]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
Add target_ops argument to to_post_startup_inferior
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* Generic I/O error. Note that it's important that this is '-1',
217 as we still have target_xfer-related code returning hardcoded
218 '-1' on error. */
219 TARGET_XFER_E_IO = -1,
220
221 /* Transfer failed because the piece of the object requested is
222 unavailable. */
223 TARGET_XFER_E_UNAVAILABLE = -2,
224
225 /* Keep list in sync with target_xfer_error_to_string. */
226 };
227
228 #define TARGET_XFER_STATUS_ERROR_P(STATUS) ((STATUS) < TARGET_XFER_EOF)
229
230 /* Return the string form of ERR. */
231
232 extern const char *target_xfer_status_to_string (enum target_xfer_status err);
233
234 /* Enumeration of the kinds of traceframe searches that a target may
235 be able to perform. */
236
237 enum trace_find_type
238 {
239 tfind_number,
240 tfind_pc,
241 tfind_tp,
242 tfind_range,
243 tfind_outside,
244 };
245
246 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
247 DEF_VEC_P(static_tracepoint_marker_p);
248
249 typedef enum target_xfer_status
250 target_xfer_partial_ftype (struct target_ops *ops,
251 enum target_object object,
252 const char *annex,
253 gdb_byte *readbuf,
254 const gdb_byte *writebuf,
255 ULONGEST offset,
256 ULONGEST len,
257 ULONGEST *xfered_len);
258
259 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
260 OBJECT. The OFFSET, for a seekable object, specifies the
261 starting point. The ANNEX can be used to provide additional
262 data-specific information to the target.
263
264 Return the number of bytes actually transfered, or a negative error
265 code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 /* First address that was read. */
279 ULONGEST begin;
280 /* Past-the-end address. */
281 ULONGEST end;
282 /* The data. */
283 gdb_byte *data;
284 };
285 typedef struct memory_read_result memory_read_result_s;
286 DEF_VEC_O(memory_read_result_s);
287
288 extern void free_memory_read_result_vector (void *);
289
290 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
291 ULONGEST offset,
292 LONGEST len);
293
294 extern LONGEST target_write (struct target_ops *ops,
295 enum target_object object,
296 const char *annex, const gdb_byte *buf,
297 ULONGEST offset, LONGEST len);
298
299 /* Similar to target_write, except that it also calls PROGRESS with
300 the number of bytes written and the opaque BATON after every
301 successful partial write (and before the first write). This is
302 useful for progress reporting and user interaction while writing
303 data. To abort the transfer, the progress callback can throw an
304 exception. */
305
306 LONGEST target_write_with_progress (struct target_ops *ops,
307 enum target_object object,
308 const char *annex, const gdb_byte *buf,
309 ULONGEST offset, LONGEST len,
310 void (*progress) (ULONGEST, void *),
311 void *baton);
312
313 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
314 be read using OPS. The return value will be -1 if the transfer
315 fails or is not supported; 0 if the object is empty; or the length
316 of the object otherwise. If a positive value is returned, a
317 sufficiently large buffer will be allocated using xmalloc and
318 returned in *BUF_P containing the contents of the object.
319
320 This method should be used for objects sufficiently small to store
321 in a single xmalloc'd buffer, when no fixed bound on the object's
322 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
323 through this function. */
324
325 extern LONGEST target_read_alloc (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, gdb_byte **buf_p);
328
329 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
330 returned as a string, allocated using xmalloc. If an error occurs
331 or the transfer is unsupported, NULL is returned. Empty objects
332 are returned as allocated but empty strings. A warning is issued
333 if the result contains any embedded NUL bytes. */
334
335 extern char *target_read_stralloc (struct target_ops *ops,
336 enum target_object object,
337 const char *annex);
338
339 /* See target_ops->to_xfer_partial. */
340 extern target_xfer_partial_ftype target_xfer_partial;
341
342 /* Wrappers to target read/write that perform memory transfers. They
343 throw an error if the memory transfer fails.
344
345 NOTE: cagney/2003-10-23: The naming schema is lifted from
346 "frame.h". The parameter order is lifted from get_frame_memory,
347 which in turn lifted it from read_memory. */
348
349 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
350 gdb_byte *buf, LONGEST len);
351 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
352 CORE_ADDR addr, int len,
353 enum bfd_endian byte_order);
354 \f
355 struct thread_info; /* fwd decl for parameter list below: */
356
357 /* The type of the callback to the to_async method. */
358
359 typedef void async_callback_ftype (enum inferior_event_type event_type,
360 void *context);
361
362 /* These defines are used to mark target_ops methods. The script
363 make-target-delegates scans these and auto-generates the base
364 method implementations. There are four macros that can be used:
365
366 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
367 does nothing. This is only valid if the method return type is
368 'void'.
369
370 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
371 'tcomplain ()'. The base method simply makes this call, which is
372 assumed not to return.
373
374 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
375 base method returns this expression's value.
376
377 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
378 make-target-delegates does not generate a base method in this case,
379 but instead uses the argument function as the base method. */
380
381 #define TARGET_DEFAULT_IGNORE()
382 #define TARGET_DEFAULT_NORETURN(ARG)
383 #define TARGET_DEFAULT_RETURN(ARG)
384 #define TARGET_DEFAULT_FUNC(ARG)
385
386 struct target_ops
387 {
388 struct target_ops *beneath; /* To the target under this one. */
389 char *to_shortname; /* Name this target type */
390 char *to_longname; /* Name for printing */
391 char *to_doc; /* Documentation. Does not include trailing
392 newline, and starts with a one-line descrip-
393 tion (probably similar to to_longname). */
394 /* Per-target scratch pad. */
395 void *to_data;
396 /* The open routine takes the rest of the parameters from the
397 command, and (if successful) pushes a new target onto the
398 stack. Targets should supply this routine, if only to provide
399 an error message. */
400 void (*to_open) (char *, int);
401 /* Old targets with a static target vector provide "to_close".
402 New re-entrant targets provide "to_xclose" and that is expected
403 to xfree everything (including the "struct target_ops"). */
404 void (*to_xclose) (struct target_ops *targ);
405 void (*to_close) (struct target_ops *);
406 void (*to_attach) (struct target_ops *ops, char *, int);
407 void (*to_post_attach) (struct target_ops *, int);
408 void (*to_detach) (struct target_ops *ops, const char *, int);
409 void (*to_disconnect) (struct target_ops *, char *, int);
410 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
411 TARGET_DEFAULT_NORETURN (noprocess ());
412 ptid_t (*to_wait) (struct target_ops *,
413 ptid_t, struct target_waitstatus *, int)
414 TARGET_DEFAULT_NORETURN (noprocess ());
415 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
416 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
417 TARGET_DEFAULT_NORETURN (noprocess ());
418 void (*to_prepare_to_store) (struct target_ops *, struct regcache *);
419
420 /* Transfer LEN bytes of memory between GDB address MYADDR and
421 target address MEMADDR. If WRITE, transfer them to the target, else
422 transfer them from the target. TARGET is the target from which we
423 get this function.
424
425 Return value, N, is one of the following:
426
427 0 means that we can't handle this. If errno has been set, it is the
428 error which prevented us from doing it (FIXME: What about bfd_error?).
429
430 positive (call it N) means that we have transferred N bytes
431 starting at MEMADDR. We might be able to handle more bytes
432 beyond this length, but no promises.
433
434 negative (call its absolute value N) means that we cannot
435 transfer right at MEMADDR, but we could transfer at least
436 something at MEMADDR + N.
