]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
Rename TARGET_XFER_E_UNAVAILABLE to TARGET_XFER_UNAVAILABLE
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41
42 /* This include file defines the interface between the main part
43 of the debugger, and the part which is target-specific, or
44 specific to the communications interface between us and the
45 target.
46
47 A TARGET is an interface between the debugger and a particular
48 kind of file or process. Targets can be STACKED in STRATA,
49 so that more than one target can potentially respond to a request.
50 In particular, memory accesses will walk down the stack of targets
51 until they find a target that is interested in handling that particular
52 address. STRATA are artificial boundaries on the stack, within
53 which particular kinds of targets live. Strata exist so that
54 people don't get confused by pushing e.g. a process target and then
55 a file target, and wondering why they can't see the current values
56 of variables any more (the file target is handling them and they
57 never get to the process target). So when you push a file target,
58 it goes into the file stratum, which is always below the process
59 stratum. */
60
61 #include "target/resume.h"
62 #include "target/wait.h"
63 #include "target/waitstatus.h"
64 #include "bfd.h"
65 #include "symtab.h"
66 #include "memattr.h"
67 #include "vec.h"
68 #include "gdb_signals.h"
69 #include "btrace.h"
70 #include "command.h"
71
72 enum strata
73 {
74 dummy_stratum, /* The lowest of the low */
75 file_stratum, /* Executable files, etc */
76 process_stratum, /* Executing processes or core dump files */
77 thread_stratum, /* Executing threads */
78 record_stratum, /* Support record debugging */
79 arch_stratum /* Architecture overrides */
80 };
81
82 enum thread_control_capabilities
83 {
84 tc_none = 0, /* Default: can't control thread execution. */
85 tc_schedlock = 1, /* Can lock the thread scheduler. */
86 };
87
88 /* The structure below stores information about a system call.
89 It is basically used in the "catch syscall" command, and in
90 every function that gives information about a system call.
91
92 It's also good to mention that its fields represent everything
93 that we currently know about a syscall in GDB. */
94 struct syscall
95 {
96 /* The syscall number. */
97 int number;
98
99 /* The syscall name. */
100 const char *name;
101 };
102
103 /* Return a pretty printed form of target_waitstatus.
104 Space for the result is malloc'd, caller must free. */
105 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
106
107 /* Return a pretty printed form of TARGET_OPTIONS.
108 Space for the result is malloc'd, caller must free. */
109 extern char *target_options_to_string (int target_options);
110
111 /* Possible types of events that the inferior handler will have to
112 deal with. */
113 enum inferior_event_type
114 {
115 /* Process a normal inferior event which will result in target_wait
116 being called. */
117 INF_REG_EVENT,
118 /* We are called because a timer went off. */
119 INF_TIMER,
120 /* We are called to do stuff after the inferior stops. */
121 INF_EXEC_COMPLETE,
122 /* We are called to do some stuff after the inferior stops, but we
123 are expected to reenter the proceed() and
124 handle_inferior_event() functions. This is used only in case of
125 'step n' like commands. */
126 INF_EXEC_CONTINUE
127 };
128 \f
129 /* Target objects which can be transfered using target_read,
130 target_write, et cetera. */
131
132 enum target_object
133 {
134 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
135 TARGET_OBJECT_AVR,
136 /* SPU target specific transfer. See "spu-tdep.c". */
137 TARGET_OBJECT_SPU,
138 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
139 TARGET_OBJECT_MEMORY,
140 /* Memory, avoiding GDB's data cache and trusting the executable.
141 Target implementations of to_xfer_partial never need to handle
142 this object, and most callers should not use it. */
143 TARGET_OBJECT_RAW_MEMORY,
144 /* Memory known to be part of the target's stack. This is cached even
145 if it is not in a region marked as such, since it is known to be
146 "normal" RAM. */
147 TARGET_OBJECT_STACK_MEMORY,
148 /* Memory known to be part of the target code. This is cached even
149 if it is not in a region marked as such. */
150 TARGET_OBJECT_CODE_MEMORY,
151 /* Kernel Unwind Table. See "ia64-tdep.c". */
152 TARGET_OBJECT_UNWIND_TABLE,
153 /* Transfer auxilliary vector. */
154 TARGET_OBJECT_AUXV,
155 /* StackGhost cookie. See "sparc-tdep.c". */
156 TARGET_OBJECT_WCOOKIE,
157 /* Target memory map in XML format. */
158 TARGET_OBJECT_MEMORY_MAP,
159 /* Flash memory. This object can be used to write contents to
160 a previously erased flash memory. Using it without erasing
161 flash can have unexpected results. Addresses are physical
162 address on target, and not relative to flash start. */
163 TARGET_OBJECT_FLASH,
164 /* Available target-specific features, e.g. registers and coprocessors.
165 See "target-descriptions.c". ANNEX should never be empty. */
166 TARGET_OBJECT_AVAILABLE_FEATURES,
167 /* Currently loaded libraries, in XML format. */
168 TARGET_OBJECT_LIBRARIES,
169 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
170 TARGET_OBJECT_LIBRARIES_SVR4,
171 /* Currently loaded libraries specific to AIX systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_AIX,
173 /* Get OS specific data. The ANNEX specifies the type (running
174 processes, etc.). The data being transfered is expected to follow
175 the DTD specified in features/osdata.dtd. */
176 TARGET_OBJECT_OSDATA,
177 /* Extra signal info. Usually the contents of `siginfo_t' on unix
178 platforms. */
179 TARGET_OBJECT_SIGNAL_INFO,
180 /* The list of threads that are being debugged. */
181 TARGET_OBJECT_THREADS,
182 /* Collected static trace data. */
183 TARGET_OBJECT_STATIC_TRACE_DATA,
184 /* The HP-UX registers (those that can be obtained or modified by using
185 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
186 TARGET_OBJECT_HPUX_UREGS,
187 /* The HP-UX shared library linkage pointer. ANNEX should be a string
188 image of the code address whose linkage pointer we are looking for.
189
190 The size of the data transfered is always 8 bytes (the size of an
191 address on ia64). */
192 TARGET_OBJECT_HPUX_SOLIB_GOT,
193 /* Traceframe info, in XML format. */
194 TARGET_OBJECT_TRACEFRAME_INFO,
195 /* Load maps for FDPIC systems. */
196 TARGET_OBJECT_FDPIC,
197 /* Darwin dynamic linker info data. */
198 TARGET_OBJECT_DARWIN_DYLD_INFO,
199 /* OpenVMS Unwind Information Block. */
200 TARGET_OBJECT_OPENVMS_UIB,
201 /* Branch trace data, in XML format. */
202 TARGET_OBJECT_BTRACE
203 /* Possible future objects: TARGET_OBJECT_FILE, ... */
204 };
205
206 /* Possible values returned by target_xfer_partial, etc. */
207
208 enum target_xfer_status
209 {
210 /* Some bytes are transferred. */
211 TARGET_XFER_OK = 1,
212
213 /* No further transfer is possible. */
214 TARGET_XFER_EOF = 0,
215
216 /* The piece of the object requested is unavailable. */
217 TARGET_XFER_UNAVAILABLE = 2,
218
219 /* Generic I/O error. Note that it's important that this is '-1',
220 as we still have target_xfer-related code returning hardcoded
221 '-1' on error. */
222 TARGET_XFER_E_IO = -1,
223
224 /* Keep list in sync with target_xfer_status_to_string. */
225 };
226
227 /* Return the string form of STATUS. */
228
229 extern const char *
230 target_xfer_status_to_string (enum target_xfer_status status);
231
232 /* Enumeration of the kinds of traceframe searches that a target may
233 be able to perform. */
234
235 enum trace_find_type
236 {
237 tfind_number,
238 tfind_pc,
239 tfind_tp,
240 tfind_range,
241 tfind_outside,
242 };
243
244 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
245 DEF_VEC_P(static_tracepoint_marker_p);
246
247 typedef enum target_xfer_status
248 target_xfer_partial_ftype (struct target_ops *ops,
249 enum target_object object,
250 const char *annex,
251 gdb_byte *readbuf,
252 const gdb_byte *writebuf,
253 ULONGEST offset,
254 ULONGEST len,
255 ULONGEST *xfered_len);
256
257 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
258 OBJECT. The OFFSET, for a seekable object, specifies the
259 starting point. The ANNEX can be used to provide additional
260 data-specific information to the target.
261
262 Return the number of bytes actually transfered, or a negative error
263 code (an 'enum target_xfer_error' value) if the transfer is not
264 supported or otherwise fails. Return of a positive value less than
265 LEN indicates that no further transfer is possible. Unlike the raw
266 to_xfer_partial interface, callers of these functions do not need
267 to retry partial transfers. */
268
269 extern LONGEST target_read (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte *buf,
272 ULONGEST offset, LONGEST len);
273
274 struct memory_read_result
275 {
276 /* First address that was read. */
277 ULONGEST begin;
278 /* Past-the-end address. */
279 ULONGEST end;
280 /* The data. */
281 gdb_byte *data;
282 };
283 typedef struct memory_read_result memory_read_result_s;
284 DEF_VEC_O(memory_read_result_s);
285
286 extern void free_memory_read_result_vector (void *);
287
288 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
289 ULONGEST offset,
290 LONGEST len);
291
292 extern LONGEST target_write (struct target_ops *ops,
293 enum target_object object,
294 const char *annex, const gdb_byte *buf,
295 ULONGEST offset, LONGEST len);
296
297 /* Similar to target_write, except that it also calls PROGRESS with
298 the number of bytes written and the opaque BATON after every
299 successful partial write (and before the first write). This is
300 useful for progress reporting and user interaction while writing
301 data. To abort the transfer, the progress callback can throw an
302 exception. */
303
304 LONGEST target_write_with_progress (struct target_ops *ops,
305 enum target_object object,
306 const char *annex, const gdb_byte *buf,
307 ULONGEST offset, LONGEST len,
308 void (*progress) (ULONGEST, void *),
309 void *baton);
310
311 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
312 be read using OPS. The return value will be -1 if the transfer
313 fails or is not supported; 0 if the object is empty; or the length
314 of the object otherwise. If a positive value is returned, a
315 sufficiently large buffer will be allocated using xmalloc and
316 returned in *BUF_P containing the contents of the object.
317
318 This method should be used for objects sufficiently small to store
319 in a single xmalloc'd buffer, when no fixed bound on the object's
320 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
321 through this function. */
322
323 extern LONGEST target_read_alloc (struct target_ops *ops,
324 enum target_object object,
325 const char *annex, gdb_byte **buf_p);
326
327 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
328 returned as a string, allocated using xmalloc. If an error occurs
329 or the transfer is unsupported, NULL is returned. Empty objects
330 are returned as allocated but empty strings. A warning is issued
331 if the result contains any embedded NUL bytes. */
332
333 extern char *target_read_stralloc (struct target_ops *ops,
334 enum target_object object,
335 const char *annex);
336
337 /* See target_ops->to_xfer_partial. */
338 extern target_xfer_partial_ftype target_xfer_partial;
339
340 /* Wrappers to target read/write that perform memory transfers. They
341 throw an error if the memory transfer fails.
