_len,
2454 pattern, pattern_len, found_addrp);
2455 }
2456
2457 /* Look through the currently pushed targets. If none of them will
2458 be able to restart the currently running process, issue an error
2459 message. */
2460
2461 void
2462 target_require_runnable (void)
2463 {
2464 struct target_ops *t;
2465
2466 for (t = target_stack; t != NULL; t = t->beneath)
2467 {
2468 /* If this target knows how to create a new program, then
2469 assume we will still be able to after killing the current
2470 one. Either killing and mourning will not pop T, or else
2471 find_default_run_target will find it again. */
2472 if (t->to_create_inferior != NULL)
2473 return;
2474
2475 /* Do not worry about targets at certain strata that can not
2476 create inferiors. Assume they will be pushed again if
2477 necessary, and continue to the process_stratum. */
2478 if (t->to_stratum == thread_stratum
2479 || t->to_stratum == record_stratum
2480 || t->to_stratum == arch_stratum)
2481 continue;
2482
2483 error (_("The \"%s\" target does not support \"run\". "
2484 "Try \"help target\" or \"continue\"."),
2485 t->to_shortname);
2486 }
2487
2488 /* This function is only called if the target is running. In that
2489 case there should have been a process_stratum target and it
2490 should either know how to create inferiors, or not... */
2491 internal_error (__FILE__, __LINE__, _("No targets found"));
2492 }
2493
2494 /* Whether GDB is allowed to fall back to the default run target for
2495 "run", "attach", etc. when no target is connected yet. */
2496 static int auto_connect_native_target = 1;
2497
2498 static void
2499 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2500 struct cmd_list_element *c, const char *value)
2501 {
2502 fprintf_filtered (file,
2503 _("Whether GDB may automatically connect to the "
2504 "native target is %s.\n"),
2505 value);
2506 }
2507
2508 /* Look through the list of possible targets for a target that can
2509 execute a run or attach command without any other data. This is
2510 used to locate the default process stratum.
2511
2512 If DO_MESG is not NULL, the result is always valid (error() is
2513 called for errors); else, return NULL on error. */
2514
2515 static struct target_ops *
2516 find_default_run_target (char *do_mesg)
2517 {
2518 struct target_ops *runable = NULL;
2519
2520 if (auto_connect_native_target)
2521 {
2522 struct target_ops *t;
2523 int count = 0;
2524 int i;
2525
2526 for (i = 0; VEC_iterate (target_ops_p, target_structs, i, t); ++i)
2527 {
2528 if (t->to_can_run != delegate_can_run && target_can_run (t))
2529 {
2530 runable = t;
2531 ++count;
2532 }
2533 }
2534
2535 if (count != 1)
2536 runable = NULL;
2537 }
2538
2539 if (runable == NULL)
2540 {
2541 if (do_mesg)
2542 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2543 else
2544 return NULL;
2545 }
2546
2547 return runable;
2548 }
2549
2550 /* See target.h. */
2551
2552 struct target_ops *
2553 find_attach_target (void)
2554 {
2555 struct target_ops *t;
2556
2557 /* If a target on the current stack can attach, use it. */
2558 for (t = current_target.beneath; t != NULL; t = t->beneath)
2559 {
2560 if (t->to_attach != NULL)
2561 break;
2562 }
2563
2564 /* Otherwise, use the default run target for attaching. */
2565 if (t == NULL)
2566 t = find_default_run_target ("attach");
2567
2568 return t;
2569 }
2570
2571 /* See target.h. */
2572
2573 struct target_ops *
2574 find_run_target (void)
2575 {
2576 struct target_ops *t;
2577
2578 /* If a target on the current stack can attach, use it. */
2579 for (t = current_target.beneath; t != NULL; t = t->beneath)
2580 {
2581 if (t->to_create_inferior != NULL)
2582 break;
2583 }
2584
2585 /* Otherwise, use the default run target. */
2586 if (t == NULL)
2587 t = find_default_run_target ("run");
2588
2589 return t;
2590 }
2591
2592 /* Implement the "info proc" command. */
2593
2594 int
2595 target_info_proc (const char *args, enum info_proc_what what)
2596 {
2597 struct target_ops *t;
2598
2599 /* If we're already connected to something that can get us OS
2600 related data, use it. Otherwise, try using the native
2601 target. */
2602 if (current_target.to_stratum >= process_stratum)
2603 t = current_target.beneath;
2604 else
2605 t = find_default_run_target (NULL);
2606
2607 for (; t != NULL; t = t->beneath)
2608 {
2609 if (t->to_info_proc != NULL)
2610 {
2611 t->to_info_proc (t, args, what);
2612
2613 if (targetdebug)
2614 fprintf_unfiltered (gdb_stdlog,
2615 "target_info_proc (\"%s\", %d)\n", args, what);
2616
2617 return 1;
2618 }
2619 }
2620
2621 return 0;
2622 }
2623
2624 static int
2625 find_default_supports_disable_randomization (struct target_ops *self)
2626 {
2627 struct target_ops *t;
2628
2629 t = find_default_run_target (NULL);
2630 if (t && t->to_supports_disable_randomization)
2631 return (t->to_supports_disable_randomization) (t);
2632 return 0;
2633 }
2634
2635 int
2636 target_supports_disable_randomization (void)
2637 {
2638 struct target_ops *t;
2639
2640 for (t = &current_target; t != NULL; t = t->beneath)
2641 if (t->to_supports_disable_randomization)
2642 return t->to_supports_disable_randomization (t);
2643
2644 return 0;
2645 }
2646
2647 char *
2648 target_get_osdata (const char *type)
2649 {
2650 struct target_ops *t;
