]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.h
gdb, testsuite: Fix return value in gdb.base/foll-fork.exp
[thirdparty/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2024 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This include file defines the interface between the main part of
23 the debugger, and the part which is target-specific, or specific to
24 the communications interface between us and the target.
25
26 A TARGET is an interface between the debugger and a particular
27 kind of file or process. Targets can be STACKED in STRATA,
28 so that more than one target can potentially respond to a request.
29 In particular, memory accesses will walk down the stack of targets
30 until they find a target that is interested in handling that particular
31 address. STRATA are artificial boundaries on the stack, within
32 which particular kinds of targets live. Strata exist so that
33 people don't get confused by pushing e.g. a process target and then
34 a file target, and wondering why they can't see the current values
35 of variables any more (the file target is handling them and they
36 never get to the process target). So when you push a file target,
37 it goes into the file stratum, which is always below the process
38 stratum.
39
40 Note that rather than allow an empty stack, we always have the
41 dummy target at the bottom stratum, so we can call the target
42 methods without checking them. */
43
44 #if !defined (TARGET_H)
45 #define TARGET_H
46
47 struct objfile;
48 struct ui_file;
49 struct mem_attrib;
50 struct target_ops;
51 struct bp_location;
52 struct bp_target_info;
53 struct regcache;
54 struct trace_state_variable;
55 struct trace_status;
56 struct uploaded_tsv;
57 struct uploaded_tp;
58 struct static_tracepoint_marker;
59 struct traceframe_info;
60 struct expression;
61 struct dcache_struct;
62 struct inferior;
63
64 /* Define const gdb_byte using one identifier, to make it easy for
65 make-target-delegates.py to parse. */
66 typedef const gdb_byte const_gdb_byte;
67
68 #include "infrun.h"
69 #include "breakpoint.h"
70 #include "gdbsupport/scoped_restore.h"
71 #include "gdbsupport/refcounted-object.h"
72 #include "target-section.h"
73 #include "target/target.h"
74 #include "target/resume.h"
75 #include "target/wait.h"
76 #include "target/waitstatus.h"
77 #include "bfd.h"
78 #include "symtab.h"
79 #include "memattr.h"
80 #include "gdbsupport/gdb_signals.h"
81 #include "btrace.h"
82 #include "record.h"
83 #include "command.h"
84 #include "disasm-flags.h"
85 #include "tracepoint.h"
86 #include "gdbsupport/fileio.h"
87 #include "gdbsupport/x86-xstate.h"
88
89 #include "gdbsupport/break-common.h"
90
91 enum strata
92 {
93 dummy_stratum, /* The lowest of the low */
94 file_stratum, /* Executable files, etc */
95 process_stratum, /* Executing processes or core dump files */
96 thread_stratum, /* Executing threads */
97 record_stratum, /* Support record debugging */
98 arch_stratum, /* Architecture overrides */
99 debug_stratum /* Target debug. Must be last. */
100 };
101
102 enum thread_control_capabilities
103 {
104 tc_none = 0, /* Default: can't control thread execution. */
105 tc_schedlock = 1, /* Can lock the thread scheduler. */
106 };
107
108 /* The structure below stores information about a system call.
109 It is basically used in the "catch syscall" command, and in
110 every function that gives information about a system call.
111
112 It's also good to mention that its fields represent everything
113 that we currently know about a syscall in GDB. */
114 struct syscall
115 {
116 /* The syscall number. */
117 int number;
118
119 /* The syscall name. */
120 const char *name;
121 };
122
123 /* Return a pretty printed form of TARGET_OPTIONS. */
124 extern std::string target_options_to_string (target_wait_flags target_options);
125
126 /* Possible types of events that the inferior handler will have to
127 deal with. */
128 enum inferior_event_type
129 {
130 /* Process a normal inferior event which will result in target_wait
131 being called. */
132 INF_REG_EVENT,
133 /* We are called to do stuff after the inferior stops. */
134 INF_EXEC_COMPLETE,
135 };
136 \f
137 /* Target objects which can be transfered using target_read,
138 target_write, et cetera. */
139
140 enum target_object
141 {
142 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
143 TARGET_OBJECT_AVR,
144 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
145 TARGET_OBJECT_MEMORY,
146 /* Memory, avoiding GDB's data cache and trusting the executable.
147 Target implementations of to_xfer_partial never need to handle
148 this object, and most callers should not use it. */
149 TARGET_OBJECT_RAW_MEMORY,
150 /* Memory known to be part of the target's stack. This is cached even
151 if it is not in a region marked as such, since it is known to be
152 "normal" RAM. */
153 TARGET_OBJECT_STACK_MEMORY,
154 /* Memory known to be part of the target code. This is cached even
155 if it is not in a region marked as such. */
156 TARGET_OBJECT_CODE_MEMORY,
157 /* Kernel Unwind Table. See "ia64-tdep.c". */
158 TARGET_OBJECT_UNWIND_TABLE,
159 /* Transfer auxilliary vector. */
160 TARGET_OBJECT_AUXV,
161 /* StackGhost cookie. See "sparc-tdep.c". */
162 TARGET_OBJECT_WCOOKIE,
163 /* Target memory map in XML format. */
164 TARGET_OBJECT_MEMORY_MAP,
165 /* Flash memory. This object can be used to write contents to
166 a previously erased flash memory. Using it without erasing
167 flash can have unexpected results. Addresses are physical
168 address on target, and not relative to flash start. */
169 TARGET_OBJECT_FLASH,
170 /* Available target-specific features, e.g. registers and coprocessors.
171 See "target-descriptions.c". ANNEX should never be empty. */
172 TARGET_OBJECT_AVAILABLE_FEATURES,
173 /* Currently loaded libraries, in XML format. */
174 TARGET_OBJECT_LIBRARIES,
175 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
176 TARGET_OBJECT_LIBRARIES_SVR4,
177 /* Currently loaded libraries specific to AIX systems, in XML format. */
178 TARGET_OBJECT_LIBRARIES_AIX,
179 /* Get OS specific data. The ANNEX specifies the type (running
180 processes, etc.). The data being transfered is expected to follow
181 the DTD specified in features/osdata.dtd. */
182 TARGET_OBJECT_OSDATA,
183 /* Extra signal info. Usually the contents of `siginfo_t' on unix
184 platforms. */
185 TARGET_OBJECT_SIGNAL_INFO,
186 /* The list of threads that are being debugged. */
187 TARGET_OBJECT_THREADS,
188 /* Collected static trace data. */
189 TARGET_OBJECT_STATIC_TRACE_DATA,
190 /* Traceframe info, in XML format. */
191 TARGET_OBJECT_TRACEFRAME_INFO,
192 /* Load maps for FDPIC systems. */
193 TARGET_OBJECT_FDPIC,
194 /* Darwin dynamic linker info data. */
195 TARGET_OBJECT_DARWIN_DYLD_INFO,
196 /* OpenVMS Unwind Information Block. */
197 TARGET_OBJECT_OPENVMS_UIB,
198 /* Branch trace data, in XML format. */
199 TARGET_OBJECT_BTRACE,
200 /* Branch trace configuration, in XML format. */
201 TARGET_OBJECT_BTRACE_CONF,
202 /* The pathname of the executable file that was run to create
203 a specified process. ANNEX should be a string representation
204 of the process ID of the process in question, in hexadecimal
205 format. */
206 TARGET_OBJECT_EXEC_FILE,
207 /* FreeBSD virtual memory mappings. */
208 TARGET_OBJECT_FREEBSD_VMMAP,
209 /* FreeBSD process strings. */
210 TARGET_OBJECT_FREEBSD_PS_STRINGS,
211 /* Possible future objects: TARGET_OBJECT_FILE, ... */
212 };
213
214 /* Possible values returned by target_xfer_partial, etc. */
215
216 enum target_xfer_status
217 {
218 /* Some bytes are transferred. */
219 TARGET_XFER_OK = 1,
220
221 /* No further transfer is possible. */
222 TARGET_XFER_EOF = 0,
223
224 /* The piece of the object requested is unavailable. */
225 TARGET_XFER_UNAVAILABLE = 2,
226
227 /* Generic I/O error. Note that it's important that this is '-1',
228 as we still have target_xfer-related code returning hardcoded
229 '-1' on error. */
230 TARGET_XFER_E_IO = -1,
231
232 /* Keep list in sync with target_xfer_status_to_string. */
233 };
234
235 /* Return the string form of STATUS. */
236
237 extern const char *
238 target_xfer_status_to_string (enum target_xfer_status status);
239
240 typedef enum target_xfer_status
241 target_xfer_partial_ftype (struct target_ops *ops,
242 enum target_object object,
243 const char *annex,
244 gdb_byte *readbuf,
245 const gdb_byte *writebuf,
246 ULONGEST offset,
247 ULONGEST len,
248 ULONGEST *xfered_len);
249
250 enum target_xfer_status
251 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
252 const gdb_byte *writebuf, ULONGEST memaddr,
253 LONGEST len, ULONGEST *xfered_len);
254
255 /* Request that OPS transfer up to LEN addressable units of the target's
256 OBJECT. When reading from a memory object, the size of an addressable unit
257 is architecture dependent and can be found using
258 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
259 byte long. BUF should point to a buffer large enough to hold the read data,
260 taking into account the addressable unit size. The OFFSET, for a seekable
261 object, specifies the starting point. The ANNEX can be used to provide
262 additional data-specific information to the target.
263
264 Return the number of addressable units actually transferred, or a negative
265 error code (an 'enum target_xfer_error' value) if the transfer is not
266 supported or otherwise fails. Return of a positive value less than
267 LEN indicates that no further transfer is possible. Unlike the raw
268 to_xfer_partial interface, callers of these functions do not need
269 to retry partial transfers. */
270
271 extern LONGEST target_read (struct target_ops *ops,
272 enum target_object object,
273 const char *annex, gdb_byte *buf,
274 ULONGEST offset, LONGEST len);
275
276 struct memory_read_result
277 {
278 memory_read_result (ULONGEST begin_, ULONGEST end_,
279 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
280 : begin (begin_),
281 end (end_),
282 data (std::move (data_))
283 {
284 }
285
286 ~memory_read_result () = default;
287
288 memory_read_result (memory_read_result &&other) = default;
289
290 DISABLE_COPY_AND_ASSIGN (memory_read_result);
291
292 /* First address that was read. */
293 ULONGEST begin;
294 /* Past-the-end address. */
295 ULONGEST end;
296 /* The data. */
297 gdb::unique_xmalloc_ptr<gdb_byte> data;
298 };
299
300 extern std::vector<memory_read_result> read_memory_robust
301 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
302
303 /* Request that OPS transfer up to LEN addressable units from BUF to the
304 target's OBJECT. When writing to a memory object, the addressable unit
305 size is architecture dependent and can be found using
306 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
307 byte long. The OFFSET, for a seekable object, specifies the starting point.
308 The ANNEX can be used to provide additional data-specific information to
309 the target.
310
311 Return the number of addressable units actually transferred, or a negative
312 error code (an 'enum target_xfer_status' value) if the transfer is not
313 supported or otherwise fails. Return of a positive value less than
314 LEN indicates that no further transfer is possible. Unlike the raw
315 to_xfer_partial interface, callers of these functions do not need to
316 retry partial transfers. */
317
318 extern LONGEST target_write (struct target_ops *ops,
319 enum target_object object,
320 const char *annex, const gdb_byte *buf,
321 ULONGEST offset, LONGEST len);
322
323 /* Similar to target_write, except that it also calls PROGRESS with
324 the number of bytes written and the opaque BATON after every
325 successful partial write (and before the first write). This is
326 useful for progress reporting and user interaction while writing
327 data. To abort the transfer, the progress callback can throw an
328 exception. */
329
330 LONGEST target_write_with_progress (struct target_ops *ops,
331 enum target_object object,
332 const char *annex, const gdb_byte *buf,
333 ULONGEST offset, LONGEST len,
334 void (*progress) (ULONGEST, void *),
335 void *baton);
336
337 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
338 using OPS. The return value will be uninstantiated if the transfer fails or
339 is not supported.
