]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
2011-12-06 Pedro Alves <pedro@codesourcery.com>
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support. Written by John Gilmore.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #if !defined (TARGET_H)
25 #define TARGET_H
26
27 struct objfile;
28 struct ui_file;
29 struct mem_attrib;
30 struct target_ops;
31 struct bp_location;
32 struct bp_target_info;
33 struct regcache;
34 struct target_section_table;
35 struct trace_state_variable;
36 struct trace_status;
37 struct uploaded_tsv;
38 struct uploaded_tp;
39 struct static_tracepoint_marker;
40 struct traceframe_info;
41 struct expression;
42
43 /* This include file defines the interface between the main part
44 of the debugger, and the part which is target-specific, or
45 specific to the communications interface between us and the
46 target.
47
48 A TARGET is an interface between the debugger and a particular
49 kind of file or process. Targets can be STACKED in STRATA,
50 so that more than one target can potentially respond to a request.
51 In particular, memory accesses will walk down the stack of targets
52 until they find a target that is interested in handling that particular
53 address. STRATA are artificial boundaries on the stack, within
54 which particular kinds of targets live. Strata exist so that
55 people don't get confused by pushing e.g. a process target and then
56 a file target, and wondering why they can't see the current values
57 of variables any more (the file target is handling them and they
58 never get to the process target). So when you push a file target,
59 it goes into the file stratum, which is always below the process
60 stratum. */
61
62 #include "bfd.h"
63 #include "symtab.h"
64 #include "memattr.h"
65 #include "vec.h"
66 #include "gdb_signals.h"
67
68 enum strata
69 {
70 dummy_stratum, /* The lowest of the low */
71 file_stratum, /* Executable files, etc */
72 process_stratum, /* Executing processes or core dump files */
73 thread_stratum, /* Executing threads */
74 record_stratum, /* Support record debugging */
75 arch_stratum /* Architecture overrides */
76 };
77
78 enum thread_control_capabilities
79 {
80 tc_none = 0, /* Default: can't control thread execution. */
81 tc_schedlock = 1, /* Can lock the thread scheduler. */
82 };
83
84 /* Stuff for target_wait. */
85
86 /* Generally, what has the program done? */
87 enum target_waitkind
88 {
89 /* The program has exited. The exit status is in value.integer. */
90 TARGET_WAITKIND_EXITED,
91
92 /* The program has stopped with a signal. Which signal is in
93 value.sig. */
94 TARGET_WAITKIND_STOPPED,
95
96 /* The program has terminated with a signal. Which signal is in
97 value.sig. */
98 TARGET_WAITKIND_SIGNALLED,
99
100 /* The program is letting us know that it dynamically loaded something
101 (e.g. it called load(2) on AIX). */
102 TARGET_WAITKIND_LOADED,
103
104 /* The program has forked. A "related" process' PTID is in
105 value.related_pid. I.e., if the child forks, value.related_pid
106 is the parent's ID. */
107
108 TARGET_WAITKIND_FORKED,
109
110 /* The program has vforked. A "related" process's PTID is in
111 value.related_pid. */
112
113 TARGET_WAITKIND_VFORKED,
114
115 /* The program has exec'ed a new executable file. The new file's
116 pathname is pointed to by value.execd_pathname. */
117
118 TARGET_WAITKIND_EXECD,
119
120 /* The program had previously vforked, and now the child is done
121 with the shared memory region, because it exec'ed or exited.
122 Note that the event is reported to the vfork parent. This is
123 only used if GDB did not stay attached to the vfork child,
124 otherwise, a TARGET_WAITKIND_EXECD or
125 TARGET_WAITKIND_EXIT|SIGNALLED event associated with the child
126 has the same effect. */
127 TARGET_WAITKIND_VFORK_DONE,
128
129 /* The program has entered or returned from a system call. On
130 HP-UX, this is used in the hardware watchpoint implementation.
131 The syscall's unique integer ID number is in value.syscall_id. */
132
133 TARGET_WAITKIND_SYSCALL_ENTRY,
134 TARGET_WAITKIND_SYSCALL_RETURN,
135
136 /* Nothing happened, but we stopped anyway. This perhaps should be handled
137 within target_wait, but I'm not sure target_wait should be resuming the
138 inferior. */
139 TARGET_WAITKIND_SPURIOUS,
140
141 /* An event has occured, but we should wait again.
142 Remote_async_wait() returns this when there is an event
143 on the inferior, but the rest of the world is not interested in
144 it. The inferior has not stopped, but has just sent some output
145 to the console, for instance. In this case, we want to go back
146 to the event loop and wait there for another event from the
147 inferior, rather than being stuck in the remote_async_wait()
148 function. sThis way the event loop is responsive to other events,
149 like for instance the user typing. */
150 TARGET_WAITKIND_IGNORE,
151
152 /* The target has run out of history information,
153 and cannot run backward any further. */
154 TARGET_WAITKIND_NO_HISTORY,
155
156 /* There are no resumed children left in the program. */
157 TARGET_WAITKIND_NO_RESUMED
158 };
159
160 struct target_waitstatus
161 {
162 enum target_waitkind kind;
163
164 /* Forked child pid, execd pathname, exit status, signal number or
165 syscall number. */
166 union
167 {
168 int integer;
169 enum target_signal sig;
170 ptid_t related_pid;
171 char *execd_pathname;
172 int syscall_number;
173 }
174 value;
175 };
176
177 /* Options that can be passed to target_wait. */
178
179 /* Return immediately if there's no event already queued. If this
180 options is not requested, target_wait blocks waiting for an
181 event. */
182 #define TARGET_WNOHANG 1
183
184 /* The structure below stores information about a system call.
185 It is basically used in the "catch syscall" command, and in
186 every function that gives information about a system call.
187
188 It's also good to mention that its fields represent everything
189 that we currently know about a syscall in GDB. */
190 struct syscall
191 {
192 /* The syscall number. */
193 int number;
194
195 /* The syscall name. */
196 const char *name;
197 };
198
199 /* Return a pretty printed form of target_waitstatus.
200 Space for the result is malloc'd, caller must free. */
201 extern char *target_waitstatus_to_string (const struct target_waitstatus *);
202
203 /* Possible types of events that the inferior handler will have to
204 deal with. */
205 enum inferior_event_type
206 {
207 /* Process a normal inferior event which will result in target_wait
208 being called. */
209 INF_REG_EVENT,
210 /* We are called because a timer went off. */
211 INF_TIMER,
212 /* We are called to do stuff after the inferior stops. */
213 INF_EXEC_COMPLETE,
214 /* We are called to do some stuff after the inferior stops, but we
215 are expected to reenter the proceed() and
216 handle_inferior_event() functions. This is used only in case of
217 'step n' like commands. */
218 INF_EXEC_CONTINUE
219 };
220 \f
221 /* Target objects which can be transfered using target_read,
222 target_write, et cetera. */
223
224 enum target_object
225 {
226 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
227 TARGET_OBJECT_AVR,
228 /* SPU target specific transfer. See "spu-tdep.c". */
229 TARGET_OBJECT_SPU,
230 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
231 TARGET_OBJECT_MEMORY,
232 /* Memory, avoiding GDB's data cache and trusting the executable.
233 Target implementations of to_xfer_partial never need to handle
234 this object, and most callers should not use it. */
235 TARGET_OBJECT_RAW_MEMORY,
236 /* Memory known to be part of the target's stack. This is cached even
237 if it is not in a region marked as such, since it is known to be
238 "normal" RAM. */
239 TARGET_OBJECT_STACK_MEMORY,
240 /* Kernel Unwind Table. See "ia64-tdep.c". */
241 TARGET_OBJECT_UNWIND_TABLE,
242 /* Transfer auxilliary vector. */
243 TARGET_OBJECT_AUXV,
244 /* StackGhost cookie. See "sparc-tdep.c". */
245 TARGET_OBJECT_WCOOKIE,
246 /* Target memory map in XML format. */
247 TARGET_OBJECT_MEMORY_MAP,
248 /* Flash memory. This object can be used to write contents to
249 a previously erased flash memory. Using it without erasing
250 flash can have unexpected results. Addresses are physical
251 address on target, and not relative to flash start. */
252 TARGET_OBJECT_FLASH,
253 /* Available target-specific features, e.g. registers and coprocessors.