2651
2652 /* If we're already connected to something that can get us OS
2653 related data, use it. Otherwise, try using the native
2654 target. */
2655 if (current_target.to_stratum >= process_stratum)
2656 t = current_target.beneath;
2657 else
2658 t = find_default_run_target ("get OS data");
2659
2660 if (!t)
2661 return NULL;
2662
2663 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2664 }
2665
2666 static struct address_space *
2667 default_thread_address_space (struct target_ops *self, ptid_t ptid)
2668 {
2669 struct inferior *inf;
2670
2671 /* Fall-back to the "main" address space of the inferior. */
2672 inf = find_inferior_ptid (ptid);
2673
2674 if (inf == NULL || inf->aspace == NULL)
2675 internal_error (__FILE__, __LINE__,
2676 _("Can't determine the current "
2677 "address space of thread %s\n"),
2678 target_pid_to_str (ptid));
2679
2680 return inf->aspace;
2681 }
2682
2683 /* Determine the current address space of thread PTID. */
2684
2685 struct address_space *
2686 target_thread_address_space (ptid_t ptid)
2687 {
2688 struct address_space *aspace;
2689
2690 aspace = current_target.to_thread_address_space (&current_target, ptid);
2691 gdb_assert (aspace != NULL);
2692
2693 return aspace;
2694 }
2695
2696
2697 /* Target file operations. */
2698
2699 static struct target_ops *
2700 default_fileio_target (void)
2701 {
2702 /* If we're already connected to something that can perform
2703 file I/O, use it. Otherwise, try using the native target. */
2704 if (current_target.to_stratum >= process_stratum)
2705 return current_target.beneath;
2706 else
2707 return find_default_run_target ("file I/O");
2708 }
2709
2710 /* File handle for target file operations. */
2711
2712 typedef struct
2713 {
2714 /* The target on which this file is open. */
2715 struct target_ops *t;
2716
2717 /* The file descriptor on the target. */
2718 int fd;
2719 } fileio_fh_t;
2720
2721 DEF_VEC_O (fileio_fh_t);
2722
2723 /* Vector of currently open file handles. The value returned by
2724 target_fileio_open and passed as the FD argument to other
2725 target_fileio_* functions is an index into this vector. This
2726 vector's entries are never freed; instead, files are marked as
2727 closed, and the handle becomes available for reuse. */
2728 static VEC (fileio_fh_t) *fileio_fhandles;
2729
2730 /* Macro to check whether a fileio_fh_t represents a closed file. */
2731 #define is_closed_fileio_fh(fd) ((fd) < 0)
2732
2733 /* Index into fileio_fhandles of the lowest handle that might be
2734 closed. This permits handle reuse without searching the whole
2735 list each time a new file is opened. */
2736 static int lowest_closed_fd;
2737
2738 /* Acquire a target fileio file descriptor. */
2739
2740 static int
2741 acquire_fileio_fd (struct target_ops *t, int fd)
2742 {
2743 fileio_fh_t *fh, buf;
2744
2745 gdb_assert (!is_closed_fileio_fh (fd));
2746
2747 /* Search for closed handles to reuse. */
2748 for (;
2749 VEC_iterate (fileio_fh_t, fileio_fhandles,
2750 lowest_closed_fd, fh);
2751 lowest_closed_fd++)
2752 if (is_closed_fileio_fh (fh->fd))
2753 break;
2754
2755 /* Push a new handle if no closed handles were found. */
2756 if (lowest_closed_fd == VEC_length (fileio_fh_t, fileio_fhandles))
2757 fh = VEC_safe_push (fileio_fh_t, fileio_fhandles, NULL);
2758
2759 /* Fill in the handle. */
2760 fh->t = t;
2761 fh->fd = fd;
2762
2763 /* Return its index, and start the next lookup at
2764 the next index. */
2765 return lowest_closed_fd++;
2766 }
2767
2768 /* Release a target fileio file descriptor. */
2769
2770 static void
2771 release_fileio_fd (int fd, fileio_fh_t *fh)
2772 {
2773 fh->fd = -1;
2774 lowest_closed_fd = min (lowest_closed_fd, fd);
2775 }
2776
2777 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2778
2779 #define fileio_fd_to_fh(fd) \
2780 VEC_index (fileio_fh_t, fileio_fhandles, (fd))
2781
2782 /* See target.h. */
2783
2784 int
2785 target_fileio_open (struct inferior *inf, const char *filename,
2786 int flags, int mode, int *target_errno)
2787 {
2788 struct target_ops *t;
2789
2790 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2791 {
2792 if (t->to_fileio_open != NULL)
2793 {
2794 int fd = t->to_fileio_open (t, inf, filename, flags, mode,
2795 target_errno);
2796
2797 if (fd < 0)
2798 fd = -1;
2799 else
2800 fd = acquire_fileio_fd (t, fd);
2801
2802 if (targetdebug)
2803 fprintf_unfiltered (gdb_stdlog,
2804 "target_fileio_open (%d,%s,0x%x,0%o)"
2805 " = %d (%d)\n",
2806 inf == NULL ? 0 : inf->num,
2807 filename, flags, mode,
2808 fd, fd != -1 ? 0 : *target_errno);
2809 return fd;
2810 }
2811 }
2812
2813 *target_errno = FILEIO_ENOSYS;
2814 return -1;
2815 }
2816
2817 /* See target.h. */
2818
2819 int
2820 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2821 ULONGEST offset, int *target_errno)
2822 {
2823 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2824 int ret = -1;
2825
2826 if (is_closed_fileio_fh (fh->fd))
2827 *target_errno = EBADF;
2828 else
2829 ret = fh->t->to_fileio_pwrite (fh->t, fh->fd, write_buf,
2830 len, offset, target_errno);
2831
2832 if (targetdebug)
2833 fprintf_unfiltered (gdb_stdlog,
2834 "target_fileio_pwrite (%d,...,%d,%s) "
2835 "= %d (%d)\n",
2836 fd, len, pulongest (offset),
2837 ret, ret != -1 ? 0 : *target_errno);