437
438 NOTE: cagney/2004-10-01: This has been entirely superseeded by
439 to_xfer_partial and inferior inheritance. */
440
441 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
442 int len, int write,
443 struct mem_attrib *attrib,
444 struct target_ops *target);
445
446 void (*to_files_info) (struct target_ops *);
447 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
448 struct bp_target_info *)
449 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
450 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
451 struct bp_target_info *)
452 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
453 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int);
454 int (*to_ranged_break_num_registers) (struct target_ops *);
455 int (*to_insert_hw_breakpoint) (struct target_ops *,
456 struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_hw_breakpoint) (struct target_ops *,
458 struct gdbarch *, struct bp_target_info *);
459
460 /* Documentation of what the two routines below are expected to do is
461 provided with the corresponding target_* macros. */
462 int (*to_remove_watchpoint) (struct target_ops *,
463 CORE_ADDR, int, int, struct expression *);
464 int (*to_insert_watchpoint) (struct target_ops *,
465 CORE_ADDR, int, int, struct expression *);
466
467 int (*to_insert_mask_watchpoint) (struct target_ops *,
468 CORE_ADDR, CORE_ADDR, int);
469 int (*to_remove_mask_watchpoint) (struct target_ops *,
470 CORE_ADDR, CORE_ADDR, int);
471 int (*to_stopped_by_watchpoint) (struct target_ops *)
472 TARGET_DEFAULT_RETURN (0);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
476 TARGET_DEFAULT_RETURN (0);
477 int (*to_watchpoint_addr_within_range) (struct target_ops *,
478 CORE_ADDR, CORE_ADDR, int);
479
480 /* Documentation of this routine is provided with the corresponding
481 target_* macro. */
482 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
483 CORE_ADDR, int);
484
485 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
486 CORE_ADDR, int, int,
487 struct expression *);
488 int (*to_masked_watch_num_registers) (struct target_ops *,
489 CORE_ADDR, CORE_ADDR);
490 void (*to_terminal_init) (struct target_ops *);
491 void (*to_terminal_inferior) (struct target_ops *);
492 void (*to_terminal_ours_for_output) (struct target_ops *);
493 void (*to_terminal_ours) (struct target_ops *);
494 void (*to_terminal_save_ours) (struct target_ops *);
495 void (*to_terminal_info) (struct target_ops *, const char *, int);
496 void (*to_kill) (struct target_ops *);
497 void (*to_load) (struct target_ops *, char *, int);
498 void (*to_create_inferior) (struct target_ops *,
499 char *, char *, char **, int);
500 void (*to_post_startup_inferior) (struct target_ops *, ptid_t);
501 int (*to_insert_fork_catchpoint) (int);
502 int (*to_remove_fork_catchpoint) (int);
503 int (*to_insert_vfork_catchpoint) (int);
504 int (*to_remove_vfork_catchpoint) (int);
505 int (*to_follow_fork) (struct target_ops *, int, int);
506 int (*to_insert_exec_catchpoint) (int);
507 int (*to_remove_exec_catchpoint) (int);
508 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
509 int (*to_has_exited) (int, int, int *);
510 void (*to_mourn_inferior) (struct target_ops *);
511 int (*to_can_run) (void);
512
513 /* Documentation of this routine is provided with the corresponding
514 target_* macro. */
515 void (*to_pass_signals) (int, unsigned char *);
516
517 /* Documentation of this routine is provided with the
518 corresponding target_* function. */
519 void (*to_program_signals) (int, unsigned char *);
520
521 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
522 void (*to_find_new_threads) (struct target_ops *);
523 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
524 char *(*to_extra_thread_info) (struct thread_info *);
525 char *(*to_thread_name) (struct thread_info *);
526 void (*to_stop) (ptid_t);
527 void (*to_rcmd) (char *command, struct ui_file *output);
528 char *(*to_pid_to_exec_file) (int pid);
529 void (*to_log_command) (const char *);
530 struct target_section_table *(*to_get_section_table) (struct target_ops *);
531 enum strata to_stratum;
532 int (*to_has_all_memory) (struct target_ops *);
533 int (*to_has_memory) (struct target_ops *);
534 int (*to_has_stack) (struct target_ops *);
535 int (*to_has_registers) (struct target_ops *);
536 int (*to_has_execution) (struct target_ops *, ptid_t);
537 int to_has_thread_control; /* control thread execution */
538 int to_attach_no_wait;
539 /* ASYNC target controls */
540 int (*to_can_async_p) (struct target_ops *)
541 TARGET_DEFAULT_FUNC (find_default_can_async_p);
542 int (*to_is_async_p) (struct target_ops *)
543 TARGET_DEFAULT_FUNC (find_default_is_async_p);
544 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
545 TARGET_DEFAULT_NORETURN (tcomplain ());
546 int (*to_supports_non_stop) (void);
547 /* find_memory_regions support method for gcore */
548 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
549 /* make_corefile_notes support method for gcore */
550 char * (*to_make_corefile_notes) (bfd *, int *);
551 /* get_bookmark support method for bookmarks */
552 gdb_byte * (*to_get_bookmark) (char *, int);
553 /* goto_bookmark support method for bookmarks */
554 void (*to_goto_bookmark) (gdb_byte *, int);
555 /* Return the thread-local address at OFFSET in the
556 thread-local storage for the thread PTID and the shared library
557 or executable file given by OBJFILE. If that block of
558 thread-local storage hasn't been allocated yet, this function
559 may return an error. */
560 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
561 ptid_t ptid,
562 CORE_ADDR load_module_addr,
563 CORE_ADDR offset);
564
565 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
566 OBJECT. The OFFSET, for a seekable object, specifies the
567 starting point. The ANNEX can be used to provide additional
568 data-specific information to the target.
569
570 Return the transferred status, error or OK (an
571 'enum target_xfer_status' value). Save the number of bytes
572 actually transferred in *XFERED_LEN if transfer is successful
573 (TARGET_XFER_OK) or the number unavailable bytes if the requested
574 data is unavailable (TARGET_XFER_E_UNAVAILABLE). *XFERED_LEN
575 smaller than LEN does not indicate the end of the object, only
576 the end of the transfer; higher level code should continue
577 transferring if desired. This is handled in target.c.
578
579 The interface does not support a "retry" mechanism. Instead it
580 assumes that at least one byte will be transfered on each
581 successful call.
582
583 NOTE: cagney/2003-10-17: The current interface can lead to
584 fragmented transfers. Lower target levels should not implement
585 hacks, such as enlarging the transfer, in an attempt to
586 compensate for this. Instead, the target stack should be
587 extended so that it implements supply/collect methods and a
588 look-aside object cache. With that available, the lowest
589 target can safely and freely "push" data up the stack.
590
591 See target_read and target_write for more information. One,
592 and only one, of readbuf or writebuf must be non-NULL. */
593
594 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
595 enum target_object object,
596 const char *annex,
597 gdb_byte *readbuf,
598 const gdb_byte *writebuf,
599 ULONGEST offset, ULONGEST len,
600 ULONGEST *xfered_len)
601 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
602
603 /* Returns the memory map for the target. A return value of NULL
604 means that no memory map is available. If a memory address
605 does not fall within any returned regions, it's assumed to be
606 RAM. The returned memory regions should not overlap.
607
608 The order of regions does not matter; target_memory_map will
609 sort regions by starting address. For that reason, this
610 function should not be called directly except via
611 target_memory_map.
612
613 This method should not cache data; if the memory map could
614 change unexpectedly, it should be invalidated, and higher
615 layers will re-fetch it. */
616 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
617
618 /* Erases the region of flash memory starting at ADDRESS, of
619 length LENGTH.
620
621 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
622 on flash block boundaries, as reported by 'to_memory_map'. */
623 void (*to_flash_erase) (struct target_ops *,
624 ULONGEST address, LONGEST length);
625
626 /* Finishes a flash memory write sequence. After this operation
627 all flash memory should be available for writing and the result
628 of reading from areas written by 'to_flash_write' should be
629 equal to what was written. */
630 void (*to_flash_done) (struct target_ops *);
631
632 /* Describe the architecture-specific features of this target.
633 Returns the description found, or NULL if no description
634 was available. */
635 const struct target_desc *(*to_read_description) (struct target_ops *ops);
636
637 /* Build the PTID of the thread on which a given task is running,
638 based on LWP and THREAD. These values are extracted from the
639 task Private_Data section of the Ada Task Control Block, and
640 their interpretation depends on the target. */
641 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
642
643 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
644 Return 0 if *READPTR is already at the end of the buffer.
645 Return -1 if there is insufficient buffer for a whole entry.
646 Return 1 if an entry was read into *TYPEP and *VALP. */
647 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
648 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
649
650 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
651 sequence of bytes in PATTERN with length PATTERN_LEN.
652
653 The result is 1 if found, 0 if not found, and -1 if there was an error
654 requiring halting of the search (e.g. memory read error).