254 See "target-descriptions.c". ANNEX should never be empty. */
255 TARGET_OBJECT_AVAILABLE_FEATURES,
256 /* Currently loaded libraries, in XML format. */
257 TARGET_OBJECT_LIBRARIES,
258 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
259 TARGET_OBJECT_LIBRARIES_SVR4,
260 /* Get OS specific data. The ANNEX specifies the type (running
261 processes, etc.). The data being transfered is expected to follow
262 the DTD specified in features/osdata.dtd. */
263 TARGET_OBJECT_OSDATA,
264 /* Extra signal info. Usually the contents of `siginfo_t' on unix
265 platforms. */
266 TARGET_OBJECT_SIGNAL_INFO,
267 /* The list of threads that are being debugged. */
268 TARGET_OBJECT_THREADS,
269 /* Collected static trace data. */
270 TARGET_OBJECT_STATIC_TRACE_DATA,
271 /* The HP-UX registers (those that can be obtained or modified by using
272 the TT_LWP_RUREGS/TT_LWP_WUREGS ttrace requests). */
273 TARGET_OBJECT_HPUX_UREGS,
274 /* The HP-UX shared library linkage pointer. ANNEX should be a string
275 image of the code address whose linkage pointer we are looking for.
276
277 The size of the data transfered is always 8 bytes (the size of an
278 address on ia64). */
279 TARGET_OBJECT_HPUX_SOLIB_GOT,
280 /* Traceframe info, in XML format. */
281 TARGET_OBJECT_TRACEFRAME_INFO,
282 /* Load maps for FDPIC systems. */
283 TARGET_OBJECT_FDPIC,
284 /* Darwin dynamic linker info data. */
285 TARGET_OBJECT_DARWIN_DYLD_INFO
286 /* Possible future objects: TARGET_OBJECT_FILE, ... */
287 };
288
289 /* Enumeration of the kinds of traceframe searches that a target may
290 be able to perform. */
291
292 enum trace_find_type
293 {
294 tfind_number,
295 tfind_pc,
296 tfind_tp,
297 tfind_range,
298 tfind_outside,
299 };
300
301 typedef struct static_tracepoint_marker *static_tracepoint_marker_p;
302 DEF_VEC_P(static_tracepoint_marker_p);
303
304 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
305 OBJECT. The OFFSET, for a seekable object, specifies the
306 starting point. The ANNEX can be used to provide additional
307 data-specific information to the target.
308
309 Return the number of bytes actually transfered, or -1 if the
310 transfer is not supported or otherwise fails. Return of a positive
311 value less than LEN indicates that no further transfer is possible.
312 Unlike the raw to_xfer_partial interface, callers of these
313 functions do not need to retry partial transfers. */
314
315 extern LONGEST target_read (struct target_ops *ops,
316 enum target_object object,
317 const char *annex, gdb_byte *buf,
318 ULONGEST offset, LONGEST len);
319
320 struct memory_read_result
321 {
322 /* First address that was read. */
323 ULONGEST begin;
324 /* Past-the-end address. */
325 ULONGEST end;
326 /* The data. */
327 gdb_byte *data;
328 };
329 typedef struct memory_read_result memory_read_result_s;
330 DEF_VEC_O(memory_read_result_s);
331
332 extern void free_memory_read_result_vector (void *);
333
334 extern VEC(memory_read_result_s)* read_memory_robust (struct target_ops *ops,
335 ULONGEST offset,
336 LONGEST len);
337
338 extern LONGEST target_write (struct target_ops *ops,
339 enum target_object object,
340 const char *annex, const gdb_byte *buf,
341 ULONGEST offset, LONGEST len);
342
343 /* Similar to target_write, except that it also calls PROGRESS with
344 the number of bytes written and the opaque BATON after every
345 successful partial write (and before the first write). This is
346 useful for progress reporting and user interaction while writing
347 data. To abort the transfer, the progress callback can throw an
348 exception. */
349
350 LONGEST target_write_with_progress (struct target_ops *ops,
351 enum target_object object,
352 const char *annex, const gdb_byte *buf,
353 ULONGEST offset, LONGEST len,
354 void (*progress) (ULONGEST, void *),
355 void *baton);
356
357 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will
358 be read using OPS. The return value will be -1 if the transfer
359 fails or is not supported; 0 if the object is empty; or the length
360 of the object otherwise. If a positive value is returned, a
361 sufficiently large buffer will be allocated using xmalloc and
362 returned in *BUF_P containing the contents of the object.
363
364 This method should be used for objects sufficiently small to store
365 in a single xmalloc'd buffer, when no fixed bound on the object's
366 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
367 through this function. */
368
369 extern LONGEST target_read_alloc (struct target_ops *ops,
370 enum target_object object,
371 const char *annex, gdb_byte **buf_p);
372
373 /* Read OBJECT/ANNEX using OPS. The result is NUL-terminated and
374 returned as a string, allocated using xmalloc. If an error occurs
375 or the transfer is unsupported, NULL is returned. Empty objects
376 are returned as allocated but empty strings. A warning is issued
377 if the result contains any embedded NUL bytes. */
378
379 extern char *target_read_stralloc (struct target_ops *ops,
380 enum target_object object,
381 const char *annex);
382
383 /* Wrappers to target read/write that perform memory transfers. They
384 throw an error if the memory transfer fails.
385
386 NOTE: cagney/2003-10-23: The naming schema is lifted from
387 "frame.h". The parameter order is lifted from get_frame_memory,
388 which in turn lifted it from read_memory. */
389
390 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
391 gdb_byte *buf, LONGEST len);
392 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
393 CORE_ADDR addr, int len,
394 enum bfd_endian byte_order);
395 \f
396 struct thread_info; /* fwd decl for parameter list below: */
397
398 struct target_ops
399 {
400 struct target_ops *beneath; /* To the target under this one. */
401 char *to_shortname; /* Name this target type */
402 char *to_longname; /* Name for printing */
403 char *to_doc; /* Documentation. Does not include trailing
404 newline, and starts with a one-line descrip-
405 tion (probably similar to to_longname). */
406 /* Per-target scratch pad. */
407 void *to_data;
408 /* The open routine takes the rest of the parameters from the
409 command, and (if successful) pushes a new target onto the
410 stack. Targets should supply this routine, if only to provide
411 an error message. */
412 void (*to_open) (char *, int);
413 /* Old targets with a static target vector provide "to_close".
414 New re-entrant targets provide "to_xclose" and that is expected
415 to xfree everything (including the "struct target_ops"). */
416 void (*to_xclose) (struct target_ops *targ, int quitting);
417 void (*to_close) (int);
418 void (*to_attach) (struct target_ops *ops, char *, int);
419 void (*to_post_attach) (int);
420 void (*to_detach) (struct target_ops *ops, char *, int);
421 void (*to_disconnect) (struct target_ops *, char *, int);
422 void (*to_resume) (struct target_ops *, ptid_t, int, enum target_signal);
423 ptid_t (*to_wait) (struct target_ops *,
424 ptid_t, struct target_waitstatus *, int);
425 void (*to_fetch_registers) (struct target_ops *, struct regcache *, int);
426 void (*to_store_registers) (struct target_ops *, struct regcache *, int);
427 void (*to_prepare_to_store) (struct regcache *);
428
429 /* Transfer LEN bytes of memory between GDB address MYADDR and
430 target address MEMADDR. If WRITE, transfer them to the target, else
431 transfer them from the target. TARGET is the target from which we
432 get this function.
433
434 Return value, N, is one of the following:
435
436 0 means that we can't handle this. If errno has been set, it is the
437 error which prevented us from doing it (FIXME: What about bfd_error?).
438
439 positive (call it N) means that we have transferred N bytes
440 starting at MEMADDR. We might be able to handle more bytes
441 beyond this length, but no promises.
442
443 negative (call its absolute value N) means that we cannot
444 transfer right at MEMADDR, but we could transfer at least
445 something at MEMADDR + N.