2838 return ret;
2839 }
2840
2841 /* See target.h. */
2842
2843 int
2844 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2845 ULONGEST offset, int *target_errno)
2846 {
2847 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2848 int ret = -1;
2849
2850 if (is_closed_fileio_fh (fh->fd))
2851 *target_errno = EBADF;
2852 else
2853 ret = fh->t->to_fileio_pread (fh->t, fh->fd, read_buf,
2854 len, offset, target_errno);
2855
2856 if (targetdebug)
2857 fprintf_unfiltered (gdb_stdlog,
2858 "target_fileio_pread (%d,...,%d,%s) "
2859 "= %d (%d)\n",
2860 fd, len, pulongest (offset),
2861 ret, ret != -1 ? 0 : *target_errno);
2862 return ret;
2863 }
2864
2865 /* See target.h. */
2866
2867 int
2868 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2869 {
2870 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2871 int ret = -1;
2872
2873 if (is_closed_fileio_fh (fh->fd))
2874 *target_errno = EBADF;
2875 else
2876 ret = fh->t->to_fileio_fstat (fh->t, fh->fd, sb, target_errno);
2877
2878 if (targetdebug)
2879 fprintf_unfiltered (gdb_stdlog,
2880 "target_fileio_fstat (%d) = %d (%d)\n",
2881 fd, ret, ret != -1 ? 0 : *target_errno);
2882 return ret;
2883 }
2884
2885 /* See target.h. */
2886
2887 int
2888 target_fileio_close (int fd, int *target_errno)
2889 {
2890 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2891 int ret = -1;
2892
2893 if (is_closed_fileio_fh (fh->fd))
2894 *target_errno = EBADF;
2895 else
2896 {
2897 ret = fh->t->to_fileio_close (fh->t, fh->fd, target_errno);
2898 release_fileio_fd (fd, fh);
2899 }
2900
2901 if (targetdebug)
2902 fprintf_unfiltered (gdb_stdlog,
2903 "target_fileio_close (%d) = %d (%d)\n",
2904 fd, ret, ret != -1 ? 0 : *target_errno);
2905 return ret;
2906 }
2907
2908 /* See target.h. */
2909
2910 int
2911 target_fileio_unlink (struct inferior *inf, const char *filename,
2912 int *target_errno)
2913 {
2914 struct target_ops *t;
2915
2916 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2917 {
2918 if (t->to_fileio_unlink != NULL)
2919 {
2920 int ret = t->to_fileio_unlink (t, inf, filename,
2921 target_errno);
2922
2923 if (targetdebug)
2924 fprintf_unfiltered (gdb_stdlog,
2925 "target_fileio_unlink (%d,%s)"
2926 " = %d (%d)\n",
2927 inf == NULL ? 0 : inf->num, filename,
2928 ret, ret != -1 ? 0 : *target_errno);
2929 return ret;
2930 }
2931 }
2932
2933 *target_errno = FILEIO_ENOSYS;
2934 return -1;
2935 }
2936
2937 /* See target.h. */
2938
2939 char *
2940 target_fileio_readlink (struct inferior *inf, const char *filename,
2941 int *target_errno)
2942 {
2943 struct target_ops *t;
2944
2945 for (t = default_fileio_target (); t != NULL; t = t->beneath)
2946 {
2947 if (t->to_fileio_readlink != NULL)
2948 {
2949 char *ret = t->to_fileio_readlink (t, inf, filename,
2950 target_errno);
2951
2952 if (targetdebug)
2953 fprintf_unfiltered (gdb_stdlog,
2954 "target_fileio_readlink (%d,%s)"
2955 " = %s (%d)\n",
2956 inf == NULL ? 0 : inf->num,
2957 filename, ret? ret : "(nil)",
2958 ret? 0 : *target_errno);
2959 return ret;
2960 }
2961 }
2962
2963 *target_errno = FILEIO_ENOSYS;
2964 return NULL;
2965 }
2966
2967 static void
2968 target_fileio_close_cleanup (void *opaque)
2969 {
2970 int fd = *(int *) opaque;
2971 int target_errno;
2972
2973 target_fileio_close (fd, &target_errno);
2974 }
2975
2976 typedef int (read_alloc_pread_ftype) (int handle, gdb_byte *read_buf, int len,
2977 ULONGEST offset, int *target_errno);
2978
2979 /* Helper for target_fileio_read_alloc_1 to make it interruptible. */
2980
2981 static int
2982 target_fileio_read_alloc_1_pread (int handle, gdb_byte *read_buf, int len,
2983 ULONGEST offset, int *target_errno)
2984 {
2985 QUIT;
2986
2987 return target_fileio_pread (handle, read_buf, len, offset, target_errno);
2988 }
2989
2990 /* Read target file FILENAME, in the filesystem as seen by INF. If
2991 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2992 remote targets, the remote stub). Store the result in *BUF_P and
2993 return the size of the transferred data. PADDING additional bytes
2994 are available in *BUF_P. This is a helper function for
2995 target_fileio_read_alloc; see the declaration of that function for
2996 more information. */
2997
2998 static LONGEST
2999 read_alloc (gdb_byte **buf_p, int handle, read_alloc_pread_ftype *pread_func,
3000 int padding)
3001 {
3002 size_t buf_alloc, buf_pos;
3003 gdb_byte *buf;
3004 LONGEST n;
3005 int target_errno;
3006
3007 /* Start by reading up to 4K at a time. The target will throttle
3008 this number down if necessary. */
3009 buf_alloc = 4096;
3010 buf = xmalloc (buf_alloc);
3011 buf_pos = 0;
3012 while (1)
3013 {
3014 n = pread_func (handle, &buf[buf_pos], buf_alloc - buf_pos - padding,
3015 buf_pos, &target_errno);
3016 if (n <= 0)
3017 {
3018 if (n < 0 || (n == 0 && buf_pos == 0))
3019 xfree (buf);
3020 else
3021 *buf_p = buf;
3022 if (n < 0)
3023 {
3024 /* An error occurred. */
3025 return -1;
3026 }
3027 else
3028 {
3029 /* Read all there was. */
3030 return buf_pos;
3031 }
3032 }
3033
3034 buf_pos += n;
3035
3036 /* If the buffer is filling up, expand it. */
3037 if (buf_alloc < buf_pos * 2)
3038 {
3039 buf_alloc *= 2;
3040 buf = xrealloc (buf, buf_alloc);
3041 }
3042 }
3043 }
3044
3045 typedef LONGEST (read_stralloc_func_ftype) (struct inferior *inf,