342
343 NOTE: cagney/2003-10-23: The naming schema is lifted from
344 "frame.h". The parameter order is lifted from get_frame_memory,
345 which in turn lifted it from read_memory. */
346
347 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
348 gdb_byte *buf, LONGEST len);
349 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
350 CORE_ADDR addr, int len,
351 enum bfd_endian byte_order);
352 \f
353 struct thread_info; /* fwd decl for parameter list below: */
354
355 /* The type of the callback to the to_async method. */
356
357 typedef void async_callback_ftype (enum inferior_event_type event_type,
358 void *context);
359
360 /* These defines are used to mark target_ops methods. The script
361 make-target-delegates scans these and auto-generates the base
362 method implementations. There are four macros that can be used:
363
364 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
365 does nothing. This is only valid if the method return type is
366 'void'.
367
368 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
369 'tcomplain ()'. The base method simply makes this call, which is
370 assumed not to return.
371
372 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
373 base method returns this expression's value.
374
375 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
376 make-target-delegates does not generate a base method in this case,
377 but instead uses the argument function as the base method. */
378
379 #define TARGET_DEFAULT_IGNORE()
380 #define TARGET_DEFAULT_NORETURN(ARG)
381 #define TARGET_DEFAULT_RETURN(ARG)
382 #define TARGET_DEFAULT_FUNC(ARG)
383
384 struct target_ops
385 {
386 struct target_ops *beneath; /* To the target under this one. */
387 char *to_shortname; /* Name this target type */
388 char *to_longname; /* Name for printing */
389 char *to_doc; /* Documentation. Does not include trailing
390 newline, and starts with a one-line descrip-
391 tion (probably similar to to_longname). */
392 /* Per-target scratch pad. */
393 void *to_data;
394 /* The open routine takes the rest of the parameters from the
395 command, and (if successful) pushes a new target onto the
396 stack. Targets should supply this routine, if only to provide
397 an error message. */
398 void (*to_open) (char *, int);
399 /* Old targets with a static target vector provide "to_close".
400 New re-entrant targets provide "to_xclose" and that is expected
401 to xfree everything (including the "struct target_ops"). */
402 void (*to_xclose) (struct target_ops *targ);
403 void (*to_close) (struct target_ops *);
404 void (*to_attach) (struct target_ops *ops, char *, int)
405 TARGET_DEFAULT_FUNC (find_default_attach);
406 void (*to_post_attach) (struct target_ops *, int)
407 TARGET_DEFAULT_IGNORE ();
408 void (*to_detach) (struct target_ops *ops, const char *, int)
409 TARGET_DEFAULT_IGNORE ();
410 void (*to_disconnect) (struct target_ops *, char *, int)
411 TARGET_DEFAULT_NORETURN (tcomplain ());
412 void (*to_resume) (struct target_ops *, ptid_t, int, enum gdb_signal)
413 TARGET_DEFAULT_NORETURN (noprocess ());
414 ptid_t (*to_wait) (struct target_ops *,
415 ptid_t, struct target_waitstatus *, int)
416 TARGET_DEFAULT_NORETURN (noprocess ());
417 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int)
418 TARGET_DEFAULT_IGNORE ();
419 void (*to_store_registers) (struct target_ops *, struct regcache *, int)
420 TARGET_DEFAULT_NORETURN (noprocess ());
421 void (*to_prepare_to_store) (struct target_ops *, struct regcache *)
422 TARGET_DEFAULT_NORETURN (noprocess ());
423
424 /* Transfer LEN bytes of memory between GDB address MYADDR and
425 target address MEMADDR. If WRITE, transfer them to the target, else
426 transfer them from the target. TARGET is the target from which we
427 get this function.
428
429 Return value, N, is one of the following:
430
431 0 means that we can't handle this. If errno has been set, it is the
432 error which prevented us from doing it (FIXME: What about bfd_error?).
433
434 positive (call it N) means that we have transferred N bytes
435 starting at MEMADDR. We might be able to handle more bytes
436 beyond this length, but no promises.
437
438 negative (call its absolute value N) means that we cannot
439 transfer right at MEMADDR, but we could transfer at least
440 something at MEMADDR + N.
441
442 NOTE: cagney/2004-10-01: This has been entirely superseeded by
443 to_xfer_partial and inferior inheritance. */
444
445 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
446 int len, int write,
447 struct mem_attrib *attrib,
448 struct target_ops *target);
449
450 void (*to_files_info) (struct target_ops *)
451 TARGET_DEFAULT_IGNORE ();
452 int (*to_insert_breakpoint) (struct target_ops *, struct gdbarch *,
453 struct bp_target_info *)
454 TARGET_DEFAULT_FUNC (memory_insert_breakpoint);
455 int (*to_remove_breakpoint) (struct target_ops *, struct gdbarch *,
456 struct bp_target_info *)
457 TARGET_DEFAULT_FUNC (memory_remove_breakpoint);
458 int (*to_can_use_hw_breakpoint) (struct target_ops *, int, int, int)
459 TARGET_DEFAULT_RETURN (0);
460 int (*to_ranged_break_num_registers) (struct target_ops *)
461 TARGET_DEFAULT_RETURN (-1);
462 int (*to_insert_hw_breakpoint) (struct target_ops *,
463 struct gdbarch *, struct bp_target_info *)
464 TARGET_DEFAULT_RETURN (-1);
465 int (*to_remove_hw_breakpoint) (struct target_ops *,
466 struct gdbarch *, struct bp_target_info *)
467 TARGET_DEFAULT_RETURN (-1);
468
469 /* Documentation of what the two routines below are expected to do is
470 provided with the corresponding target_* macros. */
471 int (*to_remove_watchpoint) (struct target_ops *,
472 CORE_ADDR, int, int, struct expression *)
473 TARGET_DEFAULT_RETURN (-1);
474 int (*to_insert_watchpoint) (struct target_ops *,
475 CORE_ADDR, int, int, struct expression *)
476 TARGET_DEFAULT_RETURN (-1);
477
478 int (*to_insert_mask_watchpoint) (struct target_ops *,
479 CORE_ADDR, CORE_ADDR, int)
480 TARGET_DEFAULT_RETURN (1);
481 int (*to_remove_mask_watchpoint) (struct target_ops *,
482 CORE_ADDR, CORE_ADDR, int)
483 TARGET_DEFAULT_RETURN (1);
484 int (*to_stopped_by_watchpoint) (struct target_ops *)
485 TARGET_DEFAULT_RETURN (0);
486 int to_have_steppable_watchpoint;
487 int to_have_continuable_watchpoint;
488 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *)
489 TARGET_DEFAULT_RETURN (0);
490 int (*to_watchpoint_addr_within_range) (struct target_ops *,
491 CORE_ADDR, CORE_ADDR, int)
492 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
493
494 /* Documentation of this routine is provided with the corresponding
495 target_* macro. */
496 int (*to_region_ok_for_hw_watchpoint) (struct target_ops *,
497 CORE_ADDR, int)
498 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
499
500 int (*to_can_accel_watchpoint_condition) (struct target_ops *,
501 CORE_ADDR, int, int,
502 struct expression *)
503 TARGET_DEFAULT_RETURN (0);
504 int (*to_masked_watch_num_registers) (struct target_ops *,
505 CORE_ADDR, CORE_ADDR)
506 TARGET_DEFAULT_RETURN (-1);
507 void (*to_terminal_init) (struct target_ops *)
508 TARGET_DEFAULT_IGNORE ();
509 void (*to_terminal_inferior) (struct target_ops *)
510 TARGET_DEFAULT_IGNORE ();
511 void (*to_terminal_ours_for_output) (struct target_ops *)
512 TARGET_DEFAULT_IGNORE ();
513 void (*to_terminal_ours) (struct target_ops *)
514 TARGET_DEFAULT_IGNORE ();
515 void (*to_terminal_save_ours) (struct target_ops *)
516 TARGET_DEFAULT_IGNORE ();
517 void (*to_terminal_info) (struct target_ops *, const char *, int)
518 TARGET_DEFAULT_FUNC (default_terminal_info);
519 void (*to_kill) (struct target_ops *)
520 TARGET_DEFAULT_NORETURN (noprocess ());
521 void (*to_load) (struct target_ops *, char *, int)
522 TARGET_DEFAULT_NORETURN (tcomplain ());
523 void (*to_create_inferior) (struct target_ops *,
524 char *, char *, char **, int);
525 void (*to_post_startup_inferior) (struct target_ops *, ptid_t)
526 TARGET_DEFAULT_IGNORE ();
527 int (*to_insert_fork_catchpoint) (struct target_ops *, int)
528 TARGET_DEFAULT_RETURN (1);
529 int (*to_remove_fork_catchpoint) (struct target_ops *, int)
530 TARGET_DEFAULT_RETURN (1);
531 int (*to_insert_vfork_catchpoint) (struct target_ops *, int)
532 TARGET_DEFAULT_RETURN (1);
533 int (*to_remove_vfork_catchpoint) (struct target_ops *, int)
534 TARGET_DEFAULT_RETURN (1);
535 int (*to_follow_fork) (struct target_ops *, int, int)
536 TARGET_DEFAULT_FUNC (default_follow_fork);
537 int (*to_insert_exec_catchpoint) (struct target_ops *, int)
538 TARGET_DEFAULT_RETURN (1);
539 int (*to_remove_exec_catchpoint) (struct target_ops *, int)
540 TARGET_DEFAULT_RETURN (1);
541 int (*to_set_syscall_catchpoint) (struct target_ops *,
542 int, int, int, int, int *)
543 TARGET_DEFAULT_RETURN (1);
544 int (*to_has_exited) (struct target_ops *, int, int, int *)
545 TARGET_DEFAULT_RETURN (0);
546 void (*to_mourn_inferior) (struct target_ops *)
547 TARGET_DEFAULT_FUNC (default_mourn_inferior);
548 int (*to_can_run) (struct target_ops *)
549 TARGET_DEFAULT_RETURN (0);
550
551 /* Documentation of this routine is provided with the corresponding
552 target_* macro. */
553 void (*to_pass_signals) (struct target_ops *, int, unsigned char *)
554 TARGET_DEFAULT_IGNORE ();
555
556 /* Documentation of this routine is provided with the
557 corresponding target_* function. */
558 void (*to_program_signals) (struct target_ops *, int, unsigned char *)
559 TARGET_DEFAULT_IGNORE ();
560
561 int (*to_thread_alive) (struct target_ops *, ptid_t ptid)
562 TARGET_DEFAULT_RETURN (0);
563 void (*to_find_new_threads) (struct target_ops *)
564 TARGET_DEFAULT_IGNORE ();
565 char *(*to_pid_to_str) (struct target_ops *, ptid_t)
566 TARGET_DEFAULT_FUNC (default_pid_to_str);
567 char *(*to_extra_thread_info) (struct target_ops *, struct thread_info *)
568 TARGET_DEFAULT_RETURN (NULL);
569 char *(*to_thread_name) (struct target_ops *, struct thread_info *)
570 TARGET_DEFAULT_RETURN (NULL);
571 void (*to_stop) (struct target_ops *, ptid_t)
572 TARGET_DEFAULT_IGNORE ();
573 void (*to_rcmd) (struct target_ops *,
574 char *command, struct ui_file *output)
575 TARGET_DEFAULT_FUNC (default_rcmd);
576 char *(*to_pid_to_exec_file) (struct target_ops *, int pid)
577 TARGET_DEFAULT_RETURN (NULL);
578 void (*to_log_command) (struct target_ops *, const char *)
579 TARGET_DEFAULT_IGNORE ();
580 struct target_section_table *(*to_get_section_table) (struct target_ops *)
581 TARGET_DEFAULT_RETURN (NULL);
582 enum strata to_stratum;
583 int (*to_has_all_memory) (struct target_ops *);
584 int (*to_has_memory) (struct target_ops *);
585 int (*to_has_stack) (struct target_ops *);
586 int (*to_has_registers) (struct target_ops *);
587 int (*to_has_execution) (struct target_ops *, ptid_t);
588 int to_has_thread_control; /* control thread execution */
589 int to_attach_no_wait;
590 /* ASYNC target controls */
591 int (*to_can_async_p) (struct target_ops *)
592 TARGET_DEFAULT_FUNC (find_default_can_async_p);
593 int (*to_is_async_p) (struct target_ops *)
594 TARGET_DEFAULT_FUNC (find_default_is_async_p);
595 void (*to_async) (struct target_ops *, async_callback_ftype *, void *)
596 TARGET_DEFAULT_NORETURN (tcomplain ());
597 int (*to_supports_non_stop) (struct target_ops *);
598 /* find_memory_regions support method for gcore */
599 int (*to_find_memory_regions) (struct target_ops *,
600 find_memory_region_ftype func, void *data)
601 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
602 /* make_corefile_notes support method for gcore */
603 char * (*to_make_corefile_notes) (struct target_ops *, bfd *, int *)
604 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
605 /* get_bookmark support method for bookmarks */
606 gdb_byte * (*to_get_bookmark) (struct target_ops *, char *, int)
607 TARGET_DEFAULT_NORETURN (tcomplain ());
608 /* goto_bookmark support method for bookmarks */
609 void (*to_goto_bookmark) (struct target_ops *, gdb_byte *, int)
610 TARGET_DEFAULT_NORETURN (tcomplain ());
611 /* Return the thread-local address at OFFSET in the
612 thread-local storage for the thread PTID and the shared library
613 or executable file given by OBJFILE. If that block of
614 thread-local storage hasn't been allocated yet, this function
615 may return an error. */
616 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
617 ptid_t ptid,
618 CORE_ADDR load_module_addr,
619 CORE_ADDR offset);
620
621 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
622 OBJECT. The OFFSET, for a seekable object, specifies the
623 starting point. The ANNEX can be used to provide additional
624 data-specific information to the target.