446
447 NOTE: cagney/2004-10-01: This has been entirely superseeded by
448 to_xfer_partial and inferior inheritance. */
449
450 int (*deprecated_xfer_memory) (CORE_ADDR memaddr, gdb_byte *myaddr,
451 int len, int write,
452 struct mem_attrib *attrib,
453 struct target_ops *target);
454
455 void (*to_files_info) (struct target_ops *);
456 int (*to_insert_breakpoint) (struct gdbarch *, struct bp_target_info *);
457 int (*to_remove_breakpoint) (struct gdbarch *, struct bp_target_info *);
458 int (*to_can_use_hw_breakpoint) (int, int, int);
459 int (*to_ranged_break_num_registers) (struct target_ops *);
460 int (*to_insert_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
461 int (*to_remove_hw_breakpoint) (struct gdbarch *, struct bp_target_info *);
462
463 /* Documentation of what the two routines below are expected to do is
464 provided with the corresponding target_* macros. */
465 int (*to_remove_watchpoint) (CORE_ADDR, int, int, struct expression *);
466 int (*to_insert_watchpoint) (CORE_ADDR, int, int, struct expression *);
467
468 int (*to_insert_mask_watchpoint) (struct target_ops *,
469 CORE_ADDR, CORE_ADDR, int);
470 int (*to_remove_mask_watchpoint) (struct target_ops *,
471 CORE_ADDR, CORE_ADDR, int);
472 int (*to_stopped_by_watchpoint) (void);
473 int to_have_steppable_watchpoint;
474 int to_have_continuable_watchpoint;
475 int (*to_stopped_data_address) (struct target_ops *, CORE_ADDR *);
476 int (*to_watchpoint_addr_within_range) (struct target_ops *,
477 CORE_ADDR, CORE_ADDR, int);
478
479 /* Documentation of this routine is provided with the corresponding
480 target_* macro. */
481 int (*to_region_ok_for_hw_watchpoint) (CORE_ADDR, int);
482
483 int (*to_can_accel_watchpoint_condition) (CORE_ADDR, int, int,
484 struct expression *);
485 int (*to_masked_watch_num_registers) (struct target_ops *,
486 CORE_ADDR, CORE_ADDR);
487 void (*to_terminal_init) (void);
488 void (*to_terminal_inferior) (void);
489 void (*to_terminal_ours_for_output) (void);
490 void (*to_terminal_ours) (void);
491 void (*to_terminal_save_ours) (void);
492 void (*to_terminal_info) (char *, int);
493 void (*to_kill) (struct target_ops *);
494 void (*to_load) (char *, int);
495 void (*to_create_inferior) (struct target_ops *,
496 char *, char *, char **, int);
497 void (*to_post_startup_inferior) (ptid_t);
498 int (*to_insert_fork_catchpoint) (int);
499 int (*to_remove_fork_catchpoint) (int);
500 int (*to_insert_vfork_catchpoint) (int);
501 int (*to_remove_vfork_catchpoint) (int);
502 int (*to_follow_fork) (struct target_ops *, int);
503 int (*to_insert_exec_catchpoint) (int);
504 int (*to_remove_exec_catchpoint) (int);
505 int (*to_set_syscall_catchpoint) (int, int, int, int, int *);
506 int (*to_has_exited) (int, int, int *);
507 void (*to_mourn_inferior) (struct target_ops *);
508 int (*to_can_run) (void);
509
510 /* Documentation of this routine is provided with the corresponding
511 target_* macro. */
512 void (*to_pass_signals) (int, unsigned char *);
513
514 int (*to_thread_alive) (struct target_ops *, ptid_t ptid);
515 void (*to_find_new_threads) (struct target_ops *);
516 char *(*to_pid_to_str) (struct target_ops *, ptid_t);
517 char *(*to_extra_thread_info) (struct thread_info *);
518 char *(*to_thread_name) (struct thread_info *);
519 void (*to_stop) (ptid_t);
520 void (*to_rcmd) (char *command, struct ui_file *output);
521 char *(*to_pid_to_exec_file) (int pid);
522 void (*to_log_command) (const char *);
523 struct target_section_table *(*to_get_section_table) (struct target_ops *);
524 enum strata to_stratum;
525 int (*to_has_all_memory) (struct target_ops *);
526 int (*to_has_memory) (struct target_ops *);
527 int (*to_has_stack) (struct target_ops *);
528 int (*to_has_registers) (struct target_ops *);
529 int (*to_has_execution) (struct target_ops *, ptid_t);
530 int to_has_thread_control; /* control thread execution */
531 int to_attach_no_wait;
532 /* ASYNC target controls */
533 int (*to_can_async_p) (void);
534 int (*to_is_async_p) (void);
535 void (*to_async) (void (*) (enum inferior_event_type, void *), void *);
536 int (*to_supports_non_stop) (void);
537 /* find_memory_regions support method for gcore */
538 int (*to_find_memory_regions) (find_memory_region_ftype func, void *data);
539 /* make_corefile_notes support method for gcore */
540 char * (*to_make_corefile_notes) (bfd *, int *);
541 /* get_bookmark support method for bookmarks */
542 gdb_byte * (*to_get_bookmark) (char *, int);
543 /* goto_bookmark support method for bookmarks */
544 void (*to_goto_bookmark) (gdb_byte *, int);
545 /* Return the thread-local address at OFFSET in the
546 thread-local storage for the thread PTID and the shared library
547 or executable file given by OBJFILE. If that block of
548 thread-local storage hasn't been allocated yet, this function
549 may return an error. */
550 CORE_ADDR (*to_get_thread_local_address) (struct target_ops *ops,
551 ptid_t ptid,
552 CORE_ADDR load_module_addr,
553 CORE_ADDR offset);
554
555 /* Request that OPS transfer up to LEN 8-bit bytes of the target's
556 OBJECT. The OFFSET, for a seekable object, specifies the
557 starting point. The ANNEX can be used to provide additional
558 data-specific information to the target.
559
560 Return the number of bytes actually transfered, zero when no
561 further transfer is possible, and -1 when the transfer is not
562 supported. Return of a positive value smaller than LEN does
563 not indicate the end of the object, only the end of the
564 transfer; higher level code should continue transferring if
565 desired. This is handled in target.c.
566
567 The interface does not support a "retry" mechanism. Instead it
568 assumes that at least one byte will be transfered on each
569 successful call.
570
571 NOTE: cagney/2003-10-17: The current interface can lead to
572 fragmented transfers. Lower target levels should not implement
573 hacks, such as enlarging the transfer, in an attempt to
574 compensate for this. Instead, the target stack should be
575 extended so that it implements supply/collect methods and a
576 look-aside object cache. With that available, the lowest
577 target can safely and freely "push" data up the stack.
578
579 See target_read and target_write for more information. One,
580 and only one, of readbuf or writebuf must be non-NULL. */
581
582 LONGEST (*to_xfer_partial) (struct target_ops *ops,
583 enum target_object object, const char *annex,
584 gdb_byte *readbuf, const gdb_byte *writebuf,
585 ULONGEST offset, LONGEST len);
586
587 /* Returns the memory map for the target. A return value of NULL
588 means that no memory map is available. If a memory address
589 does not fall within any returned regions, it's assumed to be
590 RAM. The returned memory regions should not overlap.
591
592 The order of regions does not matter; target_memory_map will
593 sort regions by starting address. For that reason, this
594 function should not be called directly except via
595 target_memory_map.
596
597 This method should not cache data; if the memory map could
598 change unexpectedly, it should be invalidated, and higher
599 layers will re-fetch it. */
600 VEC(mem_region_s) *(*to_memory_map) (struct target_ops *);
601
602 /* Erases the region of flash memory starting at ADDRESS, of
603 length LENGTH.
604
605 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
606 on flash block boundaries, as reported by 'to_memory_map'. */
607 void (*to_flash_erase) (struct target_ops *,
608 ULONGEST address, LONGEST length);
609
610 /* Finishes a flash memory write sequence. After this operation
611 all flash memory should be available for writing and the result
612 of reading from areas written by 'to_flash_write' should be
613 equal to what was written. */
614 void (*to_flash_done) (struct target_ops *);
615
616 /* Describe the architecture-specific features of this target.
617 Returns the description found, or NULL if no description
618 was available. */
619 const struct target_desc *(*to_read_description) (struct target_ops *ops);
620
621 /* Build the PTID of the thread on which a given task is running,
622 based on LWP and THREAD. These values are extracted from the
623 task Private_Data section of the Ada Task Control Block, and
624 their interpretation depends on the target. */
625 ptid_t (*to_get_ada_task_ptid) (long lwp, long thread);
626
627 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
628 Return 0 if *READPTR is already at the end of the buffer.
629 Return -1 if there is insufficient buffer for a whole entry.
630 Return 1 if an entry was read into *TYPEP and *VALP. */
631 int (*to_auxv_parse) (struct target_ops *ops, gdb_byte **readptr,
632 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp);
633
634 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
635 sequence of bytes in PATTERN with length PATTERN_LEN.
636
637 The result is 1 if found, 0 if not found, and -1 if there was an error
638 requiring halting of the search (e.g. memory read error).