340
341 This method should be used for objects sufficiently small to store
342 in a single xmalloc'd buffer, when no fixed bound on the object's
343 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
344 through this function. */
345
346 extern std::optional<gdb::byte_vector> target_read_alloc
347 (struct target_ops *ops, enum target_object object, const char *annex);
348
349 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
350 (therefore usable as a NUL-terminated string). If an error occurs or the
351 transfer is unsupported, the return value will be uninstantiated. Empty
352 objects are returned as allocated but empty strings. Therefore, on success,
353 the returned vector is guaranteed to have at least one element. A warning is
354 issued if the result contains any embedded NUL bytes. */
355
356 extern std::optional<gdb::char_vector> target_read_stralloc
357 (struct target_ops *ops, enum target_object object, const char *annex);
358
359 /* See target_ops->to_xfer_partial. */
360 extern target_xfer_partial_ftype target_xfer_partial;
361
362 /* Wrappers to target read/write that perform memory transfers. They
363 throw an error if the memory transfer fails.
364
365 NOTE: cagney/2003-10-23: The naming schema is lifted from
366 "frame.h". The parameter order is lifted from get_frame_memory,
367 which in turn lifted it from read_memory. */
368
369 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
370 gdb_byte *buf, LONGEST len);
371 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
372 CORE_ADDR addr, int len,
373 enum bfd_endian byte_order);
374 \f
375 struct thread_info; /* fwd decl for parameter list below: */
376
377 /* The type of the callback to the to_async method. */
378
379 typedef void async_callback_ftype (enum inferior_event_type event_type,
380 void *context);
381
382 /* Normally target debug printing is purely type-based. However,
383 sometimes it is necessary to override the debug printing on a
384 per-argument basis. This macro can be used, attribute-style, to
385 name the target debug printing function for a particular method
386 argument. FUNC is the name of the function. The macro's
387 definition is empty because it is only used by the
388 make-target-delegates script. */
389
390 #define TARGET_DEBUG_PRINTER(FUNC)
391
392 /* These defines are used to mark target_ops methods. The script
393 make-target-delegates scans these and auto-generates the base
394 method implementations. There are four macros that can be used:
395
396 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
397 does nothing. This is only valid if the method return type is
398 'void'.
399
400 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
401 'tcomplain ()'. The base method simply makes this call, which is
402 assumed not to return.
403
404 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
405 base method returns this expression's value.
406
407 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
408 make-target-delegates does not generate a base method in this case,
409 but instead uses the argument function as the base method. */
410
411 #define TARGET_DEFAULT_IGNORE()
412 #define TARGET_DEFAULT_NORETURN(ARG)
413 #define TARGET_DEFAULT_RETURN(ARG)
414 #define TARGET_DEFAULT_FUNC(ARG)
415
416 /* Each target that can be activated with "target TARGET_NAME" passes
417 the address of one of these objects to add_target, which uses the
418 object's address as unique identifier, and registers the "target
419 TARGET_NAME" command using SHORTNAME as target name. */
420
421 struct target_info
422 {
423 /* Name of this target. */
424 const char *shortname;
425
426 /* Name for printing. */
427 const char *longname;
428
429 /* Documentation. Does not include trailing newline, and starts
430 with a one-line description (probably similar to longname). */
431 const char *doc;
432 };
433
434 /* A GDB target.
435
436 Each inferior has a stack of these. See overall description at the
437 top.
438
439 Most target methods traverse the current inferior's target stack;
440 you call the method on the top target (normally via one of the
441 target_foo wrapper free functions), and the implementation of said
442 method does its work and returns, or defers to the same method on
443 the target beneath on the current inferior's target stack. Thus,
444 the inferior you want to call the target method on must be made the
445 current inferior before calling a target method, so that the stack
446 traversal works correctly.
447
448 Methods that traverse the stack have a TARGET_DEFAULT_XXX marker in
449 their declaration below. See the macros' description above, where
450 they're defined. */
451
452 struct target_ops
453 : public refcounted_object
454 {
455 /* Return this target's stratum. */
456 virtual strata stratum () const = 0;
457
458 /* To the target under this one. */
459 target_ops *beneath () const;
460
461 /* Free resources associated with the target. Note that singleton
462 targets, like e.g., native targets, are global objects, not
463 heap allocated, and are thus only deleted on GDB exit. The
464 main teardown entry point is the "close" method, below. */
465 virtual ~target_ops () {}
466
467 /* Return a reference to this target's unique target_info
468 object. */
469 virtual const target_info &info () const = 0;
470
471 /* Name this target type. */
472 const char *shortname () const
473 { return info ().shortname; }
474
475 const char *longname () const
476 { return info ().longname; }
477
478 /* Close the target. This is where the target can handle
479 teardown. Heap-allocated targets should delete themselves
480 before returning. */
481 virtual void close ();
482
483 /* Attaches to a process on the target side. Arguments are as
484 passed to the `attach' command by the user. This routine can
485 be called when the target is not on the target-stack, if the
486 target_ops::can_run method returns 1; in that case, it must push
487 itself onto the stack. Upon exit, the target should be ready
488 for normal operations, and should be ready to deliver the
489 status of the process immediately (without waiting) to an
490 upcoming target_wait call. */
491 virtual bool can_attach ();
492 virtual void attach (const char *, int);
493 virtual void post_attach (int)
494 TARGET_DEFAULT_IGNORE ();
495
496 /* Detaches from the inferior. Note that on targets that support
497 async execution (i.e., targets where it is possible to detach
498 from programs with threads running), the target is responsible
499 for removing breakpoints from the program before the actual
500 detach, otherwise the program dies when it hits one. */
501 virtual void detach (inferior *, int)
502 TARGET_DEFAULT_IGNORE ();
503
504 virtual void disconnect (const char *, int)
505 TARGET_DEFAULT_NORETURN (tcomplain ());
506 virtual void resume (ptid_t,
507 int TARGET_DEBUG_PRINTER (target_debug_print_step),
508 enum gdb_signal)
509 TARGET_DEFAULT_NORETURN (noprocess ());
510
511 /* Ensure that all resumed threads are committed to the target.
512
513 See the description of
514 process_stratum_target::commit_resumed_state for more
515 details. */
516 virtual void commit_resumed ()
517 TARGET_DEFAULT_IGNORE ();
518
519 /* See target_wait's description. Note that implementations of
520 this method must not assume that inferior_ptid on entry is
521 pointing at the thread or inferior that ends up reporting an
522 event. The reported event could be for some other thread in
523 the current inferior or even for a different process of the
524 current target. inferior_ptid may also be null_ptid on
525 entry. */
526 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
527 target_wait_flags options)
528 TARGET_DEFAULT_FUNC (default_target_wait);
529 virtual void fetch_registers (struct regcache *, int)
530 TARGET_DEFAULT_IGNORE ();
531 virtual void store_registers (struct regcache *, int)
532 TARGET_DEFAULT_NORETURN (noprocess ());
533 virtual void prepare_to_store (struct regcache *)
534 TARGET_DEFAULT_NORETURN (noprocess ());
535
536 virtual void files_info ()
537 TARGET_DEFAULT_IGNORE ();
538 virtual int insert_breakpoint (struct gdbarch *,
539 struct bp_target_info *)
540 TARGET_DEFAULT_NORETURN (noprocess ());
541 virtual int remove_breakpoint (struct gdbarch *,
542 struct bp_target_info *,
543 enum remove_bp_reason)
544 TARGET_DEFAULT_NORETURN (noprocess ());
545
546 /* Returns true if the target stopped because it executed a
547 software breakpoint. This is necessary for correct background
548 execution / non-stop mode operation, and for correct PC
549 adjustment on targets where the PC needs to be adjusted when a
550 software breakpoint triggers. In these modes, by the time GDB
551 processes a breakpoint event, the breakpoint may already be
552 done from the target, so GDB needs to be able to tell whether
553 it should ignore the event and whether it should adjust the PC.
554 See adjust_pc_after_break. */
555 virtual bool stopped_by_sw_breakpoint ()
556 TARGET_DEFAULT_RETURN (false);
557 /* Returns true if the above method is supported. */
558 virtual bool supports_stopped_by_sw_breakpoint ()
559 TARGET_DEFAULT_RETURN (false);
560
561 /* Returns true if the target stopped for a hardware breakpoint.
562 Likewise, if the target supports hardware breakpoints, this
563 method is necessary for correct background execution / non-stop
564 mode operation. Even though hardware breakpoints do not
565 require PC adjustment, GDB needs to be able to tell whether the
566 hardware breakpoint event is a delayed event for a breakpoint
567 that is already gone and should thus be ignored. */
568 virtual bool stopped_by_hw_breakpoint ()
569 TARGET_DEFAULT_RETURN (false);
570 /* Returns true if the above method is supported. */
571 virtual bool supports_stopped_by_hw_breakpoint ()
572 TARGET_DEFAULT_RETURN (false);
573
574 virtual int can_use_hw_breakpoint (enum bptype, int, int)
575 TARGET_DEFAULT_RETURN (0);
576 virtual int ranged_break_num_registers ()
577 TARGET_DEFAULT_RETURN (-1);
578 virtual int insert_hw_breakpoint (struct gdbarch *,
579 struct bp_target_info *)
580 TARGET_DEFAULT_RETURN (-1);
581 virtual int remove_hw_breakpoint (struct gdbarch *,
582 struct bp_target_info *)
583 TARGET_DEFAULT_RETURN (-1);
584
585 /* Documentation of what the two routines below are expected to do is
586 provided with the corresponding target_* macros. */
587 virtual int remove_watchpoint (CORE_ADDR, int,
588 enum target_hw_bp_type, struct expression *)
589 TARGET_DEFAULT_RETURN (-1);
590 virtual int insert_watchpoint (CORE_ADDR, int,
591 enum target_hw_bp_type, struct expression *)
592 TARGET_DEFAULT_RETURN (-1);
593
594 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
595 enum target_hw_bp_type)
596 TARGET_DEFAULT_RETURN (1);
597 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
598 enum target_hw_bp_type)
599 TARGET_DEFAULT_RETURN (1);
600 virtual bool stopped_by_watchpoint ()
601 TARGET_DEFAULT_RETURN (false);
602 virtual bool have_steppable_watchpoint ()
603 TARGET_DEFAULT_RETURN (false);
604 virtual bool stopped_data_address (CORE_ADDR *)
605 TARGET_DEFAULT_RETURN (false);
606 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
607 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
608
609 /* Documentation of this routine is provided with the corresponding
610 target_* macro. */
611 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
612 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
613
614 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
615 struct expression *)
616 TARGET_DEFAULT_RETURN (false);
617 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
618 TARGET_DEFAULT_RETURN (-1);
619
620 /* Return 1 for sure target can do single step. Return -1 for
621 unknown. Return 0 for target can't do. */
622 virtual int can_do_single_step ()
623 TARGET_DEFAULT_RETURN (-1);
624
625 virtual bool supports_terminal_ours ()
626 TARGET_DEFAULT_RETURN (false);
627 virtual void terminal_init ()
628 TARGET_DEFAULT_IGNORE ();
629 virtual void terminal_inferior ()
630 TARGET_DEFAULT_IGNORE ();
631 virtual void terminal_save_inferior ()
632 TARGET_DEFAULT_IGNORE ();
633 virtual void terminal_ours_for_output ()
634 TARGET_DEFAULT_IGNORE ();
635 virtual void terminal_ours ()
636 TARGET_DEFAULT_IGNORE ();
637 virtual void terminal_info (const char *, int)
638 TARGET_DEFAULT_FUNC (default_terminal_info);
639 virtual void kill ()
640 TARGET_DEFAULT_NORETURN (noprocess ());
641 virtual void load (const char *, int)
642 TARGET_DEFAULT_NORETURN (tcomplain ());
643 /* Start an inferior process and set inferior_ptid to its pid.