625
626 Return the transferred status, error or OK (an
627 'enum target_xfer_status' value). Save the number of bytes
628 actually transferred in *XFERED_LEN if transfer is successful
629 (TARGET_XFER_OK) or the number unavailable bytes if the requested
630 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
631 smaller than LEN does not indicate the end of the object, only
632 the end of the transfer; higher level code should continue
633 transferring if desired. This is handled in target.c.
634
635 The interface does not support a "retry" mechanism. Instead it
636 assumes that at least one byte will be transfered on each
637 successful call.
638
639 NOTE: cagney/2003-10-17: The current interface can lead to
640 fragmented transfers. Lower target levels should not implement
641 hacks, such as enlarging the transfer, in an attempt to
642 compensate for this. Instead, the target stack should be
643 extended so that it implements supply/collect methods and a
644 look-aside object cache. With that available, the lowest
645 target can safely and freely "push" data up the stack.
646
647 See target_read and target_write for more information. One,
648 and only one, of readbuf or writebuf must be non-NULL. */
649
650 enum target_xfer_status (*to_xfer_partial) (struct target_ops *ops,
651 enum target_object object,
652 const char *annex,
653 gdb_byte *readbuf,
654 const gdb_byte *writebuf,
655 ULONGEST offset, ULONGEST len,
656 ULONGEST *xfered_len)
657 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
658
659 /* Returns the memory map for the target. A return value of NULL
660 means that no memory map is available. If a memory address
661 does not fall within any returned regions, it's assumed to be
662 RAM. The returned memory regions should not overlap.
663
664 The order of regions does not matter; target_memory_map will
665 sort regions by starting address. For that reason, this
666 function should not be called directly except via
667 target_memory_map.
668
669 This method should not cache data; if the memory map could
670 change unexpectedly, it should be invalidated, and higher
671 layers will re-fetch it. */
672 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *)
673 TARGET_DEFAULT_RETURN (NULL);
674
675 /* Erases the region of flash memory starting at ADDRESS, of
676 length LENGTH.
677
678 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
679 on flash block boundaries, as reported by 'to_memory_map'. */
680 void (*to_flash_erase) (struct target_ops *,
681 ULONGEST address, LONGEST length)
682 TARGET_DEFAULT_NORETURN (tcomplain ());
683
684 /* Finishes a flash memory write sequence. After this operation
685 all flash memory should be available for writing and the result
686 of reading from areas written by 'to_flash_write' should be
687 equal to what was written. */
688 void (*to_flash_done) (struct target_ops *)
689 TARGET_DEFAULT_NORETURN (tcomplain ());
690
691 /* Describe the architecture-specific features of this target. If
692 OPS doesn't have a description, this should delegate to the
693 "beneath" target. Returns the description found, or NULL if no
694 description was available. */
695 const struct target_desc *(*to_read_description) (struct target_ops *ops)
696 TARGET_DEFAULT_RETURN (NULL);
697
698 /* Build the PTID of the thread on which a given task is running,
699 based on LWP and THREAD. These values are extracted from the
700 task Private_Data section of the Ada Task Control Block, and
701 their interpretation depends on the target. */
702 ptid_t (*to_get_ada_task_ptid) (struct target_ops *,
703 long lwp, long thread)
704 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
705
706 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
707 Return 0 if *READPTR is already at the end of the buffer.
708 Return -1 if there is insufficient buffer for a whole entry.
709 Return 1 if an entry was read into *TYPEP and *VALP. */
710 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
711 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
712 TARGET_DEFAULT_FUNC (default_auxv_parse);
713
714 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
715 sequence of bytes in PATTERN with length PATTERN_LEN.
716
717 The result is 1 if found, 0 if not found, and -1 if there was an error
718 requiring halting of the search (e.g. memory read error).
719 If the pattern is found the address is recorded in FOUND_ADDRP. */
720 int (*to_search_memory) (struct target_ops *ops,
721 CORE_ADDR start_addr, ULONGEST search_space_len,
722 const gdb_byte *pattern, ULONGEST pattern_len,
723 CORE_ADDR *found_addrp)
724 TARGET_DEFAULT_FUNC (default_search_memory);
725
726 /* Can target execute in reverse? */
727 int (*to_can_execute_reverse) (struct target_ops *)
728 TARGET_DEFAULT_RETURN (0);
729
730 /* The direction the target is currently executing. Must be
731 implemented on targets that support reverse execution and async
732 mode. The default simply returns forward execution. */
733 enum exec_direction_kind (*to_execution_direction) (struct target_ops *)
734 TARGET_DEFAULT_FUNC (default_execution_direction);
735
736 /* Does this target support debugging multiple processes
737 simultaneously? */
738 int (*to_supports_multi_process) (struct target_ops *)
739 TARGET_DEFAULT_RETURN (0);
740
741 /* Does this target support enabling and disabling tracepoints while a trace
742 experiment is running? */
743 int (*to_supports_enable_disable_tracepoint) (struct target_ops *)
744 TARGET_DEFAULT_RETURN (0);
745
746 /* Does this target support disabling address space randomization? */
747 int (*to_supports_disable_randomization) (struct target_ops *);
748
749 /* Does this target support the tracenz bytecode for string collection? */
750 int (*to_supports_string_tracing) (struct target_ops *)
751 TARGET_DEFAULT_RETURN (0);
752
753 /* Does this target support evaluation of breakpoint conditions on its
754 end? */
755 int (*to_supports_evaluation_of_breakpoint_conditions) (struct target_ops *)
756 TARGET_DEFAULT_RETURN (0);
757
758 /* Does this target support evaluation of breakpoint commands on its
759 end? */
760 int (*to_can_run_breakpoint_commands) (struct target_ops *)
761 TARGET_DEFAULT_RETURN (0);
762
763 /* Determine current architecture of thread PTID.
764
765 The target is supposed to determine the architecture of the code where
766 the target is currently stopped at (on Cell, if a target is in spu_run,
767 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
768 This is architecture used to perform decr_pc_after_break adjustment,
769 and also determines the frame architecture of the innermost frame.
770 ptrace operations need to operate according to target_gdbarch ().
771
772 The default implementation always returns target_gdbarch (). */
773 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t)
774 TARGET_DEFAULT_FUNC (default_thread_architecture);
775
776 /* Determine current address space of thread PTID.
777
778 The default implementation always returns the inferior's
779 address space. */
780 struct address_space *(*to_thread_address_space) (struct target_ops *,
781 ptid_t);
782
783 /* Target file operations. */
784
785 /* Open FILENAME on the target, using FLAGS and MODE. Return a
786 target file descriptor, or -1 if an error occurs (and set
787 *TARGET_ERRNO). */
788 int (*to_fileio_open) (struct target_ops *,
789 const char *filename, int flags, int mode,
790 int *target_errno);
791
792 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
793 Return the number of bytes written, or -1 if an error occurs
794 (and set *TARGET_ERRNO). */
795 int (*to_fileio_pwrite) (struct target_ops *,
796 int fd, const gdb_byte *write_buf, int len,
797 ULONGEST offset, int *target_errno);
798
799 /* Read up to LEN bytes FD on the target into READ_BUF.