639 If the pattern is found the address is recorded in FOUND_ADDRP. */
640 int (*to_search_memory) (struct target_ops *ops,
641 CORE_ADDR start_addr, ULONGEST search_space_len,
642 const gdb_byte *pattern, ULONGEST pattern_len,
643 CORE_ADDR *found_addrp);
644
645 /* Can target execute in reverse? */
646 int (*to_can_execute_reverse) (void);
647
648 /* The direction the target is currently executing. Must be
649 implemented on targets that support reverse execution and async
650 mode. The default simply returns forward execution. */
651 enum exec_direction_kind (*to_execution_direction) (void);
652
653 /* Does this target support debugging multiple processes
654 simultaneously? */
655 int (*to_supports_multi_process) (void);
656
657 /* Does this target support enabling and disabling tracepoints while a trace
658 experiment is running? */
659 int (*to_supports_enable_disable_tracepoint) (void);
660
661 /* Does this target support disabling address space randomization? */
662 int (*to_supports_disable_randomization) (void);
663
664 /* Does this target support the tracenz bytecode for string collection? */
665 int (*to_supports_string_tracing) (void);
666
667 /* Determine current architecture of thread PTID.
668
669 The target is supposed to determine the architecture of the code where
670 the target is currently stopped at (on Cell, if a target is in spu_run,
671 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
672 This is architecture used to perform decr_pc_after_break adjustment,
673 and also determines the frame architecture of the innermost frame.
674 ptrace operations need to operate according to target_gdbarch.
675
676 The default implementation always returns target_gdbarch. */
677 struct gdbarch *(*to_thread_architecture) (struct target_ops *, ptid_t);
678
679 /* Determine current address space of thread PTID.
680
681 The default implementation always returns the inferior's
682 address space. */
683 struct address_space *(*to_thread_address_space) (struct target_ops *,
684 ptid_t);
685
686 /* Tracepoint-related operations. */
687
688 /* Prepare the target for a tracing run. */
689 void (*to_trace_init) (void);
690
691 /* Send full details of a tracepoint location to the target. */
692 void (*to_download_tracepoint) (struct bp_location *location);
693
694 /* Is the target able to download tracepoint locations in current
695 state? */
696 int (*to_can_download_tracepoint) (void);
697
698 /* Send full details of a trace state variable to the target. */
699 void (*to_download_trace_state_variable) (struct trace_state_variable *tsv);
700
701 /* Enable a tracepoint on the target. */
702 void (*to_enable_tracepoint) (struct bp_location *location);
703
704 /* Disable a tracepoint on the target. */
705 void (*to_disable_tracepoint) (struct bp_location *location);
706
707 /* Inform the target info of memory regions that are readonly
708 (such as text sections), and so it should return data from
709 those rather than look in the trace buffer. */
710 void (*to_trace_set_readonly_regions) (void);
711
712 /* Start a trace run. */
713 void (*to_trace_start) (void);
714
715 /* Get the current status of a tracing run. */
716 int (*to_get_trace_status) (struct trace_status *ts);
717
718 void (*to_get_tracepoint_status) (struct breakpoint *tp,
719 struct uploaded_tp *utp);
720
721 /* Stop a trace run. */
722 void (*to_trace_stop) (void);
723
724 /* Ask the target to find a trace frame of the given type TYPE,
725 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
726 number of the trace frame, and also the tracepoint number at
727 TPP. If no trace frame matches, return -1. May throw if the
728 operation fails. */
729 int (*to_trace_find) (enum trace_find_type type, int num,
730 ULONGEST addr1, ULONGEST addr2, int *tpp);
731
732 /* Get the value of the trace state variable number TSV, returning
733 1 if the value is known and writing the value itself into the
734 location pointed to by VAL, else returning 0. */
735 int (*to_get_trace_state_variable_value) (int tsv, LONGEST *val);
736
737 int (*to_save_trace_data) (const char *filename);
738
739 int (*to_upload_tracepoints) (struct uploaded_tp **utpp);
740
741 int (*to_upload_trace_state_variables) (struct uploaded_tsv **utsvp);
742
743 LONGEST (*to_get_raw_trace_data) (gdb_byte *buf,
744 ULONGEST offset, LONGEST len);
745
746 /* Get the minimum length of instruction on which a fast tracepoint
747 may be set on the target. If this operation is unsupported,
748 return -1. If for some reason the minimum length cannot be
749 determined, return 0. */
750 int (*to_get_min_fast_tracepoint_insn_len) (void);
751
752 /* Set the target's tracing behavior in response to unexpected
753 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
754 void (*to_set_disconnected_tracing) (int val);
755 void (*to_set_circular_trace_buffer) (int val);
756
757 /* Add/change textual notes about the trace run, returning 1 if
758 successful, 0 otherwise. */
759 int (*to_set_trace_notes) (char *user, char *notes, char* stopnotes);
760
761 /* Return the processor core that thread PTID was last seen on.
762 This information is updated only when:
763 - update_thread_list is called
764 - thread stops
765 If the core cannot be determined -- either for the specified
766 thread, or right now, or in this debug session, or for this
767 target -- return -1. */
768 int (*to_core_of_thread) (struct target_ops *, ptid_t ptid);
769
770 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
771 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
772 a match, 0 if there's a mismatch, and -1 if an error is
773 encountered while reading memory. */
774 int (*to_verify_memory) (struct target_ops *, const gdb_byte *data,
775 CORE_ADDR memaddr, ULONGEST size);
776
777 /* Return the address of the start of the Thread Information Block
778 a Windows OS specific feature. */
779 int (*to_get_tib_address) (ptid_t ptid, CORE_ADDR *addr);
780
781 /* Send the new settings of write permission variables. */
782 void (*to_set_permissions) (void);
783
784 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
785 with its details. Return 1 on success, 0 on failure. */
786 int (*to_static_tracepoint_marker_at) (CORE_ADDR,
787 struct static_tracepoint_marker *marker);
788
789 /* Return a vector of all tracepoints markers string id ID, or all
790 markers if ID is NULL. */
791 VEC(static_tracepoint_marker_p) *(*to_static_tracepoint_markers_by_strid)
792 (const char *id);
793
794 /* Return a traceframe info object describing the current
795 traceframe's contents. This method should not cache data;
796 higher layers take care of caching, invalidating, and
797 re-fetching when necessary. */
798 struct traceframe_info *(*to_traceframe_info) (void);
799
800 int to_magic;
801 /* Need sub-structure for target machine related rather than comm related?
802 */
803 };
804
805 /* Magic number for checking ops size. If a struct doesn't end with this
806 number, somebody changed the declaration but didn't change all the
807 places that initialize one. */
808
809 #define OPS_MAGIC 3840
810
811 /* The ops structure for our "current" target process. This should
812 never be NULL. If there is no target, it points to the dummy_target. */
813
814 extern struct target_ops current_target;
815
816 /* Define easy words for doing these operations on our current target. */
817
818 #define target_shortname (current_target.to_shortname)
819 #define target_longname (current_target.to_longname)
820
821 /* Does whatever cleanup is required for a target that we are no
822 longer going to be calling. QUITTING indicates that GDB is exiting
823 and should not get hung on an error (otherwise it is important to
824 perform clean termination, even if it takes a while). This routine
825 is automatically always called when popping the target off the
826 target stack (to_beneath is undefined). Closing file descriptors
827 and freeing all memory allocated memory are typical things it
828 should do. */
829
830 void target_close (struct target_ops *targ, int quitting);
831
832 /* Attaches to a process on the target side. Arguments are as passed
833 to the `attach' command by the user. This routine can be called
834 when the target is not on the target-stack, if the target_can_run
835 routine returns 1; in that case, it must push itself onto the stack.
836 Upon exit, the target should be ready for normal operations, and
837 should be ready to deliver the status of the process immediately
838 (without waiting) to an upcoming target_wait call. */
839
840 void target_attach (char *, int);
841
842 /* Some targets don't generate traps when attaching to the inferior,
843 or their target_attach implementation takes care of the waiting.
844 These targets must set to_attach_no_wait. */
845
846 #define target_attach_no_wait \
847 (current_target.to_attach_no_wait)
848
849 /* The target_attach operation places a process under debugger control,
850 and stops the process.
851
852 This operation provides a target-specific hook that allows the
853 necessary bookkeeping to be performed after an attach completes. */
854 #define target_post_attach(pid) \
855 (*current_target.to_post_attach) (pid)
856
857 /* Takes a program previously attached to and detaches it.