644 EXEC_FILE is the file to run.
645 ALLARGS is a string containing the arguments to the program.
646 ENV is the environment vector to pass. Errors reported with error().
647 On VxWorks and various standalone systems, we ignore exec_file. */
648 virtual bool can_create_inferior ();
649 virtual void create_inferior (const char *, const std::string &,
650 char **, int);
651 virtual int insert_fork_catchpoint (int)
652 TARGET_DEFAULT_RETURN (1);
653 virtual int remove_fork_catchpoint (int)
654 TARGET_DEFAULT_RETURN (1);
655 virtual int insert_vfork_catchpoint (int)
656 TARGET_DEFAULT_RETURN (1);
657 virtual int remove_vfork_catchpoint (int)
658 TARGET_DEFAULT_RETURN (1);
659 virtual void follow_fork (inferior *, ptid_t, target_waitkind, bool, bool)
660 TARGET_DEFAULT_FUNC (default_follow_fork);
661
662 /* Add CHILD_PTID to the thread list, after handling a
663 TARGET_WAITKIND_THREAD_CLONE event for the clone parent. The
664 parent is inferior_ptid. */
665 virtual void follow_clone (ptid_t child_ptid)
666 TARGET_DEFAULT_FUNC (default_follow_clone);
667
668 virtual int insert_exec_catchpoint (int)
669 TARGET_DEFAULT_RETURN (1);
670 virtual int remove_exec_catchpoint (int)
671 TARGET_DEFAULT_RETURN (1);
672 virtual void follow_exec (inferior *, ptid_t, const char *)
673 TARGET_DEFAULT_IGNORE ();
674 virtual int set_syscall_catchpoint (int, bool, int,
675 gdb::array_view<const int>)
676 TARGET_DEFAULT_RETURN (1);
677 virtual void mourn_inferior ()
678 TARGET_DEFAULT_FUNC (default_mourn_inferior);
679
680 /* Note that can_run is special and can be invoked on an unpushed
681 target. Targets defining this method must also define
682 to_can_async_p and to_supports_non_stop. */
683 virtual bool can_run ();
684
685 /* Documentation of this routine is provided with the corresponding
686 target_* macro. */
687 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
688 TARGET_DEFAULT_IGNORE ();
689
690 /* Documentation of this routine is provided with the
691 corresponding target_* function. */
692 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
693 TARGET_DEFAULT_IGNORE ();
694
695 virtual bool thread_alive (ptid_t ptid)
696 TARGET_DEFAULT_RETURN (false);
697 virtual void update_thread_list ()
698 TARGET_DEFAULT_IGNORE ();
699 virtual std::string pid_to_str (ptid_t)
700 TARGET_DEFAULT_FUNC (default_pid_to_str);
701 virtual const char *extra_thread_info (thread_info *)
702 TARGET_DEFAULT_RETURN (NULL);
703 virtual const char *thread_name (thread_info *)
704 TARGET_DEFAULT_RETURN (NULL);
705 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
706 int,
707 inferior *inf)
708 TARGET_DEFAULT_RETURN (NULL);
709 /* See target_thread_info_to_thread_handle. */
710 virtual gdb::array_view<const_gdb_byte> thread_info_to_thread_handle (struct thread_info *)
711 TARGET_DEFAULT_RETURN (gdb::array_view<const gdb_byte> ());
712 virtual void stop (ptid_t)
713 TARGET_DEFAULT_IGNORE ();
714 virtual void interrupt ()
715 TARGET_DEFAULT_IGNORE ();
716 virtual void pass_ctrlc ()
717 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
718 virtual void rcmd (const char *command, struct ui_file *output)
719 TARGET_DEFAULT_FUNC (default_rcmd);
720 virtual const char *pid_to_exec_file (int pid)
721 TARGET_DEFAULT_RETURN (NULL);
722 virtual void log_command (const char *)
723 TARGET_DEFAULT_IGNORE ();
724 virtual const std::vector<target_section> *get_section_table ()
725 TARGET_DEFAULT_RETURN (default_get_section_table ());
726
727 /* Provide default values for all "must have" methods. */
728 virtual bool has_all_memory () { return false; }
729 virtual bool has_memory () { return false; }
730 virtual bool has_stack () { return false; }
731 virtual bool has_registers () { return false; }
732 virtual bool has_execution (inferior *inf) { return false; }
733
734 /* Control thread execution. */
735 virtual thread_control_capabilities get_thread_control_capabilities ()
736 TARGET_DEFAULT_RETURN (tc_none);
737 virtual bool attach_no_wait ()
738 TARGET_DEFAULT_RETURN (0);
739 /* This method must be implemented in some situations. See the
740 comment on 'can_run'. */
741 virtual bool can_async_p ()
742 TARGET_DEFAULT_RETURN (false);
743 virtual bool is_async_p ()
744 TARGET_DEFAULT_RETURN (false);
745 virtual void async (bool)
746 TARGET_DEFAULT_NORETURN (tcomplain ());
747 virtual int async_wait_fd ()
748 TARGET_DEFAULT_NORETURN (noprocess ());
749 /* Return true if the target has pending events to report to the
750 core. If true, then GDB avoids resuming the target until all
751 pending events are consumed, so that multiple resumptions can
752 be coalesced as an optimization. Most targets can't tell
753 whether they have pending events without calling target_wait,
754 so we default to returning false. The only downside is that a
755 potential optimization is missed. */
756 virtual bool has_pending_events ()
757 TARGET_DEFAULT_RETURN (false);
758 virtual void thread_events (int)
759 TARGET_DEFAULT_IGNORE ();
760 /* Returns true if the target supports setting thread options
761 OPTIONS, false otherwise. */
762 virtual bool supports_set_thread_options (gdb_thread_options options)
763 TARGET_DEFAULT_RETURN (false);
764 /* This method must be implemented in some situations. See the
765 comment on 'can_run'. */
766 virtual bool supports_non_stop ()
767 TARGET_DEFAULT_RETURN (false);
768 /* Return true if the target operates in non-stop mode even with
769 "set non-stop off". */
770 virtual bool always_non_stop_p ()
771 TARGET_DEFAULT_RETURN (false);
772 /* find_memory_regions support method for gcore */
773 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
774 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
775 /* make_corefile_notes support method for gcore */
776 virtual gdb::unique_xmalloc_ptr<char> make_corefile_notes (bfd *, int *)
777 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
778 /* get_bookmark support method for bookmarks */
779 virtual gdb_byte *get_bookmark (const char *, int)
780 TARGET_DEFAULT_NORETURN (tcomplain ());
781 /* goto_bookmark support method for bookmarks */
782 virtual void goto_bookmark (const gdb_byte *, int)
783 TARGET_DEFAULT_NORETURN (tcomplain ());
784 /* Return the thread-local address at OFFSET in the
785 thread-local storage for the thread PTID and the shared library
786 or executable file given by LOAD_MODULE_ADDR. If that block of
787 thread-local storage hasn't been allocated yet, this function
788 may throw an error. LOAD_MODULE_ADDR may be zero for statically
789 linked multithreaded inferiors. */
790 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
791 CORE_ADDR load_module_addr,
792 CORE_ADDR offset)
793 TARGET_DEFAULT_NORETURN (generic_tls_error ());
794
795 /* Request that OPS transfer up to LEN addressable units of the target's
796 OBJECT. When reading from a memory object, the size of an addressable
797 unit is architecture dependent and can be found using
798 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
799 1 byte long. The OFFSET, for a seekable object, specifies the
800 starting point. The ANNEX can be used to provide additional
801 data-specific information to the target.
802
803 When accessing memory, inferior_ptid indicates which process's
804 memory is to be accessed. This is usually the same process as
805 the current inferior, however it may also be a process that is
806 a fork child of the current inferior, at a moment that the
807 child does not exist in GDB's inferior lists. This happens
808 when we remove software breakpoints from the address space of a
809 fork child process that we're not going to stay attached to.
810 Because the fork child is a clone of the fork parent, we can
811 use the fork parent inferior's stack for target method
812 delegation.
813
814 Return the transferred status, error or OK (an
815 'enum target_xfer_status' value). Save the number of addressable units
816 actually transferred in *XFERED_LEN if transfer is successful
817 (TARGET_XFER_OK) or the number unavailable units if the requested
818 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
819 smaller than LEN does not indicate the end of the object, only
820 the end of the transfer; higher level code should continue
821 transferring if desired. This is handled in target.c.
822
823 The interface does not support a "retry" mechanism. Instead it
824 assumes that at least one addressable unit will be transfered on each
825 successful call.
826
827 NOTE: cagney/2003-10-17: The current interface can lead to
828 fragmented transfers. Lower target levels should not implement
829 hacks, such as enlarging the transfer, in an attempt to
830 compensate for this. Instead, the target stack should be
831 extended so that it implements supply/collect methods and a
832 look-aside object cache. With that available, the lowest
833 target can safely and freely "push" data up the stack.
834
835 See target_read and target_write for more information. One,
836 and only one, of readbuf or writebuf must be non-NULL. */
837
838 virtual enum target_xfer_status xfer_partial (enum target_object object,
839 const char *annex,
840 gdb_byte *readbuf,
841 const gdb_byte *writebuf,
842 ULONGEST offset, ULONGEST len,
843 ULONGEST *xfered_len)
844 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
845
846 /* Return the limit on the size of any single memory transfer
847 for the target. */
848
849 virtual ULONGEST get_memory_xfer_limit ()
850 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
851
852 /* Returns the memory map for the target. A return value of NULL
853 means that no memory map is available. If a memory address
854 does not fall within any returned regions, it's assumed to be
855 RAM. The returned memory regions should not overlap.
856
857 The order of regions does not matter; target_memory_map will
858 sort regions by starting address. For that reason, this
859 function should not be called directly except via
860 target_memory_map.
861
862 This method should not cache data; if the memory map could
863 change unexpectedly, it should be invalidated, and higher
864 layers will re-fetch it. */
865 virtual std::vector<mem_region> memory_map ()
866 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
867
868 /* Erases the region of flash memory starting at ADDRESS, of
869 length LENGTH.
870
871 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
872 on flash block boundaries, as reported by 'to_memory_map'. */
873 virtual void flash_erase (ULONGEST address, LONGEST length)
874 TARGET_DEFAULT_NORETURN (tcomplain ());
875
876 /* Finishes a flash memory write sequence. After this operation
877 all flash memory should be available for writing and the result
878 of reading from areas written by 'to_flash_write' should be
879 equal to what was written. */
880 virtual void flash_done ()
881 TARGET_DEFAULT_NORETURN (tcomplain ());
882
883 /* Describe the architecture-specific features of the current
884 inferior.
885
886 Returns the description found, or nullptr if no description was
887 available.
888
889 If some target features differ between threads, the description
890 returned by read_description (and the resulting gdbarch) won't
891 accurately describe all threads. In this case, the
892 thread_architecture method can be used to obtain gdbarches that
893 accurately describe each thread. */
894 virtual const struct target_desc *read_description ()
895 TARGET_DEFAULT_RETURN (NULL);
896
897 /* Build the PTID of the thread on which a given task is running,
898 based on LWP and THREAD. These values are extracted from the
899 task Private_Data section of the Ada Task Control Block, and
900 their interpretation depends on the target. */
901 virtual ptid_t get_ada_task_ptid (long lwp, ULONGEST thread)
902 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
903
904 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
905 Return 0 if *READPTR is already at the end of the buffer.
906 Return -1 if there is insufficient buffer for a whole entry.
907 Return 1 if an entry was read into *TYPEP and *VALP. */
908 virtual int auxv_parse (const gdb_byte **readptr,
909 const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
910 TARGET_DEFAULT_FUNC (default_auxv_parse);
911
912 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
913 sequence of bytes in PATTERN with length PATTERN_LEN.
914
915 The result is 1 if found, 0 if not found, and -1 if there was an error
916 requiring halting of the search (e.g. memory read error).
917 If the pattern is found the address is recorded in FOUND_ADDRP. */
918 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
919 const gdb_byte *pattern, ULONGEST pattern_len,
920 CORE_ADDR *found_addrp)
921 TARGET_DEFAULT_FUNC (default_search_memory);
922
923 /* Can target execute in reverse? */
924 virtual bool can_execute_reverse ()
925 TARGET_DEFAULT_RETURN (false);
926
927 /* The direction the target is currently executing. Must be
928 implemented on targets that support reverse execution and async
929 mode. The default simply returns forward execution. */
930 virtual enum exec_direction_kind execution_direction ()
931 TARGET_DEFAULT_FUNC (default_execution_direction);
932
933 /* Does this target support debugging multiple processes
934 simultaneously? */
935 virtual bool supports_multi_process ()
936 TARGET_DEFAULT_RETURN (false);
937
938 /* Does this target support enabling and disabling tracepoints while a trace
939 experiment is running? */
940 virtual bool supports_enable_disable_tracepoint ()
941 TARGET_DEFAULT_RETURN (false);
942
943 /* Does this target support disabling address space randomization? */
944 virtual bool supports_disable_randomization ()
945 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
946
947 /* Does this target support the tracenz bytecode for string collection? */
948 virtual bool supports_string_tracing ()
949 TARGET_DEFAULT_RETURN (false);
950
951 /* Does this target support evaluation of breakpoint conditions on its
952 end? */
953 virtual bool supports_evaluation_of_breakpoint_conditions ()
954 TARGET_DEFAULT_RETURN (false);
955
956 /* Does this target support native dumpcore API? */
957 virtual bool supports_dumpcore ()
958 TARGET_DEFAULT_RETURN (false);
959
960 /* Generate the core file with native target API. */
961 virtual void dumpcore (const char *filename)
962 TARGET_DEFAULT_IGNORE ();
963
964 /* Does this target support evaluation of breakpoint commands on its
965 end? */
966 virtual bool can_run_breakpoint_commands ()
967 TARGET_DEFAULT_RETURN (false);
968
969 /* Determine current architecture of thread PTID.