3046 const char *filename,
3047 gdb_byte **buf_p, int padding);
3048
3049 static LONGEST
3050 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3051 gdb_byte **buf_p, int padding)
3052 {
3053 struct cleanup *close_cleanup;
3054 int fd, target_errno;
3055 LONGEST retval;
3056
3057 fd = target_fileio_open (inf, filename, FILEIO_O_RDONLY, 0700, &target_errno);
3058 if (fd == -1)
3059 return -1;
3060
3061 close_cleanup = make_cleanup (target_fileio_close_cleanup, &fd);
3062 retval = read_alloc (buf_p, fd, target_fileio_read_alloc_1_pread, padding);
3063 do_cleanups (close_cleanup);
3064 return retval;
3065 }
3066
3067 /* See target.h. */
3068
3069 LONGEST
3070 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3071 gdb_byte **buf_p)
3072 {
3073 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3074 }
3075
3076 /* Helper for target_fileio_read_stralloc. */
3077
3078 static char *
3079 read_stralloc (struct inferior *inf, const char *filename,
3080 read_stralloc_func_ftype *func)
3081 {
3082 gdb_byte *buffer;
3083 char *bufstr;
3084 LONGEST i, transferred;
3085
3086 transferred = func (inf, filename, &buffer, 1);
3087 bufstr = (char *) buffer;
3088
3089 if (transferred < 0)
3090 return NULL;
3091
3092 if (transferred == 0)
3093 return xstrdup ("");
3094
3095 bufstr[transferred] = 0;
3096
3097 /* Check for embedded NUL bytes; but allow trailing NULs. */
3098 for (i = strlen (bufstr); i < transferred; i++)
3099 if (bufstr[i] != 0)
3100 {
3101 warning (_("target file %s "
3102 "contained unexpected null characters"),
3103 filename);
3104 break;
3105 }
3106
3107 return bufstr;
3108 }
3109
3110 /* See target.h. */
3111
3112 char *
3113 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3114 {
3115 return read_stralloc (inf, filename, target_fileio_read_alloc_1);
3116 }
3117
3118 static int
3119 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3120 CORE_ADDR addr, int len)
3121 {
3122 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3123 }
3124
3125 static int
3126 default_watchpoint_addr_within_range (struct target_ops *target,
3127 CORE_ADDR addr,
3128 CORE_ADDR start, int length)
3129 {
3130 return addr >= start && addr < start + length;
3131 }
3132
3133 static struct gdbarch *
3134 default_thread_architecture (struct target_ops *ops, ptid_t ptid)
3135 {
3136 return target_gdbarch ();
3137 }
3138
3139 static int
3140 return_zero (struct target_ops *ignore)
3141 {
3142 return 0;
3143 }
3144
3145 static int
3146 return_zero_has_execution (struct target_ops *ignore, ptid_t ignore2)
3147 {
3148 return 0;
3149 }
3150
3151 /*
3152 * Find the next target down the stack from the specified target.
3153 */
3154
3155 struct target_ops *
3156 find_target_beneath (struct target_ops *t)
3157 {
3158 return t->beneath;
3159 }
3160
3161 /* See target.h. */
3162
3163 struct target_ops *
3164 find_target_at (enum strata stratum)
3165 {
3166 struct target_ops *t;
3167
3168 for (t = current_target.beneath; t != NULL; t = t->beneath)
3169 if (t->to_stratum == stratum)
3170 return t;
3171
3172 return NULL;
3173 }
3174
3175 \f
3176 /* The inferior process has died. Long live the inferior! */
3177
3178 void
3179 generic_mourn_inferior (void)
3180 {
3181 ptid_t ptid;
3182
3183 ptid = inferior_ptid;
3184 inferior_ptid = null_ptid;
3185
3186 /* Mark breakpoints uninserted in case something tries to delete a
3187 breakpoint while we delete the inferior's threads (which would
3188 fail, since the inferior is long gone). */
3189 mark_breakpoints_out ();
3190
3191 if (!ptid_equal (ptid, null_ptid))
3192 {
3193 int pid = ptid_get_pid (ptid);
3194 exit_inferior (pid);
3195 }
3196
3197 /* Note this wipes step-resume breakpoints, so needs to be done
3198 after exit_inferior, which ends up referencing the step-resume
3199 breakpoints through clear_thread_inferior_resources. */
3200 breakpoint_init_inferior (inf_exited);
3201
3202 registers_changed ();
3203
3204 reopen_exec_file ();
3205 reinit_frame_cache ();
3206
3207 if (deprecated_detach_hook)
3208 deprecated_detach_hook ();
3209 }
3210 \f
3211 /* Convert a normal process ID to a string. Returns the string in a
3212 static buffer. */
3213
3214 char *
3215 normal_pid_to_str (ptid_t ptid)
3216 {
3217 static char buf[32];
3218
3219 xsnprintf (buf, sizeof buf, "process %d", ptid_get_pid (ptid));
3220 return buf;
3221 }
3222
3223 static char *
3224 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3225 {
3226 return normal_pid_to_str (ptid);
3227 }
3228
3229 /* Error-catcher for target_find_memory_regions. */
3230 static int
3231 dummy_find_memory_regions (struct target_ops *self,
3232 find_memory_region_ftype ignore1, void *ignore2)
3233 {
3234 error (_("Command not implemented for this target."));
3235 return 0;
3236 }
3237
3238 /* Error-catcher for target_make_corefile_notes. */
3239 static char *
3240 dummy_make_corefile_notes (struct target_ops *self,
3241 bfd *ignore1, int *ignore2)
3242 {
3243 error (_("Command not implemented for this target."));
3244 return NULL;
3245 }
3246
3247 /* Set up the handful of non-empty slots needed by the dummy target
3248 vector. */
3249
3250 static void
3251 init_dummy_target (void)
3252 {
3253 dummy_target.to_shortname = "None";
3254 dummy_target.to_longname = "None";
