]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
Add target_ops argument to to_get_tracepoint_status
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int);
407 void (*to_post_attach) (struct target_ops *, int);
408 void (*to_detach) (struct target_ops *ops, const char *, int);
409 void (*to_disconnect) (struct target_ops *, char *, int);
410 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
411 TARGET_DEFAULT_NORETURN (noprocess ());
412 ptid_t (*to_wait) (struct target_ops *,
413 ptid_t, struct target_waitstatus *, int)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
416 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
419
420 /* Transfer LEN bytes of memory between GDB address MYADDR and
421 target address MEMADDR. If WRITE, transfer them to the target, else
422 transfer them from the target. TARGET is the target from which we
423 get this function.
424
425 Return value, N, is one of the following:
426
427 0 means that we can't handle this. If errno has been set, it is the
428 error which prevented us from doing it (FIXME: What about bfd_error?).
429
430 positive (call it N) means that we have transferred N bytes
431 starting at MEMADDR. We might be able to handle more bytes
432 beyond this length, but no promises.
433
434 negative (call its absolute value N) means that we cannot
435 transfer right at MEMADDR, but we could transfer at least
436 something at MEMADDR + N.
437
438 NOTE: cagney/2004-10-01: This has been entirely superseeded by
439 to_xfer_partial and inferior inheritance. */
440
441 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
442 int len, int write,
443 struct mem_attrib *attrib,
444 struct target_ops *target);
445
446 void (*to_files_info) (struct target_ops *);
447 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
448 struct bp_target_info *)
449 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
450 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
451 struct bp_target_info *)
452 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
453 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct target_ops *,
456 struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_hw_breakpoint) (struct target_ops *,
458 struct gdbarch *, struct bp_target_info *);
459
460 /* Documentation of what the two routines below are expected to do is
461 provided with the corresponding target_* macros. */
462 int (*to_remove_watchpoint) (struct target_ops *,
463 CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (struct target_ops *,
465 CORE_ADDR, int, int, struct expression *);
466
467 int (*to_insert_mask_watchpoint) (struct target_ops *,
468 CORE_ADDR, CORE_ADDR, int);
469 int (*to_remove_mask_watchpoint) (struct target_ops *,
470 CORE_ADDR, CORE_ADDR, int);
471 int (*to_stopped_by_watchpoint) (struct target_ops *)
472 TARGET_DEFAULT_RETURN (0);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
476 TARGET_DEFAULT_RETURN (0);
477 int (*to_watchpoint_addr_within_range) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479
480 /* Documentation of this routine is provided with the corresponding
481 target_* macro. */
482 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
483 CORE_ADDR, int);
484
485 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
486 CORE_ADDR, int, int,
487 struct expression *);
488 int (*to_masked_watch_num_registers) (struct target_ops *,
489 CORE_ADDR, CORE_ADDR);
490 void (*to_terminal_init) (struct target_ops *);
491 void (*to_terminal_inferior) (struct target_ops *);
492 void (*to_terminal_ours_for_output) (struct target_ops *);
493 void (*to_terminal_ours) (struct target_ops *);
494 void (*to_terminal_save_ours) (struct target_ops *);
495 void (*to_terminal_info) (struct target_ops *, const char *, int);
496 void (*to_kill) (struct target_ops *);
497 void (*to_load) (struct target_ops *, char *, int);
498 void (*to_create_inferior) (struct target_ops *,
499 char *, char *, char **, int);
500 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
501 int (*to_insert_fork_catchpoint) (struct target_ops *, int);
502 int (*to_remove_fork_catchpoint) (struct target_ops *, int);
503 int (*to_insert_vfork_catchpoint) (struct target_ops *, int);
504 int (*to_remove_vfork_catchpoint) (struct target_ops *, int);
505 int (*to_follow_fork) (struct target_ops *, int, int);
506 int (*to_insert_exec_catchpoint) (struct target_ops *, int);
507 int (*to_remove_exec_catchpoint) (struct target_ops *, int);
508 int (*to_set_syscall_catchpoint) (struct target_ops *,
509 int, int, int, int, int *);
510 int (*to_has_exited) (struct target_ops *, int, int, int *);
511 void (*to_mourn_inferior) (struct target_ops *);
512 int (*to_can_run) (struct target_ops *);
513
514 /* Documentation of this routine is provided with the corresponding
515 target_* macro. */
516 void (*to_pass_signals) (struct target_ops *, int, unsigned char *);
517
518 /* Documentation of this routine is provided with the
519 corresponding target_* function. */
520 void (*to_program_signals) (struct target_ops *, int, unsigned char *);
521
522 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
523 void (*to_find_new_threads) (struct target_ops *);
524 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
525 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *);
526 char *(*to_thread_name) (struct target_ops *, struct thread_info *);
527 void (*to_stop) (struct target_ops *, ptid_t);
528 void (*to_rcmd) (struct target_ops *,
529 char *command, struct ui_file *output);
530 char *(*to_pid_to_exec_file) (struct target_ops *, int pid);
531 void (*to_log_command) (struct target_ops *, const char *);
532 struct target_section_table *(*to_get_section_table) (struct target_ops *);
533 enum strata to_stratum;
534 int (*to_has_all_memory) (struct target_ops *);
535 int (*to_has_memory) (struct target_ops *);
536 int (*to_has_stack) (struct target_ops *);
537 int (*to_has_registers) (struct target_ops *);
538 int (*to_has_execution) (struct target_ops *, ptid_t);
539 int to_has_thread_control; /* control thread execution */
540 int to_attach_no_wait;
541 /* ASYNC target controls */
542 int (*to_can_async_p) (struct target_ops *)
543 TARGET_DEFAULT_FUNC (find_default_can_async_p);
544 int (*to_is_async_p) (struct target_ops *)
545 TARGET_DEFAULT_FUNC (find_default_is_async_p);
546 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
547 TARGET_DEFAULT_NORETURN (tcomplain ());
548 int (*to_supports_non_stop) (struct target_ops *);
549 /* find_memory_regions support method for gcore */
550 int (*to_find_memory_regions) (struct target_ops *,
551 find_memory_region_ftype func, void *data);
552 /* make_corefile_notes support method for gcore */
553 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *);
554 /* get_bookmark support method for bookmarks */
555 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int);
556 /* goto_bookmark support method for bookmarks */
557 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int);
558 /* Return the thread-local address at OFFSET in the
559 thread-local storage for the thread PTID and the shared library
560 or executable file given by OBJFILE. If that block of
561 thread-local storage hasn't been allocated yet, this function
562 may return an error. */
563 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
564 ptid_t ptid,
565 CORE_ADDR load_module_addr,
566 CORE_ADDR offset);
567
568 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
569 OBJECT. The OFFSET, for a seekable object, specifies the
570 starting point. The ANNEX can be used to provide additional
571 data-specific information to the target.
572
573 Return the transferred status, error or OK (an
574 'enum target_xfer_status' value). Save the number of bytes
575 actually transferred in *XFERED_LEN if transfer is successful
576 (TARGET_XFER_OK) or the number unavailable bytes if the requested
577 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
578 smaller than LEN does not indicate the end of the object, only
579 the end of the transfer; higher level code should continue
580 transferring if desired. This is handled in target.c.
581
582 The interface does not support a "retry" mechanism. Instead it
583 assumes that at least one byte will be transfered on each
584 successful call.
585
586 NOTE: cagney/2003-10-17: The current interface can lead to
587 fragmented transfers. Lower target levels should not implement
588 hacks, such as enlarging the transfer, in an attempt to
589 compensate for this. Instead, the target stack should be
590 extended so that it implements supply/collect methods and a
591 look-aside object cache. With that available, the lowest
592 target can safely and freely "push" data up the stack.
