]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/testsuite/gdb.base/bigcore.c
Switch the license of all .c files to GPLv3.
[thirdparty/binutils-gdb.git] / gdb / testsuite / gdb.base / bigcore.c
1 /* This testcase is part of GDB, the GNU debugger.
2
3 Copyright 2004, 2007 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>.
17
18 Please email any bugs, comments, and/or additions to this file to:
19 bug-gdb@prep.ai.mit.edu */
20
21 /* Get 64-bit stuff if on a GNU system. */
22 #define _GNU_SOURCE
23
24 #include <sys/types.h>
25 #include <sys/time.h>
26 #include <sys/resource.h>
27 #include <sys/stat.h>
28 #include <fcntl.h>
29
30 #include <stdlib.h>
31 #include <unistd.h>
32
33 /* This test was written for >2GB core files on 32-bit systems. On
34 current 64-bit systems, generating a >4EB (2 ** 63) core file is
35 not practical, and getting as close as we can takes a lot of
36 useless CPU time. So limit ourselves to a bit bigger than
37 32-bit, which is still a useful test. */
38 #define RLIMIT_CAP (1ULL << 34)
39
40 /* Print routines:
41
42 The following are so that printf et.al. can be avoided. Those
43 might try to use malloc() and that, for this code, would be a
44 disaster. */
45
46 #define printf do not use
47
48 const char digit[] = "0123456789abcdefghijklmnopqrstuvwxyz";
49
50 static void
51 print_char (char c)
52 {
53 write (1, &c, sizeof (c));
54 }
55
56 static void
57 print_unsigned (unsigned long long u)
58 {
59 if (u >= 10)
60 print_unsigned (u / 10);
61 print_char (digit[u % 10]);
62 }
63
64 static void
65 print_hex (unsigned long long u)
66 {
67 if (u >= 16)
68 print_hex (u / 16);
69 print_char (digit[u % 16]);
70 }
71
72 static void
73 print_string (const char *s)
74 {
75 for (; (*s) != '\0'; s++)
76 print_char ((*s));
77 }
78
79 static void
80 print_address (const void *a)
81 {
82 print_string ("0x");
83 print_hex ((unsigned long) a);
84 }
85
86 static void
87 print_byte_count (unsigned long long u)
88 {
89 print_unsigned (u);
90 print_string (" (");
91 print_string ("0x");
92 print_hex (u);
93 print_string (") bytes");
94 }
95
96 /* Print the current values of RESOURCE. */
97
98 static void
99 print_rlimit (int resource)
100 {
101 struct rlimit rl;
102 getrlimit (resource, &rl);
103 print_string ("cur=0x");
104 print_hex (rl.rlim_cur);
105 print_string (" max=0x");
106 print_hex (rl.rlim_max);
107 }
108
109 static void
110 maximize_rlimit (int resource, const char *prefix)
111 {
112 struct rlimit rl;
113 print_string (" ");
114 print_string (prefix);
115 print_string (": ");
116 print_rlimit (resource);
117 getrlimit (resource, &rl);
118 rl.rlim_cur = rl.rlim_max;
119 if (sizeof (rl.rlim_cur) >= sizeof (RLIMIT_CAP))
120 rl.rlim_cur = (rlim_t) RLIMIT_CAP;
121 setrlimit (resource, &rl);
122 print_string (" -> ");
123 print_rlimit (resource);
124 print_string ("\n");
125 }
126
127 /* Maintain a doublely linked list. */
128 struct list
129 {
130 struct list *next;
131 struct list *prev;
132 size_t size;
133 };
134
135 /* Put the "heap" in the DATA section. That way it is more likely
136 that the variable will occur early in the core file (an address
137 before the heap) and hence more likely that GDB will at least get
138 its value right.