655 If the pattern is found the address is recorded in FOUND_ADDRP. */
656 int (*to_search_memory) (struct target_ops *ops,
657 CORE_ADDR start_addr, ULONGEST search_space_len,
658 const gdb_byte *pattern, ULONGEST pattern_len,
659 CORE_ADDR *found_addrp);
660
661 /* Can target execute in reverse? */
662 int (*to_can_execute_reverse) (void);
663
664 /* The direction the target is currently executing. Must be
665 implemented on targets that support reverse execution and async
666 mode. The default simply returns forward execution. */
667 enum exec_direction_kind (*to_execution_direction) (void);
668
669 /* Does this target support debugging multiple processes
670 simultaneously? */
671 int (*to_supports_multi_process) (void);
672
673 /* Does this target support enabling and disabling tracepoints while a trace
674 experiment is running? */
675 int (*to_supports_enable_disable_tracepoint) (void);
676
677 /* Does this target support disabling address space randomization? */
678 int (*to_supports_disable_randomization) (void);
679
680 /* Does this target support the tracenz bytecode for string collection? */
681 int (*to_supports_string_tracing) (void);
682
683 /* Does this target support evaluation of breakpoint conditions on its
684 end? */
685 int (*to_supports_evaluation_of_breakpoint_conditions) (void);
686
687 /* Does this target support evaluation of breakpoint commands on its
688 end? */
689 int (*to_can_run_breakpoint_commands) (void);
690
691 /* Determine current architecture of thread PTID.
692
693 The target is supposed to determine the architecture of the code where
694 the target is currently stopped at (on Cell, if a target is in spu_run,
695 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
696 This is architecture used to perform decr_pc_after_break adjustment,
697 and also determines the frame architecture of the innermost frame.
698 ptrace operations need to operate according to target_gdbarch ().
699
700 The default implementation always returns target_gdbarch (). */
701 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
702
703 /* Determine current address space of thread PTID.
704
705 The default implementation always returns the inferior's
706 address space. */
707 struct address_space *(*to_thread_address_space) (struct target_ops *,
708 ptid_t);
709
710 /* Target file operations. */
711
712 /* Open FILENAME on the target, using FLAGS and MODE. Return a
713 target file descriptor, or -1 if an error occurs (and set
714 *TARGET_ERRNO). */
715 int (*to_fileio_open) (const char *filename, int flags, int mode,
716 int *target_errno);
717
718 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
719 Return the number of bytes written, or -1 if an error occurs
720 (and set *TARGET_ERRNO). */
721 int (*to_fileio_pwrite) (int fd, const gdb_byte *write_buf, int len,
722 ULONGEST offset, int *target_errno);
723
724 /* Read up to LEN bytes FD on the target into READ_BUF.
725 Return the number of bytes read, or -1 if an error occurs
726 (and set *TARGET_ERRNO). */
727 int (*to_fileio_pread) (int fd, gdb_byte *read_buf, int len,
728 ULONGEST offset, int *target_errno);
729
730 /* Close FD on the target. Return 0, or -1 if an error occurs
731 (and set *TARGET_ERRNO). */
732 int (*to_fileio_close) (int fd, int *target_errno);
733
734 /* Unlink FILENAME on the target. Return 0, or -1 if an error
735 occurs (and set *TARGET_ERRNO). */
736 int (*to_fileio_unlink) (const char *filename, int *target_errno);
737
738 /* Read value of symbolic link FILENAME on the target. Return a
739 null-terminated string allocated via xmalloc, or NULL if an error
740 occurs (and set *TARGET_ERRNO). */
741 char *(*to_fileio_readlink) (const char *filename, int *target_errno);
742
743
744 /* Implement the "info proc" command. */
745 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
746
747 /* Tracepoint-related operations. */
748
749 /* Prepare the target for a tracing run. */
750 void (*to_trace_init) (void);
751
752 /* Send full details of a tracepoint location to the target. */
753 void (*to_download_tracepoint) (struct bp_location *location);
754
755 /* Is the target able to download tracepoint locations in current
756 state? */
757 int (*to_can_download_tracepoint) (void);
758
759 /* Send full details of a trace state variable to the target. */
760 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
761
762 /* Enable a tracepoint on the target. */
763 void (*to_enable_tracepoint) (struct bp_location *location);
764
765 /* Disable a tracepoint on the target. */
766 void (*to_disable_tracepoint) (struct bp_location *location);
767
768 /* Inform the target info of memory regions that are readonly
769 (such as text sections), and so it should return data from
770 those rather than look in the trace buffer. */
771 void (*to_trace_set_readonly_regions) (void);
772
773 /* Start a trace run. */
774 void (*to_trace_start) (void);
775
776 /* Get the current status of a tracing run. */
777 int (*to_get_trace_status) (struct trace_status *ts);
778
779 void (*to_get_tracepoint_status) (struct breakpoint *tp,
780 struct uploaded_tp *utp);
781
782 /* Stop a trace run. */
783 void (*to_trace_stop) (void);
784
785 /* Ask the target to find a trace frame of the given type TYPE,
786 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
787 number of the trace frame, and also the tracepoint number at
788 TPP. If no trace frame matches, return -1. May throw if the
789 operation fails. */
790 int (*to_trace_find) (enum trace_find_type type, int num,
791 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp);
792
793 /* Get the value of the trace state variable number TSV, returning
794 1 if the value is known and writing the value itself into the
795 location pointed to by VAL, else returning 0. */
796 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
797
798 int (*to_save_trace_data) (const char *filename);
799
800 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
801
802 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
803
804 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
805 ULONGEST offset, LONGEST len);
806
807 /* Get the minimum length of instruction on which a fast tracepoint
808 may be set on the target. If this operation is unsupported,
809 return -1. If for some reason the minimum length cannot be
810 determined, return 0. */
811 int (*to_get_min_fast_tracepoint_insn_len) (void);
812
813 /* Set the target's tracing behavior in response to unexpected
814 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
815 void (*to_set_disconnected_tracing) (int val);
816 void (*to_set_circular_trace_buffer) (int val);
817 /* Set the size of trace buffer in the target. */
818 void (*to_set_trace_buffer_size) (LONGEST val);
819
820 /* Add/change textual notes about the trace run, returning 1 if
821 successful, 0 otherwise. */
822 int (*to_set_trace_notes) (const char *user, const char *notes,
823 const char *stopnotes);
824
825 /* Return the processor core that thread PTID was last seen on.
826 This information is updated only when:
827 - update_thread_list is called
828 - thread stops
829 If the core cannot be determined -- either for the specified
830 thread, or right now, or in this debug session, or for this
831 target -- return -1. */
832 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
833
834 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
835 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
836 a match, 0 if there's a mismatch, and -1 if an error is
837 encountered while reading memory. */
838 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
839 CORE_ADDR memaddr, ULONGEST size);
840
841 /* Return the address of the start of the Thread Information Block
842 a Windows OS specific feature. */
843 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
844
845 /* Send the new settings of write permission variables. */
846 void (*to_set_permissions) (void);
847
848 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
849 with its details. Return 1 on success, 0 on failure. */
850 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
851 struct static_tracepoint_marker *marker);
852
853 /* Return a vector of all tracepoints markers string id ID, or all
854 markers if ID is NULL. */
855 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
856 (const char *id);
857
858 /* Return a traceframe info object describing the current
859 traceframe's contents. If the target doesn't support
860 traceframe info, return NULL. If the current traceframe is not
861 selected (the current traceframe number is -1), the target can
862 choose to return either NULL or an empty traceframe info. If
863 NULL is returned, for example in remote target, GDB will read
864 from the live inferior. If an empty traceframe info is
865 returned, for example in tfile target, which means the
866 traceframe info is available, but the requested memory is not
867 available in it. GDB will try to see if the requested memory
868 is available in the read-only sections. This method should not
869 cache data; higher layers take care of caching, invalidating,
870 and re-fetching when necessary. */
871 struct traceframe_info *(*to_traceframe_info) (void);
872
873 /* Ask the target to use or not to use agent according to USE. Return 1
874 successful, 0 otherwise. */
875 int (*to_use_agent) (int use);
876
877 /* Is the target able to use agent in current state? */
878 int (*to_can_use_agent) (void);
879
880 /* Check whether the target supports branch tracing. */
881 int (*to_supports_btrace) (struct target_ops *)
882 TARGET_DEFAULT_RETURN (0);
883
884 /* Enable branch tracing for PTID and allocate a branch trace target
885 information struct for reading and for disabling branch trace. */
886 struct btrace_target_info *(*to_enable_btrace) (ptid_t ptid);
887
888 /* Disable branch tracing and deallocate TINFO. */
889 void (*to_disable_btrace) (struct btrace_target_info *tinfo);
890
891 /* Disable branch tracing and deallocate TINFO. This function is similar
892 to to_disable_btrace, except that it is called during teardown and is
893 only allowed to perform actions that are safe. A counter-example would
894 be attempting to talk to a remote target. */
895 void (*to_teardown_btrace) (struct btrace_target_info *tinfo);
896
897 /* Read branch trace data for the thread indicated by BTINFO into DATA.