593
594 See target_read and target_write for more information. One,
595 and only one, of readbuf or writebuf must be non-NULL. */
596
597 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
598 enum target_object object,
599 const char *annex,
600 gdb_byte *readbuf,
601 const gdb_byte *writebuf,
602 ULONGEST offset, ULONGEST len,
603 ULONGEST *xfered_len)
604 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
605
606 /* Returns the memory map for the target. A return value of NULL
607 means that no memory map is available. If a memory address
608 does not fall within any returned regions, it's assumed to be
609 RAM. The returned memory regions should not overlap.
610
611 The order of regions does not matter; target_memory_map will
612 sort regions by starting address. For that reason, this
613 function should not be called directly except via
614 target_memory_map.
615
616 This method should not cache data; if the memory map could
617 change unexpectedly, it should be invalidated, and higher
618 layers will re-fetch it. */
619 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
620
621 /* Erases the region of flash memory starting at ADDRESS, of
622 length LENGTH.
623
624 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
625 on flash block boundaries, as reported by 'to_memory_map'. */
626 void (*to_flash_erase) (struct target_ops *,
627 ULONGEST address, LONGEST length);
628
629 /* Finishes a flash memory write sequence. After this operation
630 all flash memory should be available for writing and the result
631 of reading from areas written by 'to_flash_write' should be
632 equal to what was written. */
633 void (*to_flash_done) (struct target_ops *);
634
635 /* Describe the architecture-specific features of this target.
636 Returns the description found, or NULL if no description
637 was available. */
638 const struct target_desc *(*to_read_description) (struct target_ops *ops);
639
640 /* Build the PTID of the thread on which a given task is running,
641 based on LWP and THREAD. These values are extracted from the
642 task Private_Data section of the Ada Task Control Block, and
643 their interpretation depends on the target. */
644 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
645 long lwp, long thread);
646
647 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
648 Return 0 if *READPTR is already at the end of the buffer.
649 Return -1 if there is insufficient buffer for a whole entry.
650 Return 1 if an entry was read into *TYPEP and *VALP. */
651 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
652 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
653
654 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
655 sequence of bytes in PATTERN with length PATTERN_LEN.
656
657 The result is 1 if found, 0 if not found, and -1 if there was an error
658 requiring halting of the search (e.g. memory read error).
659 If the pattern is found the address is recorded in FOUND_ADDRP. */
660 int (*to_search_memory) (struct target_ops *ops,
661 CORE_ADDR start_addr, ULONGEST search_space_len,
662 const gdb_byte *pattern, ULONGEST pattern_len,
663 CORE_ADDR *found_addrp);
664
665 /* Can target execute in reverse? */
666 int (*to_can_execute_reverse) (struct target_ops *);
667
668 /* The direction the target is currently executing. Must be
669 implemented on targets that support reverse execution and async
670 mode. The default simply returns forward execution. */
671 enum exec_direction_kind (*to_execution_direction) (struct target_ops *);
672
673 /* Does this target support debugging multiple processes
674 simultaneously? */
675 int (*to_supports_multi_process) (struct target_ops *);
676
677 /* Does this target support enabling and disabling tracepoints while a trace
678 experiment is running? */
679 int (*to_supports_enable_disable_tracepoint) (struct target_ops *);
680
681 /* Does this target support disabling address space randomization? */
682 int (*to_supports_disable_randomization) (struct target_ops *);
683
684 /* Does this target support the tracenz bytecode for string collection? */
685 int (*to_supports_string_tracing) (struct target_ops *);
686
687 /* Does this target support evaluation of breakpoint conditions on its
688 end? */
689 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *);
690
691 /* Does this target support evaluation of breakpoint commands on its
692 end? */
693 int (*to_can_run_breakpoint_commands) (struct target_ops *);
694
695 /* Determine current architecture of thread PTID.
696
697 The target is supposed to determine the architecture of the code where
698 the target is currently stopped at (on Cell, if a target is in spu_run,
699 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
700 This is architecture used to perform decr_pc_after_break adjustment,
701 and also determines the frame architecture of the innermost frame.
702 ptrace operations need to operate according to target_gdbarch ().
703
704 The default implementation always returns target_gdbarch (). */
705 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
706
707 /* Determine current address space of thread PTID.
708
709 The default implementation always returns the inferior's
710 address space. */
711 struct address_space *(*to_thread_address_space) (struct target_ops *,
712 ptid_t);
713
714 /* Target file operations. */
715
716 /* Open FILENAME on the target, using FLAGS and MODE. Return a
717 target file descriptor, or -1 if an error occurs (and set
718 *TARGET_ERRNO). */
719 int (*to_fileio_open) (struct target_ops *,
720 const char *filename, int flags, int mode,
721 int *target_errno);
722
723 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
724 Return the number of bytes written, or -1 if an error occurs
725 (and set *TARGET_ERRNO). */
726 int (*to_fileio_pwrite) (struct target_ops *,
727 int fd, const gdb_byte *write_buf, int len,
728 ULONGEST offset, int *target_errno);
729
730 /* Read up to LEN bytes FD on the target into READ_BUF.
731 Return the number of bytes read, or -1 if an error occurs
732 (and set *TARGET_ERRNO). */
733 int (*to_fileio_pread) (struct target_ops *,
734 int fd, gdb_byte *read_buf, int len,
735 ULONGEST offset, int *target_errno);
736
737 /* Close FD on the target. Return 0, or -1 if an error occurs
738 (and set *TARGET_ERRNO). */
739 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
740
741 /* Unlink FILENAME on the target. Return 0, or -1 if an error
742 occurs (and set *TARGET_ERRNO). */
743 int (*to_fileio_unlink) (struct target_ops *,
744 const char *filename, int *target_errno);
745
746 /* Read value of symbolic link FILENAME on the target. Return a
747 null-terminated string allocated via xmalloc, or NULL if an error
748 occurs (and set *TARGET_ERRNO). */
749 char *(*to_fileio_readlink) (struct target_ops *,
750 const char *filename, int *target_errno);
751
752
753 /* Implement the "info proc" command. */
754 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
755
756 /* Tracepoint-related operations. */
757
758 /* Prepare the target for a tracing run. */
759 void (*to_trace_init) (struct target_ops *);
760
761 /* Send full details of a tracepoint location to the target. */
762 void (*to_download_tracepoint) (struct target_ops *,
763 struct bp_location *location);
764
765 /* Is the target able to download tracepoint locations in current
766 state? */
767 int (*to_can_download_tracepoint) (struct target_ops *);
768
769 /* Send full details of a trace state variable to the target. */
770 void (*to_download_trace_state_variable) (struct target_ops *,
771 struct trace_state_variable *tsv);
772
773 /* Enable a tracepoint on the target. */
774 void (*to_enable_tracepoint) (struct target_ops *,
775 struct bp_location *location);
776
777 /* Disable a tracepoint on the target. */
778 void (*to_disable_tracepoint) (struct target_ops *,
779 struct bp_location *location);
780
781 /* Inform the target info of memory regions that are readonly
782 (such as text sections), and so it should return data from
783 those rather than look in the trace buffer. */
784 void (*to_trace_set_readonly_regions) (struct target_ops *);
785
786 /* Start a trace run. */
787 void (*to_trace_start) (struct target_ops *);
788
789 /* Get the current status of a tracing run. */
790 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts);
791
792 void (*to_get_tracepoint_status) (struct target_ops *,
793 struct breakpoint *tp,
794 struct uploaded_tp *utp);
795
796 /* Stop a trace run. */
797 void (*to_trace_stop) (void);
798
799 /* Ask the target to find a trace frame of the given type TYPE,
800 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
801 number of the trace frame, and also the tracepoint number at
802 TPP. If no trace frame matches, return -1. May throw if the
803 operation fails. */
804 int (*to_trace_find) (enum trace_find_type type, int num,
805 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
806
807 /* Get the value of the trace state variable number TSV, returning
808 1 if the value is known and writing the value itself into the
809 location pointed to by VAL, else returning 0. */
810 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
811
812 int (*to_save_trace_data) (const char *filename);
813
814 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
815
816 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
817
818 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
819 ULONGEST offset, LONGEST len);
820
821 /* Get the minimum length of instruction on which a fast tracepoint
822 may be set on the target. If this operation is unsupported,
823 return -1. If for some reason the minimum length cannot be
824 determined, return 0. */
825 int (*to_get_min_fast_tracepoint_insn_len) (void);
826
827 /* Set the target's tracing behavior in response to unexpected
828 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
829 void (*to_set_disconnected_tracing) (int val);
830 void (*to_set_circular_trace_buffer) (int val);
831 /* Set the size of trace buffer in the target. */
832 void (*to_set_trace_buffer_size) (LONGEST val);
833
834 /* Add/change textual notes about the trace run, returning 1 if
835 successful, 0 otherwise. */
836 int (*to_set_trace_notes) (const char *user, const char *notes,
837 const char *stopnotes);
838
839 /* Return the processor core that thread PTID was last seen on.