970
971 The target is supposed to determine the architecture of the code where
972 the target is currently stopped at. The architecture information is
973 used to perform decr_pc_after_break adjustment, and also to determine
974 the frame architecture of the innermost frame. ptrace operations need to
975 operate according to the current inferior's gdbarch. */
976 virtual struct gdbarch *thread_architecture (ptid_t)
977 TARGET_DEFAULT_RETURN (NULL);
978
979 /* Target file operations. */
980
981 /* Return true if the filesystem seen by the current inferior
982 is the local filesystem, false otherwise. */
983 virtual bool filesystem_is_local ()
984 TARGET_DEFAULT_RETURN (true);
985
986 /* Open FILENAME on the target, in the filesystem as seen by INF,
987 using FLAGS and MODE. If INF is NULL, use the filesystem seen
988 by the debugger (GDB or, for remote targets, the remote stub).
989 If WARN_IF_SLOW is nonzero, print a warning message if the file
990 is being accessed over a link that may be slow. Return a
991 target file descriptor, or -1 if an error occurs (and set
992 *TARGET_ERRNO). */
993 virtual int fileio_open (struct inferior *inf, const char *filename,
994 int flags, int mode, int warn_if_slow,
995 fileio_error *target_errno);
996
997 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
998 Return the number of bytes written, or -1 if an error occurs
999 (and set *TARGET_ERRNO). */
1000 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
1001 ULONGEST offset, fileio_error *target_errno);
1002
1003 /* Read up to LEN bytes FD on the target into READ_BUF.
1004 Return the number of bytes read, or -1 if an error occurs
1005 (and set *TARGET_ERRNO). */
1006 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
1007 ULONGEST offset, fileio_error *target_errno);
1008
1009 /* Get information about the file opened as FD and put it in
1010 SB. Return 0 on success, or -1 if an error occurs (and set
1011 *TARGET_ERRNO). */
1012 virtual int fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno);
1013
1014 /* Close FD on the target. Return 0, or -1 if an error occurs
1015 (and set *TARGET_ERRNO). */
1016 virtual int fileio_close (int fd, fileio_error *target_errno);
1017
1018 /* Unlink FILENAME on the target, in the filesystem as seen by
1019 INF. If INF is NULL, use the filesystem seen by the debugger
1020 (GDB or, for remote targets, the remote stub). Return 0, or
1021 -1 if an error occurs (and set *TARGET_ERRNO). */
1022 virtual int fileio_unlink (struct inferior *inf,
1023 const char *filename,
1024 fileio_error *target_errno);
1025
1026 /* Read value of symbolic link FILENAME on the target, in the
1027 filesystem as seen by INF. If INF is NULL, use the filesystem
1028 seen by the debugger (GDB or, for remote targets, the remote
1029 stub). Return a string, or an empty optional if an error
1030 occurs (and set *TARGET_ERRNO). */
1031 virtual std::optional<std::string> fileio_readlink (struct inferior *inf,
1032 const char *filename,
1033 fileio_error *target_errno);
1034
1035 /* Implement the "info proc" command. Returns true if the target
1036 actually implemented the command, false otherwise. */
1037 virtual bool info_proc (const char *, enum info_proc_what);
1038
1039 /* Tracepoint-related operations. */
1040
1041 /* Prepare the target for a tracing run. */
1042 virtual void trace_init ()
1043 TARGET_DEFAULT_NORETURN (tcomplain ());
1044
1045 /* Send full details of a tracepoint location to the target. */
1046 virtual void download_tracepoint (struct bp_location *location)
1047 TARGET_DEFAULT_NORETURN (tcomplain ());
1048
1049 /* Is the target able to download tracepoint locations in current
1050 state? */
1051 virtual bool can_download_tracepoint ()
1052 TARGET_DEFAULT_RETURN (false);
1053
1054 /* Send full details of a trace state variable to the target. */
1055 virtual void download_trace_state_variable (const trace_state_variable &tsv)
1056 TARGET_DEFAULT_NORETURN (tcomplain ());
1057
1058 /* Enable a tracepoint on the target. */
1059 virtual void enable_tracepoint (struct bp_location *location)
1060 TARGET_DEFAULT_NORETURN (tcomplain ());
1061
1062 /* Disable a tracepoint on the target. */
1063 virtual void disable_tracepoint (struct bp_location *location)
1064 TARGET_DEFAULT_NORETURN (tcomplain ());
1065
1066 /* Inform the target info of memory regions that are readonly
1067 (such as text sections), and so it should return data from
1068 those rather than look in the trace buffer. */
1069 virtual void trace_set_readonly_regions ()
1070 TARGET_DEFAULT_NORETURN (tcomplain ());
1071
1072 /* Start a trace run. */
1073 virtual void trace_start ()
1074 TARGET_DEFAULT_NORETURN (tcomplain ());
1075
1076 /* Get the current status of a tracing run. */
1077 virtual int get_trace_status (struct trace_status *ts)
1078 TARGET_DEFAULT_RETURN (-1);
1079
1080 virtual void get_tracepoint_status (tracepoint *tp,
1081 struct uploaded_tp *utp)
1082 TARGET_DEFAULT_NORETURN (tcomplain ());
1083
1084 /* Stop a trace run. */
1085 virtual void trace_stop ()
1086 TARGET_DEFAULT_NORETURN (tcomplain ());
1087
1088 /* Ask the target to find a trace frame of the given type TYPE,
1089 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1090 number of the trace frame, and also the tracepoint number at
1091 TPP. If no trace frame matches, return -1. May throw if the
1092 operation fails. */
1093 virtual int trace_find (enum trace_find_type type, int num,
1094 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1095 TARGET_DEFAULT_RETURN (-1);
1096
1097 /* Get the value of the trace state variable number TSV, returning
1098 1 if the value is known and writing the value itself into the
1099 location pointed to by VAL, else returning 0. */
1100 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1101 TARGET_DEFAULT_RETURN (false);
1102
1103 virtual int save_trace_data (const char *filename)
1104 TARGET_DEFAULT_NORETURN (tcomplain ());
1105
1106 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1107 TARGET_DEFAULT_RETURN (0);
1108
1109 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1110 TARGET_DEFAULT_RETURN (0);
1111
1112 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1113 ULONGEST offset, LONGEST len)
1114 TARGET_DEFAULT_NORETURN (tcomplain ());
1115
1116 /* Get the minimum length of instruction on which a fast tracepoint
1117 may be set on the target. If this operation is unsupported,
1118 return -1. If for some reason the minimum length cannot be
1119 determined, return 0. */
1120 virtual int get_min_fast_tracepoint_insn_len ()
1121 TARGET_DEFAULT_RETURN (-1);
1122
1123 /* Set the target's tracing behavior in response to unexpected
1124 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1125 virtual void set_disconnected_tracing (int val)
1126 TARGET_DEFAULT_IGNORE ();
1127 virtual void set_circular_trace_buffer (int val)
1128 TARGET_DEFAULT_IGNORE ();
1129 /* Set the size of trace buffer in the target. */
1130 virtual void set_trace_buffer_size (LONGEST val)
1131 TARGET_DEFAULT_IGNORE ();
1132
1133 /* Add/change textual notes about the trace run, returning true if
1134 successful, false otherwise. */
1135 virtual bool set_trace_notes (const char *user, const char *notes,
1136 const char *stopnotes)
1137 TARGET_DEFAULT_RETURN (false);
1138
1139 /* Return the processor core that thread PTID was last seen on.
1140 This information is updated only when:
1141 - update_thread_list is called
1142 - thread stops
1143 If the core cannot be determined -- either for the specified
1144 thread, or right now, or in this debug session, or for this
1145 target -- return -1. */
1146 virtual int core_of_thread (ptid_t ptid)
1147 TARGET_DEFAULT_RETURN (-1);
1148
1149 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1150 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1151 a match, 0 if there's a mismatch, and -1 if an error is
1152 encountered while reading memory. */
1153 virtual int verify_memory (const gdb_byte *data,
1154 CORE_ADDR memaddr, ULONGEST size)
1155 TARGET_DEFAULT_FUNC (default_verify_memory);
1156
1157 /* Return the address of the start of the Thread Information Block
1158 a Windows OS specific feature. */
1159 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1160 TARGET_DEFAULT_NORETURN (tcomplain ());
1161
1162 /* Send the new settings of write permission variables. */
1163 virtual void set_permissions ()
1164 TARGET_DEFAULT_IGNORE ();
1165
1166 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1167 with its details. Return true on success, false on failure. */
1168 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1169 static_tracepoint_marker *marker)
1170 TARGET_DEFAULT_RETURN (false);
1171
1172 /* Return a vector of all tracepoints markers string id ID, or all
1173 markers if ID is NULL. */
1174 virtual std::vector<static_tracepoint_marker>
1175 static_tracepoint_markers_by_strid (const char *id)
1176 TARGET_DEFAULT_NORETURN (tcomplain ());
1177
1178 /* Return a traceframe info object describing the current
1179 traceframe's contents. This method should not cache data;
1180 higher layers take care of caching, invalidating, and
1181 re-fetching when necessary. */
1182 virtual traceframe_info_up traceframe_info ()
1183 TARGET_DEFAULT_NORETURN (tcomplain ());
1184
1185 /* Ask the target to use or not to use agent according to USE.
1186 Return true if successful, false otherwise. */
1187 virtual bool use_agent (bool use)
1188 TARGET_DEFAULT_NORETURN (tcomplain ());
1189
1190 /* Is the target able to use agent in current state? */
1191 virtual bool can_use_agent ()
1192 TARGET_DEFAULT_RETURN (false);
1193
1194 /* Enable branch tracing for TP using CONF configuration.
1195 Return a branch trace target information struct for reading and for
1196 disabling branch trace. */
1197 virtual struct btrace_target_info *enable_btrace (thread_info *tp,
1198 const struct btrace_config *conf)
1199 TARGET_DEFAULT_NORETURN (tcomplain ());
1200
1201 /* Disable branch tracing and deallocate TINFO. */
1202 virtual void disable_btrace (struct btrace_target_info *tinfo)
1203 TARGET_DEFAULT_NORETURN (tcomplain ());
1204
1205 /* Disable branch tracing and deallocate TINFO. This function is similar
1206 to to_disable_btrace, except that it is called during teardown and is
1207 only allowed to perform actions that are safe. A counter-example would
1208 be attempting to talk to a remote target. */
1209 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1211
1212 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1213 DATA is cleared before new trace is added. */
1214 virtual enum btrace_error read_btrace (struct btrace_data *data,
1215 struct btrace_target_info *btinfo,
1216 enum btrace_read_type type)
1217 TARGET_DEFAULT_NORETURN (tcomplain ());
1218
1219 /* Get the branch trace configuration. */
1220 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1221 TARGET_DEFAULT_RETURN (NULL);
1222
1223 /* Current recording method. */
1224 virtual enum record_method record_method (ptid_t ptid)
1225 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1226
1227 /* Stop trace recording. */
1228 virtual void stop_recording ()
1229 TARGET_DEFAULT_IGNORE ();
1230
1231 /* Print information about the recording. */
1232 virtual void info_record ()
1233 TARGET_DEFAULT_IGNORE ();
1234
1235 /* Save the recorded execution trace into a file. */
1236 virtual void save_record (const char *filename)
1237 TARGET_DEFAULT_NORETURN (tcomplain ());
1238
1239 /* Delete the recorded execution trace from the current position
1240 onwards. */
1241 virtual bool supports_delete_record ()
1242 TARGET_DEFAULT_RETURN (false);
1243 virtual void delete_record ()
1244 TARGET_DEFAULT_NORETURN (tcomplain ());
1245
1246 /* Query if the record target is currently replaying PTID. */
1247 virtual bool record_is_replaying (ptid_t ptid)
1248 TARGET_DEFAULT_RETURN (false);
1249
1250 /* Query if the record target will replay PTID if it were resumed in
1251 execution direction DIR. */
1252 virtual bool record_will_replay (ptid_t ptid, int dir)
1253 TARGET_DEFAULT_RETURN (false);
1254
1255 /* Stop replaying. */
1256 virtual void record_stop_replaying ()
1257 TARGET_DEFAULT_IGNORE ();
1258
1259 /* Go to the begin of the execution trace. */
1260 virtual void goto_record_begin ()
1261 TARGET_DEFAULT_NORETURN (tcomplain ());
1262
1263 /* Go to the end of the execution trace. */
1264 virtual void goto_record_end ()
1265 TARGET_DEFAULT_NORETURN (tcomplain ());
1266
1267 /* Go to a specific location in the recorded execution trace. */
1268 virtual void goto_record (ULONGEST insn)
1269 TARGET_DEFAULT_NORETURN (tcomplain ());
1270
1271 /* Disassemble SIZE instructions in the recorded execution trace from
1272 the current position.