858 The program may resume execution (some targets do, some don't) and will
859 no longer stop on signals, etc. We better not have left any breakpoints
860 in the program or it'll die when it hits one. ARGS is arguments
861 typed by the user (e.g. a signal to send the process). FROM_TTY
862 says whether to be verbose or not. */
863
864 extern void target_detach (char *, int);
865
866 /* Disconnect from the current target without resuming it (leaving it
867 waiting for a debugger). */
868
869 extern void target_disconnect (char *, int);
870
871 /* Resume execution of the target process PTID. STEP says whether to
872 single-step or to run free; SIGGNAL is the signal to be given to
873 the target, or TARGET_SIGNAL_0 for no signal. The caller may not
874 pass TARGET_SIGNAL_DEFAULT. */
875
876 extern void target_resume (ptid_t ptid, int step, enum target_signal signal);
877
878 /* Wait for process pid to do something. PTID = -1 to wait for any
879 pid to do something. Return pid of child, or -1 in case of error;
880 store status through argument pointer STATUS. Note that it is
881 _NOT_ OK to throw_exception() out of target_wait() without popping
882 the debugging target from the stack; GDB isn't prepared to get back
883 to the prompt with a debugging target but without the frame cache,
884 stop_pc, etc., set up. OPTIONS is a bitwise OR of TARGET_W*
885 options. */
886
887 extern ptid_t target_wait (ptid_t ptid, struct target_waitstatus *status,
888 int options);
889
890 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
891
892 extern void target_fetch_registers (struct regcache *regcache, int regno);
893
894 /* Store at least register REGNO, or all regs if REGNO == -1.
895 It can store as many registers as it wants to, so target_prepare_to_store
896 must have been previously called. Calls error() if there are problems. */
897
898 extern void target_store_registers (struct regcache *regcache, int regs);
899
900 /* Get ready to modify the registers array. On machines which store
901 individual registers, this doesn't need to do anything. On machines
902 which store all the registers in one fell swoop, this makes sure
903 that REGISTERS contains all the registers from the program being
904 debugged. */
905
906 #define target_prepare_to_store(regcache) \
907 (*current_target.to_prepare_to_store) (regcache)
908
909 /* Determine current address space of thread PTID. */
910
911 struct address_space *target_thread_address_space (ptid_t);
912
913 /* Returns true if this target can debug multiple processes
914 simultaneously. */
915
916 #define target_supports_multi_process() \
917 (*current_target.to_supports_multi_process) ()
918
919 /* Returns true if this target can disable address space randomization. */
920
921 int target_supports_disable_randomization (void);
922
923 /* Returns true if this target can enable and disable tracepoints
924 while a trace experiment is running. */
925
926 #define target_supports_enable_disable_tracepoint() \
927 (*current_target.to_supports_enable_disable_tracepoint) ()
928
929 #define target_supports_string_tracing() \
930 (*current_target.to_supports_string_tracing) ()
931
932 /* Invalidate all target dcaches. */
933 extern void target_dcache_invalidate (void);
934
935 extern int target_read_string (CORE_ADDR, char **, int, int *);
936
937 extern int target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
938
939 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, int len);
940
941 extern int target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
942 int len);
943
944 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
945 int len);
946
947 /* Fetches the target's memory map. If one is found it is sorted
948 and returned, after some consistency checking. Otherwise, NULL
949 is returned. */
950 VEC(mem_region_s) *target_memory_map (void);
951
952 /* Erase the specified flash region. */
953 void target_flash_erase (ULONGEST address, LONGEST length);
954
955 /* Finish a sequence of flash operations. */
956 void target_flash_done (void);
957
958 /* Describes a request for a memory write operation. */
959 struct memory_write_request
960 {
961 /* Begining address that must be written. */
962 ULONGEST begin;
963 /* Past-the-end address. */
964 ULONGEST end;
965 /* The data to write. */
966 gdb_byte *data;
967 /* A callback baton for progress reporting for this request. */
968 void *baton;
969 };
970 typedef struct memory_write_request memory_write_request_s;
971 DEF_VEC_O(memory_write_request_s);
972
973 /* Enumeration specifying different flash preservation behaviour. */
974 enum flash_preserve_mode
975 {
976 flash_preserve,
977 flash_discard
978 };
979
980 /* Write several memory blocks at once. This version can be more
981 efficient than making several calls to target_write_memory, in
982 particular because it can optimize accesses to flash memory.
983
984 Moreover, this is currently the only memory access function in gdb
985 that supports writing to flash memory, and it should be used for
986 all cases where access to flash memory is desirable.
987
988 REQUESTS is the vector (see vec.h) of memory_write_request.
989 PRESERVE_FLASH_P indicates what to do with blocks which must be
990 erased, but not completely rewritten.
991 PROGRESS_CB is a function that will be periodically called to provide
992 feedback to user. It will be called with the baton corresponding
993 to the request currently being written. It may also be called
994 with a NULL baton, when preserved flash sectors are being rewritten.
995
996 The function returns 0 on success, and error otherwise. */
997 int target_write_memory_blocks (VEC(memory_write_request_s) *requests,
998 enum flash_preserve_mode preserve_flash_p,
999 void (*progress_cb) (ULONGEST, void *));
1000
1001 /* From infrun.c. */
1002
1003 extern int inferior_has_forked (ptid_t pid, ptid_t *child_pid);
1004
1005 extern int inferior_has_vforked (ptid_t pid, ptid_t *child_pid);
1006
1007 extern int inferior_has_execd (ptid_t pid, char **execd_pathname);
1008
1009 extern int inferior_has_called_syscall (ptid_t pid, int *syscall_number);
1010
1011 /* Print a line about the current target. */
1012
1013 #define target_files_info() \
1014 (*current_target.to_files_info) (&current_target)
1015
1016 /* Insert a breakpoint at address BP_TGT->placed_address in the target
1017 machine. Result is 0 for success, or an errno value. */
1018
1019 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1020 struct bp_target_info *bp_tgt);
1021
1022 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1023 machine. Result is 0 for success, or an errno value. */
1024
1025 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1026 struct bp_target_info *bp_tgt);
1027
1028 /* Initialize the terminal settings we record for the inferior,
1029 before we actually run the inferior. */
1030
1031 #define target_terminal_init() \
1032 (*current_target.to_terminal_init) ()
1033
1034 /* Put the inferior's terminal settings into effect.
1035 This is preparation for starting or resuming the inferior. */
1036
1037 extern void target_terminal_inferior (void);
1038
1039 /* Put some of our terminal settings into effect,
1040 enough to get proper results from our output,
1041 but do not change into or out of RAW mode
1042 so that no input is discarded.
1043
1044 After doing this, either terminal_ours or terminal_inferior
1045 should be called to get back to a normal state of affairs. */
1046
1047 #define target_terminal_ours_for_output() \
1048 (*current_target.to_terminal_ours_for_output) ()
1049
1050 /* Put our terminal settings into effect.
1051 First record the inferior's terminal settings
1052 so they can be restored properly later. */
1053
1054 #define target_terminal_ours() \
1055 (*current_target.to_terminal_ours) ()
1056
1057 /* Save our terminal settings.
1058 This is called from TUI after entering or leaving the curses
1059 mode. Since curses modifies our terminal this call is here
1060 to take this change into account. */
1061
1062 #define target_terminal_save_ours() \
1063 (*current_target.to_terminal_save_ours) ()
1064
1065 /* Print useful information about our terminal status, if such a thing
1066 exists. */
1067
1068 #define target_terminal_info(arg, from_tty) \
1069 (*current_target.to_terminal_info) (arg, from_tty)
1070
1071 /* Kill the inferior process. Make it go away. */
1072
1073 extern void target_kill (void);
1074
1075 /* Load an executable file into the target process. This is expected
1076 to not only bring new code into the target process, but also to
1077 update GDB's symbol tables to match.
1078
1079 ARG contains command-line arguments, to be broken down with
1080 buildargv (). The first non-switch argument is the filename to
1081 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1082 0)), which is an offset to apply to the load addresses of FILE's
1083 sections. The target may define switches, or other non-switch
1084 arguments, as it pleases. */
1085
1086 extern void target_load (char *arg, int from_tty);
1087
1088 /* Start an inferior process and set inferior_ptid to its pid.