840 This information is updated only when:
841 - update_thread_list is called
842 - thread stops
843 If the core cannot be determined -- either for the specified
844 thread, or right now, or in this debug session, or for this
845 target -- return -1. */
846 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
847
848 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
849 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
850 a match, 0 if there's a mismatch, and -1 if an error is
851 encountered while reading memory. */
852 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
853 CORE_ADDR memaddr, ULONGEST size);
854
855 /* Return the address of the start of the Thread Information Block
856 a Windows OS specific feature. */
857 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
858
859 /* Send the new settings of write permission variables. */
860 void (*to_set_permissions) (void);
861
862 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
863 with its details. Return 1 on success, 0 on failure. */
864 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
865 struct static_tracepoint_marker *marker);
866
867 /* Return a vector of all tracepoints markers string id ID, or all
868 markers if ID is NULL. */
869 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
870 (const char *id);
871
872 /* Return a traceframe info object describing the current
873 traceframe's contents. If the target doesn't support
874 traceframe info, return NULL. If the current traceframe is not
875 selected (the current traceframe number is -1), the target can
876 choose to return either NULL or an empty traceframe info. If
877 NULL is returned, for example in remote target, GDB will read
878 from the live inferior. If an empty traceframe info is
879 returned, for example in tfile target, which means the
880 traceframe info is available, but the requested memory is not
881 available in it. GDB will try to see if the requested memory
882 is available in the read-only sections. This method should not
883 cache data; higher layers take care of caching, invalidating,
884 and re-fetching when necessary. */
885 struct traceframe_info *(*to_traceframe_info) (void);
886
887 /* Ask the target to use or not to use agent according to USE. Return 1
888 successful, 0 otherwise. */
889 int (*to_use_agent) (int use);
890
891 /* Is the target able to use agent in current state? */
892 int (*to_can_use_agent) (void);
893
894 /* Check whether the target supports branch tracing. */
895 int (*to_supports_btrace) (struct target_ops *)
896 TARGET_DEFAULT_RETURN (0);
897
898 /* Enable branch tracing for PTID and allocate a branch trace target
899 information struct for reading and for disabling branch trace. */
900 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
901
902 /* Disable branch tracing and deallocate TINFO. */
903 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
904
905 /* Disable branch tracing and deallocate TINFO. This function is similar
906 to to_disable_btrace, except that it is called during teardown and is
907 only allowed to perform actions that are safe. A counter-example would
908 be attempting to talk to a remote target. */
909 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
910
911 /* Read branch trace data for the thread indicated by BTINFO into DATA.
912 DATA is cleared before new trace is added.
913 The branch trace will start with the most recent block and continue
914 towards older blocks. */
915 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
916 struct btrace_target_info *btinfo,
917 enum btrace_read_type type);
918
919 /* Stop trace recording. */
920 void (*to_stop_recording) (void);
921
922 /* Print information about the recording. */
923 void (*to_info_record) (void);
924
925 /* Save the recorded execution trace into a file. */
926 void (*to_save_record) (const char *filename);
927
928 /* Delete the recorded execution trace from the current position onwards. */
929 void (*to_delete_record) (void);
930
931 /* Query if the record target is currently replaying. */
932 int (*to_record_is_replaying) (void);
933
934 /* Go to the begin of the execution trace. */
935 void (*to_goto_record_begin) (void);
936
937 /* Go to the end of the execution trace. */
938 void (*to_goto_record_end) (void);
939
940 /* Go to a specific location in the recorded execution trace. */
941 void (*to_goto_record) (ULONGEST insn);
942
943 /* Disassemble SIZE instructions in the recorded execution trace from
944 the current position.
945 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
946 disassemble SIZE succeeding instructions. */
947 void (*to_insn_history) (int size, int flags);
948
949 /* Disassemble SIZE instructions in the recorded execution trace around
950 FROM.
951 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
952 disassemble SIZE instructions after FROM. */
953 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
954
955 /* Disassemble a section of the recorded execution trace from instruction
956 BEGIN (inclusive) to instruction END (inclusive). */
957 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
958
959 /* Print a function trace of the recorded execution trace.
960 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
961 succeeding functions. */
962 void (*to_call_history) (int size, int flags);
963
964 /* Print a function trace of the recorded execution trace starting
965 at function FROM.
966 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
967 SIZE functions after FROM. */
968 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
969
970 /* Print a function trace of an execution trace section from function BEGIN
971 (inclusive) to function END (inclusive). */
972 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
973
974 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
975 non-empty annex. */
976 int (*to_augmented_libraries_svr4_read) (void);
977
978 /* Those unwinders are tried before any other arch unwinders. Use NULL if
979 it is not used. */
980 const struct frame_unwind *to_get_unwinder;
981 const struct frame_unwind *to_get_tailcall_unwinder;
982
983 /* Return the number of bytes by which the PC needs to be decremented
984 after executing a breakpoint instruction.
985 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
986 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
987 struct gdbarch *gdbarch);
988
989 int to_magic;
990 /* Need sub-structure for target machine related rather than comm related?
991 */
992 };
993
994 /* Magic number for checking ops size. If a struct doesn't end with this
995 number, somebody changed the declaration but didn't change all the
996 places that initialize one. */
997
998 #define OPS_MAGIC 3840
999
1000 /* The ops structure for our "current" target process. This should
1001 never be NULL. If there is no target, it points to the dummy_target. */
1002
1003 extern struct target_ops current_target;
1004
1005 /* Define easy words for doing these operations on our current target. */
1006
1007 #define target_shortname (current_target.to_shortname)
1008 #define target_longname (current_target.to_longname)
1009
1010 /* Does whatever cleanup is required for a target that we are no
1011 longer going to be calling. This routine is automatically always
1012 called after popping the target off the target stack - the target's
1013 own methods are no longer available through the target vector.
1014 Closing file descriptors and freeing all memory allocated memory are
1015 typical things it should do. */
1016
1017 void target_close (struct target_ops *targ);
1018
1019 /* Attaches to a process on the target side. Arguments are as passed
1020 to the `attach' command by the user. This routine can be called
1021 when the target is not on the target-stack, if the target_can_run
1022 routine returns 1; in that case, it must push itself onto the stack.