1273 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1274 disassemble SIZE succeeding instructions. */
1275 virtual void insn_history (int size, gdb_disassembly_flags flags)
1276 TARGET_DEFAULT_NORETURN (tcomplain ());
1277
1278 /* Disassemble SIZE instructions in the recorded execution trace around
1279 FROM.
1280 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1281 disassemble SIZE instructions after FROM. */
1282 virtual void insn_history_from (ULONGEST from, int size,
1283 gdb_disassembly_flags flags)
1284 TARGET_DEFAULT_NORETURN (tcomplain ());
1285
1286 /* Disassemble a section of the recorded execution trace from instruction
1287 BEGIN (inclusive) to instruction END (inclusive). */
1288 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1289 gdb_disassembly_flags flags)
1290 TARGET_DEFAULT_NORETURN (tcomplain ());
1291
1292 /* Print a function trace of the recorded execution trace.
1293 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1294 succeeding functions. */
1295 virtual void call_history (int size, record_print_flags flags)
1296 TARGET_DEFAULT_NORETURN (tcomplain ());
1297
1298 /* Print a function trace of the recorded execution trace starting
1299 at function FROM.
1300 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1301 SIZE functions after FROM. */
1302 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1303 TARGET_DEFAULT_NORETURN (tcomplain ());
1304
1305 /* Print a function trace of an execution trace section from function BEGIN
1306 (inclusive) to function END (inclusive). */
1307 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1308 TARGET_DEFAULT_NORETURN (tcomplain ());
1309
1310 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1311 non-empty annex. */
1312 virtual bool augmented_libraries_svr4_read ()
1313 TARGET_DEFAULT_RETURN (false);
1314
1315 /* Those unwinders are tried before any other arch unwinders. If
1316 SELF doesn't have unwinders, it should delegate to the
1317 "beneath" target. */
1318 virtual const struct frame_unwind *get_unwinder ()
1319 TARGET_DEFAULT_RETURN (NULL);
1320
1321 virtual const struct frame_unwind *get_tailcall_unwinder ()
1322 TARGET_DEFAULT_RETURN (NULL);
1323
1324 /* Prepare to generate a core file. */
1325 virtual void prepare_to_generate_core ()
1326 TARGET_DEFAULT_IGNORE ();
1327
1328 /* Cleanup after generating a core file. */
1329 virtual void done_generating_core ()
1330 TARGET_DEFAULT_IGNORE ();
1331
1332 /* Returns true if the target supports memory tagging, false otherwise. */
1333 virtual bool supports_memory_tagging ()
1334 TARGET_DEFAULT_RETURN (false);
1335
1336 /* Return the allocated memory tags of type TYPE associated with
1337 [ADDRESS, ADDRESS + LEN) in TAGS.
1338
1339 LEN is the number of bytes in the memory range. TAGS is a vector of
1340 bytes containing the tags found in the above memory range.
1341
1342 It is up to the architecture/target to interpret the bytes in the TAGS
1343 vector and read the tags appropriately.
1344
1345 Returns true if fetching the tags succeeded and false otherwise. */
1346 virtual bool fetch_memtags (CORE_ADDR address, size_t len,
1347 gdb::byte_vector &tags, int type)
1348 TARGET_DEFAULT_NORETURN (tcomplain ());
1349
1350 /* Write the allocation tags of type TYPE contained in TAGS to the memory
1351 range [ADDRESS, ADDRESS + LEN).
1352
1353 LEN is the number of bytes in the memory range. TAGS is a vector of
1354 bytes containing the tags to be stored to the memory range.
1355
1356 It is up to the architecture/target to interpret the bytes in the TAGS
1357 vector and store them appropriately.
1358
1359 Returns true if storing the tags succeeded and false otherwise. */
1360 virtual bool store_memtags (CORE_ADDR address, size_t len,
1361 const gdb::byte_vector &tags, int type)
1362 TARGET_DEFAULT_NORETURN (tcomplain ());
1363
1364 /* Returns true if ADDRESS is tagged, otherwise returns false. */
1365 virtual bool is_address_tagged (gdbarch *gdbarch, CORE_ADDR address)
1366 TARGET_DEFAULT_NORETURN (tcomplain ());
1367
1368 /* Return the x86 XSAVE extended state area layout. */
1369 virtual x86_xsave_layout fetch_x86_xsave_layout ()
1370 TARGET_DEFAULT_RETURN (x86_xsave_layout ());
1371 };
1372
1373 /* Deleter for std::unique_ptr. See comments in
1374 target_ops::~target_ops and target_ops::close about heap-allocated
1375 targets. */
1376 struct target_ops_deleter
1377 {
1378 void operator() (target_ops *target)
1379 {
1380 target->close ();
1381 }
1382 };
1383
1384 /* A unique pointer for target_ops. */
1385 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1386
1387 /* A policy class to interface gdb::ref_ptr with target_ops. */
1388
1389 struct target_ops_ref_policy
1390 {
1391 static void incref (target_ops *t)
1392 {
1393 t->incref ();
1394 }
1395
1396 /* Decrement the reference count on T, and, if the reference count
1397 reaches zero, close the target. */
1398 static void decref (target_ops *t);
1399 };
1400
1401 /* A gdb::ref_ptr pointer to a target_ops. */
1402 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1403
1404 /* Native target backends call this once at initialization time to
1405 inform the core about which is the target that can respond to "run"
1406 or "attach". Note: native targets are always singletons. */
1407 extern void set_native_target (target_ops *target);
1408
1409 /* Get the registered native target, if there's one. Otherwise return
1410 NULL. */
1411 extern target_ops *get_native_target ();
1412
1413 /* Type that manages a target stack. See description of target stacks
1414 and strata at the top of the file. */
1415
1416 class target_stack
1417 {
1418 public:
1419 target_stack () = default;
1420 DISABLE_COPY_AND_ASSIGN (target_stack);
1421
1422 /* Push a new target into the stack of the existing target
1423 accessors, possibly superseding some existing accessor. */
1424 void push (target_ops *t);
1425
1426 /* Remove a target from the stack, wherever it may be. Return true
1427 if it was removed, false otherwise. */
1428 bool unpush (target_ops *t);
1429
1430 /* Returns true if T is pushed on the target stack. */
1431 bool is_pushed (const target_ops *t) const
1432 { return at (t->stratum ()) == t; }
1433
1434 /* Return the target at STRATUM. */
1435 target_ops *at (strata stratum) const { return m_stack[stratum].get (); }
1436
1437 /* Return the target at the top of the stack. */
1438 target_ops *top () const { return at (m_top); }
1439
1440 /* Find the next target down the stack from the specified target. */
1441 target_ops *find_beneath (const target_ops *t) const;
1442
1443 private:
1444 /* The stratum of the top target. */
1445 enum strata m_top {};
1446
1447 /* The stack, represented as an array, with one slot per stratum.
1448 If no target is pushed at some stratum, the corresponding slot is
1449 null. */
1450 std::array<target_ops_ref, (int) debug_stratum + 1> m_stack;
1451 };
1452
1453 /* Return the dummy target. */
1454 extern target_ops *get_dummy_target ();
1455
1456 /* Define easy words for doing these operations on our current target. */
1457
1458 extern const char *target_shortname ();
1459
1460 /* Find the correct target to use for "attach". If a target on the
1461 current stack supports attaching, then it is returned. Otherwise,
1462 the default run target is returned. */
1463
1464 extern struct target_ops *find_attach_target (void);
1465
1466 /* Find the correct target to use for "run". If a target on the
1467 current stack supports creating a new inferior, then it is
1468 returned. Otherwise, the default run target is returned. */
1469
1470 extern struct target_ops *find_run_target (void);
1471
1472 /* Some targets don't generate traps when attaching to the inferior,
1473 or their target_attach implementation takes care of the waiting.
1474 These targets must set to_attach_no_wait. */
1475
1476 extern bool target_attach_no_wait ();
1477
1478 /* The target_attach operation places a process under debugger control,
1479 and stops the process.
1480
1481 This operation provides a target-specific hook that allows the
1482 necessary bookkeeping to be performed after an attach completes. */
1483
1484 extern void target_post_attach (int pid);
1485
1486 /* Display a message indicating we're about to attach to a given
1487 process. */
1488
1489 extern void target_announce_attach (int from_tty, int pid);
1490
1491 /* Display a message indicating we're about to detach from the current
1492 inferior process. */
1493
1494 extern void target_announce_detach (int from_tty);
1495
1496 /* Takes a program previously attached to and detaches it.
1497 The program may resume execution (some targets do, some don't) and will
1498 no longer stop on signals, etc. We better not have left any breakpoints
1499 in the program or it'll die when it hits one. FROM_TTY says whether to be
1500 verbose or not. */
1501
1502 extern void target_detach (inferior *inf, int from_tty);
1503
1504 /* Disconnect from the current target without resuming it (leaving it
1505 waiting for a debugger). */
1506
1507 extern void target_disconnect (const char *, int);
1508
1509 /* Resume execution (or prepare for execution) of the current thread
1510 (INFERIOR_PTID), while optionally letting other threads of the
1511 current process or all processes run free.
1512
1513 STEP says whether to hardware single-step the current thread or to
1514 let it run free; SIGNAL is the signal to be given to the current
1515 thread, or GDB_SIGNAL_0 for no signal. The caller may not pass
1516 GDB_SIGNAL_DEFAULT.
1517
1518 SCOPE_PTID indicates the resumption scope. I.e., which threads
1519 (other than the current) run free. If resuming a single thread,
1520 SCOPE_PTID is the same thread as the current thread. A wildcard
1521 SCOPE_PTID (all threads, or all threads of process) lets threads
1522 other than the current (for which the wildcard SCOPE_PTID matches)
1523 resume with their 'thread->suspend.stop_signal' signal (usually
1524 GDB_SIGNAL_0) if it is in "pass" state, or with no signal if in "no
1525 pass" state. Note neither STEP nor SIGNAL apply to any thread
1526 other than the current.
1527
1528 In order to efficiently handle batches of resumption requests,
1529 targets may implement this method such that it records the
1530 resumption request, but defers the actual resumption to the
1531 target_commit_resume method implementation. See
1532 target_commit_resume below. */
1533 extern void target_resume (ptid_t scope_ptid,
1534 int step, enum gdb_signal signal);
1535
1536 /* Ensure that all resumed threads are committed to the target.
1537
1538 See the description of process_stratum_target::commit_resumed_state
1539 for more details. */
1540 extern void target_commit_resumed ();
1541
1542 /* For target_read_memory see target/target.h. */
1543
1544 /* The default target_ops::to_wait implementation. */
1545
1546 extern ptid_t default_target_wait (struct target_ops *ops,
1547 ptid_t ptid,
1548 struct target_waitstatus *status,
1549 target_wait_flags options);
1550
1551 /* Return true if the target has pending events to report to the core.
1552 See target_ops::has_pending_events(). */
1553
1554 extern bool target_has_pending_events ();
1555
1556 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1557
1558 extern void target_fetch_registers (struct regcache *regcache, int regno);
1559
1560 /* Store at least register REGNO, or all regs if REGNO == -1.