3255 dummy_target.to_doc = "";
3256 dummy_target.to_supports_disable_randomization
3257 = find_default_supports_disable_randomization;
3258 dummy_target.to_stratum = dummy_stratum;
3259 dummy_target.to_has_all_memory = return_zero;
3260 dummy_target.to_has_memory = return_zero;
3261 dummy_target.to_has_stack = return_zero;
3262 dummy_target.to_has_registers = return_zero;
3263 dummy_target.to_has_execution = return_zero_has_execution;
3264 dummy_target.to_magic = OPS_MAGIC;
3265
3266 install_dummy_methods (&dummy_target);
3267 }
3268 \f
3269
3270 void
3271 target_close (struct target_ops *targ)
3272 {
3273 gdb_assert (!target_is_pushed (targ));
3274
3275 if (targ->to_xclose != NULL)
3276 targ->to_xclose (targ);
3277 else if (targ->to_close != NULL)
3278 targ->to_close (targ);
3279
3280 if (targetdebug)
3281 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3282 }
3283
3284 int
3285 target_thread_alive (ptid_t ptid)
3286 {
3287 return current_target.to_thread_alive (&current_target, ptid);
3288 }
3289
3290 void
3291 target_update_thread_list (void)
3292 {
3293 current_target.to_update_thread_list (&current_target);
3294 }
3295
3296 void
3297 target_stop (ptid_t ptid)
3298 {
3299 if (!may_stop)
3300 {
3301 warning (_("May not interrupt or stop the target, ignoring attempt"));
3302 return;
3303 }
3304
3305 (*current_target.to_stop) (&current_target, ptid);
3306 }
3307
3308 /* See target/target.h. */
3309
3310 void
3311 target_stop_and_wait (ptid_t ptid)
3312 {
3313 struct target_waitstatus status;
3314 int was_non_stop = non_stop;
3315
3316 non_stop = 1;
3317 target_stop (ptid);
3318
3319 memset (&status, 0, sizeof (status));
3320 target_wait (ptid, &status, 0);
3321
3322 non_stop = was_non_stop;
3323 }
3324
3325 /* See target/target.h. */
3326
3327 void
3328 target_continue_no_signal (ptid_t ptid)
3329 {
3330 target_resume (ptid, 0, GDB_SIGNAL_0);
3331 }
3332
3333 /* Concatenate ELEM to LIST, a comma separate list, and return the
3334 result. The LIST incoming argument is released. */
3335
3336 static char *
3337 str_comma_list_concat_elem (char *list, const char *elem)
3338 {
3339 if (list == NULL)
3340 return xstrdup (elem);
3341 else
3342 return reconcat (list, list, ", ", elem, (char *) NULL);
3343 }
3344
3345 /* Helper for target_options_to_string. If OPT is present in
3346 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3347 Returns the new resulting string. OPT is removed from
3348 TARGET_OPTIONS. */
3349
3350 static char *
3351 do_option (int *target_options, char *ret,
3352 int opt, char *opt_str)
3353 {
3354 if ((*target_options & opt) != 0)
3355 {
3356 ret = str_comma_list_concat_elem (ret, opt_str);
3357 *target_options &= ~opt;
3358 }
3359
3360 return ret;
3361 }
3362
3363 char *
3364 target_options_to_string (int target_options)
3365 {
3366 char *ret = NULL;
3367
3368 #define DO_TARG_OPTION(OPT) \
3369 ret = do_option (&target_options, ret, OPT, #OPT)
3370
3371 DO_TARG_OPTION (TARGET_WNOHANG);
3372
3373 if (target_options != 0)
3374 ret = str_comma_list_concat_elem (ret, "unknown???");
3375
3376 if (ret == NULL)
3377 ret = xstrdup ("");
3378 return ret;
3379 }
3380
3381 static void
3382 debug_print_register (const char * func,
3383 struct regcache *regcache, int regno)
3384 {
3385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3386
3387 fprintf_unfiltered (gdb_stdlog, "%s ", func);
3388 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch)
3389 && gdbarch_register_name (gdbarch, regno) != NULL
3390 && gdbarch_register_name (gdbarch, regno)[0] != '\0')
3391 fprintf_unfiltered (gdb_stdlog, "(%s)",
3392 gdbarch_register_name (gdbarch, regno));
3393 else
3394 fprintf_unfiltered (gdb_stdlog, "(%d)", regno);
3395 if (regno >= 0 && regno < gdbarch_num_regs (gdbarch))
3396 {
3397 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3398 int i, size = register_size (gdbarch, regno);
3399 gdb_byte buf[MAX_REGISTER_SIZE];
3400
3401 regcache_raw_collect (regcache, regno, buf);
3402 fprintf_unfiltered (gdb_stdlog, " = ");
3403 for (i = 0; i < size; i++)
3404 {
3405 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3406 }
3407 if (size <= sizeof (LONGEST))
3408 {
3409 ULONGEST val = extract_unsigned_integer (buf, size, byte_order);
3410
3411 fprintf_unfiltered (gdb_stdlog, " %s %s",
3412 core_addr_to_string_nz (val), plongest (val));
3413 }
3414 }
3415 fprintf_unfiltered (gdb_stdlog, "\n");
3416 }
3417
3418 void
3419 target_fetch_registers (struct regcache *regcache, int regno)
3420 {
3421 current_target.to_fetch_registers (&current_target, regcache, regno);
3422 if (targetdebug)
3423 debug_print_register ("target_fetch_registers", regcache, regno);
3424 }
3425
3426 void
3427 target_store_registers (struct regcache *regcache, int regno)
3428 {
3429 struct target_ops *t;
3430
3431 if (!may_write_registers)
3432 error (_("Writing to registers is not allowed (regno %d)"), regno);
3433
3434 current_target.to_store_registers (&current_target, regcache, regno);
3435 if (targetdebug)
3436 {
3437 debug_print_register ("target_store_registers", regcache, regno);
3438 }
3439 }
3440
3441 int
3442 target_core_of_thread (ptid_t ptid)
3443 {
3444 return current_target.to_core_of_thread (&current_target, ptid);
3445 }
3446
3447 int