1023 Upon exit, the target should be ready for normal operations, and
1024 should be ready to deliver the status of the process immediately
1025 (without waiting) to an upcoming target_wait call. */
1026
1027 void target_attach (char *, int);
1028
1029 /* Some targets don't generate traps when attaching to the inferior,
1030 or their target_attach implementation takes care of the waiting.
1031 These targets must set to_attach_no_wait. */
1032
1033 #define target_attach_no_wait \
1034 (current_target.to_attach_no_wait)
1035
1036 /* The target_attach operation places a process under debugger control,
1037 and stops the process.
1038
1039 This operation provides a target-specific hook that allows the
1040 necessary bookkeeping to be performed after an attach completes. */
1041 #define target_post_attach(pid) \
1042 (*current_target.to_post_attach) (&current_target, pid)
1043
1044 /* Takes a program previously attached to and detaches it.
1045 The program may resume execution (some targets do, some don't) and will
1046 no longer stop on signals, etc. We better not have left any breakpoints
1047 in the program or it'll die when it hits one. ARGS is arguments
1048 typed by the user (e.g. a signal to send the process). FROM_TTY
1049 says whether to be verbose or not. */
1050
1051 extern void target_detach (const char *, int);
1052
1053 /* Disconnect from the current target without resuming it (leaving it
1054 waiting for a debugger). */
1055
1056 extern void target_disconnect (char *, int);
1057
1058 /* Resume execution of the target process PTID (or a group of
1059 threads). STEP says whether to single-step or to run free; SIGGNAL
1060 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1061 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1062 PTID means `step/resume only this process id'. A wildcard PTID
1063 (all threads, or all threads of process) means `step/resume
1064 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1065 matches) resume with their 'thread->suspend.stop_signal' signal
1066 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1067 if in "no pass" state. */
1068
1069 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1070
1071 /* Wait for process pid to do something. PTID = -1 to wait for any
1072 pid to do something. Return pid of child, or -1 in case of error;
1073 store status through argument pointer STATUS. Note that it is
1074 _NOT_ OK to throw_exception() out of target_wait() without popping
1075 the debugging target from the stack; GDB isn't prepared to get back
1076 to the prompt with a debugging target but without the frame cache,
1077 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1078 options. */
1079
1080 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1081 int options);
1082
1083 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1084
1085 extern void target_fetch_registers (struct regcache *regcache, int regno);
1086
1087 /* Store at least register REGNO, or all regs if REGNO == -1.
1088 It can store as many registers as it wants to, so target_prepare_to_store
1089 must have been previously called. Calls error() if there are problems. */
1090
1091 extern void target_store_registers (struct regcache *regcache, int regs);
1092
1093 /* Get ready to modify the registers array. On machines which store
1094 individual registers, this doesn't need to do anything. On machines
1095 which store all the registers in one fell swoop, this makes sure
1096 that REGISTERS contains all the registers from the program being
1097 debugged. */
1098
1099 #define target_prepare_to_store(regcache) \
1100 (*current_target.to_prepare_to_store) (&current_target, regcache)
1101
1102 /* Determine current address space of thread PTID. */
1103
1104 struct address_space *target_thread_address_space (ptid_t);
1105
1106 /* Implement the "info proc" command. This returns one if the request
1107 was handled, and zero otherwise. It can also throw an exception if
1108 an error was encountered while attempting to handle the
1109 request. */
1110
1111 int target_info_proc (char *, enum info_proc_what);
1112
1113 /* Returns true if this target can debug multiple processes
1114 simultaneously. */
1115
1116 #define target_supports_multi_process() \
1117 (*current_target.to_supports_multi_process) (&current_target)
1118
1119 /* Returns true if this target can disable address space randomization. */
1120
1121 int target_supports_disable_randomization (void);
1122
1123 /* Returns true if this target can enable and disable tracepoints
1124 while a trace experiment is running. */
1125
1126 #define target_supports_enable_disable_tracepoint() \
1127 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1128
1129 #define target_supports_string_tracing() \
1130 (*current_target.to_supports_string_tracing) (&current_target)
1131
1132 /* Returns true if this target can handle breakpoint conditions
1133 on its end. */
1134
1135 #define target_supports_evaluation_of_breakpoint_conditions() \
1136 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1137
1138 /* Returns true if this target can handle breakpoint commands
1139 on its end. */
1140
1141 #define target_can_run_breakpoint_commands() \
1142 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1143
1144 extern int target_read_string (CORE_ADDR, char **, int, int *);
1145
1146 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1147 ssize_t len);
1148
1149 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1150 ssize_t len);
1151
1152 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1153
1154 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1155
1156 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1157 ssize_t len);
1158
1159 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1160 ssize_t len);
1161
1162 /* Fetches the target's memory map. If one is found it is sorted
1163 and returned, after some consistency checking. Otherwise, NULL
1164 is returned. */
1165 VEC(mem_region_s) *target_memory_map (void);
1166
1167 /* Erase the specified flash region. */
1168 void target_flash_erase (ULONGEST address, LONGEST length);
1169
1170 /* Finish a sequence of flash operations. */
1171 void target_flash_done (void);
1172
1173 /* Describes a request for a memory write operation. */
1174 struct memory_write_request
1175 {
1176 /* Begining address that must be written. */
1177 ULONGEST begin;
1178 /* Past-the-end address. */
1179 ULONGEST end;
1180 /* The data to write. */
1181 gdb_byte *data;
1182 /* A callback baton for progress reporting for this request. */
1183 void *baton;
1184 };
1185 typedef struct memory_write_request memory_write_request_s;
1186 DEF_VEC_O(memory_write_request_s);
1187
1188 /* Enumeration specifying different flash preservation behaviour. */
1189 enum flash_preserve_mode
1190 {
1191 flash_preserve,
1192 flash_discard
1193 };
1194
1195 /* Write several memory blocks at once. This version can be more
1196 efficient than making several calls to target_write_memory, in
1197 particular because it can optimize accesses to flash memory.
1198
1199 Moreover, this is currently the only memory access function in gdb
1200 that supports writing to flash memory, and it should be used for
1201 all cases where access to flash memory is desirable.
1202
1203 REQUESTS is the vector (see vec.h) of memory_write_request.
1204 PRESERVE_FLASH_P indicates what to do with blocks which must be
1205 erased, but not completely rewritten.
1206 PROGRESS_CB is a function that will be periodically called to provide
1207 feedback to user. It will be called with the baton corresponding
1208 to the request currently being written. It may also be called
1209 with a NULL baton, when preserved flash sectors are being rewritten.
1210
1211 The function returns 0 on success, and error otherwise. */
1212 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1213 enum flash_preserve_mode preserve_flash_p,
1214 void (*progress_cb) (ULONGEST, void *));
1215
1216 /* Print a line about the current target. */
1217
1218 #define target_files_info() \
1219 (*current_target.to_files_info) (&current_target)
1220
1221 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1222 the target machine. Returns 0 for success, and returns non-zero or
1223 throws an error (with a detailed failure reason error code and
1224 message) otherwise. */
1225
1226 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1227 struct bp_target_info *bp_tgt);
1228
1229 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1230 machine. Result is 0 for success, non-zero for error. */
1231
1232 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1233 struct bp_target_info *bp_tgt);
1234
1235 /* Initialize the terminal settings we record for the inferior,
1236 before we actually run the inferior. */
1237
1238 #define target_terminal_init() \
1239 (*current_target.to_terminal_init) (&current_target)
1240
1241 /* Put the inferior's terminal settings into effect.