898 DATA is cleared before new trace is added.
899 The branch trace will start with the most recent block and continue
900 towards older blocks. */
901 enum btrace_error (*to_read_btrace) (VEC (btrace_block_s) **data,
902 struct btrace_target_info *btinfo,
903 enum btrace_read_type type);
904
905 /* Stop trace recording. */
906 void (*to_stop_recording) (void);
907
908 /* Print information about the recording. */
909 void (*to_info_record) (void);
910
911 /* Save the recorded execution trace into a file. */
912 void (*to_save_record) (const char *filename);
913
914 /* Delete the recorded execution trace from the current position onwards. */
915 void (*to_delete_record) (void);
916
917 /* Query if the record target is currently replaying. */
918 int (*to_record_is_replaying) (void);
919
920 /* Go to the begin of the execution trace. */
921 void (*to_goto_record_begin) (void);
922
923 /* Go to the end of the execution trace. */
924 void (*to_goto_record_end) (void);
925
926 /* Go to a specific location in the recorded execution trace. */
927 void (*to_goto_record) (ULONGEST insn);
928
929 /* Disassemble SIZE instructions in the recorded execution trace from
930 the current position.
931 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
932 disassemble SIZE succeeding instructions. */
933 void (*to_insn_history) (int size, int flags);
934
935 /* Disassemble SIZE instructions in the recorded execution trace around
936 FROM.
937 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
938 disassemble SIZE instructions after FROM. */
939 void (*to_insn_history_from) (ULONGEST from, int size, int flags);
940
941 /* Disassemble a section of the recorded execution trace from instruction
942 BEGIN (inclusive) to instruction END (inclusive). */
943 void (*to_insn_history_range) (ULONGEST begin, ULONGEST end, int flags);
944
945 /* Print a function trace of the recorded execution trace.
946 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
947 succeeding functions. */
948 void (*to_call_history) (int size, int flags);
949
950 /* Print a function trace of the recorded execution trace starting
951 at function FROM.
952 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
953 SIZE functions after FROM. */
954 void (*to_call_history_from) (ULONGEST begin, int size, int flags);
955
956 /* Print a function trace of an execution trace section from function BEGIN
957 (inclusive) to function END (inclusive). */
958 void (*to_call_history_range) (ULONGEST begin, ULONGEST end, int flags);
959
960 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
961 non-empty annex. */
962 int (*to_augmented_libraries_svr4_read) (void);
963
964 /* Those unwinders are tried before any other arch unwinders. Use NULL if
965 it is not used. */
966 const struct frame_unwind *to_get_unwinder;
967 const struct frame_unwind *to_get_tailcall_unwinder;
968
969 /* Return the number of bytes by which the PC needs to be decremented
970 after executing a breakpoint instruction.
971 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
972 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
973 struct gdbarch *gdbarch);
974
975 int to_magic;
976 /* Need sub-structure for target machine related rather than comm related?
977 */
978 };
979
980 /* Magic number for checking ops size. If a struct doesn't end with this
981 number, somebody changed the declaration but didn't change all the
982 places that initialize one. */
983
984 #define OPS_MAGIC 3840
985
986 /* The ops structure for our "current" target process. This should
987 never be NULL. If there is no target, it points to the dummy_target. */
988
989 extern struct target_ops current_target;
990
991 /* Define easy words for doing these operations on our current target. */
992
993 #define target_shortname (current_target.to_shortname)
994 #define target_longname (current_target.to_longname)
995
996 /* Does whatever cleanup is required for a target that we are no
997 longer going to be calling. This routine is automatically always
998 called after popping the target off the target stack - the target's
999 own methods are no longer available through the target vector.
1000 Closing file descriptors and freeing all memory allocated memory are
1001 typical things it should do. */
1002
1003 void target_close (struct target_ops *targ);
1004
1005 /* Attaches to a process on the target side. Arguments are as passed
1006 to the `attach' command by the user. This routine can be called
1007 when the target is not on the target-stack, if the target_can_run
1008 routine returns 1; in that case, it must push itself onto the stack.
1009 Upon exit, the target should be ready for normal operations, and
1010 should be ready to deliver the status of the process immediately
1011 (without waiting) to an upcoming target_wait call. */
1012
1013 void target_attach (char *, int);
1014
1015 /* Some targets don't generate traps when attaching to the inferior,
1016 or their target_attach implementation takes care of the waiting.
1017 These targets must set to_attach_no_wait. */
1018
1019 #define target_attach_no_wait \
1020 (current_target.to_attach_no_wait)
1021
1022 /* The target_attach operation places a process under debugger control,
1023 and stops the process.
1024
1025 This operation provides a target-specific hook that allows the
1026 necessary bookkeeping to be performed after an attach completes. */
1027 #define target_post_attach(pid) \
1028 (*current_target.to_post_attach) (&current_target, pid)
1029
1030 /* Takes a program previously attached to and detaches it.
1031 The program may resume execution (some targets do, some don't) and will
1032 no longer stop on signals, etc. We better not have left any breakpoints
1033 in the program or it'll die when it hits one. ARGS is arguments
1034 typed by the user (e.g. a signal to send the process). FROM_TTY
1035 says whether to be verbose or not. */
1036
1037 extern void target_detach (const char *, int);
1038
1039 /* Disconnect from the current target without resuming it (leaving it
1040 waiting for a debugger). */
1041
1042 extern void target_disconnect (char *, int);
1043
1044 /* Resume execution of the target process PTID (or a group of
1045 threads). STEP says whether to single-step or to run free; SIGGNAL
1046 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1047 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1048 PTID means `step/resume only this process id'. A wildcard PTID
1049 (all threads, or all threads of process) means `step/resume
1050 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1051 matches) resume with their 'thread->suspend.stop_signal' signal
1052 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1053 if in "no pass" state. */
1054
1055 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1056
1057 /* Wait for process pid to do something. PTID = -1 to wait for any
1058 pid to do something. Return pid of child, or -1 in case of error;
1059 store status through argument pointer STATUS. Note that it is
1060 _NOT_ OK to throw_exception() out of target_wait() without popping
1061 the debugging target from the stack; GDB isn't prepared to get back
1062 to the prompt with a debugging target but without the frame cache,
1063 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1064 options. */
1065
1066 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1067 int options);
1068
1069 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1070
1071 extern void target_fetch_registers (struct regcache *regcache, int regno);
1072
1073 /* Store at least register REGNO, or all regs if REGNO == -1.
1074 It can store as many registers as it wants to, so target_prepare_to_store
1075 must have been previously called. Calls error() if there are problems. */
1076
1077 extern void target_store_registers (struct regcache *regcache, int regs);
1078
1079 /* Get ready to modify the registers array. On machines which store
1080 individual registers, this doesn't need to do anything. On machines
1081 which store all the registers in one fell swoop, this makes sure
1082 that REGISTERS contains all the registers from the program being
1083 debugged. */
1084
1085 #define target_prepare_to_store(regcache) \
1086 (*current_target.to_prepare_to_store) (&current_target, regcache)
1087
1088 /* Determine current address space of thread PTID. */
1089
1090 struct address_space *target_thread_address_space (ptid_t);
1091
1092 /* Implement the "info proc" command. This returns one if the request
1093 was handled, and zero otherwise. It can also throw an exception if
1094 an error was encountered while attempting to handle the
1095 request. */
1096
1097 int target_info_proc (char *, enum info_proc_what);
1098
1099 /* Returns true if this target can debug multiple processes
1100 simultaneously. */
1101
1102 #define target_supports_multi_process() \
1103 (*current_target.to_supports_multi_process) ()
1104
1105 /* Returns true if this target can disable address space randomization. */
1106
1107 int target_supports_disable_randomization (void);
1108
1109 /* Returns true if this target can enable and disable tracepoints
1110 while a trace experiment is running. */
1111
1112 #define target_supports_enable_disable_tracepoint() \
1113 (*current_target.to_supports_enable_disable_tracepoint) ()
1114
1115 #define target_supports_string_tracing() \
1116 (*current_target.to_supports_string_tracing) ()
1117
1118 /* Returns true if this target can handle breakpoint conditions
1119 on its end. */
1120
1121 #define target_supports_evaluation_of_breakpoint_conditions() \
1122 (*current_target.to_supports_evaluation_of_breakpoint_conditions) ()
1123
1124 /* Returns true if this target can handle breakpoint commands
1125 on its end. */
1126
1127 #define target_can_run_breakpoint_commands() \
1128 (*current_target.to_can_run_breakpoint_commands) ()
1129
1130 extern int target_read_string (CORE_ADDR, char **, int, int *);
1131
1132 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1133 ssize_t len);
1134
1135 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1136 ssize_t len);
1137
1138 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1139
1140 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1141
1142 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1143 ssize_t len);
1144
1145 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1146 ssize_t len);
1147
1148 /* Fetches the target's memory map. If one is found it is sorted
1149 and returned, after some consistency checking. Otherwise, NULL
1150 is returned. */
1151 VEC(mem_region_s) *target_memory_map (void);
1152
1153 /* Erase the specified flash region. */
1154 void target_flash_erase (ULONGEST address, LONGEST length);
1155
1156 /* Finish a sequence of flash operations. */
1157 void target_flash_done (void);
1158
1159 /* Describes a request for a memory write operation. */
1160 struct memory_write_request
1161 {
1162 /* Begining address that must be written. */
1163 ULONGEST begin;
1164 /* Past-the-end address. */
1165 ULONGEST end;
1166 /* The data to write. */
1167 gdb_byte *data;
1168 /* A callback baton for progress reporting for this request. */
1169 void *baton;
1170 };
1171 typedef struct memory_write_request memory_write_request_s;
1172 DEF_VEC_O(memory_write_request_s);
1173
1174 /* Enumeration specifying different flash preservation behaviour. */
1175 enum flash_preserve_mode
1176 {
1177 flash_preserve,
1178 flash_discard
1179 };
1180
1181 /* Write several memory blocks at once. This version can be more
1182 efficient than making several calls to target_write_memory, in
1183 particular because it can optimize accesses to flash memory.