1089 EXEC_FILE is the file to run.
1090 ALLARGS is a string containing the arguments to the program.
1091 ENV is the environment vector to pass. Errors reported with error().
1092 On VxWorks and various standalone systems, we ignore exec_file. */
1093
1094 void target_create_inferior (char *exec_file, char *args,
1095 char **env, int from_tty);
1096
1097 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1098 notification of inferior events such as fork and vork immediately
1099 after the inferior is created. (This because of how gdb gets an
1100 inferior created via invoking a shell to do it. In such a scenario,
1101 if the shell init file has commands in it, the shell will fork and
1102 exec for each of those commands, and we will see each such fork
1103 event. Very bad.)
1104
1105 Such targets will supply an appropriate definition for this function. */
1106
1107 #define target_post_startup_inferior(ptid) \
1108 (*current_target.to_post_startup_inferior) (ptid)
1109
1110 /* On some targets, we can catch an inferior fork or vfork event when
1111 it occurs. These functions insert/remove an already-created
1112 catchpoint for such events. They return 0 for success, 1 if the
1113 catchpoint type is not supported and -1 for failure. */
1114
1115 #define target_insert_fork_catchpoint(pid) \
1116 (*current_target.to_insert_fork_catchpoint) (pid)
1117
1118 #define target_remove_fork_catchpoint(pid) \
1119 (*current_target.to_remove_fork_catchpoint) (pid)
1120
1121 #define target_insert_vfork_catchpoint(pid) \
1122 (*current_target.to_insert_vfork_catchpoint) (pid)
1123
1124 #define target_remove_vfork_catchpoint(pid) \
1125 (*current_target.to_remove_vfork_catchpoint) (pid)
1126
1127 /* If the inferior forks or vforks, this function will be called at
1128 the next resume in order to perform any bookkeeping and fiddling
1129 necessary to continue debugging either the parent or child, as
1130 requested, and releasing the other. Information about the fork
1131 or vfork event is available via get_last_target_status ().
1132 This function returns 1 if the inferior should not be resumed
1133 (i.e. there is another event pending). */
1134
1135 int target_follow_fork (int follow_child);
1136
1137 /* On some targets, we can catch an inferior exec event when it
1138 occurs. These functions insert/remove an already-created
1139 catchpoint for such events. They return 0 for success, 1 if the
1140 catchpoint type is not supported and -1 for failure. */
1141
1142 #define target_insert_exec_catchpoint(pid) \
1143 (*current_target.to_insert_exec_catchpoint) (pid)
1144
1145 #define target_remove_exec_catchpoint(pid) \
1146 (*current_target.to_remove_exec_catchpoint) (pid)
1147
1148 /* Syscall catch.
1149
1150 NEEDED is nonzero if any syscall catch (of any kind) is requested.
1151 If NEEDED is zero, it means the target can disable the mechanism to
1152 catch system calls because there are no more catchpoints of this type.
1153
1154 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1155 being requested. In this case, both TABLE_SIZE and TABLE should
1156 be ignored.
1157
1158 TABLE_SIZE is the number of elements in TABLE. It only matters if
1159 ANY_COUNT is zero.
1160
1161 TABLE is an array of ints, indexed by syscall number. An element in
1162 this array is nonzero if that syscall should be caught. This argument
1163 only matters if ANY_COUNT is zero.
1164
1165 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1166 for failure. */
1167
1168 #define target_set_syscall_catchpoint(pid, needed, any_count, table_size, table) \
1169 (*current_target.to_set_syscall_catchpoint) (pid, needed, any_count, \
1170 table_size, table)
1171
1172 /* Returns TRUE if PID has exited. And, also sets EXIT_STATUS to the
1173 exit code of PID, if any. */
1174
1175 #define target_has_exited(pid,wait_status,exit_status) \
1176 (*current_target.to_has_exited) (pid,wait_status,exit_status)
1177
1178 /* The debugger has completed a blocking wait() call. There is now
1179 some process event that must be processed. This function should
1180 be defined by those targets that require the debugger to perform
1181 cleanup or internal state changes in response to the process event. */
1182
1183 /* The inferior process has died. Do what is right. */
1184
1185 void target_mourn_inferior (void);
1186
1187 /* Does target have enough data to do a run or attach command? */
1188
1189 #define target_can_run(t) \
1190 ((t)->to_can_run) ()
1191
1192 /* Set list of signals to be handled in the target.
1193
1194 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1195 (enum target_signal). For every signal whose entry in this array is
1196 non-zero, the target is allowed -but not required- to skip reporting
1197 arrival of the signal to the GDB core by returning from target_wait,
1198 and to pass the signal directly to the inferior instead.
1199
1200 However, if the target is hardware single-stepping a thread that is
1201 about to receive a signal, it needs to be reported in any case, even
1202 if mentioned in a previous target_pass_signals call. */
1203
1204 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1205
1206 /* Check to see if a thread is still alive. */
1207
1208 extern int target_thread_alive (ptid_t ptid);
1209
1210 /* Query for new threads and add them to the thread list. */
1211
1212 extern void target_find_new_threads (void);
1213
1214 /* Make target stop in a continuable fashion. (For instance, under
1215 Unix, this should act like SIGSTOP). This function is normally
1216 used by GUIs to implement a stop button. */
1217
1218 extern void target_stop (ptid_t ptid);
1219
1220 /* Send the specified COMMAND to the target's monitor
1221 (shell,interpreter) for execution. The result of the query is
1222 placed in OUTBUF. */
1223
1224 #define target_rcmd(command, outbuf) \
1225 (*current_target.to_rcmd) (command, outbuf)
1226
1227
1228 /* Does the target include all of memory, or only part of it? This
1229 determines whether we look up the target chain for other parts of
1230 memory if this target can't satisfy a request. */
1231
1232 extern int target_has_all_memory_1 (void);
1233 #define target_has_all_memory target_has_all_memory_1 ()
1234
1235 /* Does the target include memory? (Dummy targets don't.) */
1236
1237 extern int target_has_memory_1 (void);
1238 #define target_has_memory target_has_memory_1 ()
1239
1240 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1241 we start a process.) */
1242
1243 extern int target_has_stack_1 (void);
1244 #define target_has_stack target_has_stack_1 ()
1245
1246 /* Does the target have registers? (Exec files don't.) */
1247
1248 extern int target_has_registers_1 (void);
1249 #define target_has_registers target_has_registers_1 ()
1250
1251 /* Does the target have execution? Can we make it jump (through
1252 hoops), or pop its stack a few times? This means that the current
1253 target is currently executing; for some targets, that's the same as
1254 whether or not the target is capable of execution, but there are
1255 also targets which can be current while not executing. In that
1256 case this will become true after target_create_inferior or
1257 target_attach. */
1258
1259 extern int target_has_execution_1 (ptid_t);
1260
1261 /* Like target_has_execution_1, but always passes inferior_ptid. */
1262
1263 extern int target_has_execution_current (void);
1264
1265 #define target_has_execution target_has_execution_current ()
1266
1267 /* Default implementations for process_stratum targets. Return true
1268 if there's a selected inferior, false otherwise. */
1269
1270 extern int default_child_has_all_memory (struct target_ops *ops);
1271 extern int default_child_has_memory (struct target_ops *ops);
1272 extern int default_child_has_stack (struct target_ops *ops);
1273 extern int default_child_has_registers (struct target_ops *ops);
1274 extern int default_child_has_execution (struct target_ops *ops,
1275 ptid_t the_ptid);
1276
1277 /* Can the target support the debugger control of thread execution?
1278 Can it lock the thread scheduler? */
1279
1280 #define target_can_lock_scheduler \
1281 (current_target.to_has_thread_control & tc_schedlock)
1282
1283 /* Should the target enable async mode if it is supported? Temporary
1284 cludge until async mode is a strict superset of sync mode. */
1285 extern int target_async_permitted;
1286
1287 /* Can the target support asynchronous execution? */
1288 #define target_can_async_p() (current_target.to_can_async_p ())
1289
1290 /* Is the target in asynchronous execution mode? */
1291 #define target_is_async_p() (current_target.to_is_async_p ())
1292
1293 int target_supports_non_stop (void);
1294
1295 /* Put the target in async mode with the specified callback function. */
1296 #define target_async(CALLBACK,CONTEXT) \
1297 (current_target.to_async ((CALLBACK), (CONTEXT)))
1298
1299 #define target_execution_direction() \
1300 (current_target.to_execution_direction ())
1301
1302 /* Converts a process id to a string. Usually, the string just contains
1303 `process xyz', but on some systems it may contain
1304 `process xyz thread abc'. */
1305
1306 extern char *target_pid_to_str (ptid_t ptid);
1307
1308 extern char *normal_pid_to_str (ptid_t ptid);
1309
1310 /* Return a short string describing extra information about PID,
1311 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1312 is okay. */
1313
1314 #define target_extra_thread_info(TP) \
1315 (current_target.to_extra_thread_info (TP))
1316
1317 /* Return the thread's name. A NULL result means that the target
1318 could not determine this thread's name. */
1319
1320 extern char *target_thread_name (struct thread_info *);
1321
1322 /* Attempts to find the pathname of the executable file
1323 that was run to create a specified process.