1242 This is preparation for starting or resuming the inferior. */
1243
1244 extern void target_terminal_inferior (void);
1245
1246 /* Put some of our terminal settings into effect,
1247 enough to get proper results from our output,
1248 but do not change into or out of RAW mode
1249 so that no input is discarded.
1250
1251 After doing this, either terminal_ours or terminal_inferior
1252 should be called to get back to a normal state of affairs. */
1253
1254 #define target_terminal_ours_for_output() \
1255 (*current_target.to_terminal_ours_for_output) (&current_target)
1256
1257 /* Put our terminal settings into effect.
1258 First record the inferior's terminal settings
1259 so they can be restored properly later. */
1260
1261 #define target_terminal_ours() \
1262 (*current_target.to_terminal_ours) (&current_target)
1263
1264 /* Save our terminal settings.
1265 This is called from TUI after entering or leaving the curses
1266 mode. Since curses modifies our terminal this call is here
1267 to take this change into account. */
1268
1269 #define target_terminal_save_ours() \
1270 (*current_target.to_terminal_save_ours) (&current_target)
1271
1272 /* Print useful information about our terminal status, if such a thing
1273 exists. */
1274
1275 #define target_terminal_info(arg, from_tty) \
1276 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1277
1278 /* Kill the inferior process. Make it go away. */
1279
1280 extern void target_kill (void);
1281
1282 /* Load an executable file into the target process. This is expected
1283 to not only bring new code into the target process, but also to
1284 update GDB's symbol tables to match.
1285
1286 ARG contains command-line arguments, to be broken down with
1287 buildargv (). The first non-switch argument is the filename to
1288 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1289 0)), which is an offset to apply to the load addresses of FILE's
1290 sections. The target may define switches, or other non-switch
1291 arguments, as it pleases. */
1292
1293 extern void target_load (char *arg, int from_tty);
1294
1295 /* Start an inferior process and set inferior_ptid to its pid.
1296 EXEC_FILE is the file to run.
1297 ALLARGS is a string containing the arguments to the program.
1298 ENV is the environment vector to pass. Errors reported with error().
1299 On VxWorks and various standalone systems, we ignore exec_file. */
1300
1301 void target_create_inferior (char *exec_file, char *args,
1302 char **env, int from_tty);
1303
1304 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1305 notification of inferior events such as fork and vork immediately
1306 after the inferior is created. (This because of how gdb gets an
1307 inferior created via invoking a shell to do it. In such a scenario,
1308 if the shell init file has commands in it, the shell will fork and
1309 exec for each of those commands, and we will see each such fork
1310 event. Very bad.)
1311
1312 Such targets will supply an appropriate definition for this function. */
1313
1314 #define target_post_startup_inferior(ptid) \
1315 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1316
1317 /* On some targets, we can catch an inferior fork or vfork event when
1318 it occurs. These functions insert/remove an already-created
1319 catchpoint for such events. They return 0 for success, 1 if the
1320 catchpoint type is not supported and -1 for failure. */
1321
1322 #define target_insert_fork_catchpoint(pid) \
1323 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1324
1325 #define target_remove_fork_catchpoint(pid) \
1326 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1327
1328 #define target_insert_vfork_catchpoint(pid) \
1329 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1330
1331 #define target_remove_vfork_catchpoint(pid) \
1332 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1333
1334 /* If the inferior forks or vforks, this function will be called at
1335 the next resume in order to perform any bookkeeping and fiddling
1336 necessary to continue debugging either the parent or child, as
1337 requested, and releasing the other. Information about the fork
1338 or vfork event is available via get_last_target_status ().
1339 This function returns 1 if the inferior should not be resumed
1340 (i.e. there is another event pending). */
1341
1342 int target_follow_fork (int follow_child, int detach_fork);
1343
1344 /* On some targets, we can catch an inferior exec event when it
1345 occurs. These functions insert/remove an already-created
1346 catchpoint for such events. They return 0 for success, 1 if the
1347 catchpoint type is not supported and -1 for failure. */
1348
1349 #define target_insert_exec_catchpoint(pid) \
1350 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1351
1352 #define target_remove_exec_catchpoint(pid) \
1353 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1354
1355 /* Syscall catch.
1356
1357 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1358 If NEEDED is zero, it means the target can disable the mechanism to
1359 catch system calls because there are no more catchpoints of this type.
1360
1361 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1362 being requested. In this case, both TABLE_SIZE and TABLE should
1363 be ignored.
1364
1365 TABLE_SIZE is the number of elements in TABLE. It only matters if
1366 ANY_COUNT is zero.
1367
1368 TABLE is an array of ints, indexed by syscall number. An element in
1369 this array is nonzero if that syscall should be caught. This argument
1370 only matters if ANY_COUNT is zero.
1371
1372 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1373 for failure. */
1374
1375 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1376 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1377 pid, needed, any_count, \
1378 table_size, table)
1379
1380 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1381 exit code of PID, if any. */
1382
1383 #define target_has_exited(pid,wait_status,exit_status) \
1384 (*current_target.to_has_exited) (&current_target, \
1385 pid,wait_status,exit_status)
1386
1387 /* The debugger has completed a blocking wait() call. There is now
1388 some process event that must be processed. This function should
1389 be defined by those targets that require the debugger to perform
1390 cleanup or internal state changes in response to the process event. */
1391
1392 /* The inferior process has died. Do what is right. */
1393
1394 void target_mourn_inferior (void);
1395
1396 /* Does target have enough data to do a run or attach command? */
1397
1398 #define target_can_run(t) \
1399 ((t)->to_can_run) (t)
1400
1401 /* Set list of signals to be handled in the target.
1402
1403 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1404 (enum gdb_signal). For every signal whose entry in this array is
1405 non-zero, the target is allowed -but not required- to skip reporting
1406 arrival of the signal to the GDB core by returning from target_wait,
1407 and to pass the signal directly to the inferior instead.
1408
1409 However, if the target is hardware single-stepping a thread that is
1410 about to receive a signal, it needs to be reported in any case, even
1411 if mentioned in a previous target_pass_signals call. */
1412
1413 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1414
1415 /* Set list of signals the target may pass to the inferior. This
1416 directly maps to the "handle SIGNAL pass/nopass" setting.