1184
1185 Moreover, this is currently the only memory access function in gdb
1186 that supports writing to flash memory, and it should be used for
1187 all cases where access to flash memory is desirable.
1188
1189 REQUESTS is the vector (see vec.h) of memory_write_request.
1190 PRESERVE_FLASH_P indicates what to do with blocks which must be
1191 erased, but not completely rewritten.
1192 PROGRESS_CB is a function that will be periodically called to provide
1193 feedback to user. It will be called with the baton corresponding
1194 to the request currently being written. It may also be called
1195 with a NULL baton, when preserved flash sectors are being rewritten.
1196
1197 The function returns 0 on success, and error otherwise. */
1198 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1199 enum flash_preserve_mode preserve_flash_p,
1200 void (*progress_cb) (ULONGEST, void *));
1201
1202 /* Print a line about the current target. */
1203
1204 #define target_files_info() \
1205 (*current_target.to_files_info) (&current_target)
1206
1207 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1208 the target machine. Returns 0 for success, and returns non-zero or
1209 throws an error (with a detailed failure reason error code and
1210 message) otherwise. */
1211
1212 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1213 struct bp_target_info *bp_tgt);
1214
1215 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1216 machine. Result is 0 for success, non-zero for error. */
1217
1218 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1219 struct bp_target_info *bp_tgt);
1220
1221 /* Initialize the terminal settings we record for the inferior,
1222 before we actually run the inferior. */
1223
1224 #define target_terminal_init() \
1225 (*current_target.to_terminal_init) (&current_target)
1226
1227 /* Put the inferior's terminal settings into effect.
1228 This is preparation for starting or resuming the inferior. */
1229
1230 extern void target_terminal_inferior (void);
1231
1232 /* Put some of our terminal settings into effect,
1233 enough to get proper results from our output,
1234 but do not change into or out of RAW mode
1235 so that no input is discarded.
1236
1237 After doing this, either terminal_ours or terminal_inferior
1238 should be called to get back to a normal state of affairs. */
1239
1240 #define target_terminal_ours_for_output() \
1241 (*current_target.to_terminal_ours_for_output) (&current_target)
1242
1243 /* Put our terminal settings into effect.
1244 First record the inferior's terminal settings
1245 so they can be restored properly later. */
1246
1247 #define target_terminal_ours() \
1248 (*current_target.to_terminal_ours) (&current_target)
1249
1250 /* Save our terminal settings.
1251 This is called from TUI after entering or leaving the curses
1252 mode. Since curses modifies our terminal this call is here
1253 to take this change into account. */
1254
1255 #define target_terminal_save_ours() \
1256 (*current_target.to_terminal_save_ours) (&current_target)
1257
1258 /* Print useful information about our terminal status, if such a thing
1259 exists. */
1260
1261 #define target_terminal_info(arg, from_tty) \
1262 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1263
1264 /* Kill the inferior process. Make it go away. */
1265
1266 extern void target_kill (void);
1267
1268 /* Load an executable file into the target process. This is expected
1269 to not only bring new code into the target process, but also to
1270 update GDB's symbol tables to match.
1271
1272 ARG contains command-line arguments, to be broken down with
1273 buildargv (). The first non-switch argument is the filename to
1274 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1275 0)), which is an offset to apply to the load addresses of FILE's
1276 sections. The target may define switches, or other non-switch
1277 arguments, as it pleases. */
1278
1279 extern void target_load (char *arg, int from_tty);
1280
1281 /* Start an inferior process and set inferior_ptid to its pid.
1282 EXEC_FILE is the file to run.
1283 ALLARGS is a string containing the arguments to the program.
1284 ENV is the environment vector to pass. Errors reported with error().
1285 On VxWorks and various standalone systems, we ignore exec_file. */
1286
1287 void target_create_inferior (char *exec_file, char *args,
1288 char **env, int from_tty);
1289
1290 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1291 notification of inferior events such as fork and vork immediately
1292 after the inferior is created. (This because of how gdb gets an
1293 inferior created via invoking a shell to do it. In such a scenario,
1294 if the shell init file has commands in it, the shell will fork and
1295 exec for each of those commands, and we will see each such fork
1296 event. Very bad.)
1297
1298 Such targets will supply an appropriate definition for this function. */
1299
1300 #define target_post_startup_inferior(ptid) \
1301 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1302
1303 /* On some targets, we can catch an inferior fork or vfork event when
1304 it occurs. These functions insert/remove an already-created
1305 catchpoint for such events. They return 0 for success, 1 if the
1306 catchpoint type is not supported and -1 for failure. */
1307
1308 #define target_insert_fork_catchpoint(pid) \
1309 (*current_target.to_insert_fork_catchpoint) (pid)
1310
1311 #define target_remove_fork_catchpoint(pid) \
1312 (*current_target.to_remove_fork_catchpoint) (pid)
1313
1314 #define target_insert_vfork_catchpoint(pid) \
1315 (*current_target.to_insert_vfork_catchpoint) (pid)
1316
1317 #define target_remove_vfork_catchpoint(pid) \
1318 (*current_target.to_remove_vfork_catchpoint) (pid)
1319
1320 /* If the inferior forks or vforks, this function will be called at
1321 the next resume in order to perform any bookkeeping and fiddling
1322 necessary to continue debugging either the parent or child, as
1323 requested, and releasing the other. Information about the fork
1324 or vfork event is available via get_last_target_status ().
1325 This function returns 1 if the inferior should not be resumed
1326 (i.e. there is another event pending). */
1327
1328 int target_follow_fork (int follow_child, int detach_fork);
1329
1330 /* On some targets, we can catch an inferior exec event when it
1331 occurs. These functions insert/remove an already-created
1332 catchpoint for such events. They return 0 for success, 1 if the
1333 catchpoint type is not supported and -1 for failure. */
1334
1335 #define target_insert_exec_catchpoint(pid) \
1336 (*current_target.to_insert_exec_catchpoint) (pid)
1337
1338 #define target_remove_exec_catchpoint(pid) \
1339 (*current_target.to_remove_exec_catchpoint) (pid)
1340
1341 /* Syscall catch.
1342
1343 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1344 If NEEDED is zero, it means the target can disable the mechanism to
1345 catch system calls because there are no more catchpoints of this type.
1346
1347 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1348 being requested. In this case, both TABLE_SIZE and TABLE should
1349 be ignored.
1350
1351 TABLE_SIZE is the number of elements in TABLE. It only matters if
1352 ANY_COUNT is zero.
1353
1354 TABLE is an array of ints, indexed by syscall number. An element in
1355 this array is nonzero if that syscall should be caught. This argument
1356 only matters if ANY_COUNT is zero.