800 Return the number of bytes read, or -1 if an error occurs
801 (and set *TARGET_ERRNO). */
802 int (*to_fileio_pread) (struct target_ops *,
803 int fd, gdb_byte *read_buf, int len,
804 ULONGEST offset, int *target_errno);
805
806 /* Close FD on the target. Return 0, or -1 if an error occurs
807 (and set *TARGET_ERRNO). */
808 int (*to_fileio_close) (struct target_ops *, int fd, int *target_errno);
809
810 /* Unlink FILENAME on the target. Return 0, or -1 if an error
811 occurs (and set *TARGET_ERRNO). */
812 int (*to_fileio_unlink) (struct target_ops *,
813 const char *filename, int *target_errno);
814
815 /* Read value of symbolic link FILENAME on the target. Return a
816 null-terminated string allocated via xmalloc, or NULL if an error
817 occurs (and set *TARGET_ERRNO). */
818 char *(*to_fileio_readlink) (struct target_ops *,
819 const char *filename, int *target_errno);
820
821
822 /* Implement the "info proc" command. */
823 void (*to_info_proc) (struct target_ops *, char *, enum info_proc_what);
824
825 /* Tracepoint-related operations. */
826
827 /* Prepare the target for a tracing run. */
828 void (*to_trace_init) (struct target_ops *)
829 TARGET_DEFAULT_NORETURN (tcomplain ());
830
831 /* Send full details of a tracepoint location to the target. */
832 void (*to_download_tracepoint) (struct target_ops *,
833 struct bp_location *location)
834 TARGET_DEFAULT_NORETURN (tcomplain ());
835
836 /* Is the target able to download tracepoint locations in current
837 state? */
838 int (*to_can_download_tracepoint) (struct target_ops *)
839 TARGET_DEFAULT_RETURN (0);
840
841 /* Send full details of a trace state variable to the target. */
842 void (*to_download_trace_state_variable) (struct target_ops *,
843 struct trace_state_variable *tsv)
844 TARGET_DEFAULT_NORETURN (tcomplain ());
845
846 /* Enable a tracepoint on the target. */
847 void (*to_enable_tracepoint) (struct target_ops *,
848 struct bp_location *location)
849 TARGET_DEFAULT_NORETURN (tcomplain ());
850
851 /* Disable a tracepoint on the target. */
852 void (*to_disable_tracepoint) (struct target_ops *,
853 struct bp_location *location)
854 TARGET_DEFAULT_NORETURN (tcomplain ());
855
856 /* Inform the target info of memory regions that are readonly
857 (such as text sections), and so it should return data from
858 those rather than look in the trace buffer. */
859 void (*to_trace_set_readonly_regions) (struct target_ops *)
860 TARGET_DEFAULT_NORETURN (tcomplain ());
861
862 /* Start a trace run. */
863 void (*to_trace_start) (struct target_ops *)
864 TARGET_DEFAULT_NORETURN (tcomplain ());
865
866 /* Get the current status of a tracing run. */
867 int (*to_get_trace_status) (struct target_ops *, struct trace_status *ts)
868 TARGET_DEFAULT_RETURN (-1);
869
870 void (*to_get_tracepoint_status) (struct target_ops *,
871 struct breakpoint *tp,
872 struct uploaded_tp *utp)
873 TARGET_DEFAULT_NORETURN (tcomplain ());
874
875 /* Stop a trace run. */
876 void (*to_trace_stop) (struct target_ops *)
877 TARGET_DEFAULT_NORETURN (tcomplain ());
878
879 /* Ask the target to find a trace frame of the given type TYPE,
880 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
881 number of the trace frame, and also the tracepoint number at
882 TPP. If no trace frame matches, return -1. May throw if the
883 operation fails. */
884 int (*to_trace_find) (struct target_ops *,
885 enum trace_find_type type, int num,
886 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
887 TARGET_DEFAULT_RETURN (-1);
888
889 /* Get the value of the trace state variable number TSV, returning
890 1 if the value is known and writing the value itself into the
891 location pointed to by VAL, else returning 0. */
892 int (*to_get_trace_state_variable_value) (struct target_ops *,
893 int tsv, LONGEST *val)
894 TARGET_DEFAULT_RETURN (0);
895
896 int (*to_save_trace_data) (struct target_ops *, const char *filename)
897 TARGET_DEFAULT_NORETURN (tcomplain ());
898
899 int (*to_upload_tracepoints) (struct target_ops *,
900 struct uploaded_tp **utpp)
901 TARGET_DEFAULT_RETURN (0);
902
903 int (*to_upload_trace_state_variables) (struct target_ops *,
904 struct uploaded_tsv **utsvp)
905 TARGET_DEFAULT_RETURN (0);
906
907 LONGEST (*to_get_raw_trace_data) (struct target_ops *, gdb_byte *buf,
908 ULONGEST offset, LONGEST len)
909 TARGET_DEFAULT_NORETURN (tcomplain ());
910
911 /* Get the minimum length of instruction on which a fast tracepoint
912 may be set on the target. If this operation is unsupported,
913 return -1. If for some reason the minimum length cannot be
914 determined, return 0. */
915 int (*to_get_min_fast_tracepoint_insn_len) (struct target_ops *)
916 TARGET_DEFAULT_RETURN (-1);
917
918 /* Set the target's tracing behavior in response to unexpected
919 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
920 void (*to_set_disconnected_tracing) (struct target_ops *, int val)
921 TARGET_DEFAULT_IGNORE ();
922 void (*to_set_circular_trace_buffer) (struct target_ops *, int val)
923 TARGET_DEFAULT_IGNORE ();
924 /* Set the size of trace buffer in the target. */
925 void (*to_set_trace_buffer_size) (struct target_ops *, LONGEST val)
926 TARGET_DEFAULT_IGNORE ();
927
928 /* Add/change textual notes about the trace run, returning 1 if
929 successful, 0 otherwise. */
930 int (*to_set_trace_notes) (struct target_ops *,
931 const char *user, const char *notes,
932 const char *stopnotes)
933 TARGET_DEFAULT_RETURN (0);
934
935 /* Return the processor core that thread PTID was last seen on.
936 This information is updated only when:
937 - update_thread_list is called
938 - thread stops
939 If the core cannot be determined -- either for the specified
940 thread, or right now, or in this debug session, or for this
941 target -- return -1. */
942 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid)
943 TARGET_DEFAULT_RETURN (-1);
944
945 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
946 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
947 a match, 0 if there's a mismatch, and -1 if an error is
948 encountered while reading memory. */
949 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
950 CORE_ADDR memaddr, ULONGEST size)
951 TARGET_DEFAULT_NORETURN (tcomplain ());
952
953 /* Return the address of the start of the Thread Information Block
954 a Windows OS specific feature. */
955 int (*to_get_tib_address) (struct target_ops *,
956 ptid_t ptid, CORE_ADDR *addr)
957 TARGET_DEFAULT_NORETURN (tcomplain ());
958
959 /* Send the new settings of write permission variables. */
960 void (*to_set_permissions) (struct target_ops *)
961 TARGET_DEFAULT_IGNORE ();
962
963 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
964 with its details. Return 1 on success, 0 on failure. */
965 int (*to_static_tracepoint_marker_at) (struct target_ops *, CORE_ADDR,
966 struct static_tracepoint_marker *marker)
967 TARGET_DEFAULT_RETURN (0);
968
969 /* Return a vector of all tracepoints markers string id ID, or all
970 markers if ID is NULL. */
971 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid) (struct target_ops *, const char *id)
972 TARGET_DEFAULT_NORETURN (tcomplain ());
973
974 /* Return a traceframe info object describing the current
975 traceframe's contents. This method should not cache data;
976 higher layers take care of caching, invalidating, and
977 re-fetching when necessary. */
978 struct traceframe_info *(*to_traceframe_info) (struct target_ops *)
979 TARGET_DEFAULT_RETURN (tcomplain ());
980
981 /* Ask the target to use or not to use agent according to USE. Return 1
982 successful, 0 otherwise. */
983 int (*to_use_agent) (struct target_ops *, int use)
984 TARGET_DEFAULT_NORETURN (tcomplain ());
985
986 /* Is the target able to use agent in current state? */
987 int (*to_can_use_agent) (struct target_ops *)
988 TARGET_DEFAULT_RETURN (0);
989
990 /* Check whether the target supports branch tracing. */
991 int (*to_supports_btrace) (struct target_ops *)
992 TARGET_DEFAULT_RETURN (0);
993
994 /* Enable branch tracing for PTID and allocate a branch trace target
995 information struct for reading and for disabling branch trace. */
996 struct btrace_target_info *(*to_enable_btrace) (struct target_ops *,
997 ptid_t ptid)
998 TARGET_DEFAULT_NORETURN (tcomplain ());
999
1000 /* Disable branch tracing and deallocate TINFO. */
1001 void (*to_disable_btrace) (struct target_ops *,
1002 struct btrace_target_info *tinfo)
1003 TARGET_DEFAULT_NORETURN (tcomplain ());
1004
1005 /* Disable branch tracing and deallocate TINFO. This function is similar
1006 to to_disable_btrace, except that it is called during teardown and is
1007 only allowed to perform actions that are safe. A counter-example would
1008 be attempting to talk to a remote target. */
1009 void (*to_teardown_btrace) (struct target_ops *,
1010 struct btrace_target_info *tinfo)
1011 TARGET_DEFAULT_NORETURN (tcomplain ());
1012
1013 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1014 DATA is cleared before new trace is added.
1015 The branch trace will start with the most recent block and continue
1016 towards older blocks. */
1017 enum btrace_error (*to_read_btrace) (struct target_ops *self,
1018 VEC (btrace_block_s) **data,
1019 struct btrace_target_info *btinfo,
1020 enum btrace_read_type type)
1021 TARGET_DEFAULT_NORETURN (tcomplain ());
1022
1023 /* Stop trace recording. */
1024 void (*to_stop_recording) (struct target_ops *)
1025 TARGET_DEFAULT_IGNORE ();
1026
1027 /* Print information about the recording. */
1028 void (*to_info_record) (struct target_ops *);
1029
1030 /* Save the recorded execution trace into a file. */
1031 void (*to_save_record) (struct target_ops *, const char *filename)
1032 TARGET_DEFAULT_NORETURN (tcomplain ());
1033
1034 /* Delete the recorded execution trace from the current position onwards. */
1035 void (*to_delete_record) (struct target_ops *)
1036 TARGET_DEFAULT_NORETURN (tcomplain ());
1037
1038 /* Query if the record target is currently replaying. */
1039 int (*to_record_is_replaying) (struct target_ops *)
1040 TARGET_DEFAULT_RETURN (0);
1041
1042 /* Go to the begin of the execution trace. */
1043 void (*to_goto_record_begin) (struct target_ops *)
1044 TARGET_DEFAULT_NORETURN (tcomplain ());
1045
1046 /* Go to the end of the execution trace. */
1047 void (*to_goto_record_end) (struct target_ops *)
1048 TARGET_DEFAULT_NORETURN (tcomplain ());
1049
1050 /* Go to a specific location in the recorded execution trace. */
1051 void (*to_goto_record) (struct target_ops *, ULONGEST insn)
1052 TARGET_DEFAULT_NORETURN (tcomplain ());
1053
1054 /* Disassemble SIZE instructions in the recorded execution trace from
1055 the current position.
1056 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1057 disassemble SIZE succeeding instructions. */
1058 void (*to_insn_history) (struct target_ops *, int size, int flags)
1059 TARGET_DEFAULT_NORETURN (tcomplain ());
1060
1061 /* Disassemble SIZE instructions in the recorded execution trace around
1062 FROM.
1063 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1064 disassemble SIZE instructions after FROM. */
1065 void (*to_insn_history_from) (struct target_ops *,
1066 ULONGEST from, int size, int flags)
1067 TARGET_DEFAULT_NORETURN (tcomplain ());
1068
1069 /* Disassemble a section of the recorded execution trace from instruction
1070 BEGIN (inclusive) to instruction END (inclusive). */
1071 void (*to_insn_history_range) (struct target_ops *,
1072 ULONGEST begin, ULONGEST end, int flags)
1073 TARGET_DEFAULT_NORETURN (tcomplain ());
1074
1075 /* Print a function trace of the recorded execution trace.
1076 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1077 succeeding functions. */
1078 void (*to_call_history) (struct target_ops *, int size, int flags)
1079 TARGET_DEFAULT_NORETURN (tcomplain ());
1080
1081 /* Print a function trace of the recorded execution trace starting
1082 at function FROM.