1417
1418 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1419 number (enum gdb_signal). For every signal whose entry in this
1420 array is non-zero, the target is allowed to pass the signal to the
1421 inferior. Signals not present in the array shall be silently
1422 discarded. This does not influence whether to pass signals to the
1423 inferior as a result of a target_resume call. This is useful in
1424 scenarios where the target needs to decide whether to pass or not a
1425 signal to the inferior without GDB core involvement, such as for
1426 example, when detaching (as threads may have been suspended with
1427 pending signals not reported to GDB). */
1428
1429 extern void target_program_signals (int nsig, unsigned char *program_signals);
1430
1431 /* Check to see if a thread is still alive. */
1432
1433 extern int target_thread_alive (ptid_t ptid);
1434
1435 /* Query for new threads and add them to the thread list. */
1436
1437 extern void target_find_new_threads (void);
1438
1439 /* Make target stop in a continuable fashion. (For instance, under
1440 Unix, this should act like SIGSTOP). This function is normally
1441 used by GUIs to implement a stop button. */
1442
1443 extern void target_stop (ptid_t ptid);
1444
1445 /* Send the specified COMMAND to the target's monitor
1446 (shell,interpreter) for execution. The result of the query is
1447 placed in OUTBUF. */
1448
1449 #define target_rcmd(command, outbuf) \
1450 (*current_target.to_rcmd) (&current_target, command, outbuf)
1451
1452
1453 /* Does the target include all of memory, or only part of it? This
1454 determines whether we look up the target chain for other parts of
1455 memory if this target can't satisfy a request. */
1456
1457 extern int target_has_all_memory_1 (void);
1458 #define target_has_all_memory target_has_all_memory_1 ()
1459
1460 /* Does the target include memory? (Dummy targets don't.) */
1461
1462 extern int target_has_memory_1 (void);
1463 #define target_has_memory target_has_memory_1 ()
1464
1465 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1466 we start a process.) */
1467
1468 extern int target_has_stack_1 (void);
1469 #define target_has_stack target_has_stack_1 ()
1470
1471 /* Does the target have registers? (Exec files don't.) */
1472
1473 extern int target_has_registers_1 (void);
1474 #define target_has_registers target_has_registers_1 ()
1475
1476 /* Does the target have execution? Can we make it jump (through
1477 hoops), or pop its stack a few times? This means that the current
1478 target is currently executing; for some targets, that's the same as
1479 whether or not the target is capable of execution, but there are
1480 also targets which can be current while not executing. In that
1481 case this will become true after target_create_inferior or
1482 target_attach. */
1483
1484 extern int target_has_execution_1 (ptid_t);
1485
1486 /* Like target_has_execution_1, but always passes inferior_ptid. */
1487
1488 extern int target_has_execution_current (void);
1489
1490 #define target_has_execution target_has_execution_current ()
1491
1492 /* Default implementations for process_stratum targets. Return true
1493 if there's a selected inferior, false otherwise. */
1494
1495 extern int default_child_has_all_memory (struct target_ops *ops);
1496 extern int default_child_has_memory (struct target_ops *ops);
1497 extern int default_child_has_stack (struct target_ops *ops);
1498 extern int default_child_has_registers (struct target_ops *ops);
1499 extern int default_child_has_execution (struct target_ops *ops,
1500 ptid_t the_ptid);
1501
1502 /* Can the target support the debugger control of thread execution?
1503 Can it lock the thread scheduler? */
1504
1505 #define target_can_lock_scheduler \
1506 (current_target.to_has_thread_control & tc_schedlock)
1507
1508 /* Should the target enable async mode if it is supported? Temporary
1509 cludge until async mode is a strict superset of sync mode. */
1510 extern int target_async_permitted;
1511
1512 /* Can the target support asynchronous execution? */
1513 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1514
1515 /* Is the target in asynchronous execution mode? */
1516 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1517
1518 int target_supports_non_stop (void);
1519
1520 /* Put the target in async mode with the specified callback function. */
1521 #define target_async(CALLBACK,CONTEXT) \
1522 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1523
1524 #define target_execution_direction() \
1525 (current_target.to_execution_direction (&current_target))
1526
1527 /* Converts a process id to a string. Usually, the string just contains
1528 `process xyz', but on some systems it may contain
1529 `process xyz thread abc'. */
1530
1531 extern char *target_pid_to_str (ptid_t ptid);
1532
1533 extern char *normal_pid_to_str (ptid_t ptid);
1534
1535 /* Return a short string describing extra information about PID,
1536 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1537 is okay. */
1538
1539 #define target_extra_thread_info(TP) \
1540 (current_target.to_extra_thread_info (&current_target, TP))
1541
1542 /* Return the thread's name. A NULL result means that the target
1543 could not determine this thread's name. */
1544
1545 extern char *target_thread_name (struct thread_info *);
1546
1547 /* Attempts to find the pathname of the executable file
1548 that was run to create a specified process.
1549
1550 The process PID must be stopped when this operation is used.
1551
1552 If the executable file cannot be determined, NULL is returned.
1553
1554 Else, a pointer to a character string containing the pathname
1555 is returned. This string should be copied into a buffer by
1556 the client if the string will not be immediately used, or if
1557 it must persist. */
1558
1559 #define target_pid_to_exec_file(pid) \
1560 (current_target.to_pid_to_exec_file) (&current_target, pid)
1561
1562 /* See the to_thread_architecture description in struct target_ops. */
1563
1564 #define target_thread_architecture(ptid) \
1565 (current_target.to_thread_architecture (&current_target, ptid))
1566
1567 /*
1568 * Iterator function for target memory regions.
1569 * Calls a callback function once for each memory region 'mapped'
1570 * in the child process. Defined as a simple macro rather than
1571 * as a function macro so that it can be tested for nullity.
1572 */
1573
1574 #define target_find_memory_regions(FUNC, DATA) \
1575 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1576
1577 /*
1578 * Compose corefile .note section.
1579 */
1580
1581 #define target_make_corefile_notes(BFD, SIZE_P) \
1582 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1583
1584 /* Bookmark interfaces. */
1585 #define target_get_bookmark(ARGS, FROM_TTY) \
1586 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1587
1588 #define target_goto_bookmark(ARG, FROM_TTY) \
1589 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1590
1591 /* Hardware watchpoint interfaces. */
1592
1593 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1594 write). Only the INFERIOR_PTID task is being queried. */
1595
1596 #define target_stopped_by_watchpoint() \
1597 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1598
1599 /* Non-zero if we have steppable watchpoints */
1600
1601 #define target_have_steppable_watchpoint \
1602 (current_target.to_have_steppable_watchpoint)
1603
1604 /* Non-zero if we have continuable watchpoints */
1605
1606 #define target_have_continuable_watchpoint \
1607 (current_target.to_have_continuable_watchpoint)
1608
1609 /* Provide defaults for hardware watchpoint functions. */
1610
1611 /* If the *_hw_beakpoint functions have not been defined
1612 elsewhere use the definitions in the target vector. */
1613
1614 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1615 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1616 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1617 (including this one?). OTHERTYPE is who knows what... */
1618
1619 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1620 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1621 TYPE, CNT, OTHERTYPE);
1622
1623 /* Returns the number of debug registers needed to watch the given
1624 memory region, or zero if not supported. */
1625
1626 #define target_region_ok_for_hw_watchpoint(addr, len) \
1627 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1628 addr, len)
1629
1630
1631 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1632 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1633 COND is the expression for its condition, or NULL if there's none.
1634 Returns 0 for success, 1 if the watchpoint type is not supported,
1635 -1 for failure. */
1636
1637 #define target_insert_watchpoint(addr, len, type, cond) \
1638 (*current_target.to_insert_watchpoint) (&current_target, \
1639 addr, len, type, cond)
1640
1641 #define target_remove_watchpoint(addr, len, type, cond) \
1642 (*current_target.to_remove_watchpoint) (&current_target, \
1643 addr, len, type, cond)
1644
1645 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1646 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1647 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1648 masked watchpoints are not supported, -1 for failure. */
1649
1650 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1651
1652 /* Remove a masked watchpoint at ADDR with the mask MASK.
1653 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1654 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1655 for failure. */
1656
1657 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1658
1659 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1660 the target machine. Returns 0 for success, and returns non-zero or
1661 throws an error (with a detailed failure reason error code and
1662 message) otherwise. */
1663
1664 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1665 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1666 gdbarch, bp_tgt)
1667
1668 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1669 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1670 gdbarch, bp_tgt)
1671
1672 /* Return number of debug registers needed for a ranged breakpoint,
1673 or -1 if ranged breakpoints are not supported. */
1674
1675 extern int target_ranged_break_num_registers (void);
1676
1677 /* Return non-zero if target knows the data address which triggered this
1678 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1679 INFERIOR_PTID task is being queried. */
1680 #define target_stopped_data_address(target, addr_p) \
1681 (*target.to_stopped_data_address) (target, addr_p)
1682
1683 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1684 LENGTH bytes beginning at START. */
1685 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1686 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1687
1688 /* Return non-zero if the target is capable of using hardware to evaluate
1689 the condition expression. In this case, if the condition is false when
1690 the watched memory location changes, execution may continue without the
1691 debugger being notified.