1561 It can store as many registers as it wants to, so target_prepare_to_store
1562 must have been previously called. Calls error() if there are problems. */
1563
1564 extern void target_store_registers (struct regcache *regcache, int regs);
1565
1566 /* Get ready to modify the registers array. On machines which store
1567 individual registers, this doesn't need to do anything. On machines
1568 which store all the registers in one fell swoop, this makes sure
1569 that REGISTERS contains all the registers from the program being
1570 debugged. */
1571
1572 extern void target_prepare_to_store (regcache *regcache);
1573
1574 /* Implement the "info proc" command. This returns one if the request
1575 was handled, and zero otherwise. It can also throw an exception if
1576 an error was encountered while attempting to handle the
1577 request. */
1578
1579 int target_info_proc (const char *, enum info_proc_what);
1580
1581 /* Returns true if this target can disable address space randomization. */
1582
1583 int target_supports_disable_randomization (void);
1584
1585 /* Returns true if this target can enable and disable tracepoints
1586 while a trace experiment is running. */
1587
1588 extern bool target_supports_enable_disable_tracepoint ();
1589
1590 extern bool target_supports_string_tracing ();
1591
1592 /* Returns true if this target can handle breakpoint conditions
1593 on its end. */
1594
1595 extern bool target_supports_evaluation_of_breakpoint_conditions ();
1596
1597 /* Does this target support dumpcore API? */
1598
1599 extern bool target_supports_dumpcore ();
1600
1601 /* Generate the core file with target API. */
1602
1603 extern void target_dumpcore (const char *filename);
1604
1605 /* Returns true if this target can handle breakpoint commands
1606 on its end. */
1607
1608 extern bool target_can_run_breakpoint_commands ();
1609
1610 /* For target_read_memory see target/target.h. */
1611
1612 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1613 ssize_t len);
1614
1615 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1616
1617 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1618
1619 /* For target_write_memory see target/target.h. */
1620
1621 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1622 ssize_t len);
1623
1624 /* Fetches the target's memory map. If one is found it is sorted
1625 and returned, after some consistency checking. Otherwise, NULL
1626 is returned. */
1627 std::vector<mem_region> target_memory_map (void);
1628
1629 /* Erases all flash memory regions on the target. */
1630 void flash_erase_command (const char *cmd, int from_tty);
1631
1632 /* Erase the specified flash region. */
1633 void target_flash_erase (ULONGEST address, LONGEST length);
1634
1635 /* Finish a sequence of flash operations. */
1636 void target_flash_done (void);
1637
1638 /* Describes a request for a memory write operation. */
1639 struct memory_write_request
1640 {
1641 memory_write_request (ULONGEST begin_, ULONGEST end_,
1642 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1643 : begin (begin_), end (end_), data (data_), baton (baton_)
1644 {}
1645
1646 /* Begining address that must be written. */
1647 ULONGEST begin;
1648 /* Past-the-end address. */
1649 ULONGEST end;
1650 /* The data to write. */
1651 gdb_byte *data;
1652 /* A callback baton for progress reporting for this request. */
1653 void *baton;
1654 };
1655
1656 /* Enumeration specifying different flash preservation behaviour. */
1657 enum flash_preserve_mode
1658 {
1659 flash_preserve,
1660 flash_discard
1661 };
1662
1663 /* Write several memory blocks at once. This version can be more
1664 efficient than making several calls to target_write_memory, in
1665 particular because it can optimize accesses to flash memory.
1666
1667 Moreover, this is currently the only memory access function in gdb
1668 that supports writing to flash memory, and it should be used for
1669 all cases where access to flash memory is desirable.
1670
1671 REQUESTS is the vector of memory_write_request.
1672 PRESERVE_FLASH_P indicates what to do with blocks which must be
1673 erased, but not completely rewritten.
1674 PROGRESS_CB is a function that will be periodically called to provide
1675 feedback to user. It will be called with the baton corresponding
1676 to the request currently being written. It may also be called
1677 with a NULL baton, when preserved flash sectors are being rewritten.
1678
1679 The function returns 0 on success, and error otherwise. */
1680 int target_write_memory_blocks
1681 (const std::vector<memory_write_request> &requests,
1682 enum flash_preserve_mode preserve_flash_p,
1683 void (*progress_cb) (ULONGEST, void *));
1684
1685 /* Print a line about the current target. */
1686
1687 extern void target_files_info ();
1688
1689 /* Insert a breakpoint at address BP_TGT->placed_address in
1690 the target machine. Returns 0 for success, and returns non-zero or
1691 throws an error (with a detailed failure reason error code and
1692 message) otherwise. */
1693
1694 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1695 struct bp_target_info *bp_tgt);
1696
1697 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1698 machine. Result is 0 for success, non-zero for error. */
1699
1700 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1701 struct bp_target_info *bp_tgt,
1702 enum remove_bp_reason reason);
1703
1704 /* Return true if the target stack has a non-default
1705 "terminal_ours" method. */
1706
1707 extern bool target_supports_terminal_ours (void);
1708
1709 /* Kill the inferior process. Make it go away. */
1710
1711 extern void target_kill (void);
1712
1713 /* Load an executable file into the target process. This is expected
1714 to not only bring new code into the target process, but also to
1715 update GDB's symbol tables to match.
1716
1717 ARG contains command-line arguments, to be broken down with
1718 buildargv (). The first non-switch argument is the filename to
1719 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1720 0)), which is an offset to apply to the load addresses of FILE's
1721 sections. The target may define switches, or other non-switch
1722 arguments, as it pleases. */
1723
1724 extern void target_load (const char *arg, int from_tty);
1725
1726 /* On some targets, we can catch an inferior fork or vfork event when
1727 it occurs. These functions insert/remove an already-created
1728 catchpoint for such events. They return 0 for success, 1 if the
1729 catchpoint type is not supported and -1 for failure. */
1730
1731 extern int target_insert_fork_catchpoint (int pid);
1732
1733 extern int target_remove_fork_catchpoint (int pid);
1734
1735 extern int target_insert_vfork_catchpoint (int pid);
1736
1737 extern int target_remove_vfork_catchpoint (int pid);
1738
1739 /* Call the follow_fork method on the current target stack.
1740
1741 This function is called when the inferior forks or vforks, to perform any
1742 bookkeeping and fiddling necessary to continue debugging either the parent,
1743 the child or both. */
1744
1745 void target_follow_fork (inferior *inf, ptid_t child_ptid,
1746 target_waitkind fork_kind, bool follow_child,
1747 bool detach_fork);
1748
1749 /* Handle the target-specific bookkeeping required when the inferior makes an
1750 exec call.
1751
1752 The current inferior at the time of the call is the inferior that did the
1753 exec. FOLLOW_INF is the inferior in which execution continues post-exec.
1754 If "follow-exec-mode" is "same", FOLLOW_INF is the same as the current
1755 inferior, meaning that execution continues with the same inferior. If
1756 "follow-exec-mode" is "new", FOLLOW_INF is a different inferior, meaning
1757 that execution continues in a new inferior.
1758
1759 On exit, the target must leave FOLLOW_INF as the current inferior. */
1760
1761 void target_follow_exec (inferior *follow_inf, ptid_t ptid,
1762 const char *execd_pathname);
1763
1764 /* On some targets, we can catch an inferior exec event when it
1765 occurs. These functions insert/remove an already-created
1766 catchpoint for such events. They return 0 for success, 1 if the
1767 catchpoint type is not supported and -1 for failure. */
1768
1769 extern int target_insert_exec_catchpoint (int pid);
1770
1771 extern int target_remove_exec_catchpoint (int pid);
1772
1773 /* Syscall catch.
1774
1775 NEEDED is true if any syscall catch (of any kind) is requested.
1776 If NEEDED is false, it means the target can disable the mechanism to
1777 catch system calls because there are no more catchpoints of this type.
1778
1779 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1780 being requested. In this case, SYSCALL_COUNTS should be ignored.
1781
1782 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1783 element in this array is nonzero if that syscall should be caught.
1784 This argument only matters if ANY_COUNT is zero.
1785
1786 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1787 for failure. */
1788
1789 extern int target_set_syscall_catchpoint
1790 (int pid, bool needed, int any_count,
1791 gdb::array_view<const int> syscall_counts);
1792
1793 /* The debugger has completed a blocking wait() call. There is now
1794 some process event that must be processed. This function should
1795 be defined by those targets that require the debugger to perform
1796 cleanup or internal state changes in response to the process event. */
1797
1798 /* For target_mourn_inferior see target/target.h. */
1799
1800 /* Does target have enough data to do a run or attach command? */
1801
1802 extern int target_can_run ();
1803
1804 /* Set list of signals to be handled in the target.
1805
1806 PASS_SIGNALS is an array indexed by target signal number
1807 (enum gdb_signal). For every signal whose entry in this array is
1808 non-zero, the target is allowed -but not required- to skip reporting
1809 arrival of the signal to the GDB core by returning from target_wait,
1810 and to pass the signal directly to the inferior instead.
1811
1812 However, if the target is hardware single-stepping a thread that is
1813 about to receive a signal, it needs to be reported in any case, even
1814 if mentioned in a previous target_pass_signals call. */
1815
1816 extern void target_pass_signals
1817 (gdb::array_view<const unsigned char> pass_signals);
1818
1819 /* Set list of signals the target may pass to the inferior. This
1820 directly maps to the "handle SIGNAL pass/nopass" setting.
1821
1822 PROGRAM_SIGNALS is an array indexed by target signal
1823 number (enum gdb_signal). For every signal whose entry in this
1824 array is non-zero, the target is allowed to pass the signal to the
1825 inferior. Signals not present in the array shall be silently
1826 discarded. This does not influence whether to pass signals to the
1827 inferior as a result of a target_resume call. This is useful in
1828 scenarios where the target needs to decide whether to pass or not a
1829 signal to the inferior without GDB core involvement, such as for
1830 example, when detaching (as threads may have been suspended with
1831 pending signals not reported to GDB). */
1832
1833 extern void target_program_signals
1834 (gdb::array_view<const unsigned char> program_signals);
1835
1836 /* Check to see if a thread is still alive. */
1837
1838 extern int target_thread_alive (ptid_t ptid);
1839
1840 /* Sync the target's threads with GDB's thread list. */
1841
1842 extern void target_update_thread_list (void);
1843
1844 /* Make target stop in a continuable fashion. (For instance, under
1845 Unix, this should act like SIGSTOP). Note that this function is
1846 asynchronous: it does not wait for the target to become stopped
1847 before returning. If this is the behavior you want please use
1848 target_stop_and_wait. */
1849
1850 extern void target_stop (ptid_t ptid);
1851
1852 /* Interrupt the target. Unlike target_stop, this does not specify
1853 which thread/process reports the stop. For most target this acts
1854 like raising a SIGINT, though that's not absolutely required. This
1855 function is asynchronous. */
1856
1857 extern void target_interrupt ();
1858
1859 /* Pass a ^C, as determined to have been pressed by checking the quit
1860 flag, to the target, as if the user had typed the ^C on the
1861 inferior's controlling terminal while the inferior was in the
1862 foreground. Remote targets may take the opportunity to detect the
1863 remote side is not responding and offer to disconnect. */
1864
1865 extern void target_pass_ctrlc (void);
1866
1867 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1868 target_interrupt. */
1869 extern void default_target_pass_ctrlc (struct target_ops *ops);
1870
1871 /* Send the specified COMMAND to the target's monitor
1872 (shell,interpreter) for execution. The result of the query is
1873 placed in OUTBUF. */
1874
1875 extern void target_rcmd (const char *command, struct ui_file *outbuf);
1876
1877 /* Does the target include memory? (Dummy targets don't.) */
1878
1879 extern int target_has_memory ();
1880
1881 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1882 we start a process.) */
1883
1884 extern int target_has_stack ();
1885
1886 /* Does the target have registers? (Exec files don't.) */
1887
1888 extern int target_has_registers ();
1889
1890 /* Does the target have execution? Can we make it jump (through
1891 hoops), or pop its stack a few times? This means that the current
1892 target is currently executing; for some targets, that's the same as
1893 whether or not the target is capable of execution, but there are
1894 also targets which can be current while not executing. In that
1895 case this will become true after to_create_inferior or
1896 to_attach. INF is the inferior to use; nullptr means to use the
1897 current inferior. */
1898
1899 extern bool target_has_execution (inferior *inf = nullptr);
1900
1901 /* Can the target support the debugger control of thread execution?