1083 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1084 SIZE functions after FROM. */
1085 void (*to_call_history_from) (struct target_ops *,
1086 ULONGEST begin, int size, int flags)
1087 TARGET_DEFAULT_NORETURN (tcomplain ());
1088
1089 /* Print a function trace of an execution trace section from function BEGIN
1090 (inclusive) to function END (inclusive). */
1091 void (*to_call_history_range) (struct target_ops *,
1092 ULONGEST begin, ULONGEST end, int flags)
1093 TARGET_DEFAULT_NORETURN (tcomplain ());
1094
1095 /* Nonzero if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1096 non-empty annex. */
1097 int (*to_augmented_libraries_svr4_read) (struct target_ops *)
1098 TARGET_DEFAULT_RETURN (0);
1099
1100 /* Those unwinders are tried before any other arch unwinders. If
1101 SELF doesn't have unwinders, it should delegate to the
1102 "beneath" target. */
1103 const struct frame_unwind *(*to_get_unwinder) (struct target_ops *self)
1104 TARGET_DEFAULT_RETURN (NULL);
1105
1106 const struct frame_unwind *(*to_get_tailcall_unwinder) (struct target_ops *self)
1107 TARGET_DEFAULT_RETURN (NULL);
1108
1109 /* Return the number of bytes by which the PC needs to be decremented
1110 after executing a breakpoint instruction.
1111 Defaults to gdbarch_decr_pc_after_break (GDBARCH). */
1112 CORE_ADDR (*to_decr_pc_after_break) (struct target_ops *ops,
1113 struct gdbarch *gdbarch)
1114 TARGET_DEFAULT_FUNC (default_target_decr_pc_after_break);
1115
1116 int to_magic;
1117 /* Need sub-structure for target machine related rather than comm related?
1118 */
1119 };
1120
1121 /* Magic number for checking ops size. If a struct doesn't end with this
1122 number, somebody changed the declaration but didn't change all the
1123 places that initialize one. */
1124
1125 #define OPS_MAGIC 3840
1126
1127 /* The ops structure for our "current" target process. This should
1128 never be NULL. If there is no target, it points to the dummy_target. */
1129
1130 extern struct target_ops current_target;
1131
1132 /* Define easy words for doing these operations on our current target. */
1133
1134 #define target_shortname (current_target.to_shortname)
1135 #define target_longname (current_target.to_longname)
1136
1137 /* Does whatever cleanup is required for a target that we are no
1138 longer going to be calling. This routine is automatically always
1139 called after popping the target off the target stack - the target's
1140 own methods are no longer available through the target vector.
1141 Closing file descriptors and freeing all memory allocated memory are
1142 typical things it should do. */
1143
1144 void target_close (struct target_ops *targ);
1145
1146 /* Attaches to a process on the target side. Arguments are as passed
1147 to the `attach' command by the user. This routine can be called
1148 when the target is not on the target-stack, if the target_can_run
1149 routine returns 1; in that case, it must push itself onto the stack.
1150 Upon exit, the target should be ready for normal operations, and
1151 should be ready to deliver the status of the process immediately
1152 (without waiting) to an upcoming target_wait call. */
1153
1154 void target_attach (char *, int);
1155
1156 /* Some targets don't generate traps when attaching to the inferior,
1157 or their target_attach implementation takes care of the waiting.
1158 These targets must set to_attach_no_wait. */
1159
1160 #define target_attach_no_wait \
1161 (current_target.to_attach_no_wait)
1162
1163 /* The target_attach operation places a process under debugger control,
1164 and stops the process.
1165
1166 This operation provides a target-specific hook that allows the
1167 necessary bookkeeping to be performed after an attach completes. */
1168 #define target_post_attach(pid) \
1169 (*current_target.to_post_attach) (&current_target, pid)
1170
1171 /* Takes a program previously attached to and detaches it.
1172 The program may resume execution (some targets do, some don't) and will
1173 no longer stop on signals, etc. We better not have left any breakpoints
1174 in the program or it'll die when it hits one. ARGS is arguments
1175 typed by the user (e.g. a signal to send the process). FROM_TTY
1176 says whether to be verbose or not. */
1177
1178 extern void target_detach (const char *, int);
1179
1180 /* Disconnect from the current target without resuming it (leaving it
1181 waiting for a debugger). */
1182
1183 extern void target_disconnect (char *, int);
1184
1185 /* Resume execution of the target process PTID (or a group of
1186 threads). STEP says whether to single-step or to run free; SIGGNAL
1187 is the signal to be given to the target, or GDB_SIGNAL_0 for no
1188 signal. The caller may not pass GDB_SIGNAL_DEFAULT. A specific
1189 PTID means `step/resume only this process id'. A wildcard PTID
1190 (all threads, or all threads of process) means `step/resume
1191 INFERIOR_PTID, and let other threads (for which the wildcard PTID
1192 matches) resume with their 'thread->suspend.stop_signal' signal
1193 (usually GDB_SIGNAL_0) if it is in "pass" state, or with no signal
1194 if in "no pass" state. */
1195
1196 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1197
1198 /* Wait for process pid to do something. PTID = -1 to wait for any
1199 pid to do something. Return pid of child, or -1 in case of error;
1200 store status through argument pointer STATUS. Note that it is
1201 _NOT_ OK to throw_exception() out of target_wait() without popping
1202 the debugging target from the stack; GDB isn't prepared to get back
1203 to the prompt with a debugging target but without the frame cache,
1204 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
1205 options. */
1206
1207 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
1208 int options);
1209
1210 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1211
1212 extern void target_fetch_registers (struct regcache *regcache, int regno);
1213
1214 /* Store at least register REGNO, or all regs if REGNO == -1.
1215 It can store as many registers as it wants to, so target_prepare_to_store
1216 must have been previously called. Calls error() if there are problems. */
1217
1218 extern void target_store_registers (struct regcache *regcache, int regs);
1219
1220 /* Get ready to modify the registers array. On machines which store
1221 individual registers, this doesn't need to do anything. On machines
1222 which store all the registers in one fell swoop, this makes sure
1223 that REGISTERS contains all the registers from the program being
1224 debugged. */
1225
1226 #define target_prepare_to_store(regcache) \
1227 (*current_target.to_prepare_to_store) (&current_target, regcache)
1228
1229 /* Determine current address space of thread PTID. */
1230
1231 struct address_space *target_thread_address_space (ptid_t);
1232
1233 /* Implement the "info proc" command. This returns one if the request
1234 was handled, and zero otherwise. It can also throw an exception if
1235 an error was encountered while attempting to handle the
1236 request. */
1237
1238 int target_info_proc (char *, enum info_proc_what);
1239
1240 /* Returns true if this target can debug multiple processes
1241 simultaneously. */
1242
1243 #define target_supports_multi_process() \
1244 (*current_target.to_supports_multi_process) (&current_target)
1245
1246 /* Returns true if this target can disable address space randomization. */
1247
1248 int target_supports_disable_randomization (void);
1249
1250 /* Returns true if this target can enable and disable tracepoints
1251 while a trace experiment is running. */
1252
1253 #define target_supports_enable_disable_tracepoint() \
1254 (*current_target.to_supports_enable_disable_tracepoint) (&current_target)
1255
1256 #define target_supports_string_tracing() \
1257 (*current_target.to_supports_string_tracing) (&current_target)
1258
1259 /* Returns true if this target can handle breakpoint conditions
1260 on its end. */
1261
1262 #define target_supports_evaluation_of_breakpoint_conditions() \
1263 (*current_target.to_supports_evaluation_of_breakpoint_conditions) (&current_target)
1264
1265 /* Returns true if this target can handle breakpoint commands
1266 on its end. */
1267
1268 #define target_can_run_breakpoint_commands() \
1269 (*current_target.to_can_run_breakpoint_commands) (&current_target)
1270
1271 extern int target_read_string (CORE_ADDR, char **, int, int *);
1272
1273 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1274 ssize_t len);
1275
1276 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1277 ssize_t len);
1278
1279 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1280
1281 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1282
1283 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1284 ssize_t len);
1285
1286 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1287 ssize_t len);
1288
1289 /* Fetches the target's memory map. If one is found it is sorted
1290 and returned, after some consistency checking. Otherwise, NULL
1291 is returned. */
1292 VEC(mem_region_s) *target_memory_map (void);
1293
1294 /* Erase the specified flash region. */
1295 void target_flash_erase (ULONGEST address, LONGEST length);
1296
1297 /* Finish a sequence of flash operations. */
1298 void target_flash_done (void);
1299
1300 /* Describes a request for a memory write operation. */
1301 struct memory_write_request
1302 {
1303 /* Begining address that must be written. */
1304 ULONGEST begin;
1305 /* Past-the-end address. */
1306 ULONGEST end;
1307 /* The data to write. */
1308 gdb_byte *data;
1309 /* A callback baton for progress reporting for this request. */
1310 void *baton;
1311 };
1312 typedef struct memory_write_request memory_write_request_s;
1313 DEF_VEC_O(memory_write_request_s);
1314
1315 /* Enumeration specifying different flash preservation behaviour. */
1316 enum flash_preserve_mode
1317 {
1318 flash_preserve,
1319 flash_discard
1320 };
1321
1322 /* Write several memory blocks at once. This version can be more
1323 efficient than making several calls to target_write_memory, in
1324 particular because it can optimize accesses to flash memory.
1325
1326 Moreover, this is currently the only memory access function in gdb
1327 that supports writing to flash memory, and it should be used for
1328 all cases where access to flash memory is desirable.
1329
1330 REQUESTS is the vector (see vec.h) of memory_write_request.
1331 PRESERVE_FLASH_P indicates what to do with blocks which must be
1332 erased, but not completely rewritten.
1333 PROGRESS_CB is a function that will be periodically called to provide
1334 feedback to user. It will be called with the baton corresponding
1335 to the request currently being written. It may also be called
1336 with a NULL baton, when preserved flash sectors are being rewritten.
1337
1338 The function returns 0 on success, and error otherwise. */
1339 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
1340 enum flash_preserve_mode preserve_flash_p,
1341 void (*progress_cb) (ULONGEST, void *));
1342
1343 /* Print a line about the current target. */
1344
1345 #define target_files_info() \
1346 (*current_target.to_files_info) (&current_target)
1347
1348 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1349 the target machine. Returns 0 for success, and returns non-zero or
1350 throws an error (with a detailed failure reason error code and
1351 message) otherwise. */
1352
1353 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1354 struct bp_target_info *bp_tgt);
1355
1356 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1357 machine. Result is 0 for success, non-zero for error. */
1358
1359 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1360 struct bp_target_info *bp_tgt);
1361
1362 /* Initialize the terminal settings we record for the inferior,
1363 before we actually run the inferior. */
1364
1365 #define target_terminal_init() \
1366 (*current_target.to_terminal_init) (&current_target)
1367
1368 /* Put the inferior's terminal settings into effect.
1369 This is preparation for starting or resuming the inferior. */
1370
1371 extern void target_terminal_inferior (void);
1372
1373 /* Put some of our terminal settings into effect,
1374 enough to get proper results from our output,
1375 but do not change into or out of RAW mode
1376 so that no input is discarded.
1377
1378 After doing this, either terminal_ours or terminal_inferior
1379 should be called to get back to a normal state of affairs. */
1380
1381 #define target_terminal_ours_for_output() \
1382 (*current_target.to_terminal_ours_for_output) (&current_target)
1383
1384 /* Put our terminal settings into effect.