1324
1325 The process PID must be stopped when this operation is used.
1326
1327 If the executable file cannot be determined, NULL is returned.
1328
1329 Else, a pointer to a character string containing the pathname
1330 is returned. This string should be copied into a buffer by
1331 the client if the string will not be immediately used, or if
1332 it must persist. */
1333
1334 #define target_pid_to_exec_file(pid) \
1335 (current_target.to_pid_to_exec_file) (pid)
1336
1337 /* See the to_thread_architecture description in struct target_ops. */
1338
1339 #define target_thread_architecture(ptid) \
1340 (current_target.to_thread_architecture (&current_target, ptid))
1341
1342 /*
1343 * Iterator function for target memory regions.
1344 * Calls a callback function once for each memory region 'mapped'
1345 * in the child process. Defined as a simple macro rather than
1346 * as a function macro so that it can be tested for nullity.
1347 */
1348
1349 #define target_find_memory_regions(FUNC, DATA) \
1350 (current_target.to_find_memory_regions) (FUNC, DATA)
1351
1352 /*
1353 * Compose corefile .note section.
1354 */
1355
1356 #define target_make_corefile_notes(BFD, SIZE_P) \
1357 (current_target.to_make_corefile_notes) (BFD, SIZE_P)
1358
1359 /* Bookmark interfaces. */
1360 #define target_get_bookmark(ARGS, FROM_TTY) \
1361 (current_target.to_get_bookmark) (ARGS, FROM_TTY)
1362
1363 #define target_goto_bookmark(ARG, FROM_TTY) \
1364 (current_target.to_goto_bookmark) (ARG, FROM_TTY)
1365
1366 /* Hardware watchpoint interfaces. */
1367
1368 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1369 write). Only the INFERIOR_PTID task is being queried. */
1370
1371 #define target_stopped_by_watchpoint \
1372 (*current_target.to_stopped_by_watchpoint)
1373
1374 /* Non-zero if we have steppable watchpoints */
1375
1376 #define target_have_steppable_watchpoint \
1377 (current_target.to_have_steppable_watchpoint)
1378
1379 /* Non-zero if we have continuable watchpoints */
1380
1381 #define target_have_continuable_watchpoint \
1382 (current_target.to_have_continuable_watchpoint)
1383
1384 /* Provide defaults for hardware watchpoint functions. */
1385
1386 /* If the *_hw_beakpoint functions have not been defined
1387 elsewhere use the definitions in the target vector. */
1388
1389 /* Returns non-zero if we can set a hardware watchpoint of type TYPE. TYPE is
1390 one of bp_hardware_watchpoint, bp_read_watchpoint, bp_write_watchpoint, or
1391 bp_hardware_breakpoint. CNT is the number of such watchpoints used so far
1392 (including this one?). OTHERTYPE is who knows what... */
1393
1394 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1395 (*current_target.to_can_use_hw_breakpoint) (TYPE, CNT, OTHERTYPE);
1396
1397 /* Returns the number of debug registers needed to watch the given
1398 memory region, or zero if not supported. */
1399
1400 #define target_region_ok_for_hw_watchpoint(addr, len) \
1401 (*current_target.to_region_ok_for_hw_watchpoint) (addr, len)
1402
1403
1404 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1405 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1406 COND is the expression for its condition, or NULL if there's none.
1407 Returns 0 for success, 1 if the watchpoint type is not supported,
1408 -1 for failure. */
1409
1410 #define target_insert_watchpoint(addr, len, type, cond) \
1411 (*current_target.to_insert_watchpoint) (addr, len, type, cond)
1412
1413 #define target_remove_watchpoint(addr, len, type, cond) \
1414 (*current_target.to_remove_watchpoint) (addr, len, type, cond)
1415
1416 /* Insert a new masked watchpoint at ADDR using the mask MASK.
1417 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1418 or hw_access for an access watchpoint. Returns 0 for success, 1 if
1419 masked watchpoints are not supported, -1 for failure. */
1420
1421 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1422
1423 /* Remove a masked watchpoint at ADDR with the mask MASK.
1424 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
1425 or hw_access for an access watchpoint. Returns 0 for success, non-zero
1426 for failure. */
1427
1428 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, int);
1429
1430 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
1431 (*current_target.to_insert_hw_breakpoint) (gdbarch, bp_tgt)
1432
1433 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
1434 (*current_target.to_remove_hw_breakpoint) (gdbarch, bp_tgt)
1435
1436 /* Return number of debug registers needed for a ranged breakpoint,
1437 or -1 if ranged breakpoints are not supported. */
1438
1439 extern int target_ranged_break_num_registers (void);
1440
1441 /* Return non-zero if target knows the data address which triggered this
1442 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
1443 INFERIOR_PTID task is being queried. */
1444 #define target_stopped_data_address(target, addr_p) \
1445 (*target.to_stopped_data_address) (target, addr_p)
1446
1447 #define target_watchpoint_addr_within_range(target, addr, start, length) \
1448 (*target.to_watchpoint_addr_within_range) (target, addr, start, length)
1449
1450 /* Return non-zero if the target is capable of using hardware to evaluate
1451 the condition expression. In this case, if the condition is false when
1452 the watched memory location changes, execution may continue without the
1453 debugger being notified.
1454
1455 Due to limitations in the hardware implementation, it may be capable of
1456 avoiding triggering the watchpoint in some cases where the condition
1457 expression is false, but may report some false positives as well.
1458 For this reason, GDB will still evaluate the condition expression when
1459 the watchpoint triggers. */
1460 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
1461 (*current_target.to_can_accel_watchpoint_condition) (addr, len, type, cond)
1462
1463 /* Return number of debug registers needed for a masked watchpoint,
1464 -1 if masked watchpoints are not supported or -2 if the given address
1465 and mask combination cannot be used. */
1466
1467 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
1468
1469 /* Target can execute in reverse? */
1470 #define target_can_execute_reverse \
1471 (current_target.to_can_execute_reverse ? \
1472 current_target.to_can_execute_reverse () : 0)
1473
1474 extern const struct target_desc *target_read_description (struct target_ops *);
1475
1476 #define target_get_ada_task_ptid(lwp, tid) \
1477 (*current_target.to_get_ada_task_ptid) (lwp,tid)
1478
1479 /* Utility implementation of searching memory. */
1480 extern int simple_search_memory (struct target_ops* ops,
1481 CORE_ADDR start_addr,
1482 ULONGEST search_space_len,
1483 const gdb_byte *pattern,
1484 ULONGEST pattern_len,
1485 CORE_ADDR *found_addrp);
1486
1487 /* Main entry point for searching memory. */
1488 extern int target_search_memory (CORE_ADDR start_addr,
1489 ULONGEST search_space_len,
1490 const gdb_byte *pattern,
1491 ULONGEST pattern_len,
1492 CORE_ADDR *found_addrp);
1493
1494 /* Tracepoint-related operations. */
1495
1496 #define target_trace_init() \
1497 (*current_target.to_trace_init) ()
1498
1499 #define target_download_tracepoint(t) \
1500 (*current_target.to_download_tracepoint) (t)
1501
1502 #define target_can_download_tracepoint() \
1503 (*current_target.to_can_download_tracepoint) ()
1504
1505 #define target_download_trace_state_variable(tsv) \
1506 (*current_target.to_download_trace_state_variable) (tsv)
1507
1508 #define target_enable_tracepoint(loc) \
1509 (*current_target.to_enable_tracepoint) (loc)
1510
1511 #define target_disable_tracepoint(loc) \
1512 (*current_target.to_disable_tracepoint) (loc)
1513
1514 #define target_trace_start() \
1515 (*current_target.to_trace_start) ()
1516
1517 #define target_trace_set_readonly_regions() \
1518 (*current_target.to_trace_set_readonly_regions) ()
1519
1520 #define target_get_trace_status(ts) \
1521 (*current_target.to_get_trace_status) (ts)
1522
1523 #define target_get_tracepoint_status(tp,utp) \
1524 (*current_target.to_get_tracepoint_status) (tp, utp)
1525
1526 #define target_trace_stop() \
1527 (*current_target.to_trace_stop) ()
1528
1529 #define target_trace_find(type,num,addr1,addr2,tpp) \