3448 simple_verify_memory (struct target_ops *ops,
3449 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3450 {
3451 LONGEST total_xfered = 0;
3452
3453 while (total_xfered < size)
3454 {
3455 ULONGEST xfered_len;
3456 enum target_xfer_status status;
3457 gdb_byte buf[1024];
3458 ULONGEST howmuch = min (sizeof (buf), size - total_xfered);
3459
3460 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3461 buf, NULL, lma + total_xfered, howmuch,
3462 &xfered_len);
3463 if (status == TARGET_XFER_OK
3464 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3465 {
3466 total_xfered += xfered_len;
3467 QUIT;
3468 }
3469 else
3470 return 0;
3471 }
3472 return 1;
3473 }
3474
3475 /* Default implementation of memory verification. */
3476
3477 static int
3478 default_verify_memory (struct target_ops *self,
3479 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3480 {
3481 /* Start over from the top of the target stack. */
3482 return simple_verify_memory (current_target.beneath,
3483 data, memaddr, size);
3484 }
3485
3486 int
3487 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3488 {
3489 return current_target.to_verify_memory (&current_target,
3490 data, memaddr, size);
3491 }
3492
3493 /* The documentation for this function is in its prototype declaration in
3494 target.h. */
3495
3496 int
3497 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3498 {
3499 return current_target.to_insert_mask_watchpoint (&current_target,
3500 addr, mask, rw);
3501 }
3502
3503 /* The documentation for this function is in its prototype declaration in
3504 target.h. */
3505
3506 int
3507 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask, int rw)
3508 {
3509 return current_target.to_remove_mask_watchpoint (&current_target,
3510 addr, mask, rw);
3511 }
3512
3513 /* The documentation for this function is in its prototype declaration
3514 in target.h. */
3515
3516 int
3517 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3518 {
3519 return current_target.to_masked_watch_num_registers (&current_target,
3520 addr, mask);
3521 }
3522
3523 /* The documentation for this function is in its prototype declaration
3524 in target.h. */
3525
3526 int
3527 target_ranged_break_num_registers (void)
3528 {
3529 return current_target.to_ranged_break_num_registers (&current_target);
3530 }
3531
3532 /* See target.h. */
3533
3534 int
3535 target_supports_btrace (enum btrace_format format)
3536 {
3537 return current_target.to_supports_btrace (&current_target, format);
3538 }
3539
3540 /* See target.h. */
3541
3542 struct btrace_target_info *
3543 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3544 {
3545 return current_target.to_enable_btrace (&current_target, ptid, conf);
3546 }
3547
3548 /* See target.h. */
3549
3550 void
3551 target_disable_btrace (struct btrace_target_info *btinfo)
3552 {
3553 current_target.to_disable_btrace (&current_target, btinfo);
3554 }
3555
3556 /* See target.h. */
3557
3558 void
3559 target_teardown_btrace (struct btrace_target_info *btinfo)
3560 {
3561 current_target.to_teardown_btrace (&current_target, btinfo);
3562 }
3563
3564 /* See target.h. */
3565
3566 enum btrace_error
3567 target_read_btrace (struct btrace_data *btrace,
3568 struct btrace_target_info *btinfo,
3569 enum btrace_read_type type)
3570 {
3571 return current_target.to_read_btrace (&current_target, btrace, btinfo, type);
3572 }
3573
3574 /* See target.h. */
3575
3576 const struct btrace_config *
3577 target_btrace_conf (const struct btrace_target_info *btinfo)
3578 {
3579 return current_target.to_btrace_conf (&current_target, btinfo);
3580 }
3581
3582 /* See target.h. */
3583
3584 void
3585 target_stop_recording (void)
3586 {
3587 current_target.to_stop_recording (&current_target);
3588 }
3589
3590 /* See target.h. */
3591
3592 void
3593 target_save_record (const char *filename)
3594 {
3595 current_target.to_save_record (&current_target, filename);
3596 }
3597
3598 /* See target.h. */
3599
3600 int
3601 target_supports_delete_record (void)
3602 {
3603 struct target_ops *t;
3604
3605 for (t = current_target.beneath; t != NULL; t = t->beneath)
3606 if (t->to_delete_record != delegate_delete_record
3607 && t->to_delete_record != tdefault_delete_record)
3608 return 1;
3609
3610 return 0;
3611 }
3612
3613 /* See target.h. */
3614
3615 void
3616 target_delete_record (void)
3617 {
3618 current_target.to_delete_record (&current_target);
3619 }
3620
3621 /* See target.h. */
3622
3623 int
3624 target_record_is_replaying (void)
3625 {
3626 return current_target.to_record_is_replaying (&current_target);
3627 }
3628
3629 /* See target.h. */
3630
3631 void
3632 target_goto_record_begin (void)
3633 {
3634 current_target.to_goto_record_begin (&current_target);
3635 }
3636
3637 /* See target.h. */
3638
3639 void
3640 target_goto_record_end (void)
3641 {
3642 current_target.to_goto_record_end (&current_target);
3643 }
3644
3645 /* See target.h. */
3646
3647 void
3648 target_goto_record (ULONGEST insn)
3649 {
3650 current_target.to_goto_record (&current_target, insn);
3651 }
3652
3653 /* See target.h. */
3654
3655 void
3656 target_insn_history (int size, int flags)
3657 {
3658 current_target.to_insn_history (&current_target, size, flags);
3659 }
3660
3661 /* See target.h. */
3662
3663 void