1385 First record the inferior's terminal settings
1386 so they can be restored properly later. */
1387
1388 #define target_terminal_ours() \
1389 (*current_target.to_terminal_ours) (&current_target)
1390
1391 /* Save our terminal settings.
1392 This is called from TUI after entering or leaving the curses
1393 mode. Since curses modifies our terminal this call is here
1394 to take this change into account. */
1395
1396 #define target_terminal_save_ours() \
1397 (*current_target.to_terminal_save_ours) (&current_target)
1398
1399 /* Print useful information about our terminal status, if such a thing
1400 exists. */
1401
1402 #define target_terminal_info(arg, from_tty) \
1403 (*current_target.to_terminal_info) (&current_target, arg, from_tty)
1404
1405 /* Kill the inferior process. Make it go away. */
1406
1407 extern void target_kill (void);
1408
1409 /* Load an executable file into the target process. This is expected
1410 to not only bring new code into the target process, but also to
1411 update GDB's symbol tables to match.
1412
1413 ARG contains command-line arguments, to be broken down with
1414 buildargv (). The first non-switch argument is the filename to
1415 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1416 0)), which is an offset to apply to the load addresses of FILE's
1417 sections. The target may define switches, or other non-switch
1418 arguments, as it pleases. */
1419
1420 extern void target_load (char *arg, int from_tty);
1421
1422 /* Start an inferior process and set inferior_ptid to its pid.
1423 EXEC_FILE is the file to run.
1424 ALLARGS is a string containing the arguments to the program.
1425 ENV is the environment vector to pass. Errors reported with error().
1426 On VxWorks and various standalone systems, we ignore exec_file. */
1427
1428 void target_create_inferior (char *exec_file, char *args,
1429 char **env, int from_tty);
1430
1431 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1432 notification of inferior events such as fork and vork immediately
1433 after the inferior is created. (This because of how gdb gets an
1434 inferior created via invoking a shell to do it. In such a scenario,
1435 if the shell init file has commands in it, the shell will fork and
1436 exec for each of those commands, and we will see each such fork
1437 event. Very bad.)
1438
1439 Such targets will supply an appropriate definition for this function. */
1440
1441 #define target_post_startup_inferior(ptid) \
1442 (*current_target.to_post_startup_inferior) (&current_target, ptid)
1443
1444 /* On some targets, we can catch an inferior fork or vfork event when
1445 it occurs. These functions insert/remove an already-created
1446 catchpoint for such events. They return 0 for success, 1 if the
1447 catchpoint type is not supported and -1 for failure. */
1448
1449 #define target_insert_fork_catchpoint(pid) \
1450 (*current_target.to_insert_fork_catchpoint) (&current_target, pid)
1451
1452 #define target_remove_fork_catchpoint(pid) \
1453 (*current_target.to_remove_fork_catchpoint) (&current_target, pid)
1454
1455 #define target_insert_vfork_catchpoint(pid) \
1456 (*current_target.to_insert_vfork_catchpoint) (&current_target, pid)
1457
1458 #define target_remove_vfork_catchpoint(pid) \
1459 (*current_target.to_remove_vfork_catchpoint) (&current_target, pid)
1460
1461 /* If the inferior forks or vforks, this function will be called at
1462 the next resume in order to perform any bookkeeping and fiddling
1463 necessary to continue debugging either the parent or child, as
1464 requested, and releasing the other. Information about the fork
1465 or vfork event is available via get_last_target_status ().
1466 This function returns 1 if the inferior should not be resumed
1467 (i.e. there is another event pending). */
1468
1469 int target_follow_fork (int follow_child, int detach_fork);
1470
1471 /* On some targets, we can catch an inferior exec event when it
1472 occurs. These functions insert/remove an already-created
1473 catchpoint for such events. They return 0 for success, 1 if the
1474 catchpoint type is not supported and -1 for failure. */
1475
1476 #define target_insert_exec_catchpoint(pid) \
1477 (*current_target.to_insert_exec_catchpoint) (&current_target, pid)
1478
1479 #define target_remove_exec_catchpoint(pid) \
1480 (*current_target.to_remove_exec_catchpoint) (&current_target, pid)
1481
1482 /* Syscall catch.
1483
1484 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1485 If NEEDED is zero, it means the target can disable the mechanism to
1486 catch system calls because there are no more catchpoints of this type.
1487
1488 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1489 being requested. In this case, both TABLE_SIZE and TABLE should
1490 be ignored.
1491
1492 TABLE_SIZE is the number of elements in TABLE. It only matters if
1493 ANY_COUNT is zero.
1494
1495 TABLE is an array of ints, indexed by syscall number. An element in
1496 this array is nonzero if that syscall should be caught. This argument
1497 only matters if ANY_COUNT is zero.
1498
1499 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1500 for failure. */
1501
1502 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1503 (*current_target.to_set_syscall_catchpoint) (&current_target, \
1504 pid, needed, any_count, \
1505 table_size, table)
1506
1507 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1508 exit code of PID, if any. */
1509
1510 #define target_has_exited(pid,wait_status,exit_status) \
1511 (*current_target.to_has_exited) (&current_target, \
1512 pid,wait_status,exit_status)
1513
1514 /* The debugger has completed a blocking wait() call. There is now
1515 some process event that must be processed. This function should
1516 be defined by those targets that require the debugger to perform
1517 cleanup or internal state changes in response to the process event. */
1518
1519 /* The inferior process has died. Do what is right. */
1520
1521 void target_mourn_inferior (void);
1522
1523 /* Does target have enough data to do a run or attach command? */
1524
1525 #define target_can_run(t) \
1526 ((t)->to_can_run) (t)
1527
1528 /* Set list of signals to be handled in the target.
1529
1530 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1531 (enum gdb_signal). For every signal whose entry in this array is
1532 non-zero, the target is allowed -but not required- to skip reporting
1533 arrival of the signal to the GDB core by returning from target_wait,
1534 and to pass the signal directly to the inferior instead.
1535
1536 However, if the target is hardware single-stepping a thread that is
1537 about to receive a signal, it needs to be reported in any case, even
1538 if mentioned in a previous target_pass_signals call. */
1539
1540 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1541
1542 /* Set list of signals the target may pass to the inferior. This
1543 directly maps to the "handle SIGNAL pass/nopass" setting.
1544
1545 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1546 number (enum gdb_signal). For every signal whose entry in this
1547 array is non-zero, the target is allowed to pass the signal to the
1548 inferior. Signals not present in the array shall be silently
1549 discarded. This does not influence whether to pass signals to the
1550 inferior as a result of a target_resume call. This is useful in
1551 scenarios where the target needs to decide whether to pass or not a
1552 signal to the inferior without GDB core involvement, such as for
1553 example, when detaching (as threads may have been suspended with
1554 pending signals not reported to GDB). */
1555
1556 extern void target_program_signals (int nsig, unsigned char *program_signals);
1557
1558 /* Check to see if a thread is still alive. */
1559
1560 extern int target_thread_alive (ptid_t ptid);
1561
1562 /* Query for new threads and add them to the thread list. */
1563
1564 extern void target_find_new_threads (void);
1565
1566 /* Make target stop in a continuable fashion. (For instance, under
1567 Unix, this should act like SIGSTOP). This function is normally
1568 used by GUIs to implement a stop button. */
1569
1570 extern void target_stop (ptid_t ptid);
1571
1572 /* Send the specified COMMAND to the target's monitor
1573 (shell,interpreter) for execution. The result of the query is
1574 placed in OUTBUF. */
1575
1576 #define target_rcmd(command, outbuf) \
1577 (*current_target.to_rcmd) (&current_target, command, outbuf)
1578
1579
1580 /* Does the target include all of memory, or only part of it? This
1581 determines whether we look up the target chain for other parts of
1582 memory if this target can't satisfy a request. */
1583
1584 extern int target_has_all_memory_1 (void);
1585 #define target_has_all_memory target_has_all_memory_1 ()
1586
1587 /* Does the target include memory? (Dummy targets don't.) */
1588
1589 extern int target_has_memory_1 (void);
1590 #define target_has_memory target_has_memory_1 ()
1591
1592 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1593 we start a process.) */
1594
1595 extern int target_has_stack_1 (void);
1596 #define target_has_stack target_has_stack_1 ()
1597
1598 /* Does the target have registers? (Exec files don't.) */
1599
1600 extern int target_has_registers_1 (void);
1601 #define target_has_registers target_has_registers_1 ()
1602
1603 /* Does the target have execution? Can we make it jump (through
1604 hoops), or pop its stack a few times? This means that the current
1605 target is currently executing; for some targets, that's the same as
1606 whether or not the target is capable of execution, but there are
1607 also targets which can be current while not executing. In that
1608 case this will become true after target_create_inferior or
1609 target_attach. */
1610
1611 extern int target_has_execution_1 (ptid_t);
1612
1613 /* Like target_has_execution_1, but always passes inferior_ptid. */
1614
1615 extern int target_has_execution_current (void);
1616
1617 #define target_has_execution target_has_execution_current ()
1618
1619 /* Default implementations for process_stratum targets. Return true
1620 if there's a selected inferior, false otherwise. */
1621
1622 extern int default_child_has_all_memory (struct target_ops *ops);
1623 extern int default_child_has_memory (struct target_ops *ops);
1624 extern int default_child_has_stack (struct target_ops *ops);
1625 extern int default_child_has_registers (struct target_ops *ops);
1626 extern int default_child_has_execution (struct target_ops *ops,
1627 ptid_t the_ptid);
1628
1629 /* Can the target support the debugger control of thread execution?
1630 Can it lock the thread scheduler? */
1631
1632 #define target_can_lock_scheduler \
1633 (current_target.to_has_thread_control & tc_schedlock)
1634
1635 /* Should the target enable async mode if it is supported? Temporary
1636 cludge until async mode is a strict superset of sync mode. */
1637 extern int target_async_permitted;
1638
1639 /* Can the target support asynchronous execution? */
1640 #define target_can_async_p() (current_target.to_can_async_p (&current_target))
1641
1642 /* Is the target in asynchronous execution mode? */
1643 #define target_is_async_p() (current_target.to_is_async_p (&current_target))
1644
1645 int target_supports_non_stop (void);
1646
1647 /* Put the target in async mode with the specified callback function. */
1648 #define target_async(CALLBACK,CONTEXT) \
1649 (current_target.to_async (&current_target, (CALLBACK), (CONTEXT)))
1650
1651 #define target_execution_direction() \
1652 (current_target.to_execution_direction (&current_target))
1653
1654 /* Converts a process id to a string. Usually, the string just contains
1655 `process xyz', but on some systems it may contain
1656 `process xyz thread abc'. */
1657
1658 extern char *target_pid_to_str (ptid_t ptid);
1659
1660 extern char *normal_pid_to_str (ptid_t ptid);
1661
1662 /* Return a short string describing extra information about PID,
1663 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1664 is okay. */
1665
1666 #define target_extra_thread_info(TP) \
1667 (current_target.to_extra_thread_info (&current_target, TP))
1668
1669 /* Return the thread's name. A NULL result means that the target
1670 could not determine this thread's name. */
1671
1672 extern char *target_thread_name (struct thread_info *);
1673
1674 /* Attempts to find the pathname of the executable file
1675 that was run to create a specified process.