1902 Can it lock the thread scheduler? */
1903
1904 extern bool target_can_lock_scheduler ();
1905
1906 /* Controls whether async mode is permitted. */
1907 extern bool target_async_permitted;
1908
1909 /* Can the target support asynchronous execution? */
1910 extern bool target_can_async_p ();
1911
1912 /* An overload of the above that can be called when the target is not yet
1913 pushed, this calls TARGET::can_async_p directly. */
1914 extern bool target_can_async_p (struct target_ops *target);
1915
1916 /* Is the target in asynchronous execution mode? */
1917 extern bool target_is_async_p ();
1918
1919 /* Enables/disabled async target events. */
1920 extern void target_async (bool enable);
1921
1922 /* Enables/disables thread create and exit events. */
1923 extern void target_thread_events (int enable);
1924
1925 /* Returns true if the target supports setting thread options
1926 OPTIONS. */
1927 extern bool target_supports_set_thread_options (gdb_thread_options options);
1928
1929 /* Whether support for controlling the target backends always in
1930 non-stop mode is enabled. */
1931 extern enum auto_boolean target_non_stop_enabled;
1932
1933 /* Is the target in non-stop mode? Some targets control the inferior
1934 in non-stop mode even with "set non-stop off". Always true if "set
1935 non-stop" is on. */
1936 extern bool target_is_non_stop_p ();
1937
1938 /* Return true if at least one inferior has a non-stop target. */
1939 extern bool exists_non_stop_target ();
1940
1941 extern exec_direction_kind target_execution_direction ();
1942
1943 /* Converts a process id to a string. Usually, the string just contains
1944 `process xyz', but on some systems it may contain
1945 `process xyz thread abc'. */
1946
1947 extern std::string target_pid_to_str (ptid_t ptid);
1948
1949 extern std::string normal_pid_to_str (ptid_t ptid);
1950
1951 /* Return a short string describing extra information about PID,
1952 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1953 is okay. */
1954
1955 extern const char *target_extra_thread_info (thread_info *tp);
1956
1957 /* Return the thread's name, or NULL if the target is unable to determine it.
1958 The returned value must not be freed by the caller.
1959
1960 You likely don't want to call this function, but use the thread_name
1961 function instead, which prefers the user-given thread name, if set. */
1962
1963 extern const char *target_thread_name (struct thread_info *);
1964
1965 /* Given a pointer to a thread library specific thread handle and
1966 its length, return a pointer to the corresponding thread_info struct. */
1967
1968 extern struct thread_info *target_thread_handle_to_thread_info
1969 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1970
1971 /* Given a thread, return the thread handle, a target-specific sequence of
1972 bytes which serves as a thread identifier within the program being
1973 debugged. */
1974 extern gdb::array_view<const gdb_byte> target_thread_info_to_thread_handle
1975 (struct thread_info *);
1976
1977 /* Attempts to find the pathname of the executable file
1978 that was run to create a specified process.
1979
1980 The process PID must be stopped when this operation is used.
1981
1982 If the executable file cannot be determined, NULL is returned.
1983
1984 Else, a pointer to a character string containing the pathname
1985 is returned. This string should be copied into a buffer by
1986 the client if the string will not be immediately used, or if
1987 it must persist. */
1988
1989 extern const char *target_pid_to_exec_file (int pid);
1990
1991 /* See the to_thread_architecture description in struct target_ops. */
1992
1993 extern gdbarch *target_thread_architecture (ptid_t ptid);
1994
1995 /*
1996 * Iterator function for target memory regions.
1997 * Calls a callback function once for each memory region 'mapped'
1998 * in the child process. Defined as a simple macro rather than
1999 * as a function macro so that it can be tested for nullity.
2000 */
2001
2002 extern int target_find_memory_regions (find_memory_region_ftype func,
2003 void *data);
2004
2005 /*
2006 * Compose corefile .note section.
2007 */
2008
2009 extern gdb::unique_xmalloc_ptr<char> target_make_corefile_notes (bfd *bfd,
2010 int *size_p);
2011
2012 /* Bookmark interfaces. */
2013 extern gdb_byte *target_get_bookmark (const char *args, int from_tty);
2014
2015 extern void target_goto_bookmark (const gdb_byte *arg, int from_tty);
2016
2017 /* Hardware watchpoint interfaces. */
2018
2019 /* GDB's current model is that there are three "kinds" of watchpoints,
2020 with respect to when they trigger and how you can move past them.
2021
2022 Those are: continuable, steppable, and non-steppable.
2023
2024 Continuable watchpoints are like x86's -- those trigger after the
2025 memory access's side effects are fully committed to memory. I.e.,
2026 they trap with the PC pointing at the next instruction already.
2027 Continuing past such a watchpoint is doable by just normally
2028 continuing, hence the name.
2029
2030 Both steppable and non-steppable watchpoints trap before the memory
2031 access. I.e, the PC points at the instruction that is accessing
2032 the memory. So GDB needs to single-step once past the current
2033 instruction in order to make the access effective and check whether
2034 the instruction's side effects change the watched expression.
2035
2036 Now, in order to step past that instruction, depending on
2037 architecture and target, you can have two situations:
2038
2039 - steppable watchpoints: you can single-step with the watchpoint
2040 still armed, and the watchpoint won't trigger again.
2041
2042 - non-steppable watchpoints: if you try to single-step with the
2043 watchpoint still armed, you'd trap the watchpoint again and the
2044 thread wouldn't make any progress. So GDB needs to temporarily
2045 remove the watchpoint in order to step past it.
2046
2047 If your target/architecture does not signal that it has either
2048 steppable or non-steppable watchpoints via either
2049 target_have_steppable_watchpoint or
2050 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
2051 watchpoints. */
2052
2053 /* Returns true if we were stopped by a hardware watchpoint (memory read or
2054 write). Only the INFERIOR_PTID task is being queried. */
2055
2056 extern bool target_stopped_by_watchpoint ();
2057
2058 /* Returns true if the target stopped because it executed a
2059 software breakpoint instruction. */
2060
2061 extern bool target_stopped_by_sw_breakpoint ();
2062
2063 extern bool target_supports_stopped_by_sw_breakpoint ();
2064
2065 extern bool target_stopped_by_hw_breakpoint ();
2066
2067 extern bool target_supports_stopped_by_hw_breakpoint ();
2068
2069 /* True if we have steppable watchpoints */
2070
2071 extern bool target_have_steppable_watchpoint ();
2072
2073 /* Provide defaults for hardware watchpoint functions. */
2074
2075 /* If the *_hw_breakpoint functions have not been defined
2076 elsewhere use the definitions in the target vector. */
2077
2078 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2079 Returns negative if the target doesn't have enough hardware debug
2080 registers available. Return zero if hardware watchpoint of type
2081 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2082 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2083 CNT is the number of such watchpoints used so far, including this
2084 one. OTHERTYPE is the number of watchpoints of other types than
2085 this one used so far. */
2086
2087 extern int target_can_use_hardware_watchpoint (bptype type, int cnt,
2088 int othertype);
2089
2090 /* Returns the number of debug registers needed to watch the given
2091 memory region, or zero if not supported. */
2092
2093 extern int target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len);
2094
2095 extern int target_can_do_single_step ();
2096
2097 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2098 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2099 COND is the expression for its condition, or NULL if there's none.
2100 Returns 0 for success, 1 if the watchpoint type is not supported,
2101 -1 for failure. */
2102
2103 extern int target_insert_watchpoint (CORE_ADDR addr, int len,
2104 target_hw_bp_type type, expression *cond);
2105
2106 extern int target_remove_watchpoint (CORE_ADDR addr, int len,
2107 target_hw_bp_type type, expression *cond);
2108
2109 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2110 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2111 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2112 masked watchpoints are not supported, -1 for failure. */
2113
2114 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2115 enum target_hw_bp_type);
2116
2117 /* Remove a masked watchpoint at ADDR with the mask MASK.
2118 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2119 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2120 for failure. */
2121
2122 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2123 enum target_hw_bp_type);
2124
2125 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2126 the target machine. Returns 0 for success, and returns non-zero or
2127 throws an error (with a detailed failure reason error code and
2128 message) otherwise. */
2129
2130 extern int target_insert_hw_breakpoint (gdbarch *gdbarch,
2131 bp_target_info *bp_tgt);
2132
2133 extern int target_remove_hw_breakpoint (gdbarch *gdbarch,
2134 bp_target_info *bp_tgt);
2135
2136 /* Return number of debug registers needed for a ranged breakpoint,
2137 or -1 if ranged breakpoints are not supported. */
2138
2139 extern int target_ranged_break_num_registers (void);
2140
2141 /* Return non-zero if target knows the data address which triggered this
2142 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2143 INFERIOR_PTID task is being queried. */
2144 #define target_stopped_data_address(target, addr_p) \
2145 (target)->stopped_data_address (addr_p)
2146
2147 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2148 LENGTH bytes beginning at START. */
2149 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2150 (target)->watchpoint_addr_within_range (addr, start, length)
2151
2152 /* Return non-zero if the target is capable of using hardware to evaluate
2153 the condition expression. In this case, if the condition is false when
2154 the watched memory location changes, execution may continue without the
2155 debugger being notified.
2156
2157 Due to limitations in the hardware implementation, it may be capable of
2158 avoiding triggering the watchpoint in some cases where the condition
2159 expression is false, but may report some false positives as well.
2160 For this reason, GDB will still evaluate the condition expression when
2161 the watchpoint triggers. */
2162
2163 extern bool target_can_accel_watchpoint_condition (CORE_ADDR addr, int len,
2164 int type, expression *cond);
2165
2166 /* Return number of debug registers needed for a masked watchpoint,
2167 -1 if masked watchpoints are not supported or -2 if the given address
2168 and mask combination cannot be used. */
2169
2170 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2171
2172 /* Target can execute in reverse? */
2173
2174 extern bool target_can_execute_reverse ();
2175
2176 extern const struct target_desc *target_read_description (struct target_ops *);
2177
2178 extern ptid_t target_get_ada_task_ptid (long lwp, ULONGEST tid);
2179
2180 /* Main entry point for searching memory. */
2181 extern int target_search_memory (CORE_ADDR start_addr,
2182 ULONGEST search_space_len,
2183 const gdb_byte *pattern,
2184 ULONGEST pattern_len,
2185 CORE_ADDR *found_addrp);
2186
2187 /* Target file operations. */
2188
2189 /* Return true if the filesystem seen by the current inferior
2190 is the local filesystem, zero otherwise. */
2191
2192 extern bool target_filesystem_is_local ();
2193
2194 /* Open FILENAME on the target, in the filesystem as seen by INF,
2195 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2196 the debugger (GDB or, for remote targets, the remote stub). Return
2197 a target file descriptor, or -1 if an error occurs (and set
2198 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2199 if the file is being accessed over a link that may be slow. */
2200 extern int target_fileio_open (struct inferior *inf,
2201 const char *filename, int flags,
2202 int mode, bool warn_if_slow,
2203 fileio_error *target_errno);
2204
2205 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2206 Return the number of bytes written, or -1 if an error occurs
2207 (and set *TARGET_ERRNO). */
2208 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2209 ULONGEST offset, fileio_error *target_errno);
2210
2211 /* Read up to LEN bytes FD on the target into READ_BUF.
2212 Return the number of bytes read, or -1 if an error occurs
2213 (and set *TARGET_ERRNO). */
2214 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2215 ULONGEST offset, fileio_error *target_errno);
2216
2217 /* Get information about the file opened as FD on the target
2218 and put it in SB. Return 0 on success, or -1 if an error
2219 occurs (and set *TARGET_ERRNO). */
2220 extern int target_fileio_fstat (int fd, struct stat *sb,
2221 fileio_error *target_errno);
2222
2223 /* Close FD on the target. Return 0, or -1 if an error occurs
2224 (and set *TARGET_ERRNO). */
2225 extern int target_fileio_close (int fd, fileio_error *target_errno);
2226
2227 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2228 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2229 for remote targets, the remote stub). Return 0, or -1 if an error
2230 occurs (and set *TARGET_ERRNO). */
2231 extern int target_fileio_unlink (struct inferior *inf,
2232 const char *filename,
2233 fileio_error *target_errno);
2234
2235 /* Read value of symbolic link FILENAME on the target, in the
2236 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2237 by the debugger (GDB or, for remote targets, the remote stub).
2238 Return a null-terminated string allocated via xmalloc, or NULL if
2239 an error occurs (and set *TARGET_ERRNO). */
2240 extern std::optional<std::string> target_fileio_readlink
2241 (struct inferior *inf, const char *filename, fileio_error *target_errno);
2242
2243 /* Read target file FILENAME, in the filesystem as seen by INF. If
2244 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2245 remote targets, the remote stub). The return value will be -1 if
2246 the transfer fails or is not supported; 0 if the object is empty;
2247 or the length of the object otherwise. If a positive value is
2248 returned, a sufficiently large buffer will be allocated using
2249 xmalloc and returned in *BUF_P containing the contents of the
2250 object.