1357
1358 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1359 for failure. */
1360
1361 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1362 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1363 table_size, table)
1364
1365 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1366 exit code of PID, if any. */
1367
1368 #define target_has_exited(pid,wait_status,exit_status) \
1369 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1370
1371 /* The debugger has completed a blocking wait() call. There is now
1372 some process event that must be processed. This function should
1373 be defined by those targets that require the debugger to perform
1374 cleanup or internal state changes in response to the process event. */
1375
1376 /* The inferior process has died. Do what is right. */
1377
1378 void target_mourn_inferior (void);
1379
1380 /* Does target have enough data to do a run or attach command? */
1381
1382 #define target_can_run(t) \
1383 ((t)->to_can_run) ()
1384
1385 /* Set list of signals to be handled in the target.
1386
1387 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1388 (enum gdb_signal). For every signal whose entry in this array is
1389 non-zero, the target is allowed -but not required- to skip reporting
1390 arrival of the signal to the GDB core by returning from target_wait,
1391 and to pass the signal directly to the inferior instead.
1392
1393 However, if the target is hardware single-stepping a thread that is
1394 about to receive a signal, it needs to be reported in any case, even
1395 if mentioned in a previous target_pass_signals call. */
1396
1397 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1398
1399 /* Set list of signals the target may pass to the inferior. This
1400 directly maps to the "handle SIGNAL pass/nopass" setting.
1401
1402 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1403 number (enum gdb_signal). For every signal whose entry in this
1404 array is non-zero, the target is allowed to pass the signal to the
1405 inferior. Signals not present in the array shall be silently
1406 discarded. This does not influence whether to pass signals to the
1407 inferior as a result of a target_resume call. This is useful in
1408 scenarios where the target needs to decide whether to pass or not a
1409 signal to the inferior without GDB core involvement, such as for
1410 example, when detaching (as threads may have been suspended with
1411 pending signals not reported to GDB). */
1412
1413 extern void target_program_signals (int nsig, unsigned char *program_signals);
1414
1415 /* Check to see if a thread is still alive. */
1416
1417 extern int target_thread_alive (ptid_t ptid);
1418
1419 /* Query for new threads and add them to the thread list. */
1420
1421 extern void target_find_new_threads (void);
1422
1423 /* Make target stop in a continuable fashion. (For instance, under
1424 Unix, this should act like SIGSTOP). This function is normally
1425 used by GUIs to implement a stop button. */
1426
1427 extern void target_stop (ptid_t ptid);
1428
1429 /* Send the specified COMMAND to the target's monitor
1430 (shell,interpreter) for execution. The result of the query is
1431 placed in OUTBUF. */
1432
1433 #define target_rcmd(command, outbuf) \
1434 (*current_target.to_rcmd) (command, outbuf)
1435
1436
1437 /* Does the target include all of memory, or only part of it? This
1438 determines whether we look up the target chain for other parts of
1439 memory if this target can't satisfy a request. */
1440
1441 extern int target_has_all_memory_1 (void);
1442 #define target_has_all_memory target_has_all_memory_1 ()
1443
1444 /* Does the target include memory? (Dummy targets don't.) */
1445
1446 extern int target_has_memory_1 (void);
1447 #define target_has_memory target_has_memory_1 ()
1448
1449 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1450 we start a process.) */
1451
1452 extern int target_has_stack_1 (void);
1453 #define target_has_stack target_has_stack_1 ()
1454
1455 /* Does the target have registers? (Exec files don't.) */
1456
1457 extern int target_has_registers_1 (void);
1458 #define target_has_registers target_has_registers_1 ()
1459
1460 /* Does the target have execution? Can we make it jump (through
1461 hoops), or pop its stack a few times? This means that the current
1462 target is currently executing; for some targets, that's the same as
1463 whether or not the target is capable of execution, but there are
1464 also targets which can be current while not executing. In that
1465 case this will become true after target_create_inferior or
1466 target_attach. */
1467
1468 extern int target_has_execution_1 (ptid_t);
1469
1470 /* Like target_has_execution_1, but always passes inferior_ptid. */
1471
1472 extern int target_has_execution_current (void);
1473
1474 #define target_has_execution target_has_execution_current ()
1475
1476 /* Default implementations for process_stratum targets. Return true
1477 if there's a selected inferior, false otherwise. */
1478
1479 extern int default_child_has_all_memory (struct target_ops *ops);
1480 extern int default_child_has_memory (struct target_ops *ops);
1481 extern int default_child_has_stack (struct target_ops *ops);
1482 extern int default_child_has_registers (struct target_ops *ops);
1483 extern int default_child_has_execution (struct target_ops *ops,
1484 ptid_t the_ptid);
1485
1486 /* Can the target support the debugger control of thread execution?
1487 Can it lock the thread scheduler? */
1488
1489 #define target_can_lock_scheduler \
1490 (current_target.to_has_thread_control & tc_schedlock)
1491
1492 /* Should the target enable async mode if it is supported? Temporary
1493 cludge until async mode is a strict superset of sync mode. */
1494 extern int target_async_permitted;
1495
1496 /* Can the target support asynchronous execution? */
1497 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1498
1499 /* Is the target in asynchronous execution mode? */
1500 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1501
1502 int target_supports_non_stop (void);
1503
1504 /* Put the target in async mode with the specified callback function. */
1505 #define target_async(CALLBACK,CONTEXT) \
1506 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1507
1508 #define target_execution_direction() \
1509 (current_target.to_execution_direction ())
1510
1511 /* Converts a process id to a string. Usually, the string just contains
1512 `process xyz', but on some systems it may contain
1513 `process xyz thread abc'. */
1514
1515 extern char *target_pid_to_str (ptid_t ptid);
1516
1517 extern char *normal_pid_to_str (ptid_t ptid);
1518
1519 /* Return a short string describing extra information about PID,
1520 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1521 is okay. */
1522
1523 #define target_extra_thread_info(TP) \
1524 (current_target.to_extra_thread_info (TP))
1525
1526 /* Return the thread's name. A NULL result means that the target
1527 could not determine this thread's name. */
1528
1529 extern char *target_thread_name (struct thread_info *);
1530
1531 /* Attempts to find the pathname of the executable file
1532 that was run to create a specified process.
1533
1534 The process PID must be stopped when this operation is used.
1535
1536 If the executable file cannot be determined, NULL is returned.
1537
1538 Else, a pointer to a character string containing the pathname
1539 is returned. This string should be copied into a buffer by
1540 the client if the string will not be immediately used, or if
1541 it must persist. */
1542
1543 #define target_pid_to_exec_file(pid) \
1544 (current_target.to_pid_to_exec_file) (pid)
1545
1546 /* See the to_thread_architecture description in struct target_ops. */
1547
1548 #define target_thread_architecture(ptid) \
1549 (current_target.to_thread_architecture (&current_target, ptid))
1550
1551 /*
1552 * Iterator function for target memory regions.
1553 * Calls a callback function once for each memory region 'mapped'
1554 * in the child process. Defined as a simple macro rather than
1555 * as a function macro so that it can be tested for nullity.
1556 */
1557
1558 #define target_find_memory_regions(FUNC, DATA) \
1559 (current_target.to_find_memory_regions) (FUNC, DATA)
1560
1561 /*
1562 * Compose corefile .note section.
1563 */
1564
1565 #define target_make_corefile_notes(BFD, SIZE_P) \
1566 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1567
1568 /* Bookmark interfaces. */
1569 #define target_get_bookmark(ARGS, FROM_TTY) \
1570 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1571
1572 #define target_goto_bookmark(ARG, FROM_TTY) \
1573 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1574
1575 /* Hardware watchpoint interfaces. */
1576
1577 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1578 write). Only the INFERIOR_PTID task is being queried. */
1579
1580 #define target_stopped_by_watchpoint() \
1581 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1582
1583 /* Non-zero if we have steppable watchpoints */
1584
1585 #define target_have_steppable_watchpoint \
1586 (current_target.to_have_steppable_watchpoint)
1587
1588 /* Non-zero if we have continuable watchpoints */
1589
1590 #define target_have_continuable_watchpoint \
1591 (current_target.to_have_continuable_watchpoint)
1592
1593 /* Provide defaults for hardware watchpoint functions. */
1594
1595 /* If the *_hw_beakpoint functions have not been defined
1596 elsewhere use the definitions in the target vector. */
1597
1598 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1599 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1600 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1601 (including this one?). OTHERTYPE is who knows what... */
1602
1603 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1604 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1605 TYPE, CNT, OTHERTYPE);
1606
1607 /* Returns the number of debug registers needed to watch the given
1608 memory region, or zero if not supported. */
1609
1610 #define target_region_ok_for_hw_watchpoint(addr, len) \
1611 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1612 addr, len)
1613
1614
1615 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1616 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1617 COND is the expression for its condition, or NULL if there's none.