1692
1693 Due to limitations in the hardware implementation, it may be capable of
1694 avoiding triggering the watchpoint in some cases where the condition
1695 expression is false, but may report some false positives as well.
1696 For this reason, GDB will still evaluate the condition expression when
1697 the watchpoint triggers. */
1698 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1699 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1700 addr, len, type, cond)
1701
1702 /* Return number of debug registers needed for a masked watchpoint,
1703 -1 if masked watchpoints are not supported or -2 if the given address
1704 and mask combination cannot be used. */
1705
1706 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1707
1708 /* Target can execute in reverse? */
1709 #define target_can_execute_reverse \
1710 (current_target.to_can_execute_reverse ? \
1711 current_target.to_can_execute_reverse (&current_target) : 0)
1712
1713 extern const struct target_desc *target_read_description (struct target_ops *);
1714
1715 #define target_get_ada_task_ptid(lwp, tid) \
1716 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1717
1718 /* Utility implementation of searching memory. */
1719 extern int simple_search_memory (struct target_ops* ops,
1720 CORE_ADDR start_addr,
1721 ULONGEST search_space_len,
1722 const gdb_byte *pattern,
1723 ULONGEST pattern_len,
1724 CORE_ADDR *found_addrp);
1725
1726 /* Main entry point for searching memory. */
1727 extern int target_search_memory (CORE_ADDR start_addr,
1728 ULONGEST search_space_len,
1729 const gdb_byte *pattern,
1730 ULONGEST pattern_len,
1731 CORE_ADDR *found_addrp);
1732
1733 /* Target file operations. */
1734
1735 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1736 target file descriptor, or -1 if an error occurs (and set
1737 *TARGET_ERRNO). */
1738 extern int target_fileio_open (const char *filename, int flags, int mode,
1739 int *target_errno);
1740
1741 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1742 Return the number of bytes written, or -1 if an error occurs
1743 (and set *TARGET_ERRNO). */
1744 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1745 ULONGEST offset, int *target_errno);
1746
1747 /* Read up to LEN bytes FD on the target into READ_BUF.
1748 Return the number of bytes read, or -1 if an error occurs
1749 (and set *TARGET_ERRNO). */
1750 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1751 ULONGEST offset, int *target_errno);
1752
1753 /* Close FD on the target. Return 0, or -1 if an error occurs
1754 (and set *TARGET_ERRNO). */
1755 extern int target_fileio_close (int fd, int *target_errno);
1756
1757 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1758 occurs (and set *TARGET_ERRNO). */
1759 extern int target_fileio_unlink (const char *filename, int *target_errno);
1760
1761 /* Read value of symbolic link FILENAME on the target. Return a
1762 null-terminated string allocated via xmalloc, or NULL if an error
1763 occurs (and set *TARGET_ERRNO). */
1764 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1765
1766 /* Read target file FILENAME. The return value will be -1 if the transfer
1767 fails or is not supported; 0 if the object is empty; or the length
1768 of the object otherwise. If a positive value is returned, a
1769 sufficiently large buffer will be allocated using xmalloc and
1770 returned in *BUF_P containing the contents of the object.
1771
1772 This method should be used for objects sufficiently small to store
1773 in a single xmalloc'd buffer, when no fixed bound on the object's
1774 size is known in advance. */
1775 extern LONGEST target_fileio_read_alloc (const char *filename,
1776 gdb_byte **buf_p);
1777
1778 /* Read target file FILENAME. The result is NUL-terminated and
1779 returned as a string, allocated using xmalloc. If an error occurs
1780 or the transfer is unsupported, NULL is returned. Empty objects
1781 are returned as allocated but empty strings. A warning is issued
1782 if the result contains any embedded NUL bytes. */
1783 extern char *target_fileio_read_stralloc (const char *filename);
1784
1785
1786 /* Tracepoint-related operations. */
1787
1788 #define target_trace_init() \
1789 (*current_target.to_trace_init) (&current_target)
1790
1791 #define target_download_tracepoint(t) \
1792 (*current_target.to_download_tracepoint) (&current_target, t)
1793
1794 #define target_can_download_tracepoint() \
1795 (*current_target.to_can_download_tracepoint) (&current_target)
1796
1797 #define target_download_trace_state_variable(tsv) \
1798 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1799
1800 #define target_enable_tracepoint(loc) \
1801 (*current_target.to_enable_tracepoint) (&current_target, loc)
1802
1803 #define target_disable_tracepoint(loc) \
1804 (*current_target.to_disable_tracepoint) (&current_target, loc)
1805
1806 #define target_trace_start() \
1807 (*current_target.to_trace_start) (&current_target)
1808
1809 #define target_trace_set_readonly_regions() \
1810 (*current_target.to_trace_set_readonly_regions) (&current_target)
1811
1812 #define target_get_trace_status(ts) \
1813 (*current_target.to_get_trace_status) (&current_target, ts)
1814
1815 #define target_get_tracepoint_status(tp,utp) \
1816 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1817
1818 #define target_trace_stop() \
1819 (*current_target.to_trace_stop) ()
1820
1821 #define target_trace_find(type,num,addr1,addr2,tpp) \
1822 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1823
1824 #define target_get_trace_state_variable_value(tsv,val) \
1825 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1826
1827 #define target_save_trace_data(filename) \
1828 (*current_target.to_save_trace_data) (filename)
1829
1830 #define target_upload_tracepoints(utpp) \
1831 (*current_target.to_upload_tracepoints) (utpp)
1832
1833 #define target_upload_trace_state_variables(utsvp) \
1834 (*current_target.to_upload_trace_state_variables) (utsvp)
1835
1836 #define target_get_raw_trace_data(buf,offset,len) \
1837 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1838
1839 #define target_get_min_fast_tracepoint_insn_len() \
1840 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1841
1842 #define target_set_disconnected_tracing(val) \
1843 (*current_target.to_set_disconnected_tracing) (val)
1844
1845 #define target_set_circular_trace_buffer(val) \
1846 (*current_target.to_set_circular_trace_buffer) (val)
1847
1848 #define target_set_trace_buffer_size(val) \
1849 (*current_target.to_set_trace_buffer_size) (val)
1850
1851 #define target_set_trace_notes(user,notes,stopnotes) \
1852 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1853
1854 #define target_get_tib_address(ptid, addr) \
1855 (*current_target.to_get_tib_address) ((ptid), (addr))
1856
1857 #define target_set_permissions() \
1858 (*current_target.to_set_permissions) ()
1859
1860 #define target_static_tracepoint_marker_at(addr, marker) \
1861 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1862
1863 #define target_static_tracepoint_markers_by_strid(marker_id) \
1864 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1865
1866 #define target_traceframe_info() \
1867 (*current_target.to_traceframe_info) ()
1868
1869 #define target_use_agent(use) \
1870 (*current_target.to_use_agent) (use)
1871
1872 #define target_can_use_agent() \
1873 (*current_target.to_can_use_agent) ()
1874
1875 #define target_augmented_libraries_svr4_read() \
1876 (*current_target.to_augmented_libraries_svr4_read) ()
1877
1878 /* Command logging facility. */
1879
1880 #define target_log_command(p) \
1881 do \
1882 if (current_target.to_log_command) \
1883 (*current_target.to_log_command) (&current_target, \
1884 p); \
1885 while (0)
1886
1887
1888 extern int target_core_of_thread (ptid_t ptid);
1889
1890 /* See to_get_unwinder in struct target_ops. */
1891 extern const struct frame_unwind *target_get_unwinder (void);
1892
1893 /* See to_get_tailcall_unwinder in struct target_ops. */
1894 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1895
1896 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1897 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1898 if there's a mismatch, and -1 if an error is encountered while
1899 reading memory. Throws an error if the functionality is found not
1900 to be supported by the current target. */
1901 int target_verify_memory (const gdb_byte *data,
1902 CORE_ADDR memaddr, ULONGEST size);
1903
1904 /* Routines for maintenance of the target structures...