139
140 To simplify the list append logic, start the heap out with one
141 entry (that lives in the BSS section). */
142
143 static struct list dummy;
144 static struct list heap = { &dummy, &dummy };
145
146 static unsigned long bytes_allocated;
147
148 #ifdef O_LARGEFILE
149 #define large_off_t off64_t
150 #define large_lseek lseek64
151 #else
152 #define large_off_t off_t
153 #define O_LARGEFILE 0
154 #define large_lseek lseek
155 #endif
156
157 int
158 main ()
159 {
160 size_t max_chunk_size;
161 large_off_t max_core_size;
162
163 /* Try to expand all the resource limits beyond the point of sanity
164 - we're after the biggest possible core file. */
165
166 print_string ("Maximize resource limits ...\n");
167 #ifdef RLIMIT_CORE
168 maximize_rlimit (RLIMIT_CORE, "core");
169 #endif
170 #ifdef RLIMIT_DATA
171 maximize_rlimit (RLIMIT_DATA, "data");
172 #endif
173 #ifdef RLIMIT_STACK
174 maximize_rlimit (RLIMIT_STACK, "stack");
175 #endif
176 #ifdef RLIMIT_AS
177 maximize_rlimit (RLIMIT_AS, "stack");
178 #endif
179
180 print_string ("Maximize allocation limits ...\n");
181
182 /* Compute the largest possible corefile size. No point in trying
183 to create a corefile larger than the largest file supported by
184 the file system. What about 64-bit lseek64? */
185 {
186 int fd;
187 large_off_t tmp;
188 unlink ("bigcore.corefile");
189 fd = open ("bigcore.corefile", O_RDWR | O_CREAT | O_TRUNC | O_LARGEFILE,
190 0666);
191 for (tmp = 1; tmp > 0; tmp <<= 1)
192 {
193 if (large_lseek (fd, tmp, SEEK_SET) > 0)
194 max_core_size = tmp;
195 }
196 close (fd);
197 }
198
199 /* Compute an initial chunk size. The math is dodgy but it works
200 for the moment. Perhaphs there's a constant around somewhere.
201 Limit this to max_core_size bytes - no point in trying to
202 allocate more than can be written to the corefile. */
203 {
204 size_t tmp;
205 for (tmp = 1; tmp > 0 && tmp < max_core_size; tmp <<= 1)
206 max_chunk_size = tmp;
207 }
208
209 print_string (" core: ");
210 print_byte_count (max_core_size);
211 print_string ("\n");
212 print_string (" chunk: ");
213 print_byte_count (max_chunk_size);
214 print_string ("\n");
215 print_string (" large? ");
216 if (O_LARGEFILE)
217 print_string ("yes\n");
218 else
219 print_string ("no\n");
220
221 /* Allocate as much memory as possible creating a linked list of
222 each section. The linking ensures that some, but not all, the
223 memory is allocated. NB: Some kernels handle this efficiently -
224 only allocating and writing out referenced pages leaving holes in
225 the file for unmodified pages - while others handle this poorly -
226 writing out all pages including those that weren't modified. */
227
228 print_string ("Alocating the entire heap ...\n");
229 {
230 size_t chunk_size;
231 unsigned long chunks_allocated = 0;
232 /* Create a linked list of memory chunks. Start with
233 MAX_CHUNK_SIZE blocks of memory and then try allocating smaller
234 and smaller amounts until all (well at least most) memory has
235 been allocated. */
236 for (chunk_size = max_chunk_size;
237 chunk_size >= sizeof (struct list);
238 chunk_size >>= 1)
239 {
240 unsigned long count = 0;
241 print_string (" ");
242 print_byte_count (chunk_size);
243 print_string (" ... ");
244 while (bytes_allocated + (1 + count) * chunk_size
245 < max_core_size)
246 {
247 struct list *chunk = malloc (chunk_size);
248 if (chunk == NULL)
249 break;
250 chunk->size = chunk_size;
251 /* Link it in. */
252 chunk->next = NULL;
253 chunk->prev = heap.prev;
254 heap.prev->next = chunk;
255 heap.prev = chunk;
256 count++;
257 }
258 print_unsigned (count);
259 print_string (" chunks\n");
260 chunks_allocated += count;
261 bytes_allocated += chunk_size * count;
262 }
263 print_string ("Total of ");
264 print_byte_count (bytes_allocated);
265 print_string (" bytes ");
266 print_unsigned (chunks_allocated);
267 print_string (" chunks\n");
268 }
269
270 /* Push everything out to disk. */
271
272 print_string ("Dump core ....\n");
273 *(char*)0 = 0;
274 }