1618 Returns 0 for success, 1 if the watchpoint type is not supported,
1619 -1 for failure. */
1620
1621 #define target_insert_watchpoint(addr, len, type, cond) \
1622 (*current_target.to_insert_watchpoint) (&current_target, \
1623 addr, len, type, cond)
1624
1625 #define target_remove_watchpoint(addr, len, type, cond) \
1626 (*current_target.to_remove_watchpoint) (&current_target, \
1627 addr, len, type, cond)
1628
1629 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1630 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1631 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1632 masked watchpoints are not supported, -1 for failure. */
1633
1634 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1635
1636 /* Remove a masked watchpoint at ADDR with the mask MASK.
1637 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1638 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1639 for failure. */
1640
1641 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1642
1643 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1644 the target machine. Returns 0 for success, and returns non-zero or
1645 throws an error (with a detailed failure reason error code and
1646 message) otherwise. */
1647
1648 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1649 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1650 gdbarch, bp_tgt)
1651
1652 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1653 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1654 gdbarch, bp_tgt)
1655
1656 /* Return number of debug registers needed for a ranged breakpoint,
1657 or -1 if ranged breakpoints are not supported. */
1658
1659 extern int target_ranged_break_num_registers (void);
1660
1661 /* Return non-zero if target knows the data address which triggered this
1662 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1663 INFERIOR_PTID task is being queried. */
1664 #define target_stopped_data_address(target, addr_p) \
1665 (*target.to_stopped_data_address) (target, addr_p)
1666
1667 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1668 LENGTH bytes beginning at START. */
1669 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1670 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1671
1672 /* Return non-zero if the target is capable of using hardware to evaluate
1673 the condition expression. In this case, if the condition is false when
1674 the watched memory location changes, execution may continue without the
1675 debugger being notified.
1676
1677 Due to limitations in the hardware implementation, it may be capable of
1678 avoiding triggering the watchpoint in some cases where the condition
1679 expression is false, but may report some false positives as well.
1680 For this reason, GDB will still evaluate the condition expression when
1681 the watchpoint triggers. */
1682 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1683 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1684 addr, len, type, cond)
1685
1686 /* Return number of debug registers needed for a masked watchpoint,
1687 -1 if masked watchpoints are not supported or -2 if the given address
1688 and mask combination cannot be used. */
1689
1690 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1691
1692 /* Target can execute in reverse? */
1693 #define target_can_execute_reverse \
1694 (current_target.to_can_execute_reverse ? \
1695 current_target.to_can_execute_reverse () : 0)
1696
1697 extern const struct target_desc *target_read_description (struct target_ops *);
1698
1699 #define target_get_ada_task_ptid(lwp, tid) \
1700 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1701
1702 /* Utility implementation of searching memory. */
1703 extern int simple_search_memory (struct target_ops* ops,
1704 CORE_ADDR start_addr,
1705 ULONGEST search_space_len,
1706 const gdb_byte *pattern,
1707 ULONGEST pattern_len,
1708 CORE_ADDR *found_addrp);
1709
1710 /* Main entry point for searching memory. */
1711 extern int target_search_memory (CORE_ADDR start_addr,
1712 ULONGEST search_space_len,
1713 const gdb_byte *pattern,
1714 ULONGEST pattern_len,
1715 CORE_ADDR *found_addrp);
1716
1717 /* Target file operations. */
1718
1719 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1720 target file descriptor, or -1 if an error occurs (and set
1721 *TARGET_ERRNO). */
1722 extern int target_fileio_open (const char *filename, int flags, int mode,
1723 int *target_errno);
1724
1725 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1726 Return the number of bytes written, or -1 if an error occurs
1727 (and set *TARGET_ERRNO). */
1728 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1729 ULONGEST offset, int *target_errno);
1730
1731 /* Read up to LEN bytes FD on the target into READ_BUF.
1732 Return the number of bytes read, or -1 if an error occurs
1733 (and set *TARGET_ERRNO). */
1734 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1735 ULONGEST offset, int *target_errno);
1736
1737 /* Close FD on the target. Return 0, or -1 if an error occurs
1738 (and set *TARGET_ERRNO). */
1739 extern int target_fileio_close (int fd, int *target_errno);
1740
1741 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1742 occurs (and set *TARGET_ERRNO). */
1743 extern int target_fileio_unlink (const char *filename, int *target_errno);
1744
1745 /* Read value of symbolic link FILENAME on the target. Return a
1746 null-terminated string allocated via xmalloc, or NULL if an error
1747 occurs (and set *TARGET_ERRNO). */
1748 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1749
1750 /* Read target file FILENAME. The return value will be -1 if the transfer
1751 fails or is not supported; 0 if the object is empty; or the length
1752 of the object otherwise. If a positive value is returned, a
1753 sufficiently large buffer will be allocated using xmalloc and
1754 returned in *BUF_P containing the contents of the object.
1755
1756 This method should be used for objects sufficiently small to store
1757 in a single xmalloc'd buffer, when no fixed bound on the object's
1758 size is known in advance. */
1759 extern LONGEST target_fileio_read_alloc (const char *filename,
1760 gdb_byte **buf_p);
1761
1762 /* Read target file FILENAME. The result is NUL-terminated and
1763 returned as a string, allocated using xmalloc. If an error occurs
1764 or the transfer is unsupported, NULL is returned. Empty objects
1765 are returned as allocated but empty strings. A warning is issued
1766 if the result contains any embedded NUL bytes. */
1767 extern char *target_fileio_read_stralloc (const char *filename);
1768
1769
1770 /* Tracepoint-related operations. */
1771
1772 #define target_trace_init() \
1773 (*current_target.to_trace_init) ()
1774
1775 #define target_download_tracepoint(t) \
1776 (*current_target.to_download_tracepoint) (t)
1777
1778 #define target_can_download_tracepoint() \
1779 (*current_target.to_can_download_tracepoint) ()
1780
1781 #define target_download_trace_state_variable(tsv) \
1782 (*current_target.to_download_trace_state_variable) (tsv)
1783
1784 #define target_enable_tracepoint(loc) \
1785 (*current_target.to_enable_tracepoint) (loc)
1786
1787 #define target_disable_tracepoint(loc) \
1788 (*current_target.to_disable_tracepoint) (loc)
1789
1790 #define target_trace_start() \
1791 (*current_target.to_trace_start) ()
1792
1793 #define target_trace_set_readonly_regions() \
1794 (*current_target.to_trace_set_readonly_regions) ()
1795
1796 #define target_get_trace_status(ts) \
1797 (*current_target.to_get_trace_status) (ts)
1798
1799 #define target_get_tracepoint_status(tp,utp) \
1800 (*current_target.to_get_tracepoint_status) (tp, utp)
1801
1802 #define target_trace_stop() \
1803 (*current_target.to_trace_stop) ()
1804
1805 #define target_trace_find(type,num,addr1,addr2,tpp) \
1806 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1807
1808 #define target_get_trace_state_variable_value(tsv,val) \
1809 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1810
1811 #define target_save_trace_data(filename) \
1812 (*current_target.to_save_trace_data) (filename)
1813
1814 #define target_upload_tracepoints(utpp) \
1815 (*current_target.to_upload_tracepoints) (utpp)
1816
1817 #define target_upload_trace_state_variables(utsvp) \
1818 (*current_target.to_upload_trace_state_variables) (utsvp)
1819
1820 #define target_get_raw_trace_data(buf,offset,len) \
1821 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1822
1823 #define target_get_min_fast_tracepoint_insn_len() \
1824 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1825
1826 #define target_set_disconnected_tracing(val) \
1827 (*current_target.to_set_disconnected_tracing) (val)
1828
1829 #define target_set_circular_trace_buffer(val) \
1830 (*current_target.to_set_circular_trace_buffer) (val)
1831
1832 #define target_set_trace_buffer_size(val) \
1833 (*current_target.to_set_trace_buffer_size) (val)
1834
1835 #define target_set_trace_notes(user,notes,stopnotes) \
1836 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1837
1838 #define target_get_tib_address(ptid, addr) \
1839 (*current_target.to_get_tib_address) ((ptid), (addr))
1840
1841 #define target_set_permissions() \
1842 (*current_target.to_set_permissions) ()
1843
1844 #define target_static_tracepoint_marker_at(addr, marker) \
1845 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1846
1847 #define target_static_tracepoint_markers_by_strid(marker_id) \
1848 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1849
1850 #define target_traceframe_info() \
1851 (*current_target.to_traceframe_info) ()
1852
1853 #define target_use_agent(use) \
1854 (*current_target.to_use_agent) (use)
1855
1856 #define target_can_use_agent() \
1857 (*current_target.to_can_use_agent) ()
1858
1859 #define target_augmented_libraries_svr4_read() \
1860 (*current_target.to_augmented_libraries_svr4_read) ()
1861
1862 /* Command logging facility. */
1863
1864 #define target_log_command(p) \
1865 do \
1866 if (current_target.to_log_command) \
1867 (*current_target.to_log_command) (p); \
1868 while (0)
1869
1870
1871 extern int target_core_of_thread (ptid_t ptid);
1872
1873 /* See to_get_unwinder in struct target_ops. */
1874 extern const struct frame_unwind *target_get_unwinder (void);
1875
1876 /* See to_get_tailcall_unwinder in struct target_ops. */
1877 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
1878
1879 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1880 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1881 if there's a mismatch, and -1 if an error is encountered while
1882 reading memory. Throws an error if the functionality is found not
1883 to be supported by the current target. */
1884 int target_verify_memory (const gdb_byte *data,
1885 CORE_ADDR memaddr, ULONGEST size);
1886
1887 /* Routines for maintenance of the target structures...