1905
1906 complete_target_initialization: Finalize a target_ops by filling in
1907 any fields needed by the target implementation.
1908
1909 add_target: Add a target to the list of all possible targets.
1910
1911 push_target: Make this target the top of the stack of currently used
1912 targets, within its particular stratum of the stack. Result
1913 is 0 if now atop the stack, nonzero if not on top (maybe
1914 should warn user).
1915
1916 unpush_target: Remove this from the stack of currently used targets,
1917 no matter where it is on the list. Returns 0 if no
1918 change, 1 if removed from stack. */
1919
1920 extern void add_target (struct target_ops *);
1921
1922 extern void add_target_with_completer (struct target_ops *t,
1923 completer_ftype *completer);
1924
1925 extern void complete_target_initialization (struct target_ops *t);
1926
1927 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1928 for maintaining backwards compatibility when renaming targets. */
1929
1930 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1931
1932 extern void push_target (struct target_ops *);
1933
1934 extern int unpush_target (struct target_ops *);
1935
1936 extern void target_pre_inferior (int);
1937
1938 extern void target_preopen (int);
1939
1940 /* Does whatever cleanup is required to get rid of all pushed targets. */
1941 extern void pop_all_targets (void);
1942
1943 /* Like pop_all_targets, but pops only targets whose stratum is
1944 strictly above ABOVE_STRATUM. */
1945 extern void pop_all_targets_above (enum strata above_stratum);
1946
1947 extern int target_is_pushed (struct target_ops *t);
1948
1949 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1950 CORE_ADDR offset);
1951
1952 /* Struct target_section maps address ranges to file sections. It is
1953 mostly used with BFD files, but can be used without (e.g. for handling
1954 raw disks, or files not in formats handled by BFD). */
1955
1956 struct target_section
1957 {
1958 CORE_ADDR addr; /* Lowest address in section */
1959 CORE_ADDR endaddr; /* 1+highest address in section */
1960
1961 struct bfd_section *the_bfd_section;
1962
1963 /* The "owner" of the section.
1964 It can be any unique value. It is set by add_target_sections
1965 and used by remove_target_sections.
1966 For example, for executables it is a pointer to exec_bfd and
1967 for shlibs it is the so_list pointer. */
1968 void *owner;
1969 };
1970
1971 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1972
1973 struct target_section_table
1974 {
1975 struct target_section *sections;
1976 struct target_section *sections_end;
1977 };
1978
1979 /* Return the "section" containing the specified address. */
1980 struct target_section *target_section_by_addr (struct target_ops *target,
1981 CORE_ADDR addr);
1982
1983 /* Return the target section table this target (or the targets
1984 beneath) currently manipulate. */
1985
1986 extern struct target_section_table *target_get_section_table
1987 (struct target_ops *target);
1988
1989 /* From mem-break.c */
1990
1991 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1992 struct bp_target_info *);
1993
1994 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1995 struct bp_target_info *);
1996
1997 extern int default_memory_remove_breakpoint (struct gdbarch *,
1998 struct bp_target_info *);
1999
2000 extern int default_memory_insert_breakpoint (struct gdbarch *,
2001 struct bp_target_info *);
2002
2003
2004 /* From target.c */
2005
2006 extern void initialize_targets (void);
2007
2008 extern void noprocess (void) ATTRIBUTE_NORETURN;
2009
2010 extern void target_require_runnable (void);
2011
2012 extern void find_default_attach (struct target_ops *, char *, int);
2013
2014 extern void find_default_create_inferior (struct target_ops *,
2015 char *, char *, char **, int);
2016
2017 extern struct target_ops *find_target_beneath (struct target_ops *);
2018
2019 /* Find the target at STRATUM. If no target is at that stratum,
2020 return NULL. */
2021
2022 struct target_ops *find_target_at (enum strata stratum);
2023
2024 /* Read OS data object of type TYPE from the target, and return it in
2025 XML format. The result is NUL-terminated and returned as a string,
2026 allocated using xmalloc. If an error occurs or the transfer is
2027 unsupported, NULL is returned. Empty objects are returned as
2028 allocated but empty strings. */
2029
2030 extern char *target_get_osdata (const char *type);
2031
2032 \f
2033 /* Stuff that should be shared among the various remote targets. */
2034
2035 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2036 information (higher values, more information). */
2037 extern int remote_debug;
2038
2039 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2040 extern int baud_rate;
2041 /* Timeout limit for response from target. */
2042 extern int remote_timeout;
2043
2044 \f
2045
2046 /* Set the show memory breakpoints mode to show, and installs a cleanup
2047 to restore it back to the current value. */
2048 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2049
2050 extern int may_write_registers;
2051 extern int may_write_memory;
2052 extern int may_insert_breakpoints;
2053 extern int may_insert_tracepoints;
2054 extern int may_insert_fast_tracepoints;
2055 extern int may_stop;
2056
2057 extern void update_target_permissions (void);
2058
2059 \f
2060 /* Imported from machine dependent code. */
2061
2062 /* Blank target vector entries are initialized to target_ignore. */
2063 void target_ignore (void);
2064
2065 /* See to_supports_btrace in struct target_ops. */
2066 #define target_supports_btrace() \
2067 (current_target.to_supports_btrace (&current_target))
2068
2069 /* See to_enable_btrace in struct target_ops. */
2070 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2071
2072 /* See to_disable_btrace in struct target_ops. */
2073 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2074
2075 /* See to_teardown_btrace in struct target_ops. */
2076 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2077
2078 /* See to_read_btrace in struct target_ops. */
2079 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2080 struct btrace_target_info *,
2081 enum btrace_read_type);
2082
2083 /* See to_stop_recording in struct target_ops. */
2084 extern void target_stop_recording (void);
2085
2086 /* See to_info_record in struct target_ops. */
2087 extern void target_info_record (void);
2088
2089 /* See to_save_record in struct target_ops. */
2090 extern void target_save_record (const char *filename);
2091
2092 /* Query if the target supports deleting the execution log. */
2093 extern int target_supports_delete_record (void);
2094
2095 /* See to_delete_record in struct target_ops. */
2096 extern void target_delete_record (void);
2097
2098 /* See to_record_is_replaying in struct target_ops. */
2099 extern int target_record_is_replaying (void);
2100
2101 /* See to_goto_record_begin in struct target_ops. */
2102 extern void target_goto_record_begin (void);
2103
2104 /* See to_goto_record_end in struct target_ops. */
2105 extern void target_goto_record_end (void);
2106
2107 /* See to_goto_record in struct target_ops. */
2108 extern void target_goto_record (ULONGEST insn);
2109
2110 /* See to_insn_history. */
2111 extern void target_insn_history (int size, int flags);
2112
2113 /* See to_insn_history_from. */
2114 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2115
2116 /* See to_insn_history_range. */
2117 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2118
2119 /* See to_call_history. */
2120 extern void target_call_history (int size, int flags);
2121
2122 /* See to_call_history_from. */
2123 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2124
2125 /* See to_call_history_range. */
2126 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2127
2128 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2129 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2130 struct gdbarch *gdbarch);
2131
2132 /* See to_decr_pc_after_break. */
2133 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2134
2135 #endif /* !defined (TARGET_H) */