3664 target_insn_history_from (ULONGEST from, int size, int flags)
3665 {
3666 current_target.to_insn_history_from (&current_target, from, size, flags);
3667 }
3668
3669 /* See target.h. */
3670
3671 void
3672 target_insn_history_range (ULONGEST begin, ULONGEST end, int flags)
3673 {
3674 current_target.to_insn_history_range (&current_target, begin, end, flags);
3675 }
3676
3677 /* See target.h. */
3678
3679 void
3680 target_call_history (int size, int flags)
3681 {
3682 current_target.to_call_history (&current_target, size, flags);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_call_history_from (ULONGEST begin, int size, int flags)
3689 {
3690 current_target.to_call_history_from (&current_target, begin, size, flags);
3691 }
3692
3693 /* See target.h. */
3694
3695 void
3696 target_call_history_range (ULONGEST begin, ULONGEST end, int flags)
3697 {
3698 current_target.to_call_history_range (&current_target, begin, end, flags);
3699 }
3700
3701 /* See target.h. */
3702
3703 const struct frame_unwind *
3704 target_get_unwinder (void)
3705 {
3706 return current_target.to_get_unwinder (&current_target);
3707 }
3708
3709 /* See target.h. */
3710
3711 const struct frame_unwind *
3712 target_get_tailcall_unwinder (void)
3713 {
3714 return current_target.to_get_tailcall_unwinder (&current_target);
3715 }
3716
3717 /* See target.h. */
3718
3719 void
3720 target_prepare_to_generate_core (void)
3721 {
3722 current_target.to_prepare_to_generate_core (&current_target);
3723 }
3724
3725 /* See target.h. */
3726
3727 void
3728 target_done_generating_core (void)
3729 {
3730 current_target.to_done_generating_core (&current_target);
3731 }
3732
3733 static void
3734 setup_target_debug (void)
3735 {
3736 memcpy (&debug_target, &current_target, sizeof debug_target);
3737
3738 init_debug_target (&current_target);
3739 }
3740 \f
3741
3742 static char targ_desc[] =
3743 "Names of targets and files being debugged.\nShows the entire \
3744 stack of targets currently in use (including the exec-file,\n\
3745 core-file, and process, if any), as well as the symbol file name.";
3746
3747 static void
3748 default_rcmd (struct target_ops *self, const char *command,
3749 struct ui_file *output)
3750 {
3751 error (_("\"monitor\" command not supported by this target."));
3752 }
3753
3754 static void
3755 do_monitor_command (char *cmd,
3756 int from_tty)
3757 {
3758 target_rcmd (cmd, gdb_stdtarg);
3759 }
3760
3761 /* Print the name of each layers of our target stack. */
3762
3763 static void
3764 maintenance_print_target_stack (char *cmd, int from_tty)
3765 {
3766 struct target_ops *t;
3767
3768 printf_filtered (_("The current target stack is:\n"));
3769
3770 for (t = target_stack; t != NULL; t = t->beneath)
3771 {
3772 printf_filtered (" - %s (%s)\n", t->to_shortname, t->to_longname);
3773 }
3774 }
3775
3776 /* Controls if targets can report that they can/are async. This is
3777 just for maintainers to use when debugging gdb. */
3778 int target_async_permitted = 1;
3779
3780 /* The set command writes to this variable. If the inferior is
3781 executing, target_async_permitted is *not* updated. */
3782 static int target_async_permitted_1 = 1;
3783
3784 static void
3785 maint_set_target_async_command (char *args, int from_tty,
3786 struct cmd_list_element *c)
3787 {
3788 if (have_live_inferiors ())
3789 {
3790 target_async_permitted_1 = target_async_permitted;
3791 error (_("Cannot change this setting while the inferior is running."));
3792 }
3793
3794 target_async_permitted = target_async_permitted_1;
3795 }
3796
3797 static void
3798 maint_show_target_async_command (struct ui_file *file, int from_tty,
3799 struct cmd_list_element *c,
3800 const char *value)
3801 {
3802 fprintf_filtered (file,
3803 _("Controlling the inferior in "
3804 "asynchronous mode is %s.\n"), value);
3805 }
3806
3807 /* Temporary copies of permission settings. */
3808
3809 static int may_write_registers_1 = 1;
3810 static int may_write_memory_1 = 1;
3811 static int may_insert_breakpoints_1 = 1;
3812 static int may_insert_tracepoints_1 = 1;
3813 static int may_insert_fast_tracepoints_1 = 1;
3814 static int may_stop_1 = 1;
3815
3816 /* Make the user-set values match the real values again. */
3817
3818 void
3819 update_target_permissions (void)
3820 {
3821 may_write_registers_1 = may_write_registers;
3822 may_write_memory_1 = may_write_memory;
3823 may_insert_breakpoints_1 = may_insert_breakpoints;
3824 may_insert_tracepoints_1 = may_insert_tracepoints;
3825 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3826 may_stop_1 = may_stop;
3827 }
3828
3829 /* The one function handles (most of) the permission flags in the same
3830 way. */
3831
3832 static void
3833 set_target_permissions (char *args, int from_tty,
3834 struct cmd_list_element *c)
3835 {
3836 if (target_has_execution)
3837 {
3838 update_target_permissions ();
3839 error (_("Cannot change this setting while the inferior is running."));
3840 }
3841
3842 /* Make the real values match the user-changed values. */
3843 may_write_registers = may_write_registers_1;
3844 may_insert_breakpoints = may_insert_breakpoints_1;
3845 may_insert_tracepoints = may_insert_tracepoints_1;
3846 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3847 may_stop = may_stop_1;
3848 update_observer_mode ();