1888
1889 complete_target_initialization: Finalize a target_ops by filling in
1890 any fields needed by the target implementation.
1891
1892 add_target: Add a target to the list of all possible targets.
1893
1894 push_target: Make this target the top of the stack of currently used
1895 targets, within its particular stratum of the stack. Result
1896 is 0 if now atop the stack, nonzero if not on top (maybe
1897 should warn user).
1898
1899 unpush_target: Remove this from the stack of currently used targets,
1900 no matter where it is on the list. Returns 0 if no
1901 change, 1 if removed from stack. */
1902
1903 extern void add_target (struct target_ops *);
1904
1905 extern void add_target_with_completer (struct target_ops *t,
1906 completer_ftype *completer);
1907
1908 extern void complete_target_initialization (struct target_ops *t);
1909
1910 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
1911 for maintaining backwards compatibility when renaming targets. */
1912
1913 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
1914
1915 extern void push_target (struct target_ops *);
1916
1917 extern int unpush_target (struct target_ops *);
1918
1919 extern void target_pre_inferior (int);
1920
1921 extern void target_preopen (int);
1922
1923 /* Does whatever cleanup is required to get rid of all pushed targets. */
1924 extern void pop_all_targets (void);
1925
1926 /* Like pop_all_targets, but pops only targets whose stratum is
1927 strictly above ABOVE_STRATUM. */
1928 extern void pop_all_targets_above (enum strata above_stratum);
1929
1930 extern int target_is_pushed (struct target_ops *t);
1931
1932 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1933 CORE_ADDR offset);
1934
1935 /* Struct target_section maps address ranges to file sections. It is
1936 mostly used with BFD files, but can be used without (e.g. for handling
1937 raw disks, or files not in formats handled by BFD). */
1938
1939 struct target_section
1940 {
1941 CORE_ADDR addr; /* Lowest address in section */
1942 CORE_ADDR endaddr; /* 1+highest address in section */
1943
1944 struct bfd_section *the_bfd_section;
1945
1946 /* The "owner" of the section.
1947 It can be any unique value. It is set by add_target_sections
1948 and used by remove_target_sections.
1949 For example, for executables it is a pointer to exec_bfd and
1950 for shlibs it is the so_list pointer. */
1951 void *owner;
1952 };
1953
1954 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1955
1956 struct target_section_table
1957 {
1958 struct target_section *sections;
1959 struct target_section *sections_end;
1960 };
1961
1962 /* Return the "section" containing the specified address. */
1963 struct target_section *target_section_by_addr (struct target_ops *target,
1964 CORE_ADDR addr);
1965
1966 /* Return the target section table this target (or the targets
1967 beneath) currently manipulate. */
1968
1969 extern struct target_section_table *target_get_section_table
1970 (struct target_ops *target);
1971
1972 /* From mem-break.c */
1973
1974 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
1975 struct bp_target_info *);
1976
1977 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
1978 struct bp_target_info *);
1979
1980 extern int default_memory_remove_breakpoint (struct gdbarch *,
1981 struct bp_target_info *);
1982
1983 extern int default_memory_insert_breakpoint (struct gdbarch *,
1984 struct bp_target_info *);
1985
1986
1987 /* From target.c */
1988
1989 extern void initialize_targets (void);
1990
1991 extern void noprocess (void) ATTRIBUTE_NORETURN;
1992
1993 extern void target_require_runnable (void);
1994
1995 extern void find_default_attach (struct target_ops *, char *, int);
1996
1997 extern void find_default_create_inferior (struct target_ops *,
1998 char *, char *, char **, int);
1999
2000 extern struct target_ops *find_target_beneath (struct target_ops *);
2001
2002 /* Find the target at STRATUM. If no target is at that stratum,
2003 return NULL. */
2004
2005 struct target_ops *find_target_at (enum strata stratum);
2006
2007 /* Read OS data object of type TYPE from the target, and return it in
2008 XML format. The result is NUL-terminated and returned as a string,
2009 allocated using xmalloc. If an error occurs or the transfer is
2010 unsupported, NULL is returned. Empty objects are returned as
2011 allocated but empty strings. */
2012
2013 extern char *target_get_osdata (const char *type);
2014
2015 \f
2016 /* Stuff that should be shared among the various remote targets. */
2017
2018 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2019 information (higher values, more information). */
2020 extern int remote_debug;
2021
2022 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2023 extern int baud_rate;
2024 /* Timeout limit for response from target. */
2025 extern int remote_timeout;
2026
2027 \f
2028
2029 /* Set the show memory breakpoints mode to show, and installs a cleanup
2030 to restore it back to the current value. */
2031 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2032
2033 extern int may_write_registers;
2034 extern int may_write_memory;
2035 extern int may_insert_breakpoints;
2036 extern int may_insert_tracepoints;
2037 extern int may_insert_fast_tracepoints;
2038 extern int may_stop;
2039
2040 extern void update_target_permissions (void);
2041
2042 \f
2043 /* Imported from machine dependent code. */
2044
2045 /* Blank target vector entries are initialized to target_ignore. */
2046 void target_ignore (void);
2047
2048 /* See to_supports_btrace in struct target_ops. */
2049 #define target_supports_btrace() \
2050 (current_target.to_supports_btrace (&current_target))
2051
2052 /* See to_enable_btrace in struct target_ops. */
2053 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2054
2055 /* See to_disable_btrace in struct target_ops. */
2056 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2057
2058 /* See to_teardown_btrace in struct target_ops. */
2059 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2060
2061 /* See to_read_btrace in struct target_ops. */
2062 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2063 struct btrace_target_info *,
2064 enum btrace_read_type);
2065
2066 /* See to_stop_recording in struct target_ops. */
2067 extern void target_stop_recording (void);
2068
2069 /* See to_info_record in struct target_ops. */
2070 extern void target_info_record (void);
2071
2072 /* See to_save_record in struct target_ops. */
2073 extern void target_save_record (const char *filename);
2074
2075 /* Query if the target supports deleting the execution log. */
2076 extern int target_supports_delete_record (void);
2077
2078 /* See to_delete_record in struct target_ops. */
2079 extern void target_delete_record (void);
2080
2081 /* See to_record_is_replaying in struct target_ops. */
2082 extern int target_record_is_replaying (void);
2083
2084 /* See to_goto_record_begin in struct target_ops. */
2085 extern void target_goto_record_begin (void);
2086
2087 /* See to_goto_record_end in struct target_ops. */
2088 extern void target_goto_record_end (void);
2089
2090 /* See to_goto_record in struct target_ops. */
2091 extern void target_goto_record (ULONGEST insn);
2092
2093 /* See to_insn_history. */
2094 extern void target_insn_history (int size, int flags);
2095
2096 /* See to_insn_history_from. */
2097 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2098
2099 /* See to_insn_history_range. */
2100 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2101
2102 /* See to_call_history. */
2103 extern void target_call_history (int size, int flags);
2104
2105 /* See to_call_history_from. */
2106 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2107
2108 /* See to_call_history_range. */
2109 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2110
2111 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2112 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2113 struct gdbarch *gdbarch);
2114
2115 /* See to_decr_pc_after_break. */
2116 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2117
2118 #endif /* !defined (TARGET_H) */