1530 (*current_target.to_trace_find) ((type), (num), (addr1), (addr2), (tpp))
1531
1532 #define target_get_trace_state_variable_value(tsv,val) \
1533 (*current_target.to_get_trace_state_variable_value) ((tsv), (val))
1534
1535 #define target_save_trace_data(filename) \
1536 (*current_target.to_save_trace_data) (filename)
1537
1538 #define target_upload_tracepoints(utpp) \
1539 (*current_target.to_upload_tracepoints) (utpp)
1540
1541 #define target_upload_trace_state_variables(utsvp) \
1542 (*current_target.to_upload_trace_state_variables) (utsvp)
1543
1544 #define target_get_raw_trace_data(buf,offset,len) \
1545 (*current_target.to_get_raw_trace_data) ((buf), (offset), (len))
1546
1547 #define target_get_min_fast_tracepoint_insn_len() \
1548 (*current_target.to_get_min_fast_tracepoint_insn_len) ()
1549
1550 #define target_set_disconnected_tracing(val) \
1551 (*current_target.to_set_disconnected_tracing) (val)
1552
1553 #define target_set_circular_trace_buffer(val) \
1554 (*current_target.to_set_circular_trace_buffer) (val)
1555
1556 #define target_set_trace_notes(user,notes,stopnotes) \
1557 (*current_target.to_set_trace_notes) ((user), (notes), (stopnotes))
1558
1559 #define target_get_tib_address(ptid, addr) \
1560 (*current_target.to_get_tib_address) ((ptid), (addr))
1561
1562 #define target_set_permissions() \
1563 (*current_target.to_set_permissions) ()
1564
1565 #define target_static_tracepoint_marker_at(addr, marker) \
1566 (*current_target.to_static_tracepoint_marker_at) (addr, marker)
1567
1568 #define target_static_tracepoint_markers_by_strid(marker_id) \
1569 (*current_target.to_static_tracepoint_markers_by_strid) (marker_id)
1570
1571 #define target_traceframe_info() \
1572 (*current_target.to_traceframe_info) ()
1573
1574 /* Command logging facility. */
1575
1576 #define target_log_command(p) \
1577 do \
1578 if (current_target.to_log_command) \
1579 (*current_target.to_log_command) (p); \
1580 while (0)
1581
1582
1583 extern int target_core_of_thread (ptid_t ptid);
1584
1585 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
1586 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
1587 if there's a mismatch, and -1 if an error is encountered while
1588 reading memory. Throws an error if the functionality is found not
1589 to be supported by the current target. */
1590 int target_verify_memory (const gdb_byte *data,
1591 CORE_ADDR memaddr, ULONGEST size);
1592
1593 /* Routines for maintenance of the target structures...
1594
1595 add_target: Add a target to the list of all possible targets.
1596
1597 push_target: Make this target the top of the stack of currently used
1598 targets, within its particular stratum of the stack. Result
1599 is 0 if now atop the stack, nonzero if not on top (maybe
1600 should warn user).
1601
1602 unpush_target: Remove this from the stack of currently used targets,
1603 no matter where it is on the list. Returns 0 if no
1604 change, 1 if removed from stack.
1605
1606 pop_target: Remove the top thing on the stack of current targets. */
1607
1608 extern void add_target (struct target_ops *);
1609
1610 extern void push_target (struct target_ops *);
1611
1612 extern int unpush_target (struct target_ops *);
1613
1614 extern void target_pre_inferior (int);
1615
1616 extern void target_preopen (int);
1617
1618 extern void pop_target (void);
1619
1620 /* Does whatever cleanup is required to get rid of all pushed targets.
1621 QUITTING is propagated to target_close; it indicates that GDB is
1622 exiting and should not get hung on an error (otherwise it is
1623 important to perform clean termination, even if it takes a
1624 while). */
1625 extern void pop_all_targets (int quitting);
1626
1627 /* Like pop_all_targets, but pops only targets whose stratum is
1628 strictly above ABOVE_STRATUM. */
1629 extern void pop_all_targets_above (enum strata above_stratum, int quitting);
1630
1631 extern int target_is_pushed (struct target_ops *t);
1632
1633 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
1634 CORE_ADDR offset);
1635
1636 /* Struct target_section maps address ranges to file sections. It is
1637 mostly used with BFD files, but can be used without (e.g. for handling
1638 raw disks, or files not in formats handled by BFD). */
1639
1640 struct target_section
1641 {
1642 CORE_ADDR addr; /* Lowest address in section */
1643 CORE_ADDR endaddr; /* 1+highest address in section */
1644
1645 struct bfd_section *the_bfd_section;
1646
1647 bfd *bfd; /* BFD file pointer */
1648 };
1649
1650 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
1651
1652 struct target_section_table
1653 {
1654 struct target_section *sections;
1655 struct target_section *sections_end;
1656 };
1657
1658 /* Return the "section" containing the specified address. */
1659 struct target_section *target_section_by_addr (struct target_ops *target,
1660 CORE_ADDR addr);
1661
1662 /* Return the target section table this target (or the targets
1663 beneath) currently manipulate. */
1664
1665 extern struct target_section_table *target_get_section_table
1666 (struct target_ops *target);
1667
1668 /* From mem-break.c */
1669
1670 extern int memory_remove_breakpoint (struct gdbarch *,
1671 struct bp_target_info *);
1672
1673 extern int memory_insert_breakpoint (struct gdbarch *,
1674 struct bp_target_info *);
1675
1676 extern int default_memory_remove_breakpoint (struct gdbarch *,
1677 struct bp_target_info *);
1678
1679 extern int default_memory_insert_breakpoint (struct gdbarch *,
1680 struct bp_target_info *);
1681
1682
1683 /* From target.c */
1684
1685 extern void initialize_targets (void);
1686
1687 extern void noprocess (void) ATTRIBUTE_NORETURN;
1688
1689 extern void target_require_runnable (void);
1690
1691 extern void find_default_attach (struct target_ops *, char *, int);
1692
1693 extern void find_default_create_inferior (struct target_ops *,
1694 char *, char *, char **, int);
1695
1696 extern struct target_ops *find_run_target (void);
1697
1698 extern struct target_ops *find_target_beneath (struct target_ops *);
1699
1700 /* Read OS data object of type TYPE from the target, and return it in
1701 XML format. The result is NUL-terminated and returned as a string,
1702 allocated using xmalloc. If an error occurs or the transfer is
1703 unsupported, NULL is returned. Empty objects are returned as
1704 allocated but empty strings. */
1705
1706 extern char *target_get_osdata (const char *type);
1707
1708 \f
1709 /* Stuff that should be shared among the various remote targets. */
1710
1711 /* Debugging level. 0 is off, and non-zero values mean to print some debug
1712 information (higher values, more information). */
1713 extern int remote_debug;
1714
1715 /* Speed in bits per second, or -1 which means don't mess with the speed. */
1716 extern int baud_rate;
1717 /* Timeout limit for response from target. */
1718 extern int remote_timeout;
1719
1720 \f
1721 /* Functions for helping to write a native target. */
1722
1723 /* This is for native targets which use a unix/POSIX-style waitstatus. */
1724 extern void store_waitstatus (struct target_waitstatus *, int);
1725
1726 /* These are in common/signals.c, but they're only used by gdb. */
1727 extern enum target_signal default_target_signal_from_host (struct gdbarch *,
1728 int);
1729 extern int default_target_signal_to_host (struct gdbarch *,
1730 enum target_signal);
1731
1732 /* Convert from a number used in a GDB command to an enum target_signal. */
1733 extern enum target_signal target_signal_from_command (int);
1734 /* End of files in common/signals.c. */
1735
1736 /* Set the show memory breakpoints mode to show, and installs a cleanup
1737 to restore it back to the current value. */
1738 extern struct cleanup *make_show_memory_breakpoints_cleanup (int show);
1739
1740 extern int may_write_registers;
1741 extern int may_write_memory;
1742 extern int may_insert_breakpoints;
1743 extern int may_insert_tracepoints;
1744 extern int may_insert_fast_tracepoints;
1745 extern int may_stop;
1746
1747 extern void update_target_permissions (void);
1748
1749 \f
1750 /* Imported from machine dependent code. */
1751
1752 /* Blank target vector entries are initialized to target_ignore. */
1753 void target_ignore (void);
1754
1755 #endif /* !defined (TARGET_H) */