2251
2252 This method should be used for objects sufficiently small to store
2253 in a single xmalloc'd buffer, when no fixed bound on the object's
2254 size is known in advance. */
2255 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2256 const char *filename,
2257 gdb_byte **buf_p);
2258
2259 /* Read target file FILENAME, in the filesystem as seen by INF. If
2260 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2261 remote targets, the remote stub). The result is NUL-terminated and
2262 returned as a string, allocated using xmalloc. If an error occurs
2263 or the transfer is unsupported, NULL is returned. Empty objects
2264 are returned as allocated but empty strings. A warning is issued
2265 if the result contains any embedded NUL bytes. */
2266 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2267 (struct inferior *inf, const char *filename);
2268
2269 /* Invalidate the target associated with open handles that were open
2270 on target TARG, since we're about to close (and maybe destroy) the
2271 target. The handles remain open from the client's perspective, but
2272 trying to do anything with them other than closing them will fail
2273 with EIO. */
2274 extern void fileio_handles_invalidate_target (target_ops *targ);
2275
2276 /* Tracepoint-related operations. */
2277
2278 extern void target_trace_init ();
2279
2280 extern void target_download_tracepoint (bp_location *location);
2281
2282 extern bool target_can_download_tracepoint ();
2283
2284 extern void target_download_trace_state_variable (const trace_state_variable &tsv);
2285
2286 extern void target_enable_tracepoint (bp_location *loc);
2287
2288 extern void target_disable_tracepoint (bp_location *loc);
2289
2290 extern void target_trace_start ();
2291
2292 extern void target_trace_set_readonly_regions ();
2293
2294 extern int target_get_trace_status (trace_status *ts);
2295
2296 extern void target_get_tracepoint_status (tracepoint *tp, uploaded_tp *utp);
2297
2298 extern void target_trace_stop ();
2299
2300 extern int target_trace_find (trace_find_type type, int num, CORE_ADDR addr1,
2301 CORE_ADDR addr2, int *tpp);
2302
2303 extern bool target_get_trace_state_variable_value (int tsv, LONGEST *val);
2304
2305 extern int target_save_trace_data (const char *filename);
2306
2307 extern int target_upload_tracepoints (uploaded_tp **utpp);
2308
2309 extern int target_upload_trace_state_variables (uploaded_tsv **utsvp);
2310
2311 extern LONGEST target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset,
2312 LONGEST len);
2313
2314 extern int target_get_min_fast_tracepoint_insn_len ();
2315
2316 extern void target_set_disconnected_tracing (int val);
2317
2318 extern void target_set_circular_trace_buffer (int val);
2319
2320 extern void target_set_trace_buffer_size (LONGEST val);
2321
2322 extern bool target_set_trace_notes (const char *user, const char *notes,
2323 const char *stopnotes);
2324
2325 extern bool target_get_tib_address (ptid_t ptid, CORE_ADDR *addr);
2326
2327 extern void target_set_permissions ();
2328
2329 extern bool target_static_tracepoint_marker_at
2330 (CORE_ADDR addr, static_tracepoint_marker *marker);
2331
2332 extern std::vector<static_tracepoint_marker>
2333 target_static_tracepoint_markers_by_strid (const char *marker_id);
2334
2335 extern traceframe_info_up target_traceframe_info ();
2336
2337 extern bool target_use_agent (bool use);
2338
2339 extern bool target_can_use_agent ();
2340
2341 extern bool target_augmented_libraries_svr4_read ();
2342
2343 extern bool target_supports_memory_tagging ();
2344
2345 extern bool target_fetch_memtags (CORE_ADDR address, size_t len,
2346 gdb::byte_vector &tags, int type);
2347
2348 extern bool target_store_memtags (CORE_ADDR address, size_t len,
2349 const gdb::byte_vector &tags, int type);
2350
2351 extern bool target_is_address_tagged (gdbarch *gdbarch, CORE_ADDR address);
2352
2353 extern x86_xsave_layout target_fetch_x86_xsave_layout ();
2354
2355 /* Command logging facility. */
2356
2357 extern void target_log_command (const char *p);
2358
2359 extern int target_core_of_thread (ptid_t ptid);
2360
2361 /* See to_get_unwinder in struct target_ops. */
2362 extern const struct frame_unwind *target_get_unwinder (void);
2363
2364 /* See to_get_tailcall_unwinder in struct target_ops. */
2365 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2366
2367 /* This implements basic memory verification, reading target memory
2368 and performing the comparison here (as opposed to accelerated
2369 verification making use of the qCRC packet, for example). */
2370
2371 extern int simple_verify_memory (struct target_ops* ops,
2372 const gdb_byte *data,
2373 CORE_ADDR memaddr, ULONGEST size);
2374
2375 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2376 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2377 if there's a mismatch, and -1 if an error is encountered while
2378 reading memory. Throws an error if the functionality is found not
2379 to be supported by the current target. */
2380 int target_verify_memory (const gdb_byte *data,
2381 CORE_ADDR memaddr, ULONGEST size);
2382
2383 /* Routines for maintenance of the target structures...
2384
2385 add_target: Add a target to the list of all possible targets.
2386 This only makes sense for targets that should be activated using
2387 the "target TARGET_NAME ..." command.
2388
2389 push_target: Make this target the top of the stack of currently used
2390 targets, within its particular stratum of the stack. Result
2391 is 0 if now atop the stack, nonzero if not on top (maybe
2392 should warn user).
2393
2394 unpush_target: Remove this from the stack of currently used targets,
2395 no matter where it is on the list. Returns 0 if no
2396 change, 1 if removed from stack. */
2397
2398 /* Type of callback called when the user activates a target with
2399 "target TARGET_NAME". The callback routine takes the rest of the
2400 parameters from the command, and (if successful) pushes a new
2401 target onto the stack. */
2402 typedef void target_open_ftype (const char *args, int from_tty);
2403
2404 /* Add the target described by INFO to the list of possible targets
2405 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2406 as the command's completer if not NULL. */
2407
2408 extern void add_target (const target_info &info,
2409 target_open_ftype *func,
2410 completer_ftype *completer = NULL);
2411
2412 /* Adds a command ALIAS for the target described by INFO and marks it
2413 deprecated. This is useful for maintaining backwards compatibility
2414 when renaming targets. */
2415
2416 extern void add_deprecated_target_alias (const target_info &info,
2417 const char *alias);
2418
2419 /* A unique_ptr helper to unpush a target. */
2420
2421 struct target_unpusher
2422 {
2423 void operator() (struct target_ops *ops) const;
2424 };
2425
2426 /* A unique_ptr that unpushes a target on destruction. */
2427
2428 typedef std::unique_ptr<struct target_ops, target_unpusher> target_unpush_up;
2429
2430 extern void target_pre_inferior (int);
2431
2432 extern void target_preopen (int);
2433
2434 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2435 CORE_ADDR offset);
2436
2437 /* Return the "section" containing the specified address. */
2438 const struct target_section *target_section_by_addr (struct target_ops *target,
2439 CORE_ADDR addr);
2440
2441 /* Return the target section table this target (or the targets
2442 beneath) currently manipulate. */
2443
2444 extern const std::vector<target_section> *target_get_section_table
2445 (struct target_ops *target);
2446
2447 /* Default implementation of get_section_table for dummy_target. */
2448
2449 extern const std::vector<target_section> *default_get_section_table ();
2450
2451 /* From mem-break.c */
2452
2453 extern int memory_remove_breakpoint (struct target_ops *,
2454 struct gdbarch *, struct bp_target_info *,
2455 enum remove_bp_reason);
2456
2457 extern int memory_insert_breakpoint (struct target_ops *,
2458 struct gdbarch *, struct bp_target_info *);
2459
2460 /* Convenience template use to add memory breakpoints support to a
2461 target. */
2462
2463 template <typename BaseTarget>
2464 struct memory_breakpoint_target : public BaseTarget
2465 {
2466 int insert_breakpoint (struct gdbarch *gdbarch,
2467 struct bp_target_info *bp_tgt) override
2468 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2469
2470 int remove_breakpoint (struct gdbarch *gdbarch,
2471 struct bp_target_info *bp_tgt,
2472 enum remove_bp_reason reason) override
2473 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2474 };
2475
2476 /* Check whether the memory at the breakpoint's placed address still
2477 contains the expected breakpoint instruction. */
2478
2479 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2480 struct bp_target_info *bp_tgt);
2481
2482 extern int default_memory_remove_breakpoint (struct gdbarch *,
2483 struct bp_target_info *);
2484
2485 extern int default_memory_insert_breakpoint (struct gdbarch *,
2486 struct bp_target_info *);
2487
2488
2489 /* From target.c */
2490
2491 extern void initialize_targets (void);
2492
2493 extern void noprocess (void) ATTRIBUTE_NORETURN;
2494
2495 extern void target_require_runnable (void);
2496
2497 /* Find the target at STRATUM. If no target is at that stratum,
2498 return NULL. */
2499
2500 struct target_ops *find_target_at (enum strata stratum);
2501
2502 /* Read OS data object of type TYPE from the target, and return it in XML
2503 format. The return value follows the same rules as target_read_stralloc. */
2504
2505 extern std::optional<gdb::char_vector> target_get_osdata (const char *type);
2506
2507 /* Stuff that should be shared among the various remote targets. */
2508
2509
2510 /* Timeout limit for response from target. */
2511 extern int remote_timeout;
2512
2513 \f
2514
2515 /* Set the show memory breakpoints mode to show, and return a
2516 scoped_restore to restore it back to the current value. */
2517 extern scoped_restore_tmpl<int>
2518 make_scoped_restore_show_memory_breakpoints (int show);
2519
2520 /* True if we should trust readonly sections from the
2521 executable when reading memory. */
2522 extern bool trust_readonly;
2523
2524 extern bool may_write_registers;
2525 extern bool may_write_memory;
2526 extern bool may_insert_breakpoints;
2527 extern bool may_insert_tracepoints;
2528 extern bool may_insert_fast_tracepoints;
2529 extern bool may_stop;
2530
2531 extern void update_target_permissions (void);
2532
2533 \f
2534 /* Imported from machine dependent code. */
2535
2536 /* See to_enable_btrace in struct target_ops. */
2537 extern struct btrace_target_info *
2538 target_enable_btrace (thread_info *tp, const struct btrace_config *);
2539
2540 /* See to_disable_btrace in struct target_ops. */
2541 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2542
2543 /* See to_teardown_btrace in struct target_ops. */
2544 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2545
2546 /* See to_read_btrace in struct target_ops. */
2547 extern enum btrace_error target_read_btrace (struct btrace_data *,
2548 struct btrace_target_info *,
2549 enum btrace_read_type);
2550
2551 /* See to_btrace_conf in struct target_ops. */
2552 extern const struct btrace_config *
2553 target_btrace_conf (const struct btrace_target_info *);
2554
2555 /* See to_stop_recording in struct target_ops. */
2556 extern void target_stop_recording (void);
2557
2558 /* See to_save_record in struct target_ops. */
2559 extern void target_save_record (const char *filename);
2560
2561 /* Query if the target supports deleting the execution log. */
2562 extern int target_supports_delete_record (void);
2563
2564 /* See to_delete_record in struct target_ops. */
2565 extern void target_delete_record (void);
2566
2567 /* See to_record_method. */
2568 extern enum record_method target_record_method (ptid_t ptid);
2569
2570 /* See to_record_is_replaying in struct target_ops. */
2571 extern int target_record_is_replaying (ptid_t ptid);
2572
2573 /* See to_record_will_replay in struct target_ops. */
2574 extern int target_record_will_replay (ptid_t ptid, int dir);
2575
2576 /* See to_record_stop_replaying in struct target_ops. */
2577 extern void target_record_stop_replaying (void);
2578
2579 /* See to_goto_record_begin in struct target_ops. */
2580 extern void target_goto_record_begin (void);
2581
2582 /* See to_goto_record_end in struct target_ops. */
2583 extern void target_goto_record_end (void);
2584
2585 /* See to_goto_record in struct target_ops. */
2586 extern void target_goto_record (ULONGEST insn);
2587
2588 /* See to_insn_history. */
2589 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2590
2591 /* See to_insn_history_from. */
2592 extern void target_insn_history_from (ULONGEST from, int size,
2593 gdb_disassembly_flags flags);
2594
2595 /* See to_insn_history_range. */
2596 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2597 gdb_disassembly_flags flags);
2598
2599 /* See to_call_history. */
2600 extern void target_call_history (int size, record_print_flags flags);
2601
2602 /* See to_call_history_from. */
2603 extern void target_call_history_from (ULONGEST begin, int size,
2604 record_print_flags flags);
2605
2606 /* See to_call_history_range. */
2607 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2608 record_print_flags flags);
2609
2610 /* See to_prepare_to_generate_core. */
2611 extern void target_prepare_to_generate_core (void);
2612
2613 /* See to_done_generating_core. */
2614 extern void target_done_generating_core (void);
2615
2616 #endif /* !defined (TARGET_H) */