1676
1677 The process PID must be stopped when this operation is used.
1678
1679 If the executable file cannot be determined, NULL is returned.
1680
1681 Else, a pointer to a character string containing the pathname
1682 is returned. This string should be copied into a buffer by
1683 the client if the string will not be immediately used, or if
1684 it must persist. */
1685
1686 #define target_pid_to_exec_file(pid) \
1687 (current_target.to_pid_to_exec_file) (&current_target, pid)
1688
1689 /* See the to_thread_architecture description in struct target_ops. */
1690
1691 #define target_thread_architecture(ptid) \
1692 (current_target.to_thread_architecture (&current_target, ptid))
1693
1694 /*
1695 * Iterator function for target memory regions.
1696 * Calls a callback function once for each memory region 'mapped'
1697 * in the child process. Defined as a simple macro rather than
1698 * as a function macro so that it can be tested for nullity.
1699 */
1700
1701 #define target_find_memory_regions(FUNC, DATA) \
1702 (current_target.to_find_memory_regions) (&current_target, FUNC, DATA)
1703
1704 /*
1705 * Compose corefile .note section.
1706 */
1707
1708 #define target_make_corefile_notes(BFD, SIZE_P) \
1709 (current_target.to_make_corefile_notes) (&current_target, BFD, SIZE_P)
1710
1711 /* Bookmark interfaces. */
1712 #define target_get_bookmark(ARGS, FROM_TTY) \
1713 (current_target.to_get_bookmark) (&current_target, ARGS, FROM_TTY)
1714
1715 #define target_goto_bookmark(ARG, FROM_TTY) \
1716 (current_target.to_goto_bookmark) (&current_target, ARG, FROM_TTY)
1717
1718 /* Hardware watchpoint interfaces. */
1719
1720 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1721 write). Only the INFERIOR_PTID task is being queried. */
1722
1723 #define target_stopped_by_watchpoint() \
1724 ((*current_target.to_stopped_by_watchpoint) (&current_target))
1725
1726 /* Non-zero if we have steppable watchpoints */
1727
1728 #define target_have_steppable_watchpoint \
1729 (current_target.to_have_steppable_watchpoint)
1730
1731 /* Non-zero if we have continuable watchpoints */
1732
1733 #define target_have_continuable_watchpoint \
1734 (current_target.to_have_continuable_watchpoint)
1735
1736 /* Provide defaults for hardware watchpoint functions. */
1737
1738 /* If the *_hw_beakpoint functions have not been defined
1739 elsewhere use the definitions in the target vector. */
1740
1741 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1742 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1743 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1744 (including this one?). OTHERTYPE is who knows what... */
1745
1746 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1747 (*current_target.to_can_use_hw_breakpoint) (&current_target, \
1748 TYPE, CNT, OTHERTYPE);
1749
1750 /* Returns the number of debug registers needed to watch the given
1751 memory region, or zero if not supported. */
1752
1753 #define target_region_ok_for_hw_watchpoint(addr, len) \
1754 (*current_target.to_region_ok_for_hw_watchpoint) (&current_target, \
1755 addr, len)
1756
1757
1758 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1759 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1760 COND is the expression for its condition, or NULL if there's none.
1761 Returns 0 for success, 1 if the watchpoint type is not supported,
1762 -1 for failure. */
1763
1764 #define target_insert_watchpoint(addr, len, type, cond) \
1765 (*current_target.to_insert_watchpoint) (&current_target, \
1766 addr, len, type, cond)
1767
1768 #define target_remove_watchpoint(addr, len, type, cond) \
1769 (*current_target.to_remove_watchpoint) (&current_target, \
1770 addr, len, type, cond)
1771
1772 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1773 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1774 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1775 masked watchpoints are not supported, -1 for failure. */
1776
1777 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1778
1779 /* Remove a masked watchpoint at ADDR with the mask MASK.
1780 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1781 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1782 for failure. */
1783
1784 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1785
1786 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
1787 the target machine. Returns 0 for success, and returns non-zero or
1788 throws an error (with a detailed failure reason error code and
1789 message) otherwise. */
1790
1791 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1792 (*current_target.to_insert_hw_breakpoint) (&current_target, \
1793 gdbarch, bp_tgt)
1794
1795 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1796 (*current_target.to_remove_hw_breakpoint) (&current_target, \
1797 gdbarch, bp_tgt)
1798
1799 /* Return number of debug registers needed for a ranged breakpoint,
1800 or -1 if ranged breakpoints are not supported. */
1801
1802 extern int target_ranged_break_num_registers (void);
1803
1804 /* Return non-zero if target knows the data address which triggered this
1805 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1806 INFERIOR_PTID task is being queried. */
1807 #define target_stopped_data_address(target, addr_p) \
1808 (*target.to_stopped_data_address) (target, addr_p)
1809
1810 /* Return non-zero if ADDR is within the range of a watchpoint spanning
1811 LENGTH bytes beginning at START. */
1812 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1813 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1814
1815 /* Return non-zero if the target is capable of using hardware to evaluate
1816 the condition expression. In this case, if the condition is false when
1817 the watched memory location changes, execution may continue without the
1818 debugger being notified.
1819
1820 Due to limitations in the hardware implementation, it may be capable of
1821 avoiding triggering the watchpoint in some cases where the condition
1822 expression is false, but may report some false positives as well.
1823 For this reason, GDB will still evaluate the condition expression when
1824 the watchpoint triggers. */
1825 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1826 (*current_target.to_can_accel_watchpoint_condition) (&current_target, \
1827 addr, len, type, cond)
1828
1829 /* Return number of debug registers needed for a masked watchpoint,
1830 -1 if masked watchpoints are not supported or -2 if the given address
1831 and mask combination cannot be used. */
1832
1833 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1834
1835 /* Target can execute in reverse? */
1836 #define target_can_execute_reverse \
1837 current_target.to_can_execute_reverse (&current_target)
1838
1839 extern const struct target_desc *target_read_description (struct target_ops *);
1840
1841 #define target_get_ada_task_ptid(lwp, tid) \
1842 (*current_target.to_get_ada_task_ptid) (&current_target, lwp,tid)
1843
1844 /* Utility implementation of searching memory. */
1845 extern int simple_search_memory (struct target_ops* ops,
1846 CORE_ADDR start_addr,
1847 ULONGEST search_space_len,
1848 const gdb_byte *pattern,
1849 ULONGEST pattern_len,
1850 CORE_ADDR *found_addrp);
1851
1852 /* Main entry point for searching memory. */
1853 extern int target_search_memory (CORE_ADDR start_addr,
1854 ULONGEST search_space_len,
1855 const gdb_byte *pattern,
1856 ULONGEST pattern_len,
1857 CORE_ADDR *found_addrp);
1858
1859 /* Target file operations. */
1860
1861 /* Open FILENAME on the target, using FLAGS and MODE. Return a
1862 target file descriptor, or -1 if an error occurs (and set
1863 *TARGET_ERRNO). */
1864 extern int target_fileio_open (const char *filename, int flags, int mode,
1865 int *target_errno);
1866
1867 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
1868 Return the number of bytes written, or -1 if an error occurs
1869 (and set *TARGET_ERRNO). */
1870 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1871 ULONGEST offset, int *target_errno);
1872
1873 /* Read up to LEN bytes FD on the target into READ_BUF.
1874 Return the number of bytes read, or -1 if an error occurs
1875 (and set *TARGET_ERRNO). */
1876 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
1877 ULONGEST offset, int *target_errno);
1878
1879 /* Close FD on the target. Return 0, or -1 if an error occurs
1880 (and set *TARGET_ERRNO). */
1881 extern int target_fileio_close (int fd, int *target_errno);
1882
1883 /* Unlink FILENAME on the target. Return 0, or -1 if an error
1884 occurs (and set *TARGET_ERRNO). */
1885 extern int target_fileio_unlink (const char *filename, int *target_errno);
1886
1887 /* Read value of symbolic link FILENAME on the target. Return a
1888 null-terminated string allocated via xmalloc, or NULL if an error
1889 occurs (and set *TARGET_ERRNO). */
1890 extern char *target_fileio_readlink (const char *filename, int *target_errno);
1891
1892 /* Read target file FILENAME. The return value will be -1 if the transfer
1893 fails or is not supported; 0 if the object is empty; or the length
1894 of the object otherwise. If a positive value is returned, a
1895 sufficiently large buffer will be allocated using xmalloc and
1896 returned in *BUF_P containing the contents of the object.
1897
1898 This method should be used for objects sufficiently small to store
1899 in a single xmalloc'd buffer, when no fixed bound on the object's
1900 size is known in advance. */
1901 extern LONGEST target_fileio_read_alloc (const char *filename,
1902 gdb_byte **buf_p);
1903
1904 /* Read target file FILENAME. The result is NUL-terminated and
1905 returned as a string, allocated using xmalloc. If an error occurs
1906 or the transfer is unsupported, NULL is returned. Empty objects
1907 are returned as allocated but empty strings. A warning is issued
1908 if the result contains any embedded NUL bytes. */
1909 extern char *target_fileio_read_stralloc (const char *filename);
1910
1911
1912 /* Tracepoint-related operations. */
1913
1914 #define target_trace_init() \
1915 (*current_target.to_trace_init) (&current_target)
1916
1917 #define target_download_tracepoint(t) \
1918 (*current_target.to_download_tracepoint) (&current_target, t)
1919
1920 #define target_can_download_tracepoint() \
1921 (*current_target.to_can_download_tracepoint) (&current_target)
1922
1923 #define target_download_trace_state_variable(tsv) \
1924 (*current_target.to_download_trace_state_variable) (&current_target, tsv)
1925
1926 #define target_enable_tracepoint(loc) \
1927 (*current_target.to_enable_tracepoint) (&current_target, loc)
1928
1929 #define target_disable_tracepoint(loc) \
1930 (*current_target.to_disable_tracepoint) (&current_target, loc)
1931
1932 #define target_trace_start() \
1933 (*current_target.to_trace_start) (&current_target)
1934
1935 #define target_trace_set_readonly_regions() \
1936 (*current_target.to_trace_set_readonly_regions) (&current_target)
1937
1938 #define target_get_trace_status(ts) \
1939 (*current_target.to_get_trace_status) (&current_target, ts)
1940
1941 #define target_get_tracepoint_status(tp,utp) \
1942 (*current_target.to_get_tracepoint_status) (&current_target, tp, utp)
1943
1944 #define target_trace_stop() \
1945 (*current_target.to_trace_stop) (&current_target)
1946
1947 #define target_trace_find(type,num,addr1,addr2,tpp) \
1948 (*current_target.to_trace_find) (&current_target, \
1949 (type), (num), (addr1), (addr2), (tpp))
1950
1951 #define target_get_trace_state_variable_value(tsv,val) \
1952 (*current_target.to_get_trace_state_variable_value) (&current_target, \
1953 (tsv), (val))
1954
1955 #define target_save_trace_data(filename) \
1956 (*current_target.to_save_trace_data) (&current_target, filename)
1957
1958 #define target_upload_tracepoints(utpp) \
1959 (*current_target.to_upload_tracepoints) (&current_target, utpp)
1960
1961 #define target_upload_trace_state_variables(utsvp) \
1962 (*current_target.to_upload_trace_state_variables) (&current_target, utsvp)
1963
1964 #define target_get_raw_trace_data(buf,offset,len) \
1965 (*current_target.to_get_raw_trace_data) (&current_target, \
1966 (buf), (offset), (len))
1967
1968 #define target_get_min_fast_tracepoint_insn_len() \
1969 (*current_target.to_get_min_fast_tracepoint_insn_len) (&current_target)
1970
1971 #define target_set_disconnected_tracing(val) \
1972 (*current_target.to_set_disconnected_tracing) (&current_target, val)
1973
1974 #define target_set_circular_trace_buffer(val) \
1975 (*current_target.to_set_circular_trace_buffer) (&current_target, val)
1976
1977 #define target_set_trace_buffer_size(val) \
1978 (*current_target.to_set_trace_buffer_size) (&current_target, val)
1979
1980 #define target_set_trace_notes(user,notes,stopnotes) \
1981 (*current_target.to_set_trace_notes) (&current_target, \
1982 (user), (notes), (stopnotes))
1983
1984 #define target_get_tib_address(ptid, addr) \
1985 (*current_target.to_get_tib_address) (&current_target, (ptid), (addr))
1986
1987 #define target_set_permissions() \
1988 (*current_target.to_set_permissions) (&current_target)
1989
1990 #define target_static_tracepoint_marker_at(addr, marker) \
1991 (*current_target.to_static_tracepoint_marker_at) (&current_target, \
1992 addr, marker)
1993
1994 #define target_static_tracepoint_markers_by_strid(marker_id) \
1995 (*current_target.to_static_tracepoint_markers_by_strid) (&current_target, \
1996 marker_id)
1997
1998 #define target_traceframe_info() \
1999 (*current_target.to_traceframe_info) (&current_target)
2000
2001 #define target_use_agent(use) \
2002 (*current_target.to_use_agent) (&current_target, use)
2003
2004 #define target_can_use_agent() \
2005 (*current_target.to_can_use_agent) (&current_target)
2006
2007 #define target_augmented_libraries_svr4_read() \
2008 (*current_target.to_augmented_libraries_svr4_read) (&current_target)
2009
2010 /* Command logging facility. */
2011
2012 #define target_log_command(p) \
2013 (*current_target.to_log_command) (&current_target, p)
2014
2015
2016 extern int target_core_of_thread (ptid_t ptid);
2017
2018 /* See to_get_unwinder in struct target_ops. */
2019 extern const struct frame_unwind *target_get_unwinder (void);
2020
2021 /* See to_get_tailcall_unwinder in struct target_ops. */
2022 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2023
2024 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2025 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2026 if there's a mismatch, and -1 if an error is encountered while
2027 reading memory. Throws an error if the functionality is found not
2028 to be supported by the current target. */
2029 int target_verify_memory (const gdb_byte *data,
2030 CORE_ADDR memaddr, ULONGEST size);
2031
2032 /* Routines for maintenance of the target structures...
2033
2034 complete_target_initialization: Finalize a target_ops by filling in
2035 any fields needed by the target implementation.
2036
2037 add_target: Add a target to the list of all possible targets.
2038
2039 push_target: Make this target the top of the stack of currently used
2040 targets, within its particular stratum of the stack. Result
2041 is 0 if now atop the stack, nonzero if not on top (maybe
2042 should warn user).
2043
2044 unpush_target: Remove this from the stack of currently used targets,
2045 no matter where it is on the list. Returns 0 if no
2046 change, 1 if removed from stack. */
2047
2048 extern void add_target (struct target_ops *);
2049
2050 extern void add_target_with_completer (struct target_ops *t,
2051 completer_ftype *completer);
2052
2053 extern void complete_target_initialization (struct target_ops *t);
2054
2055 /* Adds a command ALIAS for target T and marks it deprecated. This is useful
2056 for maintaining backwards compatibility when renaming targets. */
2057
2058 extern void add_deprecated_target_alias (struct target_ops *t, char *alias);
2059
2060 extern void push_target (struct target_ops *);
2061
2062 extern int unpush_target (struct target_ops *);
2063
2064 extern void target_pre_inferior (int);
2065
2066 extern void target_preopen (int);
2067
2068 /* Does whatever cleanup is required to get rid of all pushed targets. */
2069 extern void pop_all_targets (void);
2070
2071 /* Like pop_all_targets, but pops only targets whose stratum is
2072 strictly above ABOVE_STRATUM. */
2073 extern void pop_all_targets_above (enum strata above_stratum);
2074
2075 extern int target_is_pushed (struct target_ops *t);
2076
2077 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2078 CORE_ADDR offset);
2079
2080 /* Struct target_section maps address ranges to file sections. It is
2081 mostly used with BFD files, but can be used without (e.g. for handling
2082 raw disks, or files not in formats handled by BFD). */
2083
2084 struct target_section
2085 {
2086 CORE_ADDR addr; /* Lowest address in section */
2087 CORE_ADDR endaddr; /* 1+highest address in section */
2088
2089 struct bfd_section *the_bfd_section;
2090
2091 /* The "owner" of the section.
2092 It can be any unique value. It is set by add_target_sections
2093 and used by remove_target_sections.
2094 For example, for executables it is a pointer to exec_bfd and
2095 for shlibs it is the so_list pointer. */
2096 void *owner;
2097 };
2098
2099 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2100
2101 struct target_section_table
2102 {
2103 struct target_section *sections;
2104 struct target_section *sections_end;
2105 };
2106
2107 /* Return the "section" containing the specified address. */
2108 struct target_section *target_section_by_addr (struct target_ops *target,
2109 CORE_ADDR addr);
2110
2111 /* Return the target section table this target (or the targets
2112 beneath) currently manipulate. */
2113
2114 extern struct target_section_table *target_get_section_table
2115 (struct target_ops *target);
2116
2117 /* From mem-break.c */
2118
2119 extern int memory_remove_breakpoint (struct target_ops *, struct gdbarch *,
2120 struct bp_target_info *);
2121
2122 extern int memory_insert_breakpoint (struct target_ops *, struct gdbarch *,
2123 struct bp_target_info *);
2124
2125 extern int default_memory_remove_breakpoint (struct gdbarch *,
2126 struct bp_target_info *);
2127
2128 extern int default_memory_insert_breakpoint (struct gdbarch *,
2129 struct bp_target_info *);
2130
2131
2132 /* From target.c */
2133
2134 extern void initialize_targets (void);
2135
2136 extern void noprocess (void) ATTRIBUTE_NORETURN;
2137
2138 extern void target_require_runnable (void);
2139
2140 extern void find_default_attach (struct target_ops *, char *, int);
2141
2142 extern void find_default_create_inferior (struct target_ops *,
2143 char *, char *, char **, int);
2144
2145 extern struct target_ops *find_target_beneath (struct target_ops *);
2146
2147 /* Find the target at STRATUM. If no target is at that stratum,
2148 return NULL. */
2149
2150 struct target_ops *find_target_at (enum strata stratum);
2151
2152 /* Read OS data object of type TYPE from the target, and return it in
2153 XML format. The result is NUL-terminated and returned as a string,
2154 allocated using xmalloc. If an error occurs or the transfer is
2155 unsupported, NULL is returned. Empty objects are returned as
2156 allocated but empty strings. */
2157
2158 extern char *target_get_osdata (const char *type);
2159
2160 \f
2161 /* Stuff that should be shared among the various remote targets. */
2162
2163 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2164 information (higher values, more information). */
2165 extern int remote_debug;
2166
2167 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2168 extern int baud_rate;
2169 /* Timeout limit for response from target. */
2170 extern int remote_timeout;
2171
2172 \f
2173
2174 /* Set the show memory breakpoints mode to show, and installs a cleanup
2175 to restore it back to the current value. */
2176 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
2177
2178 extern int may_write_registers;
2179 extern int may_write_memory;
2180 extern int may_insert_breakpoints;
2181 extern int may_insert_tracepoints;
2182 extern int may_insert_fast_tracepoints;
2183 extern int may_stop;
2184
2185 extern void update_target_permissions (void);
2186
2187 \f
2188 /* Imported from machine dependent code. */
2189
2190 /* Blank target vector entries are initialized to target_ignore. */
2191 void target_ignore (void);
2192
2193 /* See to_supports_btrace in struct target_ops. */
2194 #define target_supports_btrace() \
2195 (current_target.to_supports_btrace (&current_target))
2196
2197 /* See to_enable_btrace in struct target_ops. */
2198 extern struct btrace_target_info *target_enable_btrace (ptid_t ptid);
2199
2200 /* See to_disable_btrace in struct target_ops. */
2201 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2202
2203 /* See to_teardown_btrace in struct target_ops. */
2204 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2205
2206 /* See to_read_btrace in struct target_ops. */
2207 extern enum btrace_error target_read_btrace (VEC (btrace_block_s) **,
2208 struct btrace_target_info *,
2209 enum btrace_read_type);
2210
2211 /* See to_stop_recording in struct target_ops. */
2212 extern void target_stop_recording (void);
2213
2214 /* See to_info_record in struct target_ops. */
2215 extern void target_info_record (void);
2216
2217 /* See to_save_record in struct target_ops. */
2218 extern void target_save_record (const char *filename);
2219
2220 /* Query if the target supports deleting the execution log. */
2221 extern int target_supports_delete_record (void);
2222
2223 /* See to_delete_record in struct target_ops. */
2224 extern void target_delete_record (void);
2225
2226 /* See to_record_is_replaying in struct target_ops. */
2227 extern int target_record_is_replaying (void);
2228
2229 /* See to_goto_record_begin in struct target_ops. */
2230 extern void target_goto_record_begin (void);
2231
2232 /* See to_goto_record_end in struct target_ops. */
2233 extern void target_goto_record_end (void);
2234
2235 /* See to_goto_record in struct target_ops. */
2236 extern void target_goto_record (ULONGEST insn);
2237
2238 /* See to_insn_history. */
2239 extern void target_insn_history (int size, int flags);
2240
2241 /* See to_insn_history_from. */
2242 extern void target_insn_history_from (ULONGEST from, int size, int flags);
2243
2244 /* See to_insn_history_range. */
2245 extern void target_insn_history_range (ULONGEST begin, ULONGEST end, int flags);
2246
2247 /* See to_call_history. */
2248 extern void target_call_history (int size, int flags);
2249
2250 /* See to_call_history_from. */
2251 extern void target_call_history_from (ULONGEST begin, int size, int flags);
2252
2253 /* See to_call_history_range. */
2254 extern void target_call_history_range (ULONGEST begin, ULONGEST end, int flags);
2255
2256 /* See to_decr_pc_after_break. Start searching for the target at OPS. */
2257 extern CORE_ADDR forward_target_decr_pc_after_break (struct target_ops *ops,
2258 struct gdbarch *gdbarch);
2259
2260 /* See to_decr_pc_after_break. */
2261 extern CORE_ADDR target_decr_pc_after_break (struct gdbarch *gdbarch);
2262
2263 #endif /* !defined (TARGET_H) */