3849 }
3850
3851 /* Set memory write permission independently of observer mode. */
3852
3853 static void
3854 set_write_memory_permission (char *args, int from_tty,
3855 struct cmd_list_element *c)
3856 {
3857 /* Make the real values match the user-changed values. */
3858 may_write_memory = may_write_memory_1;
3859 update_observer_mode ();
3860 }
3861
3862
3863 void
3864 initialize_targets (void)
3865 {
3866 init_dummy_target ();
3867 push_target (&dummy_target);
3868
3869 add_info ("target", target_info, targ_desc);
3870 add_info ("files", target_info, targ_desc);
3871
3872 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3873 Set target debugging."), _("\
3874 Show target debugging."), _("\
3875 When non-zero, target debugging is enabled. Higher numbers are more\n\
3876 verbose."),
3877 set_targetdebug,
3878 show_targetdebug,
3879 &setdebuglist, &showdebuglist);
3880
3881 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3882 &trust_readonly, _("\
3883 Set mode for reading from readonly sections."), _("\
3884 Show mode for reading from readonly sections."), _("\
3885 When this mode is on, memory reads from readonly sections (such as .text)\n\
3886 will be read from the object file instead of from the target. This will\n\
3887 result in significant performance improvement for remote targets."),
3888 NULL,
3889 show_trust_readonly,
3890 &setlist, &showlist);
3891
3892 add_com ("monitor", class_obscure, do_monitor_command,
3893 _("Send a command to the remote monitor (remote targets only)."));
3894
3895 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3896 _("Print the name of each layer of the internal target stack."),
3897 &maintenanceprintlist);
3898
3899 add_setshow_boolean_cmd ("target-async", no_class,
3900 &target_async_permitted_1, _("\
3901 Set whether gdb controls the inferior in asynchronous mode."), _("\
3902 Show whether gdb controls the inferior in asynchronous mode."), _("\
3903 Tells gdb whether to control the inferior in asynchronous mode."),
3904 maint_set_target_async_command,
3905 maint_show_target_async_command,
3906 &maintenance_set_cmdlist,
3907 &maintenance_show_cmdlist);
3908
3909 add_setshow_boolean_cmd ("may-write-registers", class_support,
3910 &may_write_registers_1, _("\
3911 Set permission to write into registers."), _("\
3912 Show permission to write into registers."), _("\
3913 When this permission is on, GDB may write into the target's registers.\n\
3914 Otherwise, any sort of write attempt will result in an error."),
3915 set_target_permissions, NULL,
3916 &setlist, &showlist);
3917
3918 add_setshow_boolean_cmd ("may-write-memory", class_support,
3919 &may_write_memory_1, _("\
3920 Set permission to write into target memory."), _("\
3921 Show permission to write into target memory."), _("\
3922 When this permission is on, GDB may write into the target's memory.\n\
3923 Otherwise, any sort of write attempt will result in an error."),
3924 set_write_memory_permission, NULL,
3925 &setlist, &showlist);
3926
3927 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
3928 &may_insert_breakpoints_1, _("\
3929 Set permission to insert breakpoints in the target."), _("\
3930 Show permission to insert breakpoints in the target."), _("\
3931 When this permission is on, GDB may insert breakpoints in the program.\n\
3932 Otherwise, any sort of insertion attempt will result in an error."),
3933 set_target_permissions, NULL,
3934 &setlist, &showlist);
3935
3936 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
3937 &may_insert_tracepoints_1, _("\
3938 Set permission to insert tracepoints in the target."), _("\
3939 Show permission to insert tracepoints in the target."), _("\
3940 When this permission is on, GDB may insert tracepoints in the program.\n\
3941 Otherwise, any sort of insertion attempt will result in an error."),
3942 set_target_permissions, NULL,
3943 &setlist, &showlist);
3944
3945 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
3946 &may_insert_fast_tracepoints_1, _("\
3947 Set permission to insert fast tracepoints in the target."), _("\
3948 Show permission to insert fast tracepoints in the target."), _("\
3949 When this permission is on, GDB may insert fast tracepoints.\n\
3950 Otherwise, any sort of insertion attempt will result in an error."),
3951 set_target_permissions, NULL,
3952 &setlist, &showlist);
3953
3954 add_setshow_boolean_cmd ("may-interrupt", class_support,
3955 &may_stop_1, _("\
3956 Set permission to interrupt or signal the target."), _("\
3957 Show permission to interrupt or signal the target."), _("\
3958 When this permission is on, GDB may interrupt/stop the target's execution.\n\
3959 Otherwise, any attempt to interrupt or stop will be ignored."),
3960 set_target_permissions, NULL,
3961 &setlist, &showlist);
3962
3963 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
3964 &auto_connect_native_target, _("\
3965 Set whether GDB may automatically connect to the native target."), _("\
3966 Show whether GDB may automatically connect to the native target."), _("\
3967 When on, and GDB is not connected to a target yet, GDB\n\
3968 attempts \"run\" and other commands with the native target."),
3969 NULL, show_auto_connect_native_target,
3970 &setlist, &showlist